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Abstract
Hodographs for the Kepler problem are circles. This fact, known for almost two
centuries, still provides the simplest path to derive the Kepler first law. Through
Feynman’s ‘lost lecture’, this derivation has now reached a wider audience. Here
we look again at Feynman’s approach to this problem, as well as the recently
suggested modification by van Haandel and Heckman (vHH), with two aims in
mind, both of which extend the scope of the approach. First we review the
geometric constructions of the Feynman and vHH approaches (that prove the
existence of elliptic orbits without making use of integral calculus or differential
equations) and then extend the geometric approach to also cover the hyperbolic
orbits (corresponding to E 0> ). In the second part we analyse the properties of
the director circles of the conics, which are used to simplify the approach, and
we relate with the properties of the hodographs and Laplace–Runge–Lenz vector
the constant of motion specific to the Kepler problem. Finally, we briefly discuss
the generalisation of the geometric method to the Kepler problem in config-
uration spaces of constant curvature, i.e. in the sphere and the hyperbolic plane.
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1. Introduction

The Kepler problem, i.e., the motion of a particle under an inverse square law, has been a true
landmark in physics. Since antiquity, the general assumption was that planets moved in
circles, an idea shared by Copernicus himself. However, Kepler, analysing a long series of
astronomical observations, found a very small anomaly in the motion of Mars, and that was
the starting point for his discovery that the planet orbits were ellipses. However, there is some
historical irony in the fact that a circle is still the exact solution of a related view of the
problem, when any Kepler motion is not seen in the ordinary configuration space, but in the
‘velocity space’.

When a point particle moves, its velocity vector, which is a tangent to the orbit, changes
in direction as well as in modulus. We might imagine this vector translated in the naive
manner to a fixed point. Then, as the particle moves along its orbit, the tip of the velocity
vector traces a curve in velocity space that Hamilton called the ‘hodograph’ of the motion, to
be denoted here by . In Hamilton’s own words [1]:

Kthe curve which is the locus of the ends of the straight lines so drawn may
be called the hodograph of the body, or of its motion, by a combination of the
two Greek words, o od z , a way, and grafw, to write or describe; because the
vector of this hodograph, which may also be said to be the vector of velocity
of the body, and which is always parallel to the tangent at the corresponding
point of the orbit, marks out or indicates at once the direction of the
momentary path or way in which the body is moving, and the rapidity with
which the body, at that moment, is moving in that path or way.

The statement of the circularity of Kepler hodographs is an outstanding example of the
rediscovery of a wheel (as pointed out in [2]); its first statement can be traced back to the 1840s
independently to Möbius [3] and Hamilton [1], to be later rediscovered several times by many
authors including Feynman. By putting this property at the outset one can obtain a complete
solution for the shape of the orbits with a minimum of additional work. Thus, the common idea
to deal with the Kepler motion in all these ‘indirect’ approaches is to start by a proof of the
circular character of hodographs and afterwards to derive the conic nature of Kepler orbits.

For an historical view of this question we refer to a paper by Derbes [2] which also gives a
very complete discussion of the problem in the language of classical Euclidean geometry,
including the contribution to this very problem of outstanding figures such as Maxwell [4]. The
historical constructions are extended in this paper even to parabolic orbits (see also the paper [5]).

The hodograph circular character for the Kepler problem is closely related to the exis-
tence of a specifically Keplerian constant of motion which which is an exceptional property of
the central potential with radial dependence r1 . From a purely historic viewpoint, this
vector can be traced back to the beginning of of the 18th century, with Hermann and
Bernoulli (see two notes by Goldstein [6, 7]), and was later rediscovered independently
several times. The connection with the circular character of the hodograph seems to be due to
Hamilton [1]; from a modern viewpoint all these distinguished properties are linked to the
superintegrability of the Kepler problem (for a moderately advanced discussion, see [8]).

In a recent paper [9], van Haandel and Heckman (hereafter vHH) have pushed this
‘Feynman’s construction’ a further step, providing a fully elementary proof of the elliptic
nature of the (bounded) Kepler orbits. In the form presented by vHH, this applies only for non
degenerate (angular momentum L 0¹ ) elliptical orbits (with E 0< , and thus bounded). In
this paper we first prove that a quite similar construction is also valid for the unbounded
E 0> hyperbolic orbits. This requires some restatement of the vHH results, along which
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some circles, the director circles of the Kepler orbit as a conic, appear. When the role of these
circles is properly recognised, the vHH derivation can be streamlined and presented in a
clearer way than the original and more simply than the Feynman one.

This is the plan of this paper: a short introductory section serves to state the problem and
to set notation so as to make the paper self-contained. A brief description of both the Feynman
and vHH approaches for elliptic orbits follows; a particular Euclidean circle underlies both
approaches. Then we discuss a reformulation of the vHH approach, where the basic properties
of this Euclidean circle are as clearly stated as possible. Once the real geometric role played
by this circle has been identified, the extension to hyperbolic orbits can be performed easily
(we refer to [11] for some complementary details). This new, slightly different, construction is
streamlined in the next section. The ‘reverse part’, which goes from the hodograph to the
configuration space orbit, is also fully characterised and studied; it turns out to be a bit simpler
than the Feynman and vHH constructions.

All this will cover only the Euclidean Kepler problem. In the last section we briefly
indicate how the ‘Kepler’ problem in constant curvature spaces, i.e., on the sphere and on the
hyperbolic plane, can be approached and solved following precisely the pattern described
case in the previous section. The essential point in this connection is to deal with the
momenta, instead of dealing with the velocities. Neither the Feynman nor the vHH approach
seem to allow such a direct extension.

2. Problem statement and some notations

The motion of a particle of mass m in Euclidean space under a general conservative force field
derived from a potential VF r r( ) ( )= - has the total energy E as a constant of motion.
Units for mass will be chosen so that m=1; after this choice the momentum p can be
assimilated to the velocity vector v ṙ= .

When the force field is central (from a centre O), angular momentum L r p= ´ is also
conserved so the orbit is contained in a plane through O (perpendicular to L) and, if Cartesian
coordinates are chosen so that LL 0, 0,( )= , then the motion is restricted to the plane z=0.
From the point of view of this plane, L appears as an scalar, which may be either positive or
negative. Constancy of L is related to the law of areasr L2ḟ = and leads to the second
Kepler law, which holds for motion under any central potential.

The Kepler problem refers to the motion in Euclidean space of a particle of mass m under
the central force field

k

r r
F r

r
1

2
( ) ( )⎜ ⎟

⎛
⎝

⎞
⎠= -

(centre placed at the origin O), or equivalently, under the potential V k rr( ) = - , k 0> . The
main results for this problem are embodied in the Kepler laws, whose first mathematical
derivation was done by Newton in the Principia [12] (see also [13]). The first law was stated by
Kepler as the planet’s orbits are ellipses with a focus at the centre of force. Actually not only
ellipses, but also parabolas and one of the branches of a hyperbola (with a focus at the origin)may
also appear as orbits for an attractive central force with a r1 2dependence, and the general Kepler
first law can be restated as saying that the Kepler orbits are conics with a focus at the origin.

The constructions to be discussed in this paper are made within synthetical geometry, and
we freely use the usual conventions: in Euclidean plane points are denoted by capital letters
O P, and symbols as OP will denote either the line through points O and P or the segment OP
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seen as an (affine) vector, i.e., a vector at O whose tip is at P: the modulus OP∣ ∣ of this vector
is the Euclidean distance between points O and P (see also [2]).

2.1. The focus/directrix characterisation of Euclidean conics

There are three types of (non-degenerate) conics in the Euclidean plane: two generic types,
ellipses and hyperbolas and one non-generic type, parabolas. The two generic types, i.e.,
ellipses (resp. hyperbolas) are geometrically characterised by the property

The sum (resp. the difference) of the distances from any point on the curve to
two fixed points, called foci, is a constant;

this property is behind the well known ‘gardener’ construction of ellipses. For parabolas, one
of these foci goes to infinity, so the previous characterisation degenerates, and must be
replaced by another property, as, for example

The distances from any point on the parabola to a fixed line D called directrix
line and to a fixed point O, called focus, are equal.

This characterising property can also be generalised to include ellipses and hyperbolas, as
we will see next.

It turns out that the two foci of conics appearing in the Kepler problem plays different
roles, and from the start we adapt our notation to this asymmetry: the two foci of the ellipses
and hyperbolas will be denoted O and I, and the single focus of parabolas as O. Ellipses and
hyperbolas degenerate to parabolas when the second focus I goes to infinity.

An interesting but less known alternative characterisation also exists for ellipses and
hyperbolas, which is based on a pair focus-directrix. For these two generic types of conics the
directrix is not a straight line, but a circle called director circle. Thus ellipses (resp. hyper-
bolas) can be characterised geometrically by the property

The distances from any point on the ellipse (resp. hyperbola) to a fixed cir-
cle, O and to a fixed point O are equal.

The two generic types of conics corresponds to the relative position of O and O: for an
ellipse (resp. a hyperbola) the point O is inside (resp. outside) the circle O .

There is not a fully standard naming for several circles associated to a conic, and
therefore some confusion may follow. We stick here to the naming used by Sommerville, [14]
where director circle applies (for ellipses and hyperbolas) to a circle with centre at a focus,
radius a2 and with the property that the points on the conic are equidistant from the other
focus and from the director circle .

Another circle is the orthoptic circle [15], which is defined as the set of points where two
perpendicular tangents to the conic meet; it is easy to prove that for ellipses and hyperbolas
this set of points is also a circle. The name orthoptic refers to the fact that, when viewed from
any point on this circle, the ellipse spans visually the interior of a right angle and the
hyperbola spans part of the exterior of a right angle. For parabolas, the set of points with this
property degenerates to a straight line and turns out to coincide with the directrix, which
partly explains why this circle is sometimes called the director circle; as indicated before we
are not following this usage.

Ellipses and hyperbolas have two foci, and therefore two director circles, denoted I
(resp. O ) which refer respectively to the circle with centre at the focus O (resp. I), radius a2
and with the property that the points on the conic are equidistant from the focus O (resp. I)
and from the corresponding director circle O (resp. I ).
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The equivalence of the ‘gardener’ characterisation and the one based in the focus-director
circle pair is clear. For ellipses and hyperbolas the two director circles O and I have its
centers at the ‘other’ focus I, O, and radius equal to the major axis a2 . A central symmetry in
the ellipse or hyperbola centre swaps the two focus and the two director circles. The non-
generic type of conics, parabolas, have no centre and the radii of the two director circles, that
must be equal, are infinite. In this case, (i) the focus I goes to infinity, and with it the director
circle I (with centre at O) goes also to infinity; and (ii) the director circle O has centre at
infinity, and appears as a straight line, which is the parabola directrix D.

Another basic property of Euclidean circles should be mentioned. Let a circle  and a
fixed point P be given in the plane. Consider all straight lines in that plane through P.

– If P is interior to  all these lines will intersect  in two (real) points.
– If the point P is exterior to  , then there will be two real tangent straight lines to 
through P, and all straight lines within the wedge limited by the two tangents will
intersect  in two real points.

In all these cases, if d1 and d2 denote the (oriented) distances from P to the two intersection
points along a particular straight line, then the product d d1 2 turns out to be independent of the
chosen straight line. This value is called the ‘power of the point P relative to the circle  . This
power is negative if the point P is inside  (then d d,1 2 have opposite orientations) and is
positive if P is outside  . A proof is easily constructed and we leave it to the reader.

2.2. Some non-standard 2D vector calculus

In a 2D plane, there is a canonical way to associate to any vector w another vector denoted w*
(to be understood as a single symbol). This possibility is specific for a 2D plane and does not
happen in the 3D space, where the ‘similar’ construction, the vector product, requires to start
from two vectors. The vector w* is defined to be the (unique) vector in this plane orthogonal
to w, with the same modulus as w and such that the pair w w,( )* is positively oriented. The
vector w* is obtained from w by a rotation in the plane by an angle 2p+ , and component-
wise, w wj ij

i* = (with sum in the repeated index i), i.e., if w ww ,1 2( )= , then
w ww ,2 1( )* = - . We now state two properties which are easy to check.

(1) w w( )* * = - .
(2) If L is a vector perpendicular to this plane, then the vector product L w´ can be

expressed in terms of the modulus L of L and of w* , as LL w w*´ = .

Figure 1. Director circles for ellipses and hyperbolas.
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In the natural identification x y x y, i( ) º + of the Euclidean plane 2 with , the
operator w w* corresponds to multiplication by the complex unit i.

3. The geometric approach to the Kepler first law

3.1. Feynman approach for elliptic orbits

In 1964, Feynman delivered a lecture on ‘The motion of planets around the Sun’ which was
not included in the published ‘Lectures on Physics’. Feynman’s notes for this lecture were
eventually found, and then published and commented by Goodstein and Goodstein in 1996
[16]. In his peculiar style, Feynman gave an elementary derivation of the Kepler first law by
focussing attention on the hodograph. Such a derivation starts by unveiling (rediscovering) a
curious property: the Kepler hodographs have an exact circular character, but this circle is not
centred in the origin of velocity space (see e.g. [17–23]).

The publication of the ‘Lost Lecture’ has made this approach to the Kepler problem more
widely known than before, although, as Counihan points out in [24], this geometric approach
was probably more in line with the background of 19th century mathematical physicists than
it is nowadays.

This procedure of studying the Kepler motion reduces to a minimum the resort to
calculus or to differential equations. All the ‘hodograph first’ approaches to solve Kepler
problem (Feynman’s included) require to establish first the circular nature of the Kepler
hodograph. Some resort—more or less concealed—to solving a differential equation is
required here. The standard way is to write the Newton laws for the motion tx( ) in a central
field of forces with an r1 2 radial dependence and look for the differential equation satisfied
for the velocity tẋ( ) (see e.g. Milnor [25], where one can find a careful discussion).

Newton had to solve this problem by a geometrical argument involving a kind of dis-
cretisation of the problem, considering positions at equispaced times t t t t t, , 2 ,...+ D + D ,
and, as is well known, this leads to a complicated description.

But since Hamilton we know that this non-linear problem can be transformed to a linear
one if we change the time t by the angle f as the independent variable and we then enforce the
law of areas. The function ẋ( )f which gives the velocity in terms of the angle f satisfies a
linear equation whose solutions are immediately seen to be circles in the velocity space.
Feynman solved this step by making a kind of discretisation similar to the one by Newton, but
involving equispaced angular positions , , 2 ,...f f f f f+ D + D on the orbit. This provides
some kind of discrete analogues of the linear equation satisfied by ẋ( )f , and leads in the limit

0fD  to the circular character of the hodograph. Once this fact has been established, the
Kepler first law follows in a simple and purely algebraic way.

Of course, it remains to describe the relation among the hodograph and the orbit. We
need a construction which applied to the hodograph would allow us to recover the orbit. In the
Feynman lecture, even if rather informally presented, this is accomplished through a sequence
of three transformations, whose essential part is to rotate the hodograph by 2p- around the
origin O. All the necessary details will be given in the following sections, after dealing with
another recent construction, due to van Haandel and Heckman.

3.2. The van Haandel–Heckman approach for elliptic orbits

van Haandel and Heckman [9] introduced a modification in the Feynman approach which
reverses the standard ‘hodograph approach’, and even avoids the need to draw on a differ-
ential equation, thus providing a good way to present the problem to beginners. They compare
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their derivation with the one devised by Feynman and put both into perspective against the
original Newton derivation. This comparison makes sense because all three derivations are
framed in the language of synthetical Euclidean geometry.

The geometric construction they propose has many elements in common with the pre-
vious ones (Maxwell, Feynman, ...) but they look at the problem from a different perspective
which leads much more directly to two essential insights in the problem: the conic nature of
the orbits and the existence of an ‘exceptional’ Keplerian constant of motion I. It is worth
emphasising that the derivation is purely algebraic, and at no stage should a resort to a
differential equation be taken (in contrast to Feynman’s approach).

The standard Laplace–Runge–Lenz (LRL) vector A is known to point from the force
centre to the perihelion, along the orbit major axis, with modulus k e; otherwise A lacks any
geometrical interpretation. In contrast, the constant vector I which follows from this approach
is a a rescaling of the standard LRL vector A by a factor E1 , EI A= and admits a nice and
direct geometrical interpretation: both for elliptic and hyperbolic orbits it goes from the force
centre, which is one focus of the orbit, to the ‘second’ or ‘empty’ focus (it degenerates to an
infinite modulus vector along the conic axis for parabolic orbits).

We start by recalling the elementary proof of the Kepler first law as proposed by van
Haandel and Heckman in [9]. Consider Kepler orbits with L 0¹ and E 0< (we already
know they are Kepler ellipses, but assume at this point that we do not know this).

As a consequence of energy conservation, motion in configuration space (or in the plane
of motion) is confined to the interior of a circle , centred at the origin and with radius
k E( )- . Outside this circle the kinetical energy would be negative, and thus this exterior
region is forbidden for classical motion. This circle  plays an important role (but as we shall
see later, this role is not exactly as the boundary of energetically allowed region, though this
is the way van Haandel–Heckman presented the construction).

Let be r the position vector of a point P on a given orbit, lP denote the tangent line to the
orbit at P, v the velocity of the particle at P and p the linear momentum vector, which we will
imagine as attached to the origin O, i.e., the vector p is the result of transporting the vector mv
to the origin O (recall we are assuming m= 1).

The geometric construction will proceed in two steps.

1. First, extend the radius vector OP rº of P (with the potential centre O as origin) until it
meets the circle  at I ¢. This can be seen as the result of scaling by a factor
k E r1( )( )- , which sends the vector OP rº to a new vector with a modulus equal to
k E r r k E1( )( ) ( )- = - , so this vector tip I ¢ lies on the circle .

2. Now consider the image I of I ¢ under reflection with respect to the line lP.

This construction could be done for any bounded E 0< motion in any bounding arbi-
trary central potential; as P moves along the orbit, the point I ¢ moves on  and one might
expect the point I to move as well. This is the case for motions in other central fields, but
Kepler motion is exceptional in this respect, and we have the following result.

Theorem 1. When P moves along a E 0< Kepler orbit and the point I ¢ determined by the
previous construction moves on the circle , then the point I stays fixed.

In other words, I turns out to be independent of the choice of the point P on the orbit. As
we shall see, this geometric ‘timeless’ construction, displayed in figure 2, will reflect the
existence of a constant of motion specific to the Kepler potential.
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Before sketching the proof of the theorem itself, notice that in the figure, the Kepler orbit
has already been displayed as an ellipse. Actually, the elliptic nature of the orbits immediately
follows as a consequence of the previous theorem.

Corollary 1 (Kepler first law for elliptic orbits). The Kepler orbit with total energy E 0< is
an ellipse, with a focus at the origin O, the other focus at I, and major axis a2 equal to the
radius k E( )- of the circle .

Proof. OP and PI¢ are on the same line, hence OP PI k E∣ ∣ ∣ ∣ ( )+ ¢ = - . The reflection in
the line lP is an Euclidean isometry, so PI PI∣ ∣ ∣ ∣= ¢ , and then OP PI k E∣ ∣ ∣ ∣ ( )+ = - , so the
sum of distances from P to the fixed points O and I do not change when P moves on the orbit,
and it is equal to the radius of the circle . This agrees with the ‘gardener’ geometric
definition of an ellipse with foci O and I.

We return to the proof of the theorem which boils down to two stages.

1. Express the vector OII º in terms of the instantaneous state variables of the particle at P
(i.e., position r and velocity v or momentum p).

2. Compute its time derivative and use Newton’s equations for the Kepler potential to check
that I is indeed a constant of motion.

As OI OI III = = ¢ - ¢, the first step can be carried out by evaluating the vectorsOI¢ and
II¢. I ¢ lies on the circle  and then OI k

E r

r¢ =
-

, which immediately leads to

PI OI OP
k

E r

k

E r

r
r r

1
1 , 2( )⎜ ⎟⎛

⎝
⎞
⎠¢ = ¢ - =

-
- =

-
-

and using that by conservation of energy we have E p k

r2

2

= - , we get

PI
p

E
r

2
. 3

2
( )¢ =

-

Now, to compute II¢, we first note that pLp L´ is a unit vector perpendicular to both p
and L (which are also mutually perpendicular), so it has the direction of II¢. The length MI¢ is

Figure 2. The van Haandel–Heckman construction: E 0< Kepler orbits are ellipses.

Eur. J. Phys. 37 (2016) 025004 J F Cariñena et al

8



the projection of the vector PI¢ over the line II¢, and it can be computed as the scalar product
r

pL

p

E

p L
2

2

·´
-

. By using the cyclic symmetry of triple product, we get

Lp L r r p L L2 2· ·´ = ´ = = , and hence we finally have for II¢ and I

II
E

L

E

k

E r E

p L
p I

r p L
, . 4( )*¢ =

´
-

= =
-

-
´
-

In order to check that I is actually a constant of motion we can introduce

E k
r

A I p L
r

, 5≔ ( )= ´ -

and as E itself is a constant of motion, the second step reduces to checking that A is also a
constant of motion for the Kepler potential. Note that L 0˙ = and that p F˙ = , then,

d

dt
k

d

dt r
A F L

r
6( )⎜ ⎟

⎛
⎝

⎞
⎠= ´ -

with k rF r
r

r2 ( )( ) ( )= - and a simple direct computation leads to A 0˙ = . Of course, A is but
the standard Laplace-Runge-Lenz vector, the specific Kepler constant of motion.

As stressed by vHH, one merit of this approach is that the specifically Keplerian constant
of motion follows directly from the construction, so the only remaining task is to check it is a
constant, which is the easy part; on the contrary, in the standard approaches, it is not so
obvious to figure out the expression which turn out to be a constant of motion.

A direct consequence follows from formula (4): as p and L are perpendicular, we have
for the modulus of the affine vector II¢ the relation II pL

E
∣ ∣¢ =

-
, (notice that L and E- are

both positive). This relation, which will be essential for the relation among orbits and
hodographs, can be stated as follows.

Proposition 1. For Kepler orbits with E 0< , as P moves along the orbit, the Euclidean
length II∣ ∣¢ is proportional to the modulus of the momentum p the particle has when it is at P:

II
L

E
p 7∣ ∣ ( )¢ =

-

In terms of the geometry of the ellipse, the minor semiaxis length is b L E2( )= - , so
the coefficient L E( )- in (7) admits an alternative expression as L E b L2 2( )- = .

Then we can sum up these results in two different but equivalent ways.

– In the direct construction, for any point P on the Kepler orbit, produce the radius vector
once it meets the circle at I ¢ and reflect with respect to the tangent line to the orbit at P;
the reflected point I does not depend on P.

– In the reverse construction, choose any point I ¢ on the circle  and consider the bisector
line of the segment II ;¢ this is the tangent to the orbit at some point P, and when I ¢ moves
along , the orbit is recovered as the envelope of the family of its tangent lines; it is an
ellipse with major axis length a2 , which can also be described as the set of points
equidistant to the fixed point O and the fixed circle .

We recall that the circle  was introduced by vHH as the boundary of the energetically
allowed region for an orbit with energy E 0< . But now we see from the previous discussion
that the essential property of this circle is precisely to be a director circle I of the ellipse [14]
(the director circle companion to the focus I).
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3.3. Hyperbolic orbits

The geometric approach described in the previous subsection was only concerned with elliptic
orbits. The main point was the identification of the circle  as the director circle of the orbit.
We now extend the approach to the case E 0> .

Now mimic the previous construction for a hyperbolic Kepler orbit (L 0¹ and E 0> ).

1. First, at a point P on the orbit with tangent line lP, scale the radius vector r of P by a
factor k E r1( ) ·- , (notice that for E 0> this factor is negative). This brings the point
P to a new point I ¢ which lies on some circle with center O and radius k E∣ ∣, still denoted
 (now OI¢ has the opposite orientation to OP). In other words, extend the vector OP
starting from O in the opposite sense to r until the rescaled vector k E rr( ) ·- lies
precisely on the circle  at a point I ¢ (see figure 3).

2. Now consider the image I of I ¢ under reflection with respect to the line lP.

Now the main result follows.

As P moves on the orbit, the point I ¢moves on the circle and the point I stays
fixed; from this the hyperbolic nature of the orbit follows.

(To be precise, I ¢ moves only on an arc of, displayed in continuous red; the remaining,
not displayed, part of the full circle would correspond to the other hyperbola branch, which
would be the orbit for the repulsive Kepler problem.) The reflection of I ¢ in the tangent line lP
gives a point I, which is outside the circle I . The result now is that the point I stays at a fixed
position when P runs the whole Kepler orbit.

In other words, even in the cases where E 0> , the orbit is also a conic (here a hyperbola
branch) and the circle  is a director circle of the conic.

3.4. Generic orbits

Now we restate the vHH construction in a way which applies at the same time to both elliptic
and/or hyperbolic orbits.

Figure 3. The extension of the van Haandel–Heckman construction to prove that E 0>
Kepler orbits are hyperbolas.

Eur. J. Phys. 37 (2016) 025004 J F Cariñena et al

10



Given a Kepler orbit with energy E 0¹ , for each point P on the orbit, scale the radius
vector of the point P with the factor k E r1( ) · ( )- , and call I ¢ the point so obtained, which
lies on the circle  with centre O and radius k E∣ ∣. Now consider the image I of I ¢ under
reflection in the line lP which is the tangent to the orbit at P. What singles out the Kepler
motion in either the negative or the positive energy regimes is the following result.

Theorem 2. When P travels along a Kepler orbit with E 0¹ under the Kepler central
potentialV r k r( ) = - , and the point I ¢ moves while lying on the circle (whose centre is O
and whose radius is k E∣ ∣), then the point I stays at a fixed position.

To check that I is indeed a constant of motion for any non-zero energy E requires a
computation which exactly mimic the one performed in the elliptic case. Now for both elliptic
and hyperbolic orbits, the relation between the constant vector I which appears naturally in
this approach and the standard Laplace-Runge-Lenz vector A is EI A= .

The reflection with respect to the line lP is an Euclidean isometry and therefore,
PI PI∣ ∣ ∣ ∣= ¢ , while PO and PI¢ are on the same line by construction, but in the present E 0>
case there is a slight difference with the previous case: the segment PO is fully contained in
PI¢, instead of being two adjacent disjoint segments, so that along a positive energy orbit,
OI PI PO PI PO∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣¢ = ¢ - = - is a constant length, more precisely equal to the radius
a k E2 ∣ ∣= of the circle ; in this case the quantity which is constant along the Kepler orbit is
not the sum but the difference of the distances from a generic point on the orbit P to the two
fixed points O and I, and that condition is one of the classical geometric definitions of a
hyperbola. We have obtained:

Corollary 2 (Kepler first law for elliptic and hyperbolic orbits). An E 0¹ Kepler orbit is
either an ellipse or a branch of a hyperbola, with a focus at the origin O and major axis
a k E2 ∣ ∣= . The ‘other’ focus I is inside the circle  of radius a2 for E 0< and outside 
for E 0> .

Proposition 2. As P moves along an E 0¹ Kepler orbit, the Euclidean length I I∣ ∣¢ is
proportional to the modulus of the linear momentum p at P:

II
L

E
p

b

L
p

2
. 8

2
∣ ∣

∣ ∣
( )¢ = =

Here b refers to minor axis length of the conic. The proof is identical to that of the case
E 0< with very minor changes: for instance OM and IN lie on different sides to the tangent,
so here with IM ON,I O≔ ≔r r we have bI O

2r r = - (b is the hyperbola minor semiaxis
length) independently of the choice of the tangent (or of the point P).

The Laplace–Runge–Lenz vector A is a vector at O which points towards the periastron,
with modulus A k e= (e being the eccentricity). This is so for all the signs of the energy
(recall e0 1< < for negative energy or e 1> for positive energy). If now we translate this to
the new constant I A E= , we have to discuss the two different generic situations according
as E 0< or E 0> .

– In the E 0< case, as E k a2( )= - , the vector I points towards the apoastron, and its
modulus is ke k a ae f2 2 2( ) = = , so this computation confirms the result stated earlier:
the tip of I lies at the ellipse ‘empty’ focus which lie inside  as e 1< .
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– In the hyperbolic case, as E k a2( )= , the vector I points towards the periastron, and its
modulus is again given by ke k a ae f2 2 2( ) = = , so as stated before the tip of I lies at
the hyperbola ‘empty’ focus, which, as e 1> , lies outside the circle .

Hence, in all cases, the constant vector I points from the origin to the empty focus (and of
course, for the parabolic orbits, the modulus of I goes to infinity). The essential role the circle
 plays in this construction is not to be the boundary of the energetically allowed region
(which for orbits with E 0> would be the whole space) but instead to be a director circle I
for the conic. We can sum up the results.

Theorem 3 (Circular character of the Kepler hodograph [1]). The hodograph  of any
Kepler motion is a circle in ‘momentum space’, centred at the point LA* and radius k/L.

We give a proof within the vHH line of argument. When E 0¹ , the constancy of the
vector

k

E r

L

E E
I

r p
A

1*
=

-
-

-
=

implies

L

k

L r L

k

L r
p

A r
p p

A r
and .( )* * *

* *
- = + = - = +

When P (i.e., r) moves along the Kepler orbit, this is the equation of a circle in the p space,
with centre and radius as stated.

The ‘offset’ in momentum space between the centre of  and the origin point p 0= is
A L k e L∣ ∣* = and for this reason the vector A* is called the ‘eccentricity vector’, because

the centre is offset from the origin by a fraction e of the hodograph radius. The linear
momentum space origin O p 0º = is thus inside  for E 0< and outside  for E 0;> in
the latter case the actual hodograph is not the complete circle but only the arc of  lying in
the region Ep 22 > : in a hyperbolic motion the modulus of the momentum is always larger
than the modulus of the linear momentum when the particle is ‘at infinity’.

This important result follows from the geometric construction, and the proof underlines
the close connection between constancy of A and circular character of the hodographs.

The standard proof, dating back to Hamilton (see e.g. [25]) derives this property from a
differential equation obtained from Newton laws by changing the time parameter t to the polar
angle f. We have shown that even this step can be dispensed with, as in the vHH approach
this circular character of hodographs follows from the fact that I is actually a constant of
motion. Actually, this result requires one to use Newton’s equations of motion, so the result
does not come from nothing; the point to be stressed is that we must use directly Newton’s
equations, but we can completely bypass solving them in any form.

3.5. Parabolic orbits

The E=0 parabolic case may be reached as a limit E 0 from negative or from positive E
values. In both situations,  tends to a circle with centre at O and infinite radius. Thus the
original vHH construction degenerates for E=0 unless a suitable modification is done which
allows one to deal with this limit in a regular way. One can make a natural choice for this
radius so that in the parabolic case we get also a working construction (this is described e.g.,
in the Derbes paper [2]; we will not discuss here this question any longer).
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As the energy E itself disappears from the hodograph equation (which depends only on A
and L), the result whose proof has been given for E 0¹ remains also valid for parabolic
orbits. In the E=0 parabolic case the hodograph passes through the origin.

4. Streamlining the geometric construction

Now we propose a variant of the vHH construction which at the end will simplify it. This
reformulation turns out to be equivalent to the previous one for the Euclidean Kepler problem.
But this reformulation has some additional interest, because it allows a direct extension for the
‘curved’ Kepler problem in a configuration space of constant curvature, either a sphere or a
hyperbolic plane [8, 10, 26].

The conics obtained as orbits have not just one pair of matching ‘director circle–focus
point’ but actually two pairs. Further to the director circle I º associated to the focus I
(which is the only director circle considered up to now), there is also another director circle

O , ‘matching’ the focus O and such that the conic is also the set of points equidistant from

O and O. O can be obtained from I by a central reflection with respect to the conic centre,
and thus O is a circle centred at I and with radius a k E2 ∣ ∣= . In the figures where both
director circles are displayed, the circle O is dashed.

Once we know that the generic E 0¹ Kepler orbits are ellipses or hyperbolas, the
previously described construction can be extended by considering the central reflection with
respect to the centre of the conic. This maps the director circle O onto I . The image of II¢
under this central reflection is OO, where O is the second intersection point of the line OO¢
with O . As a consequence of this relation, we may state:

Theorem 4. When P travels along a E 0¹ Kepler orbit under the Kepler central potential
V r k r( ) = - , then the point O lies on the director circle O (whose centre is I), and the
Euclidean length OO∣ ∣ is proportional to the modulus p of the linear momentum p:

Figure 4. The hodograph for elliptic E 0< and hyperbolic E 0> Kepler orbits.
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This result is displayed in figures 5 and 6, where II¢ is shown in magenta and its image
OO under the central reflection, in red. Seen as affine vectors, II OO¢ = -  and
IO OI = - ¢. The orbit is in dark grey, the director circles in red and dashed red, and the
hodograph and the momentum vector are in blue. In all cases II¢ and OO are related by a
central reflection with respect to the conic centre and their equal lengths are proportional to
the modulus of the linear momentum p. II¢ is orthogonal to the tangent line lP while OO is
perpendicular to the linear momentum vector p.

Figure 5. The ’complete’ constructions for elliptic E 0<  Kepler orbits.

Figure 6. The ’complete’ constructions for hyperbolic E 0> Kepler orbits.
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4.1. Relation with the hodograph

The next interesting question is to describe the relation between the hodograph and the orbit.
Starting from the circular character of the hodograph, we need a construction which applied to
the hodograph (whose circular nature is appealing) would allow us to recover the orbit. We
mentioned how Feynman did this in a rather descriptive and informal way. But now, using the
setting provided by the vHH construction, we can describe precisely what Feynman did with
full detail through a sequence of three transformations:

(1) a rotation by 2p- around the origin O,
(2) a homothety around the origin with a scale factor L E( )- and finally
(3) a translation by a vector I.

This sequence of transformations can be shown to apply the hodograph to the director
circle  and the linear momentum vector p to the vector II¢.

We can see that the reformulation of the previous section, which related E 0¹ Kepler
motions along the orbit with those of an auxiliary pointO on the director circle O , allows us
to describe this relationship in a simpler way. The important elements in this construction are
the rotation by a quarter of a turn, as used by Feynman [16] (but note the opposite sign), and
then a homothety; the ‘translation’ step appearing in the Feynman lecture is no longer
required, and the two remaining (and now commuting) steps are enough to relate the
hodograph to the director circle and then to the orbit.

Theorem 5 (Relation of Kepler hodograph with the configuration space orbit). The
sequence of the two following transformations

– rotation by 2p+ around the origin O,
– homotethy around the origin with a scale factor L E( )- ,

applies the hodograph to the director circle O and the linear momentum vector p on
the vector OO. The Kepler orbit corresponding to the hodograph  is the envelope of the
perpendicular bisectors of the vectors OO¢ when O¢ moves along the director circle O . Or,
alternatively, the Kepler orbit is the locus of points in configuration space which are
equidistant from the origin O and from the director circle O .

Before giving the proof, it is worth insisting that the vHH and the Feynman approaches
allowed us to describe the configuration space orbit as the envelope of a family of lines, which
were the bisectors of the segments II¢, as the point I ¢ moves along the director circle I º .
But the new reformulation, while keeping a similar property (the configuration space orbit is
the envelope of the family of the bisectors of the segments OO¢, as the point O¢ moves along
the director circle O ) allows us a more direct description of the configuration space orbit: it is
the set of points in configuration space which are equidistant from the fixed point O (the
centre of forces) and from the fixed circle O .

The proposition follows by direct computation: for any vector w in momentum plane, the
two steps make the transformations:

L

E
w w w. 10⟼ ⟼ ( )* *

-
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Under the composition of the two steps, a generic point on the hodograph p goes to

L

E E

k

E r
OOp p p

A r
. 11⟼ ⟼

∣ ∣
( )* *

-
= - º ¢

Notice that OO is automatically perpendicular to p; the hodograph centre LA* goes to

L L E
A A A

1 1 1
, 12⟼ ⟼ ( )* -

which means that under the two steps the hodograph becomes the director circle O , with
radius k E∣ ∣ and centre at I. The origin of the linear momentum space, p 0= , stays fixed.

This is depicted in figures 7 and 8, where the director circle I and all their associate
elements have been removed because they are not actually relevant for this streamlined
construction. The orbit itself is in dark grey, the director circle O in dashed red, and the
hodograph and the linear momentum vector are in blue. The relation between the director

Figure 7. The ’minimal’ constructions for elliptic E 0< Kepler orbits.

Figure 8. The ’minimal’ constructions for hyperbolic E 0> Kepler orbits.
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circle O and the hodograph, by a rotation of 2p and a scaling with factor L E( )- is clearly
displayed; the sign of this scaling factor depends on the sign of the energy.

This sequence of transformations can be shown to apply the hodograph to the director
circle  and the momentum p to the vector II¢. We now see that the reformulation of the
previous section, which related E 0¹ Kepler motions along the orbit with those of auxiliary
points O on the director circle O , allows us to describe this relationship in an even simpler
way. The ‘translation’ step of the Feynman lecture is no longer required, and the two
remaining (and now commuting) steps are enough to relate the hodograph to the director
circle and then to the orbit. The relevant elements in this construction are the rotation by a
quarter of a turn, as used by Feynman [16], and then a homothety.

The translation (iii) in the Feynman relation among hodograph and orbit only serves to
map the director circle O onto I , and thus it is unnecessary. The ‘correct’ relation among
both director circles, swaping O for I and OO for II¢ is not actually a translation, but a
central reflection with respect to the ellipse or hyperbola centre. As this can be suitably
decomposed as a product of a central reflection with respect to O and a translation with vector
OI, this is the reason for the opposite signs at stage (i) of theorem 5, as compared with the sign
of the rotation angle 2p- in the stage (i) of the Feynman lecture.

5. A comment on the Kepler problem on curved spaces

The idea that the Kepler problem (and also the harmonic oscillator) can be correctly defined
on constant curvature spaces appears in a book of Riemannian geometry of 1905 by Lieb-
mann [27]; but it was Higgs [28] who studied this system in detail in 1979 (the study of Higgs
was limited to a spherical geometry but his approach can be extended, introducing the
appropriate changes, to the hyperbolic space). Since then several authors have studied the
Kepler problem on curved spaces and have analysed the existence of dynamical symmetries
leading to constants of motion that can be considered as the appropriate generalisations of the
Euclidean Laplace–Runge–Lenz vector. In addition, it has also been proved, by introducing a
modified version of the change u r1= , the existence of a curved version of the well known
Binet equation (see [10] and references therein).

At this point it seems natural to ask whether the Kepler problem on curved spaces (of a
constant curvature) can be analysed by the use of an approach similar to the one presented in
previous sections (that is, without integral calculus or differential equations).

At first sight, the answer seems to be negative. The hodograph (defined starting from the
velocity vectors) seems to involve an implicit transport of the velocity vector at each point of
the orbit to a common origin O. In a flat configuration space, parallel transport is uniquely
defined, no matter of which path is followed, and this makes irrelevant the question about
‘where are these vectors applied’, either at each point on the orbit P or in a common origin O.
Thus, to try to extend a ‘velocity based hodograph approach’ to a constant curvature con-
figuration space might seem pointless, because the result of this transport would depend on
the path followed, and hence this ’velocity based hodograph’ itself seems to be not well
defined. This is of course true.

But the point to be stressed is that the true hodograph should be based in the momenta p
rather than in the velocity. Indeed the parallel transport is an inessential element in the
construction which is only required if one starts with the velocity and not with the Noether
momenta P, as one should. In the construction presented in the previous paragraphs, the most
important vector is p, which is a vector at O (see figures 2, 3, 4) and coincides with the
Noether moment. As the Euclidean parallel transport is path independent, this vector at O
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coincides with the parallel transported of v along any path joining P to O. But in a space of a
constant curvature, while the result of some unqualified parallel transport of the velocity
vector to O would be undefined, the components of Noether momenta P are still well defined,
and they are, like the components of the the other (conserved) Noether momentum L, a vector
at O. Nevertheless if in a constant curvature space everything is written in terms of the
associated momenta (which are naturally vectors in an auxiliary space), it turns out that both
theorems 4 and 5 have a direct extension to this case.

Henceforth, the construction we have here described allows a quite direct extension to the
case of constant curvature configuration space. This will be discussed elsewhere.

6. Final comments

The Kepler problem is studied in all books of classical mechanics and is solved by making
use of integral calculus and differential equations (e.g., the Binet equation). Nevertheless the
Newton approach presented in the Principia was mainly related with the classical language of
Euclidean geometry. This property (that it can be solved by the use of a purely geometric
approach) is a specific property of the Kepler problem that distinguish it from all the other
problems with central forces. This simplicity is a consequence of the existence of an addi-
tional constant of motion which is specifically Keplerian: the Laplace–Runge–Lenz vector. In
fact, the circular character of the Kepler hodograph, discovered and studied by Hamilton, is
just a consequence of the existence of this additional integral of motion.

In the first part of this paper we have reviewed and compared two geometric approaches
to the Kepler problem, which were originally devised for only dealing with elliptic orbits.
They are due to Feynman and to van Haandel–Eckman. Both fall into the broad class of
‘hodograph approaches’ but the vHH one somehow reverses the usual logic in a way which
avoids the recourse to any differential equation, so making this approach accessible to a wider
audience. In particular, the vHH approach leads in a natural and purely algebraic way to the
specifically Keplerian constant of motion, the Laplace–Runge–Lenz vector.

Then taking this as starting point, we identify the important geometric role of some
circles (director circles) entering into these constructions. First, we show that both approaches
can be suitably extended to cover, not only bounded elliptic orbits, but also open hyperbolic
ones. And second, by making use of the properties of these director circles, the full analysis is
streamlined, so that the final ’minimal’ description of the relationship of the hodograph with
the true orbit in configuration space is neater than in the previous ones.

The conic nature of the orbit follows from this approach in a purely algebraic way, and
this applies both to elliptic and hyperbolic orbits. In summary, this can be highly suitable for
beginner students, as the Newton laws are simply used directly, but no explicit solving of any
differential equation is required.
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