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Abstract

The incorporation of additional information into discriminant rules is receiving in-
creasing attention as the rules including this information perform better than the usual
rules. In this paper we introduce an R package called dawai, which provides the functions
that allow to define the rules that take into account this additional information expressed
in terms of restrictions on the means, to classify the samples and to evaluate the accuracy
of the results. Moreover, in this paper we extend the results and definitions given in
previous papers (Fernández, Rueda, and Salvador 2006, Conde, Fernández, Rueda, and
Salvador 2012, Conde, Salvador, Rueda, and Fernández 2013) to the case of unequal co-
variances among the populations, and consequently define the corresponding restricted
quadratic discriminant rules. We also define estimators of the accuracy of the rules for
the general more than two populations case. The wide range of applications of these pro-
cedures is illustrated with two data sets from two different fields, i.e., biology and pattern
recognition.

Keywords: classification rules, order-restricted inference, true error rate, R package dawai, R.

1. Introduction

The incorporation of additional information, often available in applications, into multivariate
statistical procedures through order restrictions is receiving increasing attention during the
last years as it allows to improve the performance of the procedures. Good examples of this
trend are the papers by Rueda, Fernández, and Peddada (2009), Fernández, Rueda, and Ped-
dada (2012) and Barragán, Fernández, Rueda, and Peddada (2013), where this information
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is used to improve statistical procedures for circular data applied to cell biology, El Barmi,
Johnson, and Mukerjee (2010), where the information is used for estimating cumulative in-
cidence functions in survival analysis, Ghosh, Banerjee, and Biswas (2008), where it is used
to make inferences on tumor size distributions, or Davidov and Peddada (2013), where a test
for multivariate stochastic order is applied to dose-response studies.

In this work, we deal with the incorporation of additional information into discriminant rules.
Discriminant analysis is a well-known technique, first established by Fisher (1936), used in
many scientific fields to define rules that allow to classify samples into a small number of
populations based on a sample of observations where the population membership is known,
usually called training set. To the best of our knowledge, the first paper considering additional
information under the usual equal covariances assumption, which leads to linear discriminant
rules, is Long and Gupta (1998). However, that paper provided limited results for the case
of two populations with simple order restrictions and identity covariance matrices only. In
a series of papers, the rules appearing in that initial paper have been improved, first to
deal with more general types of information expressed in terms of cones of restrictions and
general covariance matrices in Fernández et al. (2006) and later to the case of more than
two populations in Conde et al. (2012). The robustness of the rules has also been studied in
Salvador, Fernández, Mart́ın, and Rueda (2008) and good estimators of the performance of
the rules (which is an essential issue in discriminant analysis) have been provided in Conde
et al. (2013). From now on, we will refer to these rules as restricted rules as the additional
information is incorporated through restrictions on the population means.

The purpose of the present paper is twofold. The first is to introduce the dawai package,
programmed in R (R Core Team 2015), which is available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=dawai. This package provides
all the functions needed to take advantage of the rules that incorporate additional information.
The functions in the package allow to define the restricted rules, to classify the samples and
to evaluate the accuracy of the results. The second contribution of this paper is the extension
of the ideas given in previous papers from the case of equal covariances in the different
populations to the case of unequal covariances among the populations and consequently the
definition of the corresponding restricted quadratic discriminant rules, and also the definition
of estimators of the accuracy of the rules for the general case where more than two populations
appear in the problem.

In Section 2 we describe the statistical problem and the methodology of Fernández et al.
(2006), Conde et al. (2012) and Conde et al. (2013), which we extend to the above mentioned
situations. In Section 3 we introduce the dawai package and explain some details about the
main user-lever functions it includes. The wide range of applications of the dawai package is
illustrated in Section 4 using two data sets coming from two different fields, i.e., biology and
pattern recognition. Some concluding remarks are provided in Section 5.

2. Discriminant analysis with additional information

We consider a finite number k ≥ 2 of distinct populations of items Π1, . . . ,Πk. Each item is
assumed to belong to one and only one of the populations. Let Z be a categorical variable
identifying the population and let X = (X1, . . . , Xp)

> be the p-dimensional vector of predic-
tors. Denote also as PXZ the joint distribution of (X, Z), and as Pj the distribution of X
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in population Πj with density function fj , j = 1, . . . , k. The classical discrimination problem
deals with the classification of an observation U = (U1, . . . , Up)

>, whose origin is unknown,
into one of those populations. If we consider a 0–1 loss function and a priori probability πj
for the population Πj , j = 1, . . . , k, it is well known that the optimal classification rule, also
called Bayes rule, is given by:

Classify U in Πj iff πjfj(U) ≥ πlfl(U), l = 1, 2, . . . , k.

In applications, the density functions fj , j = 1, . . . , k, are unknown although there is sample
information available. This sample information is contained in the so-called training sample
given by a set of items for which both the predictor values and the correct population they
belong to are registered. We represent the training sample as Mn = {(Y i, Zi), i = 1, . . . , n},
where n is the item sample size, Y i is the value that vector X takes at the ith item in
the sample and Zi is the population the ith item belongs to. Then, a classification rule is an
application Rn : {Rp×{1, . . . , k}}n×Rp → {1, . . . , k}, that assigns a new observation U ∈ Rp
for which the population is unknown to one of the k populations, Rn(Mn,U) ∈ {1, . . . , k}.
From now on, we assume that πj = 1

k , j = 1, . . . , k (the case of unequal a priori prob-
abilities is a trivial extension). If we further assume multivariate normality, i.e., Pj ∼
Np(µj ,Σ), j = 1, . . . , k, where µj = (µj1, . . . , µjp)

> is the mean of vector X in population
Πj , j = 1, . . . , k, and Σ is a common covariance matrix, then the optimal classification rule
(the one with lowest expected loss) may be written as:

Classify U in Πj iff (U − µj)
>Σ−1(U − µj) ≤ (U − µl)

>Σ−1(U − µl), l = 1, . . . , k.

Unfortunately, this rule cannot be used in practice as the mean vectors µj , j = 1, . . . , k, and
the common covariance matrix Σ are unknown. However, as we have a training sample these
parameters may be estimated using respectively the sample vectors means Y j and the pooled
sample covariance matrix S,

Y j = (Y j1, . . . , Y jp)
> =

1

nj

n∑
l=1

Y lI(Zl=j) and

S =
1

n− k

k∑
j=1

n∑
l=1

(
Y l − Y j

) (
Y l − Y j

)>
I(Zl=j),

where nj =
∑n

l=1 I(Zl=j) is the sample size of population Πj , j = 1, . . . , k, and n =
∑k

j=1 nj .

As this estimated rule, obtained by plugging the estimators into the initial rule, is linear in
the predictors, it is usually known as linear discriminant rule or Fisher’s rule:

Classify U in Πj iff

(U − Y j)
>S−1(U − Y j) ≤ (U − Y l)

>S−1(U − Y l), l = 1, . . . , k. (1)

If the covariance matrices are not assumed to be equal, i.e., Pj ∼ Np(µj ,Σj), j = 1, . . . , k,
the optimal rule can be written as:

Classify U in Πj iff − 1

2
log(|Σj |)−

1

2

{
(U − µj)

>Σ−1j (U − µj)
}
≥

− 1

2
log(|Σl|)−

1

2

{
(U − µl)

>Σ−1l (U − µl)
}
, l = 1, . . . , k. (2)



4 dawai: Discriminant Analysis with Additional Information in R

Again, if we replace in this rule the unknown parameters µj and Σj by their corresponding

estimators Y j and Sj = 1
nj−1

∑n
l=1

(
Y l − Y j

) (
Y l − Y j

)>
I(Zl=j), j = 1, . . . , k, we obtain

a rule that depends on the predictor in a quadratic way and it is therefore known as the
quadratic discriminant rule:

Classify U in Πj iff − 1

2
log(|Sj |)−

1

2

{
(U − Y j)

>S−1j (U − Y j),
}
≥

− 1

2
log(|Sl|)−

1

2

{
(U − Y l)

>S−1l (U − Y l),
}
, l = 1, . . . , k. (3)

2.1. Restricted discriminant rules

In the introduction we referred to applications where it is usual that some additional in-
formation is available. In many of these cases the information can be written as inequality
restrictions among the population means. In the literature these restrictions are usually rep-
resented by a polyhedric cone (cf. Robertson, Wright, and Dykstra 1988 or Silvapulle and Sen
2005). In our case, our pk-dimensional population means will belong to a cone C in Rpk,

(µ>1 , . . . ,µ
>
k )> ∈ C =

{
x ∈ Rpk : a>j x ≥ 0, j = 1, . . . , q

}
, (4)

where the q vectors aj ∈ Rpk, j = 1, . . . , q, are determined by the restrictions imposed on the
means.

Polyhedral cones are widely used in the restricted inference literature, because they cover the
most interesting cases from a practical standpoint. Among these cones, those representing
order relations among the means are especially interesting. For example, it is not unusual to
know that the observations from one of the populations, for example, Π1 (which may be the
control population in a medical study), take, in mean, lower values than those coming from
any of the other populations for a subset L ⊆ {1, . . . , p} of predictor variables. In the usual
restricted statistical terminology, we can say that there is a “tree order” among the population
means of the variables in L. In this case, we can write

(µ>1 , . . . ,µ
>
k )> ∈ CTO =

{
x ∈ Rpk : xl ≤ xl+rp, r = 1, . . . , k − 1, l ∈ L

}
. (5)

Another usual situation appears when it is known that there is an increase in the means of a
subset L of predictors (for example, due to increasing severity level in an illness study). This
is known as a “simple order” among the population means of the variables in L, and may be
represented in Rpk using the cone

(µ>1 , . . . ,µ
>
k )> ∈ CSO =

{
x ∈ Rpk : xl ≤ xl+p ≤ · · · ≤ xl+(k−1)p, l ∈ L

}
. (6)

Restricted linear discriminant rules

As mentioned above, in this case we assume Σj = Σ, j = 1, . . . , k. Fernández et al. (2006)
deal with this situation when the number of populations k = 2. They propose a family of
classification rules whose expected loss (total probability of misclassification) is lower than
that of the linear discriminant rule (1). These rules are based on the use of additional
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Figure 1: Examples of the iterative procedure for mean vector estimation for an acute (a)
and a non-acute cone (b).

information to obtain alternative estimators of the vector means. The generalization to the
k > 2 populations case appears in Conde et al. (2012). These alternative estimators are
defined via an iterative procedure whose convergence is shown in Fernández et al. (2006) and
that is described here for completeness.

Consider the pk square matrix S−1∗ =
[
diag

(
S
n1
, S
n2
, . . . , S

nk

)]−1
=

k⊕
j=1

(
S
nj

)−1
.

Definition 1 (Conde et al. 2012)

For γ ∈ [0, 1], let µ̂γ be the limit value, when m→∞, of the following iterative procedure:

µ̂γ(m) = pS−1
∗

(
µ̂γ(m−1)|C

)
− γpS−1

∗

(
µ̂γ(m−1)|CP

)
, m = 1, 2, . . . ,

where µ̂γ(0) =
(
Y
>

1 , . . . ,Y
>

k

)>
∈ Rpk, pS−1

∗
(Y |C), is the projection of Y ∈ Rpk onto the

cone C using the metric given by the matrix S−1∗ , and CP = {y ∈ Rpk : y>S−1∗ x ≤ 0, x ∈ C}
is the polar cone of C.

The computation of the projection of a vector onto a polyhedral cone can be carried out
using the lsConstrain.fit method contained in the R package ibdreg (Sinnwell and Schaid
2013). Figure 1 shows, in R2, the cones C and CP and the estimators defined when γ = 1
and S∗ = I, indicating the need for an iterative procedure when C is an acute cone.

These estimators µ̂γ =
(
µ̂γ>1 , . . . , µ̂γ>k

)>
are plugged into the original rule to obtain the

restricted lineal discriminant rules Rl(γ):

Classify U in Πj iff (U − µ̂γj )>S−1(U − µ̂γj ) ≤ (U − µ̂γl )>S−1(U − µ̂γl ), l = 1, . . . , k,

for γ ∈ [0, 1].

For more details on these restricted linear rules and their properties the reader is referred to
Fernández et al. (2006) and Conde et al. (2012).
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Restricted quadratic discriminant rules

The problem of incorporating additional information into classification rules when the covari-
ance matrices cannot be assumed to be equal has not, to the best of our knowledge, been
considered in the literature up to this date. This problem is important as equality among
covariance matrices cannot be assumed in many applications. In this subsection, we extend
the ideas appearing in the definition of restricted linear discriminant rules to the unequal
covariances case, thus defining the corresponding restricted quadratic discriminant rules. The
main novelty is the definition of the appropriate projection matrix for the computation of the
restricted estimators. We have checked that the matrix that correctly extends the restricted

linear discriminant rules is S−1∗∗ =
k⊕
j=1

(
Sj

nj

)−1
. Consequently, in this case for each γ ∈ [0, 1]

the estimator µ̂γ =
(
µ̂γ>1 , . . . , µ̂γ>k

)>
of µ = (µ>1 , . . . ,µ

>
k )> ∈ C is obtained using the it-

erative procedure described in Definition 1, replacing the matrix S−1∗ by S−1∗∗ . Again, the
estimators of the means µ̂γj and the covariance matrices Sj are plugged into the original rule
(3) to obtain the restricted quadratic discriminant rules Rq(γ) :

Classify U in Πj iff − 1

2
log |Sj | −

1

2

{
(U − µ̂γj )>S−1j (U − µ̂γj ),

}
≥

− 1

2
log |Sl| −

1

2

{
(U − µ̂γl )>S−1l (U − µ̂γl ),

}
, l = 1, . . . , k,

for γ ∈ [0, 1].

The computational complexity of these rules is clearly not significantly higher than that of the
restricted linear discriminant rules, and the simulations studies we have performed show, as we
will see in the applications appearing in Section 4, that this rule improves the corresponding
unrestricted quadratic discriminant rule.

The rlda function and predict method for ‘rlda’ objects in R package dawai allow to define
restricted linear discriminant rules and to classify samples, respectively. The rqda func-
tion and predict method for ‘rqda’ objects are the corresponding versions for performing
restricted quadratic discrimination.

2.2. True error rate estimation

From an applied point of view, the evaluation of the classification rule for a given training
sample is even more important than the expected loss of the rule. The true error rate, En,
of the rule Rn is the probability of misclassification of the rule given the training sample,
i.e., En = PXZ(Rn(Mn,U) 6= Z | Mn). It is well known that the best way of estimating the
true classification error of a classification rule is the use of an independent and large enough
sample, usually called test sample. However, in practice it is common that the sample size is
not large enough to split the sample into a training and a test sample as that would decrease
the efficiency of the rule. For this reason, the estimation of En for the usual rules such as for
example Fisher’s linear rule (1), the quadratic discriminant rule (3), the nearest neighbors
rules (Cover and Hart 1967) or random forest rules (Breiman 2001), is a widely studied topic
in the literature. Parametric and non-parametric estimators of En have been proposed and
non-parametric estimators based on resampling have shown a good performance for the above
mentioned rules. Schiavo and Hand (2000) summarize the work made on this topic until that
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date. More recent references are, for instance, Steele and Patterson (2000), Wehberg and
Schumacher (2004), Fu, Carroll, and Wang (2005), Molinaro, Simon, and Pfeiffer (2005), Kim
and Cha (2006), Kim (2009) or Borra and Di Ciaccio (2010).

Conde et al. (2013) propose four new estimators of En specific to the restricted linear dis-
criminant rule Rl(γ) for k = 2 populations. Two of them, BT2 and BT3, are generated
from the leave-one-out bootstrap (LOOBT , see Efron 1983). The other two, BT2CV and
BT3CV , are cross-validation after bootstrap (BCV , see Fu et al. 2005) versions of BT2
and BT3 respectively. In the following, we describe the generalization of these estimators
to k > 2 populations and to restricted quadratic discrimination cases. This is the second
theoretical novelty appearing in this paper. As happened when the restricted discriminant
rule was extended to the more than 2 populations case in Conde et al. (2012), the extension
is not immediate as the appropriate parameter spaces and projection matrices have to be
considered. Following the arguments already appearing in the original paper, Efron (1979),
or in Boos (2003), the underlying idea in the definition of the new estimators of the true error
rate is that the “bootstrap world” should mirror the “real world”. We present two proposals:
the first one is to modify the restrictions cone, the second one is to adapt the training sample.

The BT2 and BT2CV estimators

Assume that the additional information is written as in (4). Let us denote as C the following

random cone generated by the sample mean vectors Y =
(
Y
>
1 , . . . ,Y

>
k

)>
:

C =

{
x ∈ Rpk :

a>j x ≥ 0 if a>j Y ≥ 0

a>j x ≤ 0 if a>j Y < 0
, j = 1, . . . , q

}
,

i.e., the cone determined by the restrictions verified by the sample means.

The true error rate estimator BT2 of the restricted linear or quadratic classification rules
(Rl(γ), Rq(γ)) is computed as follows. A bootstrap training sample M∗n = {(Y ∗i , Z∗i ), i =
1, . . . , n} is a size n randomly obtained (with replacement) sample from the original training
sample (i.e., P((Y ∗i , Z

∗
i ) = (Y s, Zs)) = 1

n with s, i ∈ {1, . . . , n}). B such bootstrap samples

M∗bn = {(Y ∗bi , Z∗bi ), i = 1, . . . , n}, b = 1, . . . , B, are obtained from Mn. For each bootstrap
training sample we define the bootstrap version of the estimator of µ = (µ>1 , . . . ,µ

>
k )> that

we denote as µ∗bγ (with γ ∈ [0, 1]), as the limit when m → ∞ of the following iterative

procedure similar to the one considered in Definition 1. Let µ̂(0)b
γ = Y and

µ̂(m)b
γ = pA

(
µ̂(m−1)b
γ |C

)
− γpA

(
µ̂(m−1)b
γ |CP

)
, m = 1, 2, . . . ,

where matrix A is equal to S−1∗ for the restricted linear discriminant rule and equal to S−1∗∗
for the restricted quadratic discriminant rule.

Now, we denote as R∗bl (γ) and R∗bq (γ) the bootstrap versions of the classification rules Rl(γ)
and Rq(γ), respectively. For each of the B bootstrap rules we classify the observations in the
original training sample that do not belong to the corresponding bootstrap sample M∗bn . The
true error rate estimator BT2 is the proportion of observations wrongly classified.

The BT2CV estimator is the BCV (Fu et al. 2005) version of BT2. For each of the B
bootstrap training samples, let CVb be the true error rate estimator obtained using the cross-
validation method on sample M∗bn . Then BT2CV = 1

B

∑B
b=1CVb.
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The BT3 and BT3CV estimators

The true error rate estimator denoted as BT3 is based on adapting the original training
sample, instead of modifying the cone C like in BT2, as follows. Assume that the original
training sample Mn = {(Y i, Zi), i = 1, . . . , n} does not verify the restrictions, i.e., Y /∈ C.
For any γ ∈ [0, 1], let µ̂γj be the restricted estimator of µj obtained in Definition 1. Now, we
transform the original training sample in such a way that the new sample means belong to
C. The transformed training sample is {(W i, Zi), i = 1, . . . , n}, where

W i = Y i − Y j + µ̂γj if Zi = j,

for i = 1, . . . , n and j = 1, . . . , k.

In this way W =
(
W
>
1 , . . . ,W

>
k

)>
, W j = 1

nj

∑n
l=1W lI(Zl=j), j = 1, . . . , k. Now, the

estimator denoted as BT3 is computed in a similar way to that of BT2 but replacing the
original training sample by the transformed one and C by C.

The BT3CV estimator is the cross-validation after bootstrap version of BT3.

These four estimators of the true error rates of the restricted linear and quadratic discriminant
rules can be obtained with the err.est methods for ‘rlda’ and ‘rqda’ objects in the R package
dawai.

3. Package dawai

We start this section giving some background on R packages for performing discriminant
analysis. We then explain some details about the functions of this package.

3.1. Related packages

As discriminant analysis is a well-known and widely used technique there are many packages
in R for performing discriminant analysis. The basic procedures are in the following package:

� MASS (Ripley 2015): Support functions and datasets for Venables and Ripley’s MASS.

Some more recent packages including new features and discrimination in specific conditions
are:

� mda (Hastie, Tibshirani, Leisch, Hornik, and Ripley 2015): Mixture and flexible dis-
criminant analysis.

� rrlda (Gschwandtner, Filzmoser, Croux, and Haesbroeck 2012): Robust regularized
linear discriminant analysis.

� sparsediscrim (Ramey 2014): Sparse discriminant analysis.

Since none of the existing packages for discriminant analysis are applicable to perform dis-
criminant analysis under restrictions, we introduce in this article the package “d iscriminant
analysis w ith additional information”, with the acronym dawai.

Our package depends on package boot (Canty and Ripley 2015) for bootstrapping, package
ibdreg (Sinnwell and Schaid 2013) for computing the projection of a vector onto a polyhedral
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cone with lsConstrain.fit, and package mvtnorm (Genz, Bretz, Miwa, Mi, Leisch, Scheipl,
and Hothorn 2015) for computing multivariate normal densities. These packages should be
installed before loading dawai.

3.2. Functions provided in dawai

The R package dawai consists of a total of six functions, three for each of the two restricted
discrimination analysis situations: equal or unequal covariances in the populations. The three
functions for each case are: one to define the rules that take into account the additional
information expressed in terms of restrictions on the population means and to classify the
samples in the training set; a second one which predicts the populations of new samples using
the previously defined rule; and, finally, a third one which can evaluate the accuracy of the
rules associated to the training set.

The R help files provide the definitive reference. Here we explain some details about the main
user-level functions and their specific arguments.

The first function for linear discrimination is the the rlda function that can be used to
build restricted linear classification rules with additional information expressed as inequality
restrictions on the populations means, using the methodology developed in Fernández et al.
(2006) and Conde et al. (2012). It creates an object of class ‘rlda’:

rlda(x, grouping, subset = NULL, resmatrix = NULL, restext = NULL,

gamma = c(0, 1), prior = NULL, ...)

or

rlda(formula, data, subset = NULL, resmatrix = NULL, restext = NULL,

gamma = c(0, 1), prior = NULL, ...)

Argument resmatrix collects the additional information on the means vectors, as follows:
resmatrix · (µ>1 , . . . ,µ>k )> ≤ 0. Each of the rows of resmatrix corresponds to each of the q
restrictions included in the model (4). Obviously, the number of columns of resmatrix is the
total number of parameters kp, with the first p columns corresponding to the mean values of
the predictors for the first population and so on.

The purpose of restext is to facilitate the specification of the two most usual cones of
restrictions, the tree order (5) and the simple order (6) cones. The first element of restext
must be either “s” (simple order) or “t” (tree order), the second element must be either “<”
(increasing componentwise order) or “>” (decreasing componentwise order), and the rest of
the elements must be numbers from the set {1, . . . , p}, separated by commas, specifying among
which variables the restrictions hold.

Argument gamma is the vector of values (in the unit interval) used to determine the restricted
rules Rl(γ).

The second function is the predict method for ‘rlda’ objects and classifies multivariate
observations contained in a data frame newdata using the restricted linear classification rules
defined in an object of class ‘rlda’:

predict(object, newdata, prior = object$prior, gamma = object$gamma,

grouping = NULL, ...)
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Finally, the third function is the err.est method for ‘rlda’ objects and estimates the true
error rate of the restricted linear classification rules defined in an object x of class ‘rlda’,
using the methodology developed in Conde et al. (2013) and in Section 2.2:

err.est(x, nboot = 50, gamma = x$gamma, prior = x$prior, ...)

Argument nboot is the number of bootstrap samples used.

The rqda function and the predict and err.est methods for ‘rqda’ objects are the corre-
sponding versions of the rlda and the predict and err.est methods for ‘rlda’ objects for
performing restricted quadratic discrimination. The rqda function builds restricted quadratic
classification rules using the methodology developed in Section 2.1. The predict method for
‘rqda’ objects classifies multivariate observations with restricted quadratic classification rules.
Finally, the err.est method for ‘rqda’ objects estimates the true error rate of restricted
quadratic classification rules using the methodology developed in Section 2.2.

Examples to illustrate these functions are provided in Section 4.

4. Applications

There is a wide range of applications of the dawai package, which we illustrate in this section
using two data sets coming from two different fields, i.e., biology and pattern recognition.

4.1. Biological application

In patient care, as for example in cancer treatment, an important component is the correct
classification of the patient into one of the disease stages. The disease stages correspond to
increasingly advanced levels of the disease, so it is reasonable to expect the mean values of
some variables to increase or decrease with the severity of the illness. This is the case for
primary biliary cirrhosis (PBC), an autoimmune liver disease causing liver inflammation and a
gradual destruction of the intrahepatic bile ducts found within the liver. PBC is a progressive
disease, with four sucessive stages as time passes (Scheuer 1967).

The data set we will use now, called pbc, is in the R package survival (Therneau 2015), taken
from Therneau and Grambsch (2000). This data set is from the Mayo Clinic trial in PBC of
the liver conducted between 1974 and 1984, and it has 418 cases and 20 variables.

We will use this data set to exemplify the restricted linear discriminant rules. We consider
three variables as predictors (p = 3), bili, albumin and platelet (the amounts of serum
bilirubin (mg/dl) and serum albumin (g/dl) and platelet count, respectively), and three pop-
ulations (k = 3), joining the original stages 1 and 2 into one so that the classes have enough
elements to split the sample into training and test data sets of reasonable sizes, as seen below.

R> data("pbc", package = "survival")

R> data <- pbc[, c("bili", "albumin", "platelet", "stage")]

Let us take complete observations only.

R> data <- na.omit(data)

We transform logarithmically the values of the explicative variables so that the variables are
approximately normally distributed.
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R> data <- data.frame(stage = factor(data$stage),

+ logBili = log(data[["bili"]]), logAlbumin = log(data[["albumin"]]),

+ logPlatelet = log(data[["platelet"]]))

R> levels(data$stage)

[1] "1" "2" "3" "4"

R> table(data$stage)

1 2 3 4

20 86 153 142

These are the number of elements in each of the four classes. Notice that there is a low
number in the first class and that 401 cases out of the 418 initial ones have no missing values
in the three predictor variables. As mentioned before, we join stages “1” and “2” and relabel
them.

R> levels(data$stage) <- c(1, 1, 2, 3)

R> table(data$stage)

1 2 3

106 153 142

We will consider the restrictions between population means given by the whole data set:
µ1,1 ≤ µ2,1 ≤ µ3,1, µ1,2 ≥ µ2,2 ≥ µ3,2 and µ1,3 ≥ µ2,3 ≥ µ3,3, i.e., the amount of serum bilirun-
bin increases and the amount of serum albumin and platelet count decreases with PBC stage.
Notice that as two orderings are decreasing and one increasing, we cannot use the restext

argument. These restrictions need to be expressed as resmatrix · (µ>1 ,µ
>
2 ,µ

>
3 )> ≤ 0, where

µ>i = (µi,1, µi,2, µi,3) is the population Πi mean vector, i = 1, 2, 3. We have q = 6 restrictions,
p = 3 predictors and k = 3 populations so that resmatrix is a 6× 9 matrix. Then, we define
the following restrictions matrix (resmatrix):

R> A <- matrix(0, ncol = 9, nrow = 6)

R> A[matrix(c(1, 1, 4, 4, 2, 5, 3, 6, 5, 8, 6, 9), ncol = 2,

+ byrow = TRUE)] <- 1

R> A[matrix(c(1, 4, 4, 7, 2, 2, 3, 3, 5, 5, 6, 6), ncol = 2,

+ byrow = TRUE)] <- -1

R> A

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 0 0 -1 0 0 0 0 0

[2,] 0 -1 0 0 1 0 0 0 0

[3,] 0 0 -1 0 0 1 0 0 0

[4,] 0 0 0 1 0 0 -1 0 0

[5,] 0 0 0 0 -1 0 0 1 0

[6,] 0 0 0 0 0 -1 0 0 1
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We split the data set into a randomly selected training set and a test set, fixing a seed in
order to get the same results as the reader.

R> set.seed(-5436)

R> values <- runif(nrow(data))

R> trainsubset <- (values < 0.25)

R> testsubset <- (values >= 0.25)

Now we can build the restricted linear discriminant rules. Let us consider equal a priori
probabilities.

R> library("dawai")

R> obj <- rlda(stage ~ logBili + logAlbumin + logPlatelet, data,

+ subset = trainsubset, gamma = c(0, 0.75, 1), resmatrix = A,

+ prior = c(1/3, 1/3, 1/3))

R> obj

Restrictions:

mu1,1 - mu2,1 <= 0

- mu1,2 + mu2,2 <= 0

- mu1,3 + mu2,3 <= 0

mu2,1 - mu3,1 <= 0

- mu2,2 + mu3,2 <= 0

- mu2,3 + mu3,3 <= 0

Prior probabilities of classes:

class1 class2 class3

0.3333333 0.3333333 0.3333333

Apparent error rate (%):

gamma=0 gamma=0.75 gamma=1

45.09804 47.05882 47.05882

The apparent error rates suggest that the classes are not completely separated in the training
sample. This is a situation, usual in practice, where the restricted rules are expected to
perform better than the unrestricted ones, as we will see.

Now we consider the test set, containing the observations in data not present in the training
set, and classify them. As we know the classes that the observations in the test set belong to,
we can estimate the true error rate.

R> pred <- predict(obj, newdata = data[testsubset, ],

+ grouping = data[testsubset, "stage"])

R> pred$error.rate

gamma=0 gamma=0.75 gamma=1

True error rate (%): 49.83278 48.82943 47.82609
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The fact that the apparent error rate increases and the true error rate decreases with γ is a
typical effect for these restricted rules, see Fernández et al. (2006), Conde et al. (2012) and
Conde et al. (2013).

Finally, we estimate the true error rate from the training sample with nboot = 50 (the default
value).

R> err.est(obj)

Restrictions:

mu1,1 - mu2,1 <= 0

- mu1,2 + mu2,2 <= 0

- mu1,3 + mu2,3 <= 0

mu2,1 - mu3,1 <= 0

- mu2,2 + mu3,2 <= 0

- mu2,3 + mu3,3 <= 0

Prior probabilities of classes:

class1 class2 class3

0.3333333 0.3333333 0.3333333

True error rate estimation (%):

gamma=0 gamma=0.75 gamma=1

BT2 45.12459 45.12459 44.85374

BT3 49.45829 49.62080 49.18743

BT2CV 42.96078 42.72549 42.66667

BT3CV 46.58824 48.00000 47.68627

We can see that in this case BT3 and BT3CV provide reasonable estimates of the true error
rate.

We can also compare these results with the error rates for some standard unrestricted classi-
fiers such as LDA (MASS package) and random forest (randomForest package). For γ = 1,
the test error rates for the restricted linear rules are 7.74% lower than for LDA (51.84) and
15.38% lower than for random forest (56.52).

4.2. Pattern recognition application

As an example of pattern recognition, we will use the data set contained in dawai package
called Vehicle2.

R> data("Vehicle2", package = "dawai")

This data set is a subset from the Vehicle data set, available in the R package mlbench
(Leisch and Dimitriadou 2010) and taken from the UCI Machine Learning Repository (Bache
and Lichman 2013), originally gathered in Siebert (1987). The purpose of the data set is to
study how to distinguish 3D objects from a 2D image, i.e., how to classify a given silhouette
as viewed from a camera from different angles and elevations into one of four types of vehicles,
using a set of features extracted from the silhouette. The vehicles used were a double-decker
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bus, a Cheverolet van, a Saab 9000 and an Opel Manta 400, with the expectation that the
bus, the van and either one of the cars would be readily distinguishable, but it would be more
difficult to distinguish between the cars.

Vehicle2 is a data frame with 846 observations on 5 variables, four numerical and one nom-
inal defining the class of the objects, i.e., the vehicle. The variables are Skew.maxis (skew-
ness about minor axis), Kurt.Maxis (kurtosis about major axis), Holl.Ra (quotient hol-
lows area/bounding polygon area), Sc.Var.maxis (quotient 2nd order moment about minor
axis/area) and Class.

We will use this data set to exemplify the restricted quadratic discriminant rules. We consider
the four variables as predictors (p = 4) and the four available populations (k = 4).

R> data <- Vehicle2[, 1:4]

R> grouping <- Vehicle2$Class

R> levels(grouping)

[1] "bus" "opel" "saab" "van"

R> levels(grouping) <- c(4, 2, 1, 3)

We have “ordered” the populations in terms of the vehicle size. It could be reasonable to
think that the means of the first three variables decrease with the vehicle size (in fact, this
ordering is verified by the whole data set), so let us suppose the following restrictions on the
means: µ11 ≥ µ21 ≥ µ31 ≥ µ41, µ12 ≥ µ22 ≥ µ32 ≥ µ42, µ13 ≥ µ23 ≥ µ33 ≥ µ43. As this is a
classical simple order on these predictors and all orderings are decreasing, we easily specify
these restrictions by restext = "s>1,2,3".

We split the data set into a randomly selected training set and test set, fixing a seed in order
to get the same results as the reader.

R> set.seed(-9152)

R> values <- runif(nrow(data))

R> trainsubset <- (values < 0.25)

Now we can build the restricted quadratic discriminant rules:

R> obj <- rqda(data, grouping, subset = trainsubset, restext = "s>1,2,3")

R> obj

Restrictions:

- mu1,1 + mu2,1 <= 0

- mu1,2 + mu2,2 <= 0

- mu1,3 + mu2,3 <= 0

- mu2,1 + mu3,1 <= 0

- mu2,2 + mu3,2 <= 0

- mu2,3 + mu3,3 <= 0

- mu3,1 + mu4,1 <= 0

- mu3,2 + mu4,2 <= 0
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- mu3,3 + mu4,3 <= 0

Prior probabilities of classes:

class1 class2 class3 class4

0.2431193 0.2752294 0.2385321 0.2431193

Apparent error rate (%):

gamma=0 gamma=1

28.89908 29.81651

Note that, as we have neither specified gamma nor prior, restricted rules are by default
obtained for γ = 0, 1, and the class proportions of the training set are used as the prior
probabilities of class membership.

Now we consider the test set, containing the observations in data not present in the training
set, and classify them. As we know the classes of the observations in the test set, we can
estimate the true error rate.

R> testsubset <- (values >= 0.25)

R> pred <- predict(obj, newdata = data[testsubset, ],

+ grouping = grouping[testsubset])

R> pred$error.rate

gamma=0 gamma=1

True error rate (%): 32.80255 31.21019

Finally, we estimate the true error rate from the training sample.

R> err.est(obj)

Restrictions:

- mu1,1 + mu2,1 <= 0

- mu1,2 + mu2,2 <= 0

- mu1,3 + mu2,3 <= 0

- mu2,1 + mu3,1 <= 0

- mu2,2 + mu3,2 <= 0

- mu2,3 + mu3,3 <= 0

- mu3,1 + mu4,1 <= 0

- mu3,2 + mu4,2 <= 0

- mu3,3 + mu4,3 <= 0

Prior probabilities of classes:

class1 class2 class3 class4

0.2431193 0.2752294 0.2385321 0.2431193

True error rate estimation (%):

gamma=0 gamma=1

BT2 36.20905 35.75894
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BT3 36.30908 36.68417

BT2CV 32.25688 32.21101

BT3CV 32.29358 32.28440

In this case, BT2CV and again BT3CV provide good estimates of the true error rate.

Again, if we compare these results with the error rates for some standard unrestricted classi-
fiers such as QDA (MASS package) and random forest, for γ = 1 the test error rates for the
restricted quadratic rules are 7.98% lower than for QDA (33.92) and 14.78% lower than for
random forest (36.62).

In both examples we can see that there is a significant improvement with respect to usual
methods in statistical practice that do not take into account the additional information given
by the restrictions.

5. Conclusions

In this paper the R package dawai has been presented. The package provides the functions
needed to define linear or quadratic classification rules under order restrictions, to classify the
samples and to evaluate the accuracy of the rules.

We have also extended in this paper the definitions given in previous papers (Fernández et al.
2006, Conde et al. 2012, Conde et al. 2013) from the case of equal covariances in the differ-
ent populations to the case of unequal covariances among the populations and consequently
defined the corresponding restricted quadratic discriminant rules. Another novelty is the def-
inition of estimators of the accuracy of the rules for the general more than two populations
case, for restricted linear and quadratic discriminant rules, thus completing the procedures
presented in those three previous papers.

Though we have illustrated the proposed methodology using examples from biology and pat-
tern recognition, the software can obviously be applied to a wide range of contexts such as
medical image analysis, drug discovery and development, optical character and handwriting
recognition, document classification, credit scoring,. . . . We expect the software described to
be useful for researchers working in any of those fields.
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