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Abstract. We report on an integral representation for the Fibonacci sequence

Fn =
1√
5

(√
5 + 1

2

)n

− 2

π

∫ ∞
0

sin(x/2)

x

cos(nx)− 2 sin(nx) sinx

5 sin2 x+ cos2 x
dx

and give two different proofs, with or without invoking complex analysis. These proofs allow
us to present some generalizations of this integral representation along two different directions.

1. Introduction

Years ago, when one of us (MLG) was working on the electron gas in a magnetic field [1],
whose quantum levels are expressible in terms of associated Laguerre functions, a uniform
asymptotic expansion of the latter was needed beyond the leading term available. MLG
developed a procedure, based on obtaining a Fourier integral representation, for producing this
uniform asymptotic expansion. Essentially, if one has a generating series F(z) =

∑∞
n=0Anz

n

for the sequence {An|n ∈ Z≥0}, then

Abuc =
1

π

∫ ∞
0

sin(x/2)

x

[
ei(u−1/2)xF(e−ix) + e−i(u−1/2)xF(eix)

]
dx+R, u ∈ (0,+∞) r Z,

(1.1)

where the “remainder term” R comes in, if F(z) has singularities in the right half complex
plane. Specializing Eq. 1.1 to the generating function of the Fibonacci sequence F(z) =∑∞

n=0 Fnz
n = z/(1− z− z2), one could deduce, after some algebra, the integral representation

mentioned in the abstract (reproduced as Eq. 1.2 below).
On Mar. 25, 2015, MLG challenged YZ in an email message for a proof of the aforementioned

integral representation of the Fibonacci sequence, without supplying the “generic inversion
formula” (Eq. 1.1) beforehand. On the same day of the correspondence, YZ wrote back to
MLG a demonstration of the said integral representation, without prior knowledge of Eq. 1.1,
and obtained generalizations along a different direction.

In this brief note, we present two different proofs for the following integral representation
of the Fibonacci sequence

Fn =
1√
5

(√
5 + 1

2

)n

− 2

π

∫ ∞
0

sin(x/2)

x

cos(nx)− 2 sin(nx) sinx

5 sin2 x+ cos2 x
dx, n ∈ Z≥0, (1.2)

drawing on the methods developed independently by MLG and YZ. In §2, we outline a proof
of Eq. 1.1, thereby placing Eq. 1.2 in a complex-analytic context. In §3, we use real-analytic
methods to establish an equivalent formulation of Eq. 1.2:

2

π

∫ ∞
0

sin(x/2)

x

cos(nx)− 2 sin(nx) sinx

5 sin2 x+ cos2 x
dx =

(−1)n√
5

(√
5− 1

2

)n

, n ∈ Z≥0, (1.2′)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Documental de la Universidad de Valladolid

https://core.ac.uk/display/211106094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and extend the result to an evaluation of the integral

I(m,n) :=
2

π

∫ ∞
0

sin(x/2)

x

cos(nx)− 2 sin(nx) sinx

m sin2 x+ cos2 x
dx (1.3)

for arbitrary m > 0, n ∈ R.

2. A Complex-Analytic Proof

For n < u < n + 1, the n-th Fibonacci number can be written Fbuc. Consider this as a
function of u and let us take its Laplace Transform:∫ ∞

0
e−uzFbucdu =

∞∑
k=0

Fk

∫ k+1

k
e−uzdu =

∞∑
k=0

Fke
−kz

∫ 1

0
e−tzdt =

e−z

z

1− e−z

1− e−z − e−2z
. (2.1)

where we have noted the generating function

F(z) =
∞∑
n=0

Fnz
n =

z

1− z − z2
. (2.2)

One might also note that Eq. 2.1 is equal to 1−e−z

z F(e−z) — a relation that remains valid when
the aforementioned F is replaced by the generating function of other well-behaved sequences
[1, Eq. 4].

Now take the inverse Laplace transform to get

Fbuc =
1

2πi

∫ c+i∞

c−i∞

dz

z
e(u−1/2)z

sinh(z/2)

sinh z − 1/2
, u ∈ (0,+∞) r Z (2.3)

where c > sinh−1(1/2) = z0, the only real-valued singularity of the integrand. All the singular-
ities of the integrand that lie in the right half-plane can be enumerated as zk = z0+2kπi, k ∈ Z.

By displacing the contour to the imaginary axis z = iy, y ∈ R, we have

Fbuc =
1

2π

∫ ∞
−∞

sin(y/2)

y

ei(u−1/2)y

i sin y − 1/2
dy +

∞∑
k=−∞

Ik, (2.4)

Ik =
1

2πi

∮
Ck

dz

z
e(u−1/2)z

sinh(z/2)

sinh z − 1/2
, (2.5)

where the contour Ck is a small circle centered at zk. The infinite sum
∑∞

k=−∞ Ik in Eq. 2.4 is

understood as limN→+∞
∑N

k=−N Ik. Such an inversion formula as Eq. 2.4 can be generalized
into Eq. 1.1. However, we point out that it is generally hard to compute the residue contribu-
tion, namely, the “remainder term” R in Eq. 1.1. For the case of Fibonacci sequence, the sum
over the residues Ik can be evaluated in closed form, as we explain in the next paragraph.

By residue calculus,
∞∑

k=−∞
Ik =

ϕu−2
√

5

[
1

lnϕ
+ 2

∞∑
k=1

cos(2kπu) lnϕ+ 2kπ sin(2kπu)

ln2 ϕ+ 4π2k2

]
. (2.6)

where ϕ = (
√

5 + 1)/2 is the Golden Ratio, and lnϕ = z0 = sinh−1(1/2). To evaluate the
infinite sum in Eq. 2.6, we require the series (cf. [1, Eq. 12] and [2, Eq. 5.4.5(2)])

∞∑
k=1

cos(2πkx)

a2 + k2
=

π

2a

cosh[2aπ(x− bxc − 1
2)]

sinh(aπ)
− 1

2a2
, ∀x ∈ R, ia ∈ Cr Z, (2.7)
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and its derivative with respect to x ∈ Rr Z. After some algebra, one can deduce

∞∑
k=−∞

Ik =

(√
5 + 1

2

)buc
1√
5
, u ∈ (0,+∞) r Z. (2.8)

The remaining integral in Eq. 2.4 is equal to

1

π

∫ ∞
0

dx

x
sin(x/2)Re

[
ei(u−1/2)x

i sinx− 1/2

]
. (2.9)

Consequently, with u = n+ 1/2 for n ∈ Z≥0, one finds

2

π

∫ ∞
0

sin(x/2)
2 sin(nx) sinx− cos(nx)

5 sin2 x+ cos2 x

dx

x
= Fn −

ϕn

√
5
. (2.10)

By Wells’ formula (see [3] and [4, p. 62]),

Fn =

⌊
ϕn

√
5

⌋
(2.11)

holds for non-negative even integers. So, for n even the integral in Eq. 2.10 is precisely the
negative of the fractional part of ϕn/

√
5.

3. A Real-Analytic Proof

In this section, we base the integral formula in Eq. 1.2′ on the following theorem.

Theorem 3.1. When n ∈ (2k − 1
2 , 2k + 1

2) ∩ [0,+∞) for a given integer k ∈ Z≥0, we have

I(m,n) :=
2

π

∫ ∞
0

sin(x/2)

x

cos(nx)− 2 sin(nx) sinx

m sin2 x+ cos2 x
dx =

(√
m− 1√
m+ 1

)k
1√
m
, ∀m > 0; (3.1)

when n ∈ (2k + 1− 1
2 , 2k + 1 + 1

2) for a given integer k ∈ Z≥0, we have

I(m,n) = −
(√

m− 1√
m+ 1

)k
2√

m(1 +
√
m)

, ∀m > 0; (3.2)

when n− 1
2 ∈ Z≥0, we can compute I(m,n) = I(m,n+0+)+I(m,n−0+)

2 .

Proof. The entire proof hinges on the following Poisson kernel expansion
√
m

m sin2 x+ cos2 x
= 1 + 2

∞∑
k=1

(√
m− 1√
m+ 1

)k

cos(2kx), ∀m,x > 0. (3.3)

By elementary trigonometry, we have

2 sin(x/2)

x
[cos(nx)− 2 sin(nx) sinx] cos(2kx)

=
1

2x

[
2 sin

(
2kx− nx+

x

2

)
+ 2 sin

(
−2kx− nx+

x

2

)
− sin

(
−2kx− nx+

3x

2

)
+

+ sin

(
2kx+ nx+

3x

2

)
+ sin

(
−2kx+ nx+

3x

2

)
− sin

(
2kx− nx+

3x

2

)]
. (3.4)
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Figure 1. Two typical plots of fn(k) as a function of k ∈ [0,+∞). We note
that for varying values of n ∈ (3/2,+∞), the shapes of the k-fn(k) plots are
just horizontal translates of each other.

Bearing in mind that the Dirichlet integral evaluates to

2

π

∫ ∞
0

sinαx

x
dx = sgnα ≡


1, α > 0

0, α = 0

−1, α < 0

(3.5)

we can compute∫ ∞
0

2 sin(x/2)

πx
[cos(nx)− 2 sin(nx) sinx] cos(2kx)dx =

fn(k)

4
, (3.6)

where the function

fn(k) = 2 sgn

(
2k − n+

1

2

)
+ 2 sgn

(
−2k − n+

1

2

)
− sgn

(
−2k − n+

3

2

)
+

+ sgn

(
2k + n+

3

2

)
+ sgn

(
−2k + n+

3

2

)
− sgn

(
2k − n+

3

2

)
,

k ∈ [0,+∞) (3.7)

is supported on a bounded interval k ∈ [n2 −
3
4 ,

n
2 + 3

4 ] ∩ [0,+∞) (see Figs. 1 and 2).

Judging from Fig. 1, it is clear that whenever n− 1
2 ∈ (1,+∞) r Z, there are at most two

terms in the series expansion for the Poisson kernel (Eq. 3.3) that can have a net contribution
to the integral I(m,n). Specifically, when n ∈ (2k− 1

2 , 2k+ 1
2)∩ (3/2,+∞) for a given integer

k ∈ Z>0, only the term cos(2kx) matters, which leads to

I(m,n) =
2fn(k)

4

(√
m− 1√
m+ 1

)k
1√
m

=

(√
m− 1√
m+ 1

)k
1√
m

; (3.8)

when n ∈ (2k+ 1− 1
2 , 2k+ 1 + 1

2)∩ (3/2,+∞) for a given integer k ∈ Z>0, the terms cos(2kx)
and cos[2(k + 1)x] both come into play, which results in

I(m,n) =

[
2fn(k + 1)

4

(√
m− 1√
m+ 1

)k+1

+
2fn(k)

4

(√
m− 1√
m+ 1

)k
]

1√
m

=

[(√
m− 1√
m+ 1

)k+1

−
(√

m− 1√
m+ 1

)k
]

1√
m

= −
(√

m− 1√
m+ 1

)k
2√

m(1 +
√
m)

. (3.9)

So far, we have confirmed Eqs. 3.10 and 3.11 under the additional constraint that n > 3/2.
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Figure 2. Two atypical plots of fn(k) as a function of k ∈ [0,+∞). We note
that for varying values of n ∈ [0, 3/2), the actual value of fn(0) doubles what
is anticipated from a näıve horizontal translation of the plot in Fig. 1.

When 0 ≤ n < 3/2, we will need to cope with the k = 0 term (i.e. the leading constant “1”)
in the Poisson kernel expansion. The leading constant “1” is exactly half of the value “2” that
precedes each cos(2kx), k ∈ Z>0 term in the Fourier series expansion; in the meantime, the
actual value of fn(0), 0 ≤ n < 3/2 also doubles what would come from a direct extrapolation
of the fn(0), n > 3/2 scenario (see Fig. 2). These two rescaling effects cancel each other, so
the validity of Eqs. 3.10 and 3.11 remains unshaken for 0 ≤ n < 3/2.

Finally, the identity fn(k) = limε→0+
fn+ε(k)+fn−ε(k)

2 brings us I(m,n) = I(m,n+0+)+I(m,n−0+)
2 ,

as claimed. �

We note that a similar discussion can be carried out for n < 0. We record the results in the
theorem below, and leave the proof to interested readers.

Theorem 3.2. When −n ∈ (2k − 1
2 , 2k + 1

2) ∩ (0,+∞) for a given integer k ∈ Z≥0, we have

I(m,n) :=
2

π

∫ ∞
0

sin(x/2)

x

cos(nx)− 2 sin(nx) sinx

m sin2 x+ cos2 x
dx =

(√
m− 1√
m+ 1

)k
1√
m
, ∀m > 0;

(3.10)

when −n ∈ (2k + 1− 1
2 , 2k + 1 + 1

2) for a given integer k ∈ Z≥0, we have

I(m,n) = +

(√
m− 1√
m+ 1

)k
2√

m(1 +
√
m)

, ∀m > 0; (3.11)

when n− 1
2 ∈ Z<0, we can compute I(m,n) = I(m,n+0+)+I(m,n−0+)

2 . �

Specializing to the case m = 5, and combining the results for I(5, n) and I(5,−n), we obtain
the following integral representations for the even and odd terms in the Fibonacci sequence:

F2n =
1√
5

(√
5 + 1

2

)2n

− 2

π

∫ ∞
0

sin(x/2)

x

cos(2nx)dx

5 sin2 x+ cos2 x
, (3.12)

F2n+1 =
1√
5

(√
5 + 1

2

)2n+1

+
4

π

∫ ∞
0

sin(x/2)

x

sin[(2n+ 1)x] sinxdx

5 sin2 x+ cos2 x
, (3.13)

where n ∈ Z≥0.

MONTH YEAR 5



References

[1] M.L. Glasser, Laplace transforms and asymptotic expansions of orthogonal polynomials,
J. Math. Phys. 22, 653–655 (1981)

[2] A.P. Prudnikov et al. Integrals and Series, Vol.1, Gordon and Breach Science Publishers,
New York, NY (1986)

[3] P. Chandra and E.W. Weisstein, Mathworld — a Wolfram Web Resource, http://

mathworld.wolfram.com/FibonacciNumber.html

[4] D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books,
Middlesex, UK (1986)

Departments of Mathematics and Physics, Clarkson University, Potsdam, NY 13699
E-mail address: laryg@clarkson.edu

and

Department of Theoretical Physics, University of Valladolid, Valladolid 47011, Spain

Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ
08544

E-mail address: yajunz@math.princeton.edu

6 VOLUME , NUMBER


