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Novel bound states are obtained for manifolds with singular potentials. These singu-

lar potentials require proper boundary conditions across boundaries. The number of
bound states matches nicely with what we would expect for black holes. Also they serve

to model membrane mechanism for the black hole horizons in simpler contexts. The

singular potentials can also mimic expanding boundaries elegantly, thereby obtaining
appropriately tuned radiation rates.
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1. Introduction

W. Pauli1 remarked the boundaries were the creation of the devil. Bekenstein’s

area law2,3 for the entropy of black hole prescribes that the microscopic states live

close to the horizon and the number of such states grow rapidly with area. One can

proceed at least in the case of large black holes without the detailed requirements of

quantum geometry to study quantum black holes. Such attempts have been made

earlier by ’t Hooft through the brick wall model,4 and Bekenstein and Mukhanov.5

The entropy is understood in some context by entanglement of those bound states

inside the horizon which are inaccessible to asymptotic observer with the outside.6,7

In this paper, we elaborate an earlier proposal8 by one of us that the existence

of bound states in the black hole geometries follows from the study of self-adjoint

extensions of the Laplacian near the horizon. Near horizon geometry of black holes

present a singular potential to the particles and can be studied through quantum

mechanics with special boundary conditions. Not only they lead to localised states
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on the boundary their number also scales with area. This in statistical mechanics or

in quantum field theory (QFT) context translates as an area law for the entropy.9

Similar is the case of von Neumann entropy when we trace over unobserved bound

states for a distant observer. The quantum physics on manifolds with boundaries

introduces novel features. They appear in varied situations like Casimir effect,10–13

quantum Hall effect, topological insulators14,15 or quantum gravity contexts like

black hole, or de Sitter spacetime with cosmological horizon.16,17 Many of the novel

features stem from studying correct boundary conditions which are physically rele-

vant as well mathematically correct to make the Hamiltonian a self-adjoint operator

in properly extended domains in the Hilbert space of L2 functions.

The garden variety boundary conditions are Dirichlet and Neumann for which

either the function or the normal derivative vanishes. However, as shown for the

Laplacian a more general class of boundary condition is possible, a particular exam-

ple being Robin boundary condition. Here the function and the normal are related

on the boundary (ψ + κ∂ψ)|∂M = 0. Dirichlet and Neumann are extreme limits of

the Robin boundary condition. But more importantly it introduces a fundamen-

tal length κ into the theory.18,19 Such a parameter will emerge from the coarse

grained structure of the underlying spacetime or crystalline lattice. Typically it can

be related to Planck length in a semiclassical gravity context.

But the boundaries are obtained in reality through singular potentials or point

interactions in spacetime and such potentials are also subjected to self-adjointness

conditions on unbounded operators.20–22 The well-known potential of this kind in

one dimension is the δ(x) which introduces discontinuity in the derivative of the

wave functions. A more general potential of the same type is the δ′(x) potential

which has the new feature of introducing discontinuities in the wave function itself.

In spite of such discontinuities, the Hamiltonian remains self-adjoint and the quan-

tum theory describes well-defined unitary evolution. This approach allows study

of quantum fields over bounded regions in terms of interesting and meaningful

questions that can be answered. One can sacrifice the self-adjointness with special

boundary conditions like purely incoming waves leading to quasi-normal modes

(QNMs) which are also linked to ringing modes of stellar objects including black

holes.23

We will consider quantum theory with point interactions of the type which is

a combination of δ and δ′ potentials. Such a combination in addition to being

more general, is also necessitated for several reasons. They arise naturally when we

consider self-adjoint extensions of Dirac operator with singular δ potential.24 But

for us it brings new features like what we anticipate from membrane paradigm16,17

for black holes through a new parameter. Our constructions can easily be extended

to curved backgrounds too.

Introduction of singular distributions as potentials also help in introducing

time-dependent boundaries and associated radiation. We will study in this com-

munication in Sec. 2, a model Schrödinger equation in R2 with singular point inter-

action potentials aδ(r − R) + 2bδ′(r − R). We consider in Sec. 2.1, the scattering
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states and in Sec. 2.2, the bound states. In Sec. 2.3, we explain the extension to

three dimensions. We also remark about BTZ black hole in this context. In Sec. 3,

we consider moving boundaries through singular potentials and explain how this

program can be carried out.25

2. The Model

The general study of point interactions of the free Hamiltonian in one dimension

H = − ~2

2m
d2

dx2 is due to Kurasov26,27 and uses von Neumann’s theory of symmetric

unbounded operators with identical deficiency indices.20 The general analysis of self-

adjointness of Laplacian in higher-dimensional manifolds with boundaries is more

complex due to infinite deficiency indices. But it is possible to relate them directly

to boundary conditions of functions and normal derivatives on the boundaries.21,22

In cases like ours, the presence of isometries simplifies the problem considerably

and provide exact solutions.18

Consider a Schrödinger Hamiltonian equation in R2 for stationary states with

a singular potential along a circle of radius X:[
− ~2

2m
∆ρ + aδ(ρ−X) + bδ′(ρ−X)

]
Ψ(ρ, θ) = EΨ(ρ, θ) . (1)

In order to work with dimensionless quantities, let us introduce new variables and

parameters.

ρ =
~
mc

r , X =
~
mc

R , w0 =
2a

~c
, w1 =

mb

~2
, λ =

2E

mc2
, (2)

such that (1) becomes with ϕ(r) = Ψ(r, θ)

−∆rϕ(r) + w0δ(r −R)ϕ(r) + 2w1δ
′(r −R)ϕ(r) = λϕ(r) . (3)

This new parametrization corresponds to lengths being measured in the units of

Compton wavelength of the particle. The origin of w0 is related to the underlying

background geometry and is independent of “m”. On the other hand w1 is related

to the mass m.

The crucial question is to find the domain of wave functions ϕ(r) that makes H0

self-adjoint. As these functions and their derivatives have a discontinuity at r = R,

we have to define the products of the form δ(r − R)ϕ(r) and δ′(r − R)ϕ(r) in (1).

The form for these products are given as

δ(r −R)ϕ(r) =
ϕ(R+, θ) + ϕ(R−, θ)

2
δ(r −R) ,

δ′(r −R)ϕ(r) =
ϕ(R+, θ) + ϕ(R−, θ)

2
δ′(r −R)

− ϕ′(R+, θ) + ϕ′(R−, θ)

2
δ(r −R) ,

(4)
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where f(R+, θ) and f(R−, θ) are the right and left limits of the function f(r) as

r → R, respectively. The problem is separable and can be reduced to a 1D radial

problem with a central potential. In order to obtain a self-adjoint extension of the

Hamiltonian, we have to find a domain on which this extension acts, namely given

by a space of square integrable functions satisfying matching conditions at the point

R. The radial functions in the domain of the Hamiltonian H are functions in the

Sobolev space W 2
2 (R/{S2(R)}) such that at r = R satisfy the following matching

conditions given by an SL(2, R) matrix:28

ϕ(R+)

ϕ′(R+)

 =


1 + w1

1− w1
0

w0

1− w2
1

1− w1

1 + w1


(
ϕ(R−)

ϕ′(R−)

)
. (5)

Note that in the case of w1 being zero it goes to known discontinuities in normal

derivatives.24

2.1. Scattering states

For scattering theory, we solve Schrödinger equation with plane waves and positive

energy λ = k2. For each angular momentum n we obtain the following Schrödinger

1D problem for ϕ(r, θ) = R(r)einθ:

d2R
dr2

+
1

r

dR
dr

+ (w0δ(r −R) + 2w1δ
′(r −R))R−

(
λ+

n2

r2

)
R = 0 , (6)

with λ = +k2 and suitable boundary conditions. The general scattering solution is

given by

R(r) =

Jn(kr) , r < R ,

A(k, n)Jn(kr) +B(k, n)Yn(kr) , r > R ,
(7)

where Jn and Yn are the Bessel functions and A(k, n) and B(k, n) constants to be

determined through matching boundary conditions.

B(k, n) = Jn(x)(4kw1RJn−1(x)− Jn(x)(4w1n+ w0R)) ,

A(k, n) = Jn(x)(k(w1 + 1)2RYn−1(x)− Yn(x)(4w1L+ w0R))

− k(w1 − 1)2RJn−1(x)Yn(x) ,

where we have defined x = kR. This complicated looking expression can be checked

to coincide with expected results for hard sphere (w1 = −1). Note that when w1 = 1,

the exterior side of the Disc D2 is seen by the quantum particle as Robin boundary

condition while the inside face is Dirichlet. On the other hand, for w1 = −1 this is

the other way round. The phase shifts are given by tan(δn) = −B(k, n)/A(k, n)29

where A, B are given above.
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Fig. 1. Bound states E(w1).

2.2. Bound states

The Schrödinger equation for the bound states is Eq. (6) with λ = −κ2 < 0. The

solutions in the regions r < R and r > R are the modified Bessel functions of

the first and second kinds: R(r) = cIn(κr) and dKn(κr). We match the boundary

conditions at r = R using Eq. (5). We rewrite: α = 1+ω1

1−ω1
, β = 2ω0

1−w2
1
. We get (with

x =
√
|λ|R = κR)

x

(
α
K ′n(x)

Kn(x)
− α−1 I

′
n(x)

In(x)

)
= β̄ , (8)

where β̄ = βR. We can simplify the above equation using Bessel function identities

to get

−x
(
αKn−1

Kn
+
α−1In−1

In

)
− n(α− α−1) = β̄ . (9)

Now we can look for a maximum value of n = nm. It is easy to work out. This gives

nm =

⌊
− β̄

α+ α−1

⌋
, (10)

where bqc denotes the integer part of q. Hence the maximum number of bound states

are still proportional to the radius of the circle, but with a renormalised constant
w0

2(1+w2
1)

. For the special case of w1 = 0, we get maximum number nm of bound

states is the nearest integer lower than w̄0, which is same as our earlier result.8,18

For the case when w1 is small when we can drop w2
1 term, we get the number of

bound states is unaltered. This is to be expected since the singular potential can

be written as shifted singular potential: V (r) ≈ w0δ(r −R+ 2w1

w0
).

Energy eigenvalues are obtained numerically for different values of R, w0 and

w1 by solving Eq. (9). Similarly we can obtain expectation values 〈rn〉 by using

appropriate R(r) in the two regions. The graphs demonstrate the number of bound
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Fig. 2. 〈rn〉/R for large w1. Fig. 3. Expectation 〈rn〉/R for large R.

states as well as energy eigenvalues (Fig. 1). They also explicitly show that they are

localised close to the boundary and deviate externally or internally when we increase

the coefficient of δ′ potential (Figs. 2 and 3). Interestingly, the states are localised

outside (inside) the boundary for positive (negative) w1 respectively. Moreover, w1

can be tuned to reduce the probability of finding the particle inside model black

hole to be small. Also note that higher angular momenta states move closer to

(away from) the boundary for negative (positive) w1. We will remark about this in

the conclusions.

2.3. Three dimensions and BTZ black hole

We present in this section the results for bound states in d = 3. For that we

consider Schrödinger equation on R3 with a singular potential along a sphere:

V (r) = w0δ(r −R) + 2w1δ
′(r −R). The required Schrödinger equation in spherical

polar coordinates has solutions ϕ(r, θ, φ) = R(r)Ylm(θ, φ) where Ylm are spherical

harmonics solving angular part of the equations. The radial part of the equation is

d2R
dr2

+
2

r

dR
dr
− l(l + 1)R

r2
= λR . (11)

The solutions in the regions r < R and r > R are modified spherical Bessel func-

tions: R(r) = c
I
l+1

2
(
√
λr)

√
r

and d
K

l+1
2

(
√
λr)

√
r

. Again matching the boundary conditions

at r = R and using Eq. (5), Eq. (9) gets modified to

−x

(
αKl− 1

2

Kl+ 1
2

+
α−1Il− 1

2

Il+ 1
2

)
− (l + 1)(α− α−1) = β̄ . (12)

The maximum angular momentum allowed lmax = β̄+α
α+α−1 . Each angular momen-

tum l has degeneracy of 2l+1 states. Hence the number of states up to lmax ∝ 2l2max

we get the number of bound states ∝ R2.
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We will briefly mention the toy model of black hole in 3D, BTZ black hole.30,31

For simplicity we consider BTZ black hole metric with angular momentum J = 0.

The metric is given by

ds2 = −
(
r2

l2
−M

)
dt2 +

(
r2

l2
−M

)−1

dr2 + r2 dφ2 . (13)

Here, cosmological constant 1
l2 and M is the mass of the black hole and horizon is at

r = r+ =
√
Ml. The solution of the scalar field in the presence of this metric along

with singular potentials δ(r−r+) and δ′(r−r+) can be written as: e−iωt+ imφR(r).

Defining z =
r2−r2+
r2 , F(z) = ziα(1− z)−βR(z), one gets the hypergeometric differ-

ential equation for F(z)

z(1− z)d
2F
dz2

+ (c− (1 + a+ b))
dF
dz

+ abF = 0 , (14)

where a, b, c, α and β are constants defined terms of r+, l, m and ω. This hyper-

geometric equation has singularities at z = 0, 1. To obtain the bound states one

should match the boundary conditions at z = 0 for the hypergeometric functions

F(a, b, c, z).

3. Expanding Boundaries

In this brief section, we explore the singular potentials for introduction of time

dependence in boundaries. The simplest case is in one dimension with x > 0: If the

boundary is moving with uniform velocity x = vt it can be studied as a quantum

mechanical problem with delta function potential δ(x− vt). The solution is easy to

get as ψ(x, t) ∝ e−|κ(x−vt)|e−i(κ
2−v2/2)t−vx.

We can easily extend this analysis to a boundary with an acceleration “g” with

a singular potential δ(x − gt2

2 ). This is unitarily equivalent to the static singular

potential and an additional gravitational potential mgx. This can be seen by using

the unitary transformations: φ(x, t) = UV ψ(x, t) where V (x, t) = e−i
g2t2px

2 and

U(x, t) = eigxt+i
g2t3

6 . The solutions for linear gravitational potential are given by

Airy functions.

Similarly, we can consider R2−D. If the disc is expanding it is better to convert

the question to a delta function potential which is expanding.

Berry and Klein32 showed the time-dependent

H(r, p, l(t)) =
p2

2m
+

1

l2
V (r/l) , (15)

can be simplified if the time dependence is of the form l(t) =
√
at2 + 2bt+ c. It

becomes in a comoving frame

H(ρ, π, k) =
π2

2m
+ V (ρ) +

1

2
kρ2 , (16)
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where ρ = r/l and k = m(ac − b2) which is conserved in ρ, τ ≡
∫ t dt

l2(t) . The

expanding disc in R2 and ball in R3 will come under this class of Hamiltonians.

Consider the Hamiltonian18 in R2

H = −∆ + gδ(r − efR(0)) . (17)

By rescaling r we get the potential as efδ(r−R(0)). The time dependence is shifted

to the strength of potential. This is analogous to changing the Hamiltonian to a

time-dependent one by keeping the domain of the wave functions in the Hilbert

space same for all times.

Applying Berry–Klein transformation32 we can convert the problem in a co-

moving frame to a time independent potential with a delta function along a ring.

This will also correspond to generalised pantographic change of Anza et al.33 This

has important consequences for the rate of emission or in expanding statistical

ensembles with new boundary conditions.

4. Conclusions

In this paper, we have approached the question of quantum black hole through

straightforward analysis of quantum theory on manifolds with boundaries or equiv-

alently singular potentials. While our study is in Euclidean space it can be applied

to curved background also since point interactions are local. This can parallel the

recent approach to understand black holes through conventional notions of particles

and forces treating black holes just like atoms, molecules (see ’t Hooft34). These

require analysis through self-adjoint extensions of operator domains. Our analysis

surprisingly brings out the importance of both δ and δ′ potentials. There are a

number bound states localised close to the boundary and is proportional to the

area. As pointed out in the Introduction,9 they relate to entropy in QFT. Hence

the existence of correct behaviour of localised bound states on the boundary is a

strong requirement for correct entropy. We also point out the role of δ′ potential in

extending the support of the bound states to enhanced length scales to allow for

the possibility of quantum effects beyond Planck length.35

Following ’t Hooft4 one can consider scalar fields to vanish at a small distance

away from the horizon. That is φ(R+h) = 0. This is for small h equivalent to Robin

boundary condition since by expanding around R we get φ(R) + hφ′(R) ≈ 0. This

boundary condition can also be obtained from δ function potential. Our potential

is a generalisation of the potential which adds another parameter which allows the

quantum effects to persist beyond the length parameter h. In Kruskal coordinates,

one avoids the singularity of the metric at the horizon, but contain two copies of the

spacetime. This is mimicked in our case of singular potentials connecting the two

regions with suitable boundary conditions to maintain unitarity. Our generalised

brick wall mechanism can be studied to obtain all the thermodynamic properties.

Detailed analysis using these boundary conditions for the thermodynamic behaviour

1650210-8
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will be presented elsewhere with Rindler, BTZ and Schwarzschild background (un-

der preparation).

These states are interestingly connected through spectrum generating algebra

which is a sub-algebra of the Schrödinger group. By tuning the strength of the δ′

potential, one can control the tunneling through the boundary. Lastly, if we scale

the radius to ∞ keeping number of bound states fixed (w0

w2
1
→ 0) the states become

zero energy bound states and localised at the boundary and play significant role for

asymptotic symmetries. The connections to QNM which arise from purely incoming

modes is also intriguing. In addition, the singular potentials can be time-dependent

to enable the analysis of expanding boundaries and associated radiation output.

This study leads us to new avenues of exploration to situations where boundaries

and boundary conditions are involved.25

Acknowledgments

T.R.G. and J.M.M.C. thank Manuel Asorey, University of Zaragoza. T.R.G. ac-

knowledges discussions with Rakesh Tibrewala. J.M.M.C acknowledge the funding

by Spanish Government (project MTM2014-57129-C2-1-P) and discussions with

L. M. Nieto, M. Gadella and K. Kirsten.

References

1. B. Jamtveit and P. Meakin, Growth, Dissolution and Pattern Formation in
Geosystems (Kluwer, 2010).

2. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
3. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
4. G. ’t Hooft, Nucl. Phys. B 256, 727 (1985).
5. J. D. Bekenstein and V. F. Mukhanov, Phys. Lett. B 360, 7 (1995).
6. L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, Phys. Rev. D 34, 373 (1986).
7. M. Srednicki, Phys. Rev. Lett. 71, 666 (1993).
8. T. R. Govindarajan, V. Suneeta and S. Vaidya, Nucl. Phys. B 583, 291 (2000).
9. J. Wheeler, It from Bit, Sakharov Memorial Lecture on Physics, Vol. 2, eds. L. Keldysh

and V. Feinberg (Nova, 1992).
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