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Abstract

Mixtures of Gaussian factors are powerful tools for modghn unobserved heterogeneous populatiffiering - at the same time

- dimension reduction and model-based clusterirtge high prevalence of spurious solutions and the distgréfiects of outlying
observations in maximum likelihood estimation may caussdil or misleading inferences. Restrictions for the compiocovari-
ances are considered in order to avoid spurious solutigrsfranming is also adopted, to provide robustness agaiokitions

of the normality assumptions of the underlying latent fextd\ detailed AECM algorithm for this new approach is presented
Simulation results and an application to the AIS datasetvghe aim and fectiveness of the proposed methodology.
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1. Introduction and motivation

Factor analysis is anfliective method of summarizing the variability between a nendf correlated features,
through a much smaller number of unobservable, hence néaterd, factors. It originated from the consideration
that, in many phenomena, several observed variables caukkplained by a few unobserved ones. Under this
approach, each single variable (among thebserved ones) is assumed to be a linear combinatichuoiderlying
common factors with an accompanying error term to accourthft part of the variability which is unique to it (not
in common with other variables). Ideallyshould be substantially smaller thanto achieve parsimony.

Clearly, the &ectiveness of this method is limited by its global linearag happens for principal components
analysis. Hence, Ghahramani and Hilton (1997), TippingRistlop (1999) and McLachlan and Peel (2000a) solidly
widened the applicability of these approaches by combifdrgl models of Gaussian factors in the form of finite
mixtures. The idea is to employ latent variables to perfoimeshsional reduction in each component, thus providing
a statistical method which concurrently performs clusigand, within each cluster, local dimensionality reduttio

In the literature, error and factors are routinely assuroddve a Gaussian distribution because of their mathemat-
ical and computational tractability: however, statidticeethods which ignore departure from normality may cause
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biased or misleading inferences. Moreover, it is well kndtat maximum likelihood estimation for mixtures often
leads to ill-posed problems because of the unboundedn#ss objective function to be maximized, which favors the
appearance of non-interesting local maximizers and degenerspurioussolutions.

The lack of robustness in mixture fitting arises wheneversdmple contains a certain proportion of data that
does not follow the underlying population model. Spuricaisisons can even appear when ML estimation is applied
to artificial data drawn from a given finite mixture model,. i®ithout adding any kind of contamination. Hence,
robust estimation is needed. Many contributions in thisseeran be found in the literature: from the Mclust model
with a noise component in Fraley and Raftery (1998), mixturkt-distributions in McLachlan and Peel (2000),
the trimmed likelihood mixture fitting method in Neykov et €2007), the trimmed ML estimation of contaminated
mixtures in Gallegos and Ritter (2009), and the robust impprdML estimator introduced in Coretto and Hennig
(2011), among many others. Some important applicationsi@h $ields as computer vision, pattern recognition,
analysis of microarray gene expression data, or tomograpggest that more attention should be paid to robustness,
because noise in the data sets may be frequent in all thede diehpplication.

Different types of constraints have been traditionally apifi€shussian mixtures of factor analyzers, for instance,
some authors propose taking a common (diagonal) errorxn@isifor the Mixtures of Common Factor Analyzers,
denoted by MCFA, in Baek et al., 2010) or imposing an isotagiror matrix (Bishop and Tipping, 1998). This
strategy has proven to b&ective in many cases, at the expenses of stronger distritaltiestrictions on the data. To
avoid singularities and spurious solutions, under milderditions, Greselin and Ingrassia (2015) recently propose
maximizing the likelihood by constraining the eigenvaloéthe covariance matrices, following the previous work of
Ingrassia (2004) and going back to Hathaway (1985). Furtbez, mixtures of-analyzers have been considered (see
McLachlan and Bean, 2005; Lin et al., 2014, and referencagih) in an attempt to make the model less sensitive to
outliers, but they, too, are not robust against very extreotkers (Hennig, 2004).

The purpose of the present work is to introduce an estimgtingedure for the mixture of Gaussian factor ana-
lyzers that can resist thdfect of outliers and avoid spurious local maximizers. Theppsed constraints can also be
used to take into account prior information about the scatieameters.

Trimming has been shown to be a simple, powerful, flexible @mputationally feasible way to provide robust-
ness in many dierent statistical frameworks. The basic idea behind tringrhiere is the removal of a small proportion
a of observations whose values would be the most unlikely ¢oioi€ the fitted model were true. In this way, trimming
avoids the problem of a small fraction of outlying obsermvas exerting a harmfulfect on the estimation. Incorpo-
rating constraints into the mixture fitting estimation me&thmoves the mathematical problem to a well-posed setting
and hence minimizes the risk of incurring spurious solgiolloreover, a correct statement of the problem allows
the desired statistical properties for the estimators toliained, such as the existence and consistency resuiis, as
Garcia-Escudero et al. (2008).

The rest of the paper has been organized as folldw&ection 2 the notation is introduced and the main ideas
about Gaussian Mixtures of Factor Analyzers (hereafteotighby MFA) are summarized'hen, in Section 3, the
trimmed likelihood for MFAIs presented, and fairly extensive notes are provided comgethe EM algorithm, with
incorporated trimming and constrained estimatibmSection 4, the performance of the new procedsi@iscussed,
on the grounds of some numerical results obtained from sitadland real data. In particular, the bias and MSE
of robustly estimated model parameters fdfetient cases of data contamination, are compared, usingeMzario
experimentsThe application to the Australian Institute of Sports datasiows how classification and factor analysis
can be developed using the new model. Section 5 containguthbng notes and provides ideas for further research.

2. Gaussian Mixtures of Factor Analyzers

The density of thg-dimensional random variabl of interest is modeled as a mixture@fmultivariate normal
densities in some unknown proportions. . . g, whenever each data pointis taken to be a realization obllefing
density function:

G
F(x;6) = > 7pp(X; ftg> Zo) (1)
g=1

wheregp(X; 4, X) denotes the-variate normal density function with mean vectoand covariance matriX. Here,
the vecto® = Ogm(p, G) of unknown parameters consists of tki{1) mixing proportionsyy, theG p elements of the
2
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component meansg,, and the%G p(p+ 1) distinct elements of the component-covariance matdige®1FA postulates

a finite mixture of linear sub-models for the distributiontb& full observation vectoX, given the (unobservable)
factorsU. That is, MFA provides local dimensionality reduction bygasing that the distribution of the observation
Xi can be given as

Xi = pg + AgUig + &g with probability nq(g=1,...,G) fori=1,...,n, (2

whereAg is ap x d matrix of factor loadings thefactorsU,g, ..., Ung are N(0, 14) distributed independently of the
errors gg. The latter are independently(0, ¥y) distributed, and¥g is ap x p diagonal matrixg = 1,...,G). The
diagonality of¥ is one of the key assumptions of factor analysis: the obseragables are independent given the
factors. Note that the factor variabldg model correlations between the elementXgfwhile the errorsgg account
for independent noise fof;. We suppose that < p, which means thad unobservable factors are jointly explaining
the p observable features of the statistical units. Under thesamptions, the mixture of factor analyzers model is
given by (1), where thg-th component-covariance matifg has the form

The parameter vect@r= Ovra(p, d, G) now consists of the elements of the component magythe Ay, and the¥,
along with the mixing proportionsy (g = 1,...,G — 1), on puttingrg = 1 - Y27 ng.

Note that, in the case af > 1, there is an infinity of choices fog, since model (2) is still satisfied if we replace
Ag by AgH’, whereH is any orthogonal matrix of ordel: Asd(d — 1)/2 constraints are needed i@y to be uniquely
defined, the number of free parameters for each componemé ehixture is given by

pd+ p- %d(d -1).

The following condition orp andd assures the desired parsimony:

[(p—d)’~(p+d)] >0

3. Robust Mixturesof Factor Analyzers

In this section, thérimmed (Gaussian) mixtures of factor analyzers mdti@hmed MFA) is presented and a
feasible algorithm for its implementation is provided.

3.1. Problem statement

Letx = {X1,Xz,...,Xn} be a given data set iRP. With the theoretical underlying model described in SetBo
in mind, a mixture of Gaussian factor components can be thbfitted to this dataset by maximizing atrimmed
mixture log-likelihood'see Neykov et al. 2007, Gallegos and Ritter 2009 and G&rstadero et al. 2014) defined as:

(4)

n G
Ltrim = ; §(Xi) lOQ LZ; ¢P(Xi ' Mg Zg)ﬂg

where(-) is a 0-1 trimming indicator function that tells us whethdservatiorx; is trimmed df: £(x;)=0, or not:
£(x)=1 andXy = AgA;:J + ¥y as in (3). A fixed fractionr of observations can be unassigned by sethiilg £(x) =
[n(1 - @)] and, hence, the parametedenotes the trimming level.

Moreover, to avoid the unboundednessfy,, constrained maximizatioaf (4) is introduced. In more detail,

,,,,,

Yk < Cnoise Ygsh foreveryl<k#h<pandl<g #g <G (5)

3
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The constantnoise is finite and such thatnsise > 1, to avoid thgXg| — 0 case. This constraint can be seen as an
adaptation to MFA of those introduced in Ingrassia and R2®07), Garcia-Escudero et al. (2008), and is similar to
the mild restrictions implemented for MFA in Greselin andfassia (2015). They all go back to the seminal paper of
Hathaway (1985). We will look for the maximization #%.im on ¥y under the given constraints: this setting leads to
a well-defined maximization problem, and at the same tinenalisingularities to be discarded and the occurrence of
spurious solutions to be reduced.

Our methodology also includes the possibility of contralthe relative variability of the norms of thedimen-

.....

set of constraints applies on their values
kg < Cload 7lhg, forevery 1<k#h<d and 1<gi#@<G. (6)

In fact, these types of constraints are not needed to avoglikirities in the target function, but they could be
useful to achieve more sensible solutions.

Hereafter®. will denote the constrained parameter spac#fer{rg, g, ¥g, Ag; 9 = 1, ..., G} under the require-
ments (5) and (6).

3.2. Algorithm

The maximization ofLyin in (4) for € O is not an easy task, obviously. We will give a feasible aldoni
obtained by combining the Alternating Expectation-Coiodial Maximization algorithm (AECM) for MFA with that
(with trimming and constraints) introduced in Garcia-idero et al. (2014) (see, also, Fritz et al., 2013).

As usual in the EM framework, each observatigris associated with an unobserved state (z, ..., zg)’ for
i =1,...,nwherezg is one or zero, depending on whetheidoes or does not belong to tigeth component. The
component label vectors, .. ., z, are taken to be the realized values of the random ve&ars ., Z,, where, for
independent feature data, it is appropriate to assumehbgtare (unconditionally) multinomially distributed. .i.e
Z1,...,Zn ~9% Multg(1;71, ..., 7g). The AECM is an extension of the EM, suggested by the fadtocgire of
the model, which uses filerent specifications of missing data at each stage. The $deagartition the vector of
parameter® = (61, 6-) in such a way thatlyin, is easy to be maximized fd; given#, and viceversa, replacing
the M-step by a number of computationally simpler condiilanaximization (CM) steps. In more detail, in the first
cycle we se¥; = {ng, ug; g = 1,...,G} and the missing data are the unobserved group labeléz, . . ., z,)"; while
in the second cycle we séf = {Ag, ¥g; g = 1,...,G} and the missing data are the group lalzedsid the unobserved
latent factorsu = (uig,...,Unc)’. Hence, the application of the AECM algorithm consists of wycles, and there
is one E-step and one CM-step, alternatively consideffingndé-, in each cycle. A trimming step, to evaluate the
trimming function, precedes each cycle. The trimming fiorchas the role of discarding tlel 00% of observations
with lowest contribution to the likelihood. Before desénipp the algorithm, we remark that the unobserved group
labelsZ are considered missing data in both cycles. Thereforenguhiel-th iteration,;‘é*l/z) and;‘:l) denote the
conditional expectations at the first and second cycle getsgely.

The algorithm has to be run multiple times on the same datas#t different starting values, to prevent the
attainment of a local, rather than global, maximum logiik@od. In each run it executes the following steps:

1 Initialization:
Each iteration begins by selecting initial valuesd&t wheres©® = (x”, 1, AQ, ¥, g = 1,...,G). Inspired
from results obtained in a series of extensive test expeatisrebout initialization strategies (see Maitra, 2009),
and aiming to allow the algorithm to visit the entire paraenspacep + 1 units are randomly selected (without
replacement) for grougfrom the observed data In this way, a subsamp}é is obtained that may be arranged
in a (p+1)x p matrix, and its sample mean will be the initjéﬁ). Additionally, based on thege+ 1 observations,
a newad hocapproach for providing an initialization procedure fBS,D) andAg’) has been developetb deal
with the possible existence of gross outlying observatemmeng the subsamples, which could inflate some
of their eigenvalues. The rationale undlee proposed proceduig as usual, to fill in randomly the missing
information in the complete model through random subsasabel, then, to estimate the other parameters. The
missing information here are the factarg fori = 1,...,nandg = 1,...,G, which, under the assumptions
for the model, are realizations from independemif0, | 4) distributedU;q random variables. We may consider

4
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model (2) in groupg as a regression of; with intercepty,, regression cdécients given byAg, where the
explanatory variables are the latent factofg, and with regression erroey. Hence, we drawp + 1 random
independent observations from ttevariate standard Gaussian to fill p € 1) x d matrix u?. Then we set
A(O) = ((u9yu9)1(u9yxd, wherex? is obtained by centering the columns of tke matrix. To provide a
restrlcted random generation W, the (p + 1) x p matrix eg = xg — A(O)ug is computed, and the diagonal
elements oi‘l’g)) are set equal to the variances of theolumns of thesg matrix. After repeating thidor
g=1,...,G, if the obtained matriceAg)) and‘I‘g)) do not satisfy the required constraints (5) and (6), then the
constrained maximizations described in step 2.4 must béeapgFinally, weightst'”, ..., 22 in the interval
(0,1) and summing up to 1 are randomly chosen.

Trimmed AECM steps:

The following steps 2.1-2.6. are alternatively executetl anmaximum number of iterationsylaxlter, is
reached. The implementation of trimming is related to thententration” steps applied in high-breakdown
robust methods (Rousseeuw and Van Driessen, 1999). Trighisiperformed before each E-step, while con-
straints are enforced during the second cycle CM step.

2.1 First cycle. Trimming:Evaluate then quantities

G
D(x;; 6) = Zqﬁp(xi;pg,AgAé +Worg for i=1,...,n
g=1

and sort them to obtain theirquantile denoted bip(n.;). Notice thatD(x;; 60) is the contribution given
from x; to the overall likelihood. Now consider the set of indid¢es {1, 2, ..., n} defined as

I ={i : D(xi;6") > Dnap }-

Then set the trimming function @$x;) = 1 fori € I, and/(x;) = 0 otherwise. To update the parameters,
only the observations with indices inwill be taken into account. In other words, the proportioof
observations with the smalleBi(x;; 61) valuesare tentatively discarded

2.2 First cycle. E-step:
Here6; = {ng,uy;9 = 1,...,G} and the missing data are the unobserved group labelgz, ..., z,)".
The E-step on the first cycle on thlex( 1)-th iteration requires the calculation of

Qu(61;6") = Ego| Zg(x)Zz.g (logmg + 1og @ (i Q. ) | x].

i=1 g=1

which is the expected trimmed complete-data log-likelithogiven the data and using the current esti-
mated") for 6, wherez{) = AD[AD] + . In practice, it is necessary to calculdtgy[Zg|X] = 2,2,
where the latter are the “posterior probabilities” oftemsidered in standard EM algorithms and which
are evaluated as follows. Let us define

Dy(x; 60) = ¢y (x; 10, 20) 70

then, set
%(|+1/2) _ Dg(Xn@())
D(x;; M)
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2.3 First cycle. CM-step:This first CM step requires the maximization @f(6:; 6) over 61, with 6, held

fixed atag). We getﬂg”) by updatingrg andyg as follows

1+1/2
204D — Zin:l %'(ng / )§(Xi)
g [n(1-a)]
and 12)
n +
(|+1) _ i=1 Z|(g é‘(Xi)Xi
Hg 7= (+172)
Ng

Whereng+l/2) =y ;(;’l/z)g(xi), forg=1,...,G.
According to notation in McLachlan and Peel (2000b), wepset’? = (619, 63)).

2.4 Second cycle. TrimmingRe-evaluate th@ quantitiesD(x;; 6) and, as done in step [2.1], update the

trimming functionZ(x;).

2.5 Second cycle. E- step:

Heref, = {(Ag, ¥g), g =1,...,G} has to be considergdhere the missing data are the unobserved group
labelsZ and the latent factord.

The E-step of the second cycle on thih iteration requires the calculation of the conditiongbectation

of the trimmed complete-data log-likelihood, given the eitved datax and using the current estimate
01+ for g, i.e.

n G

Q2 (02; 0(I+1/2)) = E0(|+1/2)[ Z §(Xi) Z Zig (|Og72'g+l) + |Og ¢p(xi;ﬂg+l) - Ag)uig’ ‘I’g)) + |Og ¢d(Uig; 0, |d)) ' X].
i=1 g=1

In addition to updating the posterior probabilitiég1.[Zglx] = 2, (and consequentiyy™ = 3, £7(x),

forg=1,...,G, as previously done), this leads to an evaluation of thefatig conditional expectations:
E0<|+1/2>[Ziguig|x] andE0<|+1/z>[ZigUigUi’glx]. Recalling that the conditional distribution bkg, givenx;, is

Uighti ~ N (g(i = tg). I = Y4Ao)
fori=1,...,nandg=1,...,G with
7g = Aé(AgAé + ‘Pg)_l,
we obtain
Eg('+1/2)[ziguig|xi] — Zl_(:;l),yg) (Xi _”ngl))

’ 1+1 ’ ’
E0(|+1/2)[Ziguiguig|xi] = Z|'(g+ )[78) (Xi —ﬂ8+l)) (Xi —ﬂ8+l)) 7’8) + Iq - )’S)AS)

where we set

0 — A (ADAD) 0] -1
vy = Ag (AgAg +‘Pg) .
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2.6 Second cycle. CM-step for constrained estimatioApand ¥ :
Here our aim is to maximiz&, (02; 0(')) over@, with 8, held fixed atog”). After some matrix algebra,

this yields the updated ML-estimates
Ao = Sy S ORY 10— 7)AT
¥, = diaglS) ) - ATV D)

whereS!*V denotes the sample scatter matrix in grgufprg=1,...,G

) = (1/n<'+1))Zz."+”z(x) i) (i - i)

During the iterations, due to the updates, it may happentkigady matrices do not belong to the con-
strained parameter spa@g. In the case where the additional constraints (6) have toriposed, and
the norms of the column vectors of the matriégsdo not satisfy themAg”) € O can be obtaineds
follows. After defining the diagonal matriy = diag@gz, ng2. ---» gd), the truncated norms are then given
as

[gkdm = min(qoad - m, max@gk m)), for k=1,...,dandg=1,...,G,

with mbeing some threshold value. The loading matrices are fingitiated asA"*l) AgEy 1E5 with

Ey = diag([ng1]mee g2l -+ [Modlmey)

andmyp: Minimizing the real valued function

foad(m) = Zn“”)Z(Iog )+ ). ™

It may be mentioned here, in passing, that Proposition 3Riiz et al. (2013) shows thaty,,: can be
obtained by evaluatingd®s + 1 times the real valued functidfjpaq(m) in (7).
Given theA(*", the matrices

¥, = diag{S{*?) — AL Dy DS} = diag(vgs. ... Ugp)
can be obtained, and may not necessarily satisfy the rebodestraint (5). In this case, we set
[Yodm = min(cnoise- m, max gk, m)), for k=1,...,p;9=1,...,G,

and fix the optimal threshold valug,p: by minimizing the following real valued function

frois - n‘”l) | Yk 8
) § Z(og (10n) + T2 ). ®)

As before, in Fritz et al. (2013), itis shown threg,; can be obtained in a straightforward way by evaluating
2pG + 1 times foisdm) in (8). Thus,¥§*Y is finally updated as

i = dlag(['ﬁgl]rrbm, . ’[lpgp]”bm)' ©

It is worth remarking that the given constrained estimafioovides, at each step, the parametégsand
A4 that maximize the likelihood in the constrained paramegtacs®..

7
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3 Evaluate target functionAfter applying the trimmed and constrained EM steps, antingef(x;) = 0 if i € |
and/(x) = 1ifi ¢ I, the associated value of the target function (4) is evatldfeconvergence has not been
achieved before reaching the maximum number of iteratibtaslter, the results are discarded.

The set of parameters yielding the highest value of the tdugetion (among the multiple runs) and the associated
trimmed indicator functiord(-) are returned as the final output of the algorithm. In the &anrk of model-based
clustering, each unit is assigned to one group, based ondkiemam a posteriori probability. Notice, in passing, that
a high number of initializations is not needed, and nor a kihe forMaxlIter, as will be seen in Section 4.

In relation with the initialization strategy, the obtainmitial values for the parameters in each population are
basedon small subsamples, aiming at ideally covering, in manygritide full parameter space. Our proposal is based
onthe following idea: a small subsample has to be drawn for gaghp and then the information extracted from the
subsample is completed with random data generated underdtiel assumptions. The expected consequence of this
exploration of the parameter space is that spurious solsiteven singularities, can arise when running EM iteration
and the constraints on the scatters play the role of proigetjainst these undesired solutions. By considering many
random initializations, we are confident that the best painterms of the likelihood, can be approached inside the
restricted parameter space. The number of random ingi#dizs should increase with the number of groGpshe
dimensionp and in the case of veryfiierent group sizes.

It is worth remarking that the usual monotone convergendeefikelinood in the robust AECM algorithm holds
true when incorporating trimming and constrained estiomafor ¥y. To prove this, notice firstly thatyhen perform-
ing the trimming step, the optimal observations have betined i.e. the ones with the highest contributions to the
objective function. Secondly, the first cycle is the usua onthe AECM algorithm for MFA and, therefore, shares
its optimality properties. Finally, it can be easily prowédt, in the second EM cycle, the evaluation of the optimal
(Ag, ‘I’g) forg = 1,...,G corresponds to the usual way of obtaining firstly the optifglwhich is not #fected by
the restrictions oy and, then the optima¥y is obtained as

G G
n 1 -
argmaxg Eglog(l‘l’gl)+ E Etrace[‘l’gl(sg”)—AS*l)yg)Sg”))], (10)
g=1 g=1

and this corresponds to (9).

On the other handwhen the algorithm also requires the constrained estimaif A4, the latter is based on
a heuristic approach. We have empirical evidences abounthtonicity of this second EM cycle for the huge
majority of the steps in which we applied it, producing lovedEases in the objective function in extremely rare cases.
In any case, after each entire AECM cycle, an increasedhizetl was always observed.

4. Numerical studies

In this section, numerical studies will be presented, basesimulated and real data, to show the performance of
the constrained and trimmed AECM algorithm with respectrioanstrained ardr untrimmed approaches.

4.1. Artificial data

We consider here the following mixture & components ofl-variate normal distributions. To perform each
estimation, 40 dferent random initializations have been considered to gtartlgorithm at each run, as described
in the previous section, and the best solution is retainde fieeded routines have been writte®ioode (R Team,
2013), and are available from the authors upon request.

MixTure: G = 3,d = 6,q=2,n= 150

The sample has been generated with weights(0.3, 0.4, 0.3) according to the following parameters:

u; = (0,0,0,0,0,0) ¥, = diag(01,0.1,0.1,0.1,0.1,0.1)
H = (5,5,0,0,0,0y ¥, = diag(Q4, 0.4,0.4,0.4,0.4,0.4)
13 = (10,10,0,0,0,0y W3 = diag(02,0.2,0.2,0.2,0.2,0.2)
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Figure 1 shows a specimen of randomly generated data frogitha mixture.
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Figure 1. A specimen of 150 data points generated from théuneixthe first two coordinates are plotted, groups in blae#,and green)

Our analysis begins by running the AECM algorithm on the gateel sample, and considering the following six
settings, namely:

S1. a’virtually” unconstrained approach (iGeise = Cioad = 10'°) without trimming @ = 0),

S2. an adequate constraint ¥y, no constraint oAy (Cnoise = 5, Cioad = 10'% and no trimming ¢ = 0),
S3. adequate constraints Wy andAg (Cnoise = 5, Cioad = 3), and still no trimming ¢ = 0),

S4. a’virtually” unconstrained approach (i®eise = Cioad = 10%) with trimming (o = 0.06),

S5. an adequate constraint®¥g, no constraint o\ (Cnoise = 5, Cioad = 109, with trimming (@ = 0.06),
S6. adequate constraints Wiy andAg (Cnoise = 5, Cioad = 3), With trimming @ = 0.06)

It is worth noticing that when setting,oise = 10° singularities are surely discarded, and the estimatiotiosvad

to move in a wide parameter space that contains the globailhmuax, among several local ones. In this situation,
the estimation could incur spurious solutions. We expeettigorithm to improve its performance when giving the
"right” constraints. The adequate constraints can by etalliby obtaining the maximum ratio among the eigenvalues
of ¥y and among the singular values&j. As the singular values of; are (3069, 1.528), ofA; are (3.777, 1.873)
and of Az are (2.091, 1.729), hen@pad > 2.471; while the diagonal elements ¥y are 0.1, 0.4, and 0.2, so
Cnoise = 4. When trimming is also applied to the artificially genedatiata, the fect of an unneeded elimination of
the outermost points in the model estimation and subse@lestification can be seen. To measure the performance
of the algorithm, the average misclassification erra evaluated, over 1000 repetitions of the estimation pioce

The misclassification error is defined as the relative fraquef points of the sample erroneously labeled, taking into
account that noise and pointwise contamination (when gdstexlild be identified, as they virtually do not belong to
the three groups. We see that the algorithm, applied wittiouiing, gives a superb classification with and without
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constraints. While adding trimming, the misclassificatioror, as expected, is pretty close to the trimming leveld, an
all non-trimmed observations are perfectly classified ulite sole exception of 1 misclassified unit, that happened
only once, Whertygise = Coad = 10'°, and occurred 4 times wheRoise = 5 andcipaq = 10'°, over 1000 runs). The
results are summarized in the first row of Table 1. Moreoverather parameters, such as the mggnand¥g, Ag

forg = 1,2, 3, are close to the values from which the data have been gedesawill be shownin Subsection 4.1.1.

Table 1. Misclassification erroy (percent average values on 1000 repetitions of the estimatiocedure) of the AECM algorithm with settings
S1-S6, applied on the artificially generated data, and vatitamination

S1 S2 S3 S4 S5 S6
Choise 10% 5 5 109 5 5
Cload 10t° 1010 3 100 1010 3
o 0 0 0 0.06 0.06 0.06
D 0.003 0.006 0.001 6.001 6.003 6.000
D+N 29.606 29.654 48.324 3.131 3.128 0.004

D+PC 28.098 15.035 17.317 24.966 3.128 0.004
D+N+PC 44.690 45.089 47.044 12.289 5.887 0.003

In Table 1, four scenarios have been considered, i.e.:

D: the artificially generated data,
D+N: 10 points of uniform noise have been added around the data,
D+PC: 10 points of pointwise contamination have been addesidaithe range of the data,
D+N+PC: both the 10 points of uniform noise and the 10 points ofifedse contamination have been added to the data.

The algorithm has been applied to thefelient datasets in the six previous settings S1-S6 (i.e. /wittiout
constraints and trimming), to obtain and compare the ngsdiaation errors. In the case oftN+PC, the right
trimming level should obviously be raisedat 0.12. Results in the second row of Table 1 show that trimmingiy v
effective to identify and discard noise in the data, and comggaontribute getting close to a perfect classification.
The misclassification error (reported in the third row of [&ab) shows that, when concentrated outliers occur in the
data, the constrained estimation is also needed to achjaedty good behavior of the algorithm. Noise and pointwise
contamination could cause very messy estimations, as caeden the first three columns of the table, whenever the
estimation only religgloes not rely on constraints.

In conclusion, to be protected against all types of dataugaion, constrained estimati@mdtrimming are needed.
With the joint gfect of these tools, the statistical problem is well posedrisps solutions can be avoided and the
estimator resists the influence of all classes of containigatbservations. With the application of only one of the
previous instruments, these benefits are lost.

The algorithm for estimating a robust MFA have been writteRilanguage and is available from the authors upon
request, and an R package is currently under developmetdrrivs of computational resources, the algorithm is not
so heavily modified from the usual one, and the time for exeguhe robust AECM, if compared to the one without
trimming and constraints, remains of the same order of ntadei it needs about twice the computing time. To have
an idea, 10 robust estimations (based on 40 random inét#dizs and 60 iterations) on the artificial data require®3.9
seconds of system time, while the same experiment with #ssidal AECM required 1.911 seconds.

4.1.1. Properties of the estimators for the mixture parareet

Now, a second analysis on the same artificial data is perfdranel the main interest here is in assessing the
effect of trimming and constraints on the properties of the rhedémators. Namely, we estimate their bias and
mean square error, when the datafieeted by noise aridr pointwise contamination. The same four scenarios of the
previous subsection are again considered, i.e.: the @lifigenerated data (D), the data with the added 10 points of

10
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uniform noise (B-N), the data with the added 10 points of pointwise contanongD+PC), and finally the data with
both uniform noise and the pointwise contaminatior{B-PC).

We apply the algorithm for estimating a trimmed MFA modellirtize four scenarios, exploring the six settings on
Cnoise Cload @Nda that have been shown in Table 1. The benchmark of all sinmudgis given by the results obtained on
artificial data drawn from a given MFA without outliers. Inakeexperiment, a sample of sine= 150 has been drawn
1000 times from the mixture described at the beginning of 8gction, and the model parameters for the trimmed
MFA have been estimated using the algorithm presented ipréagous Section 3.2, by settimgoise = Cioad = 10°
(a virtually unconstrained solution) Gfoise = 5, Coad = 3 for a constrained one, armd= 0 for no trimming, while
a = 0.06 ora = 0.12 when adopting adequate trimming.

Notice that the considered estimators in each componenieaters (apart fromrg which are scalar quantities,
forg=1,...,G). We are interested in providing synthetic measures of ireperties, such as bias and mean square
error (MSE). As usual, lef be an estimator for the scalar paramétéren the bias of is given bybiagT) = E(T)-t,

i.e. it is the signed absolute deviation of the expectedelid’) from t. Therefore, we would have 6 biases for each
component of the meam,, 6 for diaglty) and 12 forA4. On the other handMSE is defined as a scalar quantity,
namelyE(|T — t|?) = tracel/ar(T)) + bias(l)?, also for vector estimators. Hence, a synthesis of eachmetea’s
biases is adopted by considering the mean of their absohltes on each component. Below the bias, in Tables 2
and 3, the MSE is provided in parenthesis.

The results on bias and mean square error for the case ofdisiinthe trimmed MFA with trimming but without
constraints or viceversa, show the harmftigets of distorted inference. The only exception comes frarlPwhere
trimming is pretty able to cope with the contaminatiddn the other handvhen reasonable constraimgise = 5,

Coad = 3 and a right trimming level are applied to deal with the adoletiiers, the results come back being very close
to the benchmark, shown in the first column of Table 2. Theeefib has been shown that robust inference reduces
bias and mean square error, in both cases of sparse and tategioutliers.
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Table 2. Bias and MSE (in parentheses)rgfahd bias as the sum of absolute deviations, followed by M&Bdrentheses) of the parameter estima;(pr!i’i", A, fori = 1,2, 3 for the artificial

data “D”, and for the artificial data plus noise #"; labels from S1 to S6 denote the estimation settings

T

Uy

3

H2

H3

¥,

R &

R &

Ay

Az

As

D D+N
s1 S2 S3 S4 S5 S6 s1 S2 S3 S4 S5 S6
0 0 0 0.0154  0.0166  0.0167 -0.037 -0.1636  -0.2206  1e-04 0 0
0) 0) () (26-04)  (3e-04)  (3e-04) (0.0017)  (0.0283) (0BF  (0) () 0)

0 0 0 -0.0227  -0.0229  -0.0238 -0.2835 0.065 0.4077  -1e-04 0 0

0) 0) () (5e-04)  (5e-04)  (6e-04) (0.0807)  (0.0058) (B  (0) ©) 0)

0 0 0 0.0073  0.0064  0.0071 0.3205 0.0985  -0.1871 0 0 0

) 0) () (1e-04) 0) (1e-04) (0.1031)  (0.0113)  (0.0365) 0) ( ) 0)
0.001 0.001 0.003 0.003 0.004  0.006 0.215 2.289 5.468 0.002 .0030  0.002
(0.113)  (0.117) (0.112) (0.124) (0.114)  (0.12) (9.211)  .188) (122.462) (0.118) (0.116)  (0.11)
0.003 0.003 0.002 0.005 0.002 0.003 4.89 2.191 0.694 0.002 0040. 0.006
(0.132)  (0.133) (0.131) (0.173) (0.179)  (0.185) (74.119) 69.868)  (34.888)  (0.143)  (0.126)  (0.139)
0.006 0.003 0.001 0.003 0.004  0.003 1.492 1.026 10.338 0.0040.004  0.002
(0.112)  (0.11)  (0.111) (0.122) (0.125)  (0.123) (87.415) 1.881) (471.833) (0.109) (0.108)  (0.115)
0.007 0.002 0.002 0.009 0.005  0.005 0.311 1.132 0.795 0.007 .0030  0.002
(0.009)  (0.003)  (0.003)  (0.009)  (0.004)  (0.004) (58.795) 11.2) (6.278)  (0.008)  (0.003)  (0.003)
0.029 0.045 0.045 0.074 0.1 0.1 9.194 0.445 0.355 0.033 0.0470.047
(0.142)  (0.05)  (0.053) (0.169)  (0.104)  (0.106) (1837.338)(2.547)  (2.248)  (0.136)  (0.053)  (0.055)
0.168 0.04 0.04 0.174  0.048 0.047 0.422 0.316 0.928 0.166 410.0 0.041
(1.018)  (0.053) (0.055) (0.952)  (0.048)  (0.048) (2613) .37F)  (7.718)  (0.989)  (0.055)  (0.054)
0.526 0.529 0.533 0.523 0526  0.551 0.558 0.537 0.525 0.523 .5270  0.517
(9.031)  (9.127)  (9.158)  (9.064)  (9.07)  (9.547) (37.297) 96B17) (52.772) (9.064)  (9.11)  (8.954)
0.585 0.576 0.56 0573 0566  0.575 0.668 0.633 0.553 0.573 5740. 0.58
(11.495) (11.369) (11.011) (11.326) (10.335) (10.634)  5(862) (205.661) (49.041) (11.326) (11.319) (11.569)
0.333 0.332 0.341 0.34 0.342 0.337 0.346 0.363 0.346 0.34 4103 0.337
(6.786)  (7.448)  (7.444) (6.888)  (7.284)  (7.224) (26.408) 22.941) (119.003) (6.888)  (7.408)  (7.503)
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Table 3. Bias and MSE (in parentheses)rgfahd bias as the sum of absolute deviations, followed by M&Bdrentheses) of the parameter estima;(pr!i’i", A, fori = 1,2, 3 for the artificial

data plus pointwise contamination #PC”, and for the artificial data plus noise and pointwise aomihation “D+N+PC”; labels from S1 to S6 denote the estimation settings

st

2

3

M

H3

¥,

¥,

Y3

Aq

Az

Az

D+PC D+N+PC
S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6
-0.0304 -0.0276 -0.0374 -0.0664 0 0 -0.218 -0.2116 -0.2163 0.0534 le-04 0
(0.001) (0.001) (0.0018) (0.0051) 0) 0) (0.0482) (0.0449 (0.0468) (0.003) ©) 0)
-0.3076 -0.0868 -0.1376 -0.1742 0 0 0.4025 0.4418 0.4822 316.0 -le-04 0
(0.0947) (0.0077) (0.0193) (0.031) 0) ©) (0.1627) (0305 (0.2325) (0.0011) 0) (0)
0.338 0.1144 0.175 0.2406 0 0 -0.1845 -0.2302 -0.2659 0.0218 0 0
(0.1143) (0.0133) (0.031) (0.0586) ©) ) (0.0347) (0DB3 (0.0707) (6e-04) ) ©)
0.346 0.931 1.365 1.918 0.002 0.003 21.143 18.651 20.535 335.2 0.006 0.001
(16.538) (30.237) (47.55) (75.165) (0.116) (0.112) (1988) (985.875) (881.201) (735.9) (0.114) (0.117)
8.59 2.682 4.489 6.005 0.005 0.004 1.146 0.534 0.001 2.208 0070. 0.003
(150.803) (102.543) (152.814) (147.795) (0.129) (0.135) 110(599) (49.885) (0.044) (344.79) (0.13) (0.132)
0.912 0.818 0.61 0.854 0.003 0.002 6.59 9.178 11.134 0.422 0020. 0.004
(3.31) (7.14) (5.662) (5.55) (0.111) (0.113) (383.624) (QB921) (381.857) (24.125) (0.11) (0.115)
0.012 0.052 0.07 0.032 0.003 0.003 0.069 0.509 0.636 0.028 0030. 0.002
(0.0112) (0.072) (0.108) (0.027) (0.003) (0.003) (17.255) 3.089) (4.316) (0.021) (0.004) (0.003)
0.363 0.098 0.132 0.302 0.045 0.046 0.9 0.239 0.246 0.054 460.0 0.044
(0.969) (0.22) (0.285) (0.747) (0.052) (0.052) (101.563) 0.942) (0.788) (0.306) (0.051) (0.05)
0.692 0.12 0.186 0.241 0.041 0.04 8.865 1.006 1.176 0.124 420.0 0.042
(3.528) (0.332) (0.499) (0.747) (0.054) (0.054) (2101)106 (8.218) (10.605) (0.772) (0.053) (0.054)
0.539 0.549 0.544 0.566 0.529 0.511 0.433 0.5 0.613 0.47 0.530.526
(9.581) (26.694) (18.72) (57.769) (9.1112) (8.76) (470)528(594.275) (257.523) (555.065) (9.126) (9.072)
0.559 0.562 0.565 0.596 0.57 0.572 0.568 0.598 0.596 0.599 5940. 0.57
(10.083) (42.216) (27.648)  (102.541) (11.248) (11.36) 1(282) (96.445) (38.347)  (182.497) (11.736) (11.175)
0.334 0.369 0.344 0.348 0.331 0.342 0.335 0.363 0.356 0.342 .3370 0.349
(11.312) (34.879) (15.699) (18.004) (7.337) (7.488) (430)1 (376.344) (193.749) (28.224) (7.468) (7.587)

12T (9T02) 00 SIsAjeuy ereq 9ansnels [euoneindwoy /

€T



/ Computational Statisticé- Data Analysis 00 (2016) 1-21 14

The distributions of the estimators for the model paransatan be represented by box plots, and some of them
are shown in Figure 2, namely with referencerto(uipper panel)uq[1, 1] (second panel)‘i’l[l,l] (third panel)
andA4[1, 1] (bottom panel). In a direct comparison, the sméiicgency reduction of the estimator when applying
trimming and constraints on the true data (cases32-S6) can be seen, th&ect of using only trimming when
uniform noise has been added to data (cas®l[DS4) is apparent; finally, the joint usage of trimming and ¢@ists
on ¥y is shown to be fective to protect against all types of contamination.

4.2. Real data: the AIS data set

As an illustration, we apply the proposed technique to thetralian Institute of Sports (AIS) data, which is a
famous benchmark dataset in the multivariate literaturigjraally reported by Cook and Weisberg (1994) and sub-
sequently analyzed by Azzalini and Dalla Valle (1996), amaorany other authors. The dataset consistp ef 11
physical and hematological measurements on 202 athl€d8séinales and 102 males) iffiidirent sports, and is avail-
able within the R packagen (Azzalini, A., 2011). The observed variables are: red calirdc (RCC), white cell count
(WCC), Hematocrit (Hc), Hemoglobin (Hg), plasma ferritinnzentration (Fe), body mass index, wejgeigh?
(BMI), sum of skin folds (SSF), body fat percentage (Bfaggn body mass (LBM), height, cm (Ht), weight, kg (Wt),
apart from gender and kind of Sport. A partial scatterplahefAlS dataset is given in Figure 3.

Our purpose is to provide a model for the entire dataset, imuce he group labels (athlete’s gender) are provided
in advance, the aim is to classify athletes by this feature.

Let us begin our analysis by fitting a mixture of multivari@aussian distributions, using tiMclust package in
R. The routinemclustBIG after fitting a set of normal mixture models, considerimgnirl to 9 components in the
mixture and diferent patterns for the covariance matrices, selects thé&Bdsmodel (ellipsoidal scatters, with equal
volume and shape, filerent orientation of the component scatters) Véite 2 components, providing the highest BIC
value, i.e.BIC = —102516. Now, using this model to classify AlS data, 18 misclasdifimits are obtained, i.e., a
misclassification error equal to 2802 = 9.4%. The classification results are shown in Figure 4 (lefegan

To improve the classification, we may exploit the conjecthet a strong correlation exists between the hemato-
logical and physical measurements. Therefore, a mixtuf@otdr analyzers may be estimated, assuming the existence
of some underlying unknown factors (like nutritional sgthematological composition, overweight status indices,
and so on) which jointly explain the observed measuremdiough the factors, the aim is to find a perspective on
data which disentangles the overlapping components. Tiol @aoiables having a greater impact in the model (which
is not dfine equivariant) due to flerent scales, before performing the estimation, the viasaiave been divided by
their interquartile range. We begin by adopting ftemmpackage from R, that fits mixtures of factor analyzers with
patterned covariances. Parsimonious Gaussian mixtuesstaained by constraining the loadingg and the errors
Py to be equal or not among the components. We employed thexep@mmEM considering from 1 to 9 compo-
nents, and number of underlying factarsanging from 1 to 6, with 30 dierent random initializations, to provide the
best iteration (in terms of BIC) for each case. The best misdeICUU mixture model witld = 4 factors ands = 3
components, witlBIC = —3127424. CUU means “Constrained” loading matriegs= A and “Unconstrained” error
matrices?y = wyAg, WhereAy are normalized diagonal matrices anglis a real value varying across components.
Using this model to classify athletes, we got 109 misclassifinits and we discarded it.

As a second attempt usimomm a UUU model has been estimated by setfg 2 components, and = 6.
The acronym UUU means that the estimation of loadingsind errors¥y is unconstrained. Based on 30 random
starts, the best UUU model h&C = —333Q306, and the consequent classification of the AIS dataseupes 72
misclassified units (misclassification er@35.6%, see the right panel in Figure 4).

Finally, we want to show the performance of our timmed antst@ined estimation for MFA on the AlS data. All
the results are generated by the procedure described iim®&c2, based on 30 random initializations and returning
the best obtained solution of the parameters, in terms diitffeest value of the final likelihood. We see that the best
solution, with only 3 misclassified points, has been obimg combining trimming4¢ = 0.05) and the constrained
estimation oMy (Cnoise = 45) andAg (Coad = 10), withd = 6.

Notice that the choice @& = 2 andd = 6 could be motivated by estimating all models within a ranigeatues for
G andd, and choosing the pair of values providing the best BIC. dnied version of th&1C = 2 Lyim(X; 6)—klogn*
should be considered, where we denotéitlye number of free parameters in the model, andtthe number of non
trimmed observations (i.&* = [n(1 - «)]). Results are shown in Table B practice, we stopped our investigation at
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Figure 2. Boxplots of the simulated distributionsmaf estimator forr; = 0.3 (upper panel)i1[1], estimator forui[1] = O (panel in 2nd row from
above); éuﬁ 1], estimator for¥'1[1, 1] = 0.1 (3rd panel from above); m:aHE 1], estimator forA1[1, 1] = 0.5 (lower panel). As usual, “D stays
for data, “+N” stays foradded noisg“+PC” stays foradded pointwise contaminatipwhile S1-S6 denotes the estimation settings.
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Figure 3. Scatterplot of some pairs of the AIS variables élendata in red, male in green)

Table 4. Trimmed and constrained MFA estimation on the Al dat (best results over 30 random initializations). Missification errog (in
percentage) under fiierent settings

Cnoise ~ 10t° 45 10° 45 10° 45 10° 45
Cload  10% 10%0 10 10 130 10%0 10 10
@ 0 0 0 0 0.05 0.05 0.05 0.05

n 0.1040 0.0891 0.1040 0.0891 0.0347 0.0149 0.0347 0.0149

d = 6 because in a factor analyzer, to reach parsimony, we shawk  — d)? > p + d (as discussed in detail at the
end of Section 2)We must thank an anonymous Referee for raising a questiohi®issue, that also confirmed our
previous assessment@f 6, obtained by performing a factor analysis on the obsermatcoming from the group of
male athletes, and employing a scree-plot to test the hggiithat 6 factors are icient (chi square statistic equal
to 97.81 on 4 degrees of freedom, gndalue= 2.88- 10°29).

Moreover, we recall here that Bekker (1997) showed that ¢(p) is a necessary and fficient condition for
global identifiability of the diagonal matri¥¥, where

is the so-called Ledermann bound (Ledermann, 1937). Initheept case we have thiht 6 < ¢(p) = 6.78, hence
no identifiability issues arise.

The constraints, and in first place the constraipteon ¥y, play an important role (compare results in columns 2-
4-6 and 8 to the ones displayed in the odd columns), but trimgris needed to reach the best result. This is motivated
by the fact that the data, in both groups, are not following &dimensional multivariate Gaussian, as it can be easily
checked by performing a Mardia test. Two results of the fittediels and the subsequent classifications are displayed
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Figure 4. The classification of AIS data obtained throughltdst model fronMclust (left panel), and through the best UUU model fre@mm
(right panel) withG = 2 andd = 6 (female data in red, male in green, misclassified unitsaskltirclecrosses).

GroupsG 1 2 3 4 5
Factorsd

3484.32 2833.18 2744.96 2702.89 2780.27
2436.87 2311.24 2283.16 2331.43 2433.88
1938.75 1885.03 1967.93 2068.36 2261.20
1490.72 1513.43 1662.43 1818.78 2002.08
1409.03 1390.86 1559.12 1774.64 1971.56
1142.15 1099.89 1371.98 1772.44 1976.96

OO, WN P

Table 5.timmedBIC for different choices of the number of factarand the number of groufs, on AlS data.

in Figure 5, by selecting the 2 variables in the scatterpilat enable us to point out the trimmed and misclassified
units. We have chosen to represent the best solution (leflpavith only 3 misclassified points, colored in black,
and with 10 trimmed points, denoted by “X”. In the right pgrielmake a comparison, we report classification results
obtained by the non-robustly fitted model, whose detailshosvn in the first column of Table 4. In this second case,
we were doing an almost unconstrained estimatio¥gandAy and we were not applying trimming, obtaining 21
misclassified observations.

In the robustly estimated model, the misclassified obsimsaiare in rows 70, 121 and 153 in the AIS dataset.
Two misclassified units are from male athletes, one is a feratlilete. The discriminant function of the mixture
components for the observation in position 153 are cl@s€x( ) = 0.0115 andD,(x; §) = 0.0855), while for the
other two observations they are neatlyfelient.

Finally, we recall that trimmed observations have beeradd®d to provide robustness to the parameter estimation.
After estimating the model, it thus also makes sense toifjabese observations. The trimmed observations are in
rows 11, 75, 93, 99, 133, 160, 163, 166, 178, 181 and, if wgaskem by the Bayes rule to the componghtwving
greater value oDgy(x; 6) = ¢p(X; g, AgAy + o)y, We classify the first four in the female group of athletes] te
second group of six in the male group. This means that allrthrerted observations have been assigned to their true
group. Table 6 shows the details of the classification, aaditthtmost panel in Figure 5 plots the final result of the
robust model fitting.

As a last analysis on the AIS dataset, we are interestedtorfaxerpretation. The rotated factor loading matrices
have been obtained by employing a Gradient Projection glfgoy available through the R packa@Arotation
(Bernaards and Jennrich, 2005; Browne, 2001). We optedfobimin transformation, which yielded results shown
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Figure 5. Classification of AlS data with fitted trimmed andhsmained MFA (left panel), compared to non-robust MFA (carpanel), i.e. the
model in the first column of Table 4. Misclassified data ar@w in black, trimmed data are denoted by “X”. In the righh@aAlS data after
classifying also the trimmed observations. The three mssified points (in black) represent onlp% of the data

Table 6. Trimmed units in the AIS dataset and their final dizssion

unit 11 75 93 99 133 160 163 166 178 181
Di(x;0) 3.4e-16 9.8e-08 2.8e-06 4.8e-11 2.7e-93 6.4e-64 9.1e-8%e-14 1.1e-20 1.2e-08
Da(x;60) 9.6e-19 1.1e-12 4.3e-11 6.5e-87 6.2e-14 1.9e-06 7.1e-08e-12 9.5e-13 2.5e-05
Sex F F F F M M M M M M

in Table 7. We observe that the two groups highlight the sawi®fs, while in a slightly dierent order of importance.
The first factor for the group of observations for female etiébd, may be labelled ash@matological factgrwith a
very high loading orHc, followed byRCCandHg. The second factor, loading heavily étt, and in a lesser extent
onWtandLBM, may be denoted asgeneral nutritional statusThe third and fourth factors are related onlyfte
andBMI, respectively. The fifth factor can be viewed asoaerweight assessment ingdsinceS S FandB fat load
highly on it. The sixth factor is related only & CC. Noticing thatWCCis not joined to théhematological factar

we observe that the specific role of lymphocytes, cells ofrtireune system that are involved in defending the body
against both infectious disease and foreign invaders, s¢eive pointed out. Analogous comments may be done on
the factor loadings for the group of male athletes.

We would like to add a final remark on this data analysis. Wigm@aching the AIS dataset, we run a Mardia test
on both groups and measured asymmetry and kurtosis, findatdpoth are significantly fferent from the Gaussian
case. Hence one may argue that a mixture of two skew disoitmjtas in Lin et al. (2014a), is more suited for
this dataset. Unfortunately, the obtained misclassificagirror, comparing dierent skew components, ranges from
4.5% to 5.9%. We want to show here that trimming is a converdad competitive tool to be adopted, when one
tail (skewness) or both tails (kurtosis) are contaminatetthé data. As a general principle, trimming enables robust
estimation of the location and scatter, and mégioan dfective alternative to the adoption of more parameterized
skew models. Our results show that we estimated the coreealdla through a Gaussian density, obtaining such a
good classification. We therefore argue that the flexibdltyained by the robust approach may provide a pretty good
fit, even in the presence of some asymmetry in data tails.

5. Concluding remarks

We propose a robust estimation for the mixture of Gaussietofanodel by adopting trimming and constrained
estimation.To resist pointwise contamination and sparse outliersabald arise in data collection, we incorporate
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Table 7. Factor loadings in the AIS data set

RCC
WCC
Hc
Hg
Fe
BMI
SSF
Bfat
LBM
Ht
Wt

RCC
WCC
Hc
Hg
Fe
BMI
SSF
Bfat
LBM
Ht
Wt

0.000

0.794

0.682

0.002
0.029
-0.040
0.014
0.022
0.020
0.029

-0.033
0.003
0.048
-0.002
0.010
-0.371

-0.616

-0.610

0.036
0.036
-0.222

rotatedA; (female athletes)

-0.006  -0.009 -0.055 0.001  -0.035
0.009  0.000 -0.015  0.012
-0.015  0.040 -0.004 0.010  0.026
0.021  -0.025 0.047  -0.002  0.007
-0.005 [-0510] 0.003  -0.004  0.000
-0.008  0.023 |0.644] -0.316  -0.057
-0.012  -0.037  0.033 [-0.889] -0.017
-0.024  0.013  -0.007 [-0.826]  0.008
~0419] 0020 0295 0054  -0.025
-0924] 0023 -0.128 -0.076  -0.002
-0468/ 0023 0330 -0.235  -0.031
rotatedA, (male athletes)
0.077  -0.015 -0.025  -0.053
-0.004  0.024  -0.003 0.013
0622 -0.008 0.005 0.036  -0.048
0604/ -0.051 0.009 0.001  0.079
-0.006  0.027 [1103] -0.004  0.008
0.109 |-0.656] 0.074  0.070  -0.261
0.002  0.009 -0.001 0.015  -0.026
-0.009  0.003  0.007 -0.000  0.040
0.071  -0.344  0.037  0.053 [-0.885
0.005  0.170 -0.022  0.009 |-1157
0.071  -0.357 0.042  0.056 |-0.884

19

a trimming procedure in the iterations of the EM algorithmheTkey idea is that a small portion of observations,
which are highly unlikely to occur under the current fitteddabassumption, are discarded from contributing to the
parameter estimates. Furthermore, to reduce spurioussw@and avoid singularities of the likelihood, a consteai
ML estimation for the component covariances has been imghéed. Results from the Monte Carlo experiments show
that the bias and MSE of the estimators, in several casesdcinated data, are comparable to results obtained on
data without noise. Finally, the analysis on a real datédlsstiiates that robust estimation leads to better classidio
and provides direct interpretation of the factor loadings.
Further investigations are needed to tune the choice ofdtenpeters, such as the portion of trimming data and the
values of the constraints. Though interesting, this issumeyond the scope of the present paper. Surely, some data-
dependent diagnostic based on trimmed BIC notions (NeykaV.,£2007) may provide a way to select the number
of groups and underlying factors, as has been shown. Widnerte to the choice of, other tools can be adapted to
the present case, such as silhouette plots to assess tigtlstoé cluster assignments and the classification trimmed
likelihood curves (Garcia-Escudero et al., 2011). Theseeas provide helpful exploratory tools by monitoring the
estimation results when movingin [0,1] andG = 1,2, .... On the other handctonsidering am higher than needed
does not necessarily spoil trimmed-based clusteringtsest¥e could have erroneously discarded some non-outlying
data points but the “main” clustering structure may stilde¢ected, as has been documented by the simulation results.
Clearly, when thinking of tuning parameters, one has al$akie into account that they are interrelated. For instamce,
high trimming levelr could lead to smalle® values, since components with fewer observations may inerteid df.
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Moreover, larger values of the constraints could lead théigalues of5, since new components with few, almost
collinear observations may arise. With respect to the @ofdhe specific values for the constraints, our experience
tells us that a moderate interval of values kg and cqeise produces almost the same estimation and exactly the
same classification. Also, from an interpretative pointiefw this corresponds to the fact that, generally, the uasr h
some intuition (or rough knowledge) about the order of magld of these constraints, and this partial information
can be incorporated into the estimation. The encouragisigiteeobtained here suggest that a deeper discussion of
these implementation details could be developed as a futoirie

As a final remark, following the suggestions for further istigation we received from an unknown referee,
the proposed method can also be extended to accommodaiagnistues, as in Wang (2015); and much faster
convergence to the EM-based algorithm could be improveatgtioe lines of Zhao and Yu (2008).
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