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Abstract

We consider measuring the degree of homogeneity for preference-approval profiles
which include the approval information for the alternatives as well as the rankings
of them. A distance-based approach is followed to measure the disagreement for
any given two preference-approvals. Under the condition that a proper metric is
used, we propose a measure of consensus which is robust to some extensions of the
ordinal framework. This paper also shows that there exists a limit for increasing the
homogeneity level in a group of individuals by simply replicating their preference-
approvals.
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1 Introduction

In collective decision making problems, the notion of consensus has been ana-
lyzed and interpreted in miscellaneous ways. The dictionary meaning of con-
sensus is a general (unanimous) agreement within a group of people or agents.
However, most of the decision making procedures (e.g. elections, voting by
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sanver@bilgi.edu.tr (M. Remzi Sanver).

Preprint submitted to Elsevier Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Documental de la Universidad de Valladolid

https://core.ac.uk/display/211106058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


committees, competitions) deal with a more realistic situation of partial agree-
ment for the candidates or alternatives. Interpreting a partial agreement of in-
dividuals as a consensus up to some degree, the immediate question is how to
measure that degree of agreement (Kacprzyk [1], Tastle and Wierman [2,3]).
Related questions include how to use this information to reach a final decision
(Kemeny [4], Beliakov, Calvo and James [5]) and which procedures can be
used to increase the level of consensus (Susskind and McKearnan [6], Strauss
and Layton [7], Van Den Belt [8]). For an overview of different attributions
of consensus, one can also see Mart́ınez-Panero [9]. In this paper, consensus
is interpreted as the degree of homogeneity within a set of individuals and
consensus measure is a scale for the similarity of preferences.

It is important to note that the degree of consensus depends on the context
of preferences. Similarity of preferences when individuals submit linear orders
over alternatives can be very different from the homogeneity of a profile com-
posed of weak orders. In the related literature, Kendall and Gibbons [10] con-
sidered measuring concordance among only two linear orders. Then, Hays [11]
and Alcalde-Unzu and Vorsatz [12] generalized the idea to any number of
linear orders. Similarly, Bosch [13] proposed a measure of consensus for any
given profile of linear orders by a mapping which assigns a number between 0
and 1 according to the degree of homogeneity in that profile. Satisfying some
desirable axioms such as unanimity (for every subgroup of agents, the highest
degree of consensus is reached only if all agents have the same orderings),
anonymity (permutation of agents does not lead to a change in the degree
of consensus) and neutrality (permutation of alternatives does not lead to a
change in the degree of consensus) Bosch’s model has been investigated further
for various domains. Garćıa-Lapresta and Pérez-Román [14] extended the con-
sensus measure of Bosch [13] for weak orders and introduced new properties
such as maximum dissension (in each subset of two agents, the minimum con-
sensus is reached only if agents have linear orders which are inverses of each
other) and reciprocity (replacing each order in the profile by their inverses
does not lead to a change in the degree of consensus). Moreover, Garćıa-
Lapresta and Pérez-Román [15] further extended the framework of Bosch [13]
for weighted Kemeny distances, thereby dealing with the possibility of weight-
ing discrepancies among weak orders.

Some recent models for collective decision making problems (e.g. approval
voting [16], majority judgment [17], range voting [18]) use non-standard for-
mulations of inputs in aggregation of preferences. These models assume that
individuals adopt a common language when they evaluate alternatives. There-
fore, instead of aggregating ordinal rankings these models deal with aggregat-
ing labels such as approved and disapproved. Brams and Sanver [19] suggest
a framework that can be considered as a compromise between standard and
non-standard models by combining the information of ranking and approval in
a hybrid system which they call preference-approval. Individuals are assumed

2



to submit a weak ordering on a given set of alternatives and a cut-off line to
distinguish acceptable and unacceptable alternatives for them. An alternative
which is ranked above (resp. below) the line is qualified as acceptable (resp.
unacceptable). Preference-approval model extends the ordinal framework in a
minimal way by incorporating two qualifications good and bad with a common
meaning among individuals. It is worthwhile to note that the status-quo point
in bargaining problems, the threshold level in public good problems and the al-
ternative of being self-matched in matching problems can be interpreted as the
cut-off lines when these models are translated to the preference-approvals. In
that sense, preference-approval model proposes a common framework in which
non-standard aggregation procedures and the standard ones in the literature
can be analyzed by a natural way.

The problem of how to measure consensus for the extended ordinal frame-
works is an open question in the literature. In this contribution, by follow-
ing a distance-based approach we focus on measuring the degree of disagree-
ment/agreement in preference-approval profiles. Since distance functions widely
used in the literature are defined on various domains of ordinal rankings, the
first difficulty is to derive a proper metric for extensions of weak orders. We
propose a way of measuring distance separately for the two types of informa-
tional content in preference-approvals and then we derive a metric defined by
a convex combination of these distances. Technically speaking, for any given
pair of preference-approvals, first we use Kemeny metric [4] for weak orders
to measure the distance regarding the ranking information. Secondly, we use
Hamming metric [20] to measure the concordance with respect to the accept-
able or unacceptable alternatives. Proper aggregation of these two types of
distances depends on the context of the particular problem. Noting that the
choice of a particular convex combination of Kemeny and Hamming distances
reflects the emphasis on the disagreement regarding approval or ranking, we
briefly discuss various ways for aggregation. Then, we propose a measure of
consensus (based on Garćıa-Lapresta and Pérez-Román [14]) which is shown
to be robust to some extensions of the ordinal framework under the condition
that a proper metric is used. By investigating the properties of the consensus
measure for preference-approvals, we also show a surprising result that the de-
gree of homogeneity in a group of individuals cannot be increased by simply
replicating their preferences in this model.

This paper is organized as follows. In section 2, the basic notation and notions
are introduced. Section 3 is devoted to the definitions and some properties of
consensus measures in general. Section 4 includes our proposal for measuring
consensus in preference-approval context and some results. Finally, in section
5 concluding remarks are made including some possible further extensions of
the model.
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2 Preliminaries

Consider a set of agents V = {v1, . . . , vm} with m ≥ 2 confronting a finite
set of alternatives X = {x1, . . . , xn} where n ≥ 2. We assume that each
agent ranks the alternatives in X by means of a weak order and additionally,
evaluates each alternative as either acceptable or unacceptable by partitioning
the alternative set into approved (good) and disapproved (bad) alternatives.
These two types of information exhibit the following consistency: given two
alternatives x and y, if x is approved and y is disapproved, then x is ranked
above y.

Technically speaking, by a weak order (or complete preorder) on X we mean
a complete 1 and transitive binary relation on X.

On the other hand, a linear order on X is an antisymmetric weak order on
X. We write W (X) for the set of weak orders on X and L(X) for the set of
linear orders on X.

Given R ∈ W (X), we let ≻ and ∼ stand for the asymmetric and the sym-
metric parts of R, respectively, i.e.,

xi ≻ xj ⇔ not (xj Rxi)

xi ∼ xj ⇔
(
xiRxj and xj Rxi

)
.

By P(V ) we denote the power set of V , i.e., I ∈ P(V ) ⇔ I ⊆ V ; and by
P2(V ) we mean the collection of subsets of V with at least two elements.
That is, P2(V ) = {I ∈ P(V ) | #I ≥ 2}, where #I is the cardinality of I.
Analogously, we write P(X) for the power set of X.

Finally, we denote a = (a1, . . . , an) for the vectors in Rn.

2.1 Preference-approval structures

For any given set of X of alternatives, we define preference-approvals by par-
titioning X into A the set of acceptable (or good) alternatives and U = X \A
the set of unacceptable (or bad) alternatives, where A and U can be empty
sets.

1 By completeness, for any given xi and xj in X, either xi is at least as good as xj
or xj is at least as good as xi. Hence, any complete binary relation is also reflexive.
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Definition 1 A preference-approval on X is a pair (R,A) ∈ W (X)×P(X)
satisfying the following condition

∀xi, xj ∈ X
(
(xiRxj and xj ∈ A) ⇒ xi ∈ A

)
.

Note that if xiRxj and xi ∈ U , then we have xj ∈ U .

We denote R(X) for the set of preference-approvals on X.

Given R ∈ W (X), we let R−1 be the inverse of R such that

xi R
−1 xj ⇔ xj Rxi,

for all xi, xj ∈ X. Similarly, given a preference-approval (R,A) ∈ R(X), we
write (R,A)−1 = (R−1, X \A) for the preference-approval which is the inverse
of (R,A).

Example 1 In order to illustrate preference-approval structures, consider the
following example:

x2 x3 x5

x1

x4 x7

x6

where alternatives in the same row are indifferent, alternatives in upper rows
are preferred to those located in lower rows, alternatives above the dash line
are acceptable (good) and those below the dash line are unacceptable (bad).

The inverse of the preference-approval above is the following:

x6

x4 x7

x1

x2 x3 x5

We now introduce a system for codifying each preference-approval structure
(R,A) ∈ R(X) by means of two vectors: pR ∈ Rn that represents the position
of the alternatives, and iA ∈ {0, 1}n that represents acceptable alternatives.

It is worthwhile to note that there does not exist a unique system for codifying
weak orders, since a weak order can be linearized in many different ways. We
propose a codification based on a linearization of the weak order by assigning
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each alternative the average of the positions of the alternatives within the
same equivalence class.

Following Garćıa-Lapresta and Pérez-Román [14], for any given R ∈ W (X)
we assign the position of each alternative xj in R through the mapping
PR : X −→ R defined as

PR(xj) = n−# {xi ∈ X | xj ≻ xi} −
1

2
# {xi ∈ X \ {xj} | xi ∼ xj} ,

where n is the number of alternatives.

The following table illustrates the codification of the preference-approval in
Example 1.

PR(x1) = 7− 3− 1
2
· 0 = 4

PR(x2) = 7− 4− 1
2
· 2 = 2

PR(x3) = 7− 4− 1
2
· 2 = 2

PR(x4) = 7− 1− 1
2
· 1 = 5.5

PR(x5) = 7− 4− 1
2
· 2 = 2

PR(x6) = 7− 0− 1
2
· 0 = 7

PR(x7) = 7− 1− 1
2
· 1 = 5.5

We denote pR = (PR(x1), . . . , PR(xn)) for the position vector of R ∈ W (X).
Note that the codification vector in Example 1 is pR = (4, 2, 2, 5.5, 2, 7, 5.5).

On the other hand, given A ⊆ X, we define IA : X −→ {0, 1} the indicator
function (or characteristic function) of A:

IA(xj) =

 1, if xj ∈ A,

0, if xj ∈ X \ A.

By iA = (IA(x1), . . . , IA(xn)) we denote the indicator vector of A ⊆ X.

Note that the preference-approval in Example 1 will be codified as iA =
(1, 1, 1, 0, 1, 0, 0) since x1, x2, x3, x5 are the accepted alternatives and x4, x6

and x7 are the unaccepted ones.

Given a preference-approval (R,A) , we can completely characterize it by the
(pR , iA ) tuple.
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Remark 1 The condition appearing in Definition 1 can be written as:(
PR(xi) ≥ PR(xj) and IA(xj) = 1

)
⇒ IA(xi) = 1.

2.2 Distances and metrics

Usually, distance and metric are considered as synonymous. However, we fol-
low the approach given by Deza and Deza [21], where distances and metrics
are different concepts.

Definition 2 A distance on a set D ̸= ∅ is a mapping d : D × D −→ R

satisfying the following conditions for all a, b ∈ A:

(1) d(a, b) ≥ 0 (non-negativity),
(2) d(a, b) = d(b, a) (symmetry),
(3) d(a, a) = 0 (reflexivity).

If d satisfies the following additional conditions for all a, b, c ∈ A:

(4) d(a, b) = 0 ⇔ a = b (identity of indiscernibles),
(5) d(a, b) ≤ d(a, c) + d(c, b) (triangle inequality),

then we say that d is a metric.

We now focus on Kemeny and Hamming metrics. Since any preference-approval
has two components, an ordering and a partition on the set of alternatives, cal-
culating the distance between any two preference-approvals requires to meas-
ure distances with respect to these components. We propose using Kemeny
metric for weak orders and Hamming metric for the information regarding
acceptable alternatives.

2.2.1 The Kemeny metric

The Kemeny metric was initially defined on linear orders by Kemeny [4], as
the sum of pairs where the ranking of these pairs are different in the linear
orders. Subsequently, it has been generalized to the framework of weak orders
(see Cook, Kress and Seiford [22] and Eckert and Klamler [23], among others).

Typically, the Kemeny metric on weak orders dK : W (X) × W (X) −→ R

is defined as the cardinality of the symmetric difference between the weak
orders, i.e.,

dK(R1, R2) = #
(
(R1 ∪R2) \ (R1 ∩R2)

)
.

In this paper, having a codification based approach we adopt the definition
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of Kemeny metric proposed by Garćıa-Lapresta and Pérez-Román [14] as the
following:

dK
(
R1, R2

)
=

n∑
i,j=1
i<j

| sgn
(
PR1(xi)− PR1(xj)

)
− sgn

(
PR2(xi)− PR2(xj)

)
| ,

where sgn is the sign function:

sgn (a) =


1, if a > 0 ,

0, if a = 0 ,

−1, if a < 0 .

It is worthwhile to remark that the Kemeny metric is a bounded metric in
W (X). That is, there exists some M > 0 such that dK(R1, R2) ≤ M for
all R1, R2 ∈ W (X). One can immediately check that the maximum distance
between orders with respect to Kemeny metric is (#X)2 −#X.

2.2.2 The Hamming metric

The Hamming metric (Hamming [20]) dH : Rn ×Rn −→ R is defined as 2

dH(a, b) = #{i ∈ {1, . . . , n} | ai ̸= bi}.

We extend the Hamming metric from Rn to P(X) as the mapping
dH : P(X)× P(X) −→ R defined by

dH(A1, A2) = dH(iA1 , iA2).

Note that the Hamming metric formulation above is equivalent to the following
one.

dH(A1, A2) = #
(
(A1 ∪ A2) \ (A1 ∩ A2)

)
.

Clearly, the Hamming metric on P(X) is a bounded metric as well and one
can easily check that the maximum distance between any two subsets of X is
#X.

2 On binary vectors a, b ∈ {0, 1}n, the Hamming metric and the l1-metric (or
Manhattan metric) coincide:

dH(a, b) =
n∑

i=1

|ai − bi|.

.
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2.2.3 Mixing distances and metrics

In what follows, we state that dK and dH , although measuring distances re-
garding different kinds of information separately, cannot be aggregated as a
total distance since dK and dH do not have the same codomains. Therefore,
we first normalize these two metrics to the same codomain [0, 1] via dividing
by their maximum distances and we get dR and dA as distances regarding
orderings and acceptable alternatives, respectively.

Definition 3

(1) The mapping dR : R(X)×R(X) −→ [0, 1] is defined as

dR
(
(R1, A1), (R2, A2)

)
=

dK(R1, R2)

(#X)2 −#X
=

#
(
(R1 ∪R2) \ (R1 ∩R2)

)
(#X)2 −#X

.

(2) The mapping dA : R(X)×R(X) −→ [0, 1] is defined as

dA
(
(R1, A1), (R2, A2)

)
=

dH(A1, A2)

#X
=

#
(
(A1 ∪ A2) \ (A1 ∩ A2)

)
#X

.

Proposition 1

(1) dR is a distance on R(X) and for all (R1, A1), (R2, A2) ∈ R(X) it holds

(a) dR
(
(R1, A1), (R2, A2)

)
= 0 ⇔ R1 = R2.

(b) dR verifies triangle inequality.

(c) dR
(
(R1, A1), (R2, A2)

)
= 1 ⇔ (R1, R2 ∈ L(X) and R2 = R−1

1 ).

(2) dA is a distance on R(X) and for all (R1, A1), (R2, A2) ∈ R(X) it holds

(a) dA
(
(R1, A1), (R2, A2)

)
= 0 ⇔ A1 = A2.

(b) dA verifies triangle inequality.

(c) dA
(
(R1, A1), (R2, A2)

)
= 1 ⇔ A2 = X \ A1.

(3) Neither dR nor dA are metrics on R(X).

Proof: Let (R1, A1), (R2, A2) ∈ R(X).

(1) Since dR is the Kemeny metric normalized by a number, the properties
of non-negativity, symmetry and reflexivity are obvious.
(a) dR

(
(R1, A1), (R2, A2)

)
= 0 ⇔ dK(R1, R2) = 0 ⇔ R1 = R2.

(b) dR inherits from Kemeny metric the property of triangle inequality.
(c) In Garćıa-Lapresta and Pérez-Román [14], it is proven that for the

Kemeny metric, the maximum distance between weak orders is not
reached when one of them is not linear and additionally, the max-
imum distance between linear orders is not reached when they are
not inverses of each other.
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(2) Since dA is the Hamming metric normalized by a number, non-negativity,
symmetry and reflexivity are obvious.
(a) dA

(
(R1, A1), (R2, A2)

)
= 0 ⇔ dH(A1, A2) = 0 ⇔ A1 = A2.

(b) dA inherits the property of triangle inequality from the Hamming
metric .

(c) dA
(
(R1, A1), (R2, A2)

)
= 1 ⇔ (A1∪A2 = X and A1∩A2 = ∅), i.e.,

A2 = X \ A1.

(3) Let (R1, A1), (R2, A2) ∈ R(X) be such that R1 ̸= R2 and A1 ̸= A2.

Then, we have dR
(
(R1, A1), (R1, A2)

)
= dA

(
(R1, A1), (R2, A1)

)
= 0.

Consequently, dR and dA do not verify identity of indiscernibles, hence
they are not metrics.

The following example illustrates the calculation of distances for a given pro-
file.

Example 2 Consider four agents confronting a set of four alternatives X =
{x1, x2, x3, x4} and having the following preference-approvals:

(R1, A1)

x1

x2

x3 x4

(R2, A2)

x2

x1

x3 x4

(R3, A3)

x1

x2

x3 x4

(R4, A4)

x3

x2

x1x4

These preference-approvals are codified as follows:

pR1
= (1, 2, 3.5, 3.5) iA1 = (1, 1, 0, 0)

pR2
= (2, 1, 3.5, 3.5) iA2 = (1, 1, 0, 0)

pR3
= (1, 2, 3.5, 3.5) iA3 = (1, 0, 0, 0)

pR4
= (3.5, 2, 1, 3.5) iA4 = (0, 0, 0, 0)

The following table shows the distances dR and dA between preference-
approvals:
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dR dA

(R1, A1), (R2, A2)
2
12

0

(R1, A1), (R3, A3) 0 3
12

(R1, A1), (R4, A4)
8
12

6
12

(R2, A2), (R3, A3)
2
12

3
12

(R2, A2), (R4, A4)
6
12

6
12

(R3, A3), (R4, A4)
8
12

3
12

Note that the minimum distance regarding orderings is in between (R1, A1)
and (R2, A2) since there is a disagreement only on the ranking of the first two
alternatives. On the other hand, the maximum distance regarding orderings
in this profile is attained by (R4, A4) and (R1, A1), which is also the distance
between (R4, A4) and (R3, A3). Note that, for these tuples there is only one
pair of alternatives (namely (x2, x4)) for which these preference-approvals
agree on.

Similarly, the minimum distance regarding acceptability is in between (R1, A1)
and (R2, A2) since there is a full agreement for the set of acceptable and un-
acceptable alternatives. On the other hand, the maximum distance regarding
acceptability is attained by (R4, A4) and (R1, A1) which is also the distance be-
tween (R4, A4) and (R2, A2). Note that there is a disagreement on the accept-
ability of two alternatives (namely x1 and x2) for these preference-approvals.

For the rest of the section, first we define the neutrality of metrics and then we
establish that a neutral metric can be deduced from the convex combinations
of dR and dA.

Definition 4 A set D ⊆ Rn is stable under permutations if for every permu-
tation σ on {1, . . . , n}, it holds (aσ1 , . . . , a

σ
n) ∈ D for every (a1, . . . , an) ∈ D.

Definition 5 Given a set D ⊆ Rn stable under permutations, a distance (or
metric) d : D×D −→ R is neutral if for every permutation σ on {1, . . . , n}
it holds

d
(
(aσ1 , . . . , a

σ
n) , (b

σ
1 , . . . , b

σ
n)
)
= d

(
(a1, . . . , an), (b1, . . . , bn)

)
,

for all (a1, . . . , an), (b1, . . . , bn) ∈ D.

Remark 2 The Kemeny metric is neutral (see Garćıa-Lapresta and Pérez-
Román [14]). One can easily check that the Hamming metric is neutral as
well.

Remark 3 Given two distances d1, d2 : D × D −→ R, for every λ ∈ [0, 1]
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the convex combination λ d1 + (1− λ) d2 is also a distance.

In the next result we show that although dR and dA are not metrics, their
convex combinations are always metrics except for the degenerate values of
λ = 0 and λ = 1.

Proposition 2 For every λ ∈ (0, 1) and all (R1, A1), (R2, A2) ∈ R(X), the
following statements hold:

(1) dλ = λ dR+(1−λ) dA is a neutral metric and dλ
(
(R1, A1), (R2, A2)

)
≤ 1.

(2) dλ
(
(R1, A1), (R2, A2)

)
= 1 if and only if R1, R2 ∈ L(X), R2 = R−1

1 and

A2 = X \ A1.

Proof:

(1) By Remark 3, dλ is a distance. By Proposition 1, dλ verifies the identity of
indiscernibles property and the triangle inequality. Then, dλ is a metric.
By Remark 2, the Kemeny and Hamming metrics are neutral and it
is obvious that the convex of combination λ dR + (1 − λ) dA satisfies
neutrality, too.

(2) By Proposition 1.

It is worthwhile to note that the aggregation of two distances for different kinds
of information leads to two problems. The first one, which is technical, arises
from the fact that dK and dH have different codomains for aggregation and a
solution to this problem has been proposed by the proposition 2. The second
one is deciding on the appropriate value of λ for the aggregation of these
two distances. Since λ (resp. 1 − λ) determines the weight of information
regarding orderings (resp. acceptability), the value of λ should be decided
before the implementation of the consensus measuring.

In practice, the selection of the lambda can be done in various ways. First, as
in the case of voting in the committees, a moderator or a decision maker can
decide on λ according to his principles. Although λ can take infinitely many
values, the most important decision would be choosing the component of the
preference (orderings or approval) that will have more weight than the other.
Second, a separate aggregation rule can be applied and the outcome of that
rule can be used as an optimal value of the λ. In particular, the mean or a
trimmed mean of the submitted λ values can be used as the outcome. How-
ever, when an aggregation procedure is followed the issues regarding strategic
behavior should be taken into consideration.

Example 3 The following table illustrates the changes in the total distances
between preference-approvals in Example 2 with respect to the values of λ.

12



λ = 0.25 λ = 0.5 λ = 0.75

dλ
(
(R1, A1), (R2, A2)

)
0.04167 0.08333 0.125

dλ
(
(R1, A1), (R3, A3)

)
0.1875 0.125 0.0625

dλ
(
(R1, A1), (R4, A4)

)
0.54267 0.58333 0.625

dλ
(
(R2, A2), (R3, A3)

)
0.22917 0.20833 0.1875

dλ
(
(R2, A2), (R4, A4)

)
0.5 0.5 0.5

dλ
(
(R3, A3), (R4, A4)

)
0.35417 0.4583 0.5625

In these results, note that the preference-approval which has the minimum
distance to (R1, A1) is (R2, A2) when we have λ = 0.25. However, when
λ = 0.75 the result changes to (R3, A3). To see why, note that when λ = 0.25
the distance dA is weighted more than dR implying that the disagreement on
the set of accepted alternatives is more important than the disagreement on
the orderings. This is reversed when λ = 0.75. For another illustration of
a similar change in the distances with respect to λ, check that among the
given preference-approvals (R3, A3) is the closest to (R4, A4) for λ = 0.25.
However, for λ = 0.75 the previous result changes to (R2, A2).

3 Consensus measures

Consensus measures have been introduced and analyzed by Bosch [13] in
the context of linear orders. Subsequently, Garćıa-Lapresta and Pérez-Román
[14,24] extended this notion to the context of weak orders by using distances.
Although many non-standard preferences are also analyzed for aggregation
problems, the problem of measuring homogeneity for a set of these non-stand-
ard preferences are not fully investigated in the literature. In this section,
we focus on consensus measures for preference-approval structures and start
introducing basic notions for consensus measures in general.

3.1 Basic notions

First, some pieces of notation are included.

Definition 6 A profile is a vector R =
(
(R1, A1), . . . , (Rm, Am)

)
∈ R(X)m

of preference-approvals, where (Ri, Ai) contains the preference-approval of the
agent vi, with i = 1, . . . ,m.

(1) The inverse of R is R−1 =
(
(R−1

1 , X \ A1), . . . , (R
−1
m , X \ Am)

)
.
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(2) Given a permutation π on {1, . . . ,m} and ∅ ̸= I ⊆ V , we denote

Rπ =
(
(Rπ(1), Aπ(1)), . . . , (Rπ(m), Aπ(m))

)
and Iπ = {vπ−1(i) | vi ∈ I},

i.e., vj ∈ Iπ ⇔ vπ(j) ∈ I.

(3) Given a permutation σ on {1, . . . , n}, we denote by

Rσ =
(
(Rσ

1 , A
σ
1 ), . . . , (R

σ
m, A

σ
m)
)

the profile obtained from R by relabel-
ing the alternatives according to σ, i.e., xiRk xj ⇔ xσ(i) R

σ
k xσ(j) and

xi ∈ Aσ
k ⇔ xσ(i) ∈ Ak, for all i, j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}.

Definition 7 A consensus measure on R(X)m is a mapping

M : R(X)m × P2(V ) −→ [0, 1]

that satisfies the following conditions:

(1) Unanimity. For all R ∈ R(X)m and I ∈ P2(V ), it holds

M(R, I) = 1 ⇔ (Ri = Rj and Ai = Aj , for all vi, vj ∈ I).

(2) Anonymity. For all permutation π on {1, . . . ,m}, R ∈ R(X)m and
I ∈ P2(V ), it holds

M(Rπ, Iπ) = M(R, I).

(3) Neutrality. For all permutation σ on {1, . . . , n}, R ∈ R(X)m and
I ∈ P2(V ), it holds

M(Rσ, I) = M(R, I).

Unanimity means that the maximum consensus in every subset of decision
makers is only achieved when all opinions are the same. Anonymity requires
symmetry with respect to decision makers and neutrality means symmetry
with respect to alternatives.

We now introduce additional properties that a consensus measure may satisfy.

Definition 8 Let M : R(X)m × P2(V ) −→ [0, 1] be a consensus measure.

(1) M satisfies maximum dissension if for all R ∈ R(X)m and vi, vj ∈ V
such that i ̸= j, it holds

M(R, {vi, vj}) = 0 ⇔ (Ri, Rj ∈ L(X), Rj = R−1
i and Aj = X \ Ai).

(2) M is reciprocal if for all R ∈ R(X)m and I ∈ P2(V ), it holds

M(R−1, I) = M(R, I).

Maximum dissension means that in each subset of two agents 3 , the minimum
consensus level is only reached whenever preferences of agents are linear orders,

3 It is clear that a society reaches the maximum level of consensus when all the
opinions are the same. However, in a society with more than two members it is
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each one the inverse of the other, and the good alternatives of each agent are
the bad ones of the other. Reciprocity means that if all individual opinions
are reversed, then the consensus does not change.

4 Measuring consensus for preference-approvals

We now introduce our proposal for measuring consensus in the context of
preference-approvals. Analyzing the homogeneity level in such profiles asks for
an extension of the standard measures of consensus in the literature because
of the enriched informational content. We show that the consensus measure
introduced by Garćıa-Lapresta and Pérez-Román [14,24] for weak orders is
robust to the additional approval information when the metric proposed by
Proposition 1 is used as an input.

Definition 9 Given a metric d : R(X)×R(X) −→ R , the mapping

Md : R(X)m × P2(V ) −→ [0, 1]

is defined by

Md (R, I) = 1−

∑
vi,vj∈I
i<j

d
(
(Ri, Ai), (Rj, Aj)

)
(
#I

2

)
·∆n

,

where

∆n = max
{
d
(
(Ri, Ai), (Rj, Aj)

)
| (Ri, Ai), (Rj, Aj) ∈ R(X)

}
.

Note that the numerator of the quotient appearing in the above expression is
the sum of all the distances between the preference-approvals of the profile,
and the denominator is the number of terms in the numerator’s sum multiplied
by the maximum distance between preference-approvals. Consequently, that
quotient belongs to the unit interval and it measures the disagreement in the
profile.

not an obvious issue to determine when there is the minimum level consensus (the
maximum level of disagreement).
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4.1 Some results

Proposition 3 For every metric d : R(X) × R(X) −→ R , Md satisfies
unanimity and anonymity.

Proof: Let R ∈ R(X)m and I ∈ P2(V ).

(1) Unanimity.

Md(R, I) = 1 ⇔
∑

vi,vj∈I
i<j

d
(
(Ri, Ai), (Rj, Aj)

)
= 0 ⇔

⇔ ∀ vi, vj ∈ I d
(
(Ri, Ai), (Rj, Aj)

)
= 0 ⇔

⇔ ∀ vi, vj ∈ I (Ri, Ai) = (Rj, Aj) ⇔

⇔ ∀ vi, vj ∈ I (Ri = Rj and Ai = Aj) .

(2) Anonymity. Let π be a permutation on {1, . . . ,m}.∑
vi,vj∈Iπ

i<j

d
(
(Rπ(i), Aπ(i)), (Rπ(j), Aπ(j))

)
=

=
∑

vπ(i),vπ(j)∈I
π(i)<π(j)

d
(
(Rπ(i), Aπ(i)), (Rπ(j), Aπ(j))

)
=

=
∑

vi,vj∈I
i<j

d
(
(Ri, Ai), (Rj, Aj)

)
.

Thus, Md(Rπ, Iπ) = Md(R, I).

If Md verifies neutrality, then we say that Md is the consensus measure
associated with d.

Proposition 4 If d : R(X)×R(X) −→ R is a neutral metric, then Md is
a consensus measure.

Proof: By Proposition 3, Md satisfies unanimity and anonymity. Obviously,
if d is neutral, then Md verifies neutrality and thus Md is a consensus
measure.

Theorem 1 For every λ ∈ (0, 1), Mdλ is a consensus measure that satisfies
maximum dissension and reciprocity.

Proof: By Proposition 4, Mdλ is a consensus measure.
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(1) Maximum dissension. First, note that Mdλ (R, {vi, vj}) = 0 if and only if

dλ
(
(Ri, Ai), (Rj, Aj)

)
is the maximum. This is equivalent to that dR

(
(Ri, Ai), (Rj, Aj)

)
is the maximum and dA

(
(Ri, Ai), (Rj, Aj)

)
is the maximum. By Propo-

sition 1, dλ
(
(Ri, Ai), (Rj, Aj)

)
is the maximum if and only if (R1, R2) ∈

L(X), R2 = R−1
1 and A2 = X \ A1.

(2) Reciprocity. Given (R1, A1), (R2, A2) ∈ R(X), we only need to prove:
(a) dR(R1, R2) = dR(R

−1
1 , R−1

2 ) (see Garćıa-Lapresta and Pérez-Román
[14]).

(b) dH(A1, A2) = dH(A
−1
1 , A−1

2 ):

dH(A1, A2) =

= #
(
(A1 ∪ A2) \ (A1 ∩ A2)

)
=

= #
(
(A1 ∪ A2) ∩ (A1 ∩ A2)

−1
)
=

= #
(
(A1 ∪ A2) ∩ (A−1

1 ∪ A−1
2 )

)
=

= #
(
(A−1

1 ∪ A−1
2 ) ∩ (A−1

1 ∩ A−1
2 )−1

)
=

= #
(
(A−1

1 ∪ A−1
2 ) \ (A−1

1 ∩ A−1
2 )

)
=

= dH(A
−1
1 , A−1

2 ).

Taking into account (a) and (b), we have

dλ
(
(R1, A1), (R2, A2)

)
= dλ

(
(R1, A1)

−1, (R2, A2)
−1
)
.

Thus, Mdλ(R
−1, I) = Mdλ(R, I).

4.2 Illustrative example

Example 4 Consider again the preference-approvals in Example 2:
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(R1, A1)

x1

x2

x3 x4

(R2, A2)

x2

x1

x3 x4

(R3, A3)

x1

x2

x3 x4

(R4, A4)

x3

x2

x1x4

In the following table we illustrate the level of consensus reached in some
representative subsets of agents for three values of λ:

λ = 0.25 λ = 0.5 λ = 0.75

Mdλ(R, {v1, v2}) 0.95833 0.91666 0.875

Mdλ(R, {v1, v3}) 0.8125 0.875 0.9375

Mdλ(R, {v3, v4}) 0.64583 0.54167 0.4375

Mdλ(R, {v1, v2, v3, v4}) 0.69097 0.67361 0.65625

In the first row the level of consensus is measured for the first two agents.
Recall that λ is the coefficient for dR . Since these agents only disagree on the
orderings, an increase in λ puts more emphasis for that disagreement and leads
to a decrease in the level of consensus. On the contrary, the first and the third
agents totally agree on orderings but they disagree on the set of acceptable
alternatives. Hence, we can see in the second row that the level of consensus
increases when λ increases as the importance of that agreement increases
(simultaneously, disagreement on the set of acceptable alternatives becomes
less important since 1−λ decreases). In the third row we focus on the third and
fourth agents. These agents have disagreement on orderings and on acceptable
alternatives at the same time, so they reach the minimum level of consensus for
all considered cases so far. Note that the level of consensus decreases for these
two agents when the weight of dR increases. Finally, in the last row consensus
level is measured for the full profile. We see that as λ increases, the level
of consensus in the profile decreases. According to these results we conclude
that for this profile, individuals have more agreement on which alternatives
are socially acceptable than the ordering of those alternatives.

4.3 Replications

In some collective decision procedures, especially for the multi-rounded vot-
ing systems, analyzing the preference-updating schemes can be useful for the
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moderator to see the changes in the level of consensus. In particular, coalition
formations can lead to the occurrence of the same preference as many as the
number of the agents in a coalition. Hence, analyzing homogeneity for a given
set of preferences when there are some replications of preferences has its own
interest. Having this motivation, we consider a metric d : R(X)×R(X) −→ R

and the associated consensus measure Md : R(X)m × P2(V ) −→ [0, 1]. For
each t ∈ N, it is possible to extend Md to t replicas of profiles of R(X)m

and subsets of V :

Mt
d : R(X)tm ×P2(t V ) −→ [0, 1].

Thus, Mt
d (tR, t I) ∈ [0, 1] measures the consensus in the multiset of agents 4

t I = I⊎ t· · · ⊎ I generated by t replicas of I for the profile generated by t
replicas of R ∈ R(X)m, tR = (R, t. . .,R) ∈ R(X)tm.

Proposition 5 Let d : R(X) × R(X) −→ R be a metric. For each profile

of two preference-approvals R =
(
(R1, A1), (R2, A2)

)
∈ R(X)2 such that

d
(
(R1, A1), (R2, A2)

)
= δ and every t ∈ N, it holds:

Mt
d (tR, t I) = 1− t · δ

(2t− 1) ·∆n

,

where ∆n = max
{
d
(
(Ri, Ai), (Rj, Aj)

)
| (Ri, Ai), (Rj, Aj) ∈ R(X)

}
.

Proof: Consider R =
(
(R1, A1), (R2, A2)

)
∈ R(X)2 with d

(
(R1, A1), (R2, A2)

)
=

δ and I = {v1, v2}. Given t ∈ N, tR =
(
(R1, A1), . . . , (R2t, A2t)

)
, where

(R2k−1, A2k−1) = (R1, A1) and (R2k, A2k) = (R2, A2), for every k ∈ {1, 2, . . . , t}.

Mt
d (tR, t I) = 1−

∑
vi,vj ∈ tI

i<j

d
(
(Ri, Ai), (Rj, Aj)

)
(
#(t I)

2

)
·∆n

.

Since

d
(
(Ri, Ai), (Rj, Aj)

)
=


0, if i, j are both even,

0, if i, j are both odd,

δ, otherwise,

we obtain

4 List of agents where each agent occurs as many times as the multiplicity. For
instance, 2{v1, v2} = {v1, v2} ⊎ {v1, v2} = {v1, v2, v1, v2}.
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∑
vi,vj ∈ tI

i<j

d
(
(Ri, Ai), (Rj, Aj)

)
=

2t−1∑
i=1

2t∑
j=i+1

d
(
(Ri, Ai), (Rj, Aj)

)
=

=

 t∑
i=1

i+
t−1∑
j=1

j

 δ = t2 · δ .

On the other hand, we have(
#(t I)

2

)
=

(
2t

2

)
= 2t2 − t .

Consequently,

Mt
d (tR, t I) = 1− t · δ

(2t− 1) ·∆n

.

Remark 4 Under the assumptions of Proposition 5, it holds:

lim
t→∞

Mt
d (tR, t I) = 1− δ

2∆n

.

Particulary, if R1 ∈ L(X) and (R2, A2) = (R−1
1 , A−1

1 ), then:

lim
t→∞

Mt
d (tR, t I) =

1

2
.

Note that Remark 4 illustrates a surprising result that the level of consensus
(or homogeneity) in a group of individuals cannot be increased by simply
replicating their preferences. In fact, as the particular case of a polarized
profile suggests, increasing the number of inverse preferences can only lead to
a consensus level of 1

2
.

Example 5 Consider I = {v1, v4} in Example 2. Their preference-approvals
over four alternatives are:

(R1, A1)

x1

x2

x3 x4

(R4, A4)

x3

x2

x1x4
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In the following table we illustrate the changes in the level of consensus when
we replicate the agents {v1, v4} for three values of λ:

λ = 0.25 λ = 0.5 λ = 0.75

δ = dλ
(
(R1, A1), (R4, A4)

)
0.54167 0.58333 0.66250

Mdλ(R, I) 0.458333 0.41666 0.375

Mdλ(2R, 2 I) 0.63889 0.61111 0.58333

Mdλ(5R, 5 I) 0.69907 0.67593 0.65278

Mdλ(15R, 15 I) 0.71983 0.69828 0.67672

Mdλ(30R, 30 I) 0.72457 0.70339 0.68220

lim
t→∞

Mt
d (tR, t I) 0.72917 0.70833 0.68750

The first row shows the distances between these two preference-approvals with
respect to three different values of λ. Consensus levels are illustrated in the
second row. Note that when the size of the profile is doubled by cloning the
preferences of each agent, as it is shown in the third row, consensus levels are
increased for each values of λ. According to the results in table, we see that as
the number of replications are increased the level of consensus also increases
as it might be expected. However, our results also show that there exists a
limit for increasing the homogeneity level in a group of individuals by simply
replicating their preferences.

5 Concluding remarks

Many collective decision making problems of voting, matching, bargaining and
public goods implicitly use some threshold levels which are naturally described
in the preference-approval framework. We explore the problem of measuring
consensus in this hybrid informational system by following a distance-based
approach. Measuring homogeneity in terms of distances raises the question of
how to evaluate the similarity of any two preferences. Although this question
has been answered for various types of ordinal rankings like linear or weak
orders over alternatives, we are not aware of a formal treatment of this problem
for non-standard preferences. Enriching the informational content by approval
notion asks for a more sophisticated evaluation of similarity of preferences.

Given any two preference-approvals we propose measuring the concordance of
them by convex combinations of normalized Kemeny and Hamming metrics.
At this stage, our proposal depends on a priori selection of the coefficients
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(λ and 1 − λ) for Kemeny and Hamming metrics depending on the context
of the relevant problem. Due to the relative importance of the disagreement
with respect to the orderings of the alternatives or the approval of them, λ
can be chosen by a moderator or by an aggregation rule. Experimental studies
related to the optimal selection of λ for different contexts would give more
insight for the implementation of this procedure, but this would be the subject
of a separate paper.

By deriving a proper metric that takes into account two pieces of information,
next we deal with measuring homogeneity according to these two compo-
nents. We see that the measure of consensus introduced by Garćıa-Lapresta
and Pérez-Román [14] can be extended for preference-approvals when that
measure is based on a metric that satisfies some desirable axioms. Among the
interesting results, we show that the degree of homogeneity in a group of indi-
viduals cannot be increased by simply replicating their preference-approvals.

For further research, analyzing metrics which can identify correlation between
rankings and accepted alternatives in preference-approvals invites interesting
questions. Additionally, using weighted distances to measure the discrepancies
with respect to the position of the alternatives in the rankings would comple-
ment this paper. How to apply our model for truncated preferences on the
subsets of a given alternative set arises another appealing question, especially
when there is large number of alternatives under consideration.
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[15] J.L. Garćıa-Lapresta, D. Pérez-Román, Consensus measures generated by
weighted Kemeny distances on weak orders, Procceedings of the 10th
International Conference on Intelligent Systems Design and Applications, Cairo,
2010.

[16] S.J. Brams, P.C. Fishburn, Approval Voting, second edition, Springer, New
York, 2007.

23



[17] M. Balinski, R. Laraki, Majority Judgment: Measuring, Ranking and Electing,
The MIT Press, Cambridge MA, 2011.

[18] W.D. Smith, On Balinski and Laraki’s Majority Judgement median-based
range-like voting scheme, http://rangevoting.org/MedianVrange.html, 2007.

[19] S.J. Brams, M.R. Sanver, Voting systems that combine approval and preference,
in: S.J. Brams, W.V. Gherlein, F.S Roberts (Eds.), The Mathematics of
Preference, Choice and Order: Essays in Honour of Peter C. Fishburn, Studies
in Choice and Welfare, Springer-Verlag, Berlin, 2009, pp. 215–237.

[20] R.W. Hamming, Error detecting and error correcting codes, Bell System
Technical Journal 29 (1950) 147–160.

[21] M.M. Deza, E. Deza, Encyclopedia of Distances, Springer-Verlag, Berlin, 2009.

[22] W.D. Cook, M. Kress, L.M. Seiford, A general framework for distance-based
consensus in ordinal ranking models, European Journal of Operational Research
96 (1996) 392–397.

[23] D. Eckert, C. Klamler, Distance-based aggregation theory, in: E. Herrera-
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