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This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to 
a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. 
In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels 
and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-
dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example 
we will shed some light on the specific properties of a quantum integrable system with respect to those 
characteristic of superintegrable systems.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

This work is devoted to a system that consists of an electron 
under an external magnetic field perpendicular to the x–y plane. 
The magnetic field is non-uniform, its intensity behaving as the 
inverse of the distance to the z-axis. In these conditions the clas-
sical system is integrable, but not superintegrable. This system can 
be restricted to the plane x–y, and in this sense it is quite in-
teresting to find its properties in the light of other well-known 
superintegrable systems, such as the Landau system of a constant 
perpendicular magnetic field or the planar Coulomb system. For in-
stance, in our present situation there can exist bounded, although 
non-periodic, motions or exclusively unbounded motions depend-
ing on the sign of the angular momentum. As the trajectories and 
motion can be obtained in closed implicit form, we can say that 
the system is solvable.

In the quantum framework of the Dirac equation the system is 
solvable too, and for such above mentioned sign, the solutions to 
the eigenvalue problem will be obtained. As the system is solvable, 
it is investigated whether the reduced radial matrix Hamiltonian 
belongs to a shape-invariant Hamiltonian hierarchy. In this context, 
the matrix intertwining operators will be characterized as well as 
the symmetries of the hierarchy. This implies that the solutions 
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can be obtained algebraically, by means of raising operators. We 
want to remark that we have found some new properties related 
to the matrix shape-invariance: (i) It can be realized by means of 
anti-intertwining operators, due to the fact that the Dirac equation 
has positive and negative eigenvalues; (ii) There is a wide freedom 
in the intertwining operators of the shape-invariance in the same 
hierarchy, in particular we have characterized a four parameter set 
of such operators; (iii) The symmetries of the shape-invariant hier-
archy of matrix Hamiltonians are shown to play an important role.

We will remark the most important properties of the spectrum 
of bound states of this integrable system with respect to those 
of superintegrable quantum systems (see for instance the review 
of Ref. [1] on superintegrability). The most striking difference is 
that it consists of a dense set of non-isolated points while the 
known superintegrable systems have a set of isolated points as the 
discrete spectrum. Contrary to some general belief, the spectrum 
is highly degenerated, although the system is not superintegrable 
[1–3]. We will also show how this system is algebraically solv-
able, but the involved operators have some important differences 
to those corresponding to superintegrable systems.

This work will develop and extend some methods introduced 
in a previous paper for a different problem [4]. The present paper 
is organized as follows. The system is introduced in its classical 
version along Section 2 showing the features of the classical trajec-
tories. The relativistic quantum system, in the frame of the Dirac 
equation, is analyzed in Section 3, where the discrete spectrum 
and eigenfunctions are obtained. In Section 4 the shape-invariant 
properties of the reduced radial matrix Hamiltonian are investi-
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Fig. 1. Effective potential for � = 1, 2, 3 and m0 = c = k = e = 1, μ = 0. The dash-
ing lines correspond to the energies E = 0.25 (bound trajectory) and E = 0.6
(unbounded trajectory). The dotted line separates the energies of bound and un-
bounded motions.

gated. Finally, Section 5 will be devoted to some remarks and 
conclusions.

2. Classical motion

We will consider an electron under the influence of a magnetic 
field with a rotational symmetry around the z-axis given by

B = (0,0,
k

ρ
) (1)

where ρ = √
x2 + y2 and k is a non-vanishing constant. Its vector 

potential takes the expression

A = k

ρ
(−y, x,0) (2)

or A = k (− sin θ, cos θ,0), in terms of the cylindrical coordinates 
(ρ, θ, z). Now, we want to describe the non-relativistic motion of 
an electron of mass m0, and charge e subject to this magnetic 
potential. The corresponding Hamiltonian using cylindrical coordi-
nates has the following form

H = P 2
ρ

2m0
+ (Pθ − ek

c ρ)2

2m0ρ2
+ P 2

z

2m0
(3)

where we recall the expressions of the canonical momenta

ρ̇ = Pρ

m0
, θ̇ = Pθ

m0ρ2
− ek

m0cρ
, ż = P z

m0
. (4)

Since the coordinates θ and z are cyclic the corresponding mo-
menta will be constants of motion: Pθ = � (the angular momen-
tum around z) and P z = μ (the linear momentum along z). Ac-
cording to (4), this means that the velocity ż will be constant but 
θ̇ will depend on the motion of ρ . After replacing these constants 
we are left with an effective Hamiltonian for the remaining vari-
able ρ ,

Heff(ρ) = P 2
ρ

2m0
+ �2

2m0ρ2
− ek�

m0cρ
+ e2k2

2m0c2
+ μ2

2m0

≡ P 2
ρ

2m0
+ V eff (ρ) (5)

where the product ek� must be positive if we want the effective 
potential V eff(ρ) to have a minimum and allow for bounded mo-
tions. A schematic plot of this potential for such a case can be seen 
in Fig. 1. A situation where ek� < 0 is represented in Fig. 2, where 
e = k = 1 and � = −1, −2, −3.

Thus, we have a classical system in a three dimensional space 
with three (independent) constants of motion: H , Pθ and P z . This 
means that our system is integrable, but not superintegrable. The 
Fig. 2. Effective potential for � = −1, −2, −3 with the same values of the other 
parameters as in Fig. 1.

Fig. 3. Trajectory for the electron for E = 0.25 in continuous line, bounded by the 
inner and outer circles in dashing lines. The values of the parameters are � = 1, 
μ = 0, m0 = 1, c = 1, k = 1, e = 1.

equation of the projection of trajectory on the x–y plane for an 
energy E can readily be obtained from (4) and (5). If μ2

2m0
≤ E <

e2k2

2m0c2 + μ2

2m0
this trajectory is bounded and the equation for such 

orbits is

θ (ρ) = −arcsin

(
�/ρ − ek/c√
2m0 E − μ2

)

− ek/c√
e2k2/c2 + μ2 − 2m0 E

×

arcsin
(e2k2/c2 + μ2 − 2m0 E)ρ − �ek/c

�
√

2m0 E − μ2
. (6)

A graphic of this type of bounded trajectories on the x–y plane is 
shown in Fig. 3. When E > e2k2

2m0c2 + μ2

2m0
, the motion is unbounded 

and it is given by

θ (ρ) = −arcsin

(
�/ρ − ek/c√
2m0 E − μ2

)

− ek/c√
2m0 E − e2k2/c2 − μ2

×

arccosh
(2m0 E − e2k2/c2 − μ2)ρ + �ek/c

�
√

2m0 E − μ2
. (7)

In Fig. 4 it is given the aspect of an unbounded trajectory. For both 
cases, the motion in the z-direction is uniform. The implicit time 



50 A. Contreras-Astorga et al. / Physics Letters A 380 (2016) 48–55
Fig. 4. Unbounded trajectory for E = 0.6. The values of the other parameters are the 
same as in Fig. 3.

evolution ρ(t) can also be obtained and has a similar expression. 
Thus, we could say that this is a solvable classical system.

3. Quantum system: Dirac Hamiltonian

We will consider this system in the context of quantum me-
chanics through the Dirac equation. We will show that in this 
framework the system is also solvable. However, the solutions have 
some striking properties worth to analyse.

3.1. Separation of variables

The Dirac Hamiltonian corresponding to the interaction of an 
electron with the above magnetic field is

H = c
(

P − e

c
A
)

· α + m0c2β (8)

where e is the electron charge, m0 its rest mass, P = −ih̄∇ the 
momentum operator, A is the potential (2) and the following rep-
resentation of the Dirac 4 × 4 matrices is used

αi =
(

0 σi
σi 0

)
, β =

(
I 0
0 −I

)
(9)

with I the 2 × 2 unit matrix and σi the Pauli matrices [5]. Due 
to the symmetries of the magnetic field, we will use the natural 
cylindrical coordinates to express the stationary Dirac equation for 
the energy E ,

H�(ρ, θ, z) = E �(ρ, θ, z) . (10)

We can separate this equation by looking for solutions of the fol-
lowing form:

�(ρ, θ, z) = ei zμ/h̄eiλθ/h̄e−iθ�z/2h̄ 1√
ρ

ψ (ρ) . (11)

The translation symmetry in the z direction has the symmetry gen-

erator P z = −ih̄
∂

∂z
, and the rotational symmetry around the z axis 

is represented by the symmetry operator J z given by

J z = −ih̄
∂ + 1

h̄ �z, �z =
(

σ3 0
0 σ

)
.

∂θ 2 3
The above eigenfunction (11) is just a simultaneous eigenfunction
of P z and J z with eigenvalues μ and λ, respectively,

P z�(ρ, θ, z) = μ�(ρ, θ, z), J z�(ρ, θ, z) = λ�(ρ, θ, z) .

Since we are dealing with an electron of spin 1/2, the eigenval-
ues λ of J z can take only half integer values: ±1/2, ±3/2, . . . . 
Finally, in order to end with a Hermitian matrix equation, we have 
included the factor 1/

√
ρ in (11).

Once this expression is replaced in the Dirac equation (10), the 
following reduced equation for ψ (ρ) is obtained,

Hψ (ρ) ≡[
−ih̄cα1

∂

∂ρ
+

(
λh̄c

ρ
− ek

)
α2 + cμα3 + m0c2 β

]
ψ (ρ)

= E ψ (ρ) (12)

where the operator H in the variable ρ is an effective Hamiltonian. 
This Hamiltonian, after the substitution of the α i , β matrices, has 
a simple structure:

H =
(

m0c2 I h

h −m0c2 I

)
(13)

where we have introduced another two-dimensional matrix Hamil-
tonian h defined by

h = −ih̄cσ1
∂

∂ρ
+ (λh̄c

ρ
− ek

)
σ2 + cμσ3 . (14)

Hereafter, in order to simplify the notation in the algebraic manip-
ulations, we will take the following convention

h̄ = c = 1, e k = κ (15)

(this is equivalent to take a new variable ρ̃ = ρ/h̄c and parameter 
μ̃ = cμ, but we will keep the notation without tildes). With this 
convention h has the form

h =
(

μ ia+

−ia− −μ

)
(16)

where the scalar operators a± in the variable ρ are given by

a± = ∓ ∂

∂ρ
− λ

ρ
+ κ . (17)

As these operators are formally adjoint of each other, (a−)† = a+ , 
the operator h is Hermitian too.

3.2. Eigenvalue problem of the effective Hamiltonian H

We have reduced the initial problem to finding the eigenfunc-
tions of H

Hψ = Eψ, ψ =
(

ϕ
χ

)
(18)

where ϕ and χ are the two-components of ψ . With the help of 
(13), and having in mind that c = 1, (18) leads us to a coupled 
pair of equations,{

m0ϕ + hχ = Eϕ

hϕ − m0χ = Eχ
=⇒ χ = 1

m0 + E
hϕ . (19)

Next, by replacing this value of χ , we get an equation for ϕ:

h2ϕ =
(

E2 − m2
0

)
ϕ ≡ ε ϕ =⇒ E± = ±

√
ε + m2

0 . (20)
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The corresponding wave functions for the two energy signs differ 
in the coefficient of the second component,

χ± = 1

m0 + E±
hϕ (21)

and therefore the eigenfunctions have the form

ψ± =
(

ϕ
χ±

)
. (22)

From (16) we obtain an explicit expression of h2,

h2 =
(

a+a− + μ2 0

0 a−a+ + μ2

)
≡

(
h2↑ 0

0 h2↓

)
(23)

which is given in terms of the scalar Hamiltonians h2↑↓ ,⎧⎪⎪⎪⎨⎪⎪⎪⎩
h2↑ = a+a− + μ2 = − ∂2

∂ρ2
+ λ(λ − 1)

ρ2
− 2λκ

ρ
+ κ2 + μ2

h2↓ = a−a+ + μ2 = − ∂2

∂ρ2
+ λ(λ + 1)

ρ2
− 2λκ

ρ
+ κ2 + μ2 .

(24)

In order to have bound states it is necessary that λκ > 0; hereafter 
we will assume that this is the case. We also assume that κ > 0, 
so that the values of λ must be greater or equal than 1/2. The 
solutions of h2 in (20) will have the form

ϕ =
(

α f ↑

β f ↓

)
, α,β ∈C (25)

where each component f ↑↓ is a solution of the corresponding 
scalar Hamiltonian, with the same eigenvalue

h2↑ f ↑ = ε f ↑, h2↓ f ↓ = ε f ↓, ε = E2 − m2
0 . (26)

The following relations of the spectrum and eigenfunctions of h2↑↓
will hold:

(1) The two scalar Hamiltonians h2↑↓ in (24) are supersymmetric 
partners corresponding to the Coulomb problem [6–9],

a− h2↑ = h2↓ a−, h2↑ a+ = a+ h2↓ (27)

(2) These scalar Hamiltonians h2↑↓ are almost isospectral. They 
have the same spectrum except for the ground state of h2↑
which is not present in h2↓:{

h2↑ f ↑
n = εn f ↑

n , n ≥ 0 ,

h2↓ f ↓
n = εn f ↓

n , n ≥ 1 ,

μ2
n ≡ εn = κ2 + μ2 − κ2λ2

(λ + n)2
(28)

The explicit form of the eigenfunctions is

f ↑
n (z) = N↑

n z(λ) exp (−z/2) L(2λ−1)
n (z) ,

f ↓
n (z) = N↓

n z(λ+1) exp
(
− z

2

)
L(2λ+1)

n−1 (z) , (29)

where z = 2κλ
(λ+n)

ρ . Here, L(α)
n (z) designs the Laguerre poly-

nomials and N↑↓
n are normalization constants. The isospectral 

eigenfunctions are related by means of the a± operators,⎧⎪⎨⎪⎩
a− f ↑

0 = 0

a− f ↑
n = √

εn − ε0 f ↓
n , n ≥ 1

a+ f ↓
n = √

εn − ε0 f ↑
n , n ≥ 1

(30)
3.3. Solutions to the simultaneous eigenvalue problem of h2 and h

Once we have the eigenvalue solutions for the scalar Hamiltoni-
ans, the question of the eigenvalue problem of the diagonal Hamil-
tonian h2 of (25) and (26) can be straightforwardly answered,

h2ϕn =
(

E2 − m2
0

)
ϕn = εn ϕn (31)

with

ϕ0 =
(

f ↑
0

0

)
, ϕn =

(
α f ↑

n

β f ↓
n

)
, n ∈N, α,β ∈C (32)

Each eigenvalue εn , n ≥ 1 is doubly degenerated. We can distin-
guish two independent eigenfunctions by choosing them as the 
simultaneous eigenfunctions of h and h2:{

hϕs
n = s

√
εn ϕs

n

h2ϕs
n = εn ϕs

n

n ≥ 1, εn = μ2
n, s = ± . (33)

The eigenvalue ε0 has only one independent eigenfunction corre-
sponding to positive eigenvalue of h,{

hϕ0 = +√
ε0 ϕ0

h2ϕ0 = ε0 ϕ0
n = 0, ε0 = μ2 . (34)

Replacing (33) and (34) in (32) we obtain the coefficients α, β

corresponding to each sign, for n ≥ 1,

ϕ+
n =

(
α+

n f ↑
n

β+
n f ↓

n

)
,

α+
n = i

√
μn + μ

β+
n = √

μn − μ

ϕ−
n =

(
α−

n f ↑
n

β−
n f ↓

n

)
,

α−
n = i

√
μn − μ

β−
n = −√

μn + μ
(35)

where f ↑↓
n are related by the a± operators through (30) and μn is 

the positive root of μ2
n defined in (28).

3.4. The eigenfunctions and eigenvalues of H

Now, we have all the ingredients to write explicitly the eigen-
functions and eigenvalues of H. Taking into account the values of 
εn in (28), then according to (20) the eigenvalues of the energy are 
given by

E±n = ±
√

μ2
n + m2

0 = ±
√

κ2 + μ2 − κ2λ2

(λ + n)2
+ m2

0 . (36)

As there are two signs for the energies, E±n , from each component, 
ϕs

n , there will be two eigenfunctions according to (21) and (22),

χ s±n = s μn

m0 + E±n
ϕs

n, s = ±, n = 1,2, . . .

χ±0 = μ0

m0 + E±0
ϕ0 . (37)

In summary, we have arrived to the following eigenfunctions and 
eigenvalues,

ψ s±n =
(

ϕs
n

χ s±n

)
, E±n = ±

√
μ2

n + m2
0, n ≥ 1, s = ± . (38)

The two signs ± in the subindex corresponds to signs of the corre-
sponding energy; the two values s of the superindex indicates the 
double degeneracy of each (positive or negative) eigenvalue. For 
the lowest value n = 0, the eigenfunctions of the ground-levels are 
non-degenerated, so the superindex s is missing,

ψ±0 =
(

ϕ0

χ±0

)
, E±0 = ±

√
μ2 + m2

0, n = 0 . (39)
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3.5. Remarks on the spectrum

(a) Spectrum of the reduced Hamiltonian H. For fixed values of λ, μ, 
the discrete spectrum of the one-dimensional effective Hamilto-
nian H has doubly degenerate excited levels n = 1, 2, . . . . A pair of 
independent eigenfunctions are given by ψ s±n , labeled by the su-
perindex s = ±. This seems reasonable, since the total angular mo-
mentum around the z-axis J z = Lz + Sz , is the sum of the orbital Lz
(with eigenvalues �) and spin Sz momentum (with eigenvalues σ ). 
Hence, there are two types of states which can contribute to pro-
duce λ-eigenfunctions: states with � = λ + 1/2 and σ = −1/2 or 
states with � = λ − 1/2 and σ = 1/2. Thus, as the λ-eigenfunctions 
belong to this subspace of dimension two, each energy level can 
be doubly degenerated.

However, in the case of the ground states, the eigenfunctions 
with total momentum λ are made up of ϕ0 and χ±0 which are 
eigenfunctions of Sz with eigenvalue 1/2. In this special case the 
ground eigenfunctions are at the same time eigenfunctions of the 
orbital Lz and spin Sz momentum with eigenvalues � = λ − 1/2
and 1/2, respectively. In this situation the degeneration has been 
lost and the ground states with energies E±0 are not degenerate. 
These ground states must have spin aligned with the magnetic 
field.

(b) Spectrum of the total Hamiltonian with μ fixed. Now, let us pay 
attention to the energy eigenvalues for different values of the total 
angular momentum λ given in (36):

E±n = ±
√

m2
0 + μ2 + κ2 − κ2

(1 + n/λ)2
,

n = 0,1 . . . , λ = 1/2,3/2, . . . (40)

If we consider this problem restricted to the plane, these energies 
correspond to the discrete spectrum of bound states. The square of 
such energies is bounded by two fixed values:

m2
0 + μ2 ≤ (E±n)

2 < m2
0 + μ2 + κ2 .

The most important aspect here is that, the (square of the) energy 
spectrum consist in a dense subset of points in the closed interval 
[m2

0 + μ2, m2
0 + μ2 + κ2]. In particular, there is no isolated point 

in the spectrum of bound states! This is quite different from the 
discrete spectrum of superintegrable systems which have a discrete 
spectrum made of isolated points, as it happens with the planar 
Coulomb potential (which has a similar dependence on ρ) or the 
Landau system in the plane (for a uniform magnetic field).

(c) Degeneracy of energy levels. The second important feature worth 
to remark is that each energy level (fixed for instance by a pair 
of values n0 and λ0) has an infinite degeneracy given by all the 
values of λ and n such that λ/n = λ0/n0. Usually, the degeneracy 
of energy levels is associated with superintegrable systems, such as 
the above mentioned Coulomb or Landau systems. The argument is 
that the additional symmetries of such systems imply this nontriv-
ial degeneracy. This is correct, but it does not mean that integrable 
systems have no degeneracy at all, as the present example shows 
in a drastic way.

4. Shape-invariance

In the study of the problem of an electron immersed in a 
nonuniform magnetic field, we have arrived to an effective ma-
trix Hamiltonian in one variable H, which is exactly solvable. Now, 
we want to know whether, as it happens with some exactly solv-
able one-dimensional scalar Hamiltonians, the matrix Hamiltonian 
H takes part in a hierarchy of Hamiltonians Hn , n ∈ Z which are 
shape-invariant. In other words, we ask if there is a sequence Hn
together with a set of matrix differential operators An such that
Hn A+
n = A+

n Hn+1 ⇐⇒ A−
n Hn = Hn+1 A−

n (41)

where A+
n is the adjoint differential operator of A−

n and H is iden-
tified with H0. We will show that the answer is positive. As in 
the scalar shape-invariant case, the spectrum and eigenfunctions 
of H will be obtained from the energy and ground states of the 
sequence Hn . Then, we can say that in this sense our system is 
algebraically solvable. At the same time, we want to investigate 
some of the main differences between scalar and matrix shape-
invariance by means of the present case.

4.1. Hamiltonian hierarchy

In the following we will restrict ourselves to show the answer 
to this problem, obtained after some lengthy but straightforward 
computations. First of all, we write down the structure of the ini-
tial Hamiltonian. From (13), (16) and (17) we have the expressions,

H =
(

m0 I h

h −m0 I

)
, h =

(
μ ia+

−ia− −μ

)
,

a± = ∓ ∂

∂ρ
− λ

ρ
+ κ . (42)

The operators a± take part in the scalar hierarchy a±
n of the 

Coulomb problem [6–9] given by

a±
n = ∓ ∂

∂ρ
− (λ + n)

ρ
+ λ

(λ + n)
κ ,

satisfying

a−
n a+

n + μ2
n = a+

n+1a−
n+1 + μ2

n+1 .

Therefore, we can look at (42) as the first Hamiltonian, for n = 0, 
of a “natural” hierarchy, Hn , obtained by means of the scalar oper-
ators a±

n :

Hn =
(

m0 I hn

hn −m0 I

)
, hn =

(
μn ia+

n

−ia−
n −μn

)
(43)

which include the parameters λn , κn and μn defined by

λn = λ + n, κn = λ

(λ + n)
κ, κ2

n + μ2
n = κ2 + μ2 . (44)

4.2. Basic intertwining operators

Before writing the intertwining operators for the 4×4 Hamilto-
nians Hn , we will consider this problem for the component 2×2
Hamiltonians hn . We have found two different intertwining oper-
ators: R−

n and T−
n , which realize the intertwining with different 

signs,

R−
n hn = hn+1R−

n ⇐⇒ hnR+
n = R+

n hn+1

T−
n hn = −hn+1T−

n ⇐⇒ hnT+
n = −T+

n hn+1 , (45)

where R+
n = (R−

n )†, and T+
n = (T−

n )†. They have the following ex-
pressions:

R−
n =

(
a−

n −i(μn − μn+1)

0 a−
n+1

)

T−
n =

(
a−

n −i(μn + μn+1)

0 −a−
n+1

)
. (46)

The proof consists in a straightforward checking. The intertwin-
ing with minus sign (or anti-intertwining) in (45) has not been 
considered before, but it can be present in Dirac-type Hamiltoni-
ans whose spectrum contains positive and negative values. While 
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R−
n (R+

n ) connect eigenstates from hn (hn+1) to hn+1 (hn) with the 
same eigenvalue, the operators T±

n relate eigenstates with oppo-
site energy. From their explicit form (46), it is easy to compute 
the kernel eigenspaces Kn and K̃n of hn annihilated by R−

n or T−
n

respectively,

R−
n ϕ = 0 =⇒ ϕ ∈ Kn := 〈nϕ0,nϕ

−
1 〉,

eigenvalues of hn : {μn,−μn+1}
T−

n ϕ = 0 =⇒ ϕ ∈ K̃n := 〈nϕ0,nϕ
+
1 〉,

eigenvalues of hn : {μn,μn+1} (47)

where nϕ
±
k denote the eigenfunctions of hn corresponding to its 

±k-th excited states. In other words, R−
n annihilates the positive 

and the negative ground states of hn . However, T−
n will annihilate 

the positive ground state and the first positive excited state of hn . 
We can get the whole discrete set of eigenfunctions of h0 from 
any of these two types of eigenfunction sets of hn , n = 0, 1, 2, . . . , 
and the iterative use of R+

n or T+
n . For example, we can get the 

following excited states of hn−1 from those of hn ,

R+
n−1 : nϕ0 → n−1ϕ

+
1 , R+

n−1 : nϕ
−
1 → n−1ϕ

−
2

T+
n−1 : nϕ0 → n−1ϕ

−
1 , T+

n−1 : nϕ
+
1 → n−1ϕ

−
2 . (48)

4.3. General intertwining operators

From the basic 2×2 intertwining operators R−
n , T−

n , we can con-
struct the ‘global intertwining’ 4×4 operators (41) of the Hamil-
tonian hierarchy Hn . We have obtained four linearly independent 
operators:

R−
n =

(
R−

n 0
0 R−

n

)
, T−

n =
( −T−

n 0
0 T−

n

)
,

R̃−
n =

( −M R−
n

R−
n M

)
, T̃−

n =
(

M −T−
n

T−
n M

)
. (49)

The constant matrix M = m0(−iσ1 +σ2) = 2m0σ− satisfies the fol-
lowing commutation rules

σ− hn + hn+1 σ− = −Rn, σ− hn − hn+1 σ− = −Tn . (50)

It is straightforward to check that, indeed the operators (49), with 
the help of (50), satisfy the intertwining relation (41). Since any of 
the operators in (49) intertwines the hierarchy, the same happens 
for any linear combination of them. Therefore, we have obtained 
a four dimensional vector space of intertwining operators for the 
same hierarchy.

4.4. Symmetries

A symmetry of Hn is a differential operator Sn such that

HnSn = SnHn . (51)

In principle, we are interested in the basic symmetry operators: 
up to first order matrix differential operators. As the equation (51)
is similar to the intertwining relation (41) we can obtain all the 
solutions in the same way. We have found (besides the trivial unit 
matrix and the Hamiltonian itself) four such symmetry operators 
which are linearly independent:

S1
n =

(
hn 0
0 hn

)
, S2

n =
(

m0 σ3 μnI
μnI −m0 σ3

)
S3

n =
( −m0 σ3 −σ3hn + μnI

σ3hn − μnI −m0 σ3

)
,

S4
n =

( −σ3hn + μnI 0
0 σ h − μ I

)
(52)
3 n n
One can easily check that the above operators are symmetries hav-
ing in mind that the matrix σ3 satisfies the following property

σ3 hn + hn σ3 = 2μn .

Although linearly independent, the last two symmetries can be ob-
tained as an algebraic function of the first three:

S3
n = − 1

m0
(S2

nHn − μnS
1
n) , S4

n = − 1

m0
(S1

nS
2
n − μnHn) .

The symmetries S2 and S3 do not commute and the Hamiltonian 
is obtained from their anticommutator:

{S2
n,S3

n} = 2μn Hn

These symmetries are quite important in our problem. For in-
stance, the eigenfunctions given in (38) and (39) are characterized 
by being also eigenfunctions of S2. Another equivalent set of solu-
tions could be obtained by the simultaneous eigenfunctions of Hn

and S1.
There is a simple and useful relation between symmetry and 

intertwining operators that we will consider in the following. Let 
H0 and H1 be two Hamiltonians, and A+ , B− be intertwining 
operators such that B−H0 = H1B

− and H0A
+ = A+H1. Let also 

S0 and S1 be symmetries of H0 and H1, respectively. Then:

(i) A+B− is a symmetry of H0, and B−A+ is a symmetry of H1.
(ii) The operators S0A

+ and A+S1 are intertwining operators in 
the same sense as A+ . The products of operators B−S0 and 
S1B

− are intertwining operators playing the same role as B− .

All the intertwining operators given in (49) are related in this way 
with the symmetries of the Hamiltonians Hn .

4.5. Spectrum and eigenfunctions from intertwining operators

Let us consider one of the intertwining operators, for in-
stance R−

n , satisfying the relation R−
n Hn = Hn+1R

−
n . Let us call Kn

to the kernel of R−
n , in other words,

Kn = {ψ ; R−
n ψ = 0} (53)

Then, it is immediate to show from the above intertwining relation 
that Kn is an invariant subspace of Hn . Kn is a four dimensional 
space, a basis made up of eigenvectors of Hn in this space is easily 
computed from (53):

Kn = 〈nψ+0, nψ−0, nψ
−
+1, nψ

−
−1〉 (54)

where we have extended the notation given in (38)–(39) to the 
eigenfunctions of Hn ,

nψ±0 =
(

nϕ0

nχ±0

)
, nψ

−
±1 =

(
nϕ

−
1

nχ
−
±1

)
.

The eigenvalues corresponding to these states are, respectively,

n E±0 = ±
√

μ2
n + m2

0, n E±1 = ±
√

μ2
n+1 + m2

0 . (55)

These are four of the lower energy states of Hamiltonian Hn , two 
of them in the positive spectrum and the other two in the negative 
one.

Next, we will show that from the four independent states of 
the kernel (54) we can build four excited states of H0 by means of 
the operators R+

n in the usual way:

0ψ
+±n = R+

0 R+
1 . . .R+

(n−1) nψ±0 (56)

0ψ
− = R+ R+ . . .R+

nψ
− . (57)
±(n+1) 0 1 (n−1) ±1
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As each energy level of H0 is two-fold degenerate (except the 
two ground levels) the other independent states of the above four 
excited levels can be obtained in a similar way from other Hamil-
tonians in the same hierarchy. Explicitly,

0ψ
−±n = R+

0 R+
1 . . .R+

(n−2) (n−1)ψ
−
±1 (58)

0ψ
+
±(n+1) = R+

0 R+
1 . . .R+

n (n+1)ψ±0 . (59)

We can check that indeed, these new states (58) and (59) are or-
thogonal to the previous ones (56) and (57), respectively. Take for 
instance the following inner product

〈R+
0 . . .R+

(n−1) nψ±0 , R+
0 . . .R+

(n−2) (n−1)ψ
1±1〉 . (60)

Then, by making use of the adjoint of the operators R+
n , this can 

be shown to be proportional to

〈R+
(n−1) nψ±0, (n−1)ψ

1±1〉 = 〈nψ±0,R
−
(n−1) (n−1)ψ

1±1〉 = 0

The vanishing of the last term comes from the fact that (n−1)ψ
1±1

is in the kernel of R−
(n−1) . In this way all the eigenfunctions of the 

initial Hamiltonian H0 can be obtained from the ‘lowest energy’ 
levels of the Hamiltonians in the hierarchy.

4.6. Remarks on the matrix intertwining operators

As we have seen, the intertwining operators, such as R−
n , are 

characterized by the annihilation of four of the ‘lowest levels’ of 
the system. Two of such levels are the ground (positive and nega-
tive) states, nψ+0 and nψ−0, which are non-degenerated. The other 
two must be selected from the first (positive and negative) excited 
levels. However, there is some freedom since each of these levels is 
doubly degenerated. The intertwining operators found in (49) cor-
respond to choosing one positive and one negative eigenfunctions, 
this gives a set of four linearly independent intertwining operators. 
In general terms, the intertwining operators of matrix systems be-
have in a similar way to the usual scalar systems. They connect 
shape-invariant Hamiltonians, and generate the spectrum of one of 
the Hamiltonians from the ground states of the hierarchy. A dif-
ference, worth to stress, with scalar shape-invariance is that in the 
case of Dirac equations the intertwining relation can include a neg-
ative sign, as we have seen above for the basic 2 × 2 case, so that 
the intertwining operator will connect the positive and negative 
sectors.

In many superintegrable systems the algebraic solvability, in the 
sense of shape-invariance, can be applied but the intertwining op-
erators have a different character. In our case, where the system 
is only integrable, the intertwining operators connect Hamiltoni-
ans with different parameters given in (44) by λn , κn and μn . To 
have a new system with values λn , μn instead of λ0, μ0 is not 
quite important: these values belong to different constants of mo-
tion of the same system. However, the change of κ0 by κn means 
that these intertwining operators will connect different systems, 
because κ measures the intensity of the external magnetic field. 
On the contrary, the Hamiltonian hierarchies of reduced super-
integrable Hamiltonians are characterized by different values of 
constants of motion and the origin of intertwining operators are 
related to the additional symmetries. This is the case of the scalar 
Coulomb problem where the Runge–Lenz symmetries produce the 
intertwining of the reduced radial Hamiltonians corresponding to 
different angular momenta.

5. Conclusions

In this work we have investigated an integrable, but not su-
perintegrable, system. Although this system is initially defined in 
the three dimensional space, the dynamics and relevant physical 
properties can be described by its reduction to a planar system. 
The non-superintegrability is characterized in the classical case by 
non-periodic trajectories in the plane which are dense in a domain. 
One of the main objectives of our paper was to address the ques-
tion of the properties specific to a quantum non-superintegrable 
system. In the absence of trajectories, one must look for some spe-
cial features of the spectrum and eigenfunctions. In our case we 
have seen that there are two such properties: (i) a dense charac-
ter of the discrete spectrum (when the system is restricted to the 
plane) and (ii) an algebraic solvability involving Hamiltonians Hn

of different problems. However, we saw that our quantum inte-
grable system has a high degeneracy of energy levels, so that this 
property is not exclusive of superintegrability.

We have shown how the effective radial matrix Hamiltonian 
belongs to a hierarchy of shape-invariant matrix Hamiltonians. In 
this respect, we should mention that there are in the literature 
some examples of solvable Dirac systems in the context of the 
Dirac oscillator [11] or in the Jaynes–Cummings model [12]. The 
problem of Darboux transformations (or intertwining transforma-
tions) of Dirac Hamiltonians has been previously considered in [10]
but restricted to two-component wave functions, or in [13] (from 
a very different point of view than in our approach). The shape-
invariance for matrix Hamiltonians of Schrödinger–Pauli type has 
been studied in [14,15] and their Darboux properties in [16,17]
and references therein. However, in our case we have characterized 
some interesting features not found before, which can be summa-
rized in the following points: i) the Hamiltonians in the hierarchy 
have degenerate energy levels; ii) this implies that the intertwining 
operators are non-unique, the freedom depending on the dimen-
sion of the degeneracy; iii) the non-trivial symmetry operators of 
each Hamiltonian have been obtained; iv) anti-intertwining opera-
tors are natural in the context of Dirac Hamiltonians.
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