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Abstract

In this paper we discuss the structure of Gamow states as solutions of

Lippmann-Schwinger equation. The Friedrichs model is used to demon-

strate it, both analytically and by applying perturbation theory to the

extended spectrum of the Hamiltonian. The method presented here may

be relevant to the inclusion of resonances in discrete basis, without the

need of numerical constructions to define Gamow states, as entities de-

pending on the choice of integrals contours, or as states resulting from

ad-hoc discretizations of the continuum.
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1 Introduction

The study of the properties of Gamow states [1, 2], both from the mathemat-
ical and physical points of view, has attracted a renewed attention during the
last decade, basically due to the need of concrete realizations of resonances in
the context of treatments of the continuum. To the mathematically oriented
descriptions of Gamow states [3], one may add the numerically finding of these
states for a certain class of potentials [4], in the context of nuclear structure
models [5] and reaction theories [6]. The use of Gamow states has been particu-
larly useful to describe nuclear properties of nuclei far from the stability line, as
well as for the calculation of very important physical processes like alpha decay
[7], high-energy giant-resonances and particle emission rates from excited nu-
clear states [8]. The formulation of the scattering theory [9] in terms of incoming
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and outgoing distorted waves offers, as we shall show in this paper, a convenient
framework where to insert the notion of resonant states rephrased in terms of
Gamow states and their properties. Central to the calculation of scattering
amplitudes is the formalism generally represented by the Lippmann-Schwinger
equation [10], which establishes a very compact and mathematically elegant way
to calculate the wave function of scattered states from the repeated application
of the interaction upon states of the unperturbed portion of the Hamiltonian.
The Lippmann-Schwinger equation then allows for a connection of states belong-
ing to the spectrum of a chosen unperturbed Hamiltonian with out-going waves.
It is the purpose of the present paper to demonstrate that Gamow states be-
long to the class of states described by the Lippmann-Schwinger equation. This
result may indeed facilitate the use of Gamow states in an explicit manner, par-
ticularly in the description of physical systems where resonant states may play
a role in the explanation of observed or expected features.

The paper is organized as follows. In Section 2 we introduce the essentials
of the model due to Friedrichs [11], which is a model amenable to the identi-
fication of Gamow states resulting from the interaction between discrete and
continuous components of the spectrum. In Section 3 we present the basic
of Lippmann-Schwinger equation and make the connection between out-going
waves and Gamow states. Section 4 is devoted to the development of an al-
ternative demonstration based on the use of perturbation theory. Finally, our
conclusions are presented in Section 5. In discussing the material presented
in the paper we have tried to facilitate the access of readers more oriented to-
wards aspects which are relevant to physics though without lost of mathematical
rigour.

2 On the Friedrichs model

The Friedrichs model [11] has a Hamiltonian of the form H = H0 + λV , where
H0 is the free Hamiltonian and V is the interaction. We shall adopt, as degrees
of freedom associated to H0, a discrete boson state |1〉 of energy ω0, and a free
boson field |ω〉, whose spectrum is defined by ω

H0 = ω0|1〉〈1|+

∫ ∞

0

ω|ω〉〈ω| dω . (1)

Let us consider the Hilbert space H = C ⊕ L2(0,∞). The vector |1〉 serves
as a basis for C and L2(0,∞) has a continuous basis denoted as |ω〉, ω ∈ R+,
so that any function f ∈ L2(0,∞) can be written in the form

∫∞

0
f(ω)|ω〉 dω.

In other words, the free Hamiltonian H0 has R+ ≡ [0,∞) as continuous
spectrum and an eigenvalue ω0 embedded in the continuous spectrum, meaning
that H0|1〉 = ω0|1〉 and H0|ω〉 = ω|ω〉, with 〈ω|ω′〉 = δ(ω − ω′), 〈1|1〉 = 1 and
〈ω|1〉 = 0 with ω ∈ R+. The potential V produces an interaction between the
discrete state and the field. The simplest form is by intertwining |1〉 and |ω〉
by means of a square integrable function, the form-factor f(ω) which could be
chosen real, so that
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V =

∫ ∞

0

f(ω){|ω〉〈1|+ |1〉〈ω|} dω . (2)

The constant λ in H = H0+λV is a coupling constant and may have any real
value. As a consequence of the interaction, the eigenvalue ω0 ofH0 is dissolved in
the continuum and yields to a resonance (under some mild conditions imposed on
f(ω)) [14, 12, 13]. This resonance is a pole at (along its complex conjugate) zR =
ER−iΓ/2, of the analytic continuation of the reduced resolvent 〈1|(z−H)−1|1〉,
or equivalently of the S matrix in the energy representation, and has the form:

zR(λ) = [ω0 + λ2I(ω0, f) + o(λ4)]− i[πλ2|f(ω0)|
2 + o(λ4)] , (3)

where

I(ω0, f) = P

∫ ∞

0

f2(ω) dω

ω0 − ω
, (4)

where P denotes Cauchy principal value.
The decaying Gamow vector has the form

|ψD〉 = |1〉+

∫ ∞

0

λf(ω)

zR − ω + i0
|ω〉 dω . (5)

Now, let us consider

ϕ(λ) :=
1

zR − ω + i0
= ϕ(0) + ϕ′(0)λ+

ϕ′′(0)

2
λ2 + . . . , (6)

where,

ϕ(0) =
1

ω0 − ω + i0
, (7)

ϕ′(0) = −
z′R(0)

(ω0 − ω + i0)2
= 0 , (8)

ϕ′′(0) = −
z′′R(0)

(ω0 − ω + i0)2
= −I(ω0, f)

1

(ω0 − ω + i0)2
. (9)

Thus, up to third order in λ, the decaying Gamow-state |ψD〉 has the fol-
lowing form:

|ψD〉 = |1〉+ λ

[
∫ ∞

0

f(ω)

ω0 − ω + i0
|ω〉 dω

]

−
λ3

2

[

I(ω0, f)

∫ ∞

0

f(ω)

(ω0 − ω + i0)2
|ω〉 dω

]

+ . . . (10)
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For notational convenience, we shall denote the sum of the first two terms
in (10) as |ψD

1 〉 and to the coefficient of λ3 as |ψD
3 〉, so that |ψD〉 = |ψD

1 〉 +
λ3|ψD

3 〉+ . . . .

3 Lippmann-Schwinger

The Lippmann-Schwinger equation gives the expression of the in- and out-
perturbed state vectors in terms of the incoming free wave function in a scat-
tering process given by the Hamiltonian pair (H0, H = H0 + V ). Although it
may be written in terms of normalized wave functions, it is much simpler and
useful to express it in terms of non-normalizable plane waves in the momentum
representation as [2, 9, 10]

|ψ±〉 = |φ〉 +
1

ω −H0 ± i0
V |ψ±〉 , (11)

where |φ〉 represents the free plane wave function in the momentum representa-
tion. In (11) the + and − signs represent in- and out-states, respectively. Taking
(11) as our starting point, we shall demonstrate that |ψD〉 belongs to the class
of states |ψ±〉 which are solutions of the Lippmann-Schwinger equation.

Assume that |ψD〉 represents the decaying Gamow state, i.e., (H0+λV )|ψD〉 =
zR|ψ

D〉, where zR = ER − iΓ/2 is the resonance pole (ER,Γ > 0). Following
the same steps leading to equation (11), we have obtained a generalization of
it which gives a similar expression concerning Gamow states for the Friedrichs
model. In our case, |φ〉 ≡ |1〉 and |ψ+〉 ≡ |ψD〉, for the decaying Gamow state.
The sequence is the following: we begin with by expressing the action of the
interaction upon the state |ψD〉

(H0 + λV )|ψD〉 = zR|ψ
D〉 =⇒ λV |ψD〉 = (zR −H0)|ψ

D〉 , (12)

since zR has non-vanishing imaginary part, the operator (zR−H0) is invertible,
and it leads to

|ψD〉 = (zR −H0)
−1 λV |ψD〉 . (13)

In absence of the interaction, that is for λ = 0, the system remains in the
initial state |1〉, therefore, after adding it to (13), the complete solution of (12)
is given by

|ψD〉 = |1〉+ (zR −H0)
−1 λV |ψD〉 . (14)

We should take into account that as λ 7−→ 0, then, zR 7−→ ω0. To account
for this limit (14) is written

|ψD〉 = |1〉+
λ

zR − (H0 − i0)
V |ψD〉 . (15)
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Inserting a complete set of kets |ω〉 in (15), we have that

|ψD〉 = |1〉+

∫ ∞

0

λdω

zR − (H0 − i0)
|ω〉〈ω|V |ψD〉

= |1〉+

∫ ∞

0

λdω

zR − (ω − i0)
|ω〉〈ω|V |ψD〉 . (16)

The action of V upon the bra-state 〈ω| yields

〈ω|V =

∫ ∞

0

dω′ 〈ω| f(ω′)[|ω′〉〈1|+ |1〉〈ω′|] = f(ω)〈1| . (17)

Finally, inserting (17) in (16), we obtain

|ψD〉 = |1〉+

∫ ∞

0

λ f(ω)

zR − (ω − i0)
〈1|ψD〉 |ω〉 dω

= |1〉+

∫ ∞

0

λ f(ω)|ω〉

zR − ω + i0
dω . (18)

Since 〈1|1〉 = 1, e.g. the bound state of H0 is assumed to be normalized,
and 〈1|ω〉 = 0, we conclude that 〈1|ψD〉 = 1.

Thus, we have arrived to (6) and proved that it is the solution of a Lipmann-
Schwinger type-equation. The subsequent developments are identical as in the
previous section. To explain for the appearance of the term i0 in the above
equations, let us go back at the first line of (18). Usually, it is assumed that
the form-factor f(ω) admits an analytical continuation to the lower half-plane.
Then, the function under the integral in (18) represents the limit from below,
hence the minus sign in ω → ω − i0 of the denominator in the first row of (18),
of this analytic continuation.

This can also be seen by considering the S matrix description in the energy
representation. In the case of the Friedrichs model, poles of the analytic contin-
uation of the S matrix and of the reduced resolvent coincide [12]. Both analytic
continuations are supported by a two sheeted Riemann surface [2]. The value zR
appears as a pole of this analytic continuation located in the lower half plane of
the second sheet. This half plane is connected with the upper half plane in the
first sheet through the upper rim of the cut. Then, if we take Im zR 7−→ 0, zR,
i.e., zR 7−→ ω0 will go to the upper rim. The boundary values of the analytic
continuation of the S matrix, S(z), on the upper rim, S(ω+ i0), ω > 0, are the
limits from above to below of S(z), where z lies on the upper half plane in the
first sheet. The same situation occurs for the reduced resolvent.

We have noted that the decaying Gamow state |ψD〉 corresponds to the “in”
Lipmann Schwinger equation characterized with the plus sign in the term +i0
in the denominator. In fact, one may define the origin of times, t = 0, as the
moment at which the creation of the decaying state |ψD〉 is completed and starts
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to decay [2]. Thereafter, we know that |ψD〉 undergoes a purely time exponential
decay at times t > 0 [18]. The “in” character of the decaying Gamow vector has
been made explicit in another models, like one involving unstable interactions
in field theory [19].

Correspondingly, there is an “out” state, the growing Gamow state |ψG〉,
which is characterized by the property (H0 + V )|ψG〉 = z∗R|ψ

G〉, where the star
denotes complex conjugation, i.e., z∗R = Er + iΓ/2. Then, a similar analysis as
the one performed to arrive to equation (18) leads to

|ψG〉 = |1〉+

∫ ∞

0

λ f(ω)

z∗R − ω − i0
|ω〉 dω . (19)

In fact, the growing Gamow vector |ψG〉 is nothing else that the time reversal
of |ψD〉 [20].

4 Perturbative analysis

In the sequel, we consider the perturbative analysis developed in Section 2 from
another point of view. To begin with we have an initial state ψ0(0) that evolves
under the action of the free Hamiltonian H0 to become ψ0(β) = e−βH0ψ0(0).
Here, the variable β either denotes β = it, where t is time or 1/(kT ), where
k is the Boltzmann constant and T the temperature. In the first case, ψ0(β)
represents the state at time t, provided that ψ0(0) is the state at time t = 0.
Let us assume that the total Hamiltonian is given by H = H0 + λV as in the
Friedrichs model. When β = 0, the initial state is ψ0(0). For finite values of
β the state is ψ(β) := e−βHψ0(0). The theory of perturbations gives us the
following expression for ψ(β) in terms of ψ0(β):

ψ(β) = ψ0(β) − λ

∫ β

0

dβ1 e
−(β−β1)H0 V ψ(β1) . (20)

This is a typical integral equation which can be solved perturbatively, by
folding each term with the previous one, namely:

ψ(β) = ψ0(β)− λ

∫ β

0

dβ1 e
−(β−β1)H0 V ψ0(β1)

−(−1)λ2
∫ β

0

dβ1 e
−(β−β1)H0 V

∫ β1

0

dβ2 e
−(β1−β2)H0 V ψ0(β2)

. . . − (−1)n−1λn
∫ β

0

dβ1

∫ β1

0

dβ2 . . .

∫ βn−1

0

dβn ×

×e−(β−β1)H0 V e−(β1−β2)H0 V e−(β2−β3)H0 V . . . V e−(βn−1−βn)H0ψ0(βn) + . . . (21)

In the Friedrichs model, the most general form of ψ0(0) (β = 0) is
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ψ0(0) = α|1〉+

∫ ∞

0

ψ(ω) |ω〉 dω . (22)

Note that |1〉 is indeed |1〉⊗|0〉 and |ω〉 = |0〉⊗|ω〉, where the ket |0〉 denotes
the vacuum of the field in the first case and the absence of bound state in the
second. This is important for the following developments. Although (22) is
the most general initial state, subsequent calculations starting with it are too
complicated. Furthermore, it is reasonable to begin with the bound state |1〉 as
initial state, so that we shall assume from now on that ψ0(0) ≡ |1〉. Then, let
us apply e−β1H0 to |1〉 as in (22). Taking into account the form of H0 (1), we
obtain:

ψ(β1) = e−β1H0ψ0(0) = e−β1ω0a
†a e−β1

∫
∞

0
ωb†

ω
bω dω|1〉 = e−β1ω0 |1〉 . (23)

In order to evaluate the first integral in (21), let us write:

V ψ0(β1) =

∫ ∞

0

f(ω) [a†bω + ab†ω] dω
[

e−β1ω0 |1〉
]

= αe−β1ω0

∫ ∞

0

f(ω) |ω〉 dω . (24)

and make use of the definition of the variable τ = −(β − β1), so that

eτH0 V ψ(β1)

= eτω0a
†a eτ

∫
∞

0
ωb†

ω
bω dω

[

e−β1ω0

∫ ∞

0

f(ω) |ω〉 dω

]

= e−β1ω0

∫ ∞

0

eτω f(ω) |ω〉 dω = e−β1ω0

∫ ∞

0

f(ω) e−βω eβ1ω |ω〉 dω

=

∫ ∞

0

f(ω) e−βω eβ1(ω−ω0) |ω〉 dω . (25)

Let us integrate with respect to β1, it yields the result

∫ ∞

0

e−βω e
β(ω−ω0) − 1

ω − ω0 + i0
f(ω) |ω〉 dω =

∫ ∞

0

e−βω0 − e−βω

ω − ω0 + i0
f(ω) |ω〉 dω . (26)

Then, up to first order in λ, equation (21) gives:
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ψ(β) = e−βω0|1〉 − λ

∫ ∞

0

e−βω0 − e−βω

ω − ω0 + i0
f(ω) |ω〉 dω

= e−βω0

[

|1〉 −

∫ ∞

0

λ f(ω)

ω − ω0 + i0
|ω〉 dω + λ

∫ ∞

0

e−β(ω−ω0) f(ω)

ω − ω0 + i0
|ω〉 dω

]

, (27)

which is equivalent to (18). Next, let us calculate the second order in λ. In
order to do it, we recall that the second integral in the second line in (21) has
been already evaluated and the result is given in (26), where we have to replace
β by β1. Then, the second line in (21) becomes:

λ2
∫ β

0

dβ1 e
−(β−β1)H0 V

∫ ∞

0

e−β1ω0 − e−β1ω

ω − ω0 + i0
f(ω) |ω〉 dω (28)

To evaluate this term, note that

V |ω〉 =

∫ ∞

0

f(ω′) [a†bω′ + ab†ω′ ] |ω〉 dω
′ =

[
∫ ∞

0

f(ω) dω

]

|1〉 , (29)

leading to

V

∫ ∞

0

e−β1ω0 − e−β1ω

ω − ω0 + i0
f(ω) |ω〉 dω =

∫ ∞

0

e−β1ω0 − e−β1ω

ω − ω0 + i0
f(ω)V |ω〉 dω

=

[
∫ ∞

0

dω f2(ω)
e−β1ω0 − e−β1ω

ω − ω0 + i0

]

|1〉 = I2(β1)|1〉 , (30)

so that the second line in (21) has the form (τ = β − β1):

λ2
∫ ∞

0

dω

∫ β

0

dβ1 f
2(ω)

e−β1ω0 − e−β1ω

ω − ω0 + i0
eτH0 |1〉 , (31)

with

eτH0 |1〉 = e−(β−β1)ω0 |1〉 . (32)

Carrying (32) into (31), we obtain the following relation:

λ2
∫ ∞

0

dω
f2(ω)

ω − ω0 + i0

∫ β

0

dβ1 e
β1ω0(e−β1ω0 − e−β1ω) |1〉

= λ2
∫ ∞

0

dω
f2(ω)

ω − ω0 + i0

[

β +
eβ(ω−ω0) − 1

ω − ω0 + i0

]

|1〉 . (33)

Note that this expression vanishes when β = 0.
Next, let us go to the third order. The corresponding term in (21) reads:
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−λ3
∫ β

0

dβ1 e
−(β−β1)H0 V

∫ β1

0

dβ2 e
−(β1−β2)H0 V

∫ β3

0

dβ1 e
−(β2−β3)H0 V ψ0(β3)

= −λ3
∫ β

0

dβ1G(ω, ω0, β1) e
−(β−β1)H0 V |1〉 ,

(34)

with

G(ω, ω0, β1) = e−β1ω0

∫ ∞

0

dω
f2(ω)

ω − ω0 + i0

[

β1 +
eβ1(ω−ω0) − 1

ω − ω0 + i0

]

. (35)

Repeating the same arguments as in (24) and (25), we obtain that (35) is
equal to

−λ3
∫ β

0

dβ1G(ω, ω0, β1)

∫ ∞

0

e−(β−β1)ω
′

f(ω′) |ω′〉 dω′ . (36)

Due to the form of G(ω, ω0, β1) given in (35), (36) is a sum of three terms.
The first one is given by

−Aλ3
∫ ∞

0

e−βω′

f(ω′) |ω′〉 dω′

∫ β

0

β1 e
−β1(ω0−ω′) dβ1

= −Aλ3
∫ ∞

0

e−βω′

f(ω′)

{

1

(ω0 − ω′ + i0)2

[

1− e−β(ω0−ω′)
]

−
βe−β(ω0−ω′)

ω0 − ω′ + i0

}

|ω′〉 dω′ , (37)

with

A =

∫ ∞

0

dω
f2(ω)

ω − ω0 + i0
. (38)

The second one is:

λ3
∫ β

0

dβ1 e
−β1ω0

∫ ∞

0

dω
f2(ω)

(ω − ω0 + i0)2

∫ ∞

0

dω′ e−(β−β1)ω f(ω′) |ω′〉 dω′

= λ3B

∫ ∞

0

dω′ f(ω′) |ω′〉

∫ β

0

dβ1 e
−βω′

e−β1(ω0−ω′)

= λ3B

∫ ∞

0

1

ω′ − ω0 + i0
(e−β1(ω0−ω′) − 1) f(ω′) |ω′〉 , (39)
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with

B :=

∫ ∞

0

dω
f2(ω)

(ω − ω0 + i0)2
. (40)

Finally, the third term reads:

−λ3
∫ β

0

dβ1 e
−β1ω0

∫ ∞

0

dω
f2(ω)

(ω − ω0 + i0)2
e−β1(ω−ω0)

∫ ∞

0

dω′ e−(β−β1)ω
′

f(ω′) |ω′〉

= λ3
∫ ∞

0

dω
f2(ω)

(ω − ω0 + i0)2

∫ ∞

0

dω′ f(ω′)
1

ω − ω′ + i0
eβω

′

(e−β(ω−ω′) − 1) |ω′〉 . (41)

Before to proceed with our analysis, let us discuss on the integrals on which
expressions of the form (ω − ω1 ± i0)−1 or (ω − ω1 ± i0)−2 appear. These are
well known distributions over spaces of test functions. If f2(ω) belongs to one
of these spaces, which is the case if for instance f(ω) belong to a Schwartz space
[21], formula (38) has a clear meaning (see [21]). Note that −(ω − ω1 ± i0)−2

is the distributional derivative of (ω − ω1 ± i0)−1, so that (40) is meaningful in
this distributional sense.

In other formulas like in the second integral in the second row of (41), we
could have omitted the term i0 in the denominator, since we have a term in the
numerator which goes to zero as ω 7→ ω′. In (41), this is e−β(ω−ω′) − 1. This
type of integrals have a meaning as functionals [15].

4.1 Comments

Equation (27) can be written as:

ψ(β) = e−βω0

[

|ψD
1 〉+ λ

∫ ∞

0

e−β(ω−ω0) f(ω)

ω − ω0 + i0
|ω〉 dω

]

. (42)

The value of the decaying Gamow at third order, |ψD
3 〉 is hidden in the above

calculations. First, note that A in (38) can be written as

A = −P

∫ ∞

0

f2(ω)

ω0 − ω
dω − iπf(ω0) = −I(ω0, f)− iπf(ω0) . (43)

Then, observe that in (37), there exists a term of the form

e−βω0

∫ ∞

0

f(ω′)

(ω0 − ω′ + i0)2
|ω′〉 dω′ . (44)

As before, the contribution proportional to |ψD
3 〉 is hidden in (37), as well

as higher order terms. Therefore, the structure of (42) is just of the form (18).
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5 Conclusions

In this paper we have presented the mathematical steps needed to demonstrate
the correspondence between the functional representation of Gamow states and
a given class of solutions of the Lippmann-Schwinger equation. As a convenient
formalism to work with we have chosen the Friedrichs model, which consists
of a discrete state interacting with a continuum. In this model, Gamow states
are easily constructed. We have demonstrated, both exactly and perturbatively,
that their structure is identical to the solutions of a Lippmann-Schwinger equa-
tion. This finding may greatly simplified the use of Gamow states in systems
where the description of resonances is relevant for the calculation of observ-
ables, as was the case for the evaluation of the complex entropy attached to a
Gamow state [22], and it is also expected to be important in future formulation
of many-body quantum unstable states.
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