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Abstract

The achievement of a ‘consensual’ solution in a group decision making problem depends on
experts’ ideas, principles, knowledge, experience, etc. The measurement of consensus has been
widely studied from the point of view of different research areas, and consequently different
consensus measures have been formulated, although a common characteristic of most of them
is that they are driven by the implementation of either distance or similarity functions. In
the present work though, and within the framework of experts’ opinions modelled via recip-
rocal preference relations, a different approach to the measurement of consensus based on the
Pearson correlation coefficient is studied. The new correlation consensus degree measures the
concordance between the intensities of preference for pairs of alternatives as expressed by the
experts. Although a detailed study of the formal properties of the new correlation consensus
degree shows that it verifies important properties that are common either to distance or to
similarity functions between intensities of preferences, it is also proved that it is different to
traditional consensus measures. In order to emphasise novelty, two applications of the proposed
methodology are also included. The first one is used to illustrate the computation process and
discussion of the results, while the second one covers a real life application that makes use of
data from Clinical Decision-Making.

Keywords: Reciprocal preference relations, Consensus measure, Pearson correlation
coefficient, Concordance opinions measure, Correlation consensus degree.

1. Introduction

Consensus reaching is an important component in decision making processes, and indeed it
plays a key role in the resolution process of group decision making problems. One of the most
significant current discussion in consensus research concerns the measurement and achievement
of consensus from both a theoretical and applied points of view. On the one hand, establishing
and characterising different methodologies to measure consensus have been addressed from a
Social Choice perspective [1, 3, 13]. On the other hand, within the Decision Making Theory
framework, modelling group decision making problems in order to reach a higher level of cohe-
siveness has been managed successfully [15, 32, 34, 38, 39, 65]. Outside of these main areas, it
is possible to find other methodologies that use the idea of consensus in different ways to the
aforementioned ones, with [41, 46] being representative examples of these methodologies.
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Despite the productive research on this area, consensus measurement is still an open-ended
research question because the methodology to use in each case is an essential component of
the problem. Up to now most studies on consensus measurement have focused on the use of
distance/similarity function based measures and association measures, respectively. Among the
distance functions used, and worth highlighting, are the Kemeny, Mahalanobis, Mannhattan,
Jacard, Dice and Cosine distance functions [1, 4, 6, 17, 19, 29, 31]. Association measures are
less widely used than distance functions but it is also possible to find the use of some of them
such as the Kendall’s coefficient, the Goodman-Kruskal’s index and the Spearman’s coefficient
[18, 24, 35, 44, 58].

In this paper we focus on establishing a new consensus measure following the tradition of
association measures. Our proposal is based on the original statistical correlation concept, the
Pearson correlation coefficient. Therefore, this new measure is an alternative to the use of
the aforementioned approaches. The Pearson correlation coefficient plays an important role
in Statistics and Data Analysis and it is extensively used as a measure of the degree of linear
dependence between two variables. It is easy to interpret as well as invariant to certain changes
in the variables [52, 55, 57]. Specifically, in this paper the notion of dependence among elements
from correlation coefficient as a measure of the cohesiveness between opinions is adopted. This
seems natural because the measurement of consensus resembles the notion of a “measure of
statistical correlation”, in the sense that the maximum value 1 captures the notion of unanim-
ity as a perfect relationship among agents’ preferences (experts’ preferences follow the same
direction), while the minimum value −1 captures the notion of total disagreement (experts’
preferences present a negative relationship). Furthermore, the higher the cohesiveness between
experts’ preferences, the more positive correlated the preferences are. Similarly, the lower the
cohesiveness between experts’ preferences, the more negative correlated the preferences are.

This new consensus measure will be developed within assumptions of experts’ opinions or
preferences being expressed by means of reciprocal preference relations, a framework that is cur-
rently of interest to the research community in decision theory under uncertainty [7, 27, 28, 45].
Under reciprocal preference relations, on the one hand and as it was mentioned above, the
new proposed approach inherits advantages of previous approaches based on traditional dis-
tance/similarity and association measures. On the other hand, maximum consensus tradition-
ally represents the case when experts provide the same preference intensities for each possible
pair of alternatives. This, though, is not the only possible scenario of maximum consensus.
Indeed, the proposal here put forward addresses this issue satisfactorily because maximum
possible cohesiveness or consensus between experts’ opinions does not necessary imply that
all reciprocal preference relations have to coincide, and therefore all experts do not necessary
need to have the same preference intensities in all possible pairs of alternatives. It is sufficient,
though, that experts rank alternatives in the same way. To support all these claims, a set of
properties verified by the new proposed measure of consensus, the correlation consensus de-
gree, are proved. These properties ensure the suitability of the correlation consensus degree.
Furthermore, in order to emphasise novelty, two applications of the proposed methodology are
also included. The first one is used to illustrate the computation process and discussion of the
results, while the second one covers a real life application that makes use of data from Clinical
Decision-Making.

The rest of the paper is organised as follows. Section 2 contains a brief overview of the
different approaches in literature to measure group cohesiveness. The basic notation and pre-
liminaries are presented in Section 3. Section 4 provides the new approach to consensus mea-
surement based on the Pearson correlation coefficient. In Section 5, properties of the new
correlation consensus degree are studied. Section 6 presents two practical applications of the
proposed methodology. Finally, some concluding remarks and future research are presented in
Section 7.
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2. Consensus measurement in the literature

A considerable amount of literature has been published on measuring and reaching consensus
in group decision making problems. Consensus measurement is a prominent and active research
subject in several areas such as Social Choice Theory and Decision Making Theory. A brief
overview of how this issue has been addressed in recent literature from the aforementioned
research areas is provided.

From the Social Choice Theory, the first serious discussions and analysis of consensus mea-
surement from an Arrovian perspective emerged with Bosch’s PhD Thesis [13], where both
absolute and intrinsic measures of consensus were proposed, analysed and axiomatically char-
acterised. From the point of view of considering consensus among a family of voters, McMorris
and Powers [48] characterised consensus rules defined on hierarchies, while Garćıa-Lapresta
and Pérez-Román [29] focused on how to measure consensus using complete preorders on al-
ternatives and introduced a class of consensus measures based on seven well-known distances.
Subsequently, Alcalde-Unzu and Vorstatz in [1] characterised a family of linear and additive
consensus measures, whereas in [2] new ways to measure the similarity of preferences in a
group of individuals were suggested. Alcantud, de Andrés Calle and Cascón [3] studied and
characterised a class of consensus measure, called referenced consensus measure, that permits
to produce a numerical social evaluation from purely ordinal individual information. This
measure has to be specified by means of a voting mechanism and a measure of agreement
between profiles of orderings and individual orderings. Moreover, Alcantud, de Andrés Calle
and Cascón in [5] contributed to the formal and computational analysis of the aforementioned
referenced consensus measure by focusing on two relevant and specific cases: the Borda and
the Copeland rules under a Kemeny-type measure. There are, however, situations where each
member of a population classifies a list of options as either acceptable or non-acceptable; either
agree or disagree, etc., and therefore generating a dichotomous preference structure. Under
this assumption, Alcantud, de Andrés Calle and Cascón [4] proposed the concept of approval
consensus measure and gave axiomatic characterisations of two generic classes of such approval
consensus measures. Alcantud, de Andrés Calle and González-Arteaga [6] introduced the use of
the Mahalanobis distance for the analysis of the cohesiveness of a group of complete preorders
and proved that arbitrary codifications of the preferences are incompatible with their formula-
tion although affine transformations permit to compare profiles on the basis of such proposal.
Finally, it is worth mentioning a distance-based approach to measure the degree of consensus
considering approval information about alternatives as well as the rankings of them suggested
by Erdamar et al. in [25].

From the Decision Making Theory, a considerable amount of contributions have been made
since the 1980’s. As such, it is worth mentioning the first preliminary work on reaching consen-
sus and its measurements carried out by Kacprzyk and Fedrizzi [42], in which the concept of
“degree of consensus” in the sense of expressing the degree to which “most of” the individuals
in a group agree to “almost all of” the options. The point of departure of this paper being that
the experts’ opinions are expressed by fuzzy preference relations. Within this framework of
preference representation, different consensus measurement based on similarity measures have
been put forward by Herrera-Viedma, et al. [37] and Wu and Chiclana [63] for both com-
plete and incomplete information environments. The case when experts’ opinions are expressed
by means of linguistic assessments has been extensively studied and it is worth mentioning
the works of Ben-Arieh and Chen [12], Cabrerizo, Alonso and Herrera-Viedma [14], Garćıa-
Lapresta, Pérez-Román [30], Herrera, Herrera-Viedma and Verdegay [36], Herrera-Viedma, et
al. [40], Pérez-Asurmendi and Chiclana [53] and Wu, Chiclana and Herrera-Viedma [65]. Fi-
nally, models to reach consensus where experts assess their preferences using different preference
representation structures (preference orderings, utility functions, multiplicative preference rela-
tions and fuzzy preference relations) have also been studied and proposed by Dong and Zhang
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[23], Fedrizzi et al. [26] and Herrera-Viedma, Herrera and Chiclana [39]. The problem of
measuring and reaching consensus with intuitionistic fuzzy preference relations and triangular
fuzzy complementary preference relations have also been covered in detail by Wu and Chiclana
in [62, 64].

To conclude, Table 1 summarises and classifies the approaches that have been reviewed in
this Section.

Consensus measures in Social Choice Theory

Author(s)/Year Framework Measurement methodology

Bosch [13], 2005 Ordinal Inf.

Based on different distances

McMorris and Powers [48], 2009 Ordinal Inf.
Garćıa-Lapresta and Pérez-Román [29], 2011 Ordinal Inf.
Alcalde and Vorsatz [1], 2013 Ordinal Inf.
Alcantud, de Andrés Calle and Cascón [3] [5], 2013 Ordinal Inf.
Alcantud, de Andrés Calle and Cascón [4], 2013 Dichotomous Inf.
Alcantud, de Andrés Calle and González-Arteaga [6], 2013 Ordinal Inf.
Erdamar, et al. [25], 2014 Ordinal Inf.
Alcalde and Vorsatz [2], 2015 Ordinal Inf.

Consensus measures in Decision Making Theory

Author(s)/Year Framework Measurement methodology

Kacprzyk and Fedrizzi [42], 1988 Fuzzy Inf.

Based on collective solution

Fedrizzi et al. [26], 2010 Fuzzy Inf.
Herrera-Viedma et al. [37], 2007 Incomplete Fuz. Inf.
Herrera, Herrera-Viedma and Verdegay [36], 1996 Linguistic Inf.
Herrera-Viedma et al. [40], 2005 Linguistic Inf.
Cabrerizo, Alonso and Herrera-Viedma [14], 2009 Linguistic Inf.
Wu and Chiclana [62–64], 2014 Incomplete Fuz. and Ling. Inf.
Garćıa-Lapresta, Pérez-Román and Falcó [30], 2015 Linguistic Inf.
Wu, Chiclana and Herrera-Viedma [65], 2015 Incomplete Linguistic Inf.

Herrera-Viedma, Herrera and Chiclana [39], 2002 Different Inf.
Based on individual solution

Ben-Arieh and Chen [12], 2006 Linguistic Inf.
Dong and Zhang [23], 2014 Different Inf.

Table 1: Summary table of studies related to consensus measures

3. Preliminaries

This Section briefly presents the main concepts needed to make the paper self-contained,
and as such a short review of the terminology and the concept of fuzzy binary relation are
presented. The interested reader is advice to consult the following [7–9, 27, 28, 45, 50, 60].

Definition 1. Let X be a non empty set. A fuzzy binary relation P on X is a fuzzy subset of
the Cartesian product X ×X characterised by its membership function µP : X ×X −→ [0, 1],
where µP(x1, x2) = pij represents the strength of the relation between x1 and x2.

Henceforth, X is a finite set X = {x1 . . . , xn} (n > 2), whose elements will be referred to
as alternatives. Abusing notation, on occasions alternative xi will be represented simply as i
for convenience.

Definition 2. A reciprocal preference relation on X is a fuzzy binary relation P where
µP(xi, xj) = pij ∈ [0, 1] represents the partial preference intensity of element i over j and
that verifies the following property: pij + pji = 1 ∀xi, xj ∈ X.

In order to realise the meaning of a reciprocal preference relation, we suppose the following
common situation: an expert compares two alternatives xi and xj. In this specific context, the
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expert not only establishes that the alternative xi is preferred to the alternative xj, but also
shows her/his intensity of preference between them by means of the value pij. So, the higher
pij, the higher the preference intensity of alternative xi over alternative xj. Thus, 0 < pij < 0.5
would indicate that xj is preferred to xi. If pij = 0.5 then alternatives xi and xj are equally
preferred. When 0.5 < pij < 1, xi is preferred to xj. Moreover, pij = 0 (resp. pij = 1) indicates
that xj (resp. xi) is absolutely preferred to xi (resp. xj).

Let P be an n × n matrix that contains all the partial intensity degrees of a reciprocal
preference relation on the set X:

P =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

 ,

verifying 0 ≤ pij ≤ 1; pij + pji = 1 for i, j ∈ {1, . . . , n}. The set of all these matrices n × n
is denoted by Pn×n. Here it is also noticed that a reciprocal preference relation can also be
mathematically represented by means of a vector, namely the essential vector of preference
intensities.

Definition 3. The essential vector of preference intensities, VP , of a reciprocal preference

relation P = (pij)n×n ∈ Pn×n is the vector made up with the
n(n− 1)

2
elements above its main

diagonal:
VP =

(
p12, p13, . . . , p1n, p23, . . . , p2n, . . . , p(n−1)n

)
=

=
(
v1, . . . , vr, . . . , vn(n−1)/2

)
.

The reciprocity property of reciprocal preference relations allows the alternative definition of
the essential vector of preference intensities of a reciprocal preference relation
as the vector composed of the preference values below the main diagonal,
VP t = (p21, p31, . . . , pn1, p32, . . . , pn2, . . . , pn (n−1)).

4. A novel measurement of consensus based on the Pearson correlation coefficient

Based on the concept of correlation, specifically the Pearson correlation coefficient, this
section introduces a new consensus measure for group decision making problems under reci-
procal preference relations. First, we recall such a correlation coefficient and its properties as
necessary to define the new correlation consensus degree and associated properties.

4.1. Pearson correlation coefficient

The measurement of the relationship strength among variables is an important issue in
Statistical Analysis, and the Pearson correlation coefficient is a traditional tool used for that
purpose [52, 55].

Definition 4. Given a sample of n pairs of real values {(x1, y1), . . . , (xn, yn)}, the Pearson
correlation coefficient of the two n-dimensional vectors x = (x1, . . . , xn) and y = (y1, . . . , yn),
cor(x,y), is computed as

cor(x,y) =

n∑
i=1

(xi − x)(yi − y)√√√√ n∑
i=1

(xi − x)2

√√√√ n∑
i=1

(yi − y)2
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where x =
1

n

n∑
i=1

xi and y =
1

n

n∑
i=1

yi are the arithmetic means of x and y, respectively.

The standard interpretation of the Pearson correlation coefficient states that positive coef-
ficient values point out a positive tendency relationship between x and y i.e., x and y increase
(decrease) in the same direction. Negative correlation coefficient values point out towards a
reverse direction between x and y. In addition, the nearer the absolute correlation coefficient
value is to 1, the stronger and more linear the tendency is. The Pearson correlation coefficient
verifies the following well-known properties [57]:

1. cor(x,y) ∈ [−1, 1] ∀x,y ∈ Rn.

2. cor(x,y) = cor(y,x) ∀x,y ∈ Rn.

3. cor(x,x) = 1 ∀x ∈ Rn.

4. If cor(x,y) = 1 then there exists a perfect positive linear correlation between x and y, i.e.
∃a ∈ R, b ∈ R+ : y = a · 1 + b · x where 1 = (1, . . . , 1) is a vector of n ones. Respectively,
if cor(x,y) = −1 there exists a perfect negative linear correlation between x and y.

5. Let x′ = a · 1 + b · x and y′ = c · 1 + d · y be two vectors with a, b, c, d ∈ R, b and d non
zero and of equal sign (both positive or both negative). Then, cor(x′,y′) = cor(x,y).

4.2. A new consensus measure: Correlation consensus degree

From the Social Choice Theory perspective, the measurement of the degree of agreement
in a group is associated the range [0, 1], with 0 representing total lack of agreement and 1
unanimous agreement [1, 4, 13]. Also, as aforementioned in Section 1, the measurement of the
degree of cohesiveness in a group has been based on the notion of distance or similarity between
opinions or preferences of the members of such group. In this paper, a new way to measure
the degree of consensus in a group based on the Pearson correlation coefficient, the correlation
consensus degree (CCD), is proposed within the framework of opinions on a set of elements,
alternatives or options being represented by reciprocal preference relations.

A set of agents or experts will be represented by a finite subset E = {1, 2, ...,m} of natural
numbers, m ≥ 2. Assume that the m experts provide their pairwise preferences on a finite set
of n alternatives, n ≥ 3, X = {x1, ..., xn} using fuzzy preference relations {P (1), . . . , P (m)}. As
per Definition 3, the essential vector of preference intensities associated to P (k) will be denoted
by VP (k) .

Definition 5. The correlation consensus degree, CCD, for reciprocal preference relations is a
mapping CCD : Pn×n × Pn×n → [0, 1] that associates a pair of reciprocal preference relations
(P (1), P (2)) the following [0,1]-value:

CCD(P (1), P (2)) =
1

2
(1 + cor(VP (1) , VP (2))) . (1)

Given P (1), P (2) ∈ Pn×n, the elaborated expression of CCD(P (1), P (2)) is

CCD(P (1), P (2)) =
1

2

1 +

n(n−1)/2∑
r=1

(
v(1)r − V P (1)

) (
v(2)r − V P (2)

)
√√√√n(n−1)/2∑

r=1

(
v
(1)
r − V P (1)

)2 √√√√n(n−1)/2∑
r=1

(
v
(2)
r − V P (2)

)2


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where V P (1) =
1

n(n− 1)/2

n(n−1)/2∑
r=1

v(1)r and V P (2) =
1

n(n− 1)/2

n(n−1)/2∑
r=1

v(2)r . 1

Notice that the higher the value of CCD(P (1), P (2)), the more positive correlated the re-
ciprocal preferences of P (1) and P (2) are. The maximum possible value CCD(P (1), P (2)) = 1
implies that cor(VP (1) , VP (2)) = 1 which, contrary to previous consensus measures based on
distance/similarity functions, does not necessarily implies that both reciprocal preference re-
lations coincide. Consequently, CCD could be 1 even in cases when experts provide different
preferences, although positive linearly correlated. On the other hand, the lower the value of
CCD(P (1), P (2)), the more negative correlated the reciprocal preference intensities are, with
CCD(P (1), P (2)) = 0 representing the case when preferences are negative linearly correlated.
The following proposition reflects these limit cases:

Proposition 1. Let P (1), P (2) ∈ Pn×n be two reciprocal preference relation matrices. Then
CCD(P (1), P (2)) = 1 (resp. CCD(P (1), P (2)) = 0) if and only if ∃a ∈ R, b > 0 (resp. b < 0) such

that: p
(2)
ij = a+ b · p(1)ij ∀i < j; p

(2)
ij = (1− a− b) + b · p(1)ij ∀i > j.

Proof. Using Equation (1), we have that CCD(P (1), P (2)) = 1 if and only if cor(VP (1) , VP (2)) = 1.
Property 4 of the Pearson correlation coefficient (Section 4.1) implies that ∃a ∈ R, b ∈ R+ such
that VP (2) = a · 1 + b · VP (1) , being 1 = (1, . . . , 1) a vector of ones with suitable dimension, in
this cases n(n− 1)/2, i.e.:

p
(2)
ij = a+ b · p(1)ij ∀i < j.

When j < i, reciprocity of preferences means that

p
(2)
ij = 1− p(2)ji = 1− (a+ b · p(1)ji ) = 1− (a+ b · (1− p(1)ij )) = (1− a− b) + b · p(1)ij .

The proof for the case when CCD(P (1), P (2)) = 0 is obtained accordingly.

Notice that if the set of alternatives is small, the experts can easily rank the alternatives
and the possibility that the experts do it in a similar way (or opposite way) is high. Then,
in this case the absolute value of the correlation coefficient tend to be close to 1. Meanwhile,
when the set of alternatives is large, the experts may find it difficult to rank them (see [49])
and the possibility that the experts rank the alternatives in a similar way (or opposite way) is
low. Then, in this case it is easy that the absolute value of the correlation coefficient becomes
small.

The following proposition provides the sufficient condition for the correlation consensus
degree to coincide for different pairs of reciprocal preference relations.

Proposition 2. Let P (1), P (2) ∈ Pn×n be reciprocal preference relation matrices such that
CCD(P (1), P (2)) = 1, then

CCD(P, P (1)) = CCD(P, P (2)) ∀P ∈ Pn×n.

Proof. By Proposition 1, ∃a ∈ R and b > 0 such that VP (2) = a · 1 + b · VP (1) . Applying
Property 5 of the Pearson correlation coefficient (see Subsection 4.1) we have that
cor(VP , VP (1)) = cor(VP , VP (2)) ∀P ∈ Pn×n and by Definition 5 it is equivalent to
CCD(P, P (1)) = CCD(P, P (2)) ∀P ∈ Pn×n.

The measurement of the degree of agreement among the preferences expressed by two or
more experts can be captured by using a summary measure like the mean of all possible corre-
lation consensus degrees between all different pairs of experts’ reciprocal preference relations.

1V P (i) summarizes the general level of uncertainty of the expert i on the set of alternatives.
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The use of aggregation functions to merge inputs into a single output has been extensively
analysed in literature [11, 28, 33, 43]. In the Decision Making context, the use of aggregation
functions to derive the degree of agreement among a group of experts has been justified (see for
example [11, 29, 31, 43, 47]). Recall that the main aim of considering aggregation functions is
to produce an overall output that can be considered representative of the aggregated values by
incorporating desirable properties. The arithmetic mean has been widely investigated and it is
considered the most common central tendency aggregation function. All these considerations
are used to motivate the definition of the new correlation group consensus measure, CD, within
a reciprocal preference relation framework.

Definition 6. Let E be a group of m experts with associated fuzzy preference relation relations
P (1), . . . , , P (m) ∈ Pn×n on a set of alternatives X. The group consensus degree among the set
of experts is

CD(E) =
2

m(m− 1)

m−1∑
k=1

m∑
l=k+1

CCD(P (k), P (l)).

4.3. Consistency under maximum correlation consensus degree

Given a reciprocal preference relation on a set of alternatives, the concept of non-dominance
degree introduced by Orlovsky [51] has been extensively used to rank the alternatives [10, 23,
38, 61, 63, 65, 66]. In the following, and in order to improve the understanding of the proposed
correlation consensus degree, the consistency of the correlation consensus degree with Orlovsky’s
non-dominance degree is proved. Specifically, it is proved that when two reciprocal preference
relations have a CCD equal to 1 then their Orlovsky’s non-dominance degree orderings of the
set of alternatives coincide. First, the concept of non-dominance degree is provided.

Given a reciprocal preference relation on a finite set of alternatives X, P = (pij)n×n ∈ Pn×n,
when pji − pij > 0 then alternative xi is dominated by alternative xj. Formally, it can be
stated that alternative xi is dominated by alternative xj at degree d(xi, xj) = max{pji−pij, 0}.
Thus, the value 1 − d(xi, xj) = 1 − max{pji − pij, 0} represents the degree of non-dominance
of alternative xi by alternative xj. The degree up to which xi is not dominated by any of the
elements of X is known as the non-dominance degree of alternative xi. This is summarised in
the following definition.

Definition 7. Let P = (pij)n×n ∈ Pn×n be a reciprocal preference relation on X. The non-
dominance degree is a mapping µND : X −→ [0, 1] such that

µND(xi) = min
j: j 6=i
{1− d(xi, xj)} ,

where d(xi, xj) = max{pji − pij, 0}.

The aforementioned non-dominance degree can be used to provide a total ordering of alter-
natives by means of the following rule:

xi � xj ⇔ µND(xi) ≥ µND(xj).

Notice that pij − pji = −(pji − pij), and therefore to compute d(xj, xi) = max{pji − pij, 0}
when j > i, we use d(xj, xi) = max {−(pji − pij), 0}. Now we are in disposition of introduce
the following result.

Proposition 3. Let P (1), P (2) ∈ Pn×n be two reciprocal preference relation matrices such that
CCD(P (1), P (2)) = 1 and 2a+ b = 1. The non-dominance based orderings of the set of alterna-
tives derived from both reciprocal preference relation matrices are identical.
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Proof. Let P (1), P (2) ∈ Pn×n such that CCD(P (1), P (2)) = 1. By Proposition 1, ∃a ∈ R and

b > 0 such that p
(2)
ij = a+b·p(1)ij ∀i < j and p

(2)
ij = 1−p(2)ji = 1−(a+b·p(1)ji ) = 1−(a+b·(1−p(1)ij )) =

(1− a− b) + b · p(1)ij ∀i < j.

1. Notice that:

(a) If i < j then

p
(2)
ji − p

(2)
ij = [(1− a− b) + b · p(1)ji ]− [a+ b · p(1)ij ] = (1− 2a− b) + b · (p(1)ji − p

(1)
ij ) =

= b · (p(1)ji − p
(1)
ij ).

(b) If i > j then

p
(2)
ji − p

(2)
ij = [a+ b · p(1)ji ]− [(1− a− b) + b · p(1)ij ] = −(1− 2a− b) + b · (p(1)ji − p

(1)
ij ) =

= b · (p(1)ij − p
(1)
ji ).

Thus:
∀i, j : p

(2)
ji − p

(2)
ij = b · (p(1)ij − p

(1)
ji ).

2. Let us denote by µND(1)(xi) and µND(2)(xi) the non-dominance choice degree associated
to alternative xi obtained from P (1) and P (2), respectively. It is:

µND(2)(xi) = min
xj∈X

{
1−max{p(2)ji − p

(2)
ij , 0}

}
.

Because b > 0 we have that p
(2)
ji − p

(2)
ij and p

(1)
ij − p

(1)
ji are both negative, both positive or

both equal to zero. Therefore, it is:

max{p(2)ji − p
(2)
ij , 0} = max{b · (p(1)ij − p

(1)
ji ), 0} = b ·max{p(1)ji − p

(1)
ij , 0}. (2)

Let l be such that

µND(1)(xi) = min
j: j 6=i

{
1−max{p(1)ji − p

(1)
ij , 0}

}
= 1−max{p(1)li − p

(1)
il , 0}.

The following inequalities yield:

1−max{p(1)li − p
(1)
il , 0} ≤ 1−max{p(1)ji − p

(1)
ij , 0} for j = 1, . . . , n.

They can be re-written equivalently as

max{p(1)li − p
(1)
il , 0} ≥ max{p(1)ji − p

(1)
ij , 0} for j = 1, . . . , n.

Consequently,

1− b ·max{p(1)li − p
(1)
il , 0} ≤ 1− b ·max{p(1)ji − p

(1)
ij , 0} for j = 1, . . . , n.

Relation (2) implies that

µND(2)(xi) = min
j: j 6=i

{
1−max{p(2)ji − p

(2)
ij , 0}

}
= 1−max{p(2)li − p

(2)
il , 0}. (3)

9



3. Finally, let us assume now that

µND(1)(xi) ≤ µND(1)(xk).

Then there exist l and s such that

1−max{p(1)li − p
(1)
il , 0} = µND(1)(xi) ≤ µND(1)(xk) = 1−max{p(1)sk − p

(1)
sk , 0}

The following inequality derives from it:

1− b ·max{p(1)li − p
(1)
il , 0} ≤ 1− b ·max{p(1)sk − p

(1)
sk , 0}.

Applying again relation (2) and also expression (3), it can be concluded that

µND(1)(xi) ≤ µND(1)(xk).

5. Formal properties of the new consensus measure

As shown in Subsection 4.2, given a set of m experts E, the following correlation consensus
degree matrix can be computed

CCD = (CCDij)

with CCDij = CCD(P (i), P (j)). The following important properties are verified:

Reflexivity : CCDii = 1 ∀i.
The proof is immediate from the properties of the Pearson correlation coefficient. This
property rules out that the correlation consensus degree is a distance function, which will
be pointed out at the end of this section.

Selfconsensus: CCDij ≤ CCDii ∀i, j.
In other words, the correlation consensus degree between one expert and herself/himself
is not lower than the correlation consensus degree with another expert. This is obvious
from Definition 5 and the reflexibity property above.

Reciprocity : It was mentioned in Definition 3 that the essential vector of preference intensities
of a reciprocal preference relation may also be defined as the vector with elements the
preference values below the main diagonal of the reciprocal preference relation. Denoting
by CCDt

ij the correlation consensus degree between the reciprocal preference relations

P (i) and P (j) using essential vector of preference intensities below their main diagonal,
respectively, we have that:

CCDt
ij = CCDij for i, j = 1, . . . ,m.

Indeed, because P (i) and P (j) are reciprocal then we have that VP (i)t = 1 − VP (i) and
VP (j) = 1−VP (j)t , respectively. Applying Property 4 of the Pearson correlation coefficient
(Subsection 4.1), it is true that cor(VP (i)t , VP (j)t) = cor(VP (i) , VP (j)), and consequently it
is CCDt

ij = CCDij.

Symmetry : CCDij = CCDji for i, j = 1, . . . , n. The proof is straightforward from the symme-
try property of the Pearson correlation coefficient.
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Transitivity under the maximum : If CCDij = 1 and CCDjk = 1 then CCDik = 1.

In other words, when an expert has maximum correlation consensus degree with two
different experts, then these two experts have also maximum correlation consensus degree.
Indeed, from Proposition 1 we have that VP (j) = a · 1 + b · VP (i) for some a ∈ R and
b > 0 and VP (k) = a′ · 1 + b′ · VP (j) for some a′ ∈ R and b′ > 0. Consequently, it is:
VP (k) = a′ ·1+b′ · (a ·1+b ·VP (i)) = a′ ·1+b′a ·1+b′b ·VP (i) , that is, VP (k) = a′′ ·1+b′′ ·VP (i)

and because b′′ > 0 it is CCDik = 1.

Reversibility: The complementary reciprocal preference relation of a given reciprocal prefe-
rence relation P , P , is defined as follows: P = (1)n×n − P . It is:

CCD(P, P ) = 0.

It is obvious that VP = 1− VP and therefore applying Proposition 1 it is CCD(P, P ) = 0.

The correlation consensus degree, CCD, is neither a distance function, d, nor a similarity
function, s. Firstly, CCD does not verify the property returning a zero value when an element
is compared against itself, i.e. it does not verify d(x, x) = 0 [22]. Indeed, reflexivity property
implies that CCD(P, P ) = 1 rather than CCD(P, P ) = 0. Secondly, a requirement for a similarity
function [16, 22] is that the similarity between two objects takes value 1 if and only if the two
objects are equal, i.e. s(x, y) = 1 iff x = y. This is not the case for CCD as two reciprocal
preference relations do not necessarily need to coincide to have maximum correlation consensus
degree, as the illustrative example 6.1 shows next.

6. Practical applications and discussion

In this Section we show the flexibility and applicability of our proposal. After discussing
the basis of the measure we exemplify its use by means of two examples. The first one is an
illustrative example that shows the various steps in our procedure and the interpretation of the
results. The second one is a real example based on patients’ health preferences.

6.1. An illustrative example

In this illustrative example we establish the following problem. We consider a set X of
four alternatives X = {x1, x2, x3, x4} and a set of four agents or experts E = {1, 2, 3, 4}, who
provide the following reciprocal preference relations on X:

P (1) =


0.50 0.10 0.20 0.30
0.90 0.50 0.35 0.40
0.80 0.65 0.50 0.45
0.70 0.60 0.65 0.50

 P (2) =


0.50 0.15 0.25 0.35
0.85 0.50 0.40 0.45
0.75 0.60 0.50 0.50
0.65 0.55 0.50 0.50



P (3) =


0.50 0.75 0.55 0.35
0.25 0.50 0.25 0.15
0.45 0.75 0.50 0.05
0.65 0.80 0.95 0.50

 P (4) =


0.50 0.40 0.20 0.60
0.60 0.50 0.40 0.70
0.80 0.60 0.50 0.80
0.40 0.30 0.10 0.50


Once experts’ preference matrices have been described we proceed to the computations.

Selection of essential vectors of intensities of preferences. For P (1) the elements above
of the main diagonal are:

P (1) =


0.50 0.10 0.20 0.30

0.90 0.50 0.35 0.40

0.80 0.65 0.50 0.45
0.70 0.60 0.65 0.50


11



Thus, it is
VP (1) = (0.10, 0.20, 0.30, 0.35, 0.40, 0.45).

Similarly, the following essential vectors of intensities of preferences obtained:

VP (2) = (0.15, 0.25, 0.35, 0.40, 0.45, 0.50),
VP (3) = (0.75, 0.55, 0.35, 0.25, 0.15, 0.05),
VP (4) = (0.40, 0.20, 0.60, 0.40, 0.70, 0.80).

Computation of the correlation consensus degree matrix. The correlation consensus
degree of all different pairs of essential vectors are computed For example, for correlation
coefficient between VP (1) and VP (2) is:

cor(VP (1) , VP (2)) =
0.085√

0.085 ·
√

0.085
= 1.

Using Equation (1), the correlation consensus degree between P (1) and P (2) would be
CCD(P (1), P (2)) = 1.

The correlation consensus degree matrix in this case is:

CCD =


1 1 0 0.879
1 1 0 0.897
0 0 1 0.121

0.879 0.897 0.121 1


Computation of the group consensus degree. Finally, the average of all correlation con-

sensus degrees is computed to derive the group consensus degree:

CD(E) =
2

12
· (1 + 0 + 0.879 + 0 + 0.879 + 0.121) =

2

12
· 2.879 = 0.480

On discussion, it is worth pointing out the following interesting issues arising from the given
example:

• There is one case when the correlation consensus degree between two experts is maximum,
i.e is equal to 1, which happens for the pair of experts e1 and e2 (CCD(P (1), P (2)) = 1).
As previously mentioned and this example illustrates, this does not necessarily imply
that both experts have the same preferences on all the possible pairs of alternatives, but
that their preferences are positive linearly correlated as the top left scatter plot of the
essential vectors VP (2) versus VP (1) in Figure 1 shows. Indeed, the higher the value of an
element in VP (1) , the higher the corresponding element value of VP (2) . So, when one of the
expert e1 or e2 increases her/his preference valuations, the other expert does the same
and in a perfect linear way. Hence, there exists a maximum concordance between these
two experts’ reciprocal preference relations.

• Regarding experts e1 and e3, it is noted that cor(VP (1) , VP (3)) = −1 and consequently
CCD(P (1), P (3)) = 0. Thus, the disagreement is maximum. Indeed, when one expert
increases his/her preferences the other expert does the opposite and in a perfect linear
way. This is reflected in the top right scatter plot of the essential vectors VP (3) versus
VP (1) in Figure 1.
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Figure 1: Plots of essential vectors of intensities of preferences (Subsection 6.1). Top left: case where
CCD(P (1), P (2)) = 1. Top right: case where CCD(P (1), P (3)) = 0. On the bottom plots, cases where CCD
takes other non-extreme values.
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• This example also shows a particular instance of Proposition 1 and Proposition 2 where
CCD(P (1), P (2)) = 1. Indeed, Proposition 1 states that it is VP (2) = a · 1 + b · VP (1) ,
which in this case results in a = 0.05, b = 1. The effect is that every essential pairwise
intensity of preference is shifted to a new value using a constant amount. The preference
relationship between one alternative and the rest of alternatives is essentially the same
both experts, and consequently there is no real difference in the degree of agreement
between for both experts when considering the set of alternatives as a whole. Indeed,
it is worth remarking that the difference of preferences for both experts: p

(1)
13 − p

(1)
12 =

0.20−0.10 = 0.10 and p
(2)
13 −p

(2)
12 = 0.25−0.15 = 0.10; p

(1)
34 −p

(1)
23 = 0.45−0.40 = 0.05 and

p
(2)
34 − p

(2)
23 = 0.50− 0.45 = 0.05, etc. are the same for all pairs of alternatives compared.

Thus, although the fuzzy relations P (1) and P (2) are not coincident, they are in the same
tendency vein and they would lead to the same total ordering of the alternatives when the
non-dominace degree is applied. As for Proposition 2, it is also true that the correlation
consensus degrees between expert e1 and experts e3 and e4 are the same as the correlation
consensus degrees between expert e2 and experts e3 and e4, respectively.

6.2. A real application: Concordance among patients’ preferences

Recent developments in Clinical Decision-Making have led to a new interest on patient
autonomy and their active involvement in decision making. Based on empirical evidences it has
been tested that patients’ choices related to take responsibility about treatment decisions differ
among patients. Among others, age, sex, and type of clinical problem have been described
as factors that can influence patients’ choice. Due to these fats, it could be interesting to
understand better patients’ preferences in Clinical decision-making and the factors that could
influence them (see e.g., De las Cuevas, Peñate and de Rivera [20], Robison and Thomson
[54], Rodriguez et al. [56] and Tang et al. [59] among others). Most studies about patients’
decision making preferences have been carried out by means of the use of the Control Preference
Scale (CPS) introduced by Degner [21]. The CPS scale has been validated like an instrument
clinically relevant to measure patients’ preference roles in health care decision making. This
scale gathers the level of control that patients prefer to have in their own medical decisions
by selecting one of five possible alternatives, given in Table 2, when questioned “What is the
statement that best describe your preferred role in decision making?”.

Alternatives Description
x1 I prefer to make the final selection about which treatment I receive

x2 I prefer to make the final selection of my treatment after seriously
considering my doctor’s opinion

x3 I prefer that my doctor and I share responsibility for deciding which
treatment is best for me

x4 I prefer that my doctor makes the final decision about which treat-
ment will be used, but seriously considers my opinion

x5 I prefer to leave all decisions regarding my treatment to my doctor

Table 2: Control Preference Scale (CPS) [21]

In order to put in practice our proposal for measuring the cohesiveness among a group of
agents or experts, the field experiment carried out by De las Cuevas, Peñate and Rivera in
[20] was considered. In this study, the authors examined the concordance among psychiatric
patients’ preferences by means of a statistical approach based on a sample of 507 patients from
the Community Mental Health Services on Tenerife Island, Spain. Patients were diagnosed by

14



the psychiatrists using the International Classification of Diseases and the CPS scale was used
to gather patients’ preferences. For our study, and to facilitate the process and the calculations,
12 patients were considered with 4 of them were diagnosed with schizophrenia, another 4 with
bipolar disorder and other 4 with obsessive compulsive disorder (OCD). Each patient filled out
a questionnaire based on the CPS scale adapted to our proposal (see Figure 2). Patients had
to mark their degree of preference between pairs of options described in the CPS scale (Table
2 above), which are considered as the alternatives in our preference framework.

Figure 2: Questionnaire based on CPS.

Once patients’ preferences were gathered (Table 3) we proceed to the apply computation
process described in the previous illustrative example 6.1. Table 4 shows the correlation con-
sensus degree between all pairs of patients (only the values i ≤ j are shown). Finally, the
global consensus degree among all studied patients, CD(patients), which measures the coher-
ence among patients’ preferences was:

CD(patients) = 0.518

Taking into account the meaning of this measure as previously discussed, we can deduce that
the low degree of coherence among all patients’ preferences indicates heterogeneity among them.
This fact could well respond to the combination of all patients’ preferences without considering
their diagnosed disorder. Indeed, when the consensus degree is computed within each collective
of patients, i.e. by distinguishing patients according to their disorder, the following values are
obtained:

• For patients suffering from schizophrenia: CD(schizophrenia) = 0.963

• For patients suffering from bipolar disorder: CD(bipolar) = 0.961

• For patients suffering from obsessive compulsive disorder: CD(OCD) = 0.985

Figure 3 to Fig. 5 highlight the coherence among preferences inside the same collective of
patients, while Fig. 6 to Fig. 8 highlight the disagreement among patients’ preferences diagnosed
with different disorders. As it was suspected, the coherence among the patients’ preferences for
each disorder separately is very high. This fact could add to the consideration of the type of
disorder as a factor to be taken into account in Clinical Decision-Making.
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Intensities of preferences
Diagnoses Patient p12 p13 p14 p15 p23 p24 p25 p34 p35 p45

Schizophrenia

1 0.3 0.2 0.1 0.1 0.4 0.3 0.1 0.5 0.1 0.1
2 0.4 0.3 0.2 0.1 0.5 0.4 0.1 0.5 0.1 0.1
3 0.2 0.2 0.2 0.1 0.3 0.2 0.1 0.3 0.1 0.1
4 0.6 1.0 0.8 0.7 0.9 0.6 0.7 0.3 0.4 0.6

Bipolar disorder

5 0.6 1.0 0.8 0.7 0.9 0.6 0.7 0.3 0.4 0.6
6 0.8 1.0 0.9 0.8 1.0 0.8 0.8 0.2 0.3 0.5
7 0.1 0.1 0.1 0.5 0.5 0.5 0.9 0.5 0.9 0.9
8 0.6 1.0 0.9 0.7 0.9 0.6 0.8 0.3 0.2 0.6

OCD

9 0.1 0.1 0.1 0.5 0.5 0.5 0.9 0.5 0.9 0.9
10 0.2 0.1 0.3 0.5 0.5 0.5 0.8 0.5 0.7 0.9
11 0.1 0.2 0.2 0.5 0.6 0.4 0.9 0.5 0.8 0.9
12 0.1 0.2 0.2 0.5 0.5 0.4 0.8 0.5 0.9 0.9

Table 3: Patients’ essential vector of preference intensities. OCD: Obsessive compulsive disorder. pij is the
intensity of preference of alternative i versus alternative j.

P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10) P (11) P (12)

P (1) 1.00 0.98 0.95 0.97 0.39 0.30 0.43 0.41 0.36 0.35 0.36 0.33

P (2) 1.00 0.97 0.99 0.50 0.39 0.55 0.51 0.26 0.26 0.26 0.23

P (3) 1.00 0.93 0.54 0.42 0.56 0.56 0.24 0.25 0.26 0.23

P (4) 1.00 0.47 0.39 0.53 0.48 0.32 0.30 0.30 0.28

P (5) 1.00 0.95 0.96 0.98 0.28 0.28 0.34 0.29

P (6) 1.00 0.96 0.95 0.33 0.35 0.38 0.33

P (7) 1.00 0.96 0.23 0.25 0.28 0.22

P (8) 1.00 0.26 0.30 0.33 0.27

P (9) 1.00 0.98 0.99 0.99

P (10) 1.00 0.98 0.97

P (11) 1.00 0.99

P (12) 1.00

Table 4: Correlation consensus degree (CCD) between pairs of patients.

7. Concluding remarks and future research

Research in the area of consensus measurement has advanced mainly in Social Choice Theory
and Theory of Decision Making. In this work, a new consensus measure for reciprocal preference
relations based on the classical definition of the Pearson correlation coefficient is studied. This
new measure, the correlation consensus degree, pursues the measurement of the concordance
between the intensities of pairwise preference values given by experts, decision makers or agents.
This work open a new avenue to measure consensus. The correlation consensus degree between
two reciprocal preference relations is neither a distance function nor a similarity function unlike
the traditional consensus measures studied before. Nevertheless, the given correlation consensus
degree verifies important properties that are common either to distances and/or similarities
measures as well as additional properties that have been described in this work and that are
different to traditional consensus measures properties. The novelty of the proposed correlation
consensus measure as well as its application is shown with two examples. The first of the
examples is used to illustrate the computation process and discussion of the results, while the
second example covers a real life Clinical Decision-Making application. Both examples show
the versatility and the applicability of the proposed measurement of consensus to a variety of
real situations.
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A future line of enquiry is the investigation of flexible consensus reaching processes based
on the new correlation consensus degree. These processes would allow to produce a consensus
solution by an iterative feedback mechanism accommodated to the this specific consensus mea-
surement. We expect to conduct further investigations of these issues and report our findings
in the future.
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Figure 3: Plots of essential vectors of intensities of preferences corresponding to patients diagnosed Schizophrenia
(Subsection 6.2) and the best adjusted line.
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Figure 4: Scatterplots of essential vectors of intensities of preferences corresponding to patients diagnosed
Bipolar disorder (subsection 6.2) and the best adjusted line.
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Figure 5: Plots of essential vectors of intensities of preferences corresponding to patients diagnosed OCD
(Subsection 6.2) and the best adjusted line.

23



●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

VP(1)

p12

p13

p14

p15

p23

p24

p25

p34

p35

p45

V
P

(5
)

CCD= 0.39

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

VP(2)

p12

p13

p14

p15

p23

p24

p25

p34

p35

p45V
P

(6
)

CCD= 0.39

Figure 6: Plots of essential vectors of intensities of preferences corresponding to patients diagnosed Schizophrenia
versus Bipolar disorder (Subsection 6.2) and the best adjusted line.
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Figure 7: Plots of essential vectors of intensities of preferences corresponding to patients diagnosed Schizophrenia
versus OCD (Subsection 6.2) and the best adjusted line.
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Figure 8: Plots of essential vectors of intensities of preferences corresponding to patients diagnosed Bipolar
disorder versus OCD (Subsection 6.2) and the best adjusted line.
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