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We consider two particles of equal mass and opposite charge in a plane subject to a perpendicular 
constant magnetic field. This system is integrable but not superintegrable. From the quantum point of 
view, the solution is given by two fourth degree Hill differential equations which involve the energy as 
well as a second constant of motion. There are two solvable approximations in relation to the value of a 
parameter. Starting from each of these approximations, a consistent perturbation theory can be applied 
to get approximate values of the energy levels and of the second constant of motion.
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1. Introduction

In a previous paper [1] we have considered a kind of Landau 
system with two charged particles in a plane. The charges have 
the same absolute value and opposite sign and the same mass. 
These particles are subject to a constant perpendicular magnetic 
field. The same situation, under a different point of view has been 
discussed in some recent papers [2,3].

This model has considerable interest in Physics. For instance, 
it can be interpreted as a positronium system, or as a Frenkel or 
Mott–Wannier exciton [4]. Other applications have been studied in 
[5,6]. The model is also closely related to the system of a particle 
under two fixed gravity centers, a classical subject [7].

We have shown in [1] that this system may be studied from 
the point of view of either classical or quantum mechanics. The 
transition from the former to the latter is achieved through canon-
ical quantization [8]. This system has four independent commuting 
constants of motion, or symmetries. Classically, the commutation is 
defined in terms of Poisson brackets. This system is integrable al-
though not superintegrable.

In the classical analysis presented in [1], we have used two of 
these constants, written in compact form as the components of the 
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two dimensional vector μ, in order to reduce by two the number 
of degrees of freedom, so that we have an effective two dimen-
sional system.

The resulting Hamiltonian is a sum of a kinetic term plus an ef-
fective potential, which is given by the sum of a Coulomb potential 
plus a shifted harmonic oscillator. Along with this effective Hamil-
tonian, we have an additional constant of motion, denoted by T . 
This fact allows to separate the system in elliptic coordinates.

In the present Letter, we focus our interest on the quantum 
version of this model. Within this quantum context, the separa-
tion in elliptic coordinates of the effective system leads to a pair 
of equations. One is a fourth degree periodic Hill equation, while 
the second one is a similar modified Hill equation with hyperbolic 
functions [9,10]. Up to our knowledge, analytic solutions for these 
equations are not known.

Along this presentation, we shall discuss the possibility of ob-
taining approximate solutions of these equations by means of a 
procedure based on perturbation theory. In our calculations, we 
shall use μ := |μ| as natural perturbative parameter. This μ, to be 
defined in the next section (right after (6)), is a constant of mo-
tion and gives the position of the center of the displaced harmonic 
oscillator.

The zero order of perturbation will approximately describe the 
system either for μ << 1 or for μ >> 1. In the first case, the 
Coulomb term will be dominant with respect to the oscillatory 
term, now used as a perturbation. The situation is reversed in the 
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second case, where the oscillatory term is dominant and the per-
turbation is given by the Coulomb part.

We shall see that in the zero order approximation valid for 
μ << 1, or Coulomb approximation, both trigonometric and hy-
perbolic Hill equations become a pair of equations of the type 
discussed by Razavy in [11,12], which are solvable. These equa-
tions were known by some authors as the hyperbolic Wittaker–Hill 
equations. Nevertheless, since we are using as the reference the 
work by Razavy and following the use of some recent authors, 
we prefer to use the terminology Razavy type equations or simply, 
Razavy equations. Their solutions coincide with the bound solu-
tions of the Coulomb problem and take significant values close to 
the origin of the potential. This means that the relative position 
between both particles keeps very small.

When μ >> 1, we can again approximate both Hill equations 
by Razavy type equations. Their solutions describe the solutions 
for the harmonic oscillator in elliptic coordinates. These solutions 
are the bound states of the harmonic oscillator and correspond to 
much larger values of μ.

Using these zero order approximations as the unperturbed sys-
tems, we propose perturbations of first order. In this approach, we 
assume that the representation in terms of elliptic coordinates is 
valid for any order of perturbation.

This Letter is organized as follows: In Section 2, in order to 
orient the reader and for the sake of completeness, we summa-
rize the results obtained in [1] with some additional information. 
We give in Section 3 the exact resolution of the zero order Razavy 
equations, where we pay an special attention to the correct choice 
of the boundary conditions and its consequences. In Section 4, we 
discuss the first order perturbative approach to solutions. Explicit 
expressions are left to Supplementary Material. We close our dis-
cussion with some Concluding Remarks.

2. Presentation of the problem

In this section, we briefly review the treatment given in [1]. Let 
us begin with the classical description of the model. The Hamil-
tonian describing two charged particles, with charges e and −e, 
of equal mass m, interacting among themselves by the Coulomb 
potential and subject to an external constant magnetic field per-
pendicular to the plane in which the particles move is given by 
(c = 1):

H = 1

2m
[(p(1) − e A(x(1)))2 + (p(2) + e A(x(2)))2] − e2

|x(1) − x(2)| .

(1)

Here by x(k) , p(k) , k = 1, 2, we denote positions and linear mo-
menta of both particles. The vector potential A(x) is taken in the 
symmetric gauge,

Ai(x) = h εi j x j, A(x) = (h x2,−h x1) , (2)

where εi j is the totally antisymmetric tensor in two dimensions. 
We are using the convention of summation over repeated indices. 
The magnetic field is parallel to the z axis with intensity B = −2h. 
For each particle k (k = 1, 2), we define a kinematic momentum 
π (k) with components,

π
(1)
i = p(1)

i − e A(1)
i = p(1)

i − eεi j x
(1)
j h ,

π
(2)
i = p(2)

i + e A(2)
i = p(2)

i + eεi j x
(2)
j h . (3)

Next, define the components, �i of the total momentum and the 
center of mass (c.o.m.) coordinates Q i , i = 1, 2, by

�i := π
(1)
i + 2ehεi j x

(1)
j + π

(2)
i − 2ehεi j x

(2)
j ,

Q i := 1
(x(1)

i + x(2)
i ) (4)
2

and the relative momentum and coordinates as

πi := 1

2
(π

(1)
i − π

(2)
i ) , qi := x(1)

i − x(2)
i , i = 1,2 . (5)

Due to the fact that the total charge of the system vanishes, the 
functions {q, π , Q, �} constitute a canonical coordinate set. We 
could have equally discussed the case of two particles with dif-
ferent mass m1, m2; then, a similar canonical set would have been 
obtained.

In terms of these new coordinates, the initial Hamiltonian (1)
has the following form:

H = 1

4m
�2 − eh

m
εi j�iq j + 1

m
π2 + e2h2

m
q2 − e2

q

= 1

m
π2 + e2h2

m
(q + μ

2
)2 − e2

q
, (6)

with q := |q|, μ j = −εi j�i/eh and μ := |μ|. As the coordinates Q
are cyclic, the components of the “total momentum” � are con-
stants of motion given in terms of μ. From (6), we conclude that 
the effective system consists of a particle, with a reduced mass 
m/2 and charge e, in the plane under the influence of a Coulomb 
potential set at the origin with charge −e, plus a shifted harmonic 
oscillator potential with angular frequency ω = 2eh/m = e|B|/m, 
which is the cyclotron frequency, being |B| = 2h the magnetic field 
intensity.

As is clear from (4), the constant of motion � is the sum of 
the generators of magnetic translations for each particle, just as 
they are defined for the Landau system of a single particle in a 
constant magnetic field. In the Landau system, the values of � give 
the center of the circular trajectories; in this case, the values of �
determine the relative position of the two centers of the Coulomb 
and oscillator effective potentials.

As the first term, 1
4m �2 = (ehμ)2

4m , in (6) is a constant, it will be 
hereafter dropped to simplify the expressions. Nevertheless, it will 
be recovered later in order to interpret the approximation μ >> 1.

As shown in [1], this system has two independent constants of 
motion:

H = π2

m
+ U (q) ; T := πi gi j(q)π j + �(q) . (7)

Here, H is the effective Hamiltonian given in (6), without the 
above mentioned constant term. The second constant of motion T
includes a “kinetic term” given by1:

πi gi j(q)π j = L2 + (μ1π2 − μ2π1)L = 1

2
(L · L′ + L′ · L) ,

L := q1π2 − q2π1 , (8)

where L and L′ are the angular momenta with respect to the ori-
gin and to the point −μ, respectively. By the way, this term has 
been already obtained by Erikson–Hill in [14] for the two center 
problem. The kinetic tensor can also be expressed as

gij = q∗
i q∗

j + 1

2
(μ∗

i q∗
j + q∗

i μ
∗
j ) , (9)

where, q∗
i = εikqk , μ∗

i = εikμk . The “potential term” � is given by

�(q) = 2m e2

μ2

q · μ
q

+ e2h2

4
(q2μ2 − (q · μ)2) . (10)

Note that T is a constant of motion in the sense that {H, T } = 0, 
where {·, ·} stands for Poisson bracket. Then with the help of T , 
we can separate the system using the confocal elliptic coordinates 

1 Note that in the quantum case one has to use a symmetrized expression.
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(α, β), where the foci are set at the origin and at −μ. These are 
defined by [1]:

μ coshα = q + |q + μ|, −μ cos β = q − |q + μ| . (11)

For instance, in the particular case μ = (μ, 0), we have the follow-
ing expression of the Cartesian coordinates in terms of the elliptic 
coordinates:

x + μ

2
= μ

2
coshα cosβ, y = μ

2
sinhα sin β . (12)

According to (12), taking either the ranges α ∈ [0, +∞), β ∈
[−π, π) or α ∈ (−∞, +∞), β ∈ [0, π), we cover the whole real 
plane.

Once we have introduced the model classically, we can proceed 
with its quantum version. In this context, we replace the functions 
H and T in (8) by the operators:

H := − 1

m
∂i∂i + U (q) ; T := −∂i gi j(q)∂ j + �(q) ,

∂i ≡ ∂

∂qi
, (13)

respectively (h̄ = 1) following the canonical quantization proce-
dure [8]. In order to avoid unnecessary notational complications, 
we have use H and T for both classical functions and quantum op-
erators. Then, the eigenfunction equations for these operators read, 
respectively:

(H − E)
(x) = 0 ,

(
1

m
T − J

)

(x) = 0 , (14)

where the parameters E and J give the corresponding eigenvalues 
of the Hamiltonian H and the symmetry operator T . These equa-
tions can be separated in terms of the elliptic coordinates (α, β)

with the usual Ansatz that the solution 
(α, β) be factorizable in 
terms of these coordinates [1]: 
(α, β) = ψ(α)φ(β). Thus, equa-
tions (15) that were coupled in Cartesian coordinates, give rise to a 
system of two ordinary second order differential equations in sep-
arated variables, for which their explicit form is given by

d2ψ(α)

dα2
= m

[
A sinh4 α − B coshα − C sinh2 α + J

]
ψ(α) ,

(15)

−d2φ(β)

dβ2
= m

[
A sin4 β + B cos β + C sin2 β + J

]
φ(β) , (16)

where

A = e2h2

m

(μ

2

)4
, B = e2 μ

2
, C = E

μ2

4
. (17)

First of all, note that although equations (15) and (16) are sep-
arated in the variables α and β , they are not separated in the 
variables E (through C ) and J, which are the constants of motion 
that we wish to obtain.

Next, these equations should satisfy some boundary conditions 
and, hence, we are facing to a sort of Sturm–Liouville problem. 
Since β is an angle, the solutions φ(β) of (16), which we are look-
ing for, must be periodic with period 2π . Equation (15) can be 
considered as a Schrödinger equation for the function ψ(α) on the 
whole real line −∞ < α < ∞. Thus, the solutions ψ(α) of (15) de-
scribing bound states should satisfy that ψ(α) → 0, sufficiently fast 
as α → ±∞. In addition, as the functions between brackets in (15)
and (16) are even, then their respective solutions ψ(α) and φ(β)

can be chosen to have a well defined parity. As we may conclude 
after the comment following (11), the range given by α ∈ (−∞, ∞)

and β ∈ (−π, π) is overcomplete. Thus, in order that the solution 

 = ψ(α)φ(β) be a single valued function on R2, we must select 
the solutions ψ(α) and φ(β) having the same parity.
Note that equations (15) and (16) are indeed quite similar, 
which will help us to obtain solutions for this system. It is clear 
that (15) can be obtained from (16) by the replacement α →
i(β +π). Now, assume that we have found a solution ψ(α) of (15)
with well defined parity, analytic on α and satisfying the proper 
boundary conditions. Then, the replacement α → i(β +π) will give 
us a solution of (17) with the same parity and, hence, a single 
valued solution 
(α, β). Consequently, being given an analytic so-
lution of (15) with the proper boundary conditions, this provides 
us with a complete solution to the problem.

Finally, we need to analyze the form of equations (15) and (16). 
To this end, let us consider the following type of second order dif-
ferential equations:

d2ψ(x)

dx2
+

(
A0 + 2

∞∑
n=1

An cos(2nx)

)
ψ(x) = 0 , (18)

where A0, A1, A2, . . . are constants. This is a n-th degree Hill equa-
tion if An �= 0 and An+1 = An+2 = · · · = 0. The first degree Hill 
equation is called the Mathieu equation. The second degree Hill 
equation has been named the Whittaker–Hill equation. Up to our 
knowledge, no systematic studies of Hill equations of higher de-
gree has been done. In particular (16) is a fourth degree Hill equa-
tion for which the solutions are not known.

In the present paper, we attempt to obtain approximate solu-
tions for E and J. This will be done in the next two sections and 
in the Supplementary Material.

3. Two solvable approximations

In this section, we shall discuss two approximations to the 
problem under discussion that have exact solution. These approxi-
mations are appropriate for small and high values of the parameter 
μ as defined in the previous section. Both approximations reduce 
the fourth degree Hill equations into the solvable Razavy equa-
tion. The first approximation is valid for μ << 1 and is called the 
Coulomb limit as gives an energy spectrum of Coulomb type. The 
other is valid for μ >> 1 and is named the harmonic oscillator 
limit as its energy spectrum is the corresponding to an off cen-
tered harmonic oscillator.

Observe that the Coulomb limit is just the special case h = 0, 
which is equivalent to A = 0. On the other hand, the harmonic os-
cillator limit, B = 0, can be taken e → 0 with h → ∞ if the product 
eh remains constant. In addition, since A = O (μ4), B = O (μ) and 
C = O (μ2), the large and small μ limits correspond to the har-
monic oscillator and the Coulomb limit, respectively.

3.1. The Coulomb approximation μ << 1

If we consider μ small, the term with coefficient A in (15) and 
(16) is negligible, due to the form of the coefficients given in (17). 
In our zeroth order approximation, A = 0. Then, equations (15) and 
(16) take the following form:

d2ψ(α)

dα2
= −m

[
B coshα + C sinh2 α − J

]
ψ(α) , (19)

d2φ(β)

dβ2
= −m

[
B cosβ + C sin2 β + J

]
φ(β) . (20)

The Schrödinger equation (19) has bound solutions with right 
boundary conditions in α → ±∞, provided that C < 0. Accord-
ing to (17), this means that the energy is negative, i.e., E < 0. This 
equation has exact solutions as it can be transformed into a Razavy 
equation, also called the hyperbolic Wittaker–Hill equation, which 
has the form [11,13,15,16]

−d2ψ(x)
2

+ (ζ cosh 2x − M)2ψ(x) = λψ(x) . (21)

dx
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Table 1
Values of the constants of motion and the eigenfunctions for n = 0, 1, 2 and μ << 1.

E0 = −me4 λ01 = 1 + μ2m2e4 J01 = 0
ζ0 = μme2 ψ01(α) = exp(− ζ0

2 coshα)

E1 = − me4

4 J11 = 1+μme2

4m

ζ1 = μme2

2 ψ11(α) = cosh(α/2) exp(− ζ1
2 coshα)

J12 = 1−μme2

4m
ψ11(α) = sinh(α/2) exp(− ζ1

2 coshα)

E2 = − me4

9 J21 = 1
m

ζ2 = μme2

3 ψ21(α) = sinhα exp(− ζ2
2 coshα)

J22 = 1+
√

1+ 4
9 μ2m2e4

2m

ψ22(α) = (coshα − 1−
√

1+4ζ 2
2

ζ2
)exp(− ζ2

2 coshα)

J23 = 1−
√

1+ 4
9 μ2m2e4

2m

ψ23(α) = (coshα − 1+
√

1+4ζ 2
2

ζ2
)exp(− ζ2

2 coshα)

This transformation goes as follows: first perform that change 
of variables α = 2x and, then, some straightforward manipulations 
to obtain from (19) the following relation:

−ψ ′′(x) +
(√−4mC cosh 2x − 2mB√−4mC

)2

ψ(x)

= −
(

mB2

C
+ 4mC + 4mJ

)
ψ(x) . (22)

Equation (22) has already the form (21) with the following identi-
fications:

ζ = √−4mC = μ
√−m E , (23)

M = 2mB√−4mC
= e2

√
−m

E
, (24)

−λ = mB2

C
+ 4mC + 4mJ . (25)

The Razavy equation (21) is solvable and its solutions ψ(x) are 
square integrable, provided that M be a positive integer, i.e., M =
n + 1, with n = 0, 1, 2, . . . .

Let us denote the energy levels by E(C)
n , n = 0, 1, 2 . . . , where 

the superscript (C) stand for Coulomb. Then, if M2 = (n + 1)2, we 
have

E(C)
n = − me4

(n + 1)2
. (26)

Needless to say that the similarity of the energy levels in (26)
with the energy levels for the Coulomb problem is obvious. We 
recall that our Hamiltonian (6) has a potential term of harmonic 
oscillator type and other of Coulomb type. We conclude that when 
μ << 1, the Coulomb term predominates over the harmonic oscil-
lator. However, not all energy levels (23) may be physically admis-
sible, as we have not taken into account the boundary conditions 
yet.

Being fixed E(n)
C , the value of ζ is obtained with (23). We de-

note it by ζn . Then, we replace M = n + 1 and ζn in the Razavy 
equation (21), so as to obtain the n + 1 known solutions for λ. We 
denote these solutions as λn,1, . . . , λn,n+1. Each λn,r determines a 
value Jn,r through (25).

In summary, each energy level E(n)
C has a degeneracy of order 

n +1, which is characterized by the n +1 values of Jn,r . We denote 
their corresponding solutions as ψn,r(x).

In Table 1, we give the values of En , ζn , Jn,r and ψn,r(α), the 
latter in terms of the original variable α = 2x, for n = 0, 1, 2. For 
higher values of n, these polynomial solutions are of higher degree 
and, therefore, they became more and more complicated.

For equation (20), we just need to replace α by i(β + π). Then, 
(20) becomes (19) which is already solved. The eigenfunctions are 
of the form φn,r(β) with the same values of the energy and Jn,r .

However, this is not the whole story because solutions of (20)
must fulfill periodic boundary conditions of period 2π . In addition, 
they should be of the same parity as the solutions of (19). From 
Table 1, and after the transformation α → i(β + π), it is rather 
trivial to prove that these conditions are satisfied for even values of 
n only. This shows that the correct solutions correspond to energy 
levels of the form

E(C)
j = − me4

(2 j + 1)2
, j = 0,1,2, . . . (27)

which precisely coincide with the energy levels of the Coulomb po-
tential on the plane. The ground state solution 
0,1(α, β) is given 
by


01 = ψ01(α)φ01(β) = N e− ζ0
2 (cosh α−cos β) = N e−me2 q . (28)

As a matter of fact, one can realize that the system (19)–(20)
gives the two dimensional Coulomb problem in elliptic coordi-
nates, see [17]. We have shown that the exact solutions to this 
problem can be obtained from the properties of the Razavy equa-
tion. See Figs. 1 and 2.

3.2. The harmonic oscillator approximation μ >> 1

The second approximation has also exact solutions and cor-
responds to the case μ >> 1, where the term containing B is 
dropped out after (17). The consequence is that the system be-
haves now as an out of center harmonic oscillator. For complete-
ness, we write the equations (16) and (16) without the term on B:

d2ψ(α)

dα2
= m

[
A sinh4 α − C sinh2 α + J

]
ψ(α) , (29)

d2φ(β)

dβ2
= −m

[
A sin4 β + C sin2 β + J

]
φ(β) . (30)

After some straightforward transformations, (29) comes into

−d2ψ(α)

dα2
+

[(√
mA

4
cosh(2α) − 1

2

√
m

A
(A + C)

)2

− m

4A
(A + C)2

]
ψ(α)

= m

(
A

4
+ C

2
+ J

)
ψ(α) . (31)

The resulting equation (31) is again a Razavy equation of solvable 
type with parameters given by

ζ =
√

mA

4
, M = 1

2

√
m

A
(A + C) = n + 1 ,

λ = m

4A
(A + C)2 + m

(
A

4
+ C

2
+ J(HO)

)
. (32)

The superscript (HO) in (32) means harmonic oscillator. We know 
that (31) is solvable with square integrable solutions provided that 
M = n + 1 with n = 0, 1, 2, . . . . Then, we recover A and C from 
(17) and use it in the second equation of the first row in (32) to 
conclude that

E(HO)
n = 2eh

(n + 1) − (ehμ)2

, (33)

m 4m
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Fig. 1. Graphics of the ground eigenfunction ψ01 (left) and the first excited eigenfunction ψ21 (right) in Table 1.
Fig. 2. Form of the potential.

Table 2
Values of the constants of motion and the eigenfunctions, up to normalization, for 
n = 0, 1, 2 and μ >> 1 (the harmonic oscillator limit). The wavefunctions depend 
on the constant ĕ = eμ2 through ζ .

E∗
0 = 2eh

m J01 = −64ζ+ehμ2(−16+ehμ2)
64m

ζ = ehμ2

8 ψ01(α) = exp(− ζ0
2 cosh 2α)

E∗
1 = 4eh

m J11 = −64+64(−2+ζ )+ehμ2(−32+ehμ2)
64m

ζ = ehμ2

8 ψ11(α) = cosh(α) exp(− ζ
2 cosh 2α)

J12 = −64+64(2+ζ )+ehμ2(−32+ehμ2)
64m

ψ11(α) = sinh(α)exp(− ζ
2 cosh 2α)

E∗
2 = 6eh

m J21 = −2304+eμ2(64e3m2+9h(−48+ehμ2))
576m

ζ = ehμ2

8 ψ21(α) = sinh 2α exp(− ζ
2 cosh 2α)

J22 = eμ2(64e3m2+9h(−48+ehμ2))−384(3+√
9+4e4m2μ2)

576m

ψ22(α) = (cosh 2α − 1−√
1+4ζ 2

ζ
)exp(− ζ

2 cosh 2α)

J23 = eμ2(64e3m2+9h(−48+ehμ2))−384(−3+√
9+4e4m2μ2)

576m

ψ23(α) = (cosh 2α − 1+√
1+4ζ 2

ζ
) exp(− ζ

2 cosh 2α)

which corresponds to the energy levels of a displaced harmonic 
oscillator. Note that the shift of energy in (33) coincides with the 
dropped term in the Hamiltonian (6). In our comments after equa-
tion (6), we have announced that that term should reappear. The 
values for the second constant of motion J(HO) and the wave func-
tions are obtained as usual [11,13,15,16,22]. In Table 2, we list our 
results for the three first energy levels.

From the solutions of (29), we obtain the solutions of (30) just 
with the replacement α → i(β +π), as in the Coulomb case. How-
ever, there is an important difference between both situations. We 
see in Table 1 that the functions ψnr(α) for Coulomb and n odd 
depend on α/2 which implies that the functions φnr(β), for n odd, 
do not have periodicity with period 2π and, therefore, we had to 
discard these solutions. This is not the case now with the harmonic 
oscillator approximation, where all eigenfunctions ψnr(α) depend 
on α or 2α. Then, the functions φnr(β) obtained by this method 
are periodic with period 2π even for n odd. In consequence, all 
energy values should be considered, even those with n odd. The 
ground state is now


(α,β) = exp(−ζ0

2
(cosh 2α + cos 2β))

∝ exp(−eh

2
(q + μ/2)2) . (34)

Note that this is the ground state of a harmonic oscillator centered 
at −μ/2. In fact, we have obtained the solutions for the harmonic 
oscillator separated in elliptic coordinates [18,19].

So far, we have proposed two exactly solvable approximations. 
What happens if μ = |μ| is neither too small nor too big? Then, 
we propose a perturbative treatment taking the previous approx-
imations as the unperturbed solution. As the perturbed potential, 
we use the dropped term for each case. This will be the objective 
of the next section. Results are given in the Supplementary Mate-
rial.

4. A perturbative approximation to the complete solution

In the sequel, we are dealing with the quantum case only. 
Therefore, expressions like H , H0, H1, T , etc., will henceforth rep-
resent operators. We follow this convention in order to use a no-
tation as simple as possible.

In this section, we are looking for approximate solutions for 
equations (15) and (16). Let us begin with the unperturbed equa-
tions:

(H0 − E0)
0(x) = 0 ,

(
1

m
T0 − J0

)

0(x) = 0 , (35)

where H0 and T0 represent unperturbed versions of H and T in 
(13). They are assumed to be valid for the approximations μ << 1
and μ >> 1. Therefore, equations (35) lead to equations (19) and 
(20) for μ << 1 and (29) and (30) for μ >> 1. In the first case, 
the term containing A in equations (15) and (16) is omitted, while 
the term containing B drops out in the second.

We intend to give a perturbative first order approximation, for 
which we just write

H = H0 + ε H1, T = T0 + ε T1 , (36)

E = E0 + ε E1 , J= J0 + ε J1 , (37)


 = 
0 + ε 
1 . (38)

Note that H0 and T0 commute and also does H and T . This 
is a crucial point here, as implies that the function 
 showed in 
(38) is a simultaneous eigenfunction of H and T . Thus, replacing 
(36)–(37) in (14), we obtain
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(H0 + ε H1)(
0 + ε 
1) = (E0 + ε E1)(
0 + ε 
1) , (39)
1

m
(T0 + ε T1) (
0 + ε 
1) = (J0 + ε J1)(
0 + ε 
1) . (40)

Equations (39) and (40) yield the desired result using the standard 
procedure in perturbation theory [20,21]:

E1 = 〈
0|H1
0〉
〈
0|
0〉 , J1 = 〈
0|T1
0〉

〈
0|
0〉 . (41)

To find H1 and T1, we first write U (q) and �(q) in (7) in terms 
of elliptic coordinates. The explicit forms of U (q) and �(q) are 
taken from [1] and their expression in terms of elliptic coordinates 
is the result of a straightforward calculation:

U (q) = −e2

q
+ e2h2

m
(q2 + q · μ)

= −2e2

μ

1

coshα − cosβ
+ e2h2μ2

4m
(sinh2 α − sin2 β) , (42)

�(q) = 2m e2

μ2

q · μ
q

+ e2h2

4
(q2μ2 − (q · μ)2)

= −me2μ

2

coshα cosβ − 1

coshα − cosβ
+ e2h2μ4

16
sinh2 α sin2 β . (43)

For completeness, we here supply the expression of the “kinetic 
terms” of both constants of motion:

1

m
π2 = 4

m μ2

1

sinh2 α + sin2 β

(
∂2

∂α2
+ ∂2

∂β2

)
(44)

πi gi jπ j = 1

sinh2 α + sin2 β

(
− sin2 β

∂2

∂α2
+ sinh2 α

∂2

∂β2

)
. (45)

In order to assign an explicit form to the terms in the split 
(36)–(37), we go back to equations (7)–(8) to write them as

H = π2

m
+ U (q) = π2

m
+ U0(q) + U1(q) = H0 + U1(q) (46)

and

T = πi gi j(q)π j + �(q) = πi gi j(q)π j + �0(q) + �1(q)

= T0 + �1(q) , (47)

where U1(q) = ε H1 and �1(q) = ε T1.
We observe from (44) that the kinetic term in H depends on 

μ−2, so that it may be convenient redefining H by multiplying 
(46) by μ2. The final result is

H̃ = μ2 π2

m
+ μ2U (q) = μ2 π2

m
+ μ2U0(q) + μ2U1(q)

= μ2 π2

m
+ Ũ0(q) + Ũ1(q) = H̃0 + Ũ1(q) , (48)

where the form of H̃0 is obvious. In the Supplementary Material, 
we give the explicit first order corrections in both cases.

5. Concluding remarks

Integrability and solvability are quite different concepts. This is 
illustrated in the present letter, where we have discussed an ap-
parently very simple model: the Landau problem resulting of the 
consideration of two charged particles of opposite sign on a plane 
subject to a perpendicular constant magnetic field.

As shown in a previous paper, this system is equivalent to one 
in which a particle is subject to a Coulomb potential plus a shifted 
harmonic oscillator. In the search for solutions here labelled (15)
and (16), we have used separation of variables in terms of elliptic 
coordinates, a procedure which yields to two separated equations. 
Although these equations are not solvable, we have analyzed two 
solvable approximations depending on the values of a characteris-
tic parameter μ.

For small values of the parameter μ, i.e., μ << 1, we omit 
the highest order term on μ in the equations. This term contains 
the coefficient A, which depends on μ. The resulting situation is 
a Coulomb system expressed in elliptic coordinates described by 
two equations separated on the coordinates. These equations are 
exactly solvable of Razavy type and their solutions give the bound 
states for the Coulomb system. We justify the approximation by 
noting, making use of the approximate solutions, that the dropped 
term, i.e., (A sinh4 α) ψ(α), is very small for any real value of α.

For large values of μ, μ >> 1, the fundamental equations 
(15)–(16) can be simplified if we drop the term with the coef-
ficient B . The resulting approximation is now equivalent to dis-
placed harmonic oscillator in elliptic coordinates. After this simpli-
fication, equations (15)–(16) are again solvable Razavy equations. 
In Table 2, we give the wave functions corresponding to the low-
est energy levels. These solutions spread out a center of potential 
located at −μ/2. Again, an use of these solutions show that the 
dropped term, in this case (B coshα)ψ(α) is very small for all real 
values of α.

Equations (15)–(16) as well as those resulting of the mentioned 
approximations can be obtained from each other just be using the 
correspondence α → i(β + π). Consequently, once we have found 
a solution for the equation on α, we have a correspondent solution 
for the equation on β . However, not all these solutions are phys-
ical, only those fulfilling the correct boundary conditions for both 
variables.

Taking these solvable approximations as a point of departure, 
we have studied first order perturbative corrections. These pertur-
bations show a break of the degeneracy of the initial energy levels. 
It is noteworthy that both zero order systems (Coulomb and os-
cillator) and the total system including the perturbation terms are 
separated with respect to the same elliptic coordinates.

The approximations μ << 1 and μ >> 1 should be compared 
with the behavior of the system on the limits μ → 0 and μ → ∞, 
respectively. In the limit μ → 0, both potentials, Coulomb and 
harmonic oscillator remain. Both centers are located at the ori-
gin. In this limit, T ∼ L2 and elliptic coordinates become polar 
coordinates [3]. This is consistent with the rotational geometric 
symmetry around the z-axis of the system at this limit. The other 
situation comes in the limit μ → ∞. Here, after a translation of 
coordinates, the whole system becomes a harmonic oscillator cen-
tered at the origin, with Hamiltonian

H = π2

m
+ e2h2

m
q2 .

Then, taking μ := (μ, 0), the second constant of motion T takes 
the form:

T ∼
π2

y

m
+ e2h2

m
q2

y ,

so that T appears in terms of Cartesian coordinates viewed as a 
limit of elliptic coordinates.

This two particle Landau system can be compared to the clas-
sical problem of a particle in the field produced by two Coulomb 
centers [7,22]. This is also separable in elliptic coordinates and it 
also has two solvable limits in terms of the distance between both 
centers. They are found when the distance between both centers 
becomes either zero or infinite. Then, the coordinates on the plane 
become polar or parabolic coordinates, respectively.
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1. Explicit expressions for E and J at first order: Coulomb case

We have to specify the form of the perturbations U1(q) and Φ1(q). For
the Coulomb approximation µ << 1, the natural split of U(q) in (42), main
text, into U0(q) plus the perturbation U1(q) is

U0(q) = −2e2

µ

1

coshα− cos β
, U1(q) =

e2h2µ2

4m
(sinh2 α− sin2 β) . (1)

Clearly if µ << 1, U1(q) is much smaller than U0(q). The split for Φ(q) in
(43), main text, is also rather obvious:

Φ0(q) = −me
2µ

2

coshα cos β − 1

coshα− cos β
, Φ1(q) =

e2h2µ4

16
sinh2 α sin2 β . (2)

In this case, the perturbation parameter is given by ε = µ3. If we redefine
ẽ2 := e2µ, where e is the charge, we have:

H1 =
ẽ2h2

4m
(sinh2 α− sin2 β) , T1 =

ẽ2h2

16
sinh2 α sin2 β . (3)

In above equations we have used directly elliptic coordinates. Therefore,
all ingredients in the integrals resulting from (41), main text, have to be
written in terms of these coordinates. The differential dx dy should also be
changed according to the Jacobi theorem as follows:

dx dy 7−→ µ2

4
(sinh2 α + sin2 β)dα dβ . (4)

In (41), main text, the expression for Ψ0 is the given for ψn,r in Tables 1
and 2. For higher values of n, we should use the procedure in the standard
bibliography. See References [11,12,15,16], main text.

Using the above equations and the wave function ψ01 of table 1, it can be
shown that

〈ψ01|ψ01〉 =
µ2

4
[R(1,0)S(0,0) +R(0,0)S(1,0)] =

πµ2

2ζ2
0

, (5)

where ζ0 = mẽ2. In turn

〈ψ01|H1|ψ01〉 =
µ2

4

ẽ2h2

2m

[
R(2,0)(ζ0)S(0,0)(ζ0)−R(0,0)(ζ0)S(2,0)(ζ0)

]
. (6)

1



Then, using (41) main text, we have

E
(0)
1 =

〈ψ01|H1|ψ01〉
〈ψC01|ψC01〉

=
ẽ2h2ζ2

0

4πm

[
R(2,0)(ζ0)S(0,0)(ζ0)−R(0,0)(ζ0)S(2,0)(ζ0)

]
.

(7)
For the second constant of motion, we obtain

〈ψ01|T1|ψ01〉 =
ẽ2h2µ2

64

[
R(2,0)(ζ0)S(1,0)(ζ0) +R(1,0)(ζ0)S(2,0)(ζ0)

]
. (8)

Therefore,

J
(0)
1 =

ẽ2h2ζ2
0

32π

[
R(2,0)(ζ0)S(1,0)(ζ0) +R(1,0)(ζ0)S(2,0)(ζ0)

]
. (9)

For n = 1, the solutions are unphysical as it was shown in last section,
and consequently we have to discard them. Thus, consider n = 2 and

〈ψ21|ψ21〉 = −µ
2

4

[
R(2,0)(ζ2)S(1,0)(ζ2) +R(1,0)(ζ2)S(2,0)(ζ2)

]
, (10)

expression which cannot be reduced. Then

〈ψ21|H1|ψ21〉 = −µ
2

4

ẽ2h2

2m

[
R(3,0)(ζ2)S(1,0)(ζ2)−R(1,0)(ζ2)S(3,0)(ζ2)

]
= −15πẽ2h2µ2

mζ6
2

. (11)

Then,

E
(2,1)
1 =

〈ψ21|H1|ψ21〉
〈ψ21|ψ21〉

=
60πẽ2h2

mζ6
2

1[
R(2,0)(ζ2)S(1,0)(ζ2) +R(1,0)(ζ2)S(2,0)(ζ2)

] .
(12)

The second constant of motion takes the form

J
(2,1)
1 =

〈ψ21|T1|ψ21〉
〈ψ21|ψ21〉

=
ẽ2h2

16

R(3,0)(ζ2)S(2,0)(ζ2) +R(2,0)(ζ2)S(3,0)(ζ2)

R(2,0)(ζ2)S(1,0)(ζ2) +R(1,0)(ζ2)S(2,0)(ζ2)
. (13)

2



For the wave functions ψ22 and ψ23 we have to use the relations in Part
3 at the end of the present Supplementary Material, so as to obtain:

E
(2,2)
1 =

〈ψ22|H1|ψ22〉
〈ψ22|ψ22〉

=
ẽ2h2

2m

R(2,2)(a−, ζ2)S(0,2)(a−, ζ2)−R(0,2)(a−, ζ2)S(2,2)(a−, ζ2)

R(1,2)(a−, ζ2)S(0,2)(a−, ζ2) +R(0,2)(a−, ζ2)S(1,2)(a−, ζ2)
(14)

and

J
(2,2)
1 =

〈ψ22|T1|ψ22〉
〈ψ22|ψ22〉

=
ẽ2h2

16

R(2,2)(a−, ζ2)S(1,2)(a−, ζ2) +R(1,2)(a−, ζ2)S(2,2)(a−, ζ2)

R(1,2)(a−, ζ2)S(0,2)(a−, ζ2) +R(0,2)(a−, ζ2)S(1,2)(a−, ζ2)
(15)

Finally, for ψ23 the result is identical to the last two equations, after the
replacement of a− by a+:

E
(2,3)
1 =

〈ψ23|H1|ψ23〉
〈ψ23|ψ23〉

=
ẽ2h2

2m

R(2,2)(a+, ζ2)S(0,2)(a+, ζ2)−R(0,2)(a+, ζ2)S(2,2)(a+, ζ2)

R(1,2)(a+, ζ2)S(0,2)(a+, ζ2) +R(0,2)(a+, ζ2)S(1,2)(a+, ζ2)
(16)

and

J
(2,3)
1 =

〈ψ23|T1|ψ23〉
〈ψ23|ψ23〉

=
ẽ2h2

16

R(2,2)(a+, ζ2)S(1,2)(a+, ζ2) +R(1,2)(a+, ζ2)S(2,2)(a+, ζ2)

R(1,2)(a+, ζ2)S(0,2)(a+, ζ2) +R(0,2)(a+, ζ2)S(1,2)(a+, ζ2)
(17)

From (12), (14) and (15), we observe that the degeneracy of the first

excited level is broken, since E
(2,1)
1 6= E

(2,2)
1 6= E

(2,3)
1 which gives rise to three

single energy levels. The same becomes true with all other energy levels.

2. Explicit expressions for E and J at first order: the harmonic
oscillator

In the harmonic oscillator approximation, µ >> 1, the roles of the func-
tions in (1) and (2) are obviously interchanged. Let us use ĕ = eµ2. This
gives
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U0(q) =
ĕ2h2

4m
(sinh2 α− sin2 β) , U1(q) = −2ĕ2

µ3

1

coshα− cos β
, (18)

Φ0(q) =
ĕ2h2

16
sinh2 α sin2 β , Φ1(q) = −mĕ

2

2µ3

coshα cos β − 1

coshα− cos β
. (19)

Now, the perturbation parameter is ε = µ−3. Then, H1 and T1 in (36),
main text, have the following explicit form:

H1 = −2ĕ2
1

coshα− cos β
, T1 = −mĕ

2

2

coshα cos β − 1

coshα− cos β
. (20)

In order to perform the integrals which correspond to the first order of
approximation (41), main text, we write the measure (4) in the following
form:

dx dy 7−→ µ2

4
(cosh2 α− cos2 β) dα dβ (21)

=
µ2

4
(coshα− cos β)(coshα + cos β) dα dβ .

Then, some singular denominators cancel out and the integrals should be
quite similar as in the first case. With the help of the integrals Vj and Wj, we
obtain the following results (here the functions ψn,r are those corresponding
to the harmonic oscillator approximation):

〈ψ01|ψ01〉 =
µ2

4
[V2W0 + V0W2] , (22)

so that

〈ψ01|H1|ψ01〉 = −µe
2

2
[V1W0 + V0W1] (23)

and

〈ψ01|Φ1|ψ01〉 = −me
2µ3

8
[(V2 − V0)W1 + (W2 −W0)V1] (24)
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Using (22-24), we obtain for the first correction of the energy levels:

E
(0)
1 =

〈ψ01|H1|ψ01〉
〈ψ01|ψ01〉

= −2ĕ2
V1W0 + V0W1

V2W0 + V0W2

(25)

and for the second constant of motion,

J
(0)
1 =

〈ψ01|Φ1|ψ01〉
〈ψ01|ψ01〉

= −mĕ
2

2

(V2 − V0)W1 + (W2 −W0)V1

V2W0 + V0W2

(26)

For n = 1, we have

〈ψ11|ψ11〉 =
µ2

4
[V4W0 + V2W2] , (27)

E
(1,1)
1 =

〈ψ11|H1|ψ11〉
〈ψ11|ψ11〉

= −2ĕ2
V3W0 + V2W1

V4W0 + V2W2

(28)

and

J
(1,1)
1 =

〈ψ11|Φ1|ψ11〉
〈ψ11|ψ11〉

= −mĕ
2

2

(V4 − V2)W1 + (W2 −W1)V3

V4W0 + V2W2

(29)

For the second solution with n = 1, we obtain

〈ψ12|ψ12〉 =
µ2

4
[(V4 − V2)W0 + (V2 − V0)W2] . (30)

The correction to the energy reads

E
(1,2)
2 =

〈ψ12|H1|ψ12〉
〈ψ12|ψ12〉

= −2ĕ2
(V3 − V1)W0 + (V2 − V0)W1

(V4 − V2)W0 + (V2 − V0)W2

, (31)

and for the second constant of motion

J
(1,2)
2 =

〈ψ12|T1|ψ1,2〉
〈ψ12|ψ12〉

= −mĕ
2

2

(V4 − 2V2 + V0)W1 + (V3 − V1)(W2 −W0)

(V3 − V1)W0 + (V2 − V0)W1

.

(32)
For n = 2, we obtain

〈ψ21|ψ21〉 = 4µ2 [V6(W2 −W4) + V4(W6 −W2) + V2(W4 −W6)] . (33)
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The correction to the energy is

E
(2,1)
1 =

〈ψ21|H1|ψ21〉
〈ψ21|ψ21〉

= −2ĕ2
(V5 − V3)(W2 −W4) + (V4 − V2)(W3 −W5)

V6(W2 −W4) + V4(W6 −W2) + V2(W4 −W6)
,

(34)
while for the second constant of motion, we have

J
(2,1)
1 =

〈ψ21|Φ1|ψ21〉
〈ψ21|ψ21〉

= −mĕ
2

2

(V6 − 2V4 + V2)(W3 −W5) + (V5 − V3)(2W4 −W6 −W2)

V6(W2 −W4) + V4(W6 −W2) + V2(W4 −W6)
. (35)

There are two other two solutions for n = 2 , which are (the sign minus
corresponds to the subindex 2 and the sign plus to 3)

〈ψ2∓|ψ2∓〉 =
µ2

4
[(2V4 − V2(1 + a∓))(2W2 − 1− a∓)

−(2V2 − 1− a∓)(2W4 −W2(1 + a∓))] , (36)

so that

E
(2,∓)
2 =

〈ψ2∓|H1|ψ2∓〉
〈ψ2∓|ψ2∓〉

=

−2ĕ2
(2V3 − V1(1 + a∓))(2W2 − 1− a∓) + (2V2 − 1− a∓)(2W3 −W1(1 + a∓))

(2V4 − V2(1 + a∓))(2W2 − 1− a∓)− (2V2 − 1− a∓)(2W4 −W2(1 + a∓))
.(37)

We also have

J
(2,∓)
2 =

〈ψ2∓|Φ1|ψ2∓〉
〈ψ2∓|ψ2∓〉

=

−mĕ
2µ

2

(2V4 + (1 + a∓)(1− V2)− 2V2)(2W3 −W1(1 + a∓))

(2V4 − V2(1 + a∓))(2W2 − 1− a∓)− (2V2 − 1− a∓)(2W4 −W2(1 + a∓))
−

mĕ2

2

(2V3 − V1(1 + a∓))(2W4 + (1 + a∓)(1−W2)− 2W2)

(2V4 − V2(1 + a∓))(2W2 − 1− a∓)− (2V2 − 1− a∓)(2W4 −W2(1 + a∓))
.(38)
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We may consider higher values of n in order to obtain the corrections for
the first and second constant of motion in terms of the elementary integrals
given in Part 3, next in the present Supplementary Material.

3. Some integrals

We begin with the assumption µ << 1 for the unperturbed Hamiltonian.
In this case, as it was said before, the wave functions for β come after the
change α → i(β + π) which implies that cosh(i(β + π)) = − cos β and
sinh(i(β + π)) = −i sin β . The following four integrals will be used [1]

R(j,0)(ζ) =

∫ ∞
0

dα e−ζ coshα sinh2j α =

∫ ∞
1

dy e−ζy(y2 − 1)j−1/2

=
2j√
π
ζ−jΓ(j +

1

2
)Kj(ζ) . (39)

R(j,2)(a±, ζ) =

∫ ∞
0

dα (coshα− a±)2 e−ζ coshα sinh2j α

=

∫ ∞
1

dy (y − a±)2 e−ζy(y2 − 1)j−1/2 (40)

=
2j√
π
ζ−j−1Γ(j +

1

2
)
[
(a2
± + 1)ζKj(ζ) + (2j + 1− 2a±ζ)Kj+1(ζ)

]
.

S(j,0)(ζ) =

∫ 2π

0

dβeζ cosβ sin2j β = 2
√
πΓ(j +

1

2
)0F̃1(j + 1;

ζ2

4
) , (41)

S(j,2)(a±, ζ) =

∫ 2π

0

dβ eζ cosβ sin2j β(cos β + a±)2

=
2j+1

ζ

√
π(−ζ)j(−ζ2)−j

[
(1 + a2

±)ζIj(ζ) + (2a±ζ − 2j − 1)Ij+1(ζ)
]
, (42)

where in the two first integrals we have introduced the transformation coshα =
y, which implies that (y2−1)−1/2dy = dα. Kj(ζ) is the modified Bessel func-
tion of the second kind, Ij(ζ) is the modified Bessel function of the first kind

and 0F̃1 is the regularized confluent hypergeometric function [2] and
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a± =
1±

√
1 + 4ζ2

ζ
. (43)

For the harmonic oscillator solutions, we must take care of the following
integrals

Wj =

∫ 2π

0

dβ e−ζ0 cos(2β) cosj β

=
1

2

√
π(1 + (−1)j)2 eζ Γ

(
j + 1

2

)
1F̃1

(
j + 1

2
;
j + 2

2
;−2ζ

)
, (44)

where 1F̃1(a; b; z) is the regularized Hypergeometric function and Γ( j+1
2

) is
the Gamma function. The other integral to be computed reads

Vj =

∫ ∞
0

dα coshj αe−ζ0 cosh 2α =

∫ ∞
1

dy
e−ζ0y√
y2 − 1

(
y + 1

2

)j
, (45)

which cannot be solved for general j, but for specific values, exact results
can be found. In this manuscript these results read

V0 =
K0(ζ0)

2
, V1 =

1

2

√
π

2ζ0
e−ζ0 , (46)

V2 =
1

4
[K0(ζ0) +K1(ζ0)] , V3 =

√
π

2

(1 + 4ζ0)

8ζ
3/2
0

e−ζ0 , (47)

V4 =
1

8

[
2K0(ζ0) +

(
1 + 2ζ0
ζ0

)K1(ζ0

)]
, V5 =

√
π

2

(3 + 8ζ0(1 + 2ζ0))

32ζ
5/2
0

e−ζ0 ,

(48)

V6 =
1

16

[(
1 + 4ζ0
ζ0

)
K0(ζ0) +

(
2 + ζ0(3 + 4ζ0)

ζ2
0

)K1(ζ0

)]
. (49)
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