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Resumen 

La inestabilidad de Richtmyer-Meshkov (RM) ocurre cuando dos fluidos de distintas 

densidades son sometidos a una gran aceleración en una dirección opuesta al 

gradiente de densidades. Para resolver las ecuaciones de Navier-Stokes 

suponemos un flujo compresible en un dominio cerrado en dos dimensiones. Por 

un lado, iniciamos el código con una nube de partículas simulando un 4% en 

volumen y con velocidad inicial nula. Por otro lado, inicializamos la fase gaseosa de 

acuerdo con una onda de choque con un valor de Mach de 2.8. En el flujo 

acelerado tras el paso de la onda de choque, parecen dos tipos de inestabilidades 

de RM: una de ellas es gobernada por los fenómenos de baroclinidad, relacionada 

con los gradientes de presión y densidad; la otra se encuentra en la fase de 

partículas, en la cual, al no tener un gradiente de presión, no debería seguir la 

baroclinidad. En este trabajo mostramos los efectos y similitudes tanto 

cuantitativas como cualitativas del desarrollo de la fase no baroclínica de la 

inestabilidad de RM en la fase gaseosa. 

 Palabras clave: Richtmyer-Meshkov, Inestabilidad, partículas, CFD, baroclinidad.   

 

Abstract 

An in-house compressible flow solver is used to study a two-dimensional particle-

laden Richtmyer-Meshkov Instability that occurs when two fluids with different 

densities are subjected to an impulsive acceleration in a direction opposite that of 

the density gradient. A particle curtain perturbed with a single mode is initialized 

with a four percent volume density and zero velocity. A carrier gas phase is 

initialized according to a moving shock wave at Mach 2.8. In the accelerated flow 

behind the shock, two different RM instabilities occur; one of them is governed by 

the baroclinic vector which is a measure of how misaligned the gradient of pressure 

is from the gradient of density. The other is in the particle which in the absence of 

pressure in the particle phase does not follow in theory of baroclinity. The growth of 

non-baroclinic RM instabilities is shown to be qualitatively and quantitatively similar 

to the baroclinic instability because the baroclinic effects in the carrier phase 

propagate into the particle phase.  

Keywords: Richtmyer-Meshkov, Instability, Particles, CFD, baroclinity. 
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ABSTRACT OF THE THESIS

STUDY OF THE GROWTH AND DEVELOPMENT
OF A PARTICLE-LADEN RICHTMYER-MESHKOV

INSTABILITY FLOW USING HIGH ORDER METHODS
by

Ricardo González Izard
Master of Industrial Engineering for the University of Valladolid

San Diego State University, 2016

An in-house compressible flow solver is used to study a two-dimensional
particle-laden Richtmyer-Meshkov Instability that occurs when two fluids with different
densities are subjected to an impulsive acceleration in a direction opposite that of the density
gradient. A particle curtain perturbed with a single mode is initialized with a four percent
volume density and zero velocity. A carrier gas phase is initialized according to a moving
shock wave at Mach 2.8. In the accelerated flow behind the shock , two different RM
instabilities occur; one of them is governed by the baroclinic vector which is a measure of
how misaligned the gradient of pressure is from the gradient of density. The other is in the
particle which in the absence of pressure in the particle phase does not follow in theory of
baroclinity.The growth of non-baroclinic RM instabilities is shown to be qualitatively and
quantitatively similar to the baroclinic instability because the baroclinic effects in the carrier
phase propagate into the particle phase.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION
The study of the Shock Waves is an important objective for researchers[16] due to it

use in many applications such as jets engines or combustions. The instabilities observed in
supernova explosions [14] and inertial confinement fusion (ICF) [9] are being studied but
there is more research to do yet. RMI is the result of an accelerated material interface by an
incident shock wave and it has also been studied firstly in a planar geometry [1, 2, 5, 9] and
recently in curvilinear geometry [11, 12, 33].

Hydrodynamic instabilities at the interface of two materials of different densities are a
critical issue in high energy density physics (HEDP). The Rayleigh-Taylor instability (RTI)
occurs when a fluid accelerates another fluid of high density [30, 31, 40]. The RTI is
ubiquitous in HEDP, such as high Mach number shocks and jets, radiative blast waves and
radioactively driven molecular clouds, gamma-ray bursts and accreting black holes, etc. Due
to the importance in physics mentioned above, there have been many studies related to RTI
from both physical and numerical simulation points of view in the literature.

It was shown [32] that when two inmiscible fluids of different densities are accelerated
in a direction perpendicular to their interface, this interface is stable or unstable according to
whether the acceleration is directed from the heavier to the lighter fluid or vice versa. The
case of gravity, g, pointing downwards is equivalent to the two fluids being accelerated
upwards with acceleration, g. The RT unstable configuration is called single-mode or
multimode according to the initial interface perturbation being well defined by a sinusoidal
wave or being random.

A wide variety of fluid motions can be generated, following the interaction of a shock
wave with an interface separating two fluids of different properties. Any perturbation initially
present on the interface will, in most cases, be amplified following the refraction of the shock.
This class of problems is generally referred to as the Richtmyer - Meshkov instability (RMI).
The basic mechanism for the amplification of perturbations at the interface is baroclinic
vorticity generation resulting from the misalignment of the pressure gradient of the shock and
the local density gradient across the interface. The growth of perturbations soon enters into a
nonlinear regime with the appearance of bubbles of light fluid rising into heavy fluid and
spikes of heavy fluids falling into light fluids. As the interface between the two fluids becomes
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more distorted, secondary instabilities, such as the Kelvin-Helmholtz shearing instability,
develop and a region of turbulence and mixing ultimately results.

RM Instability is a special case of RT Instability when the interface is impulsively
accelerated by a shock wave, for example. For this reason, it can also be called shock induced
RT instability.

The first analytical study on impulsive acceleration of an interface by shock wave was
done by Markstein [22] who investigated the interaction of a shock wave with a density
interface (flame front). His analytical result was the same as Taylor’s [40] result for constant
acceleration. But the first real treatment of the impulsive acceleration of the interface by a
shock wave was given by Richtmyer [32].He studied the problem of a shock wave impinging
on a sinusoidally perturbed interface between two fluids in the linear regime, i.e., kω << 1.
In developing his impulsive model, he assumed that the shock wave is not strong enough to
cause perturbation velocities comparable to the speed of sound. Ten years later, Meshkov [28]
confirmed, experimentally, Richtmyer’s prediction.

The general consensus as to the role that the vorticity generated by the Shocks plays in
the perturbation field evolution [41, 45]. The linear theory predictions (essentially series
expansions in terms of some adequate functions) agree with numerical simulations, despite
the fact that former calculations overestimated the earlier experimental results in shock tubes
[27, 45]. Work of L. Holmes et al [15] investigates about the growth RMI for negative
Atwood numbers and two-dimensional sinusoidal perturbation by comparing experiments,
numerical simulations and analytical theories.

1.2 NUMERICAL SCHEME
In this work, the particles are modeled as singular point sources. In high-speed

particle-laden flows, the small timescales and range of interphase velocity differences causes
the particle phase to rapidly disperse. Although an Eulerian-Eulerian approach is effective at
capturing the large scale mixing of the particle and fluid phase [36, 37], dissipation errors
arise while tracking the number density in low particle volume fraction environments.

To accurately trace discontinuities while simultaneously resolving small-scale
turbulence in the flow, high-order shock-capturing methods have been devised. Essentially
Non-Oscillatory (ENO) schemes, first presented by Harten et. al. [13], provide a framework
for the implementation of robust high-order finite difference methods for the solution of
hyperbolic equations. These schemes maintain a high-order of accuracy while adaptively
adjusting the stencil near discontinuities to avoid spurious Gibbs Oscillations. The stencil is
adaptively chosen to provide the smoothest reconstruction, thereby avoiding stencils
containing discontinuities [19].
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Weighted ENO (WENO) schemes, first introduced in [20], improve upon on the
adaptive stencil techniques of the ENO scheme. An optimal order of accuracy is obtained at
smooth parts of the solution while enough dissipation is retained over discontinuous stencils
to damp out oscillations [17]. This is accomplished through a convex combination of all the
possible ENO substencils. Improved WENO methods have also been derived, such as the
WENO-Z scheme [4, 6, 8, 10], with enhancements to decrease dissipation errors and ensure a
high-order accuracy in smoother regions of the flow.

New and more complex WENO schemes are being developing. Recent studies have
developed a new fifth order finite difference WENO scheme for solving hyperbolic
conservation laws [46], which presents a new WENO scheme as a convex combination of a
fourth degree polynomial with linear polynomials in a traditional WENO fashion.

Particles in this scheme take a lot of importance due to the necessity of implement
them into the simulations. The motion of the solid phase is governed for laws derived from
Navier-Stokes equations. The complexity of the relationship between the particle drag and
fluid motion as well as the requirement that numerous coupling parameters be considered,
necessitates an accurate, efficient algorithm to represent the behavior of the system.
Improving the accuracy of the subgrid model in the macro-scale code requires additional
full-resolution experiments, which consume significant computational resources.

1.3 OUTLINE AND CONTRIBUTIONS
In this thesis the development and growth of the particle-laden Richtmyer-Meshkov

Instability is studied comparing the growth rates from simulation and theory. Nowadays we
can find many researches in the instability with two fluids with different densities[28, 41, 45]
but none of them include a particle-laden flow in Richtmyer-Meshkov Instability. In this work
we present results in the non-baroclinic interface with the corresponding governing equations
and numerical methods. The particle’s cloud is perturbed following a trigonometric function,
which reflect a real interface that we can find in many applications mentioned in section 1.1.

Because of the particle phase, we find a resistance in the carrier phase, not only by
lowering the velocity but also taking heat from the carrier phase. The trajectory of the
particles shows a concentration in the left part of the cloud and also in the middle, due to two
vortex located in the upper and bottom sides of the cloud.

RMI growth is governed by baroclinic vector in contrast to particle phase which is
non-baroclinic due to the absence of pressure. We find in the growth of this particle phase
similarities to the baroclinic interface within a 15% of error. This relation is due to the
baroclinic effects in the carrier phase propagate into the particle phase.

The second chapter present Navier-Stokes and all governing equations used to
simulate RM Instability. The third chapter explains the theoretical equations of
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Raleigh-Taylor Instability leading to RMI growth rate equation. The next chapter explains the
numerical methodology as a high-order Eulerian Lagrangian method based on the new
Weighted Essentially Non-Oscillatory (WENO) conservative finite difference scheme
(WENO-Z) on a uniform mesh. Chapter number 5, explains the problem setup. In the later
chapter, we show the discussion and results focusing in the development of the particles
produced by Richtmyer-Meshkov Instability. Following last chapter we can find the
background (bibliography).
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CHAPTER 2

GOVERNING EQUATIONS

2.1 GOVERNING EQUATIONS OF THE CARRIER
PHASE

In the particle-source-in-cell (PSIC) method, the Eulerian continuum equations are
solved for the carrier flow in the Eulerian frame, while particles are traced along their paths in
the Lagrangian frame. In the following, we present the coupled system of Euler equations that
govern the gas flow and kinematic equations that govern the particle motion. We shall denote
the subscript p for the particle variables and f for the gas variables at the particle position.
Variables without subscript refer to the gas variables unless specified otherwise.

2.1.1 Dimensional Form
This section presents the equations of motion for a compressible Newtonian uid, also

known as the Navier-Stokes equations. The conservative, dimensional form of the
conservation of mass, momentum and energy in Cartesian coordinates are given by

~Q∗t∗ + ~F a∗
x∗ + ~Ga∗

y∗ + ~Ha∗
z∗ = ~F v∗

x∗ + ~Gv∗
y∗ + ~Hv∗

z∗ + ~S, (2.1)

where the superscript * denote dimensional variables, the arrow shows a vector, and

~Q∗ =


ρ∗

ρ∗u∗

ρ∗v∗

ρ∗w∗

ρ∗e∗

 , ~F a∗ =


ρ∗u∗

p∗ + ρ∗u∗2

ρ∗u∗v∗

ρ∗u∗w∗

u∗(ρ∗e∗ + p∗)

 , ~Ga∗ =


ρ∗v∗

ρ∗u∗v∗

p∗ + ρ∗v∗2

ρ∗v∗w∗

v∗(ρ∗e∗ + p∗)

 ,

~Ha∗ =


ρ∗w∗

ρ∗u∗w∗

ρ∗v∗w∗

p∗ + ρ∗w∗2

w∗(ρ∗e∗ + p∗)

 , (2.2)
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~F v∗ =


0

τ ∗11

τ ∗12

τ ∗13

u∗τ ∗11 + v∗τ ∗12 + w∗τ ∗13 + κ∗T ∗x∗

 ,

~Gv∗ =


0

τ ∗21

τ ∗22

τ ∗23

u∗τ ∗21 + vτ ∗22 + w∗τ ∗23 + κ∗T ∗y∗

 ,

~Hv∗ =


τ ∗31

τ ∗32

τ ∗33

u∗τ ∗31 + v∗τ ∗32 + w∗τ ∗33 + κ∗T ∗z∗

 , (2.3)

where,

τ ∗11 = 2µ∗[u∗x∗ − (u∗x∗ + v∗y∗ + w∗z∗)/3],

τ ∗22 = 2µ∗[v∗y∗ − (u∗x∗ + v∗y∗ + w∗z∗)/3],

τ ∗33 = 2µ∗[w∗z∗ − (u∗x∗ + v∗y∗ + w∗z∗)/3],

τ ∗12 = τ ∗21 = µ∗[v∗x∗ + u∗y∗ ],

τ ∗13 = τ ∗31 = µ∗[w∗x∗ + u∗z∗ ],

τ ∗23 = τ ∗32 = µ∗[w∗y∗ + v∗z∗ ].

The subscript on the stress tensor, τ ∗, defines the direction of τ ∗ and the plane it is
acting on, where 1, 2 and 3 denote the x, y and z direction, respectively. In the above
equations ρ∗ is the density; u∗,v∗, and w∗ are the velocities in x∗, y∗, and z∗ directions,
respectively; p∗ is the pressure; T ∗ is the temperature; the source term,S, accounts for the
effect of the particles on the carrier gas and will be discussed in more detail below and ρ∗e∗ is
the sum of the internal and kinetic energy per unit volume given by

ρ∗c∗vT
∗ +

1

2
ρ∗(u∗2 + v∗2 + w∗2) (2.4)

,
where c∗v is the constant volume specific heat of the fluid; µ∗ and κ∗ are the fluid

dynamic viscosity and conductivity, respectively.
In this work, the following assumptions concerning these equations are made:
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• The fluid is Newtonian, i.e. the viscous stresses are postulated to be directly
proportional to the rate of deformation of the fluid elements.

• The fluid is continuous, i.e. the smallest length scales occurring in the motion of the
fluid flow are very large compared to the mean free path of the molecular motion.

• The fluid has zero bulk viscosity, i.e. µ∗b = 3λ∗ + 2µ∗ = 0, where µ∗b is the bulk
viscosity and λ∗ is the second coefficient of viscosity. This relation is known as the
‘Stokes hypothesis’ and reduces the two coefficients in the stress tensor to one. This
hypothesis has proven to give adequate results for most gases. For gases that depart far
from a local state of chemical equilibrium it might fail [35].

• The heat flux in the energy equation obeys the Fourier’s law, e.g. q∗1∗ = −κ∗T ∗x∗ , where
q∗ is the heat flux and the subscript on q∗ indicates its direction.

• The viscosity, conductivity and specific heats of the fluid are assumed to be independent
of temperature. In general the viscosity, conductivity, and specific heats vary with
temperature, however, for the temperature fluctuations encountered in this work the
variations are not very significant (< 10%).

• The fluid is an ideal gas, for which intermolecular forces are negligible, and obeys the
equation of state,

p∗ = ρ∗R∗T ∗, (2.5)

where R∗ is the gas constant. This equation closes the Navier-Stokes equations, i.e.
there are six equations for six unknowns, ρ∗, u∗, v∗, w∗, p∗, and T ∗.

2.1.2 Non-Dimensional Form
For numerical solution of 2.1 the dimensional form is not favored, since the disparity

of the physical variables can generate undesirable errors. Therefore, all variables are
non-dimensionalized by reference length L∗f , density ρ∗f , velocity U∗f , and temperature T ∗f
scales, leading to the following non-dimensionalization of the variables:

ρ = ρ∗/ρ∗f , u = u∗/U∗f ,

v = v∗/U∗f , w = w∗/U∗f ,

T = T ∗/T ∗f , p = p∗/(ρ∗fU
∗
f

2),

x = x∗/L∗f , y = y∗/L∗f ,

z = z∗/L∗f , t = t∗U∗f /L
∗
f . (2.6)

This leads to the following non-dimenzionalization of 2.1,

~Qt + ~F a
x + ~Ga

y + ~Ha
z =

1

Ref
(~F v

x + ~Gv
y + ~Hv

z ) + ~S, (2.7)
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where

~Q =


ρ

ρu

ρv

ρw

ρe

 , ~F a =


ρu

p+ ρu2

ρuv

ρuw

u(ρe+ p)

 , ~Ga =


ρv

ρuv

p+ ρv2

ρvw

v(ρe+ p)

 , ~Ha =


ρw

ρuw

ρvw

p+ ρw2

w(ρe+ p)

 , (2.8)

and

~F v =



0

τ11

τ12

τ13

uτ11 + vτ12 + wτ13 + 1
(γ−1)M2

fPr
Tx


,

~Gv =



0

τ21

τ22

τ23

uτ21 + vτ22 + wτ23 + 1
(γ−1)M2

fPr
Ty


,

~Hv =



0

τ31

τ32

τ33

uτ31 + vτ32 + wτ33 + 1
(γ−1)M2

fPr
Tz


, (2.9)

where,

τ11 = 2[ux − (ux + vy + wz)/3],

τ22 = 2[vy − (ux + vy + wz)/3],

τ33 = 2[wz − (ux + vy + wz)/3],

τ12 = τ21 = vx + uy,

τ13 = τ31 = wx + uz,

τ23 = τ23 = wy + vz, (2.10)

where
ρe =

p

γ − 1
+ ρ(u2 + v2 + w2)/2. (2.11)
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In this equation the inviscid fluxes, denoted with the ‘a’ superscript, remain unchanged from
2.1. The viscous fluxes, denoted with the ‘v’ superscript, give rise to the following
non-dimensional parameters:

• The reference Reynolds number, which indicates the influence of the viscous fluxes as
compared to the advective fluxes, defined as Ref = U∗fL

∗
fρ
∗
f/µ

∗.

• The Prandtl number, which is the ratio of the viscous and thermal diffusivity, defined as
Pr = c∗pµ

∗/κ∗, where c∗p is the constant pressure specific heat of the fluid.

• The reference Mach number, Mf = U∗f /c
∗, where c∗ is the reference speed of sound

defined as c∗ =
√
γR∗T ∗f , and γ is ratio of the constant pressure specific heat and the

constant volume specific heat. In this work Mf is taken equal to unity, so that the
reference velocity is equal to the reference speed of sound.

The ideal gas equation of state in non-dimensional form is given by

p =
ρT

γM2
f

. (2.12)

2.2 GOVERNING EQUATIONS OF THE DISPERSED
PHASE

Dispersed phase flows are flows in which one phase, the dispersed phase, is not
materially connected. These include gas-particle and liquid-particle flows in which the
particles constitute the dispersed phase. The phase is solved by tracking each particle
individually with the analytical solution of the flow around a spherical particle.

2.2.1 Dimensional Form
The droplet/particle phase, also called the dispersed phase, is solved by tracking each

particle individually with the analytical solution of the flow around a spherical particle.
Technically, this does not allow for the term DNS to be used for the simulation of two-phase
flow where the full Navier-Stokes equations would have to be solved around every particle.
This is computationally not feasible. The term DNS is, however, generally accepted for this
type of two-phase flow simulation.

The kinematic equations describing the particle position ~x∗d and velocity ~v∗d, are given
as

d~x∗d
dt∗

= ~v∗d, (2.13)

m∗d
d~v∗d
dt∗

=
∑

z∗(t∗). (2.14)

2.14 constitutes Newton’s second law, where m∗d is the particle mass, and z∗(t∗) denotes the
forces acting on the particle. The derivation of an analytical expression for z∗(t∗) in 2.14 has
been subject of many studies [25, 29, 34]. No closed form has yet been obtained. However, in



10

most practical cases for which the density of the particle is much greater than the density of
the carrier phase, and the particle size is much smaller than the smallest length scale of the
carrier phase, it suffices to consider just the quasi-steady viscous drag force on the particle.
Stokes derived the equation for this force [44], which is given by

z∗Stokes = CDs6πρ
∗
fdν
∗a∗d(~v

∗
fd − ~v∗d). (2.15)

Here, ν∗ is the kinematic viscosity of the fluid, defined as µ∗/ρ∗, the subscript ‘fd’ depicts a
carrier phase variable at the particle position, and the subscript d represents a particle variable.
CDs is a correction factor for high Reynolds numbers, given by [21]

CDs = 1 +
Re

2/3
d

6
Red < 1000, (2.16)

where Red = ρ∗fdd
∗
d|~v∗fd − ~v∗d| is the particle Reynolds number. a∗d and d∗d are the particle

radius and diameter, respectively. Substituting m∗d = 4πa∗3d ρ
∗
d/3 and 2.15 into 2.14 leads to

the following equation for the droplet velocity;

d~v∗d
dt∗

= CDs
18ν∗ρ∗fd

ρ∗dd
∗
d

2 (~v∗fd − ~v∗d), (2.17)

This equation is valid under the following assumptions:

• The particle is spherical.

• The flow around the particle is that of an incompressible, continuous fluid.
Quantitatively this means that the Knudsen number, Kn <0.3, where Kn is defined as
the ratio of the free molecular path, `, over a characteristic length scale, which in case of
the particle is its diameter, d∗d.

• Viscous forces dominate over convective forces, i.e. the particle Reynolds number is
smaller than one. The correction factor, CDs allows for the use of 2.17 up to Red=1000.

• The dispersed phase is dilute, i.e. particle-particle interaction through for example
collision or wake interaction, is negligible. This will be satisfied if the average particle
separation is larger then five times the particle diameter [21].

• Body forces such as gravitational or electromagnetical forces are not present.

• Particle rotation is negligible, i.e. |ω∗d2a∗p/|~v∗fd − ~v∗d|, where ω∗d is the rotation of the
particle, is smaller than one.

• Unsteady forces, or forces due to gradients in the fluid are negligible.

In certain flows and for certain particle parameters, the last assumption might not be
valid. Examples are highly accelerating flows or flows with large velocity gradients and for
particles with small density compared to the fluid [21]. Unsteady forces, Saffman, and Faxen
forces might then contribute significantly to the force on the particle. In this work, a flow
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where other forces than the Stokes drag become important, is considered and the
Basset-Boussineq-Oseen (BBO) equation is employed to track the particles. Aside from the
Stokes drag, the BBO equation takes into account the Basset history force, virtual or added
mass effects and forces that result from acceleration of the fluid element in the vicinity of the
particle, also called the stress gradient effect. The Faxen forces are not taken into account.

The Basset history force result from the temporal development of the particle wake
and becomes important when there are strong fluid accelerations at time scales on the order of
convection over the particle surface. Different forms are found in literature [29, 25, 26]. In
this work, the following form described in [29] is employed:

z∗Basset(t) = CHρ
∗
fda
∗2
d

√
πν∗

∫ t

t0

d(~v∗fd − v∗d)
dτ

dτ√
(t∗ − τ)

, (2.18)

where CH is an empirical correction factor for high Reynolds numbers, and is expressed as

CH = 2.88 +
3.12

(1 + Ac)3
. (2.19)

Here,
d

dt∗
=

∂

∂t∗
+ v∗d−x∗

∂

∂x∗
+ v∗d−y∗

∂

∂y∗
+ v∗d−z∗

∂

∂z∗
, (2.20)

and Ac is the relative acceleration factor, given by

Ac =
|~v∗fd − ~v∗d|

2/d∗d
|d(~v∗fd − ~v∗d)/dt∗|

(2.21)

The virtual mass effect depicts the added force that a particle experiences due to
inertial effects of the fluid surrounding the particle. Effectively, the particle becomes
“heavier” due to this effect, hence the term virtual or added mass. The expression used for this
force in this work was derived in [29], and is

z∗virtual(t∗) = CA
4

3
πa∗3d ρ

∗
fd

d(~v∗fd − ~v∗d)
dt∗

, (2.22)

where CH is an empirical correction factor for high Reynolds numbers, and is expressed as,

CA = 1.05− 0.066

Ac
2 + 0.12

. (2.23)

The stress gradient effect results from the acceleration of the local fluid element or the
stress on the particle owing to the undisturbed flow. The expression derived by [25] is used for
this force and is

z∗stress−gradient(t∗) =
4

3
πa∗3d ρ

∗
fd

D~v∗fd
Dt∗

(2.24)
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where D/Dt∗ is given by,

D

Dt∗
=

∂

∂t∗
+ v∗fd−x∗

∂

∂x∗
+ v∗fd−y∗

∂

∂y∗
+ v∗fd−z∗

∂

∂z∗
(2.25)

In sheared flows, the velocity gradient induces a quasi-steady lift that will have
significant influence on the particle force. In [34] the one-dimensional form of this
quasi-steady lift force was derived. The three-dimensional form is derived through rotation of
the one-dimensional form and is given in [21] as,

z∗Saffman =
1.61ρ∗fdd

∗2
d√

|Ω∗fd|
(~v∗fd − ~v∗d)× ~Ω∗fd, (2.26)

where Ω∗ is the vorticity vector of the fluid at the particle position.
Substituting 2.15, 2.18, 2.22, 2.24 and 2.26 into 2.14 leads to the BBO equation for

the particle velocity,

d~v∗d
dt∗

=
18ν∗ρ∗fd

ρ∗dd
∗
d

2 (~v∗fd − ~v∗d) +
3

4

CH
√
ν∗ρ∗fd√

πρ∗da
∗
d

∫ t∗

t∗0

d(~v∗fd − ~v∗d)/dτ√
t∗ − τ

dτ

+CA
ρ∗fd
ρ∗d

d

dt∗
(~v∗fd − ~v∗d) +

ρ∗fd
ρ∗d

D(~v∗fd)

Dt
+

3.07ρ∗fd√
ρ∗
d
d∗d|Ω∗fd|

(~v∗fd − ~v∗d)× ~Ω∗fd, (2.27)

From the first law of thermodynamics [24] and Fourier’s law for heat transfer, the
following equation for the particle temperature, T ∗d , may be derived,

m∗dc
∗
p

dT ∗d
dt∗

= 2Nuπa∗dκ
∗(T ∗fd − T ∗d ). (2.28)

In this equation Nu is the Nusselt number corrected for Red >1, and is expressed as [23],

Nu = 2 + 0.6Re0.5
d Pr0.33 (2.29)

Substituting for the particle mass leads the following equation for the particle temperature,

dT ∗d
dt∗

= 6Nu
κ∗

c∗p

1

ρ∗dd
∗
d2

(T ∗fd − T ∗d ). (2.30)

In the derivation of this equation, all assumptions made in the derivation of the Stokes
drag must be satisfied. In addition the following assumption must hold:

• The temperature distribution in the particle is uniform. This is valid for Biot numbers,
Bi <0.1, which is defined as Bi = h∗d∗d/κ

∗, where h∗ is the convective heat transfer
coefficient.
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2.2.2 Non-Dimensional Form
2.27 is non-dimensionalized with the same reference variables used in Section 2.1.2

leading to the non-dimensionalized form of the BBO equation:

d~vd
dt

=
CDs
St

(~vfd − ~vd) +
0.2CH

(εSt)1/2

∫ t

t0

d(~vfd − ~vd)/dτ√
t− τ

dτ

+CA
1

ε

d

dt
(~vfd − ~vd) +

1

ε

D(~vfd)

Dt
+

0.727

(εSt|~Ω|)
1/2

(~vfd − ~vd)× ~Ωfd, (2.31)

where ε is the ratio of the particle to fluid densities

ε =
ρ∗d
ρ∗fd

=
ρd
ρfd

. (2.32)

St is the Stokes number defined as

St =
td
tf

=
ρ∗dd

∗
d

2U∗f
18µ∗L∗f

=
ρdd

2
dRef
18

, (2.33)

where td = ρ∗dd
∗
d

2/18µ∗ represents the particle response time and tf = L∗f/U
∗
f is a

characteristic flow time. The temperature in non-dimensional form is,

dTd
dt

=
Nu

3PrSt
(Tfd − Td). (2.34)

2.3 SOURCE TERM S
Each particle generates a momentum and energy that affects the carrier flow. The

volume averaged summation of all these contributions gives a continuum source contribution
on the momentum and energy equation in 2.7 as:

Sm(x) =

Np∑
i=1

K(xp, x)Wm (2.35)

Se(x) =

Np∑
i=1

K(xp, x)(WmVp +We) (2.36)

where K(x, y) = K(|x− y|)/V is a normalized distribution function that distributes
the influence of each particle onto the carrier flow. This distribution function should ideally be
a dirac delta function but is most often a regularized delta function [39]. Wm and We are
weigh functions describing the momentum and energy contribution of one particle,
respectively. These equations are given by

Wm = mpf1
(T − Tp)

τp
(2.37)
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and

We = mp
Nu

3Prτp
(T − Tp) (2.38)

The term mp is the mass of one spherical particle which can be derived from τp. Np is
the total number of particles in a finite volume V . The factor f1 is given by

f1 =
3Cdss
4 · 18

(2.39)
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CHAPTER 3

THEORY RICHTMYER-MESHKOV EQUATION

To explain the basis of Richtmyer-Meshkov Instability we study the basis of the
Rayleigh-Taylor Instability first. RM instability is a special case of RT instability when the
interface is impulsively accelerated by a shock wave, for example. For this reason, it can also
be called shock induced RT instability.

We consider a flow in the x-direction, which in the lower half-space z < 0 has velocity
U1 and density ρ1, whereas in the upper half-space the gas streams with U2 and has density
ρ2. In addition, there can be a homogeneous gravitational field g pointing into the negative
z-direction.

Figure 3.1. Initial scheme of RTI. Two different fluids moving at
velocities U1 and U2 under the effect of the gravity.

Let us assume the flow can, at least approximately, be treated as an incompressible
potential flow. Let the velocity field in the upper and lower halves be given by

upperhalf : v2 = ∇φ2 (3.1)

lowerhalf : v1 = ∇φ1 (3.2)

The equation of motion for an incompressible gas with constant density can be written
as
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∂v
∂t

+ (v · ∇)v = g −∇(
P

ρ
) (3.3)

If we use the identity

(v · ∇)v = ∇(
1

2
v2)−∇× v (3.4)

Together with the assumption of a potential flow v = ∇Φ and hence∇× v = 0, we
can write the equation of motion as

∇∂φ
∂t

+∇(
1

2
v2)− g +∇(

P

ρ
) = 0 (3.5)

Writing the gravitational acceleration as g = −gez this implies

∂Φ

∂t
+ (

1

2
v2) + gez +

P

ρ
= constant (3.6)

which is Bernoullis theorem. We now assume for the velocity potentials in the upper and
lower half

Φ2 = U2x+ φ2 (3.7)

Φ1 = U1x+ φ1 (3.8)

where φ1 and φ2 are infinitesimal perturbations.
Let us further introduce a function that describes the z-location of the interface

ξ(x, t) = z (3.9)

The total time derivative of this equation hence describes the velocity of the interface
in the z-direction. This must match the fluid velocities in the z direction of the two phases,
yielding for example for the 1-side:

∂ξ

∂x

∂Φ1

∂x
+
∂ξ

∂t
=
∂Φ1

∂z
(3.10)

This gives first

∂ξ

∂t
+
∂ξ

∂x
(U1 +

∂φ1

∂x
) =

∂φ1

∂z
(3.11)

∂ξ

∂t
+
∂ξ

∂x
(U2 +

∂φ2

∂x
) =

∂φ2

∂z
(3.12)

Hence we obtain the two equations:

∂ξ

∂x
U1 +

∂ξ

∂t
=
∂φ1

∂z
(3.13)
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∂ξ

∂x
U2 +

∂ξ

∂t
=
∂φ2

∂z
(3.14)

We can now relate the perturbed interface to the unperturbed state via the Bernoulli
equation. For example, for phase 1, we can write

∂φ1

∂t
+

1

2
(U1 +

∂φ1

∂x
)2 + gξ +

P1

ρ2

=
1

2
U2

1 +
P0

ρ1

(3.15)

where the left hand side is the perturbed state, the right hand side is the unperturbed
state, with the initial pressure P0. An analogous equation can also be written down for phase
2, with an equal initial pressure P0. In addition, the pressures P1 and P2 must be equal.
Equating the two pressures from the two Bernoulli equations and keeping only leading order
terms leads to

ρ(
∂φ1

∂t
+ U1

∂φ1

∂x
+ gξ) = ρ(

∂φ2

∂t
+ U2

∂φ2

∂x
) + gξ) (3.16)

To this end we make an eigen mode analysis.

φ1 = φ1(z)ei(kx−ωt) (3.17)

which respects the symmetry of the problem. Because φ1 fulfills the Laplace equation,
we get

∂2φ1

∂z2
= k2φ1 (3.18)

which solutions are
φ1(z) ∝ ekz (3.19)

φ1(z) ∝ e−kz (3.20)

However, the latter solution can be discarded because of boundary conditions, since
for z →∞ we need to have an unperturbed state with φ1 → 0. In a similar way, we same
solutions for φ2 and conclude that its z-dependence can only go as φ2(z) ∝ e−kz). This
therefore leads to the following three equations for a single Fourier mode:

φ1 = φ̂1e
kzei(kx−wt) (3.21)

φ2 = φ̂2e
−kzei(kx−wt) (3.22)

ξ = ξ̂ei(kx−wt) (3.23)

Here φ1, φ2, and ξ are the corresponding mode amplitudes. Inserting these mode
equations into the differential equations 3.13, 3.14 and 3.16 yields three algebraic equations:
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−iwξ̂ + U1ikξ̂ = kφ̂1 (3.24)

−iwξ̂ + U2ikξ̂ = kφ̂2 (3.25)

ρ1(−iwφ̂1 + U1ikφ̂1 + gξ̂) = ρ2(−iwφ̂2 + U2ikφ̂2 + gξ̂) (3.26)

Last equation is called generalized eigenvalue problem with which it is possible to
develop other equations governing different instabilities, such as Raleigh-Taylor,
Richtmyer-Meshkov or Kelvin Hermhotz Instabilities. Non-trivial solutions with ξ̂ 6= 0 are
possible for:

ω2(ρ1 + ρ2)− 2ωk(ρ1U1 + ρ2U2) + k2(ρ1U
2
1 + ρ2U

2
2 ) + (ρ2 − ρ1)kg = 0, (3.27)

which is the dispersion relation. Unstable, exponentially growing mode solutions
appear if there are solutions for ω with negative imaginary part.

If we consider that the fluid is at rest, U1 = U2 = 0. This dispersion relation simplifies
to

ω2(ρ1 + ρ2) + (ρ2 − ρ1)kg = 0, (3.28)

And making clear ω:

ω2 =
(ρ1 − ρ2)kg

(ρ1 + ρ2)
= Akg (3.29)

Here g is directed from ρ2 to ρ1 (ρ2 > ρ1) . If A < 0, ω grows exponentially with time.
This means the interface becomes unstable. This is the so-called Rayleigh-Taylor instability.
It is in essence buoyancy driven and leads to the rise of lighter material in a stratified
atmosphere. The free energy that is tapped here is the potential energy in the gravitational
field.

Also notice that for an ideal gas, arbitrary small wavelengths are unstable, and those
modes will also grow fastest. If A > 0, the interface oscillates, showing stability.∫

∂Ω

ω =

∫
Ω

dω.

which produces ∫
∂Ω

ω =

∫
Ω

dω.
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Richtmyer used the result of Taylor (Equation 3.29) replacing the constant
acceleration g by an impulsive one, g = [u]δD(t), where [u] is the change in the velocity of the
interface imparted by the shock wave and δD(t) is the Dirac Delta function. Substituting this
value of g in Equation 3.29 and derivating one time, the following expression for the growth
rate is obtained:

dω

dt
= k[u]Aω0 (3.30)

where ω0 is the initial amplitude.
From equation 3.30 we easily can see that the amplitude w grows with the time as

opposed to the exponential growth in the RT case.Also, both light-heavy (A > 0) and
heavy-light (A < 0) cases are unstable in contrast to the RT case which has only one situation
being unstable. For A > 0, the initial amplitude continues growing from the start, while for
A < 0, the amplitude first becomes zero, reverses sign and then grows according to Equation
3.30.

Richtmyer also did linearized compressible computations using finite difference
techniques and found that if the initial compression of the interface and of the fluids is taken
into account (i.e., using post-shock values A′and ω′in equation 3.30). The corrected
impulsive model thus proposed by Richtmyer was

dω

dt
= k[u]A

′
ω
′

0 (3.31)

where the primed quantities are post-shock values.This model neglects viscosity,
surface tension, and other stabilizing mechanisms.

If we set the gravitational field to zero in equation 3.27, g = 0, we have the situation of
a pure shear ow. Each flow has a different velocity |U1 − U2|. In this case, the solutions of the
dispersion relation are given by

ω =
k(ρ1U1 + ρ2U2)

ρ1 + ρ2

± i
√
ρ1ρ2

ρ1 + ρ2

|U1 − U2| (3.32)

If the velocities are different, in an ideal gas there is an imaginary growing component.
This means that a small wave-like perturbation at an interface will grow rapidly into large
waves that take the form of characteristic Kelvin-Helmholtz billows. In the non-linear regime
reached during the subsequent evolution of this instability the waves are rolled up, leading to
the creation of vortex like structures. As the instability grows fastest for small scales (high k),
with time the billows tend to get larger and larger.

As the Kelvin-Helmholtz instability basically means that any sharp velocity gradient
in a shear flow is unstable in a freely streaming fluid, this instability is particularly important
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for the creating of fluid turbulence. Under certain conditions, some modes can however be
stabilized against the instability. This happens for example if we consider shearing with
U1 6= U2 in a gravitational field g > 0. Then the dispersion relation has the solutions.

ω =
k(ρ1U1 + ρ2U2)

ρ1 + ρ2

± i
√
−k2ρ1ρ2(U1 − U2)2 − (ρ1 + ρ2)(ρ1 − ρ2)kg

ρ1 + ρ2

|U1 − U2| (3.33)

It will become stable if two conditions are met:

1. ρ1 > ρ2 which means that the lighter fluid needs to be on top (otherwise we would have
in any case a Rayleigh-Taylor instability).

2. (U1 − U2)2 < (ρ1+ρ2)(ρ1−ρ2)g
kρ1ρ2

Figure 3.2. Development of a KelvinHelmholtz instability in the
laboratory. The upper and faster moving layer is slightly less
dense than the lower layer. At first, waves form and overturn
in a two-dimensional fashion but, eventually, three-dimensional
motions appear that lead to turbulence and complete the mixing.
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CHAPTER 4

NUMERICAL METHODOLOGY

The numerical method used in this work is the high-order Eulerian Lagrangian method
based on the Weighted Essentially Non-Oscilatory (WENO) conservative finite difference
scheme (WENO-Z) on a uniform mesh. This method is described in more details in the
following sections.

4.1 CARRIER PHASE SOLVER
In the numerical simulation of compressible flows modeled by means of hyperbolic

conservation laws in the form

∂u
∂t

+∇F(u) = 0 (4.1)

Without loss of generality, we will restrict our discussion to the one dimensional scalar
case. Extensions to the system of equations and higher spatial dimensions present no extra
complexity.

Consider a uniformly spaced grid defined by the points xi = i4 x, i = 0, ..., N , which
are also called cell centers, with cell boundaries given by xi+∇x

2
= xi + 4x

2
where x is the

uniform grid spacing in x-direction. The semi-discretized form of last equation yields a
system of ordinary differential equations:

dui(t)

dt
= − ∂f

∂x

∣∣∣∣
x=xi

i = 0, · · ·, N. (4.2)

Where ui(t) is a numerical approximation to the point value ui(xi, t). A conservative
difference formulation for hyperbolic conservation laws requires high-order consistent
numerical fluxes at the cell boundaries in order to form the flux differences across the
uniformly spaced cells. The conservative property of the spatial discretization is obtained by
implicitly defining the numerical flux function h(x) as

f(x) =
1

∆x

∫ x+ ∆x
x

x−∆x
2

h(ξ)dξ (4.3)

Such that spatial derivate is exactly approximated by a conservative finite difference
formula at the cell boundaries,
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f(x) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

(hi+ 1
2
− hi− 1

2
) (4.4)

where hi± 1
2

= h(ci± 1
2
)

At the cell faces, hi± 1
2

are interpolated from the known flux function F (x) at the cell
centers, fi = F (xi). The classical fifth order WENO scheme uses a 5-points global stencil S5,
which is subdivided into three substencil S0, S1, S2 with each substencil containing three grid
cells as shown in Figure 4.1.

Figure 4.1. The computational uniform grid xi and the 5-points
stencil S5, composed of three 3-points stencils S0, S1, S2, used for
the fth-order WENO reconstruction step.

The fifth order polynomial approximation f̂i+ 1
2

= hi± 1
2

+©(∆x5) is built through the
convex combination of the interpolated values f̂k(x± 1

2
), in which f̂k(x)is the third degree

polynomial below, defined in each one of the stencilsSk:

f̂i± 1
2

=
2∑

k=0

wkf̂
k(xi± 1

2
) (4.5)

where

f̂k(x± 1

2
) = f̂k

i± 1
2

=
2∑
j=0

ckjfi−k+j, i = 0, ..., N. (4.6)
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The ckjare Lagrangian interpolations coefficients, which depends on the left-shift
parameter k = 0, 1, 2, but not on the values fi.

The weights wk are defined as

wk =
αk∑2
i=0 αi

, k = 0, 1, 2. (4.7)

The coefficients d1 = 3
10
, d2 = 3

5
, d3 = 1

10
are called the ideal weights since they

generate the central upstream fifth-order scheme for the 5-points stencil S5. We refer to αkzas
the unnormalized weights.

The regularity (smoothness) of f̂k(x) in the substencil Sk is measured by the lower
order local smoothness indicators

βk =
2∑
l=1

∆x2l−1

∫ x
i+ 1

2

x
i− 1

2

(
dl

dxl
f̂k(x)

)2

dx. (4.8)

The expression of the βk in terms of the cell averaged values of f(x), fi are given by

β0 =
13

12
(fi−2 − 2fi−1 + fi)

2 +
1

4
(fi−2 − 4fi−1 + 3fi)

2, (4.9)

β1 =
13

12
(fi−1 − 2fi + fi+1)2 +

1

4
(fi−1 − fi+1)2, (4.10)

β2 =
13

12
(fi − 2fi+1 + fi+2)2 +

1

4
(3fi − 4fi+1 + fi+2)2. (4.11)

The idea of the weights definition is that on smooth parts of the solution, the
smoothness indicators βk are all small and about the same size, generating weights wk that are
good approximations to the ideal weighs.

To satisfy the sufficient conditions for fifth-order convergence, we use a new
smoothness indicator of the higher order than the classical smoothness indicatorβk. We denote
it byτ5 and it is simply defined as the absolute difference between β0 and β2 at xi,namely,

τ5 = |β0 − β2|. (4.12)

The most important properties of τ5 are:

• If S5 does not contain discontinuities, then τ5 =©(∆x5) << βk for k = 0, 1, 2

• If the solution is continuous at some of the Sk, but discontinuous in the whole S5, then
βk << τ5, for those k where the solution is continuous

• τ5 ≤ maxβk
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The new smoothness indicator βkz is defined as

βzk =

(
βk + ε

βk + τ5 + ε

)
, k = 0, 1, 2, (4.13)

and the WENO-Z weight is defined as

ωzk =
αzk∑2
i=0 α

z
i

, k = 0, 1, 2. (4.14)

with

αzk =
dk
βzk

= dk

(
1 +

τ5

βk + ε

)
(4.15)

where ε is a small number ( in this work we use ε = 10−12) used to avoid the division
by zero. All βzk are smaller than unity and they are all close to 1 at the smooth parts of the
solution. They are in fact the normalization of the classical smoothness indicator βk by the
higher order information contained in τ5.

4.2 PARTICLE-MESH METHOD
To solve the particle phase we use a Lagrangian tracing of individual computational

particle paths. Lagrangian tracking of the particles consists of three stages per particle,
including searching the element a particle is located in, interpolating the eld variables to the
particle location, and pushing the particle forward with a time integration method matching
the WENO integration scheme.

If we locate the Eulerian cell in which the particle resides, ip is computed on the
structured grid,

ip = INT

[
xp − x0

xN − x0

]
(iN − i0) + i0 (4.16)

where xp are the particle locations, x0 and xN are the lower and upper bounds of the
domain respectively and i0 and iN are the first and last cell node indices. the INT function
truncates the bracketed quotient to an integer, causing the searching algorithm to the choose
the lower host cell node and thereby creating an erroneous numerical bias in the solution. For
most cases, the grid cells are small enough that this numerical error is negligible. However,
for symmetric problems, the host cells below the centerline are adjusted by adding one to ip.

In smooth flow areas without shocks, the WENO-Z method uses a central difference
scheme. Under these conditions, centered interpolation to the particle position is more
accurate and therefore preferred. Lagrange interpolating polynomials of degree k,
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Pk(xp) =

ip+k/2∑
i=ip−k/2

Q(xili(xp) (4.17)

where ip represents the nearest node to the particle position found in Equation 4.16 are
used to compliment the WENO scheme. The number of points k should be equal to the
number of points used as the order of the WENO scheme [67]. In the case of the fifth order
WENO scheme the Lagrange interpolating polynomials would be of degree k = 5.

ENO interpolation is only necessary in WENO-domains identified by the smoothness
indicator. In those domains, the interpolating points are determined based on the smoothness
of the function indicated by the divided differences. The k-th degreed divided differences are
determined first. The 0-th order divided differences of Q are defined by:

Q[xi] = Q(xi) (4.18)

The j-th degree divided difference for j ≥ 1 are defined by

Q[xi, · · · , xi+j] =
Q[xi+1, · · · , xi+j]−Q[xi, · · · , xi+j+1]

xi+j−xi
(4.19)

Starting from a two point stencil, xip, xip+1, the interpolation stencil is expanded to k
points based on a comparison of the divided differences of the the increasing order at ip. The
smallest second order divided differences at ip of the two potential three points stencils
minQ[xip−1, xip, xip+1],Q[xip, xip+1, xip+2] indicates the smoothest interpolation stencil and
is therefore chosen. This procedure is repeated until a k point interpolant is found.

The Lagrange interpolant in equation 4.17 then interpolates to the particle position.
In Fig. 4.2, we give an example of a typical ENO stencil close to a shock. We find the

nearest grid point to the left of the particle. The magnitude of the first order divided
differences at this grid point are larger than the divided differences to the left because of the
shock jump. The stencil is therefore extended to the left. The same holds for the divided
difference of a higher-order than one. So, the ENO stencil will be preferential one-sided to the
left of the particle if the particle is located on the cell including a shock.

In two dimensions, the same procedure can be used along the separate dimension on
the tensor grid. The divided differences are determined along horizontal and vertical lines in
the grid.

An example of two dimensional ENO stencil is shown in Fig. 4.3. The particle’s
nearest grid point is found to the left and the bottom of the particle. The left and the bottom
point of the ENO stencil are determined by comparison of the divided difference along the
horizontal and vertical line crossing the nearest grid point. If a particle is located in a cell with
a shock, then the ENO is one-sided to the left and bottom of the particle. We note that if two
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Figure 4.2. One dimensional ENO stencil for interpolation to a
particle located near a shock. The interpolation stencil is deter-
mined based on the divided differences at the particle’s nearest
grid point to the left of the particle.

shocks cross the k interpolation stencil, then this procedure will fail to recognize the second
shock. We did not encounter stability problems.

To finish this section, we also give an example of a three-dimensional ENO stencil in
Fig. 4.4. The particle’s nearest grid points is found to the back, bottom, and left of the
particle. The back, bottom and left points of the ENO stencil are determined by comparison of
the divided difference along the x, y, an z grid lines crossing the nearest grid point. If a
particle is located in a cell with a shock, then the ENO is one-sided to the back, bottom and
left of the particle.
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Figure 4.3. Two-dimensional ENO stencil for interpolation to
a particle located near a shock. The left and the bottom point
of the interpolation stencil is determined based on the divided
differences along the horizontal grid lines and the vertical grid
lines at the particle’s nearest grid point to the left and the bottom
of the particle position.

Figure 4.4. Three-dimensional ENO stencil for interpolation to
a particle located near to a shock. The back, left and bottom
points of the interpolation stencil were determined based on the
divided differences along the x, y and z grid lines at the particle’s
nearest grid point.
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CHAPTER 5

PROBLEM SETUP

In this experiment, we simulate a 4% volume fraction cloud of 135,000 computational
particles 5.1. The particle response time and density are, τp = 1.7845× 103 and ρp = 1200,
respectively. We have three different elements that we need to take into account: The
particle’s cloud, fluid 1 (Shock Wave) and fluid 2. A schematic figure is provided to show the
basis of the experiment (Fig. 5.1).

Figure 5.1. Schematic figure showing the initial setup of the sim-
ulation, which involves two different kind of fluids and a parti-
cle’s cloud. Fluid 1 is considered the Shock Wave and Fluid 2
and the particles are initialized with zero velocity. The particle’s
cloud is located in Fluid 2.

The particles are initially evently distributed with zero velocity in a perturbed cloud
streching a width of 0.2941 (in x-direction) and a height of 0.2 (in y-direction) with 150× 900

particles. The function of the initial perturbation follows a cosine profile allocating the
particles uniformly. The x and y location of each particle is governed by the next equations.

xp = x0 + k · δxp + w0 · cos(
2π

Tcloud
· b · yloc) (5.1)

yp = − b
2

+ j · δyp (5.2)
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where xp and yp are the position of the particle in x and y direction respectively, x0 is
the initial location of the cloud, dxpart is the distance between particles in x-direction and is
defined as δxp = a

npartx
where a is the width of the cloud and npartx is the number of particles

in x-direction,δypart is the distance between particles in y-direction and is defined as
δypart = b

nparty
where b is the height of the cloud and nparty is the number of particles in

y-direction. The variable k is a counter for each row of particles starting at 1 up to npartx
adding 1 when we change to another particle while j is a counter for each column of particles
starting at 1 up to nparty adding 1 when we have allocated a complete row of particles. w0 is
the initial amplitude of the cloud, Tcloud is the period of the cosine function which for equation
5.1 is 1 and yloc is the position in y direction of the current particle’s row and is defined as
yloc = j−1

nparty
.

We consider a WENO mesh with 800 x 200 points in the x and y directions
respectively. This domain has been chosen as t The computational domain spans an area of
-0.5 to 6.5 in the x-direction where we can see all the instabilities produced by RMI. The
height is from -0.1 to 0.1 in the y- direction. A uniform inflow boundary condition is specified
at x = −0.15 and periodic boundary conditions are specified in upper and bottom sizes of the
domain. To close the boundaries, the right size of the domain has outflow boundary
conditions. We use a Reynolds Number around the particles of Ref = 9.6503 · 105 to
compute the drag force according to Davis et. al.[7]. Experiment is performed with an initial
uniform flow where the fluid Mach number is M1 = 2.8.

For a summary of the initial parameters of the particle phase see Table 5.1. The CFL
number is 0.5.

The initial setup establishes a Shock Wave with u1, v1, ρ1, E1 and M1, moving through
a fluid 2, with u2, v2, ρ2, E2 and M2, where u is the velocity in x direction, v is the velocity in
y direction, ρ is the density of the fluid, E is the sum of the inertial and kinetic energy and M
is the Mach number. In the fluid 2 there is located a particle’s cloud initialized with zero
velocity describing a perturbation following the function explained in equations 5.1 and 5.2.
At some point, it hits the particle’s cloud initializing the Richtmyer-Meshkov Instability.
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Table 5.1. Summary of the initial particle parameters to reproduce Richtmyer-Meshkov
Instability with a particle’s cloud with a volume fraction of 4%.

Name Symbol Value
Particle Response Time τp 1.7845 · 103

Density of the particles ρp 1200
Reynolds Number Ref 9.6503 · 105

Cloud Width a 0.298
Cloud Height b 0.2

Volume fraction V 0.04
Initial Cloud amplitude w0 0.1

Period Tcloud 1.0
Start location of the cloud x0 0.0

Distance between particles in x-direction δxpart 1.96066 · 10−3

Distance between particles in y-direction δypart 2.222 · 10−4

CFL CFL 0.5

Table 5.2. Fluid parameters for both fluid 1 (Shock Wave) and Fluid 2, including the
initial velocity in x and y directions, density, energy and Mach number.

Name Symbol Value
Velocity in x direction u1 8.824
Velocity in y direction v1 0

Density ρ1 3.66
Sum of inertial and kinetic energy E1 33.0775

Initial Mach number M1 2.8
Velocity in x direction u2 0
Velocity in y direction v2 0

Density ρ2 1
Sum of inertial and kinetic energy E2 2.5

Initial Mach number M2 0
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CHAPTER 6

NON-BAROCLINIC DRIVEN FLOW INTERFACE

In this subsection we will study the development of the particle cloud along the
domain. Once the Shock Wave starts moving from left to right, it hits the cloud. Therefore,
the particles located more to the left are the first on being affected by the shock, so they are
the first particles that are going to move. Because of that, we are going to find a small
compression in the width of the cloud followed by a linear growth [32].

The Shock Wave is moving to the right as we set in the initial conditions. Just after the
cloud, the density profile is lower due to the lower pressure. To counteract the lower Pressure
and density, the Temperature increases considerably following ideal gas equation, as shown in
Fig. 6.1. A secondary mushroom is created in the fluid, which we will refer here and beyond
as a baroclinic driven flow interface.

Figure 6.1. Density profile with the particles, Pressure of the
fluid and the Temperature of the fluid at time=0.825. After the
particles cloud, we encounter a lower density and pressure, but
a higher Temperature due to the heat transfer from the carrier
phase to the particle phase.
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The vorticity is the local angular rate of rotation, so is the tendency for elements of the
fluid to spin. To calculate this parameter in two dimensions we use the next equation,

Ω =
∂v

∂x
− ∂u

∂y
(6.1)

where Ω is the vorticity, u is the velocity in x direction and v is the velocity in y
direction.

The particles are concentrated at the beginning of the mushroom (at the left) due to the
first impact of the Shock Wave. At this point we display a number density called Φ which
shows the concentration of the particles in the cells; this variable is discussed in appendix A.1.
In Fig.6.2 we show at time=2.2 how this particles get concentrated.

Figure 6.2. Variable Φ showing the concentration of the parti-
cles at time=2.2. The particles get concentrated at the left of the
cloud and also we find two high density inside the cloud. The
vorticity profile shows two clearly vortex in the cloud leading
the transportation of the particles to the upper and bottom sizes
respectively.

Once the Shock wave has hit the particles cloud we can see in Fig. 6.3 the particles in
the left of the cloud get compressed. If we have a look at Ũ , the velocity in x direction is
higher in the upper and bottom right sizes of the cloud. Also, in the middle of the cloud the
particles are slower. Thus, if in the middle the particles are slow and in both ends they are fast,
the cloud amplitude is going to grow in time.

If we let run the simulation some more time as shown in Fig.6.4 we easily can see that
the amplitude of the cloud is growing with time. The secondary mushroom also starts
growing, as shown in section 6.1.
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Figure 6.3. Particles in a density profile, number density φ and
average velocity Ũ profiles in Time=1.1. The particles start con-
centrating as explained in the section as well as the higher veloc-
ity of the particles in the upper and bottom part of the cloud.

Figure 6.4. Particles in a density, φ and Ũ profiles in Time=2.2.
The transmitted Shock is taking the form of a mushroom and
the particles are gain velocity.
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In Fig.6.5 we show this vorticity profile. In the cloud we can see in red a positive value
of the vorticity which means that ∂v

∂x
is higher than ∂u

∂y
and the cloud try to rotate in a

counter-clockwise direction as viewed from above. In the other hand, blue color means a
rotation in a clockwise direction. Because of these, this particles are tending to join together
in y = 0 leading to a reduction of the velocity in the already mentioned center line.

Figure 6.5. Vorticity profile involved in the particle cloud at time
= 2.2. It is generating clockwise vorticity on the upper side of the
perturbation and counterclockwise vorticity on the bottom.

In Fig.6.5 we also can confirm the rotation of the particle’s cloud. Red color in v
(velocity in y-direction) means that the particles are going up the domain while blue color
means that the particles are going down the domain (in y-direction). If we look at the left size
of the figure, for the upper half of y red colors move particles to the upper part, and then blue
color move again the particles to the middle of the cloud.

In the next display we show the simulation in later times where we can easily see
Richtmyer-Meshkov Instability (time=3.3) in Fig. 6.6

In this point of the simulation another two particle clouds are hitting our cloud in the
upper and bottom part of y domain coinciding with the periodic boundary conditions in
y = −0.1 and y = 0.1. This phenomenon pushes the particles up and down in y = −0.1 and
y = 0.1 respectively, helping in the compression of the particle’s cloud. In Fig. 6.7 we mark
in red the area where the effect of the boundary conditions are perfectly visible.
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Figure 6.6. Particles in a density profile, φ and Ũ profiles in
Time=3.3. Black particles, which were the first in being hit are
now concentrated at the left side of the cloud as well as in the
upper and bottom side. This is due to the higher initial velocity
in combination in vorticity generated in the cloud.

Figure 6.7. φ showing periodic boundary conditions established
in y = 0.1 and y = −0.1.
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It is known that when we have more particles in one area, this particles are going to be
slower [7]. If we have a look to the Mach number in Fig. 6.8 we can see that in the middle of
the cloud the velocity is lower than in other areas of the cloud. The more particles we have,
more resistance they are going to put forward. We find in the upper and bottom sizes of the
cloud a higher Mach number, this is due to the effect of the concentration of the particles in
the middle of the cloud. This particles all together act as a solid and it put difficulties to the
fluid, so the fluid round this concentrated particles leading the dispersion through the upper
and bottom parts of the cloud, and given the particles higher velocities.

Figure 6.8. Mach number in time=3.3. Yellow color means a
subsonic flow so at the middle of the cloud, the flow is subsonic
allowing the instability growth in the upper and bottom side.

We also can appreciate a big area colored in yellow in Fig. 6.8 where M < 1, which
means than the flow is not supersonic. Because of this, we are going to find a reflected shock
moving to the left as shown in Fig.6.9 up tp -0.5 in x direction. In Appendix B we provide the
complete simulation of this parameter.

Figure 6.9. Reflected Shock at the left size of the particle’s cloud
due to the subsonic flow. This Reflected Shock will move until
x≈-0.5

At later times, the particle’s cloud continues growing (Fig. 6.10) linearly in time
according with Equation. 6.2. In the middle cloud, the yellow particles hits to each other side
forming a cone as shown in Fig. 6.10.
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dω

dt
= k[u]A

′
ω
′

0 (6.2)

Figure 6.10. Figures shown the particles in a density, φ and Ũ
profiles in Time=4.4

d

6.1 GROWTH OF RICHTMYER-MESHKOV
INSTABILITY

Equation 6.3 shows the growth rate Richtmyer-Meshkov Instability. As we have
described before, this growth is theoretically linear in contrast to Rayleigh-Taylor Instability
which growth rate function is exponential.

dω

dt
= k[u]A

′
ω
′

0 (6.3)

where the primed quantities are post-shock values. In the equation w is the amplitude
of the Instability; k is the wave number, explained as k = 2π

λ
where λ = 0.2;the initial

amplitude is w′0 = 0.1; A′ is the Atwood number post-shock, so ones the Shock wave hits the
cloud we will find a mix between the particles and the fluid. Because of that, we introduce a
new density of the mix, which is called ρmix and is defined as

ρmix = ρpartV + ρ1(1− V ) (6.4)
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where the volume concentration of the particles is V = 0.04 (4%) and ρ1 is the density
of the Shock Wave.

Thus, the Atwood number we have to take into account is

A
′
=
ρmix − ρ1

ρ1 + ρmix
(6.5)

The variable [u] as we explained in is the change in the velocity of the interface
imparted by the shock wave so we defined as dũpart

dt
in the first step of the simulation at

time = 0.06875, where ũpart is the average velocity of the particles in early times.
We use three different values of ρpart. In the first simulation we use a value of

ρpart = 1200, the second one ρpart = 2400 and the last one ρpart = 8800. When we change
the density of the particle, the diameter is function of the density and it is defined as

dpart =

√
18τp

Refρpart
(6.6)

where dpart is the diameter of the particle. Because of this, τp is particle response time
and Ref is the Reynolds Number around the particle. If ρpart is higher, dpart is going to be
smaller changing the Volume Fraction of the cloud.

In the next Tables 6.1, 6.2 and 6.3, we summary the parameters used to calculate RM
growth. When we use a higher density of the particles, the diameter

Table 6.1. Parameters involved for the calculation of RM instability growth rate when
ρpart = 1200. The volume fraction in this case is 4%.

Name Symbol Value
Volume Fraction V 0.04

Density of the Shock Wave ρ1 3.66
Density of the particles ρpart 1200

Density of the mix ρmix 51.5136
Atwood number A

′ 0.86733
Wave number k 31.41592

Initial amplitude of the cloud w
′
0 0.1

Change in the velocity of the interface [u] 0.1658
RM growth rate 1 dw1

dt
0.4527
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Table 6.2. Parameters used for the calculation of RM instability growth rate when the
ρpart = 2400. The volume fraction in this case is 2.82%

Name Symbol Value
Volume Fraction V 0.0282

Density of the Shock Wave ρ1 3.66
Density of the particles ρpart 2200

Density of the mix ρmix 65.71
Atwood number A

′ 0.8961
Wave number k 31.41592

Initial amplitude of the cloud w
′
0 0.1

Change in the velocity of the interface [u] 0.1338
RM growth rate 2 dw2

dt
0.3766

Table 6.3. Parameters used for the calculation of RM instability growth rate when the
ρpart = 8800. The volume fraction in this case is 1.47%

Name Symbol Value
Volume Fraction V 0.0147

Density of the Shock Wave ρ1 3.66
Density of the particles ρpart 8800

Density of the mix ρmix 133.52
Atwood number A

′ 0.9464
Wave number k 31.41592

Initial amplitude of the cloud w
′
0 0.1

Change in the velocity of the interface [u] 0.08
RM growth rate 3 dw3

dt
0.2381
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From last three tables we obtain the growth rate of RM Instability, which following
Equation 3.30 is linear in time. The higher the number density is, the lower is the growth rate.
In Fig. 6.11 we provide results of the different simulations including the theoretical growth
rate. In all simulations we find an initial compression of the cloud followed by a linear growth.

Figure 6.11. Richtmyer-Meshkov Instability growth rate for
three different densities of the particles. The three non-marked
lines show the amplitude of the particle’s cloud in time finding
firstly a compression followed by a linear growth. The other
marked-lines are the theoretical growths based on Richtmyer-
Meshkov growth rate equation 3.30.

The compression when ρpart = 1200 is minimal and the theoretical model agree with
the simulations. At higher densities of the particle the compression of the cloud become
evident. The first fluid is compressed nearly three-fold by the incident shock, but the
decompression wave is large due to the density mismatch. This compression is described well
by linear theory, numerical simulations and experiments. The growth rates for the simulations
are given by the slope of the density lines in Fig. 6.11; this slopes are m1 = 0.3828,
m2 = 0.3357 and m3 = 0.2991 for ρpart = 1200,ρpart = 2400 and ρpart = 8800 respectively.
Taking all the growth rates from Tables 6.1, 6.2 and 6.3, the theoretical RM growth rates are
dw1

dt
= 0.4527, dw2

dt
= 0.3766 and dw1

dt
= 0.2381, which errors are 15%, 10% and 6% for

ρpart = 1200,ρpart = 2400 and ρpart = 8800 respectively. We find that the error is higher when
ρpart is lower but Equation 3.30 usually agree with the experiments within a 10% error [32].
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APPENDIX A

VARIABLES USED IN THE SIMULATION CREATED

WITH FORTRAN
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VARIABLES USED IN THE SIMULATION CREATED

WITH FORTRAN

In this appendix we explain some of the most important variables used in this work.
The code has been created with FORTRAN and we have used MATLAB for the plots.

A.1 NUMBER DENSITY Φ
We use the variable Φ to assign the contribution of each particle to the cell points

where the particle is located in terms of quantity of particles. What is more, with this
parameter we easily can see where are more particles and which are the cells with more
particles in it.

If we have a particle in a rectangular cell as shown in Fig. A.1 we split the cell in four
areas. The distribution of the area into each cell point is related with the proximity of each
particle into the four points of the cell. For example, The cell point marked with a red circle in
Fig. A.1 will be assigned with the area distx2× disty2 because in this case, the particle is
closer to the grid point matrix phi(npart locx phi, npart locy phi) so the area assigned to
this point is bigger than the area assigned to the other three grid points.

Figure A.1. Different variables used to calculate some of the
particle parameter such as Φ or ũ.

Following the code, firstly we initialize the matrix to zero and we start the loop from
the particle number 1 to the last particle (we have Npart number of particles). Secondly we
calculate the exact location of each particle in x and y direction (npart loc x and npart loc y
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respectively) and the distances from the particle to each grid point (4 points in total per
particle).Finally, for each particle, we assign the areas to the grid points.

A.2 AVERAGE OF THE PARTICLE’S VELOCITY IN
x DIRECTION ũ

The calculus of ũ is similar to Φ. In this case we distribute the U velocity of each
particle using the same areas shown in Appendix A.1. Once you have run the code we have a
parameter like so ũφ. Making use of the next equation for each particle we can have the final
value of ũ.

ũ =
ũφ

φ̃
= ũ (A.1)

As we can see in Fig.A.2 we have in red color the grid points where the particles are
going fast and in blue color where there are few particles or they are going slow. In white
color we have no particles.

Figure A.2. Example of ũ parameter where we can find in red
color how the particles are faster than in blue color.
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APPENDIX B

ADDITIONAL RESULTS
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ADDITIONAL RESULTS

We decided to add every single parameter of the simulation in each figure so we can
see at first sight and in one page the complete development of the parameter. The fist step
starts at time = 0 and goes until time = 5.5. The resolution of the figures are 1.1 so we will
have six plots per parameter.

The first figure in page 50 shows the progress of the particle cloud in time in a density
profile (Fig. B.1). The next figure in page 51 we show how Φ changes with time (Fig.B.2).
The third figure shows te absolute value of the vorticity explained as

|∂v
∂x
− ∂u

∂y
| (B.1)

With this variable we easily can see the local spinning motion of a continuum near
some point (the tendency of something to rotate). The forth figure in page 53 shows the
variable ũ explained in appendix A.2 (Fig. B.4). Fig. B.5 shows schilieren plot of the
simulations, which is a method for detecting regions of different densities. This method is
based on the next equation √

(
∂ρ

∂x
)2 + (

∂ρ

∂y
)2 (B.2)

In Fig. B.7, B.8, B.9,B.10, B.11, B.12 and B.13 we show the velocity in y-direction,
Temperature, Mach, Vorticity, pressure, total Temperature and Total Pressure of the fluid.
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Figure B.1. Progress of the particles which are color coded so
we can trace their motion and understand their origin when the
flow develops. The background of the simulation is the density
of the fluid at times 0, 1.1, 2.2, 3.3, 4.4 and 5.5 respectively.
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+

Figure B.2. Variable Φ as a number density of the particles at
times 0, 1.1, 2.2, 3.3, 4.4 and 5.5 respectively. What we do with
this variable is assigning the contribution of each particle to the
cell points where particle is located in terms of quantity of par-
ticles.
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Figure B.3. Absolute valor of the vorticity defined as | ∂v
∂x
− ∂u

∂y
|

for time 0, 1.1, 2.2, 3.3, 4.4 and 5.5.
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Figure B.4. Velocity of the particles at times 0, 1.1, 2.2, 3.3, 4.4
and 5.5. We easily can see the differences between the veloc-
ity of the particle where the particles leading the growth of the
cloud,thus, the growth of Richtmyer-Meshkov Instability.



54

Figure B.5. Schilieren method for visualization of the simulation
from time=0.0 to time=5.5. In this figures we easily can see the
supersonic instabilities in shape of lines produced by the trans-
mitted shock.
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Figure B.6. Velocity of the fluid in x direction at times 0, 1.1, 2.2,
3.3, 4.4 and 5.5 respectively.



56

Figure B.7. Velocity of the fluid in y direction at times 0, 1.1, 2.2,
3.3, 4.4 and 5.5 respectively.
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Figure B.8. Temperature of the fluid at times 0, 1.1, 2.2, 3.3, 4.4
and 5.5 respectively. We can see that after the particle’s cloud,
the Temperature is lower due to the heat transfer from the fluid
to the particles.
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Figure B.9. Mach Number of the fluid at times 0, 1.1, 2.2, 3.3, 4.4
and 5.5 respectively. Before the cloud we find a reflected shock
moving back to x=-0.5. This is due to the subsonic flow.
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Figure B.10. Vorticity of the fluid at times 0, 1.1, 2.2, 3.3, 4.4 and
5.5 respectively. The bar of the simulation is limited at the value
of 100 so we can see better the vorticity in the non-baroclinic
interface.
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Figure B.11. Pressure of the fluid at times 0, 1.1, 2.2, 3.3, 4.4 and
5.5 respectively.
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Figure B.12. Total Temperature of the fluid at times 0, 1.1, 2.2,
3.3, 4.4 and 5.5 respectively. In the non-baroclinic interface the
total pressure remains constant due to absent of heat transfer.
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Figure B.13. Total Pressure of the fluid at times 0, 1.1, 2.2, 3.3,
4.4 and 5.5 respectively.


