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Abstract We provide a computationally efficient method, based on Harvey
(1998) proposal, to estimate the underlying volatility of asset returns using the
Long-Memory Stochastic Volatility (LMSV') model. The performance of our pro-
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1. Introduction

It is a well established fact that many financial series such as asset returns are

serially uncorrelated over time, but display a highly persistent behavior in some
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nonlinear transformations such as squared, log-squared and absolute returns.
Indeed, a large body of empirical research has documented that the autocorrel-
ations of the return volatility series decay at a slow hyperbolic rate instead of
exponentially like in weakly stationary models; see e.g. Dacorogna et al. (1993),
Ding et al. (1993), Bollerslev and Mikkelsen (1996), Bollerslev and Wright (2000)
and Andersen et al. (2001a, 2001b), among others. This empirical fact motivated
Breidt et al. (1998) and Harvey (1998) to introduce the Long Memory Stochastic
Volatility (LMSV') model.

The LM SV model for a time series of returns y; can be defined as
Yt = OEt, O zoexp(ht/Q), (].)

where o; is the volatility, e; ~ IID(0,1), o > 0 and h; is a Gaussian ARFIM A(p,

d, q) process independent of €; given by
¢(B)(1 — B)"hy = 0(B)n;, (2)

where B is the lag operator, ¢(B) =1—¢1B—---—¢,B? and §(B) =1 —6,B —
.-+ —0,B9 are stationary autoregressive and invertible moving average operators,
respectively, d is the fractional differencing parameter and 7y ~ NI D(O,afl).
If d < 1/2, the process y; is both covariance and strictly stationary and it is
nonstationary otherwise. However, if 1/2 < d < 1, the volatility process has
transitory memory, i.e., any random shock has only temporary influence on the
volatility series, whereas if d > 1, the shocks persist indefinitely on its future

path.

An appealing feature of the LMSV model is that volatility does not only
depend on past observations as in ARCH models, but also on some stochastic
unobserved components. However, its estimation is not an easy task, because the
LMSV model is not conditionally Gaussian and, therefore, the exact likelihood

is very difficult to evaluate. Nevertheless, several estimation procedures are now
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available in the econometric literature. These include parametric methods, such
us the Frequency Domain Quasi Maximum Likelihood (FDQML) method, in-
dependently proposed by Breidt et al. (1998) and Harvey (1998), the enhanced
FDQ@ML method recently proposed by Deo et al. (2006), the Generalised Method
of Moments (GMM ) suggested by Wright (1999a) and the Bayesian approach of
So (1999, 2002). The LMSV model’s fractional differencing parameter, d, can also
be estimated with semiparametric methods; see, for example, Deo and Hurvich
(2001), Hurvich and Ray (2003), Arteche (2004), Jensen (2004) and Hurvich et
al. (2005). However, the semiparametric methods do not provide estimators for
the other parameters of the LMSV model, but only for d. This rules them out
from being used as the basis for the smoothing algorithm to be explained in the
following sections.

Once a LMSV model has been estimated, the natural course of action is to
obtain estimates of the underlying volatility as it has important and practical
implications for asset pricing, portfolio allocation, and risk management. From
a statistical point of view, the estimation of the volatility process is essential for
diagnostic checking and model selection based on standardized residuals. Harvey
(1998) proposes a method to carry out exact smoothing and to obtain an estim-
ator of the long-memory signal that requires the inversion of a n X n matrix,
n denoting the available sample size. Since the inversion of this matrix could
become cumbersome for large sample sizes, Harvey suggests to do the smooth-
ing using weights worked out for a smaller sample size and argues that little
accuracy would be lost because the weights given to the remote observations are
very small. In this paper we provide a feasible implementation of Harvey’s pro-
posal, and obtain an estimation of the long memory signal that renders accurate

volatility estimations®.

1 Chen et al. (2006) propose a method for inverting Toeplitz matrices using a version
of the preconditioned conjugate gradient method that can be applied to LMSV models
to obtain the exact volatilities for very large data sets. How this proposal compares to
ours is a topic left for further research.
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The rest of the paper proceeds as follows. The next section becomes precise
on the Harvey’s smoothing algorithm and introduces our feasible version. Section
3 presents an application to the modelling of daily exchange returns that includes
a comparison of our smoothed volatilities with those estimated by long-memory

GARCH-type models. Finally, Section 4 concludes.

2. Signal Extraction and Smoothing

One of the main goals in fitting a model for time varying volatilities of a financial
time series is to obtain an estimation of the volatility itself. In the LMSV model,
Harvey (1998) proposed a method to carry out exact smoothing and obtain an
estimator of the signal, h;, based on the full sample. We summarize here the
most relevant aspects of this method and then we present our feasible solution
when the sample size, n, is too large to enable Harvey’s original proposal to be
implemented.

The smoothing procedure proposed by Harvey (1998) exploits the fact that
the LMSV model defined in (1)-(2) can be written in an equivalent way for the

log-squared returns, as:

Ty = ln(yf) =pu+ hy + &, (3)

where p = In(0?) + E(In(¢?)) and & = In(e?) — E(In(¢?)). From (2)-(3), it turns
out that the LMSV model can be thought of as a structural time series model
where x; is given by the sum of a Gaussian ARFIMA signal h; plus an i.i.d.
non-Gaussian noise & with zero mean and variance ag.

Equation (3) can be written in matrix notation as follows:

x=pith+,

where x is a n x 1 vector containing the observations ¢, for t = 1,2, ...,n; p is the

mean of the process z;; iis a n x 1 vector of ones; h is a n x 1 vector containing
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the signal values; and & is a n x 1 vector with the disturbance values. When h; is
a stationary process, the Minimum Mean Square Linear Estimator (MMSLE) of

h; that provides the smoothed estimation of h is given by the following expression

h=(I- 02V )x+0?V lip=x— o2V (x—pi), (4)

where p is an unknown parameter that will be estimated by the sample mean
of x;, V denotes the covariance matrix of z; and I is the n X n identity matrix.
Since the process &; is white noise (0,0'g) and independent of hy, it turns out
that V. =V, + O’?I, where V), is the covariance matrix of h;. In the particular
case where h; is a stationary ARFIM A(0,d,0) process, the ij-th element of V,
is (k) ={(k—14+d)/(k—d)}y(k — 1), with k = |i — j|, k = 1,2,..., and
W (0) = of = 02I'(1—2d)/{I"(1 - d)}” (see Hosking (1981)). In the general sta-
tionary ARFIM A(p,d,q) case, the autocovariances are complicated functions
of hypergeometric functions but they can be efficiently computed with the al-
gorithm in Chung (1994) and the more recent one proposed by Bertelli and
Caporin (2002).

When the process h; is nonstationary (1/2 < d < 1) the smoothing formulae

applies to the model in first differeces, given by:
Axy = Ahy + A&,

where Ah; is a stationary ARFIM A(p, d*, q), with d* = d—1and —1/2 < d* < 0.
In this case, the term involving the mean p vanishes and the algorithm would
provide smoothed estimators of Ah;, with t = 2,...n. If we denote by h* the
(n — 1) x 1 vector containing such estimators, the smoothing equation for Ah;

can be written as

h*= (I- V;V*hx", (5)
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where x* is a vector with the first differenced observations Ax;, and V* and Vi
denote the covariance matrices of Axy and A&, respectively. Smoothed estimat-

ors of the signal h; are then computed from the recursion:

he=he_1+hi,t=2,...n, hy=0.

Finally, the smoothed estimator of the underlying volatility, denoted by &;, is
obtained as the product:

Gy =06 eXp(Tlt/Q), t=1,...n

where & is the estimator of the scale factor suggested by Harvey and Shephard
(1993), ice., 6 = (n =1 S0, 5) /2, with §; = y; exp(—he/2).

Note that this smoothing procedure requires the inversion of the n x n mat-
rix V in equation (4) and this could pose computational problems when dealing
with large data sets. To overcome this drawback, we propose to build up an
approximate weight n x n matrix, say W, alternative to the matrix V!, that
only requires computing the weights for a smaller sample size, say N (N < n).
Our procedure is as follows?. First, let us define Vi, n as the N x N covariance
matrix of (h1,...,hy). Since this matrix is symmetric Toeplitz, only N different
elements, v, (0), ..., v, (N — 1), are needed to complete it and these can be evalu-
ated in O(N log N') operations with the algorithm in Bertelli and Caporin (2002).
We next obtain the covariance matrix of (z1,...,2n5) as Vy = Vi N + O‘?I and
compute its inverse, i.e. Vy'. Let w;; be the ij-th element of this matrix, with
it=1,..,N,j=1,..,N, where w;; = wj;. In order to build up the new n x n
matrix W, we propose to shift this N x N matrix VX,I along the main diag-
onal of W, and complete the off-diagonal elements of this matrix up to n with

zeros. Then, the approximated smoothed values of the log-volatility, say fl, will

2 We only explain our proposal for the stationary case. In the nonstationary case, a
similar procedure is applied to the matrix V* in equation (5).
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be calculated as:
h=(I- i W)x+0; WiZ = x — 0 W (x—Ti)

where T is the sample mean of (z1,...,z,). Note that this scheme only requires
the inversion of the N x N matrix V and, since this is a symmetric Toeplitz

matrix, the number of operations required to invert it is O(N log? N ).

To better illustrate our procedure, consider a simple example where n/3 is an
integer number and n— N is even. In this case, the n x n matrix W could be build
up by shifting the N x N matrix V;,l in three blocks along the main diagonal
and completing the off-diagonal elements up to n with zeros. In the zones where
the blocks overlap, we choose the elements from the closest block to the main
diagonal in order to assign nonzero weights to the closest N observations in time.
In particular, to get the approximated smoothed value of the volatility at time
i, say iAL,', with ¢ = 1,...,n/3, the weights assigned to the first N observations are
the N elements of the i-th row of V;,l while the left observations (zn41,...,%,)’
get zero weight. That is, the i-th row of the n x n matrix W, for i = 1,2, ...,n/3,
will be:

Wily eeeey Wid, ...’CL)iN7O7 ceeey 0
N——

N (n—N)
When i =n/3+1,...,2n/3, the first and last observations (z1,...,Zn—nN)/2)
and (x(n+ N)/2415 - - , &) are given zero weight and the N central observations

are multiplied with the corresponding central row of VR,I. Therefore, for i =

n/3+1,....,2n/3, the i-th row of W will be:

O,....,O,wi, n— g eeeey Wi (n— i—(n— geees Wi (n— 5 0, 7O
(n=N)/2,1 (n=N)/2,i=(n—N)/2 (n—N)/2,N

(n—N)/2 N (n—N)/2

Finally, for ¢ = 2n/3 + 1,...,n, the first n — N observations get zero weight

and the last N observations (z,_n+1,--.,%,) are weighted with the elements of
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the corresponding bottom row of V;,l. That is, for i = 2n/3 + 1, ...,n, the i-th
row of W will be:

0,.ccts 0, WN4i—n, 15 ooy WN+imn, Npimns -y WN+i—n, N
~——
(n—N) N

At this point there are two issues that deserve further discussion. First, the
selection of the size IV, and second, how to shift the Nx N submatrix Vx,l across
the n observations. As regards the sample size N, it is clear that the larger we se-
lect N, the better the approximation, but the larger the number of multiplications
required. In this sense, experiments in Pérez (2002) reveal that very reasonably
results are obtained when choosing N/n € (0.5,0.7). But even smaller values of
N could lead to satisfactory results, as far as the remote elements in the rows
of V™1 are very close to zero. Therefore, the choice of the truncation parameter
N will depend mainly on the estimated parameter values: for very persistent es-
timated models with d close to 1/2, N should be larger than for less persistent
models where the extreme elements of the inverse matrix V~! are very close to
Zero.

Another important concern is how to determine the number of overlapping
block matrices needed to best construct the n x n matrix W. Clearly, there are
many possibilities, from shifting the matrix in few blocks overlapping as little
as possible, to the other extreme of a more dense overlap that shifts the matrix
very frequently. Which one constitutes an optimal approach is not investigated
in this paper, but we just try overlappings that have shown to provide reasonable
results in our simulation experiments.

As an illustration of the accuracy of our procedure, Figure 1 compares the
implied weights for 77,1 in a very persistent LMSV model with {d = 0.45, o% =0.1,
o =1} and n = 840 (solid line) with the approximate weights for h; with N = 560
(dots and dashes), N = 420 (closely dots) and N = 350 (short dashes). The left
hand side panel displays the weights at time ¢ = 140, while the right hand side
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panel corresponds to ¢ = 400. For N = 350 and N = 420, the W matrix has
been obtained by moving V;,l along the main diagonal in four blocks, while it
has been shifted in three blocks when N = 560. As it can be seen, most of the
weight for EZ and ﬁl is on the nearest observations to the :—th one and the true
weights given to remote values are nearly zero. Moreover, in the neighborhood
of the i—th observation, the approximated weights are indistinguishable from
the true weights, and the differences between them in the tails are negligible
when N = 560. As expected, the smaller is N the larger the differences, but
even with N = 350, the largest discrepancies amount only to approximately
5 x 10~%. Furthermore, it should be recalled that for a less persistent model and
a larger sample size, the differences will become even smaller, because the larger
the sample size and the smaller d and 03’, the smaller the true weights assigned

to remote observations and the better the approximation.
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Figure 1: True and approximated weights for the 140-th (left panel) and the 400-
th (right panel) observation in a LMSV model with {d = 0.45,07 = 0.1,0 = 1},
sample size n = 840 (solid line), and truncation parameter N = 560 (dots and
dashes), N = 420 (dots) and N = 350 (dashes).
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3. Empirical Application
3.1.  Data and Descriptive Statistics

Herein we apply the estimation and smoothing methods discussed in the previ-
ous sections to the three series of daily exchange rate data analyzed by Wright
(1999b). These series are the Dollar/Pound, Dollar/Mark and Dollar/Yen cover-
ing the period 1986-1996 inclusive. The exchange rate returns are constructed as
100 times the first differences of the log of exchange rates. These returns were de-
meaned. Table 1 reports summary statistics for the unconditional distribution of
these series as well as the sample autocorrelations of log-squared returns and the
Ljung-Box statistic for uncorrelation in log-squared returns. Figure 2 displays the
three series of daily returns and the corresponding correlograms of log-squared

returns.

Series MARK POUND YEN
Observations 2696 2680 2680
Median 0.001 0.010 -0.015
St. Dev. 0.289 0.305 0.318
Skewness -0.085 -0.251 0.346
Kurtosis 5.016 5.679 9.430
Autocorrelations of log-squared returns
T10g2(1) 0.176 0.053 0.176
Tlog2(2) 0.054 0.122  0.054
Tlog2(D) 0.039 0.090 0.034
Tlog2(10) 0.087 0.085 0.020
Qi0g2(20) 187.83 342.89  122.06
Q10g2(100) 328.82 785.24  204.88

Tlog2(k) denote the kth-order autocorrelation of log-squared returns.
Qlogz(k‘) is the kth Ljung-Box statistic for serial correlation in log-squares.

Table 1: Summary statistics for the return series.

As expected, the three series exhibit excess kurtosis and volatility clustering.

Moreover, the Ljung-Box statistics for uncorrelation up to 20 — th and 100 — th
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Figure 2: Daily returns (top panels) and correlograms of log-squared returns
(bottom panels) for the Dollar/mark, Dollar/Pound and Dollar/Yen exchange
rates.

order in the log-squares are all highly significant and so are the selected autocor-
relations, except the 5—th and the 10—th ones of the Yen series. A further look at
the correlogram of the log-squares displayed in Figure 2 suggests the presence of
long-memory in the Mark and Pound series, characterized by a slow hyperbolic
decay of the autocorrelations towards zero, and maybe also in the Yen series,
although not so clear. These findings are in agreement with other studies that
have also reported evidence on the existence of long memory in the volatility
of foreign exchange returns; see, for example, Andersen and Bollerslev (1997),

Bollerslev and Wright (2000), Baillie et al. (1996) and Hurvich and Ray (2003).

3.2.  Tests for Long-Memory in Volatility

Wright (1999b) has reported strong evidence against the presence of a unit root
in the volatility of these exchange rate data analyzed here. As he points out, this

could indicate that models in which the volatility process is fractionally integ-
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rated may provide a better representation of the data. Herein we complement this
analysis by testing the hypothesis of d = 0 (short memory) against the fractional
alternative d > 0. In particular, we apply the LM test developed by Lobato and
Robinson (1998) and get the following values: 3.16 for the Yen series, 4 for the
Mark series and 3.86 for the Pound series. This test rejects the null if the test
statistic value falls in the upper tail of the standard Normal distribution. There-
fore, it seems that there is strong evidence of long memory in the volatility of the
three exchange rate series considered here. In addition, we perform the Wald test
for long memory in volatility based on the log-periodogram of the log-squared
returns, suggested by Hurvich and Soulier (2002). Under the null hypothesis of
d = 0, these authors prove that their statistic is asymptotically normal with
zero mean and variance 72 /24. The corresponding test values becomes 3.44, 4.09
and 1.91, for the Mark, Pound and Yen series, respectively, so it confirms the
evidence of long memory in the volatility of Mark and Pound, whereas it is less
conclusive for the Yen series. Finally, we apply to the log-squared returns the
rescaled variance test for long memory proposed by Giraitis et al. (2003). Again,
this test provides evidence of long memory in the volatility of Mark and Pound

series, while it is unable to reject the null of short memory for the Yen series.

3.3. Model Estimation

Given the previous results, we now estimate a LMSV model for the three return
series by means of the Whittle-type FDQML method proposed by Breidt et al.
(1998) and Harvey (1998). This method is easy to apply and allows us to estimate
all the parameters of the model, which is something essential to carry out the
smoothing explained in section 2. For the LMSV model in (2)-(3), the FDQML

estimator is obtained by minimizing the following function

[n/2]

_ 2w . In(>\j)
@u(0) =2 3 {iox (0510 + 75255}

J=1
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where O is the vector of unknown parameters, [n/2] is the integer part of n/2,
Aj = 2mj/n, L,(};) is the j-th periodogram ordinate of z; and f(\;; @) stands
for the spectral density of x; evaluated at A;. In the stationary case (d < 1/2),

we have ) 4 )
B L G | PN I R/
f()‘J7 @) - 21 ¢)(ei)\) [2(1 COS )‘])] + 2’/T.

If the series x; is not stationary (1/2 < d < 1), FDQML estimation is carried out

for the series Az, whose spectral density is given by

o2 | 0(et o2
F050) = 52 [ 1201 = cos )1 £ 1200 — cos)L

We use several ARFIM A(p,d, q) models to capture both the long memory and
the short-run dynamics of the log-volatility h;. In particular, we estimate (0, d, 0),
(1,d,0), (0,d,1) and (1,d,1) specifications. To select among the estimated mod-
els, we use the Akaike (AIC) and Schwarz (SIC) information criteria. Both of
them select the (0, d, 0) specification for the Mark and Pound rate series. However,
for the Yen series, the AIC and the SIC provide different results and we choose
the more parsimonious (0, d,0) model selected by the SIC. Table 2 (A) reports
the estimates of the parameters for the selected LMSV models. Interestingly, the
estimate of d for the Mark series is in close accordance with previous findings in
Baillie et al. (1996) using a FIGARCH specification, and Harvey (1998) using
the LMSV model. Moreover, the estimated values of Ug are not far from the one
corresponding to a normal distribution for ;. In order to compare estimates of
the volatility arising from the LMSV model with that provided by GARCH -type
models, we have also fitted to our data a GARCH model with long memory that
also generates estimates for the log-volatility as in the LMSV framework. Such
model is the FIEGARCH proposed by Bollerslev and Mikkelsen (1996), where
the log-volatility is parametrized as an ARFIM A(p, d, q) given by:

¢(B)(1 = B)'Ino} = w+[1 +v(B)lg(e-1), (6)
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where ¢(B) = 1 —¢1B — -+ — ¢,BP, Y(B) = y1B + -+ + ¢,B7 and g(g;) =
Oer + v[let] — E(|et])]- The parameter 6 accounts for what is sometimes called
‘leverage effect’, that is, for § < 0, the future conditional variance will increase
proportionally more following a negative shock than for a positive shock of the
same magnitude. Since the LMSV model in equations (1)-(2) does not account
for this effect3, and to make the previous results comparable with those from the
FIEGARCH model, we have estimated the latter with no leverage effect, that
is, by fixing # = 0. This model is estimated by maximum likelihood by assuming
e¢ to be NID(0,1). As in the LMSV application, several specifications are used
for the ARFIM A(p,d,q) process in (6), namely (0,d,0), (1,d,0), (0,d,1) and
(1,d,1), and the best model is chosen according to the SIC criteria. Table 2 (B)
shows the parameter estimates for the selected models, a FIEGARCH(0,d,0)
for Mark and Yen series, and a FIEGARCH(1,d,0) for Pound. The estimate of
the fractional difference parameter is statistically very different from both zero
and one for the three series analyzed, which suggests that the volatility process

is persistent with long memory in all cases.

3.4.  Smoothed Volatility Estimates

We obtain, for each series, the estimation of the underlying volatility from the
LMSV model, using the smoothing algorithm described in section 2 with N =
1500. In order to compare these estimated volatilities with those provided by FIE-
GARCH models, Figure 3 displays, for the three series considered, the smoothed
estimated volatilities series oy from the LMSV model (left hand side panels) and
the FIEGARCH model (right hand side panels). This figure shows that, for the
three series considered, the smoothed volatility from the LMSV model is quite
close to the one provided by the FIEGARCH model, although the latter seems

3 A new LMSV model that allows for leverage effect has been recently proposed by
Ruiz and Veiga (2008) and further analysed by Pérez et al. (2009).
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Panel A: Whittle QML estimates (LMSV')

MARK POUND YEN
(0,d,0) (0,d,0) (0,d,0)
o 0.805 1.070 0.622
d 0.867 0.716 0.405
o2 0.019 0.084 0.356
ag 5.093 4.383 4.556
Panel B: Maximum likelihood estimates (FIEGARCH )
MARK POUND YEN
(0,d,0) (1,d,0) (0,d,0)
w —0.141 —0.065 —0.206
(—6.78) (—7.10) (~13.12)
0.711 0.523 0.555
(19.09) (8.89) (17.96)
0.184 0.083 0.273
(6.85) (7.14) (14.20)
01 0.799
(13.18)

For the FIEGARCH model t-statistics are in parenthesis.

Table 2: Estimates of the LMSV and FIEGARCH models.

to have larger fluctuations than the former, as expected; see Ruiz (1994) and So,

Lam and Li (1999) for similar results when comparing short memory SV and

GARCH models.

Moreover, for LMSV models (left-hand side graphs), it can be noticed that
the estimated volatility of the Mark time series is slightly smoother than that of
the Pound series and much smoother than that of the Yen series. This bears out
the fact that in SV models, the higher the persistence of the signal the smoother
the path of the volatility. In contrast, the estimated FIEFGARCH volatilities
(right-hand side graphs) appear to be of roughly the same degree of smoothness
for the three series. This is to be expected since modelling a time series directly
as a linear function of its past values, as it is the case in FIEGARCH models, is

not subject to the smoothness constraints imposed in the structural models that

underlies the LMSV model.
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| e—

Figure 3: Absolute demeaned returns (thin line) and smoothed volatility (thick
line) from LMSV (left hand side panels) and FIEGARCH (right hand side panels)
models for Dollar/Mark (top), Dollar/Pound (middle) and Dollar/Yen (bottom)
returns.

3.5 Diagnostic Checking and Model Selection

Table 3 reports summary statistics for the standardized returns, y; /0%, from the
two estimated models. For both models, skewness and kurtosis coefficients are
smaller than in the original series (compare the values in this table with those
in table 1). However, the kurtosis coefficients are still significantly greater than
that of the Normal distribution, which means that no model has completely cap-
tured the fat-tailed behavior of the returns. This feature is more remarkable in
the Yen series and could be due to the presence of outliers. Moreover, notice
that in this series, the standardized observations from the LMSV model clearly
exhibits less kurtosis than those coming from the FIEGARCH model. On the

other hand, the Box-Ljung statistics for uncorrelation in the log-squared returns
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up to 20-th and 100-th order are no longer significant, with p-values greater than
0.05 in all cases. This means that both models successfully deal with the serial
correlation observed in the log-squared returns, although FIEGARCH models
seems to outperform LMSV in capturing this feature. Shephard (1996) drew
similar conclusions when comparing the empirical performance of short memory
SV and GARCH models. In particular, this author concludes that the success
of the SV models over the normal-based GARCH models is accounted for by its
better explanation of the fat-tailed behavior of returns. Also in the short-memory
framework, Carnero et al. (2004) demonstrate that, although both GARCH and
SV models are able to explain excess kurtosis and significant slowly decaying
autocorrelations of squares, the latter is more flexible than the former to repres-
ent simultaneously both characteristics. Our empirical results suggest that this

property will still hold for heteroscedastic models with long-memory.

LMSV FIEGARCH
Mark  Pound Yen Mark  Pound Yen

Mean 0.023 0.028 0.025 0.002 0.011 0.001
Median 0.046 0.055  -0.026 | 0.019 0.033  -0.053
St. Dev. 0.999 0.999 0.999 1.002 1.001 1.005
Skewness 0.025 -0.084 0.282 | -0.016 -0.201  0.546
Kurtosis 4.519 4.457 5.524 4.565 5.046 7.512
Quog2(20)  17.636 22.204 32.658 | 22.906 17.377 15.837
Qlog2(100) 101.11 12273 115.77 | 93.669 108.21 94.520

Table 3: Summary statistics for the standardized return series.

Finally, to assess the relative performance of the two models we also com-
pare them in terms of the mean squared error (MSFE) and the mean absolute
error (MAE) which are defined as MSE = n~' Y"1 (lye| — 6¢)* and MAE =
n~t 3" |lye| — 7|, where the absolute demeaned returns, |y;|, act as a proxy
for the actual volatility of the returns and o; denotes the smoothed estimated
volatility arising either from the LMSV or FIEGARCH model. The values of

these two measures for each estimated model are given in Table 4. Clearly, both
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models perform quite similarly, providing very close values of both MSE and
MAE, except for the Yen series, where the LMSV model seems to capture the
underlying volatility slightly better than the FIEGARCH.

LMSV FIEGARCH
Mark Pound Yen | Mark Pound Yen
MSE 0.250 0.217 0.226 | 0.271 0.248 0.303
MAE 0407 0.368 0.357 | 0.426  0.402 0.435

Table 4: MSE and MAFE for LMSV and FIEGARCH models

4. Conclusions

In this paper, we propose a computationally efficient method to obtain a smooth-
ed estimation of the unobserved volatility in LMSV models, based on the original
proposal in Harvey (1998). Estimating the volatility is important from both a the-
oretical and an empirical point of view since it has a direct implication in the
construction of volatility forecasts and in asset pricing and also as an essential
tool for diagnostic checking and model selection. The new method hinges on
approximating the true n x n weight matrix of the MMSLE of the signal with
another n X n matrix which has zeroes filled in the edges, and whose central ele-
ments come from the inverse of an N x N matrix, N being much smaller than n.
We implement our procedure and obtain an estimation of the underlying volat-
ility for the Dollar/Pound, Dollar/Mark and Dollar/Yen series of daily exchange
rate data. We also compare our results with those obtained from fitting a FIEG-
ARCH model. Our main conclusion is that the proposed algorithm provides an
accurate estimation of the underlying volatility that mimics the temporal changes

empirically observed in financial time series.
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