
Journal of Computational and Applied Mathematics xx (xxxx) xxx–xxx

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Numerical integration of a hierarchically size-structured
population model with contest competition

Q1
∧
L.M.

∧
Abia a,

∧
O.

∧
Angulo b,∗,

∧
J.C.

∧
López-Marcos a,

∧
M.A.

∧
López-Marcos a

a Departamento de Matemática Aplicada. Facultad de Ciencias. Universidad de Valladolid. Valladolid, Spain
b Departamento de Matemática Aplicada. ETS de Ingenieros de Telecomunicación. Universidad de Valladolid. Paseo de Belén, 15 -
Campus Miguel Delibes, 47011 Valladolid, Spain

a r t i c l e i n f o

Article history:
Received 21 June 2011
Received in revised form 9 July 2013

Keywords:
Hierarchically size-structured population
models

Numerical integration
Convergence

a b s t r a c t

We formulate schemes for the numerical solution to a hierarchically size-structured
populationmodel. The schemes are analysed and optimal rates of convergence are derived.
Some numerical experiments are also reported to demonstrate the predicted accuracy of
the schemes and to show their behaviour to approaching stable steady states.

© 2013 Published by Elsevier B.V.

1. Introduction1

The study of population dynamics has evolved from simple unstructured models to fairly sophisticated structured ones.2

In these, there exists a variable which structures the population into different classes. The most widely used is age, but it is3

difficult to measure in a large number of species. Physiological characteristics, grouped generically under the name of size,4

are the alternative to age. These structured population models involve a first-order hyperbolic partial differential equation5

which represents a conservation law for the population, a boundary condition which reflects the reproduction process and6

an initial condition given by the initial size-distribution of the population. The evolution of the population is determined by7

so-called ‘‘vital functions’’ (fertility, mortality and growth rates). Reciprocally, the population also has an influence on such8

evolution through the vital functions which depend on functionals of the population density, so that the model becomes a9

nonlinear one.We can findmore details about physiologically structuredmodels in [1–4], about their numerical integration10

we refer to [5,6] and about the computational study of real populations. See, for example, [7–11].11

The model we study in this work assumes that the influence of the population on the life-history of
∧
individuals is of a12

contest kind. This means that the individuals in the population do not have the same opportunity in the competition for13

resources. This kind of model is known as a hierarchical size-structured population one. Here, we study a standard problem.14

It consists of a nonlinear partial differential equation (the population balance law),15

ut + (g(x, B(x, t), t) u)x = −µ(x, B(x, t), t) u, xm < x < xM , t > 0, (1.1)16

a nonlinear and nonlocal boundary condition which represents the birth law,17

g(xm, B(xm, t), t) u(xm, t) = Γ (t) +

 xM

xm
α(x, B(x, t), t) u(x, t) dx, t > 0, (1.2)18
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and an initial condition, 1

u(x, 0) = φ(x), xm ≤ x ≤ xM , (1.3) 2

where the nonlocal term B(x, t), is defined by 3

B(x, t) =

 xM

x
γ (σ ) u(σ , t) dσ , xm < x < xM , t > 0. (1.4) 4

The independent variables x and t represent size and time, where xm and xM are, respectively, the minimum and maximum 5

value reached by an individual in a given population. The function u(x, t) is the size-specific population density of individuals 6

with size x at time t . We also assume that the size of any individual varies according to the following ordinary differential 7

equation 8

d
dt

x(t) = g(x(t), B(x(t), t), t). (1.5) 9

Population dynamics
∧
are determined by the growth rate g , the mortality rate µ, the reproduction rate α and the external 10

inflow Γ . These nonnegative vital functions (growth, mortality and reproduction rates) depend on the structuring variable 11

and on the functional B(x, t) used to describe the competition among individuals. In this case, no individual in a class of a 12

smaller size can affect the amount of available resources of an individual larger in size,which is a kind of contest competition. 13

Also, all the functions depend on the time
∧
variable in order to take into

∧
account environmental changes. We could consider 14

different functionals in the vital functions dependency (g, µ and β). It would increase the complexity of the numerical 15

method description. However, this more general case would not increase the difficulty of the analysis. 16

This model can be used to describe the dynamics of a size-structured tree population which takes into account the effect 17

of competition for light [12–14]. In this case, the size is given by the diameter at breast height (d.b.h.) and B(x, t) represents 18

the cumulative basal area of trees with a size greater than x and expresses the shading effect under light competition. 19

Froma theoretical point of view, Cushing [15]was the first to study amodel like this. Itwas structured by age and included 20

a more general type of nonlinearity in which the vital rates depended on the number of older and/or younger individuals 21

than itself. However, the approach was limited to vital rates with no explicit age dependence. Later, in [16], Calsina and 22

Saldaña considered a hierarchically size-structured model, but they did not include explicit dependence on size in the vital 23

rates. They obtained the existence, uniqueness, asymptotic behaviour of the solutions and global asymptotical stability of 24

a nontrivial equilibrium. The existence and uniqueness of solutions for an autonomous model which included the explicit 25

dependence on the structured variable were studied by Kraev [17]. And Ackleh and Ito, in [18], proved the existence of 26

measure-valued solutions in a more general setting with less restrictions for the growth rate. 27

We should point out here that, without other restrictive assumptions, this kind of model cannot be solved analytically. 28

Moreover, when such models include nonlinearities and environmental dependence on the different vital rates, the use of 29

efficient methods that provide a numerical approach is the most suitable mathematical tool for studying the problem and, 30

indeed, is often the only one available. Nevertheless, the numerical approach to these equations has important drawbacks 31

because they are usually nonlinear equations, and the nonlinearities of the PDE and nonlocal boundary condition are caused 32

by nonlocal terms. The model (1.1)–(1.4) was studied in [19], where an implicit first-order finite difference scheme was 33

∧
analysed and its stability and convergence, as well as the existence, uniqueness, and well-posedness (in the L1 norm) of 34

bounded variation weak solutions for (1.1), were proved. In [20], for the autonomous version of (1.1)–(1.4), Shen et al. 35

proved the convergence of an upwind scheme and another method which were only first-order in time and second-order 36

in size discretization. 37

In the present paper, we introduce second-order numerical methods for the solution to this nonlinear and 38

nonautonomous model and we also develop the convergence analysis of a general formulation. We carry out the numerical 39

integration of Eqs. (1.1)–(1.4) by means of methods which integrate along the characteristic curves in different settings: the 40

use of all the grid nodes, the use of a gridwith a constant number of nodes in every time step bymeans of a suitable selection, 41

and the use of a more specific selection of grid nodes which allows us to change their number (increasing or diminishing). 42

The integral terms are approximated by means of second-order quadrature rules. We analyse the consistency, stability and 43

convergence properties of a general numerical scheme which covers the situation where the quadrature rule used at a time 44

step is based on nodes obtained by integration along the characteristics with the nodes employed at the previous time step. 45

We also provide numerical experiments to show the accuracy of the schemes and their behaviour in long time integration. 46

These methods could be clearly generalized for other situations like the ones studied in [21]. Also, we would like to point 47

out that the nonautonomous case is important from the biological point of view, as we can see in [22] and the references 48

therein. 49

Throughout the paper we assume the following regularity conditions on the data functions and the solution to the 50

problem (1.1)–(1.4) which will be integrated in a fixed time interval [0, T ]: 51

(H1) u ∈ C2([xm, xM ] × [0, T ]), u(x, t) ≥ 0, x ∈ [xm, xM ], u(xM , t) = 0, t ≥ 0. 52

(H2) γ ∈ C2([xm, xM ]). 53

(H3) Γ ∈ C1([0, T ]). 54

(H4) µ ∈ C2([xm, xM ] × DB × [0, T ]), is nonnegative. 55
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Table 1
Notation.

Model

xm Minimum size xM Maximum size
g Growth rate B Competition functional
µ Mortality rate γ Weight function
α Fertility rate φ Initial density
Γ external inflow DB Compact neighbourhood
[0, T ] Fixed time interval

Numerical integration

x(t; t∗, x∗) Characteristic curve m Auxiliary rate
w(t; t∗, x∗) Solution along characteristic curve N Number of time steps
J + 1 Number of initial grid nodes h Spatial discretization parameter
k Time discretization parameter tn Discrete time level
Jn + 1 Number of Grid nodes at tn Xn

j Grid node
Un
j Numerical Approximation of u(Xn

j , tn) Inj Numerical approximation to
B(Xn

j , tn)
Qj Quadrature rule Xn,∗

j Auxiliary node
Un,∗
j Auxiliary solution approximation In.∗j Auxiliary functional approximation

β Fixed value in selection strategy (2.20) λn number of eliminated nodes

Convergence

H Set of h values r Fixed positive constant
Ah Space of approaches Bh Space of residuals
xh Theoretical grid values uh Theoretical solution values
R, p Positive constants 8h Discretization operator
yn, zn Related to grid values qn,ji Quadrature weight
Vn,Wn Related to solution values λn

l(j) First subgrid subindex greater than j
Yn, Zn Related to residuals in grid approach lh Local discretization error
Pn, Ln Related to residuals in solution approach ẽh Global discretization error

(H5) α ∈ C2([xm, xM ] × DB × [0, T ]), is nonnegative.1

(H6) g ∈ C3([xm, xM ] × DB × [0, T ]), is nonnegative, g(xm, z, t) ≥ C > 0, g(xM , z, t) = 0, and gz(x, z, t) ≤ 0, x ∈2

[xm, xM ], z ∈ R, t > 0.3

In hypotheses (H4)–(H6), DB is a compact
∧
neighbourhood of4

{B (x, t) , xm ≤ x ≤ xM , 0 ≤ t ≤ T } .5

The above hypotheses can be based on three possible reasons. First, biological assumptions such as the nonnegativity of6

the vital functions or, in (H6), to reflect that the size of any individual in the population studied [23,1,24] is strictly increasing7

during its lifetime and never reaches the maximum value. Second, the mathematical requirements to obtain the existence8

and uniqueness of solutions to the problem (1.1)–(1.4), [21]. Last, the regularity properties needed in the numerical analysis9

to derive optimal rates of convergence [25].10

The paper is structured as follows. In Section 2, we introduce the numerical methods we employ to make the integration11

of the problem (1.1)–(1.4). From Sections 3 to 6 we analyse the numerical schemes: first we introduce some preliminary12

results, then we prove the consistency and stability properties in order to obtain their convergence. In the final section we13

present numerical results which confirm the theoretical ones and the good behaviour of each numerical scheme when it14

approaches the stable steady state of a particular problem. The notation employed throughout the paper is given in Table 1.15

16

2. Numerical integration17

In this section, we describe the numerical methods employed for the integration of Eqs. (1.1)–(1.4). First, we rewrite the18

partial integro-differential equation in a more suitable form for its numerical treatment. Thus, we define19

m(x, z, u, t) = µ(x, z, t) + gx(x, z, t) − gz(x, z, t) γ (x) u.20

Thus, (1.1) has the form21

ut(x, t) + g(x, B(x, t), t) ux(x, t) = −m(x, B(x, t), u(x, t), t) u(x, t), (2.6)22

xm < x < xM , t > 0. Next, we denote by x(t; t∗, x∗) the characteristic curve of Eq. (2.6) which takes the value x∗ at time t∗.23

This is the solution to the following initial value problem,24 
x′(t; t∗, x∗) = g(x(t; t∗, x∗), B(x(t; t∗, x∗), t), t), t ≥ t∗,
x(t∗; t∗, x∗) = x∗.

(2.7)25
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Note that x(t; 0, xM) = xM , t ≥ 0; because we assume that g(xM , ·, ·) = 0. Then, we define the function 1

w(t; t∗, x∗) = u(x(t; t∗, x∗), t), t ≥ t∗, (2.8) 2

which satisfies the following initial value problem, 3
d
dt

w(t; t∗, x∗) = −m

x

t; t∗, x∗


, B(x(t; t∗, x∗), t), w(t; t∗, x∗), t


w(t; t∗, x∗), t ≥ t∗,

w(t∗; t∗, x∗) = u(x∗, t∗),
(2.9) 4

and, therefore, it can be represented by the following formula 5

w(t; t∗, x∗) = u(x∗, t∗) exp

−

 t

t∗
m

x

τ ; t∗, x∗


, B(x


τ ; t∗, x∗


, τ ), w(τ ; t∗, x∗), τ


dτ


. (2.10) 6

We suppose that u(xM , 0) = 0 and then u(xM , t) = 0, t ≥ 0. We shall use this property in our numerical method. However, 7

it can be easily modified to cover other cases. 8

Our numerical methods are based on the numerical integration along characteristics curves because these kind of 9

schemes have shown its efficiency in other cases [25]. Also, other types of methods (like the total variation diminishing 10

schemes) might not be suitable in simple situations in which the total variation of the solution
∧
increases. This situation 11

could
∧
happen when the growth rate has no dependence on the population and gx +µ < 0 and, therefore, the solution could 12

be unbounded. Also, when gz is positive and the conditions of existence of Kraev [17] do not satisfy. 13

Now, we will introduce the numerical schemes we are going to use. The numerical integration along with characteristics 14

means that the number of grid nodes increases
∧
by one at every time step because there is one node which fluxes from the 15

minimum size, as we can see in [25]. Therefore, first wewill introduce a numerical methodwhich employs all the grid nodes 16

obtained in the computation. 17

Let J and N be positive integers. We define the spatial and time discretization parameters as h =
xM−xm

J and k =
T
N , 18

respectively.We define the discrete time levels as tn = n k, 0 ≤ n ≤ N , and the initial grid nodes as X0
j = xm+ j h, 0 ≤ j ≤ J . 19

We suppose that the approximations to the theoretical solution at the initial time (φ in (1.3)) in such nodes are known, 20

U0
j , 0 ≤ j ≤ J . Thus, we denote 21

X0
=

X0
0 = xm, X0

1 , . . . , X0
J−1, X

0
J = xM


, U0

=

U0
0 ,U

0
1 , . . . ,U

0
J−1,U

0
J = 0


, 22

the initial size grid and the initial approximation to the solution. Also, we introduce I0 =

I00 , I

0
1 , . . . , I

0
J−1, I

0
J = 0


, where 23

I0j = Qj(X0, γ(X0)U0), (2.11) 24

is defined as the discrete version of (1.4) at x = X0
j , j = 0, 1, . . . , J , by using approximations to the integral term. In (2.11) 25

andhenceforth, the product of the vectorsγ(X)Umust be interpreted componentwise. In this case,wepropose the following 26

second-order composite quadrature rules throughout the paper; for (p + 1)-dimensional vectors X = {X0, X1, . . . , XP} and 27

V = {V0, V1, . . . , VP}, representing the vector of nodes of the spatial grid and the vector of values of the function at the 28

spatial grid, respectively, 29

Q0(X,V) = V1 (X1 − xm) +

P−1
l=1

Xl+1 − Xl

2
(Vl + Vl+1) , (2.12) 30

Qj(X,V) =

P−1
l=j

Xl+1 − Xl

2
(Vl + Vl+1) , 1 ≤ j ≤ P − 1. (2.13) 31

Expressions γ(X) and α(X,U) denote the vectors obtained from the evaluation of function γ and α at the corresponding 32

values. 33

We obtain the numerical approximations at time level t1 as follows. First, we compute the following auxiliary values 34

X1,∗
0 = xm; X1,∗

j+1 = X0
j + k g(X0

j , I0j , t0), 0 ≤ j ≤ J − 1; X1,∗
J+1 = xM; 35

U1,∗
j+1 = U0

j exp

−km


X0
j , I0j ,U

0
j , t0


, 0 ≤ j ≤ J − 1; U1,∗

J+1 = 0; 36

and I1,∗j = Qj(X1,∗, γ(X1,∗)U1,∗), 1 ≤ j ≤ J + 1. These formulae are valid approximations for the solution to the problem, 37

but they only contribute with the first convergence order and we want to build a second-order convergence scheme. 38
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Then, we obtain the grid nodes X1
=

X1
0 = xm, X1

1 , . . . , X1
J , X1

J+1 = xM

, by the numerical integration of (2.7) with the1

improved Euler method,2

X1
j+1 = X0

j +
k
2


g(X0

j , I0j , t0) + g(X1,∗
j+1, I

1,∗
j+1, t1)


, (2.14)3

0 ≤ j ≤ J − 1. Now, we calculate U1
=

U1
0 ,U

1
1 , . . . ,U

1
J ,U

1
J+1 = 0


, the corresponding approximations to the theoretical4

solution. For the approximation to the corresponding interior grid points, we use the following discretization of (2.10), based5

on the trapezoidal quadrature rule,6

U1
j+1 = U0

j exp


−
k
2


m

X0
j , I0j ,U

0
j , t0


+ m


X1,∗
j+1, I

1,∗
j+1,U

1,∗
j+1, t1


, (2.15)7

0 ≤ j ≤ J − 1. Then, we compute I1j = Qj(X1, γ(X1)U1), 0 ≤ j ≤ J + 1. Finally, we derive the approximation U1
0 to u(xm, t1)8

from a discrete version of the boundary condition (1.2) Q29

U1
0 =

Γ (t1) + Q0(X1, α(X1,U1)U1)

g(xm, I10 , t1)
. (2.16)10

As in (2.11), we denote the componentwise product of the vectors α(X,U) and U by α(X,U)U. Note that the method11

introduces a new grid node which fluxes from the boundary. Thus, we set J0 = J and introduce the number of grid nodes at12

level t1 as J1 + 1, with J1 = J0 + 1. We also want to indicate that such a scheme is explicit.13

Next, we describe the general time step tn+1, 0 ≤ n ≤ N − 1. Now, we suppose that the numerical approximations at14

the previous time level tn are known,15 
Xn
0 = xm, Xn

1 , . . . , Xn
Jn−1, X

n
Jn = xM


,


Un
0 ,U

n
1 , . . . ,U

n
Jn−1,U

n
Jn = 0


,16

and

In0 , I

n
1 , . . . , I

n
Jn−1, I

n
Jn


, where Jn is the number of grid nodes at tn. We recall that Xn

j and Xn+1
j+1 , 0 ≤ j ≤ Jn − 1, are17

(numerically) in the same characteristic curve. First, we compute the auxiliary values,18

Xn+1,∗
0 = xm; Xn+1,∗

j+1 = Xn
j + k g(Xn

j , Inj , tn), 0 ≤ j ≤ Jn − 1;19

Un+1,∗
j+1 = Un

j exp

−km


Xn
j , Inj ,U

n
j , tn


, 0 ≤ j ≤ Jn − 1;20

Xn+1,∗
Jn+1 = xM; Un+1,∗

Jn+1 = 0;21

and In+1,∗
j = Qj(Xn+1,∗, γ(Xn+1,∗)Un+1,∗), 1 ≤ j ≤ Jn + 1. We correct these values to obtain second-order approximations.22

The grid values at the time level tn+1,23

Xn+1
=

Xn+1
0 = xm, Xn+1

1 , . . . , Xn+1
Jn , Xn+1

Jn+1 = xM

,24

by means of the numerical integration of (2.7),25

Xn+1
j+1 = Xn

j +
k
2


g(Xn

j , Inj , tn) + g(Xn+1,∗
j+1 , In+1,∗

j+1 , tn+1)


, (2.17)26

0 ≤ j ≤ Jn − 1, and the approximations to the theoretical solution in these nodes at such a time level,27

Un+1
=

Un+1
0 ,Un+1

1 , . . . ,Un+1
Jn ,Un+1

Jn+1 = 0

,28

using the discretization of (2.10) for the approximation at the interior grid points,29

Un+1
j+1 = Un

j exp


−
k
2


m

Xn
j , Inj ,U

n
j , tn


+ m


Xn+1,∗
j+1 , In+1,∗

j+1 ,Un+1,∗
j+1 , tn+1


, (2.18)30

0 ≤ j ≤ Jn − 1, and the approximation Un+1
0 to u(xm, tn+1), using a discretization of the boundary condition (1.2),31

Un+1
0 =

Γ (tn+1) + Q0(Xn+1, α(Xn+1,Un+1)Un+1)

g(xm, In+1
0 , tn+1)

, (2.19)32

where αj(Xn+1,Un+1) = α(Xn+1
j , In+1

j , tn+1), 0 ≤ j ≤ Jn + 1, and33

In+1
j = Qj(Xn+1, γ(Xn+1)Un+1), 0 ≤ j ≤ Jn + 1.34

We define Jn+1 = Jn + 1. We observe that, at consecutive time levels, we work with a different number of nodes because35

we have introduced a new node which fluxes through the boundary. So, at time level tn, we have (Jn + 1) grid nodes and36

at time level tn+1 we have (Jn + 2). This fact increases the memory requirements and computational cost. We could think37

of another kind of method which, at each time step, selects the nodes used in the numerical integration with different38

efficiency motivations. For example, we could propose a method which keeps the number of nodes constant at every time39



6 L.M. Abia et al. / Journal of Computational and Applied Mathematics xx (xxxx) xxx–xxx

step. Another possibility consists of selecting the grid nodes to obtain a suitable dynamic of the grid points in large time 1

integration. These kind of schemes need a selection procedure after each time step. 2

Next, we describe the general setting when we introduce such a selection. The first time step integration is given by 3

the Eqs. (2.14)–(2.16) and J1 = J + 1. The equations of the general time integration tn+1, 0 ≤ n ≤ N − 1 are given by 4

(2.17)–(2.19). At this moment, the treatment of the number of nodes in the subsequent levels of time has to be decided. As 5

we pointed out, we could think of several strategies for the number of grid nodes. Therefore, we take the choice in the grid 6

nodes which would continue the numerical integration and we consider Jn+1 related to the number of grid nodes we set at 7

time level tn+1. For example, we could select some characteristic curves and we do not compute the approximations at such 8

curves. We define λn as the first l ∈ N which satisfies 9

|Xn+1
Jn+1 − Xn+1

Jn−(l+1)| > β h, (2.20) 10

with β a fixed value.We eliminate the grid nodes Xn+1
Jn−l , l = 0, . . . , λn−1. Also, we do not consider the corresponding values 11

in the vectors Un+1 and In+1. Then, we define the value Jn+1 as Jn − λn + 1, where λn = 0 means that we do not eliminate 12

any node. Another possible choice involves eliminating the computation of the characteristic curve which begins at Xn+1
l , 13

so that 14

|Xn+1
l+1 − Xn+1

l−1 | = min
1≤j≤Jn

|Xn+1
j+1 − Xn+1

j−1 | (2.21) 15

and the corresponding value in the vectors Un+1 and In+1. Then, we define the value Jn+1 as Jn. Again, we should point out 16

that the scheme is explicit. 17

3. Convergence analysis: preliminaries 18

In this section, we begin the analysis of a general class of numerical methods. More precisely, we consider a formulation 19

in which, for each time level, all the nodes are considered, as were done in the method described by (2.14)–(2.19). However, 20

at each time level, we have a quadrature rule which could be based on a subgrid. In this way, the numerical schemes with a 21

selection procedure could be viewed asmethodswhich employ quadrature rules based on the position of the nodes selected 22

at each time step. When a node is eliminated, the quadrature rules considered for the following time steps do not take into 23

account the position of this node as moving along the characteristic curve. Actually, the numerical methods as presented 24

in the previous section do not compute the
∧
characteristic curves relative to those nodes to improve their efficiency, but to 25

carry out our convergence analysis it is necessary to take into account all of them. 26

The convergence resultwill be obtained bymeans of consistency andnonlinear stability. In order to carry out this analysis, 27

we have to rewrite it into the discretization framework developed by López-Marcos et al. [26]. 28

We assume that the spatial discretization parameter, h, takes values in the set H = {h > 0 : h = (xM − xm)/J, J ∈ N}. 29

Now, we suppose that the time step, k, satisfies k = r h, where r is an arbitrary and positive constant fixed throughout the 30

analysis. In addition, we set N = [T/k]. For each h ∈ H , we define the space 31

Ah =

N
n=0


RJ+n−1

× RJ+n , 32

where, for each time level n, 0 ≤ n ≤ N, RJ+n−1 is used for the approximations to the interior grid nodes, and RJ+n for those 33

to the theoretical solution on them and on the left boundary node. We also consider the space 34

Bh =

RJ−1

× RJ
× RN

×

N
n=1


RJ+n−1

× RJ+n−1 , 35

where

RJ−1

× RJ

is employed to compare with the initial approximations; RN considers the residuals which take place in 36

the approximation to the solution at the boundary node for every time step; and
N

n=1


RJ+n−1

× RJ+n−1

, is used for the 37

residuals which arise in the formulae which define the grid nodes and the solution values. We note that in spaces Ah and 38

Bh, we do not consider the first and last grid nodes and the value of the solution at the last grid node because they are fixed 39

values. Thus, both spaces have the same dimension. 40

In order to measure the size of the errors, we define 41

∥η∥∞ = max
1≤j≤p

|ηj|, η = (η1, η2, . . . , ηp) ∈ Rp, 42

(B∞(η, ρ) represents the corresponding open ball with centre η and radius ρ > 0), and 43

∥Vn
∥1 =

J+n−1
j=0

h |V n
j |, Vn

∈ RJ+n. 44
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Now, we endow spaces Ah and Bh with the following norms. If

y0,V0, . . . , yN ,VN


∈ Ah, then1

∥

y0,V0, . . . , yN ,VN

∥Ah = max


max
0≤n≤N

∥yn∥∞, max
0≤n≤N

∥Vn
∥∞


.2

On the other hand, if

Y0, Z0, Z0, Y1, Z1, . . . , YN , ZN


∈ Bh, then3


Y0, Z0, Z0, Y1, Z1, . . . , YN , ZN

∥Bh = ∥Y0
∥∞ + ∥Z0

∥∞ + ∥Z0∥∞ +

N
n=1

k ∥Zn
∥∞ +

N
n=1

k ∥Yn
∥∞.4

For each h ∈ H , we define5

xh = (x0, x1, x2, . . . , xN),6

xn = (xn1, . . . , x
n
J+n−1) ∈ RJ+n−1, 0 ≤ n ≤ N,7

x0j = xm + j h, 1 ≤ j ≤ J,8

xnj = x(tn; tn−1, xn−1
j−1 ), 1 ≤ j ≤ J + n − 1, 1 ≤ n ≤ N; (3.1)9

and we denote xn0 = xm and xnJ+n = xM , n ≥ 0. Recall that x(t; t∗, x∗) represents the theoretical solution to problem (1.5),10

t∗ ∈ [0, T ], x∗
∈ [xm, xM ]. In addition, if u represents the theoretical solution to (1.1)–(1.4) we define11

uh = (u0,u1,u2, . . . ,uN),12

un
= (un

0, u
n
1, . . . , u

n
J+n−1) ∈ RJ+n, 0 ≤ n ≤ N,13

un
j = u(xnj , tn), 0 ≤ j ≤ J + n − 1, 0 ≤ n ≤ N, (3.2)14

and we denote un
J+n = 0. Therefore, ũh = (x0,u0, x1,u1, . . . , xN ,uN) ∈ Ah.15

Next, we define the discretization operator. Let R be a positive constant and we denote by BAh(ũh, R hp) ⊂ Ah the open16

ball with
∧
centre ũh and radius R hp, 1 < p < 2. Next, we introduce the operator17

8h : BAh(ũh, R hp) → Bh,18

8h

y0,V0, . . . , yN ,VN

=

Y0, P0, P0, Y1, P1, . . . , YN , PN , (3.3)19

defined by the following equations,20

Y0
= y0 − X0

∈ RJ , (3.4)21

P0
= V0

− U0
∈ RJ+1. (3.5)22

Vectors X0 and U0 represent approximations at t = 0, respectively, to the initial grid nodes and to the theoretical solution23

at them. Also,24

Pn+1
0 = V n+1

0 −
Γ (tn+1) + Qn+1

0


yn+1, α(yn+1,Vn+1)Vn+1


g

xm, Qn+1

0


yn+1, γ(yn+1)Vn+1


, tn+1

 , (3.6)25

Y n+1
j+1 =

1
k


yn+1
j+1 − ynj −

k
2


g

ynj , Qn

j


yn, γ(yn)Vn , tn

+ g

yn+1,∗
j+1 , Qn+1

j+1


yn+1,∗, γ(yn+1,∗)Vn+1,∗ , tn+1


, (3.7)26

Pn+1
j+1 =

1
k


V n+1
j+1 − V n

j exp


−
k
2


m

ynj , Qn

j


yn, γ(yn)Vn , V n

j , tn


+ m

yn+1,∗
j+1 , Qn+1

j+1


yn+1,∗, γ(yn+1,∗)Vn+1,∗ , V n+1,∗

j+1 , tn+1


, (3.8)27

0 ≤ j ≤ J + n − 1, 0 ≤ n ≤ N − 1. Where, with the notation introduced in Section 2,28

yn+1,∗
0 = xm, yn+1,∗

J+n+1 = xM ,29

yn+1,∗
j+1 = ynj + k g(ynj , Qn

j


yn, γ(yn)Vn , tn), 0 ≤ j ≤ J + n − 1, (3.9)30

V n+1,∗
j+1 = V n

j exp

−km


ynj , Qn

j


yn, γ(yn)Vn , V n

j , tn


, 0 ≤ j ≤ J + n − 1,31

V n+1,∗
J+n+1 = 0, (3.10)32
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0 ≤ n ≤ N − 1, αn
j (y,V) = α(ynj , Qn

j (y, γ(y)V) , tn), γ n
j (y) = γ (ynj ), 0 ≤ j ≤ J + n, 1 ≤ n ≤ N; γ

n,∗
j (y) = γ (yn,∗j ), 0 ≤ 1

j ≤ J + n + 1. On the other hand, we denote by 2

Qn
0(X,V) =

J+n
l=1

qn,0l (X) Vl, Qn
j (X,V) =

J+n
l=j

qn,jl (X) Vl, 3

the general quadrature rules employed at each time level. These quadrature rules use fixed values for nodes yn0 = xn0 = 4

xm, ynJ+n = xnJ+n = xM , and for the solution V n
J+n = V n

J+n = 0, 0 ≤ n ≤ N . 5

Note that, 8h takes into account all the possible nodes and their corresponding solution values at each time level, and it 6

employs quadrature rules possibly based on a subgrid. If Ũh = (X0,U0,X1,U1, . . . ,XN ,UN) ∈ BAh(ũh, R hp), satisfies 7

8h(Ũh) = 0 ∈ Bh, (3.11) 8

the nodes and the corresponding values to the solution at such nodes of Ũh are a numerical solution to the scheme defined 9

by (2.14)–(2.19) when the quadrature rules are given by (2.12)–(2.13). On the other hand, the numerical solution to the 10

scheme defined by (2.14)–(2.19) satisfies (3.11). 11

Henceforth, C will denote a positive constant, independent of h, k (k = r h), j (0 ≤ j ≤ J + n) and n (0 ≤ n ≤ N); C 12

possibly has different values in different places. Now, we introduce the following properties that we suppose the quadrature 13

rules satisfy. These are the sufficient properties the quadrature rules have to satisfy to carry out our convergence analysis. 14

(P1)
B(xnj , tn) − Qn

j (xn, γ(xn)un)
 ≤ C h2, if h → 0, where γj(xn) = γ (xnj ), 0 ≤ j ≤ J + n, 0 ≤ n ≤ N . 15

(P2)
 xM

xm
α(x, B(x, tn), tn) u(x, tn) dx − Qn

0 (xn, α(xn, Bn)un)

 ≤ C h2, if h → 0, 0 ≤ n ≤ N . Where αn
j (x

n, Bn) = 16

α

xnj , B(x

n
j , tn), tn


, 0 ≤ j ≤ J + n, 0 ≤ n ≤ N . 17

(P3) |qn,ji (xn)| ≤ q h, where q is a positive constant independent of h, k (k = r h), j (0 ≤ j ≤ J + n) and n (0 ≤ n ≤ N), 18

j ≤ i ≤ J + n, 0 ≤ j ≤ J + n, 0 ≤ n ≤ N . 19

(P4) Let R and p be positive constants with 1 < p < 2. The functions qn,ji are Lipschitz continuous in B∞(xn, R hp), j ≤ i ≤ 20

J + n, 0 ≤ j ≤ J + n, 0 ≤ n ≤ N . 21

(P5) Let R and p be positive constants with 1 < p < 2. If yn, zn ∈ B∞(xn, R hp) and Vn
∈ B∞(un, R hp), 22

|Qn
j (y

n, γ(zn)Vn) − Qj(zn, γ(zn)Vn)| ≤ C∥yn − zn∥∞, 23

if h → 0, 0 ≤ j ≤ J + n, 0 ≤ n ≤ N . 24

(P6) Let R and p be positive constants with 1 < p < 2. If yn, zn ∈ B∞(xn, R hp) and Vn
∈ B∞(un, R hp),Q3 25

|Qn
j (y

n, α(zn,Vn)Vn) − Qn
j (z

n, α(zn,Vn)Vn)| ≤ C ∥yn − zn∥∞, 26

if h → 0, 0 ≤ j ≤ J + n, 0 ≤ n ≤ N . 27

The following result shows that operator (3.3) is well defined. 28

Proposition 1. Let us assume that hypotheses (H1)–(H6) about problem (1.1)–(1.4), and properties (P1)–(P6) of the quadrature 29

rules hold. If 30
X0,V0, . . . ,XN ,VN

∈ BAh(ũh, R hp), 31

where R is a fixed positive constant and 1 < p < 2, then, for h sufficiently small, 32

Qn
j (X

n, γ(Xn)Vn) ∈ DB, (3.12) 33

0 ≤ n ≤ N, and 34

Qn
j (X

n,∗, γ(Xn,∗)Vn,∗) ∈ DB, (3.13) 35

0 ≤ n ≤ N − 1. 36

Proof. The definition of Qn
j , the hypotheses (H1)–(H6), the properties (P1)–(P6) and that Vn is bounded, allow us to obtain 37Qn

j (X
n, γ(Xn)Vn) − B(xnj , tn)

 ≤ C ∥Xn
− xn∥∞ 38

+

 J+n
l=j

qn,jl (X)

γ

Xn
l


− γ


xnl


Vl

+
 J+n
l=j

qn,jl (X) γ

xnl
 

Vl − un
l

+ o(1) 39

≤ C R hp
+ C q R hp+1 (J + n − j + 1)


∥Vn

∥∞ + ∥γ ∥∞


+ o(1), (3.14) 40

0 ≤ j ≤ J + n, 0 ≤ n ≤ N, h → 0. Therefore, (3.12) holds for h sufficiently small. On the other hand, (3.13) is easily derived 41

following the same arguments. � 42
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On the other hand, the quadrature rules employed in the numerical methods presented in Section 2 could bewritten into1

this notation as2

Qn
0(X,V) = Vλn1


Xλn1

− xm


+

Jn−1
l=1

Xλnl+1
− Xλnl

2


Vλnl

+ Vλnl+1


, (3.15)3

Qn
j (X,V) = Vλnl(j)


Xλnl(j)

− Xj


+

Jn−1
l=l(j)

Xλnl+1
− Xλnl

2


Vλnl

+ Vλnl+1


, (3.16)4

1 ≤ j ≤ J + n − 1, where λn
l(j) corresponds to the first subindex in the subgrid with j ≤ λl(j). If we consider this choice of5

quadrature rules, it is shown that they satisfy the properties (P1)–(P6).6

Theorem 1. Let us assume that the hypotheses (H1)–(H6) about problem (1.1)–(1.4) hold. Let R and p be positive constants with7

1 < p < 2. If yn, zn ∈ B∞(xn, R hp) and Vn
∈ B∞(un, R hp) and


xn
λnl

Jn
l=0

, 0 ≤ n ≤ N, are subgrids with the property8

(SG) There exists a positive constant C such that, for h sufficiently small, xn
λnl+1

−xn
λnl

≤ C h, 0 ≤ l ≤ Jn−1, xn
λn0

= xm, xn
λnJn

= xnJ+n,9

with

xn
λnl

Jn
l=0

contained in xn, 0 ≤ n ≤ N.10

Thus, the quadrature rules (3.15)–(3.16) satisfy properties (P1)–(P6).11

Proof. We note that properties (P1)–(P4) can be easily derived under our assumptions by means of property (SG) and the12

properties of the composite trapezoidal quadrature rule and the rectangular quadrature rule. On the other hand, proof of13

(P5) and (P6) is very similar. Therefore, we will establish (P5) and omit the proof of (P6).14

We will rewrite the formula in this way15

Qn
j (y

n, γ(zn)Vn) − Qn
j (z

n, γ(zn)Vn) =


ynλl(j) − znλl(j)


−

ynj − znj


γ (znλl(j)) V

n
λl(j)

16

−

Jn−1
l=l(j)+1

ynλl − znλl
2


γ

znλl+1


V n

λl+1
− γ


znλl−1


V n

λl−1


−

ynλl(j) − znλl(j)
2


γ

znλl(j)+1


V n

λl(j)+1
+ γ


znλl(j)


V n

λl(j)


17

+

ynλJn − znλJn
2


γ

znλJ−1


V n

λJ−1
+ γ


znλJ


V n

λJ


. (3.17)18

Now, the hypotheses (H1)–(H6), ∥Vn
∥∞ < ∞, and the property (SG), allow us to obtain19 γ znλl+1


V n

λl+1
− γ


znλl−1


V n

λl−1

 ≤

γ znλl+1


− γ


xnλl+1


V n

λl+1

20

+

γ znλl−1


− γ


xnλl−1


V n

λl−1

+ γ xnλl+1

 
V n

λl+1
− un

λl+1

21

+

γ xnλl−1

 
V n

λl−1
− un

λl−1

+ γ xnλl+1


un

λl+1
− γ


xnλl−1


un

λl−1

22

≤ C

hp

+ h

, (3.18)23

l(j) + 1 ≤ l ≤ Jn − 1. Thus, by means of (3.17)–(3.18) and Jn ≤ (C1 h)−1, we obtain24

|Qn
j (y

n, γ(zn)Vn) − Qn
j (z

n, γ(zn)Vn)| ≤ C ∥yn − zn∥∞


1 +


hp

+ h


(Jn − 1 − l(j))


25

≤ C ∥yn − zn∥∞ (3.19)26

as desired. �27

4. Consistency28

We define the local discretization error as29

lh = 8h(ũh) ∈ Bh,30

and we say that the discretization (3.3) is consistent if, as h → 0,31

lim ∥8h(ũh)∥Bh = lim ∥lh∥Bh = 0.32

The following theorem establishes the consistency of the numerical scheme defined by Eqs. (3.4)–(3.8).33

Theorem 2. Let us assume that hypotheses (H1)–(H6) about problem (1.1)–(1.4), and properties (P1)–(P6) of the quadrature34

rule hold. Then, as h → 0, the local discretization error satisfies,35

∥8h(ũh)∥Bh = ∥u0
− U0

∥∞ + ∥x0 − X0
∥∞ + O(h2

+ k2). (4.1)36
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Proof. We denote 8h(ũh) = (Z0, L0, L0, Z1, L1, . . . , ZN , LN). 1

First, we set bounds for the auxiliary values. Then, by means of the definitions (3.9)–(3.10), the regularity hypothe- 2

ses (H1)–(H6), the property (P1) and the error bound for the explicit Euler method and the rectangular quadrature rule, 3

we obtain 4

|xnj − xn,∗j | ≤
x tn; tn−1, xn−1

j−1


− xn−1

j−1 − k g

xn−1
j−1 , B


xn−1
j−1 , tn−1


, tn−1

 5

+ k
g xn−1

j−1 , B

xn−1
j−1 , tn−1


, tn−1


− g


xn−1
j−1 , Qn−1

j−1


xn−1, γ


xn−1 un−1 , tn−1

 6

≤ C k2 + C k
B xn−1

j−1 , tn−1

− Qn−1

j−1


xn−1, γ


xn−1 un−1 7

≤ C

k2 + h2 , (4.2) 8

1 ≤ j ≤ J + n − 1, and 9

|un
j − un,∗

j | ≤ C


 tn

tn−1

m

x(τ ; tn−1, xn−1

j−1 ), B

x(τ ; tn−1, xn−1

j−1 ), τ

, u

x(τ ; tn−1, xn−1

j−1 ), τ

, τ

dτ 10

− km

xn−1
j−1 , B


xn−1
j−1 , tn−1


, un−1

j−1 , tn−1
+ C k

m xn−1
j−1 , B


xn−1
j−1 , tn−1


, un−1

j−1 , tn−1


11

−m

xn−1
j−1 , Qn−1

j−1


xn−1, γ(xn−1)un−1 , un−1

j−1 , tn−1
 12

≤ C k2 + C k
B xn−1

j−1 , tn−1

− Qn−1

j−1


xn−1, γ(xn−1)un−1 13

≤ C

k2 + h2 , (4.3) 14

1 ≤ j ≤ J + n − 1, 1 ≤ n ≤ N . 15

Now,we set the bounds for Zn, 1 ≤ n ≤ N . Bymeans of (2.7) and (3.7), the regularity hypotheses (H1)–(H6), the property 16

(P1), inequalities (4.2)–(4.3), and the error bound of R-K schemes employed, we have 17

|Zn
j | =

1
k

xnj − xn−1
j−1 −

k
2


g

xn−1
j−1 , Qn−1

j−1


xn−1, γ


xn−1 un−1 , tn−1


+ g


xn,∗j , Qn

j


xn,∗, γ


xn,∗


un,∗ , tn  18

≤ C

k2 +

B xn−1
j−1 , tn−1


− Qn−1

j−1


xn−1, γ


xn−1 un−1+ C

xnj − xn,∗j

+ B xnj , tn− B

xn,∗j , tn

 19

+ C
B xn,∗j , tn


− Qn

j


xn,∗, γ


xn,∗


u(xn,∗, tn)

 20

+ C
Qn

j


xn,∗, γ


xn,∗


u(xn,∗, tn)


− Qn

j


xn,∗, γ


xn,∗


un,∗ 21

≤ C (k2 + h2), (4.4) 22

1 ≤ j ≤ J +n−1, 1 ≤ n ≤ N . Next, analogous arguments to those used to derive (4.4) lead us to establish the bound for the 23

truncation errors produced by the solution to the PDE. Bymeans of (2.10) and (3.8), the regularity hypotheses (H1)–(H6), the 24

property (P1) of the quadrature rule, inequalities (4.2)–(4.3), and the error bound of the trapezoidal quadrature rule, we have 25

|Lnj | ≤
1
k

|un−1
j−1 |

exp


−

 tn

tn−1

m

x(τ ; tn−1, xn−1

j−1 ), B

x(τ ; tn−1, xn−1

j−1 ), τ

, u

x(τ ; tn−1, xn−1

j−1 ), τ

, τ

dτ


26

− exp

−

k
2


m

xn−1
j−1 , Qn−1

j−1


xn−1, γ


xn−1 un−1 , un−1

j−1 , tn−1


27

+m

xn,∗j , Qn

j


xn,∗, γ


xn,∗


un,∗ , un,∗

j , tn
   28

≤ C k2 + C
B xn−1

j−1 , tn−1

− Qn−1

j−1


xn−1, γ


xn−1 un−1 29

+ C
xnj − xn,∗j

+ C
B xnj , tn− B


xn,∗j , tn

+ C
un

j − un,∗
j

 30

+ C
B xn,∗j , tn


− Qn

j


xn,∗, γ


xn,∗


u(xn,∗, tn)

 31

+ C
Qn

j


xn,∗, γ


xn,∗


u(xn,∗, tn)


− Qn

j


xn,∗, γ


xn,∗


un,∗ 32

≤ C (k2 + h2), (4.5) 33

1 ≤ j ≤ J + n − 1, 1 ≤ n ≤ N . 34
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Finally, in order to find an estimate for the boundary terms, the hypotheses (H1)–(H6) and the properties (P1)–(P2) allow1

us to obtain2  xM

xm
α(x, B (x, tn) , tn) u(x, tn) dx − Qn

0


xn, α(xn,un)un3

≤

 xM

xm
α(x, B (x, tn)) u(x, tn) dx − Qn

0


xn, α(xn, Bn)un+ Qn

0


xn, α(xn, Bn)un

− Qn
0


xn, α(xn,un)un4

≤ C h2, (4.6)5

1 ≤ n ≤ N . Then, by means of (3.6), hypothesis (H6), property (P1) and inequality (4.6), we have6

|Ln0| ≤ C
g (xm, B (xm, tn) , tn) − g


xm, Qn

0


xn, γ(xn)un , tn |un

0|7

+

 xM

xm
α(x, B (x, tn) , tn) u(x, tn) dx − Qn

0


xn, α(xn,un)un8

≤ C
B (xm, tn) − Qn

0


xn, γ(xn)un+ h2

9

≤ C h2, (4.7)10

1 ≤ n ≤ N .11

Therefore, (4.1) follows from (4.4)–(4.5) and (4.7). �12

5. Stability13

Another notion which plays an important role in the analysis of the numerical method is the stability with h-dependent14

thresholds. For h ∈ H , let Rh be a real number (the stability threshold) with 0 < Rh < ∞: we say that the discretization (3.3)15

is stable for ũh restricted to the thresholds Rh, if there exist two positive constants h0 and S (the stability constant) such that,16

for any h ∈ H with h ≤ h0, the open ball BAh(ũh, Rh) is contained in the domain of 8h and for all Ṽh, W̃h in that ball,17

∥Ṽh − W̃h∥Ah ≤ S ∥8h(Ṽh) − 8h(W̃h)∥Bh .18

We begin with the following auxiliary results.19

Proposition 2. Let us assume that hypotheses (H1)–(H6) about problem (1.1)–(1.4), and properties (P1)–(P6) of the
∧
quadrature20

rule hold. Let yn, zn ∈ B∞(xn, R hp) and Vn,Wn
∈ B∞(un, R hp). Then, as h → 0,21

|Qn
j (y, γ(y)V) − Qn

j (z, γ(z)W)| ≤ C

∥Vn

− Wn
∥1 + ∥yn − zn∥∞


, (5.1)22

0 ≤ j ≤ J + n, 1 ≤ n ≤ N.23

Proof. The triangle inequality, hypotheses (H2), properties (P3), (P5) and that ∥Wn
∥∞ ≤ C yield24

|Qn
j (y, γ(y)V) − Qn

j (z, γ(z)W)| ≤ C
J+n
l=j

h |V n
l − W n

l | + C
J+n
l=j

h |ynl − znl | + ∥yn − zn∥∞25

≤ C

∥Vn

− Wn
∥1 + ∥yn − zn∥∞


,26

1 ≤ n ≤ N , as desired. �27

Proposition 3. Let us assume that hypotheses (H1)–(H6) about problem (1.1)–(1.4), and properties (P1)–(P6) of the quadrature28

rule hold. Let yn, zn ∈ B∞(xn, R hp) and Vn,Wn
∈ B∞(un, R hp). Then, as h → 0,29

|yn,∗j − zn,∗j | ≤ (1 + C k) |yn−1
j−1 − zn−1

j−1 | + C k ∥yn−1
− zn−1

∥∞ + C k ∥Vn−1
− Wn−1

∥1, (5.2)30

|V n,∗
j − W n,∗

j | ≤ (1 + C k) |V n−1
j−1 − W n−1

j−1 | + C k
yn−1

− zn−1


∞
+ C k

Vn−1
− Wn−1


1 , (5.3)31

|Qn
j (y

n,∗, γ(yn,∗)Vn,∗) − Qn
j (z

n,∗, γ(zn,∗)Wn,∗)| ≤ C

∥Vn−1

− Wn−1
∥1 + ∥yn−1

− zn−1
∥∞


, (5.4)32

1 ≤ j ≤ J + n, 1 ≤ n ≤ N − 1.33
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Proof. From (3.9), by means of hypothesis (H6) and inequality (5.1), we obtain the first inequality, Q4 1

|yn,∗j − zn,∗j | ≤ |yn−1
j−1 − zn−1

j−1 | + k
g(yn−1

j−1 , Qn−1
j−1 (yn−1, γ(yn−1)Vn−1), tn−1) 2

− g(zn−1
j−1 , Qn−1

j−1 (zn−1, γ(zn−1)Wn−1), tn−1)
 3

≤ (1 + C k) |yn−1
j−1 − zn−1

j−1 | + C k
Qn−1

j−1 (yn−1, γ(yn−1)Vn−1) − Qn−1
j−1 (zn−1, γ(zn−1)Wn−1)

 4

≤ (1 + C k) |yn−1
j−1 − zn−1

j−1 | + C k

∥yn−1

− zn−1
∥∞ + ∥Vn−1

− Wn−1
∥1

, (5.5) 5

1 ≤ j ≤ J + n, 1 ≤ n ≤ N . Now, from (3.10), we obtain 6

|V n,∗
j − W n,∗

j | ≤ |V n−1
j−1 − W n−1

j−1 | exp

−km


yn−1
j−1 , Qn−1

j−1


yn−1, γ(yn−1)Vn−1 , V n−1

j−1 , tn−1


7

+ |W n−1
j−1 |

exp −km

yn−1
j−1 , Qn−1

j−1


yn−1, γ(yn−1)Vn−1 , V n

j−1, tn−1


8

− exp

−km


zn−1
j−1 , Qn−1

j−1


zn−1, γ(zn−1)Wn−1 ,W n−1

j−1 , tn−1
 , (5.6) 9

1 ≤ j ≤ J + n. Next, by means of hypotheses (H1)–(H6), we have 10

exp

−km


yn−1
j−1 , Qn−1

j−1


yn−1, γ(yn−1)Vn−1 , V n−1

j−1 , tn−1


≤ 1 + C k, (5.7) 11

1 ≤ j ≤ J + n. Therefore, hypotheses (H1)–(H6), inequalities (5.6)–(5.7) and (5.1), and ∥Wn
∥∞ ≤ C allow us to obtain 12

|V n,∗
j − W n,∗

j | ≤ (1 + C k) |V n
j−1 − W n

j−1| + C k
m yn−1

j−1 , Qn−1
j−1


yn−1, γ(yn−1)Vn−1 , V n−1

j−1 , tn−1


13

−m

zn−1
j−1 , Qn−1

j−1


zn−1, γ(zn−1)Wn−1 ,W n−1

j−1 , tn−1
 14

≤ (1 + C k) |V n−1
j−1 − W n−1

j−1 | + C k
yn−1

− zn−1


∞
+ C k

Vn−1
− Wn−1


1 , (5.8) 15

1 ≤ j ≤ J + n, 1 ≤ n ≤ N , which proves the second inequality. 16

The triangle inequality, hypotheses (H2), inequalities (5.2)–(5.3) and that ∥Wn,∗
∥∞ ≤ C yield 17

|Qn
j (y

n,∗, γ(yn,∗)Vn,∗) − Qn
j (z

n,∗, γ(zn,∗)Wn,∗)| ≤ (1 + C k) ∥Vn−1
− Wn−1

∥1 + (1 + C k) ∥yn−1
− zn−1

∥∞ 18

≤ C

∥Vn−1

− Wn−1
∥1 + ∥yn−1

− zn−1
∥∞


, 19

1 ≤ j ≤ J + n, 1 ≤ n ≤ N − 1, as desired. � 20

Next, we introduce the theorem that establishes the stability of the discretization defined by the Eqs. (3.4)–(3.8). 21

Theorem 3. Let us assume that hypotheses (H1)–(H6) about problem (1.1)–(1.4), and properties (P1)–(P6) of the quadrature 22

rule hold. Then, the discretization is stable for ũh with Rh = R hp, 1 < p < 2. 23

Proof. We denote 24

8h

y0,V0, y1,V1, . . . , yN ,VN

=

Y0, P0, P0, Y1, P1, . . . , YN , PN , 25

8h

z0,W0, z1,W1, . . . , zN ,WN

=

Z0, L0, L0, Z1, L1, . . . , ZN , LN


, 26

y0,V0, y1,V1, . . . , yN ,VN

,

z0,W0, z1,W1, . . . , zN ,WN


∈ BAh(ũh, Lh). Now, we set 27

En
= Vn

− Wn
∈ RJ+n, 1n

= yn − zn ∈ RJ+n−1, 0 ≤ n ≤ N. 28

By means of (3.7), hypotheses (H1)–(H6), and inequalities (5.1)–(5.2), (5.4) yield 29

|∆n
j | ≤ |∆n−1

j−1 | + k
Y n

j − Zn
j

 30

+
k
2

g(yn−1
j−1 , Qn−1

j−1 (yn−1, γ(yn−1)Vn−1), tn−1) − g(zn−1
j−1 , Qn−1

j−1 (zn−1, γ(zn−1)Wn−1), tn−1)
 31

+
k
2

g(yn,∗j , Qn
j (y

n,∗, γ(yn,∗)Vn,∗), tn) − g(zn,∗j , Qn
j (z

n,∗, γ(zn,∗)Wn,∗), tn)
 32

≤ |∆n−1
j−1 | + k

Y n
j − Zn

j

+ C k
yn−1

j−1 − zn−1
j−1

+ C k
yn,∗j − zn,∗j

 33

+ C k
Qn−1

j−1 (yn−1, γ(yn−1)Vn−1) − Qn−1
j−1 (zn−1, γ(zn−1)Wn−1)

 34

+ C k
Qn

j (y
n,∗, γ(yn,∗)V) − Qn

j (z
n,∗, γ(zn,∗)Wn,∗)

 35

≤ |∆n−1
j−1 | + k

Y n
j − Zn

j

+ C k

∥1n−1

∥∞ + ∥En−1
∥1


+ C k

(1 + C k) |∆n−1

j−1 | + C k ∥1n−1
∥∞ + C k ∥En−1

∥1


36

≤ |∆n−1
j−1 | + k

Y n
j − Zn

j

+ C k

∥1n−1

∥∞ + ∥En−1
∥1

, (5.9) 37

1 ≤ j ≤ J + n − 1, 1 ≤ n ≤ N . 38
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Thus, when N ≥ n > j ≥ 1, from (5.9), we have1

|∆n
j | ≤ C k

j−1
l=0


∥En−1−l

∥1 + ∥1n−1−l
∥∞


+ k

j−1
l=0

|Y n−l
j−l − Zn−l

j−l |. (5.10)2

Therefore, when N ≥ n > j ≥ 1, by means of (5.10), we establish3

|∆n
j | ≤ C


n−1

m=n−j

k ∥Em
∥1 +

n−1
m=n−j

k ∥1m
∥∞


+

n
m=n−j+1

k ∥Ym
− Zm

∥∞. (5.11)4

On the other hand, when J + n − 1 ≥ j ≥ n ≥ 1, due to (5.9) it follows5

|∆n
j | ≤ |∆0

j−n| + C k
n−1
l=0


∥En−1−l

∥1 + ∥1n−1−l
∥∞ + k

n−1
l=0

|Y n−l
j−l − Zn−l

j−l |


. (5.12)6

Thus, when J + n − 1 ≥ j ≥ n ≥ 1, (5.12) yields7

|∆n
j | ≤ ∥10

∥∞ + C


n−1
m=0

k ∥Em
∥1 +

n−1
m=0

k ∥1m
∥∞


+

n
m=1

k ∥Ym
− Zm

∥∞. (5.13)8

Then, by means of (5.11) and (5.13), we can conclude that9

∥1n
∥∞ ≤ ∥10

∥∞ + C


n−1
m=0

k ∥Em
∥1 +

n−1
m=0

k ∥1m
∥∞


+

n
m=1

k ∥Ym
− Zm

∥∞, (5.14)10

1 ≤ n ≤ N .11

On the other hand, from (3.8) we arrive at12

|En
j | ≤ |En−1

j−1 | exp

−

k
2


m

yn−1
j−1 , Qn−1

j−1 (yn−1, γ(yn−1)Vn−1), V n−1
j−1 , tn−1


13

+m

yn,∗j , Qn

j (y
n,∗, γ(yn,∗)Vn,∗), V n,∗

j , tn
 

14

+ |W n−1
j−1 |

exp−
k
2


m

yn−1
j−1 , Qn−1

j−1 (yn−1, γ(yn−1)Vn−1), V n−1
j−1 , tn−1


15

+m

yn,∗j , Qn

j (y
n,∗, γ(yn,∗)Vn,∗), V n,∗

j , tn
 

16

− exp

−

k
2


m

zn−1
j−1 , Qn−1

j−1 (zn−1, γ(zn−1)Wn−1),W n−1
j−1 , tn−1


17

+m

zn,∗j , Qn

j (z
n,∗, γ(zn,∗)Wn,∗),W n,∗

j , tn
 + k |Pn

j − Lnj |, (5.15)18

1 ≤ j ≤ J + n − 1, 1 ≤ n ≤ N . Now, by means of hypotheses (H4) and (H6), we have19

exp

−

k
2


m

yn−1
j−1 , Qn−1

j−1 (yn−1, γ(yn−1)Vn−1), V n−1
j−1 , tn−1


+ m


yn,∗j , Qn

j (y
n,∗, γ(yn,∗)Vn,∗), V n,∗

j , tn


20

≤ 1 + C k, (5.16)21

1 ≤ j ≤ J + n − 1, 1 ≤ n ≤ N . Thus, with (5.1)–(5.4), (5.15)–(5.16), hypotheses (H4) and (H6), and that ∥Wn−1
∥∞ ≤ C , we22

obtain23

|En
j | ≤ k |Pn

j − Lnj | + (1 + C k) |En−1
j−1 | + C k

m yn−1
j−1 , Qn−1

j−1 (yn−1, γ(yn−1)Vn−1), V n−1
j−1 , tn−1


24

− m

zn−1
j−1 , Qn−1

j−1 (zn−1, γ(zn−1)Wn−1),W n−1
j−1 , tn−1

+ C k
m yn,∗j , Qn

j (y
n,∗, γ(yn,∗)Vn,∗), V n,∗

j , tn


25

−m

zn,∗j , Qn

j (z
n,∗, γ(zn,∗)Wn,∗),W n,∗

j , tn
26

≤ k |Pn
j − Lnj | + (1 + C k) |En−1

j−1 | + C k

∥En−1

∥1 + ∥1n−1
∥∞


, (5.17)27
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1 ≤ j ≤ J + n − 1, 1 ≤ n ≤ N . Now, from (3.6) and hypothesis (H6) it follows 1

|En
0 | ≤

 Qn
0 (yn, α(yn,Vn)Vn)

g

xm, Qn

j (yn, γ(yn)Vn), tn
 −

Qn
0 (zn, α(zn,Wn)Wn)

g

xm, Qn

j (zn, γ(zn)Wn), tn
 + |Pn

0 − Ln0| 2

≤ C
g xm, Qn

j (z
n, γ(zn)Wn), tn


− g


xm, Qn

j (y
n, γ(yn)Vn), tn

 Qn
0


yn, α(yn,Vn)Vn 3

+
g xm, Qn

j (y
n, γ(yn)Vn), tn

 Qn
0


yn, α(yn,Vn)Vn

− Qn
0


zn, α(zn,Wn)Wn+ |Pn

0 − Ln0|, (5.18) 4

1 ≤ n ≤ N . Next, with hypotheses (H5) and ∥Wn
∥∞ ≤ C , we arrive at 5Qn

0


yn, α(yn,Vn)Vn ≤ C, (5.19) 6

1 ≤ n ≤ N . Furthermore, the definition of αj, hypotheses (H5) and Proposition 2 yieldQ5 7αj(yn,Vn) − αj

zn,Wn ≤

α(ynj , Qn
j (y

n, γ(yn)Vn, tn)) − α(znj , Qn
j (y

n, γ(yn)Vn, tn))
 8

+
α(znj , Qn

j (y
n, γ(yn)Vn, tn)) − α(znj , Qn

j (z
n, γ(zn)Wn, tn))

 9

≤ C

|∆n

j | + ∥1n
∥∞ + ∥En

∥1

, (5.20) 10

0 ≤ j ≤ J + n − 1, 1 ≤ n ≤ N . 11

Next, by means of (5.20), hypotheses (H5), property (P6) and ∥Wn
∥∞ ≤ C , we arrive at 12Qn

0(y
n, α(yn,Vn)Vn) − Qn

0(z
n, α(zn,Wn)Wn)

 ≤
Qn

0(y
n, α(yn,Vn)Vn) − Qn

0(z
n, α(yn,Vn)Vn)

 13

+
Qn

0


zn,

α(yn,Vn) − α(zn,Wn)


Vn 14

+
Qn

0


zn, α(zn,Wn)


Vn

− Wn 15

≤ C

∥En

∥1 + ∥1n
∥∞


, (5.21) 16

1 ≤ n ≤ N . Therefore, we complete the derivation of the stability estimate for the boundary node taking into account
∧

17

(5.18)–(5.19) and (5.21), hypothesis (H6) and Proposition 2, 18

|En
0 | ≤ |Pn

0 − Ln0| + C
1n


∞

+
En


1


, (5.22) 19

1 ≤ n ≤ N . 20

Thus, when N ≥ n > j ≥ 1, from (5.17), we obtain 21

|En
j | ≤ (1 + C k)j |En−j

0 | + k
j−1
l=0

(1 + C k)l |Pn−l
j−l − Ln−l

j−l | + C k
j−1
l=0

(1 + C k)l

∥En−1−l

∥1 + ∥1n−1−l
∥∞


. (5.23) 22

Therefore, we establish 23

|En
j | ≤ C


|En−j

0 | +

n−1
m=n−j

k ∥Em
∥1 +

n−1
m=n−j

k ∥1m
∥∞ +

n
m=n−j+1

k ∥Pm
− Lm∥∞


. (5.24) 24

On the other hand, when J + n − 1 ≥ j ≥ n ≥ 1, due to (5.17) it follows 25

|En
j | ≤ (1 + C k)n |E0

j−n| + k
n−1
l=0

(1 + C k)l |Pn−l
j−l − Ln−l

j−l | + C k
n−1
l=0

(1 + C k)l

∥En−1−l

∥1 + ∥1n−1−l
∥∞


. (5.25) 26

Thus, we can conclude 27

|En
j | ≤ C


|E0

j−n| +

n−1
m=0

k ∥Em
∥1 +

n−1
m=0

k ∥1m
∥∞ +

n
m=1

k ∥Pm
− Lm∥∞


. (5.26) 28

Now, multiplying |En
j | by h and summing in j, 0 ≤ j ≤ J + n − 1, 1 ≤ n ≤ N , from (5.22), (5.24) and (5.26) and that k = r h, 29

we have 30

∥En
∥1 = h |En

0 | +

n−1
j=1

h |En
j | +

J+n−1
j=n

h |En
j | 31

≤ h |Pn
0 − Ln0| + C h


∥En

∥1 + ∥1n
∥∞


32

≤ C


∥E0

∥1 +

n−1
j=1

h |En−j
0 | + h ∥En

∥1 +

n−1
m=0

k ∥Em
∥1 33
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+ h ∥1n
∥∞ +

n−1
m=0

k ∥1m
∥∞ +

n
m=1

k ∥Pm
− Lm∥∞ + h |Pn

0 − Ln0|


1

≤ C


∥E0

∥1 +

n
m=0

k ∥Em
∥1 +

n
m=0

k ∥1m
∥∞ +

n
m=1

k ∥Pm
− Lm∥∞ +

n
m=1

h |Pm
0 − Lm0 |


,2

1 ≤ n ≤ N . Then3

∥En
∥1 ≤ C


∥E0

∥1 +

n
m=1

k ∥Em
∥1 +

n
m=0

k ∥1m
∥∞ +

n
m=1

k ∥Pm
− Lm∥∞ + ∥P0 − L0∥∞


, (5.27)4

1 ≤ n ≤ N . Thus, by means of the discrete Gronwall Lemma,5

∥En
∥1 ≤ C


∥E0

∥1 +

n
m=0

k ∥1m
∥∞ +

n
m=1

k ∥Pm
− Lm∥∞ + ∥P0 − L0∥∞


, (5.28)6

1 ≤ n ≤ N . Next, we substitute (5.28) in (5.14) to have7

∥1n
∥∞ ≤ C


∥10

∥∞ + ∥E0
∥1 +

n−1
m=1

k ∥1m
∥∞ +

n
m=1

k ∥Ym
− Zm

∥∞ +

n−1
m=1

k ∥Pm
− Lm∥∞ + ∥P0 − L0∥∞


, (5.29)8

1 ≤ n ≤ N . Again, by means of the discrete Gronwall Lemma, it follows9

∥1n
∥∞ ≤ C


∥10

∥∞ + ∥E0
∥1 + ∥P0 − L0∥∞ +

n−1
m=1

k ∥Pm
− Lm∥∞ +

n
m=1

k ∥Ym
− Zm

∥∞


, (5.30)10

1 ≤ n ≤ N . Next, we substitute (5.30) in (5.28) to obtain11

∥En
∥1 ≤ C


∥10

∥∞ + ∥E0
∥1 + ∥P0 − L0∥∞ +

n
m=1

k ∥Pm
− Lm∥∞ +

n
m=1

k ∥Ym
− Zm

∥∞


, (5.31)12

1 ≤ n ≤ N . And, finally, we substitute (5.30)–(5.31) in (5.22), (5.24) and (5.26) to arrive at13

∥En
∥∞ ≤ C


∥10

∥∞ + ∥E0
∥1 + ∥P0 − L0∥∞ +

n
m=1

k ∥Pm
− Lm∥∞ +

n
m=1

k ∥Ym
− Zm

∥∞


, (5.32)14

1 ≤ n ≤ N . Thus, due to (5.30) and (5.32) we have15 10, E0, . . . , 1N , EN
Ah

16

≤ C ∥(10, E0, P0 − L0, Y1
− Z1, P1

− L1, . . . , YN
− ZN , PN

− LN)∥Bh . �17

6. Convergence18

The global discretization error is defined as19

ẽh = ũh − Ũh ∈ Ah.20

We say that the discretization (3.3) is convergent if there exists h0 > 0 such that, for each h ∈ H with h ≤ h0, (3.11) has a21

solution Ũh for which, as h → 0,22

lim ∥ũh − Ũh∥Ah = lim ∥ẽh∥Ah = 0.23

In our analysis, we shall use the following result of the general discretization framework introduced by López-Marcos24

et al. [26].25

Theorem 4. Let us assume that (3.3) is consistent and stable with thresholds Rh. If 8h is continuous in B(ũh, Rh) and ∥lh∥Bh =26

o(Rh) as h → 0, then:27

(i) For h sufficiently small, the discrete equations (3.11) possess a unique solution in B(ũh, Rh).28

(ii) As h → 0, the solutions converge and ∥ẽh∥Ah = O(∥lh∥Bh).29

Finally,we posit the following theorem that establishes the convergence of the numericalmethod defined by Eqs. (3.4)–(3.8).30
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Theorem 5. Let us assume that hypotheses (H1)–(H6) about problem (1.1)–(1.4) hold, and that the considered quadrature rules 1

satisfy properties (P1)–(P6). Then, for h sufficiently small, the numerical method defined by Eqs. (3.4)–(3.8) has a unique solution 2

Ũh ∈ B(ũh, Rh) and 3

∥Ũh − ũh∥Ah ≤ C

∥x0 − X0

∥∞ + ∥u0
− U0

∥∞ + O(h2
+ k2)


. (6.1) 4

The proof of Theorem 5 is derived by means of consistency (Theorem 2), stability (Theorem 3) and Theorem 4. 5

Next, we can establish an error bound for the numerical and the theoretical solution at the numerical values of the grid 6

nodes. 7

Theorem 6. Let us assume that hypotheses (H1)–(H6) about problem (1.1)–(1.4) hold, and that the considered quadrature rules 8

satisfy properties (P1)–(P6). For h sufficiently small, let u∗

h = (u0
∗
,u1

∗
,u2

∗
, . . . ,uN

∗
) ∈

N
n=0 RJ+n, defined by 9

un
∗

=

u(Xn

0 , tn), u(Xn
1 , tn), . . . , u(Xn

J+n−1, tn)


∈ RJ+n, 10

0 ≤ n ≤ N, where Xn
j , 0 ≤ j ≤ J + n − 1, 0 ≤ n ≤ N, are the grid nodes given by scheme (3.4)–(3.8). Then, 11

∥Un
− un

∗
∥∞ ≤ C


∥x0 − X0

∥∞ + ∥u0
− U0

∥∞ + O(h2
+ k2)


. (6.2) 12

This theorem follows immediately from Theorem 5. In particular, if X0
= x0 and U0

= u0, the proposed numerical scheme 13

is second-order accurate. 14

At this moment, we have obtained the convergence of the numerical method (2.14)–(2.19) which does not employ 15

selection at each time level. Also, we have proved the convergence of numerical methods which employ a selection
∧
criteria, 16

whenever the positions, which are determined by the
∧
criteria we have chosen, lead us to subgrids which satisfy the property 17

(SG). For the criteria presented in this paper, this property could be shown in two stages. First, as proved in [25], for the 18

selection
∧
criteria given in (2.20), it leads us to subgrids with such a property, when we applied it over nodes which are in 19

a
∧
neighbourhood of the theoretical ones with radius R hp (for

∧
criteria (2.21) we could prove the same in a similar way). In 20

a second stage, it is proved that the nodes, which in fact the numerical method computes, are in such
∧
neighbourhoods. In 21

order to do this, it is enough to realize that such nodes could be seen, up to each level of time, as the solutions obtained by 22

a discrete operator which has the form of the one defined in (3.3). 23

With respect to the convergence behaviour of these kind of numerical schemes when the theoretical solution has weak 24

singularities, we refer to the corresponding section of [25] because for both equations and numerical methods the behaviour 25

along characteristics curves are similar. 26

7. Numerical results 27

We have carried out numerical experiments with the scheme defined in Section 2. We have considered a theoretical test 28

problem that presents meaningful nonlinearities (both from a mathematical and biological point of view). The numerical 29

integration for the numerical experiment was carried out on the time interval [0, 10]. The size interval was taken as [0, 1]. 30

The size-specific growth, fertility and mortality moduli are chosen as g(x, z, t) =
1−x
1+z , α(x, z, t) =

x (1−x)
2 (z+1) , 31

µ(x, z, t) =
2 (1 + z)

1 +
1
2 e−2 t


(1 − x)2 + (1 − x)


(1 − x)2 + 4 e2 t

 . 32

The weight function is taken as γ (x) = 1 (we consider the total population) and the external inflow function as 33

Γ (t) = e−2 t
1 +

1+2 e2 t
√

1+4 e2 t

1 +
e−2 t

2 (1 +
√
1 + 4 e2 t)

+ 2 et −

√
1 + 4 e2 t

2
− 2 e2 t log


e−t

2
(1 +


1 + 4 e2 t)


. 34

Finally, we consider as the initial size-specific density the function 35

u0(x) = (1 − x) +
(1 − x)2 + 2
(1 − x)2 + 4

. 36

With the functions chosen, the problem (1.1)–(1.4) has the following solution 37

u(x, t) = e−2 t


(1 − x) +

(1 − x)2 + 2 e2 t
(1 − x)2 + 4 e2 t


. 38

Sincewe know the exact solution to each problem,we can shownumerically that ourmethods are second-order accurate 39

bymeans of error tables. In Tables 2–4,we present the results obtained for the test problemwith the three different selection 40

procedures. 41
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Table 2
Error and experimental order of convergence. Method without selection.

k h
3.125e−2 1.563e−2 7.813e−3 3.906e−3 1.953e−3

3.125e−2 1.585e−4 8.297e−5 8.456e−5 8.496e−5 8.506e−5

1.563e−2 1.580e−4 4.223e−5 2.069e−5 2.109e−5 2.119e−5
1.908 2.004 2.004 2.004

7.813e−3 1.581e−4 4.033e−5 1.089e−5 5.166e−6 5.265e−6
1.970 1.955 2.002 2.002

3.906e−3 1.586e−4 3.987e−5 1.019e−5 2.766e−6 1.291e−6
1.987 1.985 1.977 2.001

1.953e−3 1.590e−4 3.982e−5 1.001e−5 2.560e−6 6.970e−7
1.994 1.994 1.993 1.989

Table 3
Error and experimental order of convergence. Method with selection (2.21) (constant number of grid
nodes).

k h
3.125e−2 1.563e−2 7.813e−3 3.906e−3 1.953e−3

3.125e−2 1.585e−4 8.085e−5 8.449e−5 8.495e−5 8.506e−5

1.563e−2 1.701e−4 4.223e−5 2.036e−5 2.107e−5 2.118e−5
1.908 1.989 2.004 2.004

7.813e−3 1.779e−4 4.229e−5 1.089e−5 5.111e−6 5.260e−6
2.008 1.955 1.994 2.002

3.906e−3 1.813e−4 4.287e−5 1.047e−5 2.766e−6 1.280e−6
2.053 2.015 1.977 1.997

1.953e−3 1.830e−4 4.320e−5 1.042e−5 2.599e−6 6.970e−7
2.069 2.040 2.010 1.989

Table 4
Error and experimental order of convergence. Method with selection (2.20) (asymptotic selection), β =

0.125.

k h
3.125e−2 1.563e−2 7.813e−3 3.906e−3 1.953e−3

3.125e−2 1.585e−4 8.297e−5 8.456e−5 8.496e−5 8.506e−5

1.563e−2 1.580e−4 4.223e−5 2.069e−5 2.109e−5 2.119e−5
1.908 2.004 2.004 2.004

7.813e−3 1.581e−4 4.033e−5 1.089e−5 5.166e−6 5.265e−6
1.970 1.955 2.002 2.002

3.906e−3 1.586e−4 3.987e−5 1.019e−5 2.766e−6 1.291e−6
1.987 1.985 1.977 2.001

1.953e−3 1.590e−4 3.982e−5 1.001e−5 2.560e−6 6.970e−7
1.994 1.994 1.993 1.989

In each entry in columns two to seven of Tables 2–4 the upper value represents the global error1

eh,k = max

max
0≤j≤J

|u(X0
j , t0) − U0

j |, max
1≤n≤N


max

0≤j≤J+1
|u(Xn

j , tn) − Un
j |


2

and the lower number is the experimental order s of the method as computed from3

s =
log(e2 h,2 k/eh,k)

log(2)
.4

Each column and each row of the table correspond to different values of the spatial and time discretization parameter,5

respectively. The results in the
∧
table clearly confirm the expected second-order of convergence with every selection6

procedure.7

In Fig. 1, we present,
∧
on a logarithmic scale, an efficiency plot wherewe show the error as a function of the computational8

time (in seconds). We build, for each selection procedure in the numerical scheme, a table with the errors corresponding to9

different values of parameters k and h. Then, we discover the most efficient value of r (for each selection procedure) and,10
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Fig. 1. Error vs. cpu-time. Selection strategy (2.21) (�), selection strategy (2.20) (◦), no selection strategy (�).

finally, we compare all the procedures in Fig. 1. We can observe that the selection procedure in which a node is eliminated 1

at every time step shows the best behaviour. 2

On the other hand, we have considered a test problem which was employed in [14] in a framework in which a forest 3

population is structured by its d.b.h. The minimum and maximum size are xm = 1 and xM = 51, respectively. The size- 4

specific growth, fertility andmortalitymoduli are chosen as g(x, z, t) = 7 x

1 −


x
xM

16
, α(x, z, t) = 0, µ(x, z, t) = 0.1. 5

The weight function is taken as γ (x) = 1 and the external inflow function as Γ (t) = R, suitable chosen in order to satisfy 6

the first compatibility condition. In this context, there is a constant inflow of newborns. Finally, we consider as the initial 7

size-specific density the function 8

u0(x) =



5 + 5

x − 2
2

+ 1
3

, x ≤ 2,

10 + 15
x − 2
2


1 +

x − 2
2


+ 30


x − 2
2

3 x − 2
2

− 2


, 2 < x ≤ 4,

5

2 −

x − 2
2

3 
2 + 3


x − 2
2

− 1
 

1 + 2

x − 2
2

− 1


, 4 < x ≤ 6,

0 x > 6.

9

In this case, we do not know the exact solution to the problem (1.1)–(1.4) butwe know that the problemhas a stable singular 10

steady state given by 11

u∗(x) = R
exp(−µϕ(x))

g(x)
, x ∈ [xm, xM ], 12

where the function ϕ(x) represents the time required for a tree to increase d.b.h. from xm to x, 13

ϕ(x) =

 x

x0

dσ
g(σ )

. 14

This problem presents a significant difficulty because the steady state has a singularity at the maximum size of the 15

population. Similar situations have been dealt with in other related problem [8]. 16

In Fig. 2, we present the results obtained when T = 10, with the first selection strategy (2.20) and discretization 17

parameter values k = 0.00390625 and h = 0.125. On the left-hand side, we show the evolution of the total population 18

over time and, on the right-hand side, the density distribution at t = T . The experiment shows that the stable steady state 19

is reached
∧
in this time period. Clearly, the numerical method is able to obtain it. 20

This test shows that the best selection strategy depends on the problem we wish to solve. Its special feature means that 21

the selection strategy that avoids useless nodes close to themaximumsize exhibits the best
∧
behaviour. This is experimentally 22

shown because when we applied the most efficient one (2.21), we also obtain this good approximation to the stable steady 23

state but we need the discretization parameters to take values lower than k = 0.0009765625 and h = 0.125, which 24

represents a more expensive experiment. Otherwise, oscillations or abnormal finishing of computation occur. These are 25

only due to the type of solution we are approaching that is beyond the required hypotheses in the convergence analysis. 26

We could also perform other tests in which the use of other higher order numerical methods might not be suitable. 27

However, in [5] and for an age-structured model, this lack of efficiency was shown. This is due to the fact that, in this 28
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Fig. 2. Left-hand side: Evolution over time of total population computed with the first selection strategy (2.20). Right-hand side: density distribution at
t = T .

biological framework, these kind of methods need several compatibility relationships between the initial and boundary1

conditions and, in reality, biological data barely satisfies the first compatibility relationship. In [5] we showed that they2

produce oscillations. However, characteristics methods follow perfectly the possible discontinuities in the function or in3

some of its derivatives.4
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