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Domestic	wastewater	contains	excessive	nutrients,	harmful	bacteria/viruses	and	household	

chemicals	 that	may	 contaminate	 the	 land	 and	waters	 and	 threaten	 public	 health.	 Therefore,	

before	the	domestic	wastewaters	discharge,	it	will	be	necessary	a	treatment	to	prevent	diseases	

in	people,	and	to	protect	the	fauna	and	flora	present	in	the	natural	receptor	body.	Wastewater	

treatment	is	closely	related	to	the	standards	set	for	the	effluent	quality.	

Anaerobic	technology	for	organic	matter	removal	is	very	favorable	under	the	perspective	of	

sustainable	 development.	 However,	 the	 anaerobic	 effluent	 usually	 requires	 a	 post-treatment	

step	 as	 a	 means	 to	 adapt	 the	 treated	 effluent	 to	 the	 requirements	 of	 the	 environmental	

legislation	 and	 protect	 the	 receiving	water	 bodies.	 The	main	 role	 of	 the	 post-treatment	 is	 to	

eliminate	the	nutrients	and	complete	the	removal	of	organic	matter.	

For	 the	 biological	 removal	 of	 organic	matter	 and	 nitrogen,	 anaerobic,	 anoxic	 and	 aerobic	

biological	 processes	 should	 be	 combined.	 For	 this	 purpose,	 different	 treatment	 systems	 are	

being	developed	to	maximize	the	advantages	of	both	aerated	and	non-aerated	processes.	

The	aim	of	 this	PhD	Thesis	 is	 to	develop	and	evaluate	different	 treatment	processes	of	an	

anaerobic	 reactor	 effluent	 fed	with	 domestic	 wastewater.	 For	 this	 purpose,	 different	 reactor	

configurations	 are	 developed:	 SBR	 and	 biofilters,	 with	 different	 reaction	 ways	 to	 treat	 the	

effluent	of	an	anaerobic	 reactor.	Nitrogen	removal	efficiency	and	environmental	 sustainability	

have	been	considered	to	comply	the	discharge	standards	in	domestic	wastewater.		

In	 Chapter	 2,	 this	 work	 presents	 the	 performance	 of	 a	 sequencing	 batch	 reactor	 (SBR)	

system	used	as	nitrogen	removal	treatment	of	domestic	wastewater	previously	treated	with	an	

anaerobic	 reactor	 and	 as	 consequence,	 with	 a	 low	 C/N	 ratio.	 The	 aim	 of	 the	 work	 was	 to	

determine	 the	 feasibility	 for	 the	 removal	of	nitrogen	 from	 the	domestic	wastewater.	A	5	 L	of	

working	volume	SBR	was	investigated	at	different	cycle	times	of	12	h,	8	h	and	6	h,	at	18	ºC.	The	

treatment	 efficiency	 of	 SBR	 varied	 with	 the	 duration	 of	 the	 cycle	 time,	 being	 optimal	 the	

anoxic/aerobic/anoxic	 sequence	 cycle	 with	 6	 h	 of	 duration.	 Due	 to	 the	 low	 organic	 matter	

present	in	the	domestic	wastewater	after	anaerobic	treatment,	an	additional	supply	of	external	

carbon	before	the	second	anoxic	stage	was	necessary.	The	addition	of	methanol	was	a	key	point	

in	 the	denitrification	process	employed	as	a	model	 for	 the	wastewater	by-pass	 in	wastewater	

treatment	plants	(WWTP).	The	removal	efficiencies	obtained	were:	98%	for	TKN,	84%	for	total	

nitrogen	 and	 77%	 for	 soluble	 COD.	 The	 reactor	 showed	 viability,	 so	 this	 process	 can	 be	

successfully	applied	as	a	post-treatment	of	an	anaerobic	reactor	treating	domestic	wastewater,	

for	the	removal	of	nitrogen.	
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In	Chapter	3,	the	performance	of	a	fixed	film	bioreactor	for	partial	and	total	denitrification	of	

the	 effluent	 from	 an	 anaerobic	 membrane	 bioreactor	 (AnMBR)	 treating	 domestic	 water	 was	

investigated.	Wastewater	after	anaerobic	treatment,	with	a	low	C/N	ratio,	contains	a	remaining	

COD	 which	 is	 not	 enough	 for	 the	 conventional	 heterotrophic	 denitrification.	 As	 the	 effluent	

from	 the	 low-temperature	 anaerobic	 reactor	 holds	 methane	 and	 sulfide	 dissolved	 and	

oversaturated,	 it	was	 evaluated	 the	 feasibility	 of	 using	 these	 reduced	 compounds	 as	 electron	

donors	to	remove	80	mg	NOx

-
-N/L	at	different	HRT	obtaining	the	optimum	at	2	h.	 In	addition,	

the	influence	of	the	NO2

-
/NO3

-
	ratio	(100%/0%;	50%/50%;	25%/75%	and	0%/100%)	in	the	feed	

was	 studied.	 Satisfactory	 results	 were	 obtained	 achieving	 total	 nitrogen	 removal	 in	 the	

denitrifying	effluent,	being	aware	of	the	case	with	100%	NO3

-
	in	the	feed,	that	was	at	the	limit	of	

the	process.	Methane	was	 the	main	electron	donor	used	 to	 remove	 the	nitrites	 and	nitrates,	

with	more	than	70%	of	participation.		

In	Chapter	4,	a	pilot	plant	of	denitritation	was	operated	for	more	than	five	months	treating	

domestic	 wastewater	 with	 high	 ammonium	 nitrogen	 concentration	 from	 anaerobic	 process	

under	ambient	temperature	conditions	(18	ºC).	The	process	consisted	on	one	biofilter	with	2h	

of	HRT	for	denitritation.	To	study	the	feasibility	of	the	denitritation	process,	different	synthetic	

nitrite	 concentrations	 were	 supplied	 to	 the	 anoxic	 reactor	 to	 simulate	 the	 effluent	 of	 a	

nitritation	 process.	 The	 present	 work	 investigates	 an	 advanced	 denitritation	 of	 wastewater	

using	 the	organic	matter	and	other	alternative	electron	donors	 from	an	anaerobic	 treatment:	

methane	 and	 sulfide.	 The	 denitrifying	 bacteria	 were	 able	 to	 treat	 water	 at	 an	 inlet	 nitrite	

concentration	 of	 75	 mg	 NO2

-
-N/L	 with	 removal	 efficiency	 of	 92,9%.	 When	 the	 inlet	 nitrite	

concentration	was	higher	it	was	necessary	to	recirculate	the	gas	obtained	in	the	anoxic	reactor	

to	enhance	the	nitrite	removal,	achieving	98,3%	of	NO2

-
	elimination	efficiency.	

In	 Chapter	 5,	 a	 denitrification/nitrification	 pilot	 plant	was	 designed,	 built	 and	 operated	 to	

treat	the	effluent	of	an	anaerobic	reactor.	The	plant	was	operated	to	examine	the	effect	of	the	

nitrate	recycling	and	the	C/N	ratio	on	the	nitrogen	and	the	remaining	organic	matter	removal.	

The	 system	consisted	of	 a	 two	 stages	 treatment	process:	 anoxic	 and	aerobic.	 The	HRT	of	 the	

system	was	2	h	for	the	anoxic	bioreactor	and	4	h	for	the	aerobic	one.	The	increase	in	the	nitrate	

recycling	 ratio	did	not	 suppose	a	 significant	 improvement	 in	 the	nitrogen	 removal	due	 to	 the	

insufficient	carbon	source.	The	wastewater	to	be	treated	had	a	C/N	ratio	of	1.1	showing	a	lack	

of	 organic	 carbon.	 The	 addition	 of	 methanol	 was	 a	 key	 point	 in	 the	 denitrification	 process	

employed	 as	 a	 model	 for	 the	 traditional	 wastewater	 by-pass	 in	 the	 WWTP.	 The	 maximum	
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nitrogen	and	organic	matter	removal	(84.7%	and	96%,	respectively)	was	achieved	with	a	nitrate	

recycling	ratio	of	600%	and	a	C/N	of	8.25,	adjusted	by	methanol	addition.	

In	 Chapter	 6,	 the	 techno-economical	 feasibility	 of	 the	membrane	 anaerobic	 treatment	 of	

wastewater	 eliminating	 nitrogen	 has	 been	 simulated.	 The	 process	 was	 simulated	 using	

experimental	 data	 analyzing	 the	 influence	 of	 different	 electron	 donors	 (methane,	 organic	

matter	 and	 sulfide)	 on	 the	 nitrogen	 elimination	 capacity.	 Different	 scenarios	 have	 been	

assessed	changing	the	concentration	of	the	involved	components	and	evaluating	their	effect	on	

the	 nitrogen	 elimination	 capacity	 as	 well	 as	 the	 ability	 to	 produce	 biogas	 in	 the	 anaerobic	

treatment.	These	scenarios	imply	on	the	one	hand,	the	increment	of	the	available	soluble	COD	

for	the	nitrogen	elimination	stage.	The	COD	feed	to	the	reactor	was	adjusted	at	values	between	

15%	 and	 30%	 assuming	 different	 mixing	 ratios	 with	 the	 influent	 stream	 of	 the	 anaerobic	

reactor.	On	the	other	hand,	different	flows	of	biogas	from	the	anaerobic	reactor	were	pumped	

to	the	denitritation	reactor.	The	goal	was	to	achieve	a	nitrogen	elimination	capacity	to	reach	an	

effluent	with	10-20	mg	N/L.	Then,	the	most	promising	scenario	was	studied	in	detail	and	it	was	

compared	to	the	costs	associated	to	the	WWTP	with	a	biological	anaerobic	 treatment	using	a	

MBR	 system.	 The	 results	 indicated	 that	 the	 proposed	 process	 is	 feasible	 since	 the	 fixed	 and	

variables	costs	of	both	treatment	plants	are	similar.	
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Las	aguas	residuales	domésticas	contienen	un	exceso	de	nutrientes,	bacterias/virus	dañinos	

y	sustancias	químicas	domésticas	que	puedan	contaminar	la	tierra	y	el	agua	y	poner	en	peligro	

la	salud	pública.	Por	lo	tanto,	antes	de	la	descarga	de	aguas	residuales	domésticas,	es	necesario	

un	tratamiento	para	prevenir	enfermedades	en	las	personas,	así	como	para	proteger	la	fauna	y	

la	 flora	 presente	 en	 el	 cuerpo	 receptor	 natural.	 El	 tratamiento	 de	 aguas	 residuales	 está	

estrechamente	relacionado	con	las	normas	establecidas	para	la	calidad	del	efluente.	

La	tecnología	anaerobia	para	 la	eliminación	de	materia	orgánica	es	muy	favorable	desde	el	

punto	 de	 vista	 del	 desarrollo	 sostenible.	 Sin	 embargo,	 el	 efluente	 anaerobio	 generalmente	

requiere	una	etapa	de	post-tratamiento	para	adaptar	el	efluente	tratado	a	 los	requisitos	de	 la	

legislación	 ambiental	 y	 proteger	 los	 cuerpos	 de	 agua	 receptores.	 El	 papel	 principal	 del	 post-

tratamiento	es	eliminar	los	nutrientes	y	completar	la	eliminación	de	la	materia	orgánica.	

Para	 la	eliminación	biológica	de	 la	materia	orgánica	y	nitrógeno,	 los	procesos	biológicos	de	

tratamiento	anaerobio,	anóxico	y	aerobio	deben	combinarse.	Para	este	propósito,	están	siendo	

desarrollados	 diferentes	 sistemas	 de	 tratamiento	 para	 maximizar	 las	 ventajas	 de	 ambos	

procesos	aerobios	y	no	aerobios.	

El	objetivo	de	esta	tesis	doctoral	es	desarrollar	y	evaluar	diferentes	procesos	de	tratamiento	

del	 efluente	 de	 un	 reactor	 anaerobio	 alimentado	 por	 aguas	 residuales	 domésticas.	 Para	 este	

propósito,	 se	 han	 desarrollado	 diferentes	 configuraciones	 de	 reactor:	 SBR	 y	 biofiltros,	 con	

diferentes	caminos	de	reacción	para	tratar	el	efluente	de	un	reactor	anaerobio.	Para	acatar	las	

normas	 de	 descarga	 de	 aguas	 residuales	 domésticas,	 se	 han	 considerado	 la	 eficiencia	 de	

eliminación	de	nitrógeno	y	la	sostenibilidad	ambiental.	

En	 el	 capítulo	 2,	 se	 presenta	 el	 rendimiento	 de	 un	 reactor	 discontinuo	 secuencial	 (SBR),	

utilizado	como	tratamiento	para	la	eliminación	de	nitrógeno	de	las	aguas	residuales	domésticas	

previamente	tratadas	con	un	reactor	anaeróbico	y,	como	consecuencia,	con	una	baja	relación	

C/N.	 El	 objetivo	del	 trabajo	 fue	determinar	 la	 factibilidad	para	 la	 eliminar	nitrógeno	en	aguas	

residuales	 domésticas.	Un	 reactor	 SBR	de	 5	 litros	 de	 volumen	de	 trabajo	 fue	 investigado	 con	

ciclos	de	diferentes	tiempos:	12	h,	8	h	y	6	h,	a	18	ºC.	La	eficiencia	del	tratamiento	del	SBR	varió	

en	 función	 de	 la	 duración	 del	 tiempo	 de	 ciclo,	 siendo	 óptimo	 el	 ciclo	 con	 la	 secuencia	

anóxico/aerobio/anóxico	con	6	horas	de	duración.	Debido	a	 la	poca	concentración	de	materia	

orgánica	 presente	 en	 el	 agua	 residual	 doméstica	 después	 del	 tratamiento	 anaerobio,	 fue	

necesario	 un	 suministro	 adicional	 de	 carbono	 externo	 antes	 de	 la	 segunda	 etapa	 anóxica.	 La	

adición	 de	metanol	 fue	 un	 punto	 clave	 en	 el	 proceso	 de	 desnitrificación,	 empleado	 como	un	
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modelo	para	simular	el	by-pass	de	parte	de	la	corriente	al	reactor	anaerobio,	en	las	plantas	de	

tratamiento	de	aguas	 residuales.	 Las	eficiencias	de	eliminación	obtenidas	 fueron:	98%	para	el	

NKT,	el	84%	de	nitrógeno	total	y	el	77%	para	la	DQO	soluble.	El	reactor	mostró	viabilidad,	por	lo	

que	este	proceso	puede	ser	aplicado	con	éxito	como	post-tratamiento	de	un	reactor	anaerobio	

que	trata	de	aguas	residuales	domésticas,	para	la	eliminación	de	nitrógeno.	

En	 el	 capítulo	 3,	 se	 investigó	 el	 rendimiento	 de	 un	 biorreactor	 de	 película	 fija	 para	 la	

desnitrificación	parcial	y	 total	del	efluente	de	un	AnMBR	que	trata	el	agua	doméstica.	El	agua	

residual	después	del	tratamiento	anaerobio,	con	baja	relación	C/N,	contiene	parte	de	la	DQO	no	

eliminada	previamente	que	no	es	 suficiente	para	 la	desnitrificación	heterótrofa	 convencional.	

Como	el	efluente	del	reactor	anaerobio	de	baja	temperatura	contiene	metano	y	sulfuro	disuelto	

y	sobresaturado,	se	evaluó	 la	viabilidad	de	utilizar	estos	compuestos	 reducidos	como	dadores	

de	electrones	para	eliminar	80	mg	N-NOx

-
/L	a	diferentes	tiempos	de	residencia,	obteniendo	el	

óptimo	en	2	h.	Además,	se	estudió	la	 influencia	de	la	relación	NO2

-
/NO3

-
	(100%/0%;	50%/50%;	

25%/75%	 and	 0%/100%)	 en	 la	 alimentación.	 Se	 obtuvieron	 resultados	 satisfactorios	

consiguiendo	 la	 eliminación	 total	 de	 nitrógeno	 en	 el	 efluente	 de	 desnitrificación,	 siendo	

conscientes	del	caso	con	100%	de	NO3

-
	en	la	alimentación,	que	estaba	en	el	límite	del	proceso.	

El	metano	fue	el	dador	de	electrones	principal	que	se	utilizó	para	eliminar	los	nitritos	y	nitratos,	

con	más	de	70%	de	participación.	

En	 el	 capítulo	 4,	 una	 planta	 piloto	 de	 desnitritación	 operó	 durante	 más	 de	 cinco	 meses	

tratando	 de	 aguas	 residuales	 domésticas	 con	 alta	 concentración	 de	 nitrógeno	 amoniacal	

procedente	del	proceso	anaerobio,	en	condiciones	de	temperatura	ambiente	(18	ºC).	El	proceso	

consistía	 en	 un	 biofiltro	 con	 2h	 de	 tiempo	 de	 residencia	 hidráulico	 (TRH)	 para	 desnitritación.	

Para	 estudiar	 la	 viabilidad	 del	 proceso	 desnitritación,	 se	 suministraron	 al	 reactor	 anóxico	

distintas	concentraciones	de	nitrito	sintético	para	simular	el	efluente	de	un	proceso	nitritación.	

Se	 investigó	 la	 desnitritación	 avanzada	 de	 aguas	 residuales	 utilizando	 materia	 orgánica	 y	

dadores	de	electrones	alternativos	procedentes	de	un	tratamiento	anaerobio:	metano	y	sulfuro.	

Las	 bacterias	 desnitrificantes	 fueron	 capaces	 de	 tratar	 el	 agua	 con	 una	 concentración	 de	

entrada	 de	 nitrito	 de	 75	mg	 N-NO2

-
/L	 con	 una	 eficacia	 de	 eliminación	 del	 92.9%.	 Cuando	 la	

concentración	alimentación	de	nitrito	fue	más	alta,	fue	necesario	recircular	el	gas	obtenido	en	

el	 reactor	anóxico	para	mejorar	 la	eliminación	de	nitrito,	 logrando	una	eficacia	de	eliminación	

de	NO2

-
	de	98.3%.	
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En	el	capítulo	5,	una	planta	piloto	de	desnitrificación/nitrificación	fue	diseñada,	construida	y	

operada	 para	 tratar	 el	 efluente	 de	 un	 reactor	 anaerobio.	 Se	 examinó	 el	 efecto	 de	 la	

recirculación	 de	 nitrato	 y	 la	 relación	 C/N	 en	 la	 eliminación	 de	 nitrógeno	 y	 materia	 orgánica	

residual.	El	sistema	consistía	en	un	proceso	de	tratamiento	de	dos	etapas:	anóxica	y	aerobia.	El	

TRH	del	sistema	fue	de	2	h	para	el	biorreactor	anóxico	y	de	4	h	para	el	aerobio.	El	aumento	de	la	

recirculación	 de	 nitrato	 no	 supuso	 una	 mejora	 significativa	 en	 la	 eliminación	 de	 nitrógeno	

debido	a	 la	 insuficiencia	de	 fuente	de	carbono.	El	agua	residual	a	 tratar	 tenía	una	relación	de	

C/N	de	1.1,	mostrando	falta	de	carbono	orgánico.	La	adición	de	metanol	fue	un	punto	clave	en	

el	 proceso	 de	 desnitrificación	 empleado	 como	 un	 modelo	 simular	 el	 by-pass	 de	 parte	 de	 la	

corriente	 en	 el	 reactor	 anaerobio.	 La	 máxima	 eliminación	 de	 nitrógeno	 y	 materia	 orgánica	

(84,7%	y	96%,	respectivamente)	se	logró	con	una	relación	de	recirculación	de	nitrato	de	600%	y	

un	C/N	de	8.25,	ajustado	por	la	adición	de	metanol.	

En	el	capítulo	6,	se	ha	simulado	la	viabilidad	técnica	y	económica	del	tratamiento	anaerobio	

de	membrana	de	aguas	residuales	y	la	eliminación	nitrógeno.	El	proceso	se	simuló	usando	datos	

experimentales	analizando	 la	 influencia	de	diferentes	dadores	de	electrones	(metano,	materia	

orgánica	 y	 sulfuro)	 en	 la	 capacidad	 de	 eliminación	 de	 nitrógeno.	 Se	 evaluaron	 diferentes	

escenarios	cambiando	 la	concentración	de	 los	componentes	 implicados	y	evaluando	su	efecto	

sobre	la	capacidad	de	eliminación	de	nitrógeno,	así	como	la	capacidad	de	producir	biogás	en	el	

tratamiento	 anaerobio.	 Estos	 escenarios	 implican	 por	 una	 parte,	 el	 incremento	 de	 la	 DQO	

soluble	disponible	para	 la	etapa	de	eliminación	de	nitrógeno.	La	alimentación	de	la	DQO	en	el	

reactor	se	ajustó	a	valores	entre	15%	y	30%,	asumiendo	diferentes	relaciones	de	mezcla	con	la	

corriente	de	alimentación	del	reactor	anaeróbico.	Por	otro	lado,	se	bombearon	diferentes	flujos	

de	biogás	procedentes	del	reactor	anaerobio	al	reactor	de	desnitritación.	El	objetivo	fue	lograr	

una	capacidad	de	eliminación	de	nitrógeno	tal	que	se	pueda	conseguir	un	efluente	con	10-20	

mg	N/L.	A	continuación,	se	estudió	en	detalle	el	escenario	más	prometedor	y	se	comparó	con	

los	costes	asociados	a	 la	EDAR	con	un	 tratamiento	biológico	anaerobio	usando	un	sistema	de	

membranas.	Los	resultados	indicaron	que	el	proceso	propuesto	es	viable	ya	que	los	costos	fijos	

y	variables	de	las	dos	plantas	de	tratamiento	son	similares.	
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AnMBR	 Anaerobic	membrane	bioreactor	

AOB	 Ammonium	oxidizing	bacteria	

BOD	 Biological	oxygen	demand	(mg	O2/L)	

BOE	 Official	Spanish	Bulletin	

BNR	 Biological	nutrient	removal	 	

COD	 Chemical	oxygen	demand	(mg	O2/L)	

DO	 Dissolved	oxygen	(mg	O2/L)	

FA	 Free	ammonia	

FNA	 Free	nitrous	acid	

GC	 Gas	chromatography	

GHG	 Greenhouse	gases	

HPLC	 high-liquid	performance	chromatography	

HRT	 Hydraulic	retention	time	(h)	

MBR	 Membrane	bioreactor	

NLR	 Nitrogen	loading	rate	(kg	N/m
3
	d)	

NOB	 Nitrite	oxidizing	bacteria	

OM	 Organic	matter	

ORP	 Oxidation-reduction	potential	(mV)	

Qin	 Inlet	flow	

QL	 Quantification	limit	

SAF	 Submerged	aerated	filters	

sCOD	 Soluble	chemical	oxygen	demand	(mg	O2/L)	

SBR	 Sequencing	batch	reactors	

SND	 Simultaneous	nitrification/denitrification	

SRT	 Solid	retention	time	(d)	
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TKN	 Total	Kjeldahl	nitrogen	(mg	N/L)	

TN	 Total	nitrogen	

TSS	 Total	suspended	solids	(mg/L)	

UASB	 Upflow	anaerobic	sludge	blanket	

VSS	 Volatile	suspended	solids	(mg/L)	

WWTP	 Wastewater	treatment	plant	
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Chapter	1:	

State	of	the	Art.	

Nitrogen	removal	in	

domestic	wastewater	after	

anaerobic	treatment	

	

Abstract	

A	wastewater	 treatment	 system	has	 to	 remove	 suspended	material,	 dissolved	

OM,	 pathogens	 and	 dissolved	 inorganic	 material.	 Such	 treatment	 systems	 must	

fulfill	many	requirements	to	be	feasibly	implemented,	such	as	simple	design,	use	of	

non-sophisticated	 equipment,	 high	 treatment	 efficiency,	 and	 low	 operating	 and	

capital	 costs.	 Conventional	 nitrification/denitrification	 and	 other	 alternatives	 are	

proposed	to	remove	N.	Anaerobic	processes	achieve	high	OM	removal	efficiencies	

without	oxygen	requirement.	Anaerobic	membrane	technology	can	produce	a	solid	

free	effluent,	and	enables	short	HRT	and	high	SRT.	To	obtain	an	effluent	that	meets	

requirements	 of	 the	 environmental	 legislation	 regarding	 N	 and	 protects	 the	

receiving	 water	 bodies,	 anaerobic	 membrane	 bioreactors	 can	 play	 an	 important	

role	 with	 post-treatment	 systems	 based	 on	 biofilters	 and	 sequencing	 batch	

reactors	among	others.	Much	progress	has	been	achieved	in	the	last	years	in	terms	

of	 understanding	 the	 pollutants	 elimination	 from	 wastewater.	 However,	 some	

challenges	 must	 still	 be	 overcome	 before	 a	 sustainable	 and	 efficient	 domestic	

wastewater	treatment	technology	is	achieved.	

	

Keywords:	 Domestic	 wastewater	 •	 Nitrogen	 •	 Organic	 matter	 •	 SBR																										

•	Biofilters.	
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1. INTRODUCTION:	Water	and	Wastewater	

The	uncontrolled	disposal	to	the	environment	of	domestic,	industrial	and	agricultural	liquid,	

solid	and	gaseous	wastes	constitutes	one	of	the	most	serious	threats	to	the	sustainability	of	the	

human	 race	 because	 of	water	 sources,	 land	 and	 air	 contamination	 and	 because	 its	 potential	

contribution	 to	 global	warming	
[1].
	 The	 amount	 and	 type	 of	waste	 produced	 in	 households	 is	

influenced	by	the	behavior,	lifestyle	and	life	standard	of	inhabitants	as	well	as	the	technical	and	

juridical	framework	that	regulates	the	disposal	standards.	In	the	case	of	household	wastes,	the	

composition	of	wastewater	and	solid	wastes	 from	households	 is	a	result	of	 the	distribution	of	

contributions	 from	 various	 sources	 within	 the	 household	
[2,	 3]

.	 Moreover,	 every	 community	

produces	air	emissions.	In	this	introduction,	the	technologies	review	is	focused	in	the	analysis	of	

the	wastewater	generation	and	treatment.		

The	 liquid	wastewater	 is	 basically	 the	water	 supplied	 to	 the	 community	 after	 it	 has	 been	

used	 in	a	variety	of	applications.	From	the	standpoint	of	generation	sources,	wastewater	may	

be	 defined	 as	 a	 combination	 of	 the	 liquid	wastes	 removed	 from	 residences,	 institutions,	 and	

commercial	and	industrial	establishments,	together	with	such	groundwater,	surface	water,	and	

stormwater	as	may	be	present	
[4]
.	 Increasingly	amounts	of	domestic	and	industrial	sewage	are	

generated	 due	 to	 rapid	 population	 growth,	 expansion	 of	 cities	 and	 industrial	 development.	

These	 increasing	 activities	 make	 it	 of	 ultimate	 importance	 to	 redouble	 efforts	 to	 maintain	 a	

clean	and	safe	environment	
[5,	6]

.	In	this	context,	the	quality	of	water	is	central	to	all	of	the	roles	

that	water	 plays	 in	 our	 lives	
[7]
.	Water	 is	 the	 source	 of	 life	 on	 earth,	 and	 human	 civilizations	

blossomed	 where	 there	 was	 reliable	 and	 clean	 freshwater.	 Use	 of	 water	 by	 humans	 –	 for	

drinking,	 washing,	 and	 recreation	 –	 requires	 water	 free	 of	 biological,	 chemical,	 and	 physical	

contaminations.	 Plants,	 animals,	 and	 the	 habitats	 that	 support	 biological	 diversity	 also	 need	

clean	 water	 to	 develop	 themselves.	Water	 of	 a	 certain	 quality	 is	 also	 needed	 to	 grow	 food,	

power	cities	and	run	industries	
[7]
.		

Wastewaters	are	discharged	into	rivers	and	streams,	which	could	cause	deterioration	of	the	

environment	 if	 the	wastewater	 is	 not	 correctly	 adapted	 to	 the	 receiving	 source.	 This	 activity	

modifies	the	nature	of	the	river	and	receiving	bodies,	which	can	provoke	several	problems,	such	

as	eutrophication	and	pollution.	As	consequence,	big	problems	for	human	health	as	well	as	for	

aquatic	flora	and	fauna	can	be	arisen.	For	these	reasons,	wastewaters	must	be	treated	before	

they	 are	 discharged	 to	 the	 receiving	 water	 bodies.	 “Treatment”	 is	 defined	 as	 the	 process	 of	

reducing	the	pollutants	into	less	harmful	end	products,	adapting	the	wastewater	composition	to	
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a	 desired	 one	 that	 does	 not	 change	 the	 natural	 composition	 of	 the	 receiving	 bodies.	 The	

process	may	be	accomplished	by	either	physical,	chemical,	or	biological	means	
[8,	9]

.	

1.1.	DOMESTIC	WASTEWATER:	definition	

Domestic	wastewater,	also	known	as	municipal	wastewater	or	sanitary	wastewater	or	simply	

sewage,	 is	 the	 used	water,	 which	 has	 been	 discharged	 from	 the	 residential,	 commercial	 and	

institutional	zones	of	a	city	or	a	town	or	a	community	and	collected	through	sewerage	system.	

Sometimes,	 partially	 treated	 liquid	 wastes	 form	 small	 industries	 are	 also	 collected	 and	

discharged	into	the	sanitary	sewers	and	thus	included	with	domestic	wastewater	
[10]

.	Domestic	

wastewater	 is	 the	 most	 abundant	 type	 of	 wastewater	 that	 falls	 into	 the	 category	 of	 low-

strength	 waste	 streams,	 characterized	 by	 low	 organic	 strength	 and	 high	 particulate	 organic	

matter	content	
[11]

.	It	is	composed	of	human	body	wastes	(faeces	and	urine)	together	with	the	

water	used	 for	 flushing	 toilets,	 and	 the	wastewater	 resulting	 from	personal	washing,	 laundry,	

food	preparation	and	the	cleaning	of	kitchen	utensils	
[12]

.		

1.2.	DOMESTIC	WASTEWATER:	constituents	and	composition	

Typical	 domestic	 wastewater	 consists	 of	 about	 99.9%	 wt.	 water	 and	 0.1%	 wt.	 pollutants.	

About	60	 to	80%	of	 the	pollutants	 are	 found	as	dissolved	material	 and	 the	 rest	 are	 found	as	

suspended	matter.	 The	 pollutants	 include	mineral	 and	 organic	matters,	 suspended	 solids,	 oil	

and	 grease,	 detergents,	 nitrogen,	 phosphorous,	 sulfur,	 phenols,	 and	 heavy	 metals	 among	

others.	Domestic	wastewaters	also	contain	large	amounts	of	bacteria	and	viruses,	some	of	them	

pathogenic	
[1]
.	 The	 constituents	 in	 domestic	 wastewater	 can	 be	 divided	 into	 nine	 main	

categories,	which	are	displayed	in	Table	1.		

The	concentrations	found	in	wastewater	result	from	a	combination	of	pollutant	load	and	the	

amount	of	water	in	which	the	pollutant	is	“diluted”.	The	composition	of	a	municipal	wastewater	

varies	significantly	from	one	location	to	another.	On	a	given	location	the	composition	will	vary	

with	time	due	to	variations	in	the	discharged	amounts	of	substances.	The	composition	of	typical	

domestic	 wastewater	 is	 shown	 in	 Table	 2	 where	 concentrated	 wastewater	 (high)	 represents	

cases	with	low	water	consumption	and/or	infiltration.	Diluted	wastewater	(low)	represents	high	

water	consumption	and/or	infiltration.		
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Table	1.		Categories	of	constituents	found	in	domestic	wastewater	
[2]
.	

Constituents	Categories	 Actual	Constituents	 Risks	

Microorganisms	 Pathogenic	bacteria,	virus	and	

worms	eggs	

Risk	when	bathing	and	eating	

shellfish	

Biodegradable	organic	

materials	

Oxygen	depletion	in	rivers,	

lakes	and	fjords	

Fish	death,	odors	

Other	organic	materials	 Detergents,	pesticides,	fat,	oil	

and	grease,	coloring,	solvents,	

phenols,	cyanide	

Toxic	effect,	aesthetic	

inconveniences,	bio	accumulation	

in	the	food	chain	

Nutrients	 Nitrogen,	phosphorus,	

ammonium	

Eutrophication,	oxygen	depletion,	

toxic	effect	

Metals	 Hg,	Pb,	Cd,	Cr,	Cy,	Ni	 Toxic	effect,	bioaccumulation	

Other	inorganic	

materials	

Acids,	for	example	hydrogen	

sulfide,	bases	

Corrosion,	toxic	effect	

Thermal	effects	 Hot	water	 Changing	living	conditions	for	

flora	and	fauna	

Odor	(and	taste)	 Hydrogen	sulfide	 Aesthetic	inconveniences,	toxic	

effect	

Radioactivity	 	 Toxic	effect,	accumulation	

	

	

Table	2.	Typical	composition	of	raw	domestic	wastewater	(ppm)	
[2]
.	COD:	Chemical	Oxygen	Demand.	BOD:	

Biological	Oxygen	Demand.	VFA:	Volatile	Fatty	Acids.	N	Total:	Total	Nitrogen.	Ammonia-N:	Nitrogen	as	

ammonia.	P	total:	Total	phosphorus.	Ortho-P:	phosphorous	as	phosphate.	TSS:	Total	Suspended	Solids.	

VSS:	Volatiles	Suspended	Solids.	

Parameter	
High			

concentration	

Medium	

concentration		

Low	

concentration		

COD	total	 1200	 750	 500	

COD	soluble	 480	 300	 200	

COD	suspended	 720	 450	 300	

BOD	 560	 350	 230	

VFA	(as	acetate)	 80	 30	 10	

N	total	 100	 60	 30	

Ammonia-N	 75	 45	 20	

P	total	 25	 15	 6	

Ortho-P	 15	 10	 4	

TSS	 600	 400	 250	

VSS	 480	 320	 200	
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The	organic	matter	is	the	major	pollutant	in	domestic	wastewater	
[2]
.	The	amount	of	organic	

matter	 in	 domestic	wastes	 determines	 the	 degree	 of	 biological	 treatment	 required	
[13]

.	 Some	

studies	have	reported	that	the	organic	matter	in	domestic	wastewaters	is	composed	mainly	of	

proteins,	 lipids	 and	 carbohydrates.	
[12,	 14,	 15]

.	 Since	most	of	 the	nutrients	 are	normally	 soluble,	

they	 cannot	 be	 removed	 by	 settling,	 filtration,	 flotation	 or	 other	 means	 of	 solid-liquid	

separation	
[2]
.	

2.	WASTEWATER	TREATMENT	

There	 is	an	 increasing	need	to	develop	reliable	technologies	for	the	treatment	of	domestic	

wastewater	to	protect	both	public	health	and	those	of	the	receiving	bodies	or	users.	Treatment	

generally	means	the	partial	reduction	or	complete	elimination	of	the	impurities	present	 in	the	

wastewater	 so	 that	 their	 concentration	 reaches	 an	 acceptable	 level	 for	 its	 final	 disposal	 or	

proper	reuse.	Defining	the	level	of	wastewater	treatment	and	selecting	the	treatment	processes	

depends	mainly	on	 the	effluent	quality	 standards	prescribed	by	 the	 Law.	A	 treatment	 system	

has	 to	 remove	 suspended	 material,	 dissolved	 organic	 material,	 pathogens	 and,	 sometimes,	

dissolved	 inorganic	 material.	 Such	 treatment	 systems	 must	 fulfill	 many	 requirements	 to	 be	

feasibly	 implemented,	 such	 as	 simple	 design,	 use	 of	 non-sophisticated	 equipment,	 high	

treatment	efficiency,	and	low	operating	and	capital	costs	
[1,	10,	16,	17]

.	

As	outlined	in	Figure	1,	a	conventional	treatment	plant	consists	of	a	train	of	 individual	unit	

processes	 set	 in	 a	 series,	with	 the	 effluent	 of	 one	 process	 becoming	 the	 influent	 of	 the	 next	

inline	 process.	 The	 sewage	 treatment	 processes	 can	 be	 classified	 in	 four	 groups:	 preliminary	

treatment,	 primary	 treatment,	 secondary	 treatment	 and	 tertiary	 treatment.	Many	 treatment	

processes	 also	 generate	 sludge	 as	 by-product	 and	 there	 are	 several	 alternatives	 for	 sludge	

treatment	
[1,	16]

.	

	

Figure	1:	Process	diagram	of	a	conventional	sewage	treatment	plant.	
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A	 general	 treatment	 scheme	 includes	 a	 preliminary	 treatment	 (e.g.	 screens	 and	 grit	

chambers)	that	removes	most	of	the	coarse	and	heavy	inorganic	(typically	garbage	and	grit)	and	

organic	 solids	 (coarse	 food	 particles).	 A	 large	 fraction	 of	 total	 suspended	 solids	 and	 a	 fair	

proportion	of	 the	organic	matter	 in	 suspended	solids	 can	be	 removed	by	gravity	 in	a	primary	

sedimentation	tank.	Preliminary	and	primary	treatments	are	based	on	physical	processes.	The	

secondary	 treatment	 is	 based	 on	 biological	 processes.	 Biological	 reactors	 are	 employed	 to	

remove	 the	 biodegradable	 organics.	 Tertiary	 treatment	 is	 usually	 based	 on	 physicochemical	

processes.	 Polishing	 to	 remove	 fine	 particles	 and	 disinfection	 are	 typically	 carried	 out	 in	

filtration	 and	 chlorination	 or	 UV	 disinfection	 reactor	 respectively	
[16]

.	 Wastewater	 treatment	

plants	 (WWTPs)	 have	 been	 evolved	 over	 the	 time	 to	 adapt	 to	 the	 growth	 of	 cities,	 the	

environmental	 changes	 (including	 climate	 change),	 the	 economic	 conditions	 and,	 finally,	 the	

requirements	of	society	under	the	influence	of	both	environment	and	economy	
[18,	19]

.		

Suspended	 solids	 are	 the	 most	 visible	 of	 all	 impurities	 in	 wastewater	 and	 may	 be	 either	

organic	or	inorganic	in	nature.	It	is	therefore	not	surprising	that	the	first	wastewater	treatment	

systems,	introduced	by	the	end	of	the	19
th
	century,	were	designed	as	units	for	the	separation	of	

solids	 from	 liquids	by	means	of	gravity	 settling:	a	process	known	as	 the	primary	 treatment	of	

wastewater.	When	the	first	efficient	and	reliable	treatment	units	entered	into	operation,	it	soon	

became	 clear	 that	 these	 could	 treat	 wastewaters	 only	 partially	 for	 a	 simple	 reason:	 a	 large	

fraction	of	the	organic	material	in	wastewater	is	not	settleable	and	therefore	is	not	removed	by	

primary	 treatment.	 With	 the	 objective	 of	 improving	 the	 treatment	 efficiency	 of	 wastewater	

treatment	plants,	secondary	treatment	was	devised	in	the	early	years	of	the	20
th
	century,	and	

now	forms	the	basis	of	wastewater	treatment	worldwide.	Secondary	treatment	is	characterized	

by	the	use	of	biological	methods	to	remove	the	organic	material	present	in	the	wastewater	
[20,	

21]
.	 With	 appropriate	 analysis	 and	 environmental	 control,	 almost	 all	 wastewaters	 containing	

biodegradable	 constituents	 with	 a	 BOD/COD	 ratio	 of	 0.5	 or	 greater	 can	 be	 treated	 easily	 by	

biological	 means.	 In	 comparison	 to	 other	 methods	 of	 wastewater	 treatment,	 it	 also	 has	 the	

advantages	of	lowering	treatment	costs	with	no	secondary	pollution	
[22]

.	

Both,	 aerobic	 and	 anaerobic,	 processes	 can	 be	 used	 as	 biological	 treatments	 to	 the	

wastewater	 streams.	 Aerobic	 processes	 involve	 the	 use	 of	 free	 or	 dissolved	 oxygen	 by	

microorganisms	(aerobes)	in	the	conversion	of	organic	wastes	to	biomass	and	CO2.	In	anaerobic	

processes,	complex	organic	wastes	are	degraded	into	methane,	CO2	and	H2O	through	four	basic	

steps	 (hydrolysis,	 acidogenesis,	 acetogenesis	 and	methanogenesis)	 in	 the	 absence	 of	 oxygen.	

Aerobic	biological	 processes	 are	 commonly	used	 in	 the	 treatment	of	organic	wastewaters	 for	
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achieving	 high	 degree	 of	 treatment	 efficiency.	 On	 the	 other	 hand,	 considerable	 progress	 has	

been	 achieved	 in	 anaerobic	 biotechnology	 for	 waste	 treatment	 based	 on	 the	 concept	 of	

resource	recovery	and	utilization	while	still	achieving	the	objective	of	pollution	control	
[22]

.		

Spain,	as	a	member	of	the	European	Union,	is	obliged	to	comply	with	the	Community	rules.	

Council	Directive	91/271/EEC	of	21	May	1991,	established	the	minimum	requirements	for	the	

collection,	treatment	and	disposal	of	domestic	wastewater.	This	Directive	was	transposed	into	

Spanish	 law	 by	 Royal	 Decree	 Law	 11/1995,	 committed	 to	 achieve	 good	 ecological	 status	 of	

waters	 for	 2015	 set	 out	 in	 the	 Water	 Framework	 Directive	 (Directive	 2000/60/EC	 of	 the	

European	Parliament	and	the	Council	of	23	October	2000,	establishing	a	Community	framework	

action	in	the	field	of	water	policy)	
[23]

.	

Initially,	the	goal	of	WWTPs	was	to	simply	release	the	water	of	the	drains	from	the	pollutants	

before	discharging	 it	back	 to	 the	environment.	As	a	 result,	 the	WWTPs	were	designed	on	 the	

principle	of	the	activated	sludge	process.	Aeration	of	municipal	sewage	resulted	in	an	increased	

removal	rate	of	organic	material,	while	at	the	same	time	the	formation	of	macroscopic	flocs	was	

observed,	 which	 could	 be	 separated	 from	 the	 liquid	 phase	 by	 settling,	 forming	 a	 biological	

sludge.	The	addition	of	this	sludge	to	a	new	batch	of	wastewater	tremendously	accelerate	the	

removal	 rate	 of	 the	 organic	material.	 The	 sludge	 bacteria,	 together	with	 some	 protozoa	 and	

other	microbes,	 are	 collectively	 referred	 to	 as	 activated	 sludge.	 The	 concept	 of	 treatment	 is	

very	simple.	The	bacteria	remove	small	organic	carbon	molecules	by	‘eating’	them.	As	a	result,	

the	 bacteria	 grow,	 and	 the	 wastewater	 is	 cleansed.	 The	 activated	 sludge	 process	 is	 energy	

consuming	and	does	not	take	into	account	the	potential	of	energy	and	nutrient	recovery	
[18,	20,	

21]
.	Conventional	activated	sludge	requires	high	electrical	power	consumption	for	pumping	and	

aeration.	 The	 excess	 of	 sludge	 generated	 in	 this	 system	 is	 a	 secondary	 solid	 waste,	 and	 its	

disposal	 is	a	major	environmental	concern	
[19,	 24]

.	Furthermore,	 this	 technology	 is	 inefficient	 in	

eliminating	contaminants,	resulting	thus	in	their	dissemination	into	the	environment.	Advanced	

effluent	 treatment	 has	 also	 severe	 limitations	 depending	 on	 the	 type	 of	 treatment	 and	

compound	to	be	removed.	All	of	them	can	only	remove	certain	compounds	completely.	Some	

compounds	are	removed	only	partially	and	others	are	not	removed	at	all	
[25]

.	

The	 technological	 achievements	 in	 the	 fields	 of	 monitoring	 and	 controlling	 the	 design	 of	

stable	 and	 efficient	 processes	 (both	 physicochemical	 and	 biological)	 together	 with	 the	

development	 of	 suitable	 benchmarking	 and	 economic	 tools	 have	 begun	 to	 change	 the	

philosophy	 of	 WWTPs	 from	 treatment	 to	 valorization	 facilities.	 This	 means	 that	 sewage	
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treatment	 should	 be	 incorporated	 into	 a	 more	 holistic	 management	 scheme,	 which	 aims	 at	

reducing	 the	pollutants	 as	well	 as	enhancing	nutrient,	water	 and	energy	 recycling	 in	order	 to	

maintain	the	environment’s	integrity	in	an	economic	feasible	but	also	efficient	way	
[18]

.		

The	 presence	 of	mineral	 compounds	 in	 the	 effluent,	 especially	 the	 nutrients	 nitrogen	 and	

phosphorus,	 could	 cause	 a	 serious	 disruption	 of	 the	 ecological	 equilibrium	 in	 the	 receiving	

water	
[20]

.	Some	of	the	problems	of	excessive	nutrients	in	water	bodies	include	reduced	oxygen	

concentration	in	water,	which	can	lead	to	fish	death,	eutrophication,	and	over-fertilization	
[26]

.	

Eutrophication	reduces	water	quality,	alters	the	ecological	structure	and	function	of	freshwater,	

and	 poses	 many	 potential	 hazards	 to	 human	 and	 animal	 health	
[27]

.	 The	 increasing	 public	

concern	 for	 environmental	 protection	 has	 led	 to	 stricter	 nutrient	 discharge	 standards	 in	

domestic	wastewater	
[28]

.	As	consequence,	 to	protect	 the	water	quality	 in	 the	receiving	water	

bodies,	 most	 of	 the	 efforts	 have	 been	 focused	 on	 the	 development	 of	 new	 technologies	 in	

which,	 in	addition	to	the	removal	of	suspended	solids	and	organic	material,	also	the	nutrients	

nitrogen	 and	 phosphorus	were	 eliminated	
[20,	 28]

.	 A	 variety	 of	 physicochemical,	 chemical,	 and	

biological	 methods	 have	 been	 used	 to	 remove	 nutrients	 from	 wastewater	
[26]

.	 However,	

biological	nitrogen	removal	is	preferred	over	physicochemical	processes	because	it	is	capable	of	

removing	fixed	nitrogenous	compounds	to	harmless	dinitrogen	gas	(N2)	in	a	more	effective	and	

economical	way	
[27]

.	

In	the	next	three	sections,	the	biological	process	of	nitrogen	elimination	is	reviewed.	Section	

2.1	 in	 this	 chapter	 reviews	 the	mechanisms	of	nitrogen	elimination	 from	wastewater.	 Section	

2.2	 reviews	 the	 Sequential	 Batch	 Reactor	 Technology	 and	 finally,	 section	 2.3	 reviews	 the	

developed	 technologies	 of	 anaerobic	 biological	 treatments	 for	 nitrogen	 and	 organic	 matter	

removal	from	wastewater	as	a	secondary	treatment	in	a	WWTP.	

2.1.	NITROGEN	REMOVAL	FROM	WASTEWATER:	Biological	mechanisms	

Nitrogen	is	essential	for	life,	as	it	is	the	fourth	most	abundant	element	in	the	biosphere.	The	

N	 cycle	 in	 the	 biosphere	 is	 governed	 by	 various	 catabolic	 processes,	 anabolic	 processes	 and	

ammonification.	These	processes	have	been	engineered	over	the	years	and	applied	in	WWTPs	

to	implement	biological	N	removal	to	produce	effluents	with	a	lower	environmental	impact	
[28]

.		

2.1.1.	Conventional	Nitrification/Denitrification.	

In	the	1950s,	additional	to	the	organic	material	removal,	nitrification	was	introduced	in	the	

activated	 sludge	 process	
[20]

.	 Conventional	 N	 removal	 comprises	 two	 completely	 different	
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microbial	processes:	nitrification	and	denitrification	
[29]

.		

Nitrification	is	a	two-step	biological	oxidation	of	ammonium,	using	oxygen	
[20]

.	The	first	step,	

nitritation	(Eq.	[1]),	is	the	oxidation	of	ammonium	to	nitrite	(NO2

-
).	The	NH4

+	
serves	as	N	source	

for	the	synthesis	of	new	biomass	and	as	the	sole	energy	source	for	the	growth	of	ammonium-

oxidizing	bacteria	(AOB).	

Nitritation:																								NH4

+
	+	2HCO3

-
	+	1.5O2		→		NO2

-
	+	2CO2	+	3H2O																														[1]	

The	second	step,	nitratation	(Eq.	[2]),	is	the	oxidation	of	nitrite	to	produce	nitrate	(NO3

-
)	by	

nitrite-oxidizing	bacteria	
[30]

.	

Nitratation:																																							NO2

-
	+	1.5O2		→		NO3

-
																																																										[2]	

The	complete	oxidation	of	NH4

+	
to	NO3

-	
by	AOB	and	NOB	is	overall	called	nitrification	

[20,	28]
.	

Both	functional	groups	of	nitrifiers	are	aerobic	and	chemolithoautotrophic	
[29]

.	

Denitrification	is	the	reduction	of	nitrate	(Eq.	[3])	to	nitrogen	gas.	 It	 is	a	sequential	process	

that	 consists	 of	 the	 following	 reduction	 steps:	 NO3

-	
to	 NO2

-
,	 nitric	 oxide	 (NO),	 nitrous	 oxide	

(N2O),	and	N2.	Biological	denitrification	 is	carried	out	entirely	by	heterotrophic	bacteria,	which	

requires	a	biodegradable	organic	carbon	source	as	an	electron	donor	to	complete	the	reduction	

process	
[28]

.	Denitrification	only	develops	 in	 an	 anoxic	 environment,	which	 is	 characterized	by	

the	presence	of	nitrate	or	nitrite	and	the	absence	of	dissolved	oxygen.		

Heterotrophic	denitrification	over	nitrate:	

						NO3

-
	+	1.08CH3OH	+	0.24H2CO3		→		0.056C5H7O2N	+	0.47N2	+	HCO3

-
	+	1.68H2O														[3]	

As	the	nitrifying	process	is	extremely	slow	compared	to	denitrification,	two	separate	reactors	

to	accommodate	different	sets	of	conditions	are	required.		

In	 the	 first	units	 constructed	 for	biological	nitrogen	 removal,	 the	nitrified	effluent	 from	an	

activated	sludge	process	was	discharged	in	a	second	reactor,	operated	without	aeration.	In	this	

second	 reactor,	 the	demand	of	organic	 carbon	was	often	not	 satisfied	because	of	 the	high	N	

load	 and	 relative	 low	 carbon	 content	 of	 the	wastewater.	 To	 increase	 the	denitrification	 rates	

under	 such	 conditions,	 usually	 readily	 biodegradable	 organic	 compounds	 like	 methanol	 and	

acetate	was	added	to	the	second	reactor	
[20,	 29]

.	Thus,	the	treatment	system	was	composed	of	

two	 reactors	 with	 different	 sludge,	 the	 first	 one	 being	 for	 organic	 material	 removal	 and	
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nitrification;	and	the	second	one,	for	denitrification.	However,	it	was	established	soon	that	the	

organic	material	present	in	the	wastewater	could	be	very	well	used	for	nitrate	reduction	
[20,	29]

.	

The	modified	designs	placed	the	denitrification	tank	before	the	aerobic	stage.	Therefore,	the	

classic	 bioreactor	 configuration	 to	 perform	 nitrification-denitrification	 consisted	 of	 an	 anoxic	

tank	 followed	 in	used	by	an	aerobic	 tank	and	the	secondary	settler.	 In	 this	process,	known	as	

A/O,	the	denitrification	tank	directly	receives	the	wastewater	containing	relatively	high	amounts	

of	 carbon	 sources,	 and	 external	 organic	 material	 is	 not	 needed.	 Two	 recirculation	 flows	 are	

traditionally	used:	(1)	internal	recirculation	from	the	aerobic	compartment	to	the	anoxic	tank	to	

supply	electron	acceptors	for	denitrification	(NO2

-
	and	NO3

-
)	and	(2)	external	recirculation	from	

the	 secondary	 settler	 to	 the	 biological	 process	 inflow	 to	maintain	 a	 target	 biomass	 retention	

time	 (normally	 higher	 than	7	days)	 and	a	proper	 sludge	 concentration.	 These	processes	have	

unaerated	zones	for	denitrification	and	aerated	zones	where	nitrification	takes	place	together	

with	organic	material	 removal.	An	 important	 issue	 is	 the	aeration,	which	must	be	adjusted	 to	

provide	 enough	 dissolved	 oxygen	 (DO)	 for	 nitrification	 (3.16	 g	 O2	 g
-1
	 NH4

+
)	 but	 avoiding	

unnecessary	 energy	 consumption.	 The	 aeration	 requirements	 represent	 one	 of	 the	 main	

fractions	of	 the	 treatment	cost	 in	WWTPs	performing	conventional	nitrification/denitrification	

[20,	28,	29]
.	In	WWTP	it	is	common	to	include	an	anaerobic	tank	before	the	anoxic/oxic	stages.	This	

process	 A
2
/O	 with	 separate	 anaerobic,	 anoxic,	 and	 aerobic	 tanks	 is	 a	 suitable	 method	 for	

biological	nitrogen	removal	(schema	shown	in	Figure	2).	Denitrification	of	the	NO3

-
	recirculated	

from	 a	 downstream	 aerobic	 tank	 occurs	 in	 an	 anoxic	 tank	 where	 denitrifiers	 can	 utilize	 the	

organic	 matter	 present	 in	 the	 influent,	 avoiding	 the	 need	 for	 an	 additional	 organic	 carbon	

source.	However,	the	A
2
/O	configuration	normally	requires	a	high	mixed	liquid	return	ratio	(2–

4Q
in
)	from	the	aerobic	zone	to	the	anoxic	zone	to	bring	more	NO3

-
	back	for	denitrification.	High	

return	ratios	can	result	in	a	DO	concentration	increase	and	COD	dilution	in	the	anoxic	zone.	This	

inevitably	deteriorates	the	denitrification	efficiency,	especially	when	the	organic	matter	present	

in	the	influent	wastewater	is	insufficient	to	deplete	the	DO	present	in	the	recycled	mixed	liquor.	

In	addition,	high	return	ratios	also	lead	to	higher	energy	consumption	and	increased	operating	

costs	
[27]

.	

The	 denitrification	 potential	 of	wastewater	 is	 primarily	 a	 function	 of	 the	 available	 organic	

carbon,	 usually	 expressed	 as	 chemical	 oxygen	 demand	 (COD)/nitrogen(N)	 or	 carbon/nitrogen	

(C/N)	
[27]

.	One	of	the	main	factors	limiting	the	nitrogen	removal	efficiency	in	municipal	WWTPs	

is	 the	C/N	ratio.	Typical	values	 in	domestic	wastewater	 range	between	10.5	and	12.5	and	are	

sufficient	 to	complete	the	denitrification	of	 total	N	 (TN)	of	 the	 influent	wastewater.	However,	
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the	sludge	digestion	recirculation	to	the	inflow	of	the	plant	or	the	reception	of	N-rich	external	

inputs	may	 increase	 the	N	 load	of	 the	WWTP.	This	means	actual	 lower	C/N	 ratios	 that	 fail	 to	

meet	 the	 discharge	 quality	 standards	
[28]

.	 One	 way	 to	 get	 satisfactory	 nitrogen	 removal	

performance	 for	wastewater	with	 a	 C/N	 ratio	 lower	 than	 the	 critical	 value	 is	 to	 introduce	 an	

innovative	 nitrogen	 removal	 pathway,	 or	 treatment	 processes,	 which	 can	 support	 nitrogen	

removal	 with	 low	 or	 zero	 organic	 carbon	 demand.	 These	 pathways	 are	 presented	 below.	 An	

alternative	way	is	to	add	external	carbon	for	denitrification	
[27]

.		

	

Figure	2:	Schematic	diagram	of	the	anaerobic/anoxic/oxic	(A
2
/O)	process.	

2.1.2.	Simultaneous	Nitrification/Denitrification	

As	 seen	 before,	 the	 nitrification	 and	 denitrification	 processes	 are	 usually	 carried	 out	

separately	in	aerobic	and	anoxic	compartments,	respectively.	However,	as	it	has	been	reported,	

some	 heterotrophic	 nitrifiers	 could	 denitrify	 nitrite	 and	 nitrate	 aerobically.	 Nitrification	 and	

denitrification	take	place	concurrently	in	a	single	reactor	under	aerobic	conditions.	This	is	often	

referred	 as	 Simultaneous	 Nitrification/Denitrification	 (SND)	 process.	 Generally,	 SND	 occurs	

naturally	 inside	 microbial	 biofilms	 and	 flocs	 due	 to	 the	 dissolved	 oxygen	 (DO)	 gradient	

established	 across	 the	 biomass.	 The	 biodegradable	 organic	 matter	 availability	 in	 the	 deep	

biofilm	regions,	the	DO	concentration	gradients	and	the	floc	size	are	the	three	main	parameters	

affecting	SND	performance.	In	this	sense,	a	limited	DO	level	in	the	bulk	liquid	(0.5-1.5	g-O2	m
-3
)	

favors	 the	presence	of	SND	 in	aerobic	 tanks.	The	optimal	C/N	ratio	 for	SND	was	calculated	at	

11.1,	where	the	nitrification	and	denitrification	reactions	are	balanced	
[28,	31]

.	

SND	is	more	cost	effective	than	the	conventional	process	because	the	C-source	consumption	

is	22–40%	lower	and	the	sludge	yield	is	reduced	by	30%.	Due	to	the	low	DO	level	set	point	used,	

the	aeration	intensity	is	also	reduced.	SND	is	performed	in	a	single	reactor,	which	represents	a	

smaller	 footprint,	 and	 could	 be	 a	 good	 solution	 to	 upgrade	 WWTP	 without	 expanding	 the	
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existing	 facilities.	 It	 could	 be	 also	 considered	 an	 option	 to	 treat	 domestic	 wastewater	 with	

relatively	low	C/N	and/or	inorganic	C	limitation	for	autotrophic	nitrifiers	
[28,	32,	33]

.	

2.1.3.	N	removal	over	NO2

-
.	

Nitrite	(NO2

-
)	is	an	intermediate	in	both,	nitrification	and	denitrification	pathways.	In	the	

combined	nitrification/denitrification	process,	NH4

+
	is	oxidized	to	NO2

-
	and	then	to	NO3

-
,	which	

is	again	converted	to	NO2

-
	before	N2	gas	formation.	Therefore,	the	production	of	NO3

-
	is	not	

required	to	complete	the	whole	N-removal	process	
[28]

.	The	partial	nitrification	pathway	may	be	

formed	by	controlling	the	NH4

+
	oxidation	to	NO2

-	
(nitritation)	instead	of	to	NO3

-
	(nitratation)	and	

the	coupled	by	reduction	of	the	accumulated	NO2

-	
via	denitrification

[27]
.	

As	can	be	seen	in	Equations	[4]	and	[5],	the	application	of	the	shortcut	nitrification	followed	

by	 denitrification	 of	 NO2

-	
instead	 of	 complete	 nitrification/denitrification	 can	 reduce	 the	

treatment	 costs	 due	 to	 25%	 less	 aeration	 and	 40%	 less	 biodegradable	 COD	 consumption.	

Therefore,	the	process	becomes	highly	cost	effective	for	the	treatment	of	wastewater	with	low	

C/N	 ratio,	 as	 part	 of	 the	 methanol	 addition	 can	 be	 saved.	 Moreover,	 it	 is	 known	 that	

denitrification	 rates	 for	 NO2

-	
are	 1.5-2	 times	 faster	 than	 NO3

-	
denitrification	 rates,	 allowing	

higher	 removal	 capacities.	 Moreover,	 sludge	 production	 is	 reduced	 by	 40%	 in	 shortcut	

nitrification/denitrification	
[27,	28,	34,	35]

.		

NH4
+	removal	via	NO3

-	(nitrification/denitrification)																																									

NH4

+
	+	2O2	+	4	g	COD		→		0.5N2	+	H2O	+	H

+
	+	1.5	g	biomass																																	[4]	

Shortcut	nitrification/denitrification	(nitritation/denitritation):�	

		NH4

+
	+	1.5	O2	+	2.4	g	COD		→		0.5N2	+	H2O	+	H

+
	+	0.9	g	biomass																										[5]	

Unfortunately,	NO2

-
-N	accumulation	is	difficult	to	attain.

	
The	key	factor	is	to	limit	as	much	as	

possible	the	oxidation	of	NO2

-
	to	NO3

-
.	Although	NOB	generally	have	higher	substrate	utilization	

rates	 than	 AOB,	 a	 forced	 biological	 conversion	 through	 the	 NO2

-
	 route	 has	 been	 successfully	

obtained	 by	 different	 approaches.	 This	 is	 always	 based	 on	 the	 different	 physiological	

characteristics	 of	 AOB	 and	 NOB	 and	 their	 responses	 to	 three	 environmental	 factors:	 the	

temperature,	the	DO,	and	the	concentration	of	free	ammonia	(FA)	and	free	nitrous	acid	(FNA).	

These	factors	can	vary	significantly	and	unpredictably	in	wastewater	and	treatment	processes,	

so	it	is	difficult	to	achieve	and	maintain	high	removal	via	nitrite	
[27,	28,	36]

.	

2.1.4.	The	Anammox	process.	
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The	 classical	 N	 removal	 pathway	 via	 nitrification	 and	 denitrification	 is	 costly,	 because	 the	

nitrification	 stage	must	 be	 aerated	 and,	 if	 needed,	 organic	 carbon	 sources	must	 be	 added	 to	

maintain	denitrification.	Therefore,	current	interest	focuses	on	pathways	to	N	elimination	that	

require	 less	 aeration	 and	 external	 carbon	 supply.	 In	 this	 context,	 the	 anaerobic	 ammonium	

oxidizers	(Anammox)	are	highly	relevant.	These	autotrophic	bacteria	can	oxidize	NH4

+
	and	NO2

-
	

as	electron	acceptor	to	produce	N2	and	a	small	part	of	NO3

-
	under	anoxic	conditions	without	the	

requirement	of	 an	organic	 carbon	 source	 (Eq.	 [6]).	 Thus,	 this	 anaerobic	 process	 constitutes	 a	

‘shortcut’	 in	 the	 N	 cycle.	 Future	 full-scale	 implementations	 of	 the	 Anammox	 process	 could	

markedly	reduce	the	space	requirements	and	costs	of	N	removal	from	wastewater	
[27,	29]

.	

Anaerobic	ammonium	oxidation�	

NH4

+
	+	1.32NO2

-
	+	0.066HCO3

-
	+	0.13H

+
		→		1.02N2	+	0.26NO3

-
	+	0.066CH2O0.5N0.15	+	2.03H2O						[6]	

According	to	the	stoichiometry	(Eq.	[6]),	89%	of	the	incoming	N	(NH4

+	
plus	NO2

-
)	is	converted	

to	 N2	 gas,	 while	 the	 rest	 (11%)	 corresponds	 to	 NO3

-	
production.	 From	 the	 environmental	

engineering	point	of	view,	this	NO3

-	
produced	is	considered	as	a	waste	of	the	Anammox	process	

and	 must	 be	 treated	 further.	 The	 anaerobic	 ammonium	 oxidation	 reaction	 requires	 a	 NO2

-	

supply.	Therefore,	the	process	needs	to	be	coupled	to	a	partial	nitrification	process,	in	order	to	

aerobically	oxidize	60%	of	the	NH4

+	
of	the	wastewater	to	NO2

-
.	Compared	to	the	conventional	

biological	 nitrogen	 removal,	 the	Anammox	process	presents	 several	 advantages	 such	 as:	 63%	

less	oxygen	demand	and	100%	savings	on	an	external	C	source	for	denitrification,	because	it	is	a	

low-oxygen	 consuming	process	
[27,	 28,	 37]

.	Moreover,	 the	Anammox	process	has	 the	 interesting	

characteristics	of	very	low	production	of	sludge,	and	very	low	CO
2
,	N

2
O,	and	NO	emissions.	For	

all	 these	 reasons,	 the	 Anammox	 process	 as	 a	 cost-effective	 and	 energy-saving	 biotechnology	

has	a	great	potential	in	the	treatment	of	NH4

+
-rich	wastewaters	with	very	low	C/N	ratio,	such	as	

sludge	treatment	effluents	
[27,	28,	38]

.		

The	 main	 handicap	 to	 implement	 this	 process	 is	 the	 slow	 growth	 rate	 of	 anaerobic	

ammonium-oxidizing	 bacteria.	 Long	 start-up	periods	 are	 required	 even	when	working	 at	 high	

temperatures,	 limiting	 its	 application	
[28,	 38]

.	 In	 addition,	 several	 environmental	 factors	 can	

perturb	the	Anammox	process	and	affect	the	N-removal	efficiency.	The	optimum	temperature	

for	a	maximum	growth	rate	of	anaerobic	ammonium-oxidizing	bacteria	was	set	at	35-37	ºC,	but	

recent	 works	 have	 obtained	 high	 N-removal	 efficiencies	 in	 reactors	 operated	 at	 low	

temperatures	 (<20	ºC)	
[28]

.	Currently,	 the	Anammox	process	 is	 still	 confined	 to	a	 few	 types	of	

wastewaters	(sludge	digestate	and	animal	wastewaters)	
[38]

.		
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2.1.5.	Alternative	treatment	processes	or	reactors.	

Common	 biological	 nitrogen	 removal	 processes	 occur	 in	 various	 treatments	 train	

configurations	in	WWTPs,	including	the	A/O	process	and	the	A
2
/O	process.	All	these	processes	

rely	 on	 a	 predenitrification	 zone	where	 a	 portion	 of	 the	 nitrified	wastewater	 is	 recycled	 and	

mixed	with	the	influent	to	serve	as	an	electron	donor	for	denitrification.	Disadvantages	include	

the	need	 for	 high	 recirculation	 rates	 and	 the	 addition	of	 external	 carbon	 substrate	when	 the	

influent	 C/N	 ratio	 is	 not	 high	 enough.	 To	 overcome	 this	 situation,	 advanced	 process	 control	

methods,	new	biological	treatment	processes	and	reactors	such	as	the	modified	A
2
/O	process,	

the	multistage	A/O	step-feed	process	have	been	developed	
[27]

.	

2.1.5.1.	Modified	A2/O	process.	

The	modified	A
2
/O	process	avoids	the	above	disadvantages	(Figure	3).	In	the	modified	A

2
/O	

process	
[27]

:	

1. The	recycle	sludge	is	directed	to	a	separate	preanoxic	basin	where	hydrolysis	processes	

can	release	biodegradable	organic	carbon.	This	carbon	can	be	used	in	the	denitrification	

processes	taking	place	downstream.	

2. The	 influent	 wastewater	 goes	 directly	 to	 the	 anaerobic	 zone	 of	 the	 reactor	 and	 gets	

mixed	with	the	wastewater	 from	the	pre-anoxic	tank.	Part	of	mixed	wastewater	 in	this	

reactor	 is	 recirculated	 to	 the	 postanoxic	 zone	 at	 a	 ratio	 of	 0.4Qin	 to	 provide	 available	

organic	carbon	for	denitrification.	

3. In	the	first	aerobic	zone,	NH4

+	
is	oxidized	to	NO2

-	
and	NO3

-
,	and	both	are	fed	continuously	

to	the	so-called	postanoxic	zone	for	denitrification.	

4. The	treated	wastewater	passes	through	a	final	aerobic	tank	to	minimize	the	amount	of	

COD	 in	 the	 effluent,	 and	 enhances	 the	 settling	 ability	 of	 the	 sludge	 by	 minimizing	

denitrification	 in	 the	secondary	settler.	Pilot-scale	 results	 showed	more	 than	88%	COD	

and	70%	TN	was	removed.	
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Figure	3:	Schematic	diagram	of	the	modified	A
2
/O	process.	

2.1.5.2.	Step-feed	multistage	A/O	process.	

The	 step-feed	multistage	 A/O	 process	 consists	 of	 two	 or	more	 denitrification–nitrification	

units	 in	 series	with	wastewater	 distributed	 at	 several	 reactor	 points	 so	 that	 an	 internal	 NO3

-	

recirculation	is	unnecessary.	A	schema	of	step-feed	multistage	A/O	process	is	shown	in	Figure	4.	

The	 biodegradable	 organic	 material	 in	 the	 influent	 is	 utilized	 for	 denitrification,	 and	 also	

simultaneous	nitrification/denitrification	may	occur	in	this	process	
[27]

.	

	

Figure	4:	Schematic	diagram	of	the	step-feeding	multistage	anaerobic/oxic	(A/O)	process.	

	

2.2.	ORGANIC	MATTER	REMOVAL	FROM	WASTEWATER:	Anaerobic	biological	treatment.	

The	 anaerobic	 process	 operates	 in	 absence	 of	 molecular	 oxygen	 in	 the	 reactor	 for	 the	

growth	of	microbes	and	normally	fails	in	the	presence	of	excessive	oxygen.	Removal	of	organic	

content	in	wastewater	is	carried	out	by	anaerobic	and	facultative	microorganisms	by	stabilizing	

the	organic	matter	into	liquid,	gases	(mainly	methane	and	carbon	dioxide)	and	other	stable	end	

products	in	the	absence	of	oxygen	
[10]

.	
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Though	 the	 process	 was	 primarily	 developed	 for	 stabilization	 and	 volume	 reduction	 of	

wastewater	 sludge,	 it	 was	 later	 on	 employed	 for	 the	 treatment	 of	 industrial	 wastewater	

containing	 high	 organic	 wastes	
[10]

.	 Anaerobic	 treatment	 of	 wastewaters	 is	 nowadays	 widely	

accepted	as	a	probed	technology	and	extensively	used	
[39]

.	Compared	to	the	most	conventional	

aerobic	process,	anaerobic	process	should	be	considered	for	domestic	wastewater	treatment	as	

an	 alternative	 because	 of	 a	 variety	 of	 reasons.	 Anaerobic	 treatment	 can	 be	 carried	 out	 with	

technically	simple	setups,	at	any	scale,	and	at	almost	any	place.	It	produces	a	small	amount	of	

excess,	well	 stabilized	 sludge,	 and	 energy	 can	 be	 recovered	 in	 the	 form	 of	 biogas	
[17,	 40]

.	 The	

sludge	quantities	produced	in	the	anaerobic	process	are	much	smaller	that	the	sludge	quantity	

formed	while	decomposing	the	same	amount	of	organic	matter	under	an	aerobic	pathway.	Only	

about	5-15%	of	the	organic	carbon	is	converted	to	biomass	during	anaerobic	decomposition	of	

organic	matter,	while	 in	aerobic	decomposition,	the	equivalent	number	 is	about	50-60%	
[1]
.	 In	

addition	 to	 the	 energy	 that	 can	 be	 recovered	 from	 methane-rich	 biogas,	 the	 application	 of	

anaerobic	 processes	 distinctly	 reduces	 the	 overall	 energy	 demand	 for	 municipal	 wastewater	

treatment	because	no	aeration	energy	 is	 required	 for	mineralizing	 the	organics	
[11]

.	 Complete	

anaerobic	 treatment	 of	 domestic	 wastewater	 has	 the	 potential	 to	 achieve	 net	 energy	

production	 while	 meeting	 stringent	 effluent	 COD	 standards	
[37]

.	 Anaerobic	 treatment	 of	

domestic	wastewater	 is	 receiving	 increased	attention	because	of	 the	 recognized	potential	 for	

net	 energy	 recovery	 and	 low	 sludge	 production	 when	 compared	 with	 traditional	 aerobic	

processes	
[41]

.	

Both	 aerobic	 and	 anaerobic	 systems	 are	 capable	 of	 achieving	 high	 organic	 removal	

efficiency.	 In	 general,	 aerobic	 systems	 are	 suitable	 for	 the	 treatment	 of	 low	 strength	

wastewaters	(biodegradable	COD	concentrations	less	than	1000	mg/L)	while	anaerobic	systems	

are	suitable	for	the	treatment	of	high	strength	wastewaters	(biodegradable	COD	concentrations	

over	4000	mg/L).	Anaerobic	processes	achieve	organic	removal	in	the	range	40-85%	depending	

on	the	type	of	reactor	used.	The	advantages	of	anaerobic	treatment	outweigh	the	advantages	

of	 aerobic	 treatment	when	 treating	 influents	with	high	 concentrations.	 In	 addition,	 anaerobic	

treatment	 generally	 requires	 less	 energy	 with	 potential	 bioenergy	 and	 nutrient	 recovery.	

However,	compared	 to	anaerobic	systems,	aerobic	systems	achieve	higher	 removal	of	 soluble	

biodegradable	organic	matter	material	and	the	produced	biomass	is	generally	well	flocculated,	

resulting	in	lower	effluent	suspended	solids	concentration.	As	a	result,	the	effluent	quality	from	

an	aerobic	system	is	generally	higher	than	the	anaerobic	system	
[1,	22]

.		

Among	the	drawbacks	in	the	use	of	anaerobic	reactor	for	domestic	wastewater	are	found:	
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- Temperature:	 anaerobic	 wastewater	 treatment	 becomes	 increasingly	 difficult	 as	

temperatures	drop	below	20	ºC	
[42]

.	These	difficulties	 can	be	attributed	 to	changes	 in	

the	 physico-chemical	 nature	 of	 the	 wastewater	 and	 sludge	 and	 the	 slowing	 of	

biochemical	reactions.	Both	have	consequences	for	the	microbiological	processes	in	the	

different	 trophic	 levels	 of	 anaerobic	 digestion:	 hydrolysis,	 acid-	 and	 acetogenesis	 and	

methanogenesis.		

- Regarding	nutrients,	the	effluent	quality	do	not	meet	the	requirement	for	wastewater	

effluent	to	surface	receivers	
[43,	44]

.	

- Biomass:	 their	 slow	 growth	 rates	 could	 create	 challenges	 in	 treating	 wastewater,	

especially	in	start-up	periods,	due	to	washout	of	these	slow	growing	microorganisms	
[45,	

46]
.	

2.2.1.	Upflow	anaerobic	sludge	blanket	(UASB).	

There	is	a	large	variety	of	types	of	anaerobic	reactors	for	treatment	of	wastewater	including:	

anaerobic	 digesters	 of	 excess	 sludge,	 septic	 tanks,	 anaerobic	 lagoons,	 rotating	 bed	 reactor,	

expanded	bed	reactor,	fluidized	bed	reactor,	upflow	anaerobic	sludge	blanket	(UASB),	expanded	

bed	 granular	 reactor	
[1]
.	 One	 of	 the	 most	 employed	 technologies	 is	 the	 UASB	 that	 has	

successfully	been	used	to	treat	a	variety	of	wastewaters	
[39]

.	

The	 success	of	 the	UASB	 reactor	 relies	on	 the	establishment	of	 a	dense	 sludge	bed	 in	 the	

bottom	 of	 the	 reactor	 where	 all	 biological	 processes	 take	 place.	 This	 sludge	 bed	 is	 basically	

formed	 by	 accumulation	 of	 incoming	 suspended	 solids	 and	 bacterial	 growth.	 Under	 certain	

conditions,	bacteria	can	naturally	aggregate	in	flocks	and	granules	
[39]

.	The	granules	have	a	high	

density,	excellent	mechanical	strength,	and	a	high	settling	velocity	 in	combination	with	a	high	

specific	 methanogenic	 activity.	 The	 granules	 form	 a	 blanket	 through	 which	 the	 influent	

wastewater	 flows.	Organic	 substances	 in	 the	wastewater	are	digested	by	anaerobic	microbes,	

while	the	wastewater	flows	through	this	sludge	blanket.	As	a	result	of	anaerobic	digestion	of	the	

organic	 substances,	 biogas	 consisting	 of	 methane,	 carbon	 dioxide,	 hydrogen,	 nitrogen,	

hydrogen	 sulfide,	 etc.	 is	 generated	
[40]

.	 The	optimal	operational	 conditions	of	upflow	velocity,	

influent	 COD,	 pH	 and	 temperature	 are	 needed	 for	 an	 efficient	 biological	 treatment	 of	

wastewater	to	produce	biogas	in	the	UASB	reactor	
[47]

.	Due	to	its	high	biomass	concentrations,	

the	 conversion	 rate	 in	 UASB	 is	 several	 times	 higher	 than	 that	 in	 conventional	 anaerobic	

processes	
[40]

.		
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Natural	 turbulence	 caused	 by	 the	 influent	 flow	 rate	 and	 biogas	 production	 provides	 good	

wastewater	biomass-contact	in	UASB	systems	
[39]

.	Neither	mechanical	mixing	within	the	reactor	

nor	recirculation	of	sludge	and	effluent	is	needed,	resulting	in	little	external	energy	requirement	

[40]
.		

Numerous	studies	on	small	and	large	scale	UASB	processes	have	been	rapidly	recognized	as	

a	good	option	in	the	treatment	of	sewage	
[40]

.	Although	this	technology	cannot	by	itself	produce	

an	 effluent	 of	 the	 quality	 of	 a	 convention	 secondary	 process	 like	 activated	 sludge,	 it	 can	 still	

achieve	significant	organic	matter	removal	rates	in	the	range	of	60-75%	of	BOD5	at	a	fraction	of	

the	construction,	operating	and	maintenance	costs	of	activated	sludge	
[1]
.	

Among	 existing	 anaerobic	 treatment	 processes,	 the	 UASB	 process	 has	 to	 a	 large	 extent	

proven	to	satisfy	the	factors.	The	positive	factors	have	made	UASB	an	attractive	option	for	the	

treatment	of	municipal	sewage	in	developing	countries	because	of	the	warm	climatic	conditions	

[39,	 40,	 48]
.	 However,	 UASB	 treatments	 also	 have	 disadvantages.	 The	 main	 advantages	 and	

disadvantages	of	UASB	reactors	used	for	the	treatment	of	domestic	wastewater	are	described	

in	Table	3	
[10,	39,	40,	49]

.	

Table	3.	Advantages	and	disadvantages	of	UASB	reactors.	

UASB	advantages	 UASB	disadvantages	

Good	removal	efficiency,	even	at	high	loading	

rates	and	low	temperatures.	

Long	startup	takes	before	steady	state	

operation,	due	to	the	low	growth	rate	of	

methanogenic	organisms.		

Construction	and	operation	relatively	simple.	 Hydrogen	sulfide	is	produced	and	a	proper	

handling	of	the	biogas	is	required.	

Highly	skilled	personnel	for	its	operation	not	

required.	

Loss	of	dissolved	methane	in	the	effluent	(loss	

of	energy	and	high	global	warning	potential).	

Process	tolerant	of	flow	variations	or	shock	

loads.	

Proper	temperature	control	(15-35	ºC)	required	

for	colder	climates.	

High	strength	wastewater	can	be	treated	

with	no	energy	penalty.	

Post-treatment	of	the	effluent	is	generally	

required	to	reach	the	discharge	standards	for	

organic	matter,	nutrients	and	pathogens.	

Sludge	production	lower	compared	to	

conventional	aerobic	methods,	due	to	the	

slow	growth	rates	of	anaerobic	bacteria.	

	

Low	nutrients	and	chemical	requirement.	 	

	 	

	

2.2.2.	Anaerobic	Membrane	Bioreactors	(AnMBR).	
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Anaerobic	 membrane	 technology	 brings	 together	 the	 advantages	 of	 anaerobic	 processes	

with	 the	 production	 of	 solid	 free	 effluent,	 which	 provides	 an	 appropriate	 alternative	 to	

complete	 biomass	 retention,	 enabling	 short	 hydraulic	 residence	 time	 (HRT)	 and	 high	 solid	

retention	time	(SRT)	
[46,	49,	50]

.	As	a	consequence,	the	particulate	organics	retained	in	the	reactor	

can	eventually	be	hydrolyzed	and	decomposed	because	of	the	long	solids	retention	time.	Also	

the	 AnMBR	 allows	 the	 anaerobic	 microbes	 proliferate	 without	 being	 washed	 out	 from	 the	

process	
[46]

.	 One	 of	 the	 goals	 of	 anaerobic	 treatment	 processes	 is	 to	 maintain	 a	 long	 SRT	

because	 of	 the	 slow	 growth	 rate	 of	 anaerobic	microorganisms,	 especially	 when	 operating	 at	

psychrophilic	 conditions	and	with	 low	 strength	wastewater,	 such	as	domestic	wastewater	
[49]

.	

AnMBRs	have	been	demonstrated	to	be	capable	of	achieving	high	effluent	quality	 in	 terms	of	

suspended	 solids,	 chemical	 oxygen	 demand	 (COD),	 and	 pathogen	 count,	 even	 at	 low	

temperatures,	 thus	 demonstrating	 their	 potential	 for	meeting	more	 rigorous	 effluent	 quality	

requirements	
[41,	49]

.		

2.3.	AnMBR	+	N	REMOVAL.	

The	effluents	from	anaerobic	reactors	rarely	meet	discharge	standards	for	wastewater	reuse	

due	 to	 the	 kinetic	 limitations	 of	 anaerobic	metabolism.	 In	 contrast	 to	 the	 high	 COD	 and	 TSS	

elimination,	the	removal	of	nitrogen	or	phosphorus	in	the	AnMBR	systems	is	usually	negligible.	

The	 low	 removal	 of	 nitrogen	 and	 phosphorus	 is	 expected	 because	 both	 nutrients	 removal	

processes	required	anoxic	or	aerobic	zone.	This	can	be	beneficial	if	the	effluent	is	to	be	used	for	

agriculture	 or	 irrigation	 purpose.	 However,	 in	 most	 cases,	 this	 means	 that	 the	 downstream	

treatment	is	needed	if	the	effluent	is	to	be	reclaimed	
[51]

.	

The	anaerobic	effluents	reactors	usually	require	a	post-treatment	step	as	a	means	to	adapt	

the	 treated	 effluent	 to	 the	 requirements	 of	 the	 environmental	 legislation	 and	 protect	 the	

receiving	water	bodies	
[52,	53]

.	The	main	role	of	the	post-treatment	is	to	complete	the	removal	of	

organic	matter,	 as	well	 as	 to	 remove	 constituents	 little	 affected	 by	 the	 anaerobic	 treatment,	

such	 as	 nutrients	 (N	 and	 P)	 and	 pathogenic	 organisms	 (viruses,	 bacteria,	 protozoans	 and	

helminths)	
[52]

.	

When	 nitrogen	 removal	 has	 to	 be	 accomplished,	 the	 application	 of	 nitrification–

denitrification	processes	are	so	far	selected	to	complement	the	UASB	reactor	
[54]

.	In	such	case,	

the	anaerobic	 reactor	 should	be	used	 to	 treat	 initially	only	 a	part	of	 the	 influent	 raw	 sewage	

(possibly	no	more	than	50–70%),	and	the	remaining	part	 (30–	50%)	should	be	directed	to	the	

complementary	biological	treatment,	aiming	at	nitrification	and	denitrification,	so	that	there	is	
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enough	organic	matter	for	the	denitrification	step	
[52,	54]

.	

To	 couple	with	 nitrogen	 removal	 limitation,	 anaerobic	membrane	 bioreactors	 can	 play	 an	

important	 role	 with	 post-treatment	 systems	 based	 on	 biofilters,	 sponge-bed	 filters	 and	

sequencing	batch	reactors	among	others.	

Among	 the	 different	 possible	 types	 of	 post-treatment	 for	 the	 removal	 of	 nitrogen,	 down	

below,	sequencing	batch	systems	and	biofilters	are	presented.	

2.3.1.	Sequencing	batch	systems	

Sequencing	 batch	 reactors	 (SBR)	 are	 considered	 as	 fill	 and	 draw	 version	 of	 the	 activated	

sludge	process.	SBRs	are	basically	suspended	growth	biological	wastewater	treatment	reactors,	

in	which	all	the	metabolic	reactions	and	solid-liquid	separation	takes	place	in	one	tank	and	in	a	

well-defined	and	continuously	repeated	time	sequence.	
[55]

.	

The	 first	 activated	 sludge	 systems	 were	 composed	 of	 a	 single	 reactor	 that	 processed	

sequential	 batches	 of	 wastewater	 for	 a	 certain	 period	 while	 aeration	 was	 applied.	 This	 was	

followed	by	a	period	in	which	the	aeration	was	switched	off,	which	transformed	the	reactor	into	

a	 settler.	 From	 there,	 the	 effluent	 was	 discharged	 and	 a	 new	 batch	 could	 be	 taken	 in.	 SBR	

operates	under	a	 series	of	periods	 that	constitute	a	cycle.	 	The	cycle	generally	consists	of	 fill,	

react,	settle,	discharge	and	an	optional	period	of	pause	(see	Figure	5)	
[20,	55]

.		

(1) Fill:	a	wastewater	batch	is	fed	to	the	sludge	mass	already	present	in	the	tank	from	the	

previous	cycle.	During	this	phase	the	aerator	may	or	may	not	be	switched	on.	

(2) React:	Reactions	for	substrate	removal	 initiated	during	fill	are	completed	during	react.	

The	 treatment	 is	 controlled	 by	 air,	 either	 on	 or	 off,	 to	 produce	 anoxic	 and	 aerobic	

conditions.	 Controlling	 the	 time	 of	 mixing	 and/or	 aeration	 produces	 the	 degree	 of	

treatment	required.	

(3) Settle:	 sludge	 settling	 in	 the	 reactor.	 The	 entire	 tank	 acts	 as	 a	 clarifier	 without	 any	

inflow	or	outflow.	Aeration	and/or	mixers	off.	

(4) Discharge:	the	clarified	supernatant	(treated	effluent)	is	discharged	from	the	reactor	as	

effluent	and,	if	required,	excess	sludge	is	withdrawn	as	well.	

(5) Pause:	optional	phase	which	is	generally	required	when	several	SBRs	are	in	operation.	
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Figure	5:	Typical	operational	cycle	of	a	sequential	batch	reactor	(SBR).	

Multifunctional	SBR,	allows	 the	 removal	of	not	only	 the	 remaining	COD	but	also	nutrients.	

The	carbon	and	nutrient	removal	efficiencies	of	in	SBR	vary	with	the	duration	of	the	cycle	time	

and	 time	 for	 each	 phase	 of	 the	 process	 in	 a	 cycle	 of	 operation.	 The	 cycle	 time	 dictates	 the	

number	of	cycles	per	day,	the	volume	of	reactor	required	and	the	cost	of	the	WWT	system	and	

is	 based	on	 the	 strength	of	 the	wastewater.	Normally,	 the	 system	as	batch	process	 does	not	

require	secondary	clarifier	and	pumping	of	return	activated	sludge	
[20,	56,	57]

.	

The	 SBR	 processes	 are	 known	 to	 save	 more	 than	 60%	 of	 the	 expenses	 required	 for	

conventional	 activated	 sludge	process	 in	operating	 cost	and	achieve	high	effluent	quality	 in	a	

very	short	aeration	time	
[55]

.	SBR	technology	is	more	advantageous	than	the	extended	aeration	

process	 due	 to	 higher	 COD	 and	 N	 removal	 rates	 at	 comparatively	 shorter	 HRT.	 Other	

advantages	attributed	to	SBR	apart	of	the	good	effluent	quality,	are	the	simplicity	of	operation	

and	the	lower	investment	costs,	due	to	the	absence	of	a	final	settler.	One	disadvantage	that	is	

often	attributed	to	SBR	systems	is	the	inflexibility	in	dealing	with	flow	variations,	as	the	SBR	only	

receives	influent	during	a	minor	part	of	the	total	cycle	time	
[20,	58]

.	

Conventional	 activated	 sludge	 systems	 are	 space	 oriented.	 Wastewater	 flow	 moves	 from	

one	tank	into	the	next	on	a	continuous	basis	and	virtually	all	tanks	have	a	predetermined	liquid	

volume.	 The	 SBR,	 on	 the	 other	 hand,	 is	 a	 time-oriented	 system,	 with	 pre	 determined	 flow,	

energy	 input	 and	 tank	 volume	 varying	 according	 to	 some	 predetermined,	 periodic	 operating	

strategy	
[56,	59]

.		

In	 its	 original	 version,	 the	 activated	 sludge	 process	 was	 operated	 as	 a	 batch	 process.	

Although	this	activated	sludge	process	has	been	replaced	gradually	by	other	configurations,	 it	
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has	 survived	 in	 the	 form	 of	 SBR.	 The	 SBR	 has	 regained	 popularity	 over	 the	 last	 decades,	

especially	for	application	to	smaller	wastewater	streams	
[20]

.	

2.3.2.	Biofilters	

Biofiltration	 seems	 to	be	an	 interesting	option	 for	efficiently	 remove	both	 residual	organic	

matter	and	nutrients	from	domestic	wastewater	
[60]

.	

The	submerged	aerated	filters	(SAFs)	are	biofilm	systems	in	which	a	biofilm	support	medium	

is	submerged	in	wastewater	to	create	a	 large	contact	area	for	aerobic	biological	treatment	
[61,	

62]
.	Due	to	the	immobilization	of	biomass	on	media,	the	loss	of	biomass	by	shearing	is	the	only	

mechanism	 for	 the	 escape	 of	 biosolids	 in	 the	 bioreactor	 effluent.	 The	 sloughed	 biomass	 has	

good	settling	characteristics	and	can	be	readily	separated	from	the	liquid	
[63]

.	As	organic	matter	

and	 nutrients	 are	 absorbed	 from	 the	 wastewater,	 the	 film	 of	 biological	 growth	 grows	 and	

thickens	
[64]

.		

There	 are	 two	main	 configurations	 for	 denitrification	 filters	 commercially	 available:	 down	

flow	 and	 up	 flow	 continuous	 backwash	 filters.	 Down	 flow	 denitrification	 filters	 operate	 in	 a	

conventional	filtration	mode	and	consist	of	media	and	support	gravel	laying	on	an	underdrain.	

In	 up	 flow	 continuous-backwash	 filters,	 wastewater	 flows	 upward	 through	 the	 filter,	

countercurrent	to	the	movement	of	the	sand	bed	
[65]

.	

Biofiltration	 systems	 are	 typically	 robust,	 simple	 to	 construct	 and	 have	 low	 energy	

requirements	
[60,	 66]

.	 The	most	 salient	 advantages	 are:	 no	 problems	with	 bulking	 sludge,	 high	

sludge	 age	 enables	 degradation	 of	 complex	 compounds	 and	 biofilm	 mitigates	 inhibition	 and	

toxic	 impacts	
[61,	 63]

.	 The	 biofilter	 can	 be	 used	 in	 aerated	 and	 unaerated	modes.	 Thus,	 these	

systems	can	be	designed	 for	carbon	removal,	nitrification	and/or	denitrification	depending	on	

process	objectives	
[61]

.		

3. FINAL	REMARKS	

Much	progress	has	been	achieved	in	the	last	years	in	terms	of	understanding	the	pollutants	

elimination	 from	 waste	 water.	 This	 progress	 has	 been	 accompanied	 and	 motivated	 by	

increasing	legislation	towards	a	cleaner	and	safer	world.	This	represents	a	promising	scenario	to	

the	waste	water	treatment	companies	and	the	technology	developers	in	research	institutes	and	

universities.	 The	 current	 needs	 of	 the	 wastewater	 “system”	 point	 to	 the	 development	 of	

combined	 processes	 of	 pollutant	 abatement	 while	 transforming	 it	 into	 useful	 products.	 In	
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addition,	 this	 development	 should	 be	 accompanied	by	 intensified	 processes,	 getting	 compact	

apparatus	 able	 to	 run	with	high	 yields,	 and	 selectivity’s.	 Improving	 the	biology,	mass	 transfer	

and	 chemistry	 of	 the	 process	 will	 allow	 the	 development	 of	 this	 king	 of	 process	 in	 reduced	

treatment	times.	At	the	end,	compact	and	efficient	processes	allow	a	massive	implementation	

of	the	technology	in	an	economical	way.	

The	 main	 challenges	 of	 the	 nitrogen	 removal	 technology	 lie	 in	 the	 development	 of	 an	

adequate	 combination	 of	 biological	 reactor	 and	 organic	matter	 usage,	which	 allows:	 (a)	 COD	

elimination	 and	 its	 non-contaminant	 recycling	 to	 facilitates	 nitrogen	 elimination,	 (b)	 fast	 and	

selective	reactor	and	(c)	economically	feasible	configurations.		

To	address	the	problem	involved	with	the	nitrogen	removal	in	domestic	wastewater,	in	this	

PhD	Thesis	are	developed	different	reactor	configurations	and	different	reaction	ways	to	treat	

the	effluent	of	an	anaerobic	reactor.	

	 	



	

49	

	

References	

	

1.	 M.	 Libhaber	 and	 Á.	 Orozco-Jaramillo,	 Sustainable	 Treatment	 and	 Reuse	 of	 Municipal	

Wastewater:	 For	 Decision	 Makers	 and	 Practicing	 Engineers,	 IWA	 Publishing	 Alliance	

House,	2012.	

2.	 M.	 Henze,	 Biological	 Wastewater	 Treatment:	 Principles,	 Modelling	 and	 Design,	 IWA	

Pub.,	2008.	

3.	 A.	M.	Eilersen	and	M.	Henze,	Energy	related	to	sustainable	waste	handling	technology.,	

Danish	Research	Centre	for	Organic	Farming.,	2002.	

4.	 G.	 Tchobanoglous,	 F.	 L.	 Burton,	 H.	 D.	 Stensel,	 Metcalf	 and	 Eddy,	 Wastewater	

Engineering:	Treatment	and	Reuse,	McGraw-Hill	Education,	2003.	

5.	 G.	Z.	Teklehaimanot,	M.	A.	A.	Coetzee	and	M.	N.	B.	Momba,	Faecal	pollution	loads	in	the	

wastewater	 effluents	 and	 receiving	 water	 bodies:	 a	 potential	 threat	 to	 the	 health	 of	

Sedibeng	 and	 Soshanguve	 communities,	 South	 Africa,	 Environmental	 Science	 and	

Pollution	Research,	2014,	21(16),	p.9589–9603.	

6.	 B.	 D.	 Shoener,	 I.	 M.	 Bradley,	 R.	 D.	 Cusick	 and	 J.	 S.	 Guest,	 Energy	 positive	 domestic	

wastewater	 treatment:	 the	 roles	of	anaerobic	and	phototrophic	 technologies,	 Environ.	

Sci.:	Processes	Impacts,	2014,	16(6),	p.1204-1222.	

7.	 M.	 Palaniappan,	 P.	 H.	 Gleick,	 L.	 Allen,	 M.	 J.	 Cohen,	 J.	 Christian-Smith	 and	 C.	 Smith,	

Clearing	 the	 waters:	 a	 focus	 on	 water	 quality	 solutions,	 United	 Nations	 Environment	

Programme	(UNEP),	Nairobi,	Kenya,	2010.	

8.	 N.	M.	DEMİR,	 E.	 DEBİK	 and	 T.	 COŞKUN,	Municipal	wastewater	 treatment	with	 a	 pilot	

scale	 two-stage	cascade	biological	nutrient	 removal	process,	Sigma,	2016,	34(1),	p.71-

79.	

9.	 C.	 Gonçalves	 Athanásio,	 D.	 Prá	 and	 A.	 Rieger,	Water	 Quality	 of	 Urban	 Streams:	 The	

Allium	cepa	Seeds/Seedlings	Test	as	a	Tool	for	Surface	Water	Monitoring,	The	Scientific	

World	Journal,	2014,	2014	7.	

10.	 G.	L.	Karia	and	R.	A.	Christian,	Wastewater	Treatment:	Concepts	and	Design	Approach,	

PHI	Learning,	2013.	

11.	 H.	Ozgun,	R.	K.	Dereli,	M.	E.	Ersahin,	C.	Kinaci,	H.	Spanjers	and	J.	B.	v.	Lier,	A	review	of	

anaerobic	 membrane	 bioreactors	 for	 municipal	 wastewater	 treatment:	 Integration	

options,	 limitations	 and	 expectations,	 Separation	 and	 Purification	 Technology,	 2013,	

11889	-	104.	

12.	 D.	Mara,	Domestic	Wastewater	 Treatment	 in	 Developing	 Countries,	 Taylor	 &	 Francis,	

2013.	



	

50	

	

13.	 I.	 L.	 Pepper,	 C.	 P.	 Gerba,	 T.	 J.	 Gentry	 and	 R.	 M.	 Maier,	 Environmental	 Microbiology,	

Elsevier	Science,	2011.	

14.	 C.	 Sophonsiri	 and	 E.	 Morgenroth,	 Chemical	 composition	 associated	 with	 different	

particle	 size	 fractions	 in	 municipal,	 industrial,	 and	 agricultural	 wastewaters,	

Chemosphere,	2004,	55(5),	p.691-703.	

15.	 M.-h.	 Huang,	 Y.-m.	 Li	 and	 G.-w.	 Gu,	 Chemical	 composition	 of	 organic	 matters	 in	

domestic	wastewater,	Desalination,	2010,	262(1–3),	p.36-42.	

16.	 S.	Vigneswaran,	Waste	Water	Treatment	Technologies		-	Volume	I,	EOLSS	Publ.,	2009.	

17.	 S.	Aiyuk,	J.	Amoako,	L.	Raskin,	A.	v.	Haandel	and	W.	Verstraete,	Removal	of	carbon	and	

nutrients	 from	 domestic	 wastewater	 using	 a	 low	 investment,	 integrated	 treatment	

concept,	Water	Research,	2004,	38(13),	p.3031	-	3042.	

18.	 K.	Stamatelatou	and	K.	P.	Tsagarakis,	Sewage	Treatment	Plants:	Economic	Evaluation	of	

Innovative	Technologies	for	Energy	Efficiency,	International	Water	Assn,	2015.	

19.	 A.	Goldoni,	C.	Golfeto,	J.	B.	Teixeira,	G.	Blumm,	C.	M.	Wilhelm,	F.	Telöken,	E.	Bianchi,	J.	

L.	 Schmitt,	 G.	 Gehlen,	M.	 A.	 S.	 Rodrigues	 and	 L.	 B.	 da	 Silva,	 Cytotoxic	 and	 genotoxic	

evaluation	and	chemical	characterization	of	sewage	treated	using	activated	sludge	and	

a	 floating	 emergent-macrophyte	 filter	 in	 a	 municipal	 wastewater	 treatment	 plant:	 a	

case	study	in	Southern	Brazil,	Environmental	Earth	Sciences,	2014,	72(5),	p.1503-1509.	

20.	 A.	 C.	 van	 Haandel	 and	 J.	 G.	 M.	 van	 der	 Lubbe,	 Handbook	 of	 Biological	 Wastewater	

Treatment:	Design	and	Optimisation	of	Activated	Sludge	Systems,	IWA	Pub.,	2012.	

21.	 P.	S.	Davies,	The	biological	basis	of	wastewater	treatment,	Strathkelvin	Instruments	Ltd,	

2005.	

22.	 Y.	 J.	 Chan,	M.	 F.	 Chong,	 C.	 L.	 Law	 and	 D.	 G.	 Hassell,	 A	 review	 on	 anaerobic–aerobic	

treatment	of	industrial	and	municipal	wastewater,	Chemical	Engineering	Journal,	2009,	

155(1–2),	p.1-18.	

23.	 CHD,	Guía	 práctica	 para	 la	 depuración	 de	 aguas	 residuales	 en	 pequeñas	 poblaciones,	

Confederación	Hidrográfica	del	Duero.	Ministerio	de	Agricultura,	Alimentación	y	Medio	

Ambiente.	Gobierno	de	España,	2013.	

24.	 Y.	 Liu,	 Chemically	 reduced	 excess	 sludge	 production	 in	 the	 activated	 sludge	 process,	

Chemosphere,	2003,	50(1),	p.1-7.	

25.	 D.	Fatta-Kassinos,	D.	D.	Dionysiou	and	K.	Kümmerer,	Advanced	Treatment	Technologies	

for	Urban	Wastewater	Reuse,	Springer	International	Publishing,	2016.	

26.	 A.	Azhdarpoor,	P.	Mohammadi	and	M.	Dehghani,	Simultaneous	removal	of	nutrients	in	a	

novel	 anaerobic–anoxic/aerobic	 sequencing	 reactor:	 removal	 of	 nutrients	 in	 a	 novel	



	

51	

	

reactor,	 International	 Journal	 of	 Environmental	 Science	 and	 Technology,	 2015,	 13(2),	

p.543–550.	

27.	 S.-P.	Sun,	C.	Pellicer	i	Nàcher,	B.	Merkey,	Q.	Zhou,	S.	Q.	Xia,	D.	H.	Yang,	J.	H.	Sun	and	B.	

F.	 Smets,	 Effective	 Biological	 Nitrogen	 Removal	 Treatment	 Processes	 for	 Domestic	

Wastewaters	with	Low	C/N	Ratios:	A	Review,	Environmental	Engineering	Science,	2010,	

27(2),	p.111–126.	

28.	 M.	Ruscalleda	Beylier,	M.	D.	Balaguer,	J.	Colprim,	C.	Pellicer-Nàcher,	B.	J.	Ni,	B.	F.	Smets,	

S.	P.	Sun	and	R.	C.	Wang,	in	Comprehensive	Biotechnology	(Second	Edition),	ed.	M.	Moo-

Young,	Academic	Press,	Burlington,	2011,	pp.	329-340.	

29.	 R.	 J.	 Seviour	and	P.	H.	Nielsen,	Microbial	Ecology	of	Activated	Sludge,	 IWA	Publishing,	

2010.	

30.	 M.	Hatamoto,	K.	Ohtsuki,	N.	Maharjan,	S.	Ono,	K.	Dehama,	K.	Sakamoto,	M.	Takahashi	

and	 T.	 Yamaguchi,	 Performance	 evaluation	 of	 the	 sulfur-redox-reaction–activated	 up-

flow	 anaerobic	 sludge	 blanket	 and	 down-flow	 hanging	 sponge	 anaerobic/anoxic	

sequencing	 batch	 reactor	 system	 for	 municipal	 sewage	 treatment,	 Bioresource	

Technology,	2016,	204171	-	176.	

31.	 J.	Zhang,	W.	Jia,	R.	Wang,	H.	H.	Ngo,	W.	Guo,	H.	Xie	and	S.	Liang,	Microbial	community	

characteristics	during	simultaneous	nitrification-denitrification	process:	effect	of	COD/TP	

ratio,	Environmental	Science	and	Pollution	Research,	2015,	23(3),	p.2557-2565.	

32.	 G.	 Vijayan,	 R.	 Saravanane	 and	 T.	 Sundararajan,	 Influence	 of	 Nitrogen	 Residue	 on	 the	

Performance	of	Sequencing	Batch	Reactor	(SBR)	 in	Wastewater	Treatment	–	A	Review,	

International	Journal	of	Environmental	Monitoring	and	Protection,	2016,	3(1),	p.1-16.	

33.	 M.	 Seifi	 and	M.	H.	 Fazaelipoor,	Modeling	 simultaneous	nitrification	and	denitrification	

(SND)	in	a	fluidized	bed	biofilm	reactor,	Applied	Mathematical	Modelling,	2012,	36(11),	

p.5603-5613.	

34.	 D.	Wei,	X.	Xue,	L.	Yan,	M.	Sun,	G.	Zhang,	L.	Shi	and	B.	Du,	Effect	of	influent	ammonium	

concentration	on	the	shift	of	full	nitritation	to	partial	nitrification	in	a	sequencing	batch	

reactor	at	ambient	temperature,	Chemical	Engineering	Journal,	2014,	23519	-	26.	

35.	 F.	 Fatone,	M.	Dante,	 E.	Nota,	 S.	Di	 Fabio,	N.	 Frison	 and	P.	 Pavan,	Biological	 short-cut	

nitrogen	 removal	 from	 anaerobic	 digestate	 in	 a	 demonstration	 sequencing	 batch	

reactor,	Chem	Eng	Trans,	2011,	241135-1140.	

36.	 C.	Wu,	 Z.	Chen,	 X.	 Liu	 and	Y.	 Peng,	Nitrification–denitrification	 via	nitrite	 in	 SBR	using	

real-time	control	strategy	when	treating	domestic	wastewater,	Biochemical	Engineering	

Journal,	2007,	36(2),	p.87	-	92.	



	

52	

	

37.	 P.	 L.	 McCarty,	 J.	 Bae	 and	 J.	 Kim,	 Domestic	 Wastewater	 Treatment	 as	 a	 Net	 Energy	

Producer–Can	 This	 be	 Achieved?,	 Environmental	 Science	&	 Technology,	 2011,	 45(17),	

p.7100-7106.	

38.	 L.	 Zhang,	 P.	 Zheng,	 C.-j.	 Tang	 and	 R.-c.	 Jin,	 Anaerobic	 ammonium	 oxidation	 for	

treatment	 of	 ammonium-rich	wastewaters,	 Journal	 of	 Zhejiang	University.	 Science.	 B,	

2008,	9(5),	p.416-426	%W	PMC2367381.	

39.	 M.	 A.	 Latif,	 R.	 Ghufran,	 Z.	 A.	Wahid	 and	 A.	 Ahmad,	 Integrated	 application	 of	 upflow	

anaerobic	 sludge	 blanket	 reactor	 for	 the	 treatment	 of	 wastewaters,	Water	 Research,	

2011,	45(16),	p.4683	-	4699.	

40.	 H.	 H.	 P.	 Fang,	 Environmental	 Anaerobic	 Technology:	 Applications	 and	 New	

Developments,	2010.	

41.	 R.	 Yoo,	 J.	 Kim,	 P.	 McCarty	 and	 J.	 Bae,	 Effect	 of	 temperature	 on	 the	 treatment	 of	

domestic	 wastewater	 with	 a	 staged	 anaerobic	 fluidized	membrane	 bioreactor,	Water	

science	&	Technology,	2014,	69(6),	p.	

42.	 E.	 J.	 Bowen,	 J.	 Dolfing,	 R.	 J.	 Davenport,	 F.	 L.	 Read	 and	 T.	 P.	 Curtis,	 Low-temperature	

limitation	of	bioreactor	 sludge	 in	anaerobic	 treatment	of	domestic	wastewater,	Water	

Science	and	Technology,	2014,	69(5),	p.1004-1013.	

43.	 D.-W.	Gao,	Q.	Hu,	C.	Yao,	N.-Q.	Ren	and	W.-M.	Wu,	Integrated	anaerobic	fluidized-bed	

membrane	 bioreactor	 for	 domestic	 wastewater	 treatment,	 Chemical	 Engineering	

Journal,	2014,	240362	-	368.	

44.	 R.	Yoo,	J.	Kim,	P.	L.	McCarty	and	J.	Bae,	Anaerobic	treatment	of	municipal	wastewater	

with	a	staged	anaerobic	fluidized	membrane	bioreactor	(SAF-MBR)	system,	Bioresource	

Technology,	2012,	120133	-	139.	

45.	 X.	 Yue,	 Y.	 K.	 K.	 Koh	 and	 H.	 Y.	 Ng,	 Effects	 of	 dissolved	 organic	 matters	 (DOMs)	 on	

membrane	 fouling	 in	 anaerobic	 ceramic	 membrane	 bioreactors	 (AnCMBRs)	 treating	

domestic	wastewater,	Water	Research,	2015,	8696	-	107.	

46.	 B.	 Lew,	 S.	 Tarre,	 M.	 Beliavski,	 C.	 Dosoretz	 and	 M.	 Green,	 Anaerobic	 membrane	

bioreactor	(AnMBR)	for	domestic	wastewater	treatment,	Desalination,	2009,	243(1–3),	

p.251	-	257.	

47.	 A.	 M.	 Enitan,	 J.	 Adeyemo,	 F.	 M.	 Swalaha	 and	 F.	 Bux,	 Anaerobic	 Digestion	 Model	 to	

Enhance	Treatment	of	Brewery	Wastewater	for	Biogas	Production	Using	UASB	Reactor,	

Environmental	Modeling	&	Assessment,	2015,	20(6),	p.673-685.	

48.	 N.	Khalil,	R.	Sinha,	A.	Raghav	and	A.	Mittal,	2008.	

49.	 J.	Gouveia,	F.	Plaza,	G.	Garralon,	F.	Fdz-Polanco	and	M.	Peña,	A	novel	configuration	for	

an	 anaerobic	 submerged	 membrane	 bioreactor	 (AnSMBR).	 Long-term	 treatment	 of	



	

53	

	

municipal	 wastewater	 under	 psychrophilic	 conditions,	 Bioresource	 Technology,	 2015,	

198510-519.	

50.	 J.	 Bae,	 R.	 Yoo,	 E.	 Lee	 and	 P.	 McCarty,	 Two-stage	 anaerobic	 fluidized-bed	 membrane	

bioreactor	treatment	of	settled	domestic	wastewater,	Water	Sci.	Technol,	2013,	68(2),	

p.394-399.	

51.	 H.	 Lin,	 W.	 Peng,	 M.	 Zhang,	 J.	 Chen,	 H.	 Hong	 and	 Y.	 Zhang,	 A	 review	 on	 anaerobic	

membrane	 bioreactors:	 Applications,	 membrane	 fouling	 and	 future	 perspectives,	

Desalination,	2013,	314169	-	188.	

52.	 C.	 A.	 L.	 Chernicharo,	Post-treatment	 options	 for	 the	 anaerobic	 treatment	 of	 domestic	

wastewater,	Reviews	in	Environmental	Science	and	Biotechnology,	2006,	5(1),	p.73-92.	

53.	 A.	 Kumar	 Mungray,	 Z.	 V.	 P.	 Murthy	 and	 A.	 J.	 Tirpude,	 Post	 treatment	 of	 up-flow	

anaerobic	 sludge	 blanket	 based	 sewage	 treatment	 plant	 effluents:	 A	 review,	

Desalination	and	Water	Treatment,	2010,	22(1-3),	p.220-237.	

54.	 C.	A.	L.	Chernicharo,	J.	B.	van	Lier,	A.	Noyola	and	T.	Bressani	Ribeiro,	Anaerobic	sewage	

treatment:	 state	 of	 the	 art,	 constraints	 and	 challenges,	 Reviews	 in	 Environmental	

Science	and	Bio/Technology,	2015,	14(4),	p.649-679.	

55.	 M.	 Singh	 and	 R.	 K.	 Srivastava,	 Sequencing	 batch	 reactor	 technology	 for	 biological	

wastewater	 treatment:	 a	 review,	 Asia-Pacific	 Journal	 of	 Chemical	 Engineering,	 2011,	

6(1),	p.3-13.	

56.	 R.	 Pannirselvam	and	 Y.	 Ibrahim,	Simultaneous	 carbon	 and	 nutrien	 removal	 from	dairy	

wastewater	in	sequencing	batch	reactor	(SBR),	2015.	

57.	 E.	 Foresti,	 M.	 Zaiat	 and	 M.	 Vallero,	 Anaerobic	 Processes	 as	 the	 Core	 Technology	 for	

Sustainable	 Domestic	Wastewater	 Treatment:	 Consolidated	 Applications,	 New	 Trends,	

Perspectives,	 and	 Challenges,	 Reviews	 in	 Environmental	 Science	 and	 Bio/Technology,	

2006,	5(1),	p.3-19.	

58.	 R.	 Ganesh,	 P.	 Sousbie,	M.	 Torrijos,	 N.	 Bernet	 and	 R.	 A.	 Ramanujam,	Nitrification	 and	

denitrification	 characteristics	 in	 a	 sequencing	 batch	 reactor	 treating	 tannery	

wastewater,	Clean	Technologies	and	Environmental	Policy,	2014,	17(3),	p.735-745.	

59.	 S.	Vigneswaran,	Waste	Water	Treatment	Technologies		-	Volume	II,	EOLSS	Publ.,	2009.	

60.	 A.	 Nogueira,	 J.	 Bassin,	 A.	 Cerqueira	 and	 M.	 Dezotti,	 Integration	 of	 biofiltration	 and	

advanced	 oxidation	 processes	 for	 tertiary	 treatment	 of	 an	 oil	 refinery	 wastewater	

aiming	at	water	reuse,	Environmental	Science	and	Pollution	Research,	20161-12.	

61.	 A.	 Jácome,	 J.	 Molina,	 R.	 Novoa,	 J.	 Suárez	 and	 S.	 Ferreiro,	 Simultaneous	 carbon	 and	

nitrogen	 removal	 from	 municipal	 wastewater	 in	 full-scale	 unaerated/aerated	

submerged	filters,	Water	science	&	Technology,	2014,	69(1),	p.	



	

54	

	

62.	 A.	Ramos,	M.	Gomez,	E.	Hontoria	and	J.	Gonzalez-Lopez,	Biological	nitrogen	and	phenol	

removal	 from	saline	 industrial	wastewater	by	 submerged	 fixed-film	 reactor,	 Journal	of	

Hazardous	Materials,	2007,	142(1),	p.175-183.	

63.	 G.	Nakhla,	J.	Zhu	and	Y.	Cui,	Liquid-solid	circulating	fluidized	bed	waste	water	treatment	

system	for	simultaneous	carbon,	nitrogen	and	phosphorus	removal,	2007.	

64.	 R.	L.	Pehrson,	W.	J.	Flournoy	and	S.	B.	Hubbell,	Wastewater	treatment	method,	2010.	

65.	 A.	G.	Capodaglio,	P.	Hlavínek	and	M.	Raboni,	Advances	in	wastewater	nitrogen	removal	

by	biological	processes:	state	of	the	art	review,	Revista	Ambiente	&	Água,	2016,	11(2),	

p.250-267.	

66.	 J.	Reungoat,	B.	Escher,	M.	Macova,	M.	 J.	Farré,	F.	X.	Argaud,	P.	G.	Dennis,	W.	Gernjak	

and	J.	Keller,	Biofiltration	for	Advanced	Treatment	of	Wastewater,	2012.	

 	



	

55	

	

Aims	and	Contents	

	

	

Nitrogen	removal	in	domestic	

wastewater	after	anaerobic	

treatment	

	

	

	

	

	

	 	



	

56	

	

	 	



																																																																																																																										Aims	and	Contents		

57	
	

Outlook	

The	increasing	urban	growth,	the	unsustainable	use	of	the	natural	resources	and	the	society	

awareness	 of	 the	 environmental	 impact,	 highlight	 the	 necessity	 to	 develop	 and	 implement	

advanced	technologies	aimed	to	prevent,	mitigate	and	correct	the	pollution	problems	derived	

from	 anthropogenic	 origin.	 Currently,	 one	 key	 environmental	 problem	 is	 the	 wastewater	

production.	

Organic	 matter	 and	 nutrients	 present	 in	 domestic	 wastewater	 should	 be	 removed	 or	

valorized	 to	 reduce	 its	 impact	 on	 the	 environment.	 Conventional	wastewater	 treatments	 are	

focused	on	the	removal	of	these	pollution	sources	at	the	minimum	cost.	The	 idea	of	resource	

recovery	 from	wastewater	 is	changing	the	concept	of	 the	conventional	wastewater	treatment	

plants	that	tend	to	incorporate	little	by	little	processes	as	anaerobic	digestion.	

Anaerobic	 treatment	 processes	 are	 well-known	 to	 achieve	 high	 organic	 matter	 removal	

efficiencies	without	oxygen	requirement,	 low	biomass	production	and	energy	generation	from	

biogas.	The	growing	interest	in	anaerobic	treatment	of	domestic	wastewater	requires	a	parallel	

approach	in	the	development	of	downstream	technologies	because	the	effluent	often	requires	

a	post-treatment	to	remove	nutrients,	especially	nitrogen.	

Nitrogen	removal	has	become	one	of	the	most	significant	cost	factors	a	wastewater	facility	

faces.	To	comply	with	the	regulations,	facilities	are	confronted	with	major	plant	upgrades	that	

include	 nitrification	 and	 denitrification.	 These	 systems	 typically	 require	 significant	 space,	

substantial	capital	upgrades,	and	impact	both	energy	and	chemical	operational	costs.	

As	 it	 was	 analyzed	 in	 State	 of	 the	 Art,	 the	 main	 challenges	 of	 the	 nitrogen	 removal	

technology	 lie	 in	 the	 development	 of	 a	 fast	 and	 selective	 biological	 reactor	 that	 allows	 an	

adequate	 electron	 donors	 usage	 with	 an	 economically	 feasible	 configuration.	 The	

accomplishment	 of	 this	 goal	 was	 analyzed	 in	 this	 PhD	 Thesis	 by	 using	 different	 reactor	

configurations	as	well	as	different	reaction	ways.	

The	aim	of	 this	PhD	Thesis	 is	 to	develop	and	evaluate	different	 treatment	processes	of	an	

anaerobic	reactor	effluent	fed	with	domestic	wastewater.	

The	 AIM	 OF	 THIS	 WORK	 is	 to	 develop	 and	 evaluate	 different	 treatment	 processes	 of	 an	

anaerobic	 reactor	 effluent	 fed	with	domestic	wastewater.	 For	 this	 purpose,	 nitrogen	 removal	
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efficiency	 and	 environmental	 sustainability	 have	 been	 considered	 to	 comply	 the	 discharge	

standards	in	domestic	wastewater.	

In	order	 to	accomplish	 the	general	aim	of	 this	 thesis,	 the	 following	partial	objectives	were	

established:	

• Design	 and	 construction	 of	 a	 SBR	 process	 to	 remove	 nitrogen	 of	 a	 domestic	

wastewater	previously	treated	in	an	anaerobic	reactor	at	18	ºC.	

- Study	of	different	cycles	and	determination	of	the	optimum.	

• Design	and	construction	of	a	fixed	film	bioreactor	for	partial	and	total	denitrification	

of	 the	 effluent	 from	 an	 anaerobic	 reactor	 treating	 domestic	 water	 under	

psychrophilic	conditions.	

- Feasibility	of	the	removal	of	nitrates	and	nitrite	using	methane,	sulfide	and	

organic	 matter	 as	 electron	 donors	 to	 remove	 nitrates	 and	 nitrites	 at	

different	HRT.	

- Study	of	the	influence	of	the	NO2

-
/NO3

-
	ratio	in	the	feed.	

• Design	and	construction	of	a	denitrification/nitrification	pilot	plant	treating	domestic	

wastewater	after	anaerobic	treatment.	

- Study	the	influence	evaluation	of	the	COD/N	ratio	and	the	nitrate	recycling	

ratio	in	nitrogen	removal.	

• Evaluate	the	economical	feasibility	of	the	nitrogen	elimination	technology.	

- Comparison	 of	 a	 conventional	 denitrification/nitrification	 and	

denitritation/nitritation	 process	 as	 a	 post-treatment	 of	 membrane	

anaerobic	effluent.	

- Search	of	 the	 sensitive	parameter	 that	 can	be	modified	 to	 get	 the	biggest	

conversion	of	nitrite	to	nitrogen	gas	in	the	denitritation	process	

In	order	to	achieve	the	objectives	of	this	thesis,	the	work	was	structured	in	five	chapters.	In	

each	of	them,	the	partial	objectives	and	challenges	are	presented.	In	each	chapter,	a	literature	

review	was	done	in	order	to	know	the	main	achievements	and	challenges	of	the	analyzed	study.	
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The	main	content	of	the	chapters	is	described	below.	

In	Chapter	1,	“SBR	process	 for	nitrogen	removal	of	a	domestic	wastewater	 from	anaerobic	

treatment”,	the	performance	of	SBR	is	presented	to	treat	the	effluent	of	an	anaerobic	reactor.	

The	5	L	of	working	volume	was	investigated	at	different	cycle	times	of	12	h,	8	h	and	6	h,	at	18	

ºC,	 and	 the	 6	 h	 cycle	 time	 was	 selected	 as	 the	 optimal	 for	 the	 treatment.	 Results	 from	

nitrification	 and	denitrification	of	 domestic	wastewater	 in	 the	 SBR	 showed	COD	and	nitrogen	

removal	 efficiencies	 of	 about	 73%	 and	 81%.	 The	 process	 was	 successful	 in	 an	

anoxic/aerobic/anoxic	 cycle	 sequence	 with	 the	 addition	 of	 methanol	 just	 before	 the	 second	

anoxic	stage.	

In	 Chapter	 2,	 “Denitrification	 of	 the	 AnMBR	 effluent	 with	 alternative	 electron	 donors	 in	

domestic	 wastewater	 treatment”,	 the	 performance	 of	 a	 fixed	 film	 bioreactor	 for	 partial	 and	

total	 denitrification	 was	 investigated.	 Wastewater	 after	 anaerobic	 treatment	 contains	 a	

remaining	COD	not	enough	 for	 the	 conventional	heterotrophic	denitrification.	As	 the	effluent	

from	the	 low-temperature	anaerobic	 reactor	holds	methane	and	sulfide,	 it	was	evaluated	 the	

feasibility	of	using	them	as	electron	donors	to	remove	NO2

-	and	NO3

-	at	different	HRT,	obtaining	

the	optimum	at	2	h.	 In	addition,	 the	 influence	of	 the	NO2

-/NO3

-	 ratio	 in	 the	 feed	was	 studied.	

Nitrogen	removal	was	demonstrated	obtaining	a	successful	NO2

-	and	NO3

-	elimination	when	the	

feed	was	80	mg	N-NOx

-/L,	except	when	the	feeding	was	formed	only	by	nitrate,	that	the	process	

was	 at	 the	 limit.	Methane	was	 the	main	 electron	 donor	 used	 to	 remove	NO2

-	 and	NO3

-,	 with	

more	than	70%	or	participation.		

In	 Chapter	 3,	 “Advanced	 denitrification	 of	 anaerobic	 treatment	 effluent	 of	 domestic	

wastewater	 by	 using	wasted	 gas”,	 the	 denitritation	 process	 using	 alternative	 electron	 donors	

present	 in	 the	 water	 at	 18	 ºC	 and	 2	 h	 of	 HRT	 was	 investigated.	 Different	 synthetic	 nitrite	

concentrations	 were	 supplied	 to	 the	 anoxic	 reactor	 to	 simulate	 the	 effluent	 of	 a	 nitritation	

process.	The	results	demonstrated	that	the	process	was	able	to	remove	around	95%	and	93%	of	

nitrite	when	the	inlet	was	50	mg	NO2

--N/L	and	75	mg	NO2

--N/L	from	a	simulated	recirculation	of	

aerobic	 treatment	 effluent.	 For	 high	 inlet	 concentrations	 of	 NO2

-,	 recirculation	 of	 the	 gas	

collected	 in	 the	 anoxic	 reactor	 was	 a	 successful	 solution,	 thus	 achieving	 a	 nitrite	 removal	

efficiency	upper	than	98%	when	the	nitrite	concentration	in	the	feed	was	95	mg	NO2

--N/L.	

In	 Chapter	 4,	 “Nitrogen	 removal	 in	 domestic	 wastewater.	 Effect	 of	 nitrate	 recycling	 and	

COD/N	 ratio”,	 a	 denitrification/nitrification	 pilot	 plant	 was	 designed,	 built	 and	 operated	 to	

examine	 the	 effect	 of	 the	 nitrate	 recycling	 and	 the	 COD/N	 ratio	 on	 the	 nitrogen	 and	 the	
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remaining	organic	matter	 removal.	 The	 system	consisted	of	 an	anoxic	 reactor	and	an	aerobic	

one,	with	HRTs	of	2	h	and	4	h,	 respectively.	The	 increase	 in	the	nitrate	recycling	ratio	did	not	

suppose	 a	 significant	 improvement	 in	 the	 nitrogen	 removal	 due	 to	 the	 insufficient	 carbon	

source.	The	addition	of	methanol	was	a	key	point	in	the	denitrification	process.	The	maximum	

nitrogen	and	organic	matter	removal	(85%	and	96%,	respectively)	was	achieved	with	a	nitrate	

recycling	ratio	of	600%	and	a	C/N	of	8.25,	adjusted	by	methanol	addition.	Actually,	 instead	of	

the	addition	of	methanol,	the	enhancement	of	the	C/D	ratio	can	be	made	by	bypassing	part	of	

the	feedstream	from	a	point	before	the	anaerobic	treatment	to	another	point	in	the	end	of	this	

reactor.	

In	Chapter	5,	“Techno-economical	study	of	a	domestic	wastewater	 treatment	system”,	 the	

techno-economical	feasibility	of	the	nitrogen	elimination	technology	with	a	MBR	pre-treatment	

was	simulated.	The	influence	of	different	electron	donors	(methane,	organic	matter	and	sulfide)	

on	 the	 nitrogen	 removal	 capacity	 was	 analyzed.	 Different	 scenarios	 have	 been	 assessed	

changing	 the	 concentration	 of	 the	 involved	 components	 and	 evaluating	 their	 effect	 on	 the	

nitrogen	removal	capacity	as	well	as	the	ability	to	produce	biogas	 in	the	anaerobic	treatment.	

These	 scenarios	 imply	 on	 the	 one	 hand,	 the	 increment	 of	 the	 available	 soluble	 COD	 for	 the	

nitrogen	 elimination	 stage;	 On	 the	 other	 hand,	 different	 flows	 of	 biogas	 from	 the	 anaerobic	

reactor	were	pumped	to	the	denitritation	reactor.	The	goal	was	to	achieve	a	nitrogen	removal	

capacity	to	reach	an	effluent	with	10-20	mg	N/L.	Then,	the	most	promising	scenario	was	studied	

in	 detail	 and	 it	 was	 compared	 to	 the	 costs	 associated	 to	 the	 WWTP	 with	 a	 biological	 MBR	

anaerobic	treatment.	The	results	indicated	that	the	proposed	process	is	feasible	since	the	fixed	

and	variables	costs	of	both	treatment	plants	are	similar.	

This	work	is	part	of	the	IPT-2011-1078-310000	research	project	within	the	INNPACTO	2011	

program	 funded	 by	 the	 Ministry	 of	 Economy	 and	 Competitiveness,	 the	 European	 Regional	

Development	Fund,	and	the	company	Cadagua	S.A.	
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Chapter	2.	

SBR	system	for	nitrogen	removal	

in	domestic	wastewater	from	

anaerobic	treatment.	

	

Abstract	

This	work	presents	the	performance	of	a	sequencing	batch	reactor	(SBR)	system	

used	as	nitrogen	(N)	removal	treatment	of	domestic	wastewater	previously	treated	

with	an	anaerobic	 reactor	 and	as	 consequence,	with	a	 low	C/N	 ratio.	 The	aim	of	

the	 work	 was	 to	 determine	 the	 feasibility	 for	 the	 removal	 of	 nitrogen	 from	 the	

domestic	wastewater.	A	5	 L	of	working	volume	SBR	was	 investigated	at	different	

cycle	times	of	12	h,	8	h	and	6	h,	at	18	ºC.	The	treatment	efficiency	of	SBR	varied	

with	 the	 duration	 of	 the	 cycle	 time,	 being	 optimal	 the	 anoxic/aerobic/anoxic	

sequence	cycle	with	6	h	of	duration.	Due	to	the	low	organic	matter	present	in	the	

domestic	wastewater	 after	 anaerobic	 treatment,	 an	 additional	 supply	of	 external	

carbon	before	 the	 second	 anoxic	 stage	was	necessary.	 The	 addition	of	methanol	

was	 a	 key	 point	 in	 the	 denitrification	 process	 employed	 as	 a	 model	 for	 the	

wastewater	 by-pass	 in	 wastewater	 treatment	 plants	 (WWTP).	 The	 removal	

efficiencies	obtained	were:	98%	for	total	Kjeldahl	nitrogen	(TKN)	and	84%	for	total	

nitrogen	 (TN)	 and	 77%	 for	 soluble	 chemical	 oxygen	 demand	 (COD).	 The	 reactor	

showed	viability,	so	this	process	can	be	successfully	applied	as	a	post-treatment	of	

an	anaerobic	reactor	treating	domestic	wastewater,	for	the	removal	of	nitrogen.	

	

	

Keywords:	 Denitrification	 •	 Nitrification	 •	 Nitrogen	 removal	 •	 Organic	

matter	•	Sequencing	batch	reactor.	
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1. INTRODUCTION	

Conventional	 activated	 sludge	 treatment,	 commonly	 used	 to	 treat	 domestic	 wastewater,	

causes	 problems	 such	 as	 excessive	 generation	 of	 sludge	 and	 involves	 consumption	 of	 a	 large	

amount	of	energy	
[1,	2]

.	In	contrast,	anaerobic	biological	treatment	has	a	number	of	advantages	

favoring	energy	balances	because	of	 the	reduced	sludge	production,	 ,	 the	not	requirement	of	

aeration	and	the	energy	recovery	as	methane	gas	
[2-4]

.	

The	 anaerobic	 reactors	 treating	 domestic	 wastewater	 can	 produce	 two	 main	 valuable	

products,	which	 can	 be	 recovered	 and	 utilized:	methane	 and	 the	 effluent.	 The	methane	 gas,	

which	 is	produced	during	the	COD	removal	can	be	recovered	and	transformed	 into	energy	
[5]
.	

The	effluent	contains	solubilized	organic	matter,	high	ammonia-nitrogen	and	organic-nitrogen	

concentrations.	 Therefore,	 application	 of	 a	 post-treatment	 process	 is	 necessary	 in	 order	 to	

remove	nutrients	from	the	wastewater	and	achieve	the	desired	effluent	quality	
[2,	6,	7]

.	Advancing	

treatment	 of	 domestic	 wastewater	 requires	 implementing	 energy	 efficient	 nitrogen	 removal	

technologies	 that	 avoid	 nullify	 the	 energy	 savings	 realized	 from	 the	 anaerobic	 process.	 This	

process	also	mitigates	greenhouse	gas	emissions	and	maintains	or	reduces	the	footprint	
[4,	5]

.	

Biological	 nutrient	 removal	 (BNR)	 constitutes	 the	 most	 economical	 and	 sustainable	

technique	 for	 removing	 organic	 carbon	 and	 nitrogen,	 and	 then,	 to	 meet	 rigorous	 discharge	

requirements	
[8-10]

.	The	biological	nitrogen	(N)	removal	involves	two	processes:	nitrification	and	

denitrification.	Nitrification	 is	an	aerobic	process	performed	by	autotrophic	bacteria,	 in	which	

ammonium	(NH4

+
)	is	oxidized	to	nitrite	(NO2

−
),	by	means	of	ammonium	oxidizing	bacteria	(AOB).	

Then,	 nitrite	 is	 oxidized	 to	 nitrate	 (NO3

−
)	 by	 nitrite	 oxidizing	 bacteria	

[2]
.	 Denitrification	 is	 an	

anoxic	 process	 performed	 by	 a	 functional	 group	 of	 bacteria	 that	 use	 oxidized	 nitrogen	 as	

electron	acceptor	in	respiration.	In	this	process,	NO3

−
	is	reduced	to	NO2

−
	and	then	to	nitric	oxide	

(NO),	nitrous	oxide	(N2O)	and	finally	to	molecular	nitrogen	(N2)	
[8,	10]

.	

Both	 nitrification	 and	 denitrification	 possess	 nitrite	 (NO2

−
)	 as	 an	 intermediate.	 Hence,	 if	

nitrification	 is	 stopped	 at	 nitrite	 (nitritation),	 then	 complete	 denitritation	 from	 nitrite	 to	

nitrogen	gas	can	be	achieved.	Nitritation-denitritation	may	save	25%	of	aeration	consumption	

and	40%	of	chemical	oxygen	demand	(COD),	as	well	as	 low	biomass	production	and	increased	

kinetic.	 However,	 the	 difficulty	 to	 utilize	 nitrogen	 removal	 via	 nitrite	 lies	 in	 achieving	 specific	

inhibition	of	 the	nitrite	oxidizing	bacteria	while	 retaining	ammonia	oxidizing	bacteria,	 thereby	

attaining	nitritation	
[11-13]

.	
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The	biological	process	with	an	anaerobic-aerobic-anoxic	system	is	a	feasible	and	sustainable	

technology	for	removing	nitrogen	and	organic	matter	from	domestic	wastewater.	High	organic	

and	ammonium	removal	efficiencies	are	achieved	by	using	this	systems,	but	the	total	nitrogen	

(TN)	 removal	 efficiency	 is	 not	 high	 due	 to	 the	 shortage	 of	 carbon	 source	 available	 for	

denitrification	
[9]
.	 Organic	 substrates	 such	 as	 methanol	 can	 be	 used	 for	 carbon	 and	 electron	

source	for	biological	denitrification	
[14,	15]

.	The	main	disadvantage	of	using	methanol	is	the	safety	

issues	associated	with	 its	 transportation,	handling,	 and	 storage	
[16]

.	One	of	 the	most	effective	

methods	 to	 increase	 the	organic	matter	concentration	of	 the	 influent	without	 the	addition	of	

external	 organic	 substrates	 is	 achieved	 by	mixing	 a	 fraction	 of	 the	 influent	 to	 the	 anaerobic	

reactor	with	the	effluent	of	that	reactor.	In	such	case,	the	anaerobic	reactor	should	be	used	to	

treat	 initially	only	a	part	of	the	 influent	raw	sewage	(possibly	no	more	than	50–70%),	and	the	

remaining	part	 (30–	50%)	should	be	directed	to	 the	complementary	biological	 treatment.	The	

use	of	this	“by-pass”	will	 increase	the	COD	of	the	reactor	effluent	making	it	more	adequate	to	

the	next	denitrification	stage	
[17,	18]

.	

SBR	 is	 a	 flexible	 system	 that	 has	 been	 used	 successfully	 for	 developing	 the	 classical	

nitrification	 and	denitrification	process	
[19]

.	 The	 SBR	 is	 a	 fill	 and	draw	 type	modified	 activated	

sludge	process	that	operates	under	a	series	of	periods	that	constitute	a	cycle.	Four	basic	steps	

of	 filling,	 reaction,	 settling	 and	 discharge	 phases	 take	 place	 sequentially	 in	 a	 single	 batch	

reactor.	 The	 SBR	 process	 offers	 minimum	 operator	 interaction,	 good	 oxygen	 contact	 with	

microorganisms	and	substrate,	small	floor	space,	good	removal	efficiency	and	the	operation	can	

be	 adjusted	 to	 obtain	 aerobic	 and	 anoxic	 conditions	 in	 the	 same	 tank	
[5,	 6]

.	 In	 contrast	 to	

continuous	systems,	SBRs	have	become	quite	common	for	obtaining	high	nitrite	accumulation	

due	to	the	flexibility	of	process	control	
[19]

.	

The	main	objective	of	the	present	study	was	the	design	and	the	feasibility	of	SBR	process	to	

remove	nitrogen	of	a	domestic	wastewater	previously	treated	in	an	anaerobic	reactor.	

2.	MATERIALS	AND	METHODS	

2.1.	Experimental	Setup	

The	 lab-scale	 system	developed	 for	 this	 study	 consisted	on	 the	one	hand,	of	 two	 reactors	

with	 a	 total	 volume	 of	 1	 L.	 Air	was	 supplied	 through	 porous	 diffusers	 at	 the	 bottom	of	 each	

reactor	to	promote	mixing	and	allowing	a	good	diffusion	of	oxygen	in	the	wastewater.		

On	the	other	hand,	the	system	was	developed	with	a	SBR	bioreactor	and	two	tanks:	feeding	

and	 effluent	 tanks.	 The	 reactor	 of	 6	 L	 of	 total	 volume	 and	 5	 L	 of	 working	 volume,	 was	
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completely	mixed	with	a	mechanical	stirrer	and	contained	a	fine	bubble	air	diffuser,	which	was	

part	 of	 the	 aeration	 system.	 Two	 peristaltic	 pumps	were	 used	 for	 the	 reactor	 filling	 and	 the	

effluent	discharge.	The	two	pumps,	the	stirrer	and	the	aeration	system	were	connected	to	an	

electric	timer	system.	A	schematic	diagram	of	the	SBR	plant	is	given	in	Figure	1.	The	reactor	was	

kept	in	a	room	under	a	controlled	temperature	of	around	18	ºC	±	1	ºC	
[20]

.	This	was	the	working	

temperature	 of	 a	 previous	 anaerobic	 reactor	 that	 produced	 the	 effluent	 to	 treat.	 For	 the	

denitrification	 step,	 it	was	necessary	 the	addition	of	methanol	 (1:100),	 supplied	with	 another	

peristaltic	 pump.	 The	 addition	of	methanol	was	 a	model	 to	 simulate	 a	 by-pass	 of	 part	 of	 the	

feedstream	from	a	point	before	the	anaerobic	reactor,	to	another	point	just	in	the	end	of	it.	The	

reactor	was	operated	during	730	days.	

In	 the	 two	 parts	 of	 the	 study,	 the	 aeration	 rate	 was	 controlled	 through	 a	 flow	 meter,	

maintaining	the	dissolved	oxygen	(DO)	concentration	between	2.0-2.5	mg	O2/L.		

	

	

Figure	1.	Scheme	of	the	SBR	plant.	(1)	Filling	pump,	supplies	the	wastewater	from	anaerobic	treatment	to	

the	reactor,	(2)	Compressor,	responsible	for	supplying	the	air	for	the	aeration	step,	(3)	Mechanical	stirrer,	

(4)	SBR	reactor,	(5)	Pump	that	drains	the	water	after	treatment.	

	

2.2.	Inoculum	and	Feeding	Characteristics		

The	inoculum	of	the	three	reactors	studied	was	secondary	aerobic	sludge	from	the	WWTP	of	

Valladolid	(Spain).	

The	reactors	were	fed	with	the	effluent	 from	an	anaerobic	membrane	bioreactor	 (AnMBR)	

fed	with	raw	domestic	wastewater	from	the	city	of	Valladolid	(Spain).	The	AnMBR	pilot	plant	is	

(1) (2)

(3)

(4)

(5)
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explained	 in	detail	 in	a	previous	work	
[20]

.	The	mean	concentration	of	 the	main	parameters	of	

the	 influent	 feeding	 the	 denitrification/nitrification	 plant	 are	 given	 in	 Table	 1.	 It	 is	 a	 residual	

water	with	a	high	content	 in	ammoniacal	nitrogen	and	a	 low	concentration	of	organic	matter,	

leading	to	a	COD/TN	ratio	as	low	as	1.2.	In	the	inlet	stream	(from	anaerobic	treatment),	sulfur	is	

the	corresponding	amount	of	sulfide	oxidation	without	quantify	the	oversaturation,	so	the	real	

value	for	sulfide	is	higher.		

	

Table	1:	Average	composition	of	the	wastewater	after	anaerobic	treatment.	

sCOD	

(mg	O2/L)	

TKN	

(mg	N/L)	

NH4

+
	

(mg	N/L)	

NO2

-
	

(mg	N/L)	

NO3

-
	

(mg	N/L)	

SO4

2-
	

(mg	S/L)	

sol	P	

(mg	P/L)	

100.6	 81.9	 77.7	 0.0	 0.0	 8.5	 9.2	

	

2.3.	Analytical	Methods	

Samples	 of	 wastewater	 were	 taken	 before	 and	 at	 the	 end	 of	 each	 treatment	 cycle.	 The	

concentration	of	nitrite,	nitrate,	sulfate	and	soluble	phosphorus	were	measured	by	HPLC.	The	

ammonium	concentration	was	determined	using	an	ammonia-selective	electrode:	Orion,	model	

9512HPBNWP.	 The	 analyses	 of	 COD,	 TKN	 as	well	 as	 total	 and	 volatile	 suspended	 solids	 (TSS,	

VSS)	 were	 determined	 according	 to	 standard	 methods	 suggested	 by	 the	 Standard	 methods	

manual	
[21]

.	 Temperature	 was	 measured	 using	 a	 temperature	 probe.	 The	 measurement	 of	

dissolved	 oxygen	 (DO)	 concentration	 was	 determined	 with	 an	 oximeter	 WTW,	 model	 oxi	

330/SET	and	a	dissolved	oxygen	probe	CeliOx	325.		

	

2.4.	Operation	Strategy		

In	the	first	part	of	the	study	(Section	3.1),	before	starting	with	the	SBR	system,	the	aeration	

period	was	 optimized	 to	 ensure	 the	 nitrification	 process.	 To	 do	 so,	 two	 reactors	with	 a	 total	

volume	of	1	L	were	used.	One	reactor	was	aerated	during	12	h	and	the	other	during	7	h.	These	

time	was	considered	more	than	enough	to	oxidize	the	ammonium	present	in	the	wastewater.	

For	 the	 rest	 of	 the	 work,	 the	 denitrifying/nitrifying	 SBR	 was	 used	 and	 operated	 with	

successive	cycles.	Each	cycle	consisted	of	15	min	of	feeding	stage,	a	reaction	period,	and	finally,	

the	supernatant	draw	was	discharged	during	the	last	15	min,	after	30	min	of	biomass	settling.	

For	 the	 operation	 cycles	 determination,	 the	 cycles	 were	 initiated	 (after	 the	 filling)	 with	 an	

aerated	 stage	 and	 continued	 with	 an	 anoxic	 one	 (Sections	 3.2	 and	 3.3).	 During	 the	 aeration	

phase,	 the	 average	DO	was	 between	 2-2.5	mg	O2/L.	 In	 the	 discharge	 stage,	 3.5L	 of	 the	 total	
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working	volume	were	discharged,	remaining	in	the	reactor	1.5L,	to	be	treated	in	the	following	

cycle.	The	different	cycles	studied	are	presented	in	the	Table	2.	

Table	2:	Time	distribution	of	the	stages	of	the	different	cycles.	

Stage	 Case	1	 Case	2	 Case	3	 Case	4	 Case	5	

Filling	 15	m	 15	m	 15	m	 15	m	 15	m	

Pre-anoxic	 ⎯	 ⎯	 ⎯	 ⎯	 30	m	

Aeration	 7	h	 3	h	 5h	30	m	 4	h	 3	h	45	m	

Anoxic	 4	h	 4	h		 1h	30		 1	h	 45	m	

Sedimentation	 30	m	 30	m	 30	m	 30	m	 30	m	

Discharge	 15	m	 15	m	 15	m	 15	m	 15	m	

Cycle	time:	 12	hours	 8	hours	 8	hours	 6	hours	 6	hours	

	

Modifications	of	 the	cycle	 took	place	to	enhance	the	organic	matter	and	nitrogen	removal	

efficiencies.	In	Case	5	(Section	3.4),	a	pre-anoxic	stage	was	added	and	the	cycles	consisted	of	an	

anoxic	 stage,	 aeration	 stage	 and	 another	 anoxic	 stage.	 Finally,	 a	 new	 cycle	 was	 achieved	 by	

adding	 methanol	 before	 the	 last	 anoxic	 stage,	 to	 provide	 more	 organic	 matter	 to	 the	

denitrification	step	and	in	this	way,	enhance	the	reactions	in	this	stage	(Section	3.5).	

	

3.	RESULTS	AND	DISCUSSION	

3.1.	Optimization	of	the	aeration	period.	

The	 required	 time	 to	 assure	 the	 nitrification	 process	was	 study.	 In	 the	 Figure	 2,	 it	 can	 be	

seen	the	evolution	of	the	nitrogen	species	during	the	aeration	period	of	7	and	12	hours.	In	the	

Figure	2A,	where	 it	 is	 represented	 the	TKN	concentration	 in	 time,	 it	 can	be	 seen	 the	average	

values	in	the	feed	of	90	and	115	mg	N/L	while	in	the	effluent	it	was	in	the	range	of	20	mg	N/L.	

During	 the	 first	 two	 hours	 of	 aeration,	 around	 60%	 and	 70%	 of	 the	 TKN	 concentration	 was	

decreased	for	the	two	cases	studied,	and	the	final	TKN	removal	efficiency	was	about	79.4%.	In	

aerobic	conditions	ammoniacal	nitrogen	was	nitrified,	 i.e.	 it	was	used	as	the	energy	source	by	

nitrifying	 bacteria	 leading	 to	 the	 formation	 of	 nitrite	 and	 nitrate.	 Residual	 ammonium	 was	

utilized	as	the	nitrogen	source	for	the	biomass	synthesis	by	the	bacteria.	At	the	same	time	that	

ammonium	was	oxidized,	nitrite	and	nitrate	concentrations	increased,	although	the	latter	more	

slowly,	3.5	hours	vs	5	hours	(Figure	2B).	Nitrate	and	nitrite	co-existed	in	the	reactor,	but	having	

an	 accumulation	 of	 nitrite	 almost	 four	 times	 higher	 than	 nitrate.	 Nitrite	 was	 the	 primary	
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product	 of	 nitrification	during	 the	 aeration	 experiment,	which	was	 accumulated	up	 to	 63	mg	

NO2

-
-N/L,	while	 the	nitrate	concentration	was	always	below	15	mg	NO3

-
-N/L.	A	higher	 level	of	

nitrite	 accumulation	 indicates	 a	 high	 activity	 of	 AOB,	 suggesting	 that	 the	 partial	 nitrification	

performance	of	the	aeration	process	was	good.	By	contrast,	the	activity	of	NOB	was	limited	in	

the	aerobic	phase.	High	nitrite	accumulation	has	been	reported	by	
[19,	22,	23]

	in	SBR	systems.	

The	optimum	time	considered	for	the	aeration	process	was	four	hours.	After	four	hours	of	

aeration,	the	effluent	showed	a	mean	concentration	of	15.0	mg	NH4

+
/L,	58.5	mg	NO2

-
-N/L	and	

12.3	mg	NO3

-
-N/L.	After	this	time,	there	were	a	variation	in	the	parameters	lower	than	5%.	

	

	

Figure	2.	(A)	Profile	of	TKN	concentration	during	aeration;	(B)	Profile	of	nitrite	and	nitrate	concentration	

during	aeration.	
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3.2.	Definition	of	the	reactor	operation	cycles.	

The	 time	of	 the	aerobic	 and	anoxic	 stages	were	 changed	with	 the	aim	of	determining	 the	

influence	of	the	duration	of	these	stages	in	the	nitrogen	removal.	Four	cycles	of	12	h	(Case	1),	8	

h	(Cases	2-3)	and	6	h	(Case	4)	were	studied,	as	shown	in	Table	2.	

	

Figure	3,	(A)	and	(B)	depict	the	graphic	comparison	in	the	TKN	and	NO2

-
,	respectively,	for	the	

different	cycles.	Nitrate	is	not	represented	because	only	in	the	12	h	and	6	h	cycles	was	detected	

but	in	very	low	amounts,	not	exceeding	a	concentration	of	4	mg	NO3

-
-N/L.	

	

	

Figure	3.	Profiles	of	TKN	(A)	and	NO2

-
	(B)	concentrations	in	time	for	the	different	cycles.	
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In	Figure	3A,	can	be	observed	 that	 the	average	TKN	concentration	declined	sharply	during	

the	first	6	hours.	NH4

+
	was	almost	completely	oxidized	in	6	hours.	In	cycles	longer	than	6	hours,	

TKN	concentration	decreased	less	than	4%	from	this	time.	Meanwhile,	 in	Figure	3B,	there	was	

an	increase	in	NO2

-
	concentration	achieving	its	maximum	at	around	4	hours	of	cycle	and	then,	it	

remained	constant	or	suffered	a	slight	decline	in	its	concentration.	

Table	3	shows	the	nitrogen	removal	efficiencies	 for	each	cycle	achieving	the	highest	value,	

54%,	in	the	last	cycle.	Therefore,	it	was	considered	the	optimum	cycle	for	nitrogen	removal	to	

have	a	duration	of	6	h.	

	

Table	3:	Nitrogen	concentration	in	the	wastewater	before	and	after	the	SBR	process	in	the	different	

cycles.	

Parameter	 Case	1	 Case	2	 Case	3	 Case	4	

N	inlet	

(mg	N/L)	

TKN	 90.0	 78.8	 78.8	 107.5	

NO2

-
	 0.0	 0.0	 0.0	 0.0	

NO3

-
	 0.0	 0.0	 0.0	 0.0	

N	outlet	

(mg	N/L)	

TKN	 32.1	 17.1	 6.4	 33.3	

NO2

-
	 40.4	 50.0	 37.7	 11.9	

NO3

-
	 2.4	 0.0	 0.0	 4.3	

%	TN	removed:	 16.8	%	 14.3	%	 44.0	%	 54.0	%	

	

	

3.3.	Study	of	a	6h	cycle.	

The	SBR	process	with	a	6	h	cycle	was	studied	during	70	days.		

Figures	 4	 to	 6	 show	 the	 evolution	 of	 the	 soluble	 COD,	 TKN,	 NO2

-
-N	 and	 NO3

-
-N	

concentrations	 during	 the	 aerobic/anoxic	 cycle	 of	 the	 operational	 period	 in	 the	 SBR.	 For	 the	

cases	of	COD	and	TKN	can	be	seen	that	influent	and	effluent	followed	the	same	trend	(Figures	4	

and	 5).	 The	 effluent	 concentrations	 increased	 when	 the	 inlet	 stream	 had	 a	 higher	 load,	 and	

decreased	when	lowering	the	influent	concentration.	The	mean	removal	efficiencies	of	COD	and	

TN	were	30.3%	and	42.9%,	respectively.	These	efficiencies	were	very	low	so	it	was	necessary	to	

consider	a	modification	of	the	cycle.	
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Figure	4.	COD	concentration	in	the	influent	and	effluent	in	time,	for	the	6	h	aerobic/anoxic	cycle.	

	

	

Figure	5.	TKN	concentration	in	the	influent	and	effluent	in	time,	for	the	6	h	aerobic/anoxic	cycle.	
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Figure	6.	Nitrite	(A)	and	nitrate	(B)	concentration	in	the	influent	and	effluent	in	time,	for	the	6	h	

aerobic/anoxic	cycle.	

	

During	 most	 of	 the	 time,	 the	 final	 effluent	 exhibited	 a	 high	 nitrite	 concentration	 that	

proceed	from	a	low-yield	denitrification	process	(Figure	6A).	As	said	before,	during	the	aeration	

stage,	there	was	nitrite	accumulation	in	the	tank	because	mainly,	partial	nitrification	took	place.	

Therefore,	a	 low	denitrification	yield	was	observed	due	to	 the	 low	organic	matter	available	 in	

the	wastewater	 after	 the	 anaerobic	 treatment.	 The	C/N	 ratio	 of	 1.2	was	 low	 for	 establish	 an	

efficient	 denitrification	 process.	 Concerning	 the	 nitrate,	 throughout	 the	 study	 period,	 it	 has	
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Figure	7.	Soluble	phosphorus	concentration	in	the	influent	and	effluent	in	time,	for	the	6	h	aerobic/anoxic	

cycle.	

3.4.	Addition	of	a	pre-anoxic	stage.	

In	 order	 to	 improve	 the	 denitrification	 process,	 a	 pre-denitrification	 stage	 was	 added	 in	 the	

cycle,	 prior	 to	 the	 aeration	 step.	 Thus,	 during	 the	 first	 anoxic	 stage	 of	 30	 minutes,	 residual	

nitrite	and	nitrate	not	eliminated	in	the	previous	cycle,	that	remains	in	the	1.5	L	not	discharged,	

could	be	reduced	to	nitrogen	N2.		

Having	two	anoxic	stages	allows	lowering	the	TKN	effluent	concentrations.	Thus,	most	of	the	

nitrites	and	nitrates	produced	after	nitrification	in	the	aeration	stage	can	be	treated	by	flowing	

through	 the	 second	 anoxic	 stage.	 Pre-anoxic	 stage	 has	 been	 used	 with	 beneficial	 results	 to	

accomplish	the	removal	of	organic	matter	and	nitrogen	by	Lu,	Q.	et	al.	
[24]

.	

To	adapt	the	cycle	to	this	new	change,	it	was	necessary	to	modify	the	times	of	the	different	

periods,	 so	 that	 the	 six-hour	 cycle	 was	 carried	 out	 as	 indicates	 the	 Case	 5	 in	 Table	 2.	 The	

parameters	concentration	before	and	after	SBR	treatment	for	the	modified	cycle	are	shown	in	

the	Table	4.		

Table	4.	Parameters	concentration	before	and	after	6	hours	modified	cycle	treatment.	

	

sCOD	

(mg	O2/L)	

TKN	

(mg	N/L)	

NH4

+
	

(mg	N/L)	

NO2

-
	

(mg	N/L)	

NO3

-
	

(mg	N/L)	

sol	P	

(mg	P/L)	

Influent	 111.3	 99.5	 88.4	 0.0	 0.0	 12.3	

Effluent	 67.9	 20.2	 18.1	 25.3	 1.5	 12.6	

	

Almost	 the	80%	of	TKN	was	removed	 in	 the	denitrification/nitrification	process,	 resulting	a	

final	 effluent	with	a	 concentration	of	 around	20.2	mg	N/L.	During	 the	 first	 anoxic	 stage,	NO2

-
	

and	NO3

-
	from	the	previous	cycle	was	removed.	During	the	aeration	stage,	NH4

+
	was	decreased	
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from	88.4	to	18.1	mg	N/L	under	the	supply	of	DO,	whereas	there	was	a	corresponding	increase	

of	NO2

-
	concentration.	In	the	following	anoxic	phase,	NO2

-
	concentration	decreased	to	25.3	mg	

NO2

-
-N/L.	Nitrite	was	the	primary	product	of	 the	process,	showing	an	accumulation,	while	the	

nitrate	concentration	was	always	very	low,	about	1.5	mg	NO3

-
-N/L.	The	removal	efficiencies	of	

COD	and	TN	were	39.0%	and	52.8%,	respectively,	resulting	in	efficiencies	improvement	of	about	

20%	when	comparing	the	cycle	without	pre-anoxic	stage.	

3.5.	Addition	of	methanol	

The	 anoxic/oxic/anoxic	 process	 requires	 sufficient	 degradable	 carbon	 substrate	 to	 provide	

the	energy	source	needed	for	the	denitrification	reactions	that	occurs	after	the	aeration	stage.	

Due	to	the	low	amount	of	easily	biodegradable	organic	matter	available	in	the	wastewater	to	be	

treated	 in	 the	 SBR	 process,	 methanol	 was	 added	 as	 an	 external	 carbon	 source	 before	 the	

denitrification	stage	
[25-27]

.	This	compound	could	be	used	as	electron	donor	by	the	denitrifying	

bacteria,	 responsible	 of	 the	 nitrate	 and	 nitrite	 reducing	 to	 gaseous	 nitrogen.	 A	 solution	 of	

methanol	 (1:100)	was	added	 in	 the	cycle	before	 the	 second	anoxic	 stage,	 just	after	 finish	 the	

aeration.		

It	 is	noteworthy	that	instead	of	the	addition	of	methanol,	the	increase	of	organic	matter	in	

WWTPs	can	be	made	by	bypassing	part	of	 the	 feedstream	from	a	point	before	 the	anaerobic	

treatment	to	another	point	in	the	end	of	this	reactor.	With	this	course	of	action,	it	is	possible	to	

increase	 the	 soluble	 COD	 available	 in	 the	 liquid	 stream	 that	 feeds	 the	 denitrification	 reactor,	

without	adding	an	external	carbon	source.	In	this	work,	 in	order	to	simulate	this	behavior,	the	

addition	of	methanol	was	employed	as	extra	carbon	source.	

The	COD,	TKN,	NO2

-
	and	NO3

-
	graphics	correspond	to	the	Figures	8	to	10,	respectively.	This	

part	 of	 the	 study	 had	 a	 duration	 of	 three	 months	 and	 has	 been	 divided	 in	 three	 stages	 as	

indicates	Table	5.		

Tabla	5:	Summary	of	the	stages.	(COD	AnMBR:	COD	of	the	AnMBR	effluent.	COD	Methanol:	COD	supplied	

with	methanol.	COD	inlet:	COD	of	the	SBR	feed).	

Stage	 Days	 COD	AnMBR	 COD	Methanol	 COD	inlet	 TN	 C/N	 %TN	removed	 %COD	removed	

1	 0-20	 195,6	 0,0	 195,6	 93,0	 2,1	 40,7%	 53,7%	

2	 21-70	 148,6	 81,9	 230,6	 97,4	 2,4	 74,7%	 57,8%	

3	 71-91	 176,2	 97,1	 273,3	 90,6	 3,0	 83,9%	 76,7%	

	

Until	day	20,	the	COD	in	the	wastewater	from	anaerobic	treatment	was	approximately	196	

mg	O2/L	and	methanol	was	not	added	to	evaluate	the	reactor’s	reaction.	In	this	period,	the	C/N	

ratio	was	2.	TKN	was	removed	almost	90%,	obtaining	a	mean	concentration	of	TKN	of	9.6	mg	

N/L	in	the	effluent.	The	nitrite	and	nitrate	raised	until	concentrations	of	41	mg	NO2

-
-N	/L	and	37	
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mg	NO3

-
-N/L.	The	COD	and	TN	efficiencies	decreased	to	53.7%	and	40.7%,	respectively,	because	

of	the	lower	C/N	ratio.	

From	 day	 21	 to	 70,	 methanol	 was	 added	 up	 to	 231	 mg	 O2/L.	 The	 C/N	 ratio	 was	 2.4.	

Approximately,	86%	of	TKN	was	removed,	obtaining	an	effluent	with	a	mean	concentration	of	

TKN	of	13.3	mg	N/L.	Nitrite	was	found	 in	the	effluent	during	this	period,	with	a	concentration	

about	10.6	mg	NO2

-
-N/L,	achieving	19	mg	NO2

-
-N	/L	in	a	point.	It	is	noteworthy	the	effect	of	the	

addition	of	methanol	 in	nitrate	but	mainly	 in	nitrite	 (Figure	10).	These	compounds	 suffered	a	

significant	 decrease	 in	 their	 concentrations	 when	 the	 COD	 was	 increased.	 The	 removal	

efficiencies	of	COD	and	TN	raised	up	to	57.8%	and	74.7%,	respectively.	

Finally,	from	day	71	to	91,	a	COD	of	about	273	mg	O2/L	was	achieved	with	the	addition	of	

methanol.	The	C/N	 ratio	was	3.	Up	 to	97.7%	of	TKN	was	 removed	 in	 this	 section,	obtaining	a	

mean	 concentration	 of	 TKN	 of	 2.1	 mg	 N/L	 in	 the	 effluent.	 The	 nitrite	 concentration	 in	 the	

effluent	was	about	11.4	mg	NO2

-
-N/L.	Removal	efficiencies	of	COD	and	TN	of	76.7%	and	83.9%,	

respectively,	were	obtained.		

Instead	of	the	methanol	addition,	bypassing	a	volumetric	flow	of	30%	of	the	anaerobic	feed	

from	 a	 point	 before	 the	 AnMBR	 to	 another	 point	 in	 the	 end	 of	 this	 reactor,	 is	 possible	 to	

increase	 the	 available	 soluble	 COD	 55%	 up	 to	 reach	 273	 mg	 O2/L.	 Estimation	 based	 on	 the	

average	 of	 501	 mg	 O2/L	 of	 soluble	 COD	 that	 contains	 the	 wastewater	 before	 the	 anaerobic	

treatment,	after	the	sedimentation	stage	
[20]

.	

	

About	98%	of	TKN	was	removed	 in	the	 last	section	of	the	study.	At	the	end	of	the	cycle,	a	

mean	concentration	of	TKN	of	2.1	mg	N/L	was	obtained.	About	91%	of	the	ammoniacal	nitrogen	

after	 the	 aerobic	 stage	 was	 nitrified	 and	 7%	 was	 assimilated	 by	 heterotrophic	 bacteria.	 The	

effluent	 after	 the	 cycle	 contained	 around	 11.4	mg	 NO2

-
-N/L	 while	 nitrates	 were	 occasionally	

found	 with	 a	 concentration	 of	 2.5	mg	 NO3

-
-N	 /L.	 Therefore,	 nitrite	 was	 the	main	 compound	

accumulated	in	the	reactor.	After	completion	of	the	nitrification,	about	79.7%	and	92.2%	of	the	

generated	nitrite	and	nitrate,	respectively,	were	removed	by	denitrification.	

The	removal	efficiencies	of	COD	and	TN	with	this	cycle	configuration	were	76.7%	and	83.9%,	

respectively.	After	the	SBR	treatment,	the	effluent	contained	a	mean	TN	concentration	of	14.6	

mg	N/L.	High	 removal	percentages	was	observed.	 If	 these	efficiencies	are	 compared	with	 the	

ones	without	methanol	addition,	there	was	an	improvement	of	about	43%	in	COD	removal	and	

the	TN	removal	yield	was	doubled.	Theses	increases	in	the	organic	matter	and	nitrogen	removal	

were	attributed	to	a	higher	denitrified	activity	in	this	cycle	configuration.		
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Figure	9.	TKN	concentration	in	the	influent	and	effluent	in	time,	for	the	6	h	anoxic/aerobic/anoxic	cycle	

with	addition	of	methanol.	

Comparing	to	the	literature,	Hwang	et	al.	
[27]

	reached	80%	of	nitrogen	removal	efficiency	by	

using	 a	 sequencing	 batch	 biofilm	 reactor	 treating	 the	 rejected	water	 from	 sludge.	 Its	 reactor	

temperature	was	15-35	ºC.	The	reactor	performed	an	aerobic–anoxic–aerobic–anoxic	sequence	

and	added	methanol	at	 the	beginning	of	each	anoxic	step.	The	total	cycle	 time	used	was	8	h,	

versus	 6	 h	 in	 the	 present	 study.	 Therefore,	 that	 process	 needs	 two	more	 hours	 per	 cycle	 to	

achieve	 the	 same	 nitrogen	 removal	 than	 the	 process	 developed	 here.	 In	 the	 same	 research,	

Hwang	et	al.	enhanced	 the	nitrogen	 removal	efficiency	up	 to	91%	 in	a	anoxic–aerobic–anoxic	

sequence	when	adding	methanol	as	external	carbon	source	and	NaHCO3	as	alkalinity,	but	with	

the	same	total	cycle	time	of	8	h	
[27]

.	

On	the	other	hand,	Fernandes	et	al.	
[28]

	used	a	SBR	treating	domestic	wastewater	with	a	C/N	

ratio	 of	 3.	 Although	 it	 operated	 with	 a	 cycle	 time	 of	 8	 h	 (versus	 6	 h	 in	 this	 study),	 its	 COD	

removal	efficiency	was	higher:	83%	versus	77%	obtained	in	the	present	study.	On	the	contrary,	

that	process	only	achieved	a	mean	of	50%	of	TN	removal,	versus	84%	in	the	present	study.	

The	SBR	performed	by	Chen	et	al.	
[29]

	was	used	for	the	bioaugmented	treatment	of	municipal	

wastewater	with	 a	 C/N	 ratio	 of	 8,	 achieved	with	 external	 carbon	 dosages.	 Comparing	 to	 the	

present	 study,	 Chen	 et	 al.	 achieved	 better	 COD	 removal	 efficiency,	 85.2%	 versus	 76.7%	 and	

80.5%	 of	 N	 removal	 versus	 84%	 in	 this	 study.	 Moreover,	 their	 system	 required	 much	 more	

amount	 of	 external	 carbon	 source	 to	 reach	 a	 C/N	 ratio	 almost	 3	 times	 higher	 than	 the	

presented	in	this	work	(C/N=8	versus	C/N=3).	
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Figure	10.	Nitrite	(A)	and	nitrate	(B)	concentration	in	the	influent	and	effluent	in	time,	for	the	6	h	

anoxic/aerobic/anoxic	cycle	with	addition	of	methanol.	

	

4.	CONCLUSIONS	

A	 SBR	 process	 was	 applied	 to	 a	 domestic	 wastewater	 from	 anaerobic	 treatment	 and	

therefore,	with	a	 low	concentration	of	organic	matter.	An	experimental	study	on	a	pilot	plant	

scale	was	carried	out	to	ascertain	its	suitability	for	simultaneous	nitrification	and	denitrification.	

Cycle	times	of	12	h,	8	h	and	6	h	in	SBR	were	considered	in	the	study,	and	the	6	h	cycle	time	was	

selected	 as	 the	 optimal	 for	 the	 treatment.	 Results	 from	 nitrification	 and	 denitrification	 of	

domestic	wastewater	 in	the	SBR	showed	nitrogen	and	COD	removal	efficiencies	of	about	84%	
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and	77%,	respectively.	The	process	was	successful	 in	an	anoxic/aerobic/anoxic	cycle	sequence	

with	 the	 addition	 of	 methanol	 just	 before	 the	 second	 anoxic	 stage.	 Thus,	 it	 has	 been	

demonstrated	that	the	SBR	process	in	a	single	reactor	at	low	temperature	is	a	suitable	process	

for	 the	 simultaneous	 removal	 of	 nitrogen	 and	organic	matter	 of	 a	 domestic	wastewater	with	

low	 COD	 with	 only	 the	 addition	 of	 external	 carbon	 source.	 The	 addition	 of	 methanol	 was	

employed	as	a	model	for	the	wastewater	by-pass	in	the	WWTP.	As	future	work	it	is	proposed	to	

evaluate	the	effect	of	increasing	the	carbon	ratio	on	the	nitrogen	elimination	potential	using	the	

mixing	of	the	anaerobic	reactor	effluent	and	the	raw	feed.	
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Chapter	3.	

Denitrification	of	the	AnMBR	

effluent	with	alternative	

electron	donors	in	domestic	

wastewater	treatment	

	

Abstract	

The	performance	of	a	fixed	film	bioreactor	for	partial	and	total	denitrification	of	

the	effluent	 from	an	anaerobic	membrane	bioreactor	 (AnMBR)	 treating	domestic	

water	 was	 investigated.	 Wastewater	 after	 anaerobic	 treatment,	 with	 a	 low	 C/N	

ratio,	contains	a	remaining	chemical	oxygen	demand	(COD)	which	is	not	enough	for	

the	 conventional	 heterotrophic	 denitrification.	 As	 the	 effluent	 from	 the	 low-

temperature	 anaerobic	 reactor	 holds	 methane	 and	 sulfide	 dissolved	 and	

oversaturated,	 it	was	evaluated	the	feasibility	of	using	these	reduced	compounds	

as	electron	donors	to	remove	80	mg	NOx

-
-N/L	at	different	hydraulic	retention	times	

(HRT)	 obtaining	 the	 optimum	 at	 2	 h.	 In	 addition,	 the	 influence	 of	 the	 NO2

-
/NO3

-
	

ratio	 (100%/0%;	 50%/50%;	 25%/75%	 and	 0%/100%)	 in	 the	 feed	 was	 studied.	

Satisfactory	 results	 were	 obtained	 achieving	 total	 nitrogen	 removal	 in	 the	

denitrifying	effluent,	being	aware	of	the	case	with	100%	NO3

-
	in	the	feed,	that	was	

at	the	limit	of	the	process.	Methane	was	the	main	electron	donor	used	to	remove	

the	nitrites	and	nitrates,	with	more	than	70%	of	participation.		

	

Keywords:	COD	•	Denitrification	•	Denitritation	•	methane	•	sulfide		
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1.	INTRODUCTION	

Anaerobic	 treatment	 process	 has	 been	 widely	 applied	 to	 various	 types	 of	 wastewater	

because	 it	 has	 many	 advantages	 over	 the	 aerobic	 treatment.	 Among	 its	 advantages	 it	 is	

noteworthy	its	low	energy	consumption,	reduced	production	of	excess	sludge	and	it	transforms	

the	 organic	 matter	 into	 valuable	 biogas.	 The	 anaerobic	 treatments	 have	 drawbacks	 such	 as	

process	 sensitivity,	 vulnerability,	 odor	problems,	 long	 start-up	period,	 and	post	 treatments	 to	

achieve	 discharge	 standards	 because	 components	 such	 as	 nitrogen	 compounds	 are	 not	

removed	efficiently	in	anaerobic	reactors	
[1-4]

.	Thus,	the	need	to	improve	the	quality	of	effluents	

from	anaerobic	reactors	has	driven	researchers	to	study	alternative	post-treatment	systems.	

Nitrogen	compounds	discharged	into	the	environment	can	induce	serious	problems	such	as	

the	eutrophication	of	rivers	affecting	aquatic	life	and	deterioration	of	water	sources,	as	well	as	

hazards	to	human	health	and	the	environment.	Furthermore,	nitrites	and	nitrates	can	also	form	

nitrosamines,	potentially	carcinogenic	compounds	
[5-7]

.		As	a	result,	development	of	economical	

and	sustainable	techniques	for	reducing	the	nitrogen	content	from	wastewater	has	attracted	a	

great	 deal	 of	 attention	 	 lately	
[8]
.	 The	 most	 widely	 used	 method	 for	 nitrogen	 removal	 in	

municipal	 wastewater	 treatment	 plants	 (WWTP)	 is	 the	 combined	 treatment	 by	 aerobic	

autotrophic	 nitrification	 of	 NH4

+
	 to	 NO2

-	
and	 NO3

-
,	 followed	 by	 anoxic	 heterotrophic	

denitrification	 of	 the	 oxidized	 nitrogen	 species	 to	 N2	 gas.	 The	 denitrification	 potential	 of	

wastewater	 is	 mainly	 governed	 by	 the	 available	 biodegradable	 organic	 carbon,	 commonly	

expressed	 as	 the	 C/N	 ratio	 -biodegradable	 (COD/N)	 or	 biological	 oxygen	 demand/nitrogen	

(BOD/N)	 ratio-	
[9]
.	 The	conventional	heterotrophic	denitrification	processes	are	quite	effective	

provided	 that	 wastewater	 contains	 adequate	 amount	 of	 organic	matter.	 However,	 when	 the	

influent	COD/NO3

-
-N	ratio	is	lower	than	6,	nitrogen	removal	is	likely	to	be	limited	by	the	lack	of	

available	organic	carbon	source	
[4,	9-11]

.	As	anaerobic	reactors	remove	a	significant	fraction	of	the	

organic	matter,	the	available	C/N	ratio	in	wastewater	is	low.	So,	the	denitrification	step	can	be	

achieved	 by	 adding	 an	 external	 carbon	 source,	 such	 as	 ethanol,	 methanol,	 or	 acetic	 acid.	

However,	 the	 use	 of	 external	 carbon	 sources	 increases	 the	 operating	 cost	 and	 the	 sludge	

production	
[4,	12]

.	

NO2

-
	 is	 an	 intermediate	 in	 both	 nitrification	 and	 denitrification	 reaction	 pathways.	 In	 the	

combined	conventional	nitrification/denitrification	process,	NH4

+
	is	oxidized	to	NO2

-
	and	then	to	

NO3

-
,	which	 is	again	converted	 to	NO2

-
	before	N2	gas	 formation.	Therefore,	 the	production	of	

NO3

-
	 is	not	 required	 to	complete	 the	whole	nitrogen	removal	process.	The	partial	nitrification	

techniques	 aim	 to	 keep	 NO3

-
	 out	 of	 the	 treatment	 system	 and	 promote	 the	 conversion	 of	
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ammonia	 to	 nitrite	 (nitritation)	 for	 subsequent	 direct	 reduction	 of	 nitrite	 to	 N2	 gas,	

denitritation.	 The	 application	 of	 the	 nitritation/denitritation	 process	 instead	 of	 complete	

nitrification/denitrification	 reduces	 the	 treatment	 costs	 thanks	 to	 25%	 less	 aeration	 and	 40%	

less	biodegradable	COD	consumption.	Therefore,	the	process	becomes	highly	cost	effective	for	

the	treatment	of	domestic	wastewater	with	low	C/N	ratio,	because	the	organic	carbon	source	in	

it	is	typically	limiting.	Moreover,	it	is	known	that	denitrification	reaction	rates	for	NO2

-
	are	1.5-2	

times	faster	than	for	NO3

-
	allowing	higher	removal	capacities.	Furthermore,	sludge	production	is	

reduced	by	40%	in	shortcut	nitrification/denitrification	
[9,	13]

.	

As	well	 as	 biogas	 is	 produced	 in	 anaerobic	 reactors,	 the	 effluent	 from	 a	 low-temperature	

anaerobic	sewage	system	contains	significant	amounts	of	the	gaseous	products	dissolved	in	the	

liquid	 phase.	 Those	 gaseous	 products	 may	 be	 unintentionally	 emitted	 into	 the	 atmosphere	

causing	a	negative	process	carbon	footprint	
[2,	14,	15]

.	Methane	loss	becomes	especially	important	

at	 low	 operational	 temperature	 processes	 since	 the	 solubility	 of	 this	 compound	 in	 the	 liquid	

phase	inversely	depends	on	temperature	
[16]

.	Methane	is	a	greenhouse	gas	that	has	an	effect	on	

global	warming	25	times	stronger	than	that	of	carbon	dioxide.	Therefore,	the	management	of	

dissolved	methane	 is	necessary	to	 limit	greenhouse	gas	emissions	
[2-4,	 14,	 15,	 17,	 18]

.	On	the	other	

hand,	 sulfide,	 which	 is	 also	 produced	 in	 anaerobic	 treatment,	 represents	 an	 environmental	

problem,	because	of	its	corrosive	properties,	odor,	toxicity	and	COD	
[4,	12,	19]

.	

Frequently,	 methane	 and	 sulfide	 oversaturation	 occurs.	 If	 the	 effluent	 containing	 those	

compounds	 is	discharged,	methane	and	sulfide	would	be	released	to	the	atmosphere.	Several	

authors	have	reported	on	anaerobic	effluents	 that	are	oversaturated	with	dissolved	methane,	

which	 demonstrates	 that	 dissolved	 methane	 and	 sulfide	 concentrations	 can	 be	 higher	 than	

those	predicted	based	on	Henry's	law,	ostensibly	due	to	the	formation	of	microbubbles	
[15,	20]

.	

Considering	the	undesirable	impacts	of	sulfide	and	dissolved	methane	in	anaerobic	effluents,	

it	makes	sense	to	evaluate	the	efficacy	of	using	either	or	both	as	electron	donors	for	nitrogen	

removal	when	stringent	nitrogen	discharge	limits	apply.	The	electron	donors	typically	present	in	

anaerobic	 effluents	 are	 preserved	 in	 solution	 as	 organic	 COD	 not	 removed	 during	 anaerobic	

treatment,	 dissolved	 methane	 and	 sulfide.	 These	 compounds	 may	 be	 used	 by	 denitrifying	

bacteria	to	achieve	nitrogen	removal	via	nitrite	or	nitrate	
[19]

.	

The	objective	of	this	work	was	to	evaluate	the	viability	of	the	partial	and	total	denitrification	

of	 the	 effluent	 of	 an	 anaerobic	 membrane	 bioreactor	 (AnMBR)	 that	 treated	 domestic	

wastewater	 under	 psychrophilic	 conditions,	 using	 organic	 matter,	 methane	 and	 sulfide	 as	
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electron	donors.	Nitrite	 and/or	nitrate	were	 the	electron	acceptors	of	 the	wastewater	with	 a	

low	C/N	 ratio.	 The	 remained	organic	 carbon	 compounds	were	 removed	by	 the	heterotrophic	

denitrification	 process.	Methane	was	 oxidized	 to	 carbon	 dioxide,	 while	 sulfide	 to	 sulfate	 and	

insoluble	 element	 sulfur.	 Nitrate	 and	 nitrite	 were	 converted	 to	 nitrogen	 gas	 that	 would	 not	

cause	secondary	pollution.
[21]

	

2.	MATERIALS	AND	METHODS	

2.1.	Experimental	Setup	

A	 schematic	 diagram	 of	 the	 denitrification	 plant	 is	 given	 in	 Figure	 1.	 For	 the	 fixed	 film	

bioreactor	studies,	an	anoxic	continuous	up-flow	reactor	with	a	working	volume	of	21	L	and	a	

total	 volume	of	26	L	was	used.	The	 filter	made	of	PVC	glass	 consisted	of	a	 cylindrical	 column	

with	a	height	of	1.5	m	and	diameter	of	0.15	m.	The	reactor	was	filled	with	corrugated	PVC	rings	

(with	an	 inner	diameter	of	12	mm	and	17	mm	of	 length),	which	served	as	support	where	the	

biomass	was	attached.	The	 temperature	of	operation	was	between	18ºC	and	20ºC.	The	plant	

was	 operated	 under	 continuous	 flow.	 The	 inoculum	 was	 formed	 by	 10	 L	 of	 not	 thickened	

secondary	sludge	taken	from	the	WWTP	of	Valladolid	(Spain)	and	2	L	of	thermophilic	anaerobic	

sludge,	coexisting	nitrate/nitrite	reducers	and	methanogenic	cultures	in	the	system.		

	

	

Figure	1:	Scheme	of	the	denitrification/denitritation	plant.	(1)	Filling	pump,	supplies	the	wastewater	to	be	

treated,	(2)	Tank	with	the	water	that	does	not	enter	in	process.	(3)	Gas	collection	chamber,	(4)	
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Bioreactor,	(5)	Pump	that	supply	the	synthetic	NO2

-
/NO3

-
	solution,	(6)	Current	of	the	effluent	treated,	(7)	

Oxidation/reduction	potential	meter,	(8)	Flow	indicator,	(9)	Pressure	gauge.	

2.2.	Feeding	Characteristics		

The	 studied	 reactor	 was	 fed	 continuously	 with	 the	 effluent	 from	 an	 AnMBR	 treating	

domestic	 wastewater	 under	 psychrophilic	 conditions,	 and	 a	 medium	 of	 sodium	 nitrite	 and	

sodium	nitrate,	to	simulate	the	effluent	from	a	previous	nitrification	process.	The	AnMBR	pilot	

plant	 is	 explained	 in	 detail	 in	 a	 previous	 work	
[2]
.	 This	 feeding	 strategy	 tries	 to	 simulate	 the	

operation	 of	 a	 real	 wastewater	 treatment	 plant	 using	 an	 anaerobic	 reactor	 as	 the	 first	

treatment	unit.	The	characteristics	of	the	water	after	anaerobic	treatment	are	shown	in	Table	1.		

	

Table	4:	Average	values	of	the	influent	during	all	the	work	(on	the	left	in	the	table).	Nitrites	and	nitrates	

concentration	in	every	stage	(on	the	right	in	the	table).	

Parameter	 Inlet	concentration	 	 	 	 	

sCOD		(mg	O2/L)	 116.9	 	 	 	 	

TKN			(mg	N/L)	 98.3	 	 	 	 	

NH4

+		
	(mg	N/L)	 88.0	

Stage	1	 Stage	2	 Stage	3	 Stage	4	

NO2

-

				(mg	N/L)	

80.0	
80	 40	 20	 0	

NO3

-

				(mg	N/L)	 0	 40	 60	 80	

SO4

2-
		(mg	S/L)	 10.8	 	 	 	 	

sol	P			(mg	P/L)	 13.8	 	 	 	 	

	

NOx

-
-N	in	the	feeding	was	kept	around	80	mg/L.	That	value	was	assumed	because	as	 it	can	

be	seen	 in	Table	1,	the	concentration	of	nitrogen	 in	the	ammonium	form	is	about	88	mg	N/L.	

This	amount	is	oxidized	in	the	nitrification	step	producing	that	concentration	of	nitrogen,	in	the	

form	of	nitrite	and/or	nitrate.	Assuming	a	nitrification	yield	of	90%,	it	was	gotten	the	value	of	80	

mg	 NOx

-
-N/L	 as	 feeding	 concentration.	 Throughout	 the	 investigation	 NO2

-
/NO3

-
	 ratios	 were	

changed.	 The	 flow	 of	 the	 N-NOx

-
	 synthetic	 solution	 was	 set	 as	 5%	 of	 the	 total	 water	 to	 be	

treated	 to	 avoid	 excessive	 dilution.	 The	 wastewater	 to	 be	 treated	 in	 the	 proposed	

denitrification	process,	contain	a	very	low	C/N	ratio,	around	1.3.	

The	effluent	 from	a	 low-temperature	anaerobic	treatment	contains	a	considerable	amount	

of	 dissolved	methane	 and	 sulfide,	 which	 can	 be	 used	 as	 electron	 donors	 by	 the	 denitrifying	

bacteria.	Assuming	 atmospheric	 pressure,	 15ºC	 and	 knowing	 the	percentage	of	methane	and	

sulfide	 in	 the	 anaerobic	 reactor	 biogas,	 84%	 and	 0.2%	 respectively,	 the	 concentration	 of	

dissolved	methane	and	sulfide	can	be	calculated	according	 to	Henry’s	 law,	 resulting	 in	22	mg	
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CH4/L	and	9	mg	H2S/L	 respectively.	Some	experimental	 tests	were	performed	to	calculate	 the	

oversaturation	of	methane	(in	liquid	phase)	in	the	water	to	be	treated	(from	AnMBR)	resulting	

in	20-40	mg	CH4/L.	Therefore,	the	amount	of	methane	and	sulfide	dissolved	and	oversaturated,	

is	 the	 available	 quantity	 of	 these	 compounds	 in	 the	 reactor	 to	 perform	 the	 denitrification	

process.	

2.3.	Analytical	Methods	

Samples	of	wastewater	were	taken	before	and	after	finishing	the	denitrification	or	denitritation	

process.	The	concentration	of	nitrite,	nitrate	and	soluble	phosphorus	were	measured	by	High	

Performance	Liquid	Chromatography	(HPLC).	Ammonium	concentration	was	determined	using	

an	ammonia-selective	electrode:	Orion,	model	9512HPBNWP.	The	analyses	of	Chemical	Oxygen	

Demand	(COD),	Total	Kjeldahl	Nitrogen	(TKN)	as	well	as	total	and	volatile	suspended	solids	(TSS,	

VSS)	 were	 determined	 according	 to	 standard	 methods	 suggested	 by	 the	 Standard	 methods	

manual	
[22]

.	 The	 measurement	 of	 dissolved	 oxygen	 concentration	 was	 determined	 with	 an	

oximeter	WTW,	model	oxi	330/SET	 and	a	dissolved	oxygen	probe	CeliOx	325.	Gas	production	

was	measured	volumetrically	by	water	displacement,	and	its	composition	in	terms	of	methane,	

carbon	 dioxide,	 nitrogen,	 oxygen,	 hydrogen	 sulfide	 and	 hydrogen	 was	 determined	 by	 gas	

chromatography	 (GC)	 (Varian	 CP-3800).	 Pressure,	 temperature	 and	 oxidation-reduction	

potential	(ORP)	were	measured	by	using	sensors	and	probes.	

2.4.	Operation	Strategy		

In	 the	 first	 part	 of	 the	 work,	 denitrification	 efficiency	 was	 studied	 at	 different	 hydraulic	

retention	times	(HRT)	in	order	to	investigate	the	optimum	treatment	time	conditions	for	nitrite	

and	nitrate	removal.	During	this	study	the	concentration	of	NOx

-
-N	in	the	feeding	was	around	80	

mg/L	and	the	ratio	of	NO2

-
/NO3

-
	was	set	at	50%/50%,	corresponding	to	the	stage	2,	as	described	

in	Table	2.	The	reactor	removal	efficiency	was	evaluated	at	the	different	following	HRT:	8h,	6h,	

4h,	2h	and	1.5h,	by	changing	the	reactor	feeding	flow	from	2.6	L/h	to	14	L/h.	

Table	5:	Average	concentrations	of	NO2

-
-N	and	NO3

-
-N	at	different	HRT.	

Stage	2	 	 8h	 6h	 4h	 2h30	 2h	 1h30	

NO2

-
	

(mg	N/L)	

Inlet	 43.8	 49.5	 43.9	 46.6	 41.7	 47.9	

Outlet	 0.0	 0.0	 0.0	 0.0	 0.0	 2.0	

NO3

-
		

(mg	N/L)	

Inlet	 35.8	 44.3	 38.5	 34.9	 35.7	 32.1	

Outlet	 0.0	 0.0	 0.0	 0.0	 0.0	 2.9	
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Once	 it	 was	 found	 the	 optimum	 HRT	 for	 the	 process,	 the	 second	 part	 of	 the	 work	 was	

focused	 on	 the	 study	 of	 the	 reactor	 behavior	 when	 NO2

-
/NO3

-
	 ratios	 were	 changed.	 Stage	 1	

corresponds	 to	 denitritation	 with	 a	 feeding	 of	 about	 80	 mg	 NO2

-
-N/L	 (ratio	 NO2

-
/NO3

-
:	

100%/0%).	Stage	2	when	the	feeding	was	40	mg	NO2

-
-N/L	and	40	NO3

-
-N/L	(50%/50%).	Stage	3	

when	the	feed	concentration	was	20	NO2

-
-N/L	and	60	NO3

-
-N/L	(25%/75%).	And	in	the	stage	4	is	

represented	 the	 denitrification	 with	 a	 feed	 of	 around	 80	 mg	 NO3

-
-N/L	 (0%/100%).	 The	

procedure	carried	out	in	the	stages	is	shown	in	the	right	part	of	the	Table	1.	

3.	RESULTS	AND	DISCUSSION	

In	this	study,	using	an	anoxic	fixed	film	reactor,	it	was	performed	the	nitrogen	removal	from	

real	wastewater	with	the	organic	matter	not	removed	in	the	preceding	anaerobic	process,	and	

the	dissolved	and	oversaturated	biogas	(methane	and	sulfide)	available	in	the	water.	

3.1.	Optimization	of	the	residence	time.	

The	first	part	of	the	work	had	a	duration	of	130	days.	Denitrification	efficiency	was	studied	at	

different	HRT	by	changing	the	feeding	flow.	

As	 shown	 in	 the	Table	2,	 in	 this	 study	 the	 concentration	of	 the	NOx

-
-N	 in	 the	 feeding	was	

around	 80	 mg/L	 and	 the	 ratio	 of	 NO2

-
/NO3

-
	 was	 set	 at	 50%/50%.	 The	 effluent	 was	 studied	

decreasing	 the	HRT	 from	 8	 to	 1.5	 hours	 (Table	 2)	with	 the	 aim	 of	 determining	 the	 optimum	

treatment	time	conditions	for	the	nitrate	and	nitrite	removal.		

During	this	study	at	fixed	influent	rate	of	nitrite	and	nitrate	(50%/50%),	with	HRT	decreasing	

from	8	to	2	hours,	the	removal	efficiency	was	100%	with	an	effluent	free	of	oxidized	nitrogen	

compounds.	Total	elimination	of	NO2

-
	and	NO3

-
	was	not	detected	when	working	with	HRT	less	

than	2	hours.	At	1.5	hours	of	HRT,	the	removal	efficiency	of	nitrite	and	nitrate	was	about	96%	

and	90%	respectively,	obtaining	5	mg	NOx

-
-N/L	of	concentration	average	in	the	outlet.	

Judging	 by	 these	 results,	 denitrification	 of	 a	 domestic	 wastewater	 from	 a	 AnMBR	 was	

feasible	and	its	optimum	HRT	for	nitrate	and	nitrite	removal	was	2	hours.	

Looking	 at	 the	 literature,	 on	 the	 one	 hand,	 Zhou	W	et	 al.	 by	 using	 an	 upflow	biofilter	 for	

denitrification	achieved	a	high	yield	of	nitrate	removal	at	8	h	of	HRT	
[23]

.	On	the	other	hand,	in	

the	A2O	process	proposed	by	Zheng	W	et	al.,	a	50%	of	nitrate	removal	was	reached	when	HRT	

was	3	h	
[24]

	and	a	85%	at	4.35	h	
[13]

	when	treating	an	effluent	with	a	low	C/N	ratio	(about	2.5).	

However,	 the	 resulting	 HRT	 obtained	 in	 the	 current	 work	 is	 much	 lower	 than	 previously	

reported	in	literature.	This	represent	an	advantage	when	thinking	in	scaling-up	the	process.	
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3.2.	Nitrite	and	nitrate	removal	at	different	feeds.	

With	 the	objective	of	 study	 the	viability	of	 the	process	 for	partial	 and	 total	denitrification,	

the	HRT	was	kept	at	2	h,	as	optimized	in	the	previous	section.	The	feed	flow	was	fixed	at	10.5	

L/h	while	the	ratio	of	the	nitrite	and	nitrate	concentration	was	changed	(right	part	of	Table	2).	

The	 average	 concentrations	 of	 the	 main	 parameters	 in	 the	 inlet	 and	 outlet	 of	 the	

denitrification	process	can	be	seen	in	the	Table	3.	

TKN	is	a	measure	of	both	total	organic	nitrogen	and	ammoniacal	nitrogen	in	wastewater.	As	

expected,	the	TKN,	whose	NH4

+
	composition	exceeded	90%,	did	not	vary	during	the	treatment,	

because	nitrification	 is	 unlikely	 to	have	occurred	due	 to	 the	 low	DO	 levels	 in	 the	 reactor.	No	

modification	of	soluble	phosphorus	was	observed	during	the	process.	

In	all	the	cases,	the	bioreactor	was	able	to	remove	all	the	NO2

-
-N,	attaining	efficiency	about	

100%.	 The	progress	 of	 nitrite	 and	nitrate	 in	 the	 reactor	 during	 the	denitrification	process	 for	

different	 ratios	 is	depicted	 in	Figure	2.	This	 figure	comprises	 four	graphs,	each	representing	a	

feed.	In	all	the	feeds	can	be	seen	the	reactor	behavior	for	the	inlet	of	80	mg	NOx

-
-N/L	with	the	

corresponding	ratios.	In	all	the	cases,	nitrite	and/or	nitrite	reduction	started	without	any	delay	

and	 resulted	 in	 the	 formation	 of	 N2.	 The	 stage	 4	 was	 the	 most	 unfavorable	 case	 of	

denitrification	with	 a	 100%	of	 nitrate	 as	 feeding.	 In	 fact,	 nitrates	were	 found	 in	 the	 effluent.	

Although	in	this	stage	the	mean	concentration	of	nitrate	in	the	effluent	was	4.9	mg	NO3

-
-N/L,	it	

can	be	noticed	that	punctually	reached	19	mg	NO3

-
-N/L,	higher	value	than	the	allowable	 limit.	

This	indicate	a	not	good	yield	of	the	process,	being	in	the	limit	removal	of	reactor.	
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Table	6:	Average	parameters	for	different	NO2
-/NO3

-	ratios	on	denitrification.	

	
Stage	1	 Stage	2	 Stage	3	 Stage	4	

Parameter	 Inlet	 Outlet	 Inlet	 Outlet	 Inlet	 Outlet	 Inlet	 Outlet	

	sCOD	
(mg	O2/L)	

107.7±10.9	 73.7±7.4	 100.1±5.7	 66.7±5.7	 102.9±3.3	 68.1±2.3	 106.7±17.2	 58.6±10.3	

	TKN	
(mg	N/L)	

82.2±3.1	 82.0±4.6	 107.2±3.6	 110.8±4.9	 121.7±5.0	 118.8±3.9	 97.8±7.3	 97.4±9.8	

	NH4
+	

(mg	N/L)	
76.4±1.2	 77.7±2.4	 93.5±3.8	 92.9±4.1	 120.4±4.9	 116.0±4.2	 90.6±10.6	 85.8±6.6	

	NO2
-	

(mg	N/L)	
79.1±3.0	 1.3±4.0	 41.7±2.0	 0.2±0.9	 25.9±0.7	 0.3±2.1	 0.0±0.0	 0.2±1.5	

	NO3
-	

(mg	N/L)	
0.0±0.0	 0.3±0.6	 35.7±1.7	 0.2±0.6	 46.1±0.9	 1.0±3.8	 78.4±1.6	 4.6±5.4	

	SO4
2-	

(mg	S/L)	
10.7±9.5	 20.4±7.5	 8.7±5.0	 21.4±6.0	 8.8±10.4	 41.1±10.9	 9.9±6.3	 48.3±10.2	

soluble	P	
(mg	P/L)	

10.3±1.0	 10.8±1.3	 13.9±0.8	 14.5±1.4	 14.6±3.6	 13.0±1.4	 9,8±0.8	 10.1±2.0	
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Figure	2:	Influent	and	effluent	of	NO2
-	and	NO3

-.	(Stage	1)	100%	NO2
-;	(Stage	2)	50%	NO2

-/50%	NO3
-;	(Stage	3)	25%	

NO2
-/75%	NO3

-	and	(Stage	4)	100%	NO3
-.	

The	 experimental	 percentages	 of	 organic	matter	 removal	 are	 between	 35%-40%,	 and	 the	

values	 of	 COD	 removal	 correspond	 to	 the	 biological	 oxygen	 demand	 (BOD)	 available	 in	 the	

feeding	 wastewater.	 The	 COD	 removed	 is	 consumed	 by	 the	 bacteria	 in	 the	 denitrification	

process.	

As	 Table	 3	 shows,	 simultaneously	 to	 the	 denitrification	 occurrence,	 an	 increase	 of	 sulfate	

concentration	was	observed	from	stage	1	to	4.	This	can	be	explained	because	the	denitrifying	

bacteria	 need	 more	 sulfide	 to	 remove	 nitrate	 than	 nitrite.	 As	 consequence,	 more	 sulfate	 is	

formed.	 Stoichiometrically,	 sulfate	 concentration	 in	 the	 effluent	 should	 be	 between	 50%	 and	

65%	higher	than	experimental	data.	In	all	stages	of	operation,	the	anoxic	sulfide	oxidation	took	

place	 via	 partial	 and	 total	 oxidation	 producing	 elemental	 sulfur	 and	 sulfate.	 The	 milky	

appearance	 inside	 the	 reactor	 suggested	 the	elemental	 sulfur	 production,	 as	 an	 intermediate	

product,	probably	higher	then	expected.	The	insoluble	elemental	sulfur	was	accumulated	inside	

the	reactor	in	the	lower	section	because	of	its	precipitation.	Due	to	the	difficulty	of	separating	

solid	 sulfur	 from	 biomass	 elemental	 sulfur	 could	 not	 be	 analyzed.	 Therefore,	 sulfate	
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concentration	 was	 lower	 than	 expected	 stoichiometrically,	 due	 to	 the	 higher	 formation	 of	

elemental	 sulfur.	 It	 was	 assumed	 that	 all	 sulfide	 removed,	 but	 not	 recovered	 as	 sulfate,	was	

converted	to	elemental	sulfur.	Throughout	the	study,	the	gas	phase	from	the	top	of	the	reactor	

was	analyzed	by	gas	chromatography,	resulting	in	about	0%	of	H2S.	

As	 reported	 in	 the	 literature	 [4,	 25],	 there	 are	 indications	 that	 denitrification	 occurs	 more	

easily	 by	 using	 sulfur	 compounds	 than	 methane.	 The	 activity	 of	 methanotrophic	

microorganisms	 is	 much	 lower	 than	 that	 of	 autotrophic	 sulfide	 denitrifiers.	 Therefore,	 it	 is	

suggested	that	the	first	electron	donor	used	for	denitrification	after	the	organic	matter	was	not	

methane,	 but	 the	 hydrogen	 sulfide	 present	 in	 the	water	 after	 anaerobic	 treatment.	 After	 all	

electrons	from	sulfide	were	consumed,	denitrification/denitritation	with	methane	started.	

	

3.3.	Balances	of	the	denitrification	with	organic	matter,	sulfide	and	methane.	

The	 mass	 balance	 of	 different	 species	 over	 the	 reactor	 gives	 an	 indication	 about	 the	

functioning	 of	 the	 system.	 To	 get	 further	 evidence	 about	 the	 nature	 of	 the	 process,	 a	

stoichiometric	analysis	of	the	consumption	of	OM,	H2S	and	CH4	was	carried	out.	

From	the	reactions	that	take	place	in	the	process	of	denitrification	with	the	three	different	

electron	donors	 available	 in	 the	wastewater,	 it	 can	be	 calculated	 the	 stoichiometric	 needs	of	

each	one	to	reduce	nitrite	and	nitrate	(Table	4).	

Table	7:	Average	parameters	for	different	NO2
-/NO3

-	ratios	on	denitrification.	

Ratios	 NO2
-	 NO3

-	

OM		(mg	COD/mg	N)	 2.4	 4.0	

S2-				(mg	S/mg	N)		 1.4	 2.3	

CH4		(mg	CH4/mg	N)		 0.4	 0.7	

	

The	concentrations	of	organic	matter,	sulfide,	nitrite	and	nitrate	in	water	can	be	measured	

empirically	as	explained	previously	in	the	analytical	methods	section,	and	are	shown	in	Table	3.	

Dividing	this	value	by	the	corresponding	number	in	Table	4,	it	is	obtained	the	amount	of	nitrites	

and/or	nitrates	removed	with	organic	matter	and	sulfide	for	each	study	phase.	For	example,	in	

the	 stage	1:	 From	Table	3,	 (107.7	 -	 73.7)	 =	 34	mg	COD/L	 removed;	 34	 (mg	COD/L)	 /	 2.4	 (mg	

COD/mg	NO2
--N)	=	14.2	mg	NO2

--N/L	are	removed	with	 the	organic	matter	as	electron	donor.	

These	results	are	presented	in	Table	5.		
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Table	8:	Concentration	and	percentage	contribution	of	different	donors	in	the	elimination.	

	
Stage	1	 Stage	2	 Stage	3	 Stage	4	

NO2
-/	NO3

-	 NO2
-	 NO3

-	 NO2
-	 NO3

-	 NO2
-	 NO3

-	 NO2
-	 NO3

-	

Initial	(mg	N/L)	 80	 0	 40	 40	 20	 60	 0	 80	

OM	 14.2	
-	

13.9	
-	

14.5	
-	 -	

11.2	

(mg	Nelim/L)	 (17.7%)	 (34.8%)	 (72.5%)	 (14.0%)	

S2-	 7.8	
-	

6.4	
-	

5.5	 0.6	
-	

4.3	

(mg	Nelim/L)	 (9.8%)	 (16.0%)	 (27.5%)	 (1.0%)	 (5.4%)	

CH4	 58.0	
-	

19.7	 40	
-	

59.4	
-	

64.5	

(mg	Nelim/L)	 (72.5%)	 (49.2%)	 (100.0%)	 (99.0%)	 (80.6%)	

	

Nitrates	 and	 nitrites	 are	 removed	 firstly	 using	 the	 organic	 matter	 and	 sulfides.	 Once	

consumed	 all	 the	 organic	 matter	 easily	 biodegradable	 and	 sulfides,	 nitrates	 and	 nitrites	 are	

eliminated	by	methane	consumption.	Numbers	 in	brackets	 indicate	 the	percentage	of	nitrites	

and	nitrates	removed	with	each	electron	donor.		

The	amount	of	methane	required	for	the	process	 is	obtained	by	multiplying	the	amount	of	

nitrites	and/or	nitrates	removed	with	this	electron	donor,	and	the	stoichiometric	ratio	of	Table	

4.	These	concentrations	were	24.9	mg	CH4/L,	36.9	mg	CH4/L,	42.2	mg	CH4/L	and	45.8	mg	CH4/L	

respectively.	 So,	 in	 the	 stage	 4,	 which	 represents	 the	 least	 favorable	 denitrification	 (total	

denitrification),	 to	 achieve	 complete	 removal	 of	 nitrates,	 the	 amount	 of	methane	 needed	 as	

electron	donor	was	45.8	mg	CH4/L.		

This	methane	available	for	the	system	was,	on	the	one	side	dissolved	in	the	wastewater,	

and	 in	 the	other	 side,	 desorbed	when	entering	 into	 the	 reactor	 because	 its	 oversaturated	

state.	 As	 indicated	 in	 the	 feeding	 characteristics,	 about	 22	 mg	 CH4/L	 was	 the	 dissolved	

methane,	 and	 between	 20-40	mg	CH4/L	was	 the	 oversaturated	 one.	 Therefore,	 there	was	

enough	amount	of	methane	and	balances	are	justified.	It	should	be	noted	from	the	stage	4,	

that	methane	may	not	be	enough	to	carry	out	the	complete	denitrification	 if	 it	 is	available	

only	at	the	minimum	value	of	oversaturation.		

Based	 on	 the	 results	 of	 the	 balances,	 methane	 was	 by	 far	 the	 most	 used	 electron	 by	

bacteria.	 This	 can	be	explained	because	of	 the	higher	amount	of	methane	available	 in	water,	

but	 in	 fact,	 the	organic	matter	 and	 sulfide	were	 the	 first	 compounds	 to	be	 consumed.	 In	 the	

balances,	it	was	not	taken	into	account	the	nitrogen	consumed	for	cell	synthesis.	
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4.	CONCLUSIONS	

The	 denitrification	 of	 domestic	 wastewater	 with	 a	 low	 concentration	 of	 COD	 could	 be	

possible,	 by	 using	 the	 methane	 and	 sulfide	 that	 contains	 the	 water	 after	 the	 anaerobic	

treatment.	NO2
-	 and	NO3

-	were	 the	 electron	 acceptors,	while	 the	OM,	 CH4	 and	H2S	were	 the	

electron	donors.	The	results	of	the	work	demonstrated	that	denitritation	and	denitrification	is	a	

feasible	 process	 for	 the	 simultaneous	 removal	 of	 NO2
-,	 NO3

-,	 OM,	 CH4	 and	 H2S	 for	 real	

wastewater.	 Nitrogen	 removal	 was	 demonstrated	 obtaining	 a	 successful	 NO2
-	 and	 NO3

-	

elimination	when	the	feed	was	80	mg	N-NOx
-/L,	except	when	the	feeding	was	formed	only	by	

nitrate.	 In	 this	 case,	 the	 process	 was	 at	 the	 limit	 of	 the	 denitrification	 process,	 obtaining	 an	

effluent	at	some	points	up	to	19	mg	N-NO3
-/L.	The	optimal	HRT	to	obtain	both,	denitritation	and	

denitrification	was	 2	 hours	 using	 an	 anoxic	 reactor.	 The	 amount	 of	methane	 available	 in	 the	

water	was	enough	to	achieve	the	goal	being	the	main	electron	donor	used	with	more	than	70%	

or	participation.	
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Chapter	4.	
Advanced	denitrification	of	

anaerobic	treatment	effluent	of	
domestic	wastewater	by	using	

wasted	gas	
	

Abstract		

A	 pilot	 plant	 of	 denitritation	was	 operated	 for	more	 than	 five	months	 treating	

domestic	wastewater	with	high	ammonium	nitrogen	concentration	 from	anaerobic	

process	 under	 ambient	 temperature	 conditions	 (18	 ºC).	 The	 process	 consisted	 on	

one	biofilter	with	2h	of	hydraulic	retention	time	(HRT)	for	denitritation.	To	study	the	

feasibility	of	the	denitritation	process,	different	synthetic	nitrite	concentrations	were	

supplied	to	the	anoxic	reactor	to	simulate	the	effluent	of	a	nitritation	process.	The	

present	work	investigates	an	advanced	denitritation	of	wastewater	using	the	organic	

matter	 and	 other	 alternative	 electron	 donors	 from	 an	 anaerobic	 treatment:	

methane	and	sulfide.	The	denitrifying	bacteria	were	able	 to	 treat	water	at	an	 inlet	

nitrite	concentration	of	75	mg	NO2
--N/L	with	removal	efficiency	of	92,9%.	When	the	

inlet	 nitrite	 concentration	 was	 higher	 it	 was	 necessary	 to	 recirculate	 the	 gas	

obtained	 in	 the	 anoxic	 reactor	 to	 enhance	 the	 nitrite	 removal,	 achieving	 98,3%	of	

NO2
-	elimination	efficiency.	

	

	

Keywords:	Denitritation	•	Domestic	wastewater	•	Electron	donor	•	

Methane	•	Sulfide	
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1. INTRODUCTION		

The	anaerobic	treatment	of	wastewater	has	become	the	most	used	method	for	the	effluents	

because	 its	 advantages	 over	 conventional	 activated	 sludge	 treatment.	 These	 include	 that	

energy	 balances	 are	 quite	 favorable	 due	 to	 the	 energy	 recovery	 as	 biogas	 instead	 of	 energy	

consumption,	 no	 energy	 requirement	 for	 aeration,	 minimum	 sludge	 production,	 low	 space	

requirements	 and	 a	 smaller	 footprint.	 	 On	 the	 contrary,	 it	 has	 some	 disadvantages	 such	 as	

process	 sensitivity,	 possible	 bad	 odors,	 long	 start-up	 period	 and	 to	 comply	 with	 discharge	

standards,	 effluent	 from	 anaerobic	 treatment	 require	 further	 treatment	 for	 the	 remaining	

chemical	oxygen	demand	(COD)	and	especially	for	nitrogen	and	phosphorus	because	of	its	low	

pathogen	and	nutrient	removal	[1-5].	

	 The	methane	(CH4)	production	 in	 the	anaerobic	biodegradation	of	organic	matter	depends	

on	the	treatment	efficiency.	The	solubility	of	methane	in	the	liquid	phase	of	anaerobic	reactors	

raises	 with	 a	 decrease	 in	 the	 temperature,	 and	 increases	 its	 loss	 to	 the	 environment.	 The	

amount	dissolved	depends	on	the	partial	pressure	of	methane	in	the	biogas,	the	temperature,	

and	 the	 degree	 of	 oversaturation	 [6,	 7].	 Therefore,	 part	 of	 the	 CH4	 produced	 is	 lost	 with	 the	

effluent	and	not	available	for	energy	production	 [2-4].	 In	addition	to	the	reduction	in	recovered	

energy,	 the	 unintentional	 emission	 of	 CH4	 in	 the	 atmosphere	 has	 the	 problem	 that	 it	 is	 a	

greenhouse	 gas	with	 an	 effect	 on	 global	warning	 21	 times	 stronger	 than	 carbon	 dioxide	 [7-9],	

thus	 the	 resultant	 fugitive	 methane	 emission	 is	 potentially	 sufficient	 to	 impose	 a	 negative	

process	carbon	footprint.	Release	of	methane	may	 impose	a	potential	health	and	safety	 issue	

due	to	its	 low	explosive	limit	(down	to	5%)	 [10,	11].	A	post-treatment	process	will	be	required	in	

order	 to	 avoid	 dissolved	 methane	 release	 to	 the	 atmosphere	 and	 to	 make	 anaerobic	

wastewater	treatment	a	more	eco-friendly	technology	[3,	12].	

	 Sulfide	(H2S)	production	and	emission	is	a	well-known	problem	in	anaerobic	digestion,	which	

causes	 corrosion	of	pipes,	odor	nuisance	and	health	hazards	because	of	 its	 toxicity.	 Sulfide	 is	

mainly	 generated	 anaerobically	 by	 the	 reduction	 of	 sulfate	 in	 wastewater	 through	 the	

respiration	 of	 sulfate-reducing	 bacteria	 (SRB).	 Sulfate	 concentration,	 COD	 concentration	 and	

HRT	are	among	the	key	factors	identified	to	influence	sulfide	concentration,	with	higher	sulfate	

and	COD	concentrations	and	longer	HRT	favoring	higher	sulfide	production	[10,	11].	

	 The	 elimination	 of	 nitrogen	 compounds	 from	 wastewater	 is	 based	 on	 nitrification	 and	

denitrification.	 In	the	first	step,	nitrification,	ammonium	is	oxidized	 into	nitrite	by	ammonium-

oxidizing	 bacteria	 (AOB),	 and	 nitrite	 is	 oxidized	 into	 nitrate	 during	 the	 second	 step	 by	 nitrite	
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oxidizing	 bacteria	 [13].	 The	 second	 step	 is	 denitrification,	 where	 nitrate	 (formed	 in	 the	

nitrification	 step)	 is	 anoxically	 converted	 into	nitrite,	 then	 into	nitrous	oxide,	nitric	oxide,	 and	

finally	into	nitrogen	gas,	according	with	this	sequence:		

NH4
+		→		NO2

-		→		NO3
-		→		NO2

-		→		NO		→		N2O		→		N2	

	 Denitrifying	microorganisms	are	heterotrophic,	and	in	anoxic	conditions	use	nitrite	or	nitrate	

as	 final	 electron	 acceptors	 [14-16].	 The	 presence	 of	 an	 organic	 carbon	 source	 is	 needed	 in	

heterotrophic	denitrification.	When	not	enough	COD	is	present	in	the	wastewater	being	treated	

for	denitrification	to	occur,	for	example	in	wastewaters	with	a	low	COD/N	ratio,	or	because	of	

high	COD	consumption	 in	previous	 steps	 such	as	nitrification,	 the	addition	of	external	 carbon	

source	is	required	to	be	added	in	the	system	to	achieve	effective	heterotrophic	denitrification	

[17,	18].	Operational	costs	of	the	biological	nitrogen	removal	process	are	to	a	great	extent	related	

to	the	oxygen	and	organic	matter	requirements	for	nitrification	and	denitrification,	respectively.	

Several	new	processes	and	operational	strategies	have	arisen	during	the	 last	years	 in	order	to	

reduce	these	costs.	One	of	these	is	the	shortcut	to	biological	nitrogen	removal.	This	process	is	

based	 on	 the	 fact	 that,	 since	 nitrite	 is	 an	 intermediary	 compound	 in	 nitrification	 and	

denitrification,	 it	 will	 be	 convenient	 to	 produce	 a	 partial	 nitrification	 up	 to	 nitrite	 and	 then	

denitrification	starting	from	this	nitrite,	as	indicates	the	following	sequence:	

NH4
+		→		NO2

-		→		NO		→		N2O		→		N2	

	 The	 nitritation/denitritation	 process	 results	 in	 savings	 in	 oxygen	 demands	 during	

nitrification,	 requires	 less	 carbon	 source,	 leading	 to	 a	 reduction	 of	 the	 organic	 matter	

requirements	in	the	denitrification	process	and	a	decrease	in	surplus	sludge	production	[14-16,	18].	

	 Denitrification	 process	 requires	 electron	 donors	 like	 organic	 carbon	 sources	 for	 the	

heterotrophic	microbial	 reaction.	 However,	 the	 content	 of	 readily	 biodegradable	 substrate	 in	

wastewater	 is	very	often	the	limiting	factor	for	complete	denitrification	even	at	relatively	high	

C/N	 ratios.	 In	 these	 cases,	 external	 carbon	 sources	 such	 as	methanol	 need	 to	 be	 supplied	 to	

achieve	complete	heterotrophic	denitrification,	thus	increasing	the	operating	cost	of	treatment	

because	of	the	acquisition	of	chemicals	and	the	possible	production	of	additional	sludge	[19-21].	

	 To	 lower	 the	 costs	 of	 denitrification,	 the	 search	 for	 electron	 donors	 produced	 during	 the	

wastewater	treatment	processes	has	deserved	special	attention.	Methane	and	sulfide	could	be	

interesting	 alternative	 electron	 donors	 for	 the	 denitrification	 process	 [22-24].	 The	 literature	

presents	options	in	which	the	biogas	outlet	line	generated	from	an	UASB	reactor	was	connected	
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to	 the	 anoxic	 reactor.	 Thus,	 the	 biogas	 supplied	 could	 be	 used	 in	 the	 denitrification	 process.	

Because	of	biogas	is	produced	in	the	anaerobic	treatment	plants,	this	technology	can	produce	

low-cost	and	efficient	electron	donors	readily	useable	for	denitrification.	

	 What	is	proposed	in	this	work	is	the	use	of	methane	and	sulfide	present	in	the	wastewater	

from	the	anaerobic	treatment,	and	not	the	biogas	line	directly.	Methane	and	sulfide,	dissolved	

and	 oversaturated	 in	 the	water,	 by	 entering	 in	 the	 anoxic	 reactor	 are	 going	 to	 be	 desorbed,	

passing	 to	 the	 gaseous	 state	 and	 thus	 being	 used	 by	 denitrifying	 bacteria.	 Using	 these	

compounds	 for	 denitritation	 would	 make	 nitrogen	 removal	 less	 expensive	 than	 introducing	

chemicals.		

	 If	 this	proceeding	 is	not	enough	to	 remove	the	nitrite	 from	the	wastewater,	 it	 is	proposed	

the	recirculation	of	the	gas	obtained	in	the	top	of	the	anoxic	reactor	to	the	lower	part	of	itself.	

In	 this	 way,	 the	 remained	 electron	 donors	 present	 in	 the	waste	 gas,	 not	 previously	 used	 for	

denitrify,	have	another	opportunity	to	be	used	in	the	process.	 	

	 The	 process	 combining	 both	 anaerobic	 treatment	 and	 nitrogen	 removal	 allows	 partial	

conversion	 of	 organic	 matter	 into	 a	 valuable	 energy,	 while	 respecting	 the	 environmental	

constraints	 as	 regards	 nitrogen	 and	 energy	 costs	 are	 reduced.	 The	 denitrification	 process	

displayed	 can	 simultaneously	 convert	 nitrate,	methane	 and	 sulfide	 from	 the	wastewater	 into	

dinitrogen	gas,	carbon	dioxide	and	sulfate,	respectively,	using	anoxic	condition.	

	 The	objective	of	this	research	was	to	study	the	feasibility	of	the	partial	denitrification	process	

of	 high	 ammonium	 nitrogen	 concentration	 wastewater	 using	 alternative	 electron	 donors	

present	in	the	anaerobic	membrane	bioreactor	(AnMBR)	effluent:	OM	and	CH4	and	S
2-.	For	high	

nitrite	 concentrations	 in	 the	 feeding,	 it	was	 study	 the	 possibility	 of	 recirculate	 the	waste	 gas	

from	 the	 anoxic	 reactor	 with	 the	 aim	 of	 reuse	 the	 electron	 donors	 not	 previously	 used	 for	

denitrify.	

2. MATERIALS	AND	METHODS	

2.1. Experimental	Setup	

The	 experimental	 study	 of	 partial	 denitrification	 process	 consists	 of	 one	 anoxic	 fixed-bed	

bioreactor	built	in	glass	PVC.	The	bioreactor,	an	upflow	cylindrical	column,	had	a	height	of	2.8	

m,	a	diameter	of	0.15	m	and	a	working	volume	was	of	approximately	20	L.	A	diagram	of	 the	

bioreactor	is	shown	in	Figure	1.	 In	order	to	serve	as	support	for	the	medium,	the	reactor	was	

filled	with	Filtralite®	with	the	following	characteristics:	effective	size,	3.5	mm;	bulk	density,	825	
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kg/m3;	particle	density,	1450	kg/m3;	particle	porosity,	46%.	The	reactor	was	fed	with	the	reject	

water	 of	 an	 AnMBR	 that	 treated	 domestic	 wastewater	 under	 psychrophilic	 conditions	 in	 a	

previous	 stage	 where	 the	 major	 COD	 was	 converted	 into	 biogas	 [5],	 therefore,	 the	 AnMBR	

produced	 effluents	with	 low	 levels	 of	 readily	 biodegradable	 organic	matter.	 Also,	 a	 synthetic	

nitrite	stream	fed	the	bioreactor	simulating	the	effluent	of	a	nitritation	process.	NaNO2	solution	

was	pumped	continuously	by	a	diaphragm	metering	pump	and	it	was	used	as	the	nitrite	source.	

The	 inoculum	 was	 a	 mix	 of	 anoxic	 sludge	 and	 anaerobic	 digested	 sludge,	 taken	 from	 the	

wastewater	 treatment	 plant	 of	 Valladolid	 (Spain).	 The	 biofilter	 was	 equipped	 with	

measurement	systems	for	pressure,	gas	flow	and	oxidation-reduction	potential	(ORP).	

	

	

Figure	1:	Scheme	of	the	denitrification/denitritation	plant.	(1)	Filling	pump,	supplies	the	wastewater	to	be	

treated,	(2)	Tank	with	the	water	that	does	not	enter	in	process.	(3)	Gas	collection	chamber,	(4)	

bioreactor,	(5)	Pump	that	supply	the	synthetic	NO2
-	solution,	(6)	Current	of	the	effluent	treated,	(7)	

oxidation/reduction	potential	meter,	(8)	Flow	indicator,	(9)	Pressure	gauge.	

2.2. Feeding	Characteristics		

	 The	studied	reactor	was	fed	with	the	effluent	from	an	AnMBR	treating	domestic	wastewater	

and	the	synthetic	nitrite	stream,	to	simulate	the	recirculation	of	the	aerobic	treatment	effluent.	

The	AnMBR	pilot	plant	 is	explained	 in	detail	 in	a	previous	work	 [5].	Typical	composition	of	 the	

wastewater	used	as	inlet	to	the	continuous	flow	denitritation	reactor	is	given	in	Table	1.	When	
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the	 AnMBR	 effluent	 was	 sampled,	 the	 sulfide	 contained	 in	 the	 wastewater	 was	 oxidized	 to	

sulfate,	and	by	chromatographic	 techniques	this	compound	could	be	determined.	 In	 the	 inlet	

stream	 (from	 anaerobic	 treatment),	 sulfur	 is	 the	 corresponding	 amount	 of	 sulfide	 oxidation	

without	quantify	the	oversaturation,	so	the	real	value	for	sulfide	was	higher.	

Table	1:	Average	composition	of	the	wastewater	from	AnMBR	before	treatment.	

sCOD	
(mg	O2/L)	

TKN	
(mg	N/L)	

NH4
+	

(mg	N/L)	
NO3

-	
(mg	N/L)	

NO2
-	

(mg	N/L)	
SO4

2-	

(mg	S/L)	
sol	P	

(mg	P/L)	

113.2	 108.6	 94.3	 0.0	 50-75-90	 8.4	 10.9	

		

2.3. Operating	Scheme	

	 The	anoxic	bioreactor	was	operated	for	a	period	of	five	months	with	an	inlet	flow	of	10	L/h.	

Considering	 the	 effective	 volume	 of	 the	 reactor	 it	 can	 be	 assumed	 a	 corresponding	 HRT	 of	

approximately	2	hours	 throughout	 the	experiment.	 Temperature	 in	 the	plant	was	maintained	

under	 ambient	 conditions	 (18	 ºC)	 using	 a	 fan	 coil	 unit	 in	 the	 laboratory.	 Four	 stages	 with	

different	operating	conditions	were	studied.		

	 The	feed	concentrations	of	nitrite	were	used	with	the	intention	of	simulate	the	effluent	of	a	

nitritation	 process.	 The	 nitritation	 process	 would	 oxidize	 the	 NH4
+	 available	 in	 the	 feeding	

wastewater,	 that	 looking	 the	 Table	 3	 its	 concentration	 varied	 from	 80	 to	 110	 mg	 NH4
+-N/L.	

Stoichiometrically,	the	NH4
+	oxidized	would	imply	a	nitrite	concentration	between	62	and	85	mg	

NO2
--N/L	approximately.	To	work	with	a	security	range,	it	was	introduced	up	to	95	mg	NO2

--N/L.	

Table	2	 shows	 the	stages	of	operating.	The	difference	between	 the	 first	 three	stages	was	 the	

nitrite	feeding	concentration.	50,	75	and	90	mg	NO2
--N/L	were	the	inlet	nitrite	concentration	for	

stages	1,	2	and	3	respectively.	In	stage	4,	a	new	stream	was	added	to	the	denitrification	reactor.	

The	 gas	 obtained	 from	 the	 anoxic	 reactor	 was	 recirculated	 to	 reintroduce	 in	 the	 process	

electron	donors	not	previously	used	for	denitrify.		

Table	2:	Stages	of	operation.	

Stage	 NO2
-	inlet	concentration	

1	 50	 mg	NO2
--N	

2	 75	 mg	NO2
--N	

3	 90	 mg	NO2
--N	

4	 95	 mg	NO2
--N	with	gas	recirculation	
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2.4.	Analytical	Methods	

Samples	of	wastewater	were	collected	periodically	before	and	after	 the	denitritation	

process.	The	concentration	of	nitrite,	nitrate	and	soluble	phosphorus	were	measured	by	

High	 Performance	 Liquid	 Chromatography	 (HPLC).	 Ammonium	 concentration	 was	

determined	 using	 an	 ammonia-selective	 electrode:	 Orion,	 model	 9512HPBNWP.	 The	

analyses	of	Chemical	Oxygen	Demand	(COD),	Total	Kjeldahl	Nitrogen	(TKN)	as	well	as	total	

and	 volatile	 suspended	 solids	 (TSS,	 VSS)	 were	 determined	 according	 to	 the	 Standard	

methods	 for	 examination	 of	 water	 and	 wastewater	 suggested	 by	 the	 manual	 APHA-

AWWA-WPCF	 [25].	 The	measurement	of	dissolved	oxygen	concentration	was	determined	

with	an	oximeter	WTW,	model	oxi	330/SET	and	a	dissolved	oxygen	probe	CeliOx	325.	Gas	

production	was	measured	 volumetrically	 by	water	 displacement,	 and	 its	 composition	 in	

terms	of	methane,	carbon	dioxide,	nitrogen,	oxygen,	hydrogen	sulfide	and	hydrogen	was	

determined	 by	 gas	 chromatography	 (GC)	 (Varian	 CP-3800).	 Pressure,	 temperature	 and	

oxidation	reduction	potential	(ORP)	were	measured	by	using	sensors	and	probes.	

3. RESULTS	AND	DISCUSSION	

	 The	 reactor	 was	 operating	 during	 more	 than	 five	 months	 under	 the	 conditions	

previously	 described	 in	 Table	 2.	 The	 feasibility	 of	 using	 the	 reduced	 compounds	 of	 the	

water	from	an	AnMBR	as	electron	donors	for	denitritation	was	evaluated	at	different	NO2
-	

concentrations	 in	 the	 feed	 stream	 (stages	 1-3).	 As	 consequence,	 raising	 the	 NO2
-	

concentration	in	the	feeding,	the	nitrogen	loading	rate	(NLR)	was	increased	from	0.57	kg	

N-NO2
-/m3	d	in	the	first	stage	to	1.03	kg	N-NO2

-/m3	d	in	the	stage	3.	An	HRT	of	2	hours	was	

remained	 during	 all	 the	 research.	 The	 anaerobically	 pretreated	 domestic	 sewage	

presented	a	low	COD/NO2
--N	ratio,	specifically	1.87	in	the	stage	1,	and	1.47,	1.30	and	1.32	

for	the	stages	2,	3	and	4,	respectively.	Table	3	summarizes	the	average	concentrations	of	

the	main	parameters	in	the	inlet	and	outlet	of	the	denitritation	process	for	the	different	

stages	of	operation.	
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Table	3:	Summary	of	the	parameters	average	for	different	NO2
-	concentrations	inlet	on	denitritation.	

	
	

sCOD	
(mg	O2/L)	

TKN	
(mg	N/L)	

NH4
+	

(mg	N/L)	
NO3

--N	
(mg	N/L)	

NO2
--N	

(mg	N/L)	
sol	S	

(mg	S/L)	
sol	P	

(mg	P/L)	

1	
Inlet	 97,7	 114.0	 79.0	 0.0	 52.2	 12.8	 8.6	

Outlet	 60.6	 86.4	 77.5	 0.0	 2.5	 21.3	 8.8	

2	
Inlet	 109.9	 110.7	 97.6	 0.0	 74.7	 7.2	 11.3	

Outlet	 65.1	 109.8	 95.9	 0.0	 5.3	 29.2	 11.3	

3	
Inlet	 119.7	 98.5	 92.4	 0.0	 92.2	 5.8	 11.8	

Outlet	 76.6	 100.5	 86.0	 0.0	 21.0	 24.6	 9.8	

4	
Inleta	 125.5	 111.0	 108.0	 0.0	 95.0	 7.8	 11.7	

Outlet	 79.3	 112.4	 84.2	 0.0	 1.6	 20.0	 9.1	

	
aWith	gas	recirculation.	 	 	 	 	

	

	 As	it	can	be	seen	in	Table	3,	the	results	indicated	nitrite	elimination	efficiencies	of	95.1%	and	

92.9%	when	the	inlet	concentration	was	50	and	75	mg	NO2
--N/L	(stages	1	and	2),	respectively.	

In	the	stage	3,	when	the	feed	was	90	mg	NO2
--N/L,	77%	of	nitrites	were	eliminated	obtaining	

around	21	mg	NO2
--N/L	in	the	outlet.	The	NO2

--N	concentration	in	the	effluent	increased	while	

the	removal	efficiency	decreased	due	to	the	increase	in	the	NLR	by	raising	the	influent	NO2
--N	

concentration.	

	 During	the	stages	1,	2	and	3,	the	gas	composition	at	the	outlet	of	the	denitritation	process	

contained	mainly	N2	and	CH4	(58%	and	37%,	respectively).	All	 the	sulfide	from	the	feed	water	

were	used	for	the	nitrites	reduction	because	there	was	no	H2S	in	the	gas	phase.	

	 To	 improve	the	denitritation	process	when	the	nitrite	 feeding	concentration	was	about	90	

mg	NO2
--N/L,	it	was	proceeded	to	recirculate	the	gas	collected	in	the	top	of	the	reactor	to	the	

lower	 part	 (stage	 4).	 Thus,	 methane	 desorption	 (initially	 oversaturated)	 was	 favored	 and	

denitrifying	bacteria	were	able	to	use	 it	as	electron	donor.	Fortunately,	 this	performance	was	

successful,	 achieving	 around	 98.3%	 of	 nitrite	 elimination	 efficiency	 after	 the	 denitrifying	

process	when	the	NLR	was	1.09	kg	N/m3	d.		

	 Figure	2	shows	the	concentrations	of	NO2
--N	and	COD	in	the	 influent	and	effluent	 in	time.	

The	graph	shows	a	high	variability	 in	 the	 feeding	COD	concentrations	during	all	 the	stages	of	

the	 experiment	 due	 to	 the	 typical	 fluctuations	 in	 actual	 domestic	 sewage.	 In	 Figure	 3,	 it	 is	

represented	the	evolution	of	nitrite	before	and	after	denitritation	and	the	removal	percentage	

of	 this	compound	 in	each	period	studied,	with	 their	corresponding	standard	deviation.	 In	 the	

stage	3,	it	can	be	seen	the	accumulation	of	nitrite	at	the	end	of	the	process,	revealing	a	process	
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limitation	to	remove	nitrite	when	the	inlet	concentration	was	90	mg	NO2
--N/L,	while	in	the	rest	

of	stages	it	is	clear	its	almost	total	elimination.		

	

Figure	2:	Concentrations	of	NO2
--N	and	COD	in	the	influent	and	effluent	in	time.	

	 During	 the	anoxic	process,	 the	organic	matter	 showed	significant	decreases	between	36%	

and	41%,	as	it	can	be	seen	in	the	column	of	soluble	COD	from	the	Table	3	and	in	the	Figure	3.	

These	values	of	COD	removed	correspond	to	the	biological	oxygen	demand	(BOD)	available	in	

the	feeding	wastewater.	This	phenomenon	can	be	explained	because	the	organic	matter	is	one	

of	 the	 electron	 donors	 used	 by	 the	 bacteria	 to	 denitrify.	 The	 TKN,	 whose	 NH4
+	 composition	

exceeds	70%,	did	not	vary	during	the	treatment,	because	nitritation	is	unlikely	to	have	occurred	

due	to	the	low	DO	levels	in	the	denitritation	process.	Comparing	the	concentration	of	SO4
2-	 in	

the	 influent	 and	 effluent	 of	 the	 process,	 it	 was	 increased	 due	 to	 the	 oxidation	 of	 the	 H2S	

available	 in	 wastewater	 from	 anaerobic	 treatment,	 to	 SO4
2-.	 No	 modification	 of	 soluble	

phosphorus	was	observed	during	the	process.	
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Figure	3:	Evolution	of	NO2
-	before	and	after	denitritation	and	percentage	of	NO2

-	removal	efficiency.	

	 Knowing	 the	 OM,	 H2S	 and	 CH4	 available	 in	 wastewater,	 and	 the	 stoichiometric	 ratios	

between	electron	donors	and	acceptors	(Table	4),	it	was	possible	to	determine	the	intervention	

percentage	of	each	electron	donor.	The	biogas	composition	of	the	AnMBR	with	respect	to	CH4	

and	H2S,	is	84%	and	0.2%	respectively.	By	Henry´s	Law	at	the	operational	temperature,	it	can	be	

obtained	 the	 theoretical	 concentration	 of	 that	 compounds	 dissolved	 in	 the	 effluent	 of	

anaerobic	treatment,	therefore	the	inlet	for	the	denitritation	process.	The	theoretical	values	of	

dissolved	methane	 and	 sulfide	 calculated	were	 22.2	mg	 CH4/L	 and	 8.9	mg	 H2S/L.	Moreover,	

dissolved	methane	and	sulfide	oversaturation	 in	 the	anaerobic	effluent	was	observed	 [5],	 so	a	

higher	concentration	of	these	alternative	electron	donors	was	available	in	the	wastewater	to	be	

used	of	denitrify.		

Table	4:	Average	parameters	for	different	NO2
-/NO3

-	ratios	on	denitrification.	

Ratios	 NO2
-	 NO3

-	

OM		(mg	COD/mg	N)	 2.4	 4.0	

S2-		(mg	S/mg	N)		 1.4	 2.3	

CH4		(mg	CH4/mg	N)		 0.4	 0.7	
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	 Methane	was	by	far	the	main	electron	donor	used	(65%)	followed	by	organic	matter	(22%).	

Sulfide	was	 the	electron	donor	 less	used	 (13%)	due	 to	 their	 lower	content	 in	 the	water	 from	

AnMBR.	 As	 reported	 in	 the	 literature	 [21,	 26],	 there	 are	 indications	 that	 denitrification	 occurs	

more	easily	by	using	sulfur	compounds	than	methane.	It	is	suggested	that	denitrification	firstly	

occurs	 by	 using	 organic	 matter	 and	 sulfide	 present	 in	 the	 wastewater	 after	 anaerobic	

treatment.	Then,	because	of	the	activity	of	methanotrophic	microorganisms	is	 lower	than	the	

autotrophic	 denitrifiers,	 after	 all	 sulfide	 electrons	 were	 consumed,	 the	 denitritation	 with	

methane	started.	

	 Methane	 and	 sulfide	 used	 as	 electron	 donors	 in	 denitrification	 process	 have	 several	

advantages	 when	 comparing	 with	 other	 alternatives	 such	 as	 the	 addition	 of	 methanol	 or	

acetate.	 The	 first	 two	 compounds	 are	 low-cost	 sources	 that	 can	 be	 suitable	 in	 the	 nitrogen	

removal	from	wastewater	since	that	they	can	be	generated	onsite	by	the	anaerobic	digestion	of	

sludge	in	the	WWTP	[23,	27].	The	process	of	methane	oxidation	coupled	to	denitrification	can	be	

applied	for	nitrogen	pollution	control,	and	to	offset	eutrophication	and	atmospheric	methane	

concentrations	simultaneously	[28].	 	

	 This	 process	 developed	was	 a	 part	 of	 an	 overall	 treatment	 plan	 where	 the	 NO2
-,	 organic	

matter,	 CH4	 and	H2S	were	 removed.	 For	 the	 full	 treatment,	 an	 aerobic	 reactor	 for	 nitritation	

was	 necessary,	 where	 NH4
+	 was	 converted	 into	 NO2

-,	 and	 took	 place	 the	 oxidation	 of	 the	

residual	organic	matter,	achieving	COD	removal	efficiencies	higher	than	80%.	

4. CONCLUSIONS	

In	order	to	treat	effectively	wastewater	after	anaerobic	treatment,	where	most	of	the	COD	

has	been	removed,	denitritation	process	using	alternative	electron	donors	present	in	the	water	

was	 investigated.	 The	 results	 of	 this	 study	 demonstrated	 that	 the	 denitritation	 process	

presented	in	this	work	was	able	to	remove	around	95%	and	93%	of	nitrite	when	the	inlet	was	

50	 mg	 NO2
--N/L	 and	 75	 mg	 NO2

--N/L	 from	 a	 simulated	 recirculation	 of	 aerobic	 treatment	

effluent	 in	 2	 hours	 of	 HRT.	 For	 high	 inlet	 concentrations	 of	 nitrite,	 recirculation	 of	 the	 gas	

collected	 in	 the	 anoxic	 reactor	 was	 a	 successful	 solution,	 thus	 achieving	 a	 nitrite	 removal	

efficiency	upper	than	98%	when	the	nitrite	concentration	in	the	feed	was	95	mg	NO2
--N/L.	

Specifically,	denitritation	is	a	feasible	process	for	the	simultaneous	removal	of	NO2
-,	OM,	CH4	

and	H2S	 for	 actual	wastewater	 and	 the	 recirculation	of	 the	gas	 from	 the	anoxic	 reactor	 is	 an	

efficacious	system	to	enhance	the	nitrites	removal.		
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Chapter	5.	
Nitrogen	removal	in	domestic	

wastewater.	Effect	of	the	nitrate	
recycling	and	the	COD/N	ratio.	

	

Abstract	

A	 denitrification/nitrification	 pilot	 plant	 was	 designed,	 built	 and	 operated	 to	

treat	the	effluent	of	an	anaerobic	reactor.	The	plant	was	operated	to	examine	the	

effect	 of	 the	 nitrate	 recycling	 and	 the	 COD/N	 ratio	 on	 the	 nitrogen	 and	 the	

remaining	organic	matter	removal.	The	system	consisted	of	a	two	stages	treatment	

process:	anoxic	and	aerobic.	The	hydraulic	retention	time	(HRT)	of	the	system	was	

2	 h	 for	 the	 anoxic	 bioreactor	 and	 4	 h	 for	 the	 aerobic	 one.	 The	 increase	 in	 the	

nitrate	 recycling	 ratio	 did	 not	 suppose	 a	 significant	 improvement	 in	 the	nitrogen	

removal	due	to	the	insufficient	carbon	source.	The	wastewater	to	be	treated	had	a	

C/N	ratio	of	1.1	showing	a	lack	of	organic	carbon.	The	addition	of	methanol	was	a	

key	 point	 in	 the	 denitrification	 process	 employed	 as	 a	 model	 for	 the	 traditional	

wastewater	 by-pass	 in	 the	 WWTP.	 The	 maximum	 nitrogen	 and	 organic	 matter	

removal	(84.7%	and	96%,	respectively)	was	achieved	with	a	nitrate	recycling	ratio	

of	600%	and	a	C/N	of	8.25,	adjusted	by	methanol	addition.	

	

	

Keywords:	Biological	nutrient	removal	(BNR)	•	C/N	ratio	•	Denitrification	•	

Nitrification	•	Organic	matter		

	

	

	 	



	

118	
	

	 	



																																																																																																																																																									Chapter	5	
  

119	
	

1. INTRODUCTION		

Wastewater	 treatment	 plants	 (WWTPs)	 are	 defined	 currently	 to	 remove	 particulate	 and	

dissolved	organic	fractions	and,	in	more	sensitive	areas,	nitrogen	and	phosphorus	compounds.	

The	 most	 conventional	 well-known	 intensive	 system	 to	 treat	 domestic	 wastewater	 is	 the	

activated	sludge	process	[1].		However,	the	anaerobic	treatment	of	wastewater	has	become	the	

most	used	method	for	processing	effluents	because	its	advantages	over	conventional	activated	

sludge	 treatment.	 It	 requires	 low	 energy	 consumption,	 while	 it	 provides	 low	 wastage	 of	

biological	 solids,	 and	 transforms	 the	 organic	 matter	 into	 valuable	 biogas	 [2].	 Among	 the	

disadvantages	of	 the	anaerobic	 treatment,	post	 treatments	are	necessary	 in	order	 to	achieve	

discharge	standards.		

According	to	the	Official	Spanish	Bulletin	(BOE),	the	characteristic	parameters	of	the	activity,	

its	emission	limit	values	and	reference	measurement	methods	for	discharges	from	wastewater	

treatment	plants	derive	 from	Directive	91/271/CEE	 transposed	by	RDL	11/1995,	RD	509/1996	

and	 RD	 2116/1998.	 The	 requirements	 for	 discharges	 from	 WWTP	 are	 125	 mg	 O2/L	 for	 the	

chemical	 oxygen	 demand	 (COD)	 or	 a	 minimum	 reduction	 percentage	 of	 75%	 (reduction	 in	

relation	to	the	influent	load),	and	15	mg	N/L	for	the	total	nitrogen	(TN)	or	a	minimum	reduction	

percentage	between	70-80%	[3,	4].	

In	the	last	decade,	increasingly	stringent	environmental	requirements	have	been	imposed	on	

nutrients	 discharge	 in	 receiving	waters,	 	 because	 	 excessive	 	 nutrients	 	 are	 	 considered	 	 the		

primary	causes	of	eutrophication	[5].	Most	of	the	efforts	have	been	focused	on	the	development	

of	 new	 technologies	 capable	 of	 obtaining	 better	 effluent	 quality,	 with	 special	 attention	 to	

nitrogen	removal	and	the	reduction	of	treatment	costs	[6].	To	control	eutrophication	in	receiving	

water	bodies,	biological	nutrient	removal	(BNR)	of	nitrogen	has	been	widely	used	in	wastewater	

treatment	 practice,	 both	 for	 the	 upgrade	 of	 existing	 wastewater	 treatment	 facilities	 and	 the	

design	of	new	facilities	 [7].	BNR	constitutes	 the	most	economical	and	sustainable	 technique	to	

meet	increasingly	rigorous	discharge	requirements	[8,	9].		

BNR	 is	achieved	 through	 two	processes:	nitrification	and	denitrification.	 In	 the	nitrification	

process,	 under	 aerobic	 conditions,	 ammonium	 (NH4
+)	 is	 converted	 to	 nitrite	 (NO2

-)	 by	 the	

ammonium	 oxidizing	 bacteria	 (AOB).	 Then,	 nitrite	 is	 oxidized	 to	 nitrate	 (NO3
-)	 by	 the	 nitrite	

oxidizing	 bacteria	 [10].	 Denitrification	 is	 an	 anoxic	 process	 of	 nitrate	 reduction	 into	 nitrite	 and	

then	into	molecular	nitrogen	gas	(N2),	which	is	performed	by	a	functional	group	of	heterotrophs	

that	 use	 nitrite	 and/or	 nitrate	 as	 the	 electron	 acceptor	 in	 respiration.	 Denitrification	 process	
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requires	electron	donors	 like	organic	carbon	sources	 for	 the	heterotrophic	 [8,	 9,	 11-13].	Although	

the	 conventional	 denitrification	 uses	 organic	 matter	 as	 electron	 donor	 for	 denitrify,	

denitrification	 using	 alternative	 electron	 donors,	 as	 methane	 and	 sulfide,	 have	 been	

experimentally	applied	to	wastewaters	for	denitrification	[13,	14].	

There	 are	 different	 terms	 of	 denitrification	 such	 as	 pre-denitrification	 and	 post-

denitrification	 depending	 on	 the	 order	 of	 nitrification	 and	 denitrification.	 In	 a	 post-

denitrification	configuration,	wastewater	is	fed	to	a	nitrification	system	prior	to	denitrification.	

This	 configuration	 leads	 usually	 to	 a	 total	 consumption	 of	 the	 COD	 before	 starting	 the	

denitrification	process;	therefore	an	exogenous	carbon	source	should	be	supplied	to	carry	out	

the	post-anoxic	denitrification	[9,	15].	In	contrast,	in	most	BNR	systems,	the	anoxic	stage	is	located	

upstream	 of	 the	 aerobic	 zone.	 Wastewater	 is	 fed	 directly	 to	 the	 denitrification	 system,	

supplying	organic	carbon	to	remove	nitrite	and	nitrate	 that	are	 recycled	 from	the	nitrification	

system.	High	denitrification	rates	can	be	achieved	with	the	pre-anoxic	regime	given	the	supply	

of	readily	biodegradable	carbon.	However,	it	 is	accompanied	with	some	disadvantages	such	as	

higher	 energy	 costs	 from	mixed	 liquor	 recycle	 flows,	 dissolved	 oxygen	 (DO)	 return	 from	 the	

aerobic,	and	dilution	of	influent	carbon	[8,	15].	

After	anaerobic	treatment,	a	nitrogen	removal	plant	receives	an	 influent	containing	mainly	

the	 residual	 soluble	 fraction	 of	 organic	 carbon	 present	 in	 domestic	 wastewater	 and	 a	 large	

fraction	of	the	nitrogen.	Therefore,	the	influent	presents	a	low	COD/N	ratio,	which	is	favorable	

to	the	nitrification	stage	but	may	be	an	obstacle	for	the	denitrification	step	[	1].			

The	 denitrification	 potential	 of	 wastewater	 is	 mainly	 governed	 by	 the	 availability	 of	

biodegradable	organic	carbon,	commonly	expressed	as	the	C/N	ratio	[6].	Therefore,	the	C/N	ratio	

of	 the	 influent	 is	 one	 of	 the	 most	 critical	 parameters	 that	 can	 affect	 directly	 the	 biological	

nitrogen	removal	efficiency.	This	occurs	because	different	microorganisms	populations	compete	

for	 substrate	 causing	 fluctuation	 in	 effectiveness	 of	 organic	 and	 nitrogen	 removal	 [12,	 16].	

Theoretically,	 the	 stoichiometric	 requirement	of	 organic	 substrate	 for	 denitrification	 is	 2.86	 g	

COD/g	N,	 considering	 the	 electron	 transmitting	 balance	 between	organic	 substrate	 and	NO3
-.	

But	some	studies	demonstrated	that	C/N	values	of	approximately	6-11	g	COD/g	N	could	allow	a	

proper	nitrogen	removal	[6].	In	the	case	of	Kim	et	al.	[15],	with	a	C/N=8	ratio,	it	was	obtained	an	

average	 denitrification	 efficiency	 around	 72%.	 Another	 example,	 Fu	 et	 al.	 [16],	 achieved	 a	

nitrogen	removal	efficiency	of	90.6%	when	the	C/N	ratio	was	9.3.	

The	 amount	 of	 biodegradable	 organic	 carbon	 of	 domestic	 wastewater	 after	 anaerobic	

treatment	is	limited	and	nitrogen	removal	is	limited	by	the	lack	of	bioavailable	electron	donors	
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for	heterotrophic	denitrification	[5,	17].	Therefore,	the	addition	of	external	carbon	sources	often	

becomes	necessary	for	achieving	high-efficiency	BNR,	especially	for	facilities	with	weak	influent	

biological	oxygen	demand	(BOD)	 	and/or	 	 those	 	 facing	 	strict	effluent	 limits	 [5,	 18].	Methanol	 is	

the	most	commonly	used	electron	donor,	as	a	result	of	the	higher	denitrification	efficiency,	as	

indicated	by	the	relatively	lower	methanol-to-nitrate	ratio,	lower	cost,	and	broad	availability	in	

the	market.	 The	main	 disadvantage	of	 using	methanol	 is	 the	 safety	 issues	 associated	with	 its	

transportation,	 handling,	 and	 storage.	 The	 use	 of	methanol	 in	 commercial	 scale	 entails	 costs	

and	the	process	may	not	be	viable	from	an	economic	point	of	view.	It	has	been	estimated	that	

an	 additional	 25	 to	 31%	of	 the	 capital	 construction	 cost	 for	methanol	 storage,	 pumping,	 and	

delivery	systems	is	required	to	meet	the	safety	standards	over	the	use	of	a	non-flammable,	non-

hazardous	product	[5,	19].	

One	 of	 the	 most	 effective	 methods	 to	 increase	 the	 organic	 matter	 concentration	 of	 the	

influent	without	the	addition	of	external	organic	substrates	 is	achieved	by	mixing	a	fraction	of	

the	 influent	 to	 the	 anaerobic	 reactor	 with	 the	 effluent	 of	 that	 reactor.	 In	 such	 case,	 the	

anaerobic	 reactor	 should	 be	 used	 to	 treat	 initially	 only	 a	 part	 of	 the	 influent	 raw	 sewage	

(possibly	no	more	than	50–70%),	and	the	remaining	part	 (30–	50%)	should	be	directed	to	the	

complementary	 biological	 treatment.	 The	 use	 of	 this	 “by-pass”	 will	 increase	 the	 COD	 of	 the	

reactor	effluent	making	it	more	adequate	to	the	next	denitrification	stage	[20,	21].	

Among	 the	 available	 technologies,	 biofiltration	 has	 been	 widely	 deployed	 in	 urban	

wastewater	 treatment	 plants.	 Biofiltration	 technology	 combines	 both	 physical	 and	 biological	

treatment	by	using	an	immersed	filter	material.	During	biofiltration	treatment,	the	wastewater	

is	simply	passed	through	a	fixed	bed	of	media,	which	acts	both	as	a	filter	and	as	a	support	for	

the	 growth	 of	 nutrient	 consuming	 bacteria.	 The	 advantages	 of	 these	 immersed	 biological	

systems	reside	in	their	compactness	(small	footprint)	and	low	residence	time	[22].	

This	work	 is	 focused	 on	 the	 study	 of	 the	 integration	 of	 denitrification/nitrification	 process	

treating	domestic	wastewater	after	anaerobic	treatment.	The	specific	aim	of	the	study	was	the	

influence	evaluation	of	the	COD/N	ratio	and	the	nitrate	recycling	ratio	in	nitrogen	removal.	To	

do	 so,	 a	 denitrification/nitrification	 pilot	 plant	 was	 designed,	 built	 and	 operated	 at	 different	

conditions.	
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2.	MATERIALS	AND	METHODS	

2.1.	Experimental	Setup	

The	pilot	plant	consists	of	two	fixed	bed	bioreactors	able	to	develop	the	denitrification	and	

nitrification	 in	wastewater.	 Both	 reactors	were	 designed	 as	 vertical	 cylinders.	 The	 height	 and	

diameter	of	 the	 anoxic	 cylinder	used	 for	 denitrification	was	2.78	m	and	0.15	m,	 respectively,	

with	a	working	volume	of	20	L.	The	height	and	diameter	of	the	nitrification	cylinder	was	1.86	m	

and	0.30	m,	 respectively,	with	 40	 L	 of	working	 volume.	 The	 anoxic	 bioreactor	was	 filled	with	

corrugated	PVC	rings,	while	the	aerobic	one	with	Filtralite®	as	filter	medium.	A	diagram	of	the	

pilot	plant	is	shown	in	Figure	1.	Temperature	in	the	plant	was	maintained	at	18	ºC,	which	is	the	

working	 temperature	 of	 the	 previous	 anaerobic	 reactor	 [2].	 The	 denitrifying	 biofilter	 was	

equipped	with	measurement	systems	for	pressure,	gas	 flow	and	oxidation-reduction	potential	

(ORP),	 while	 the	 nitrifying	 biofilter	 with	 a	 probe	 to	 measure	 the	 dissolved	 oxygen	 and	

temperature.	 The	 incoming	 flow	was	 set	 to	 20	 L/h.	 The	 denitrification	 reactor	 was	 operated	

with	a	HRT	of	2	h	while	 the	nitrification	one	at	4	h.	 These	HRT	were	previously	optimized	by	

studying	 each	 reactor	 individually.	 The	 aeration	 rate	 was	 controlled	 through	 a	 flow	 meter,	

maintaining	 the	 dissolved	 oxygen	 (DO)	 concentration	 between	 2.0-2.5	mg	O2/L.	 Four	 aerators	

were	fixed	on	the	bottom	to	make	the	bubbles	distributed	uniformly.	

The	plant	was	fed	with	the	reject	water	of	an	anaerobic	membrane	bioreactor	(AnMBR)	that	

treated	 domestic	wastewater	 under	 psychrophilic	 conditions	 (18	 ºC)	 [2].	 The	wastewater	with	

high	concentration	of	NH4
+	and	low	level	of	organic	matter	was	pumped	to	the	anoxic	reactor.	

In	this	first	step,	NH4
+	did	not	changed	and	passed	through	the	aerobic	reactor.	 In	the	second	

step,	the	NH4
+	was	oxidized	to	NO3

-	 in	the	presence	of	oxygen.	This	stream	is	recycled	using	a	

peristaltic	pump,	 from	the	aerobic	bioreactor	to	be	the	feed	to	the	anoxic	reactor,	where	the	

denitrifying	bacteria	can	use	the	COD	from	the	feedstream.		

Due	 to	 the	high	DO	 concentration	 in	 the	 recycling	water	 from	 the	 aerobic	 bioreactor,	 the	

organic	carbon	available	in	the	feed	water	from	anaerobic	treatment	would	tend	to	be	oxidized	

instead	of	being	used	for	denitrification.	As	consequence,	denitrification	efficiencies	would	fall.	

To	 avoid	 this	 effect	 as	 far	 as	 possible,	 a	 degassing	 tank	 was	 placed	 in	 the	 recycling	 line	 to	

prevent	dissolved	oxygen	entering	into	the	anoxic	tank.	
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Figure	1:	Pilot	plant	flow	scheme.	(1)	Denitrification	reactor,	(2)	nitrification	reactor,	(3)	filling	pump,	

supplies	the	wastewater	from	anaerobic	treatment	to	the	denitrifying	reactor,	(4)	gas	flow	meter,	(5)	

effluent	from	anoxic	to	aerobic	reactor,	(6)	nitrate	recycling	from	aerobic	to	anoxic	reactor,	(7)	degassing	

tank,	(8)	compressor,	responsible	for	supplying	the	air,	(9)	final	effluent.	ORP:	oxidation-reduction	

potential	probe;	DO:	dissolved	oxygen;	FI:	flow-rate	indicator;	PI:	pressure	indicator.	

2.2.	Inoculum	and	feed	wastewater		

The	 inoculum	 of	 the	 denitrifying	 bioreactor	 was	 a	 mix	 of	 anoxic	 sludge	 and	 anaerobic	

digested	sludge,	taken	from	the	wastewater	treatment	plant	(WWTP)	of	Valladolid	(Spain).	The	

inoculum	of	the	nitrifying	bioreactor	was	secondary	aerobic	sludge	from	the	same	WWTP.	

The	 studied	 plant	 was	 fed	 with	 the	 effluent	 from	 an	 AnMBR	 [2]	 fed	 with	 raw	 municipal	

wastewater	 from	 the	 city	 of	 Valladolid	 (Spain).	 The	 average	 concentration	 of	 the	 main	

parameters	of	wastewater	after	anaerobic	 treatment	are	given	 in	Table	1.	 It	can	be	seen	that	

the	concentration	of	NH4
+-N	dominated	 the	TN,	which	 leads	 to	a	COD/N	ratio	as	 low	as	1.04.	

When	the	AnMBR	effluent	was	sampled,	the	sulfide	contained	in	the	wastewater	was	oxidized	

to	sulfate,	and	by	chromatographic	techniques	this	compound	could	be	determined.	In	the	inlet	

stream	 (from	 anaerobic	 treatment),	 sulfur	 is	 the	 corresponding	 amount	 of	 sulfide	 oxidation	

without	quantify	the	oversaturation,	so	the	real	value	for	sulfide	was	expected	to	be	higher	than	

showed.	
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Table	1:	Feed	composition	of	the	studied	process.	(Mean	±	standard	deviation	of	the	mean.	<	QL:	Lower	

than	quantification	limit).	

2.3.	Analytical	Methods	

Samples	 of	 wastewater	 were	 collected	 periodically	 before	 and	 after	 the	 denitrification	

reactor,	 and	 after	 the	 aerobic	 reactor,	 being	 this	 stream	 the	 effluent	 of	 the	 process.	 The	

concentration	 of	 nitrite,	 nitrate,	 sulfate	 and	 soluble	 phosphorus	 were	 measured	 by	 High	

Performance	Liquid	Chromatography	(HPLC).	Ammonium	concentration	was	determined	using	

an	ammonia-selective	electrode:	Orion,	model	9512HPBNWP.	The	analyses	of	Chemical	Oxygen	

Demand	(COD),	Total	Kjeldahl	Nitrogen	(TKN)	as	well	as	total	and	volatile	suspended	solids	(TSS,	

VSS)	 were	 determined	 according	 to	 the	 Standard	 methods	 for	 examination	 of	 water	 and	

wastewater	 suggested	by	 the	manual	 APHA-AWWA-WPCF	 [23].	 The	measurement	 of	 dissolved	

oxygen	 concentration	 was	 determined	 with	 an	 oximeter	 WTW,	 model	 oxi	 330/SET	 and	 a	

dissolved	oxygen	probe	CeliOx	325.	Gas	production	from	the	anoxic	bioreactor	was	measured	

volumetrically	 by	 water	 displacement.	 Gas	 samples	 were	 taken	 from	 the	 headspace	 of	 this	

reactor	and	 its	 composition	 in	 terms	of	methane,	 carbon	dioxide,	nitrogen,	oxygen,	hydrogen	

sulfide	and	hydrogen	was	determined	by	gas	chromatography	(GC)	(Varian	CP-3800).	Pressure,	

temperature	 and	 oxidation	 reduction	 potential	 (ORP)	 were	 measured	 by	 using	 sensors	 and	

probes.	

2.4.	Operation	Strategy	

The	 denitrification/nitrification	 experiments	 were	 run	 for	 more	 than	 five	 consecutive	

months.	Eight	different	 scenarios	were	studied	until	 reach	 the	optimum	C/N	ratio	and	nitrate	

recycling	ratio	(R).	Each	case	was	analyzed	for	around	20	days	at	steady	state.	Table	2	depicts	

the	 recycling	 ratio	 of	 nitrate	 (R),	 the	 COD,	 if	 there	 was	 (or	 not)	 addition	 of	 external	 carbon	

source	and	the	C/N	ratio	established	for	each	case	studied.	

	 	

sCOD	

(mg	O2/L)	
TKN	

(mg	N/L)	
NH4

+	

(mg	N/L)	
NO2

-	

(mg	N/L)	
NO3

-	

(mg	N/L)	
SO4

2-	

(mg	S/L)	
sol	P	

(mg	P/L)	

122.4	±	3.4	 118.0	±	3.5	 109.3	±	3.3	 <	QL	 <	QL	 8.7	±	0.2	 10.7	±	0.3	
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Table	2:	Characteristics	of	the	cases	implied	in	the	operation	strategy.	

Case	 R	 Methanol	 Soluble	COD	(mg	O2/L)	 C/N	ratio	

1	 Q	 No	 106.0	±	2.1	 1.09	

2	 2Q	 No	 105.7	±	1.0	 1.12	

3	 2Q	 Yes	 286.5	±	3.6	 2.59	

4	 3Q	 Yes	 454.2	±	4.3	 3.74	

5	 4Q	 Yes	 448.7	±	1.5	 3.94	

6	 5Q	 Yes	 476.2	±	5.4	 4.87	

7	 6Q	 Yes	 574.0	±	3.2	 5.37	

8	 6Q	 Yes	 848.2	±	1.7	 8.25	

	

In	the	cases	1	and	2,	R	was	modified.	The	same	parameter	was	changed	in	cases	4,	5	and	6	

but	with	other	C/N	ratio	compared	with	cases	1	and	2.	All	these	cases	are	analyzed	 in	section	

3.1.		

In	 cases	 2	 and	 3,	 R	 was	 maintained	 but	 the	 C/N	 ratio	 was	 increased	 by	 the	 addition	 of	

methanol.	A	different	R	was	kept	in	cases	7	and	8,	but	with	higher	C/N	ratio	than	comparing	to	

the	cases	2	and	3.	These	cases	are	discussed	in	section	3.2.		

3.	RESULTS	AND	DISCUSSION	

3.1.	The	effect	of	the	recycling	ratio	of	nitrate.	

The	 removal	 efficiency	 of	 organic	 matter	 and	 nitrogen	 in	 the	 denitrification-nitrification	

system	changing	the	nitrate	recycling	ratio	was	studied.	COD	concentration	in	the	influent	was	

maintained	constant	and	the	recycling	R	from	the	aerobic	bioreactor	effluent	to	the	anoxic	one	

was	increased	to	study	its	effect.	An	increase	in	the	recycling	rate	from	the	aerobic	to	the	anoxic	

column,	provides	more	nitrates	to	the	denitrification	reactor	and	thus,	can	improve	the	overall	

nitrogen	removal	and	minimize	the	TN	concentration	in	the	effluent.	

On	 the	 one	 hand,	 during	 the	 first	 part	 of	 the	 work,	 case	 1	 and	 2	 were	 experimented	

analyzing	the	recycling	effect	 from	R=Q	(Q:	 incoming	flow)	to	R=2Q,	being	the	COD/N	ratio	of	

1.09	and	1.12	for	each	condition.	

Tables	 3	 and	 4,	 summarize	 the	 concentration	 average	 of	 the	 COD	 and	 the	 nitrogen	

compounds	 at	 different	 nitrate	 recycling	 ratios.	 NH4
+	 concentration	 decreased	 significantly	 in	

the	 anoxic	 reactor	 due	 to	 the	 dilution	 of	 nitrate	 recycling	 stream.	 The	 average	 ammonium	
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removal	 efficiency	 of	 the	 overall	 process	was	 86.1%	 in	 the	 case	 1,	 and	 73.6%	 for	 the	 case	 2	

(Table	 4).	 The	 removal	 profile	 of	 NH4
+-N	 was	 analogous	 to	 that	 of	 COD,	 indicating	 that	 the	

utilization	of	organic	matter	and	the	degradation	of	NH4
+	occurred	simultaneously.	In	Figure	2	it	

is	shown	the	percentage	of	COD	and	TN	removed.	With	the	same	COD	influent	of	106	mg	O2/L,	

the	average	COD	removal	efficiency	was	87.6%	and	74.4%	for	each	situation,	indicating	a	good	

ability	to	remove	the	organic	matter.	Contrary,	the	total	nitrogen	removal	efficiency	was	poor	

with	value	of	about	20%.	The	C/N	ratio	in	the	system	was	very	low,	being	a	limiting	factor	in	the	

denitrification	process,	which	was	not	able	 to	 remove	 the	nitrogen	compounds.	NO3
-	was	 the	

prominent	 compound	 of	 TN	 in	 the	 effluent	 and	 this	 residual	 nitrogen	was	mainly	 due	 to	 the	

exhaustion	of	the	carbon	source	of	heterotrophs.	

	

Table	3:	COD	concentration	in	the	inlet,	after	the	denitrification	reactor	and	at	the	end	of	the	process	for	

the	different	conditions	evaluated.	(1:	Wastewater	influent;	2:	Stream	from	the	denitrification	reactor	to	

nitrification;	3:	Nitrification	effluent	and	the	outlet	of	the	plant).	(Mean	±	standard	deviation	of	the	

mean).	

		 soluble	COD	(mg	O2/L)	

Case	 						1	 2	 				3	

1	 106.0	±	2.1	 44.4	±	1.6	 13.1	±	1.3	

2	 105.7	±	1.0	 68.5	±	0.4	 27.1	±	0.2	

3	 286.5	±	3.6	 76.5	±	0.7	 22.3	±	0.9	

4	 454.2	±	4.3	 81.9	±	2.4	 31.9	±	2.8	

5	 448.7	±	1.5	 72.5	±	2.6	 20.0	±	3.7	

6	 476.2	±	5.4	 66.7	±	2.1	 27.7	±	3.3	

7	 574.0	±	3.2	 68.2	±	1.0	 21.5	±	0.6	

8	 848.2	±	1.7	 107.0	±	0.6	 33.8	±	0.2	
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Table	4:	Evolution	of	nitrogen	compounds	during	the	denitrification/nitrification	process.	(1:	wastewater	influent	from	AnMBR;	2:	Stream	from	the	denitrification	reactor	to	

nitrification;	3:	Nitrification	effluent	and	the	outlet	of	the	plant).	(Mean	±	standard	deviation	of	the	mean.	<	QL:	Lower	than	quantification	limit).	

	 TKN	(mg	N/L)		 NH4
+	(mg	N/L)	 NO2

-	(mg	N/L)	 NO3
-	(mg	N/L)	

Case	 1	 2	 3	 1	 2	 3	 1	 2	 3	 1	 2	 3	

1	 96.9	±	1.0	 33.6	±	0.6	 13.4	±	0.3	 93.0	±	1.0	 32.3	±	0.6	 12.9	±	0.3	 <QL	 <QL	 <QL	 <QL	 32.5	±	0.3	 61.2	±	0.6	

2	 94.2	±	1.0	 68.1	±	0.4	 28.4	±	0.2	 94.0	±	1.9	 57.6	±	1.2	 24.8	±	0.5	 <QL	 <QL	 <QL	 <QL	 28.6	±	0.6	 49.3	±	1.0	

3	 110.5	±	3.6	 52.8	±	0.7	 20.6	±	0.9	 107.3	±	0.6	 48.7	±	1.2	 17.8	±	0.4	 <QL	 2.3	±	0.1	 <QL	 <QL	 24.8	±	0.3	 48.8	±	0.2	

4	 121.4	±	1.4	 42.9	±	1.5	 17.9	±	1.0	 119.0	±	1.3	 38.1	±	1.3	 15.2	±	0.9	 <QL	 1.1	±	0.1	 <QL	 <QL	 25.0	±	0.5	 34.0	±	0.8	

5	 114.0	±	0.5	 49.8	±	0.4	 22.5	±	0.3	 111.0	±	0.5	 44.9	±	0.5	 20.8	±	0.4	 <QL	 0.6	±	0.1	 <QL	 <QL	 10.2	±	1.1	 23.2	±	1.3	

6	 97.7	±	1.0	 37.7	±	0.7	 8.6	±	0.8	 85.8	±	1.5	 21.0	±	1.4	 5.4	±	0.9	 <QL	 0.6	±	0.1	 <QL	 <QL	 32.8	±	1.0	 33.8	±	1.5	

7	 106.9	±	0.4	 18.1	±	0.9	 <QL	 102.5	±	0.1	 12.0	±	0.4	 <QL	 <QL	 <QL	 <QL	 <QL	 28.9	±	0.2	 32.5	±	0.1	

8	 102.8	±	1.7	 33.5	±	0.6	 7.2	±	0.2	 98.9	±	0.3	 29.8	±	0.2	 5.7	±	0.5	 <QL	 <QL	 <QL	 <QL	 3.9	±	0.05	 6.1	±	0.04	
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On	the	other	hand,	cases	4,	5	and	6	were	analyzed	pumping	methanol	 to	 the	system.	 It	 is	

interesting	 to	 note	 the	 cases	 4,	 5	 and	 6,	 where	 the	 COD	 concentration	 in	 the	 feed	 was	

approximately	constant	 (460	mg	O2/L).	 In	 these	situations,	 the	C/N	ratio	was	adjusted	around	

4.1	 by	 the	 addition	 of	methanol.	 This	 adjustment	was	 done	 to	 increase	 the	 available	 organic	

matter	in	the	feed	for	the	denitrification	process.	In	those	cases,	the	nitrate	recycling	ratio	was	

changed	as	follows:	R=3Q,	4Q	and	5Q.	For	this	reason,	the	results	showed	a	higher	percentage	

of	TN	removal	 than	 the	cases	1	and	2,	with	a	TN	removal	of	57.3%,	59.7%	and	56.2%	for	 the	

cases	4,5	and	6,	respectively,	as	can	be	seen	in	Figure	2.		

	

Figure	2:	COD	and	TN	removal	percentages	after	the	denitrification/nitrification	process.	

Contrary	to	expectations	with	respect	TN	and	COD,	there	was	no	appreciable	improvement	

in	 the	 removal	 efficiencies	with	 an	 increase	 in	 the	 nitrate	 recycling	 rate	 for	 cases	 4,	 5	 and	 6	

(Figure	2).	In	the	cases	compared	in	this	part	of	the	study,	the	same	amount	of	organic	matter	

for	 denitrifying	 was	 available.	 By	 increasing	 the	 recycling	 ratio	 of	 nitrate,	 the	 nitrate	 load	

supplied	to	the	anoxic	reactor	was	increased.	There	were	more	electron	acceptors	for	the	same	

amount	 of	 electron	 donors.	 Therefore,	 increasing	 R	 in	 the	 system,	 did	 not	 provoke	 an	

enhancement	in	the	yield	of	the	process,	because	of	the	lack	of	organic	matter	in	the	feed.	For	

the	wastewater	studied,	with	a	 low	C/N,	a	higher	nitrate	recycling	ratio	was	not	beneficial	 for	

nitrogen	 removal	 and	 it	 could	 be	 economically	 non-profitable.	 The	 enhancement	 in	 the	 TN	

removal	 efficiencies	 among	 cases	 4,	 5	 and	 6	 versus	 cases	 1-2,	 was	 due	 to	 the	 addition	 of	

methanol,	 which	 provided	 organic	 material	 to	 be	 used	 by	 denitrifying	 bacteria.	 The	 results	
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obtained	 are	 in	 agreement	 with	 the	 results	 reported	 by	 Fongsatitkul	 et	 al.	
[24]

,	 showing	 no	

improvement	 on	 the	 COD	 removal	 with	 respect	 the	 influence	 of	 R.	 On	 the	 other	 side,	 this	

author	observed	a	modest	 improvement	of	4-5%	TKN	removal	when	R	doubled	from	Q	to	2Q,	

but	no	further	 increase	at	a	recycling	ratio	of	4Q.	 In	the	case	of	Chen	et	al.	
[25]

,	at	 low	COD/N	

ratio	of	3.0,	 the	N	 removal	efficiency	decreased	when	R	 increased,	due	 to	 the	 limited	carbon	

sources	in	anoxic	zones,	and	only	at	high	COD/N	ratio	of	5.5,	the	N	removal	efficiency	steadily	

increased	with	R.	

In	 Figure	 3	 is	 depicted	 the	 evolution	 of	 TKN	 and	 NO3
-
-N	 concentration	 in	 the	 different	

situations	studied	in	the	work.	In	the	left	column	is	represented	the	feed	and	in	the	right	one,	

the	effluent	after	denitrification/nitrification	process.	It	can	be	observed	a	clear	decrease	in	the	

TKN	effluent	 compared	 to	 the	 inlet	 concentration	 in	 all	 the	 analyzed	 cases,	 indicating	 a	 good	

nitrification	 yield.	 The	 case	 2,	 the	 most	 unfavorable	 case	 in	 terms	 of	 operating	 conditions,	

shows	 the	worst	yield	of	nitrification	and	a	TN	removal.	The	graphics	of	 the	cases	4,	5	and	6,	

show	no	considerable	differences	between	them.	

	

Figure	3:	Comparison	of	nitrogen	compound	concentrations	in	the	different	cases,	before	and	after	

denitrification/nitrification	treatment.	

Sometimes	incomplete	denitrification	can	produce	N2O,	which	is	an	intermediary	product	in	

denitrification	 processes.	 This	 can	 be	 problematic	 as	 N2O	 is	 a	 potent	 greenhouse	 gas	 and	

contributes	 to	 increasing	 the	 earth's	 temperature	 and	 destructing	 the	 ozone	 layer	
[26]

.	 Gas	

samples	taken	from	the	bioreactor	showed	concentrations	lower	than	9	mg/L	of	N2O	gas	in	its	

headspace,	corresponding	to	less	than	10%	of	the	N	removed.	
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3.2.	The	effect	of	increasing	the	COD/N	ratio.	

The	 removal	 efficiency	of	nutrient	 and	organic	 carbon	 in	 the	denitrification-nitrification	

system	with	different	COD/N	ratios	was	also	studied.	 In	a	wastewater	treatment	plant,	part	of	

the	 stream	 that	 feeds	 the	 anaerobic	 reactor	 is	 derived	 through	 a	 bypass,	 to	 the	 stream	 that	

feeds	the	denitrification	reactor.	With	this	course	of	action,	it	is	possible	to	increase	the	soluble	

COD	 available	 in	 the	 liquid	 stream	 that	 feeds	 the	 denitrification	 reactor,	 and	minimizing	 the	

adding	 of	 external	 carbon	 sources.	 In	 this	 work,	 methanol	 was	 employed	 as	 extra	 carbon	

source,	 in	 order	 to	 simulate	 the	 increment	 of	 the	 denitritation	 potential	 by	 increasing	 the	

concentration	of	organic	matter	available	in	the	system.	

The	C/N	ratio	of	the	wastewater	after	anaerobic	treatment	was	around	1.1	(cases	1	and	2),	

showing	 a	 lack	 of	 carbon	 source	 to	 promote	 the	 denitrification	 process.	 On	 the	 one	 side,	

comparing	 the	 cases	 2	 and	 3,	 methanol	 was	 added	 to	 enhance	 the	 denitrification	 step	

increasing	the	C/N	ratio	 from	1.1	 to	2.6,	while	nitrate	recycling	ratio	was	maintained	at	200%	

(R=2Q).	The	corresponding	removal	efficiencies	of	TN	were	doubled	from	17.6%	to	38.7%	as	can	

be	 seen	 in	 Figure	 2.	With	 regard	 to	 organic	matter,	 the	 removal	 efficiency	 of	 COD	enhanced	

from	74.4%	to	92.2%,	with	a	concentration	effluent	of	27.1	mg	O2/L	in	the	case	2,	and	22.3	mg	

O2/L	 in	 the	 case	 3	 (Table	 3).	 As	 depicted	 in	 Figure	 3,	 NO3
-
-N	 in	 the	 effluent	 of	 the	

denitrification/nitrification	 process	 remained	 almost	with	 the	 same	 concentration.	 Looking	 at	

TKN,	 the	effluent	concentration	 in	 the	case	3	was	around	25%	 lower	 than	case	2,	despite	 the	

fact	that	in	case	3	the	feeding	concentration	was	almost	15%	higher	than	in	case	2.	

On	 the	 other	 side,	 looking	 at	 cases	 7	 and	 8,	 nitrate	 recycling	 ratio	 from	 the	 aerated	

bioreactor	was	maintained	at	600%	(R=6Q)	and	methanol	was	added	to	increase	the	COD	in	the	

feeding.	In	the	case	7,	the	COD	was	574.0	mg	O2/L	and	the	C/N	ratio	was	5.37,	as	indicated	in	

Table	2.	More	amount	of	methanol	was	added	 in	 case	8,	where	848.2	mg	O2/L	was	 the	 inlet	

COD,	changing	the	COD/TN	ratio	from	5.37	to	8.25.	 In	comparison	to	case	7,	with	this	raise	 in	

the	 concentration	 of	 COD	 in	 the	 feed,	 the	 nitrogen	 removal	 efficiency	 shown	 a	 substantial	

improvement	from	69.6%	to	84.7%	(Figure	2),	obtaining	effluents	with	32.5	mg	N/L	and	13.3	mg	

N/L	of	total	nitrogen	in	cases	7	and	8,	respectively	(Table	4).	The	two	situations	got	a	high	COD	

removal	of	around	96.1%.	Figure	3	shows	the	high	decrease	in	the	NO3
-
-N	concentration	column	

after	the	denitrification/nitrification	process.	

Summarizing,	 the	 greater	 the	 influent	 C/N	was,	 the	 better	 the	 TN	 removal	 was	 obtained.	

Similar	observation	were	done	by	Han	et	al.	
[27]

,	Wang	et	al.	
[28]

	and	Kumar	et	al.	
[12]

.	Therefore,	
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based	in	the	results,	the	denitrification	capacity	of	the	system	was	affected	by	the	availability	of	

COD	present	in	the	influent	and	the	addition	of	COD	was	a	very	important	point	in	the	nitrogen	

removal.	

Considering	on	 the	one	hand,	 that	 the	COD	of	 the	wastewater	before	 the	AnMBR	 reactor	

(after	the	sedimentation	tank)	is	610	mg	O2/L	
[2]
,	and	on	the	other	hand,	the	by-pass	of	50%	of	

influent	 raw	 sewage,	 the	 requirements	 of	 methanol	 to	 achieve	 848	 mg	 O2/L	 would	 be	

diminished	in	33.6%.	

Fu	et	al.	found	removal	efficiencies	of	96.2%	for	COD	and	83%	for	TN,	with	rather	longer	HRT	

than	 the	 achieved	 in	 this	 work:	 1.5	 days	 versus	 6	 hours.	 The	 process	 they	 developed	 was	 a	

modified	membrane	bioreactor	with	 two	parts	 for	 the	anoxic	and	aerobic	compartments	 that	

treated	synthetic	wastewater	with	a	C/N	ratio	of	9.3	
[16]

.		

Azhdarpoor	et	al.	
[29]

	obtained	92%	and	86%	of	COD	and	TN	removal,	respectively	with	a	SBR	

configuration	 but	 with	 a	 synthetic	 wastewater	 with	 a	 C/N	 ratio	 much	 higher	 than	 the	

experimented	 in	 this	 work	 (C/N=19	 versus	 C/N=8.3)	 and	 8	 hours	 of	 TRH	 (versus	 6	 h	 in	 this	

study).	

Among	the	cases	studied	in	the	work,	in	cases	7	and	8	took	place	the	largest	increases	in	the	

TN	removal	efficiency.	More	specifically,	 the	removal	efficiency	of	TN	was	 increased	by	40.7%	

between	 the	 cases	 1	 and	 3;	 35.1%	 of	 TN	 removal	 efficiency	 increase	 was	 observed	 when	

comparing	the	cases	3	and	5;	and	29.5%	was	the	increase	in	the	TN	removal	efficiency	between	

the	cases	5	and	8.	

There	was	no	 significant	difference	 in	 the	phosphorus	 concentration	between	 the	 influent	

and	 effluent	 in	 any	 case.	 The	 wastewater	 would	 require	 one	 specific	 treatment	 for	 its	

elimination.	

Thus	the	denitrification-nitrification	system	could	achieve	a	long-term	stability	for	removal	of	

nitrogen	 with	 the	 addition	 of	 methanol,	 obtaining	 an	 effluent	 that	 likely	 complies	 with	 the	

legislative	requirements	for	discharge	into	waters,	as	regards	organic	matter	and	nitrogen	
[3]
.	

The	 results	 obtained	 in	 this	 work	 showed	 a	 big	 improvement	 over	 the	 processes	 already	

developed	 by	 other	 authors	 and	 described	 in	 the	 literature.	 Similar	 values	 of	 COD	 and	 TN	

removal	were	achieved	 to	 those	developed	 in	 literature	but	using	shorter	 residence	 time	and	

lower	COD,	which	implies	as	consequence,	the	use	of	smaller	equipment	and	a	lower	addition	

of	chemicals.	
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As	 future	work	 it	 is	 proposed	 to	 evaluate	 the	 effect	 of	 increasing	 the	 carbon	 ratio	 on	 the	

nitrogen	elimination	potential	using	 the	mixing	of	 the	anaerobic	 reactor	effluent	and	 the	 raw	

feed.	

4.	CONCLUSIONS	

The	 developed	 process	 is	 an	 interesting	 alternative	 to	 eliminate	 the	 nitrogen	 and	 organic	

matter	 present	 in	 the	 wastewater	 from	 an	 anaerobic	 reactor,	 with	 very	 low	 C/N	 ratios.	 The	

proposed	system	was	a	denitrification/nitrification	 integrated	process	with	a	short	HRT	of	2	h	

for	the	anoxic	bioreactor	and	4	h	for	the	aerobic	one.	

The	successful	results	of	the	system	to	remove	COD	and	TN	from	domestic	wastewater	after	

anaerobic	 treatment	 could	 be	 achieved	 mainly	 due	 to	 the	 addition	 of	 methanol.	 Methanol	

increased	 the	 molar	 ratio	 of	 C/N	 in	 the	 wastewater	 accelerating	 the	 nitrification	 and	

denitrification	rates,	being	the	key	point	 in	the	nitrogen	removal.	 	On	the	other	hand,	despite	

nitrate	 recycling	 did	 not	 suppose	 a	 significant	 improvement	 in	 the	 process,	 it	 improved	 the	

homogeneous	 distribution	 of	 microbial	 communities	 in	 the	 reactors	 increasing	 the	 removal	

efficiency	of	nitrogen.	

The	 optimal	 nitrogen	 and	 organic	matter	 removal	were	 84.7%	 and	 96%,	 respectively.	 The	

optimized	process	was	performed	under	a	nitrate	recycling	ratio	of	six	 times	the	 feeding	 flow	

(600%)	 and	 addition	 of	 methanol	 until	 obtaining	 an	 inlet	 C/N	 ratio	 of	 8.25	 and	 a	 COD	

concentration	of	 almost	 850	mg	O2/L.	As	 result	 of	 the	 combined	 impacts,	 it	was	obtained	 an	

effluent	 that	met	 the	 requirements	 of	wastewater	 discharge,	 in	 terms	 of	 organic	matter	 and	

nitrogen	content.	

It	is	noteworthy	that	the	enhancement	of	the	C/D	ratio	can	be	made	by	bypassing	part	of	the	

feedstream	 from	 a	 point	 before	 the	 anaerobic	 treatment	 to	 another	 point	 in	 the	 end	 of	 this	

reactor.	 In	 this	 way,	 it	 is	 provided	 to	 the	 denitrification	 process	 a	 feed	 with	 a	 higher	

concentration	in	organic	matter,	and	therefore,	the	external	carbon	source	need	is	reduced.	
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Chapter	6.	
Techno-economical	study	of	a	

domestic	wastewater	treatment	

system.	
	

Abstract	

The	 techno-economical	 feasibility	 of	 the	 membrane	 anaerobic	 treatment	 of	

wastewater	 eliminating	 nitrogen	 has	 been	 simulated.	 The	 process	was	 simulated	

using	 experimental	 data	 analyzing	 the	 influence	 of	 different	 electron	 donors	

(methane,	 organic	 matter	 and	 sulfide)	 on	 the	 nitrogen	 elimination	 capacity.	

Different	scenarios	have	been	assessed	changing	the	concentration	of	the	involved	

components	 and	 evaluating	 their	 effect	 on	 the	 nitrogen	 elimination	 capacity	 as	

well	as	 the	ability	 to	produce	biogas	 in	 the	anaerobic	 treatment.	These	scenarios	

imply	on	the	one	hand,	the	increment	of	the	available	soluble	COD	for	the	nitrogen	

elimination	 stage.	 The	 COD	 feed	 to	 the	 reactor	was	 adjusted	 at	 values	 between	

15%	 and	 30%	 assuming	 different	 mixing	 ratios	 with	 the	 influent	 stream	 of	 the	

anaerobic	reactor.	On	the	other	hand,	different	flows	of	biogas	from	the	anaerobic	

reactor	 were	 pumped	 to	 the	 denitritation	 reactor.	 The	 goal	 was	 to	 achieve	 a	

nitrogen	 elimination	 capacity	 to	 reach	 an	 effluent	with	 10-20	mg	N/L.	 Then,	 the	

most	 promising	 scenario	was	 studied	 in	 detail	 and	 it	was	 compared	 to	 the	 costs	

associated	 to	 the	 WWTP	 with	 a	 biological	 anaerobic	 treatment	 using	 a	 MBR	

system.	The	results	indicated	that	the	proposed	process	is	feasible	since	the	fixed	

and	variables	costs	of	both	treatment	plants	are	similar.	

	

Keywords:	COD	•	Biogas	•	•		
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1. INTRODUCTION	

Besides	the	removal	of	COD,	nutrient	removal,	especially	the	removal	of	nitrogen	(N),	is	also	

of	increasing	concern	during	the	wastewater	treatment	process	
[1]
.	Nitrification–denitrification,	

which	 is	 the	 most	 common	 biological	 nitrogen	 removal	 (BNR)	 method	 in	 conventional	

wastewater	 treatment	 plants	 (WWTP),	 is	 an	 energy	 intensive	 process	 that	 couples	 chemical	

oxygen	 demand	 (COD)	 and	 nitrogenous	 oxygen	 demand	 (NOD)	 removal.	 High	 NOD	 increases	

the	need	for	oxygen	supply	and	aeration,	which	is	the	dominant	the	energy	consuming	process	

(∼50%)	in	typical	WWTPs	with	N	removal	
[1,	2]

.	

In	 the	 absence	 of	 a	 suitable	 electron	 acceptor,	 a	 consortia	 of	 microorganisms	 convert	

organic	matter	 to	methane	 (CH4)	 and	 carbon	 dioxide	 (CO2),	which	 can	 be	 used	 as	 biogas	 for	

either	 heat	 or	 electricity	 generation.	 Several	 life	 cycle	 assessments	 have	 confirmed	 that	

anaerobic	digestion	is	a	sustainable	waste-to-energy	system	from	the	prospects	of	both	energy	

production	and	greenhouse	gas	(GHG)	emissions	
[3,	4]

.	Compared	to	other	techniques	for	energy	

recovery,	 anaerobic	 digestion	 is	 a	mature	method	 that	 is	 already	widely	 used	 in	WWTPs	 for	

recovering	 energy	 in	 the	 form	 of	 methane-rich	 biogas	 produced	 during	 digestion	 of	 primary	

sludge	and	biomass	generated	during	conventional	aerobic	treatment	
[1]
.	Generally	considered	

as	 an	 unfavorable	 byproduct	 of	wastewater	 treatment,	waste	 biomass	 from	 activated	 sludge	

processes	 can	 also	 be	 thought	 as	 a	 raw	 material	 for	 energy	 production	
[1,	 5]

.	 Advanced	

wastewater	 treatment	 plants	 are	 now	making	 significant	 progress	 towards	 energy	 neutrality	

through	 installation	 of,	 among	 others,	 anaerobic	 digestion	 and	 nitritation–denitritation	

processes.	

One	of	the	useful	outcomes	of	a	process	simulation	 is	that	different	working	scenarios	can	

be	 evaluated.	 The	 results	 of	 these	 simulations	 can	 be	 used	 to	 create	 a	 holistic	 view	 of	 the	

system.	 In	 addition,	 it	 is	 possible	 to	determine	 the	 response	of	 the	 system	when	 the	process	

parameters	 are	 varied.	 This	 is	 one	 of	 the	 most	 convenient	 ways	 to	 perform	 an	 economical	

feasibility	assessment	of	a	process.	

The	model	employed	in	the	simulation	performed	in	this	research	work	is	able	to	determine	

the	overall	nitrogen	elimination	capacity	of	a	nitritation-denitritation	system	depending	on	the	

quality	 of	 the	 influent	 under	 different	 working	 scenarios.	 This	 result	 would	 point	 the	 right	

design	of	the	process	as	well	as	the	effluent	characteristics.		

Aiming	 to	 employ	 realistic	 values	 for	 the	 study,	 the	 operation	 parameters	 used	 in	 the	

simulation	were	gotten	from	previous	experimentations.		
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The	objective	of	this	work	was	to	evaluate	the	economical	feasibility	of	the	nitrogen	elimination	

technology	developed	 in	this	 thesis.	 In	addition,	 the	work	was	 focused	 in	 finding	the	sensitive	

parameter	that	can	be	modified	to	get	the	biggest	conversion	of	nitrite	to	nitrogen	gas	 in	the	

denitritation	process.	

2. MATERIALS	AND	METHODS.	

The	composition	of	the	influent	water	to	the	system	is	shown	in	Table	1.	

Table	1:	Composition	of	the	influent	water.	

Parameter	 Concentration	

Total	COD	(mg	O2/L)	 771	

Soluble	COD	(mg	O2/L)	 491	

TSS	(g/L)	 0.14	

VSS	(g/L)	 0.12	

NO2
-
-N	(mg	N/L)	 1.52	

NO3
-
-N	(mg	N/L)	 1.56	

TKN	(mg	N/L)	 93.29	

NH4
+
-N	(mg	N/L)	 69.54	

SO4
2-
-S	(mg	S/L)	 16.88	

PO4
3-
-S	(mg	P/L)	 9.82	

	

A	 schema	of	 the	 simulated	 set	 up	 is	 depicted	 in	 Figure	 1.	 The	 system	 is	 composed	 of:	 an	

anaerobic	membrane	bioreactor	(AnMBR)	
[6]
,	a	denitritation	reactor	and	a	nitritation	reactor.	A	

fraction	of	the	nitritation	reactor	effluent	is	recycled	to	the	denitritation	reactor.		

	

Figure	1:	Scheme	of	the	simulated	setup.	
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The	denitritation	stage	is	fed	with	the	effluent	from	an	anaerobic	membrane	reactor,	so,	the	

study	of	this	reactor	was	also	included	in	the	model.	A	variation	in	the	process	flow	diagram,	like	

the	addition	of	a	by-pass	to	the	first	stage	to	increase	the	organic	matter	content	of	its	effluent,	

could	 affect	 the	 quality	 of	 the	 effluent.	 Consequently,	 this	 change	 would	 also	 affect	 the	

simulation	of	the	next	operation	in	the	process.	It	is	also	important	to	point	that	the	simulation	

was	performed	considering	stoichiometric	reactions	of	the	components	involved	in	the	process.		

The	ammonium	in	the	wastewater	is	oxidized	into	nitrite	in	the	nitritation	process.	Then,	the	

nitrite	is	transformed	to	nitrogen	in	the	denitritation	reactor	using	different	electron	donors	
[7-9]

.	

It	was	considered	to	carry	out	 the	denitritation	with	the	residual	organic	matter,	sulfide	
[10,	 11]

	

and	methane	
[12,	 13]

	 present	 in	 the	water	 since	 this	 process	 is	 performed	 after	 the	 anaerobic	

treatment.	Different	sulfide	and	methane	sources	were	considered	and	their	contributions	were	

evaluated	on	 the	 capacity	 of	 overall	 denitritation	 of	 the	 system.	 Sulfide	 and	methane	 can	be	

used	as	endogenous	electron	donors	source	for	biological	denitrification	of	wastewater.		

The	 autotrophic	 denitrification	 employing	 sulfide	 and	 the	 heterotrophic	 denitrification	

employing	methane	could	be	 insufficient	to	convert	the	entire	amount	of	nitrite	gotten	 in	the	

initial	 process	 into	 nitrogen.	 In	 this	 case,	 it	 is	 necessary	 to	 add	 organic	 matter	 as	 source	 of	

electron	donors.	The	main	source	of	sulfide	and	methane	is	gotten	from	the	liquid	effluent	from	

the	anaerobic	reactor	
[14,	15]

,	where	those	components	are	dissolved	and	oversaturated	
[16]

.	This	

phenomenon	 takes	 place	 because	 the	 organic	 matter	 is	 transformed	 into	 biogas	 in	 the	

anaerobic	process,	which	is	composed	of	sulfide	and	methane	among	other	gases.	The	sulfide	

concentration	 in	 the	 influent	 stream	 to	 the	 denitrification	 process	 can	 be	 determined	 by	

calculating	 the	 amount	 of	 sulfide	 produced	 during	 the	 anaerobic	 digestion	 by	 the	 sulfate	

reducing	bacteria	
[17,	 18]

.	 The	 sulfur	mass	balance	determined	 that	 the	 sulfur	 concentration	as	

sulfide	in	the	biogas	is	not	equivalent	to	the	sulfate	oxidation	in	the	anaerobic	process.	So,	this	

concentration	should	be	referred	to	the	sulfide	occluded	in	the	anaerobic	process	effluent.	On	

the	other	hand,	the	heterotrophic	denitritation	is	carried	out	using	the	methane	occluded	in	the	

influent.	 The	 net	 methane	 production	 in	 the	 anaerobic	 process	 was	 estimated	 employing	

experimental	 data.	 This	 amount	 is	 lower	 than	 the	 theoretical	 amount	 of	 methane	 produced	

from	the	eliminated	organic	matter.	This	difference	can	be	attributed	to	the	methane	which	is	

occluded	 in	 the	 liquid	 influent,	 in	 the	 same	 way	 that	 it	 was	 analyzed	 for	 sulfide.	 The	

concentration	of	these	available	components	to	perform	the	denitrification	will	be	determined	

by	characterization	of	the	 influent	water	to	the	anaerobic	process	and	 its	operation	regarding	

the	capacities	of:	organic	matter	elimination	and	 sulfate	 to	 sulfide	 reduction.	Considering	 the	

explained	 above,	 the	 denitrification	 capacity	 of	 the	 system	 will	 be	 determined	 by	 the	
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concentration	of	sulfide,	methane	and	organic	matter	in	the	influent.	Nevertheless,	this	capacity	

can	 be	 modified	 by	 changing	 the	 concentration	 of	 organic	 matter	 in	 the	 influent	 water	 or	

adding	 the	 methane	 and	 sulfide	 produced	 as	 biogas	 in	 the	 anaerobic	 reactor	 as	 source	 of	

electron	 donors.	 This	 can	 be	 achieved	 by	 connecting	 the	 biogas	 produced	 in	 the	 anaerobic	

reactor	 to	 the	 denitrification	 reactor	 (see	 the	 dashed	 line	 in	 Fig	 1).	 During	 the	 experimental	

stage,	it	was	only	possible	to	carry	out	the	denitrification	when	synthetic	nitrites	were	added	to	

the	feed	(Chapter	3	and	4).	 It	was	not	possible	to	get	the	partial	nitritation	 in	the	nitrification	

reactor	(Chapter	5).	So,	in	this	study,	it	is	compared	both	processes:	nitritation/denitritation	and	

nitrification/denitrification.	

The	 different	 scenarios	 were	 simulated	 to	 study	 its	 influence	 in	 the	

denitritation/denitrification	process.	

2.1.	Mass	and	energy	balances:	

Mass	and	energy	balances	calculation	were	conducted	in	order	to	study	the	influence	of	the	

different	effects.	The	main	equations	used	in	the	study	are	the	following:		

COD	effect:	

!"#$%	'()	$*$+%$,%- = '()/0/123456	1778910: + '()4<=/>>	 	 	 	 (1)	

!"#$%	?-@+#. B"#-@#+$% = C(DE − C 750/8	1778910: + ((H + 'IJ + IKL)N105:.6/=/65:< +

C(DE − C 21O3P1N	Q5:R	:R1	216<681N	/0/123456	453S/>		 	 	 	 	 	 (2)	

T%-U#V+U	-@-VWX	BV"?YU-? = T%-U#V+U	-@-VWX723O	Z[\ ∙ ^1816:256/8	453S/>	 	 (3)	

T%-U#V+U	-@-VWX723O	Z[\ = 'IJ	BV"?YU#+"@723O	453S/> ∙ _' Ò1:R/01 ∙ 	^	 	 (4)	

Where	 	^1816:256/8	453S/>	 is	 the	electrical	 efficiency	of	 biogas.	 Electric	 energy	 is	 considered	

1/3	of	the	thermal	energy,	so	this	value	is	0.33;	_'`	is	the	methane	gross	calorific	value	(9530	

Kcal/Nm
3
);	^	is	a	yield	of	90%	because	it	is	considered	10%	of	energy	loss.		

Effect	of	Recycling	biogas:	

%	b-UXU%-?	c+"W$d =
e	∙	 Zfghijh	klmn 	∙	 Z[\/pqmnrhfstusfvjhwst	wxhsf

y53S/>	=23N96:530zwfv	x{xjwf|st	wjxthfw 	∙	 %Z[\s{	|sf}xr
	 	 (5)	

Where	~	 is	the	feed	flow	of	the	simulated	process	(20000	m
3
/d));	'39:81:	pqmn		 is	the	NOx

-
-N	

concentration	 after	 denitritation/denitrification	 process;	 'IJ/C(D1>:1�953O1:256	2/:53	 is	 the	

stoichiometric ratio	from	the	reaction.	
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3. RESULTS	AND	DISCUSSION.	

3.1. COD	Effect	

One	of	the	most	effective	methods	to	increase	the	denitrification	capacity	by	increasing	the	

organic	matter	concentration	of	the	influent	is	achieved	by	mixing	a	fraction	of	the	influent	to	

the	anaerobic	reactor	with	the	effluent	of	 that	reactor.	The	use	of	 this	“by-pass”	will	 increase	

the	COD	of	the	reactor	effluent	making	it	more	adequate	to	the	next	denitrification	stage.	

Different	scenarios	were	evaluated.	The	volumetric	flow	bypassed	to	the	anaerobic	reactor	

are	supposed	to	vary	in	5%,	7%	and	10%	of	the	total	feed	to	the	anaerobic	reactor.	In	this	way,	

from	Eq.1	it	is	possible	to	increase	the	available	soluble	COD	in	15%,	21%	and	30%	respectively,	

in	 comparison	 to	 the	 initial,	 when	 there	 was	 not	 by-pass.	 So,	 from	 Eq.2	 the	 denitritation	

potential	can	be	increased	in	4.5%,	6.3%	and	9%	respectively,	depending	on	the	bypassed	flow.	

This	behavior	is	depicted	in	Figure	2.		

In	the	denitrification	case	(Figure	2),	the	denitrification	potential	change	with	available	COD	

is	 small	 because	 the	 relationship	 acceptors/donors	 is	 higher.	 So,	 the	 effect	 of	 increasing	 the	

available	organic	matter	on	the	denitrification	potential	in	this	case	is	slight,	with	values	of	1.6%,	

2.2%	and	3.2%	(Eq.2).		

The	 total	 capacity	 of	 denitritation/denitrification	 is	 calculated	 as	 the	 sum	 of	 the	

denitritation/denitrification	capacities	of	organic	matter,	methane	and	sulfides	available	(Eq.2).	

The	increment	in	the	potential	is	obtained	because	of	the	increase	of	the	organic	matter.	It	has	

to	be	considered	that	in	those	cases,	the	concentration	of	sulfide	and	methane	is	reduced	when	

the	 bypassed	 flow	 is	 increased.	 This	 is	 an	 expected	 behavior	 since	 the	 bypass	 implies	 the	

reduction	of	 the	 treated	 flow	 in	 the	anaerobic	 reactor	and	 it	will	be	 translated	 in	 less	 soluble	

COD	available	for	the	production	of	biogas	(methane	and	sulfide).	
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Figure	2:	Relationship	between	the	denitritation	(•)	and	denitrification	(o)	potential	depending	on	the	

amount	of	COD	in	the	influent.	

The	addition	of	a	by-pass	to	the	anaerobic	reactor	involves	other	effects,	which	do	not	affect	

the	economic	feasibility	of	the	proposed	method.	An	important	advantage	of	the	process	is	the	

reduction	of	 the	equipment	size	which	 is	 translated	 in	 less	 initial	 investment	 in	 the	anaerobic	

process	(equipment	and	infrastructure)	and	also	less	operation	costs	in	the	membrane	reactor.	

On	 the	other	hand,	one	of	 the	weak	points	of	 this	proposal	 is	 the	 reduction	of	 the	produced	

biogas	because	of	 the	 lower	 flow	treated	 (Figure	3).	This	 reduction	 implies	a	 reduction	 in	 the	

amount	of	electric	energy	produced	by	the	system	(Eq.3	and	Eq.4).	It	has	to	be	considered	that	

one	of	the	most	important	costs	in	the	WWTP	is	the	electricity.	So,	the	electric	energy	has	to	be	

considered	as	a	control	parameter	to	determine	the	economic	feasibility	of	the	process.	So,	it	is	

analyzed	the	change	in	energy	production	linked	to	each	of	the	proposed	improvements.	

In	both	cases	presented	 in	Figure	3,	 the	 reduction	 in	 the	electric	energy	 (Eq.3	and	Eq.4)	 is	

obtained	because	of	 a	 reduction	 in	 the	 feed	 flow	 to	 the	anaerobic	 reactor.	 So,	 the	 reduction	

value	is	linked	to	the	flow	reduction	value	of	5%,	7%	and	10%.		
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Figure	3:	Relationship	between	the	denitritation	(•)	and	denitrification	(o)	potentials	with	the	electric	

energy	produced	employing	the	biogas	produced	in	the	anaerobic	process.		

	

3.2. Effect	of	the	recycling	of	biogas	

The	 methane	 and	 sulfide	 produced	 as	 biogas	 in	 the	 anaerobic	 process	 can	 be	 also	

considered	 as	 an	 electron	 donor	 source	
[19,	 20]

.	 The	 addition	 of	 a	 biogas	 recycle	 in	 the	

denitrification	reactor	would	increase	the	methane	and	sulfide	concentration	inside	the	reactor,	

enhancing	the	nitrogen	elimination	capacity	as	nitrites	or	nitrates.	

The	 simulations	 of	 this	 scenario	 considered	 the	 maximum	 elimination	 of	 nitrogen	 (final	

concentration	of	0,	10,	15	and	20	mg	N/L)	using	as	low	as	possible	amount	of	biogas.	The	effect	

of	biogas	recycling	is	depicted	in	Figure	4	for	the	denitritation/denitrification	process,	and	it	was	

calculated	following	Eq.5.	It	can	be	seen	that	the	denitritation	potential	(Eq.2)	can	be	increased	

in	21.2%,	31.7%	and	42.3%	by	recycling	4.7%,	7.0%	and	9.3%	respectively,	of	the	total	available	

biogas.	In	the	case	of	the	denitrification	process,	the	recycled	biogas	flow	was	increased	up	to	

15.4%.	 In	 this	 case,	 the	 nitrogen	 elimination	 capacity	 can	 be	 increased	 in	 44.3%,	 66.4%	 and	

88.5%	 by	 recycling	 7.7%,	 11.6%	 and	 15.4%	 respectively,	 of	 the	 total	 available	 biogas,	 in	

comparison	to	the	no	recycle	system.	
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Figure	4:	Relationship	between	the	denitritation	(•)	and	denitrification	(o)	potentials	with	the	percentage	

of	recycled	biogas.	

	

It	has	to	be	pointed	that	the	cases	analyzed	in	this	section	do	not	include	the	by-pass	to	the	

anaerobic	 reactor	 to	 increase	 the	 influent	COD	to	 the	denitritation/denitrification	 reactor.	So,	

the	effect	observed	is	attributed	exclusively	to	the	increment	of	methane	and	sulfide.		

The	increment	in	the	recycled	biogas	flow	diminishes	the	production	of	electric	energy	from	

the	 produced	 biogas.	 In	 Figure	 5,	 it	 is	 depicted	 how	 the	 increment	 in	 the	 potential	 of	

denitritation	and	denitrification	(Eq.2)	affects	the	economic	feasibility	of	the	processes	(Eq.4).		

It	can	be	seen	in	Figure	5	that	the	amount	of	electric	energy	produced	in	both	cases	is	lower	

at	 higher	 denitritation/denitrification	 potentials.	 The	 highest	 loss	 of	 produced	 energy	 is	

observed	 in	 the	 denitrification	 process	 with	 reduction	 rates	 of	 8.3%,	 13.1%	 and	 18.2%.	 The	

denitritation	reactor	showed	reduction	rates	of	4.9%,	7.5%	and	10.3%.	
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Figure	5:	Relationship	between	the	denitritation	(•)	and	denitrification	(o)	potentials	with	the	electric	

energy	produced	using	the	biogas	generated	in	the	anaerobic	reactor.	

	

3.3. Effect	of	combined	COD	and	methane	

The	scenarios	previously	evaluated	can	be	combined	at	the	same	time	to	get	better	results.	

As	depicted	 in	Figure	6,	 the	study	of	 the	effect	of	both	variables	 in	 the	 two	analyzed	systems	

shows	 that	 the	 increment	 of	 the	 available	 soluble	 COD	 has	 a	 higher	 effect	 on	 the	 nitrogen	

removal	potential	when	the	biogas	addition	is	lower.	

On	 the	 other	 hand,	 in	 the	 denitrification	 case,	 the	 effect	 of	 the	 COD	 is	minimum,	 so	 the	

combined	effect	is	mainly	due	to	the	methane.	So,	the	combination	of	the	two	variables	do	not	

shows	big	changes.	
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Figure	6:	Relationship	between	the	denitritation	(a)	and	denitrification	(b)	potentials	with	the	percentage	

of	biogas	recycled	in	function	of	the	soluble	COD	increment.	

	

Both	 strategies	 imply	 the	 reduction	 in	 the	 energy	 production	 from	 biogas.	 So,	 their	

combination	 should	 contemplate	 the	 addition	 of	 this	 reduction	 (depicted	 in	 Figure	 7).	 In	 the	

denitrification	 case,	 considering	 that	 the	 methane/nitrate	 ratio	 is	 higher	 than	 the	

methane/nitrite	ratio,	the	needs	of	biogas	will	be	higher	to	reach	certain	nitrogen	removal,	so,	

the	energy	balance	is	less	favorable.	

20

25

30

35

40

45

50

55

60

65

70

75

0 2 4 6 8 10 12 14 16 18

D
en
itr
ita
tio

n/
D
en
itr
ifi
ca
tio

n	
Po

te
nt
ia
l	(
m
g	
N
/L
)

Biogas	Recycled	to	Denitritation/Denitrification	(%)

sCOD	increment	(0%) sCOD	increment	(15%) sCOD	increment	(21%) sCOD	increment	(30%)

sCOD	increment	(0%) sCOD	increment	(15%) sCOD	increment	(21%) CODs	increment	(30%)
Denitrification:

Denitritation:



																																																																																																																																																									Chapter	6	
	

149	

	

	

Figure	7:	Relationship	between	the	denitritation	(a)	and	denitrification	(b)	potentials	with	the	produced	

electric	energy.	

	

3.4. Economic	evaluation	

Once	 the	 nitrogen	 removal	 capacity	 of	 both	 systems	 was	 evaluated,	 the	 optimum	 option	

should	be	decided.	The	key	for	deciding	that	is	the	choice	between	the	analyzed	scenarios	that	

maximizes	the	nitrogen	elimination	(nitrates/nitrites	to	nitrogen)	and	keeps	as	high	as	possible	

the	electric	energy	production	from	biogas.	In	any	case,	respecting	the	quality	required	for	the	

effluents	by	the	Law.	

The	maximum	concentration	of	nitrates	and	nitrates	 that	 can	be	 reduced	 (considering	 the	

potentials	evaluated	above)	depends	on	the	flow	of	the	recycle	stream.	This	recycling	flow	will	

affect	also	the	design	of	the	next	stages	of	the	process.		

The	simulation	was	done	considering	the	following	parameters:	

• Feed	Flow	to	the	process:	20.000	m
3
/d.	

• Ammoniacal	nitrogen	concentration:	95	mg	N/L.	

20

25

30

35

40

45

50

55

60

65

70

75

260 280 300 320 340 360

D
en
itr
ita
tio

n/
De
ni
tr
ifi
ca
tio
n	
Po
te
nt
ia
l	(
m
g	
N
/L
)

Electric	energy produced(kW/h)

sCOD	increment	(0%) sCOD	increment	(15%) sCOD	increment	(21%) sCOD	increment	(30%)

sCOD	increment	(0%) sCOD	increment	(15%) sCOD	increment	(21%) sCOD	increment	(30%)

Denitritation:

Denitrification:



																																																																																																																																																									Chapter	6	
	

150	

	

• Ammoniacal	nitrogen	conversion	to	nitrites/nitrates:	95%.	

• Concentration	of	nitrites/nitrates	in	the	effluent:	≤	8	mg	N/L.	

Assuming	these	working	conditions,	the	optimum	process	will	be	composed	of:	an	anaerobic	

biological	 reactor	 without	 derivation	 of	 the	 flow;	 followed	 by	 a	 denitritation	 system	 with	 a	

recycling	 of	 biogas	 of	 20.5%	 respect	 to	 the	 total	 amount	 of	 produced	 biogas;	 and	 finally,	 a	

nitritation	stage	with	a	recycling	of	1.2	time	the	flow	of	the	influent.		

The	 working	 option	 employing	 the	 stages	 of	 complete	 nitrification	 and	 denitrification	 were	

discarded	because	 its	 needs	 for	 aeration	 are	 high,	which	 is	 translated	 in	 an	 increment	 in	 the	

overall	energetic	costs	of	12%.		

Once	the	optimum	working	line	was	decided,	 it	was	done	and	economic	study	of	the	costs	

associated	with	 the	 selected	process.	 It	was	also	 included	a	 comparison	 to	a	WWTP	with	 the	

same	treatment	capacity,	which	will	be	used	to	determine	the	viability	of	the	proposed	process.	

The	operation	schemes	of	the	two	evaluated	facilities	are	depicted	in	Figures	8	and	9.	

	

Figure	8:	Schema	of	the	proposed	facility.	

	

The	schema	presented	in	Figure	8	is	composed	of	the	following	process	units:	

• Water	 line:	 pretreatment,	 biological	 anaerobic	 reactor	 with	 membrane	 tank,	

membrane	cleaning	deposit,	denitritation	 reactor,	nitritation	 reactor	and	disinfection	

with	UV.	

• Sludge	line:	thickening,	anaerobic	digestion,	dehydration	and	residues	treatment.	

• Gas	line:	gasometer	and	electric	energy	generation.		
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Figure	9:	Schema	of	a	conventional	WWTP	with	MBR	treatment.	

The	schema	presented	in	Figure	9,	for	a	conventional	WWTP	is	composed	of:	

• Water	 line:	 pretreatment,	 biological	 anaerobic	 reactor	 with	 membrane	 tank,	

membrane	cleaning	deposit	and	disinfection	with	UV.	

• Sludge	line:	thickening,	anaerobic	digestion,	dehydration	and	residues	treatment.	

• Gas	line:	gasometer	and	electric	energy	generation.		

The	design	data	to	carry	out	the	economic	study	are	listed	as	follows:	

• Design	flow:	20.000m
3
/d.		

• A	 conventional	 WWTP	 was	 taken	 as	 reference	 with	 membrane	 bioreactor	 (MBR)	

technology.	

• The	 employed	 membranes	 in	 the	 MBR	 system,	 conventional	 plant	 as	 well	 as	 in	 the	

AnMBR	were	 assumed	 to	 be	 supplied	 by	General	 Electric	 (membranes	 of	 PVDF,	 non-

ionic	and	hydrophilic)	
[21]

.	The	configuration	of	the	membrane	was	enforced	fiber	with	

flow	 direction	 out-in	 and	 a	 nominal	 pore	 diameter	 of	 0.04	microns.	 The	 commercial	

membrane	employed	is	“Zeewed	500”.	

• The	 initial	 investment	cost	affects	 the	amortization	of	 the	 facility.	 It	was	considered	a	

period	of	50	years	for	building	and	20	years	for	equipment	as	amortization	time.	

Cost	 analysis	 are	 based	 on	 actual	 costs.	 The	 fixed	 and	 variable	 costs	 of	 the	 facility	 were	

studied	 in	an	 independent	way.	 In	 the	 fixed	costs	are	 include:	 the	amortization	of	 the	 facility,	

the	 fixed	cost	of	energy,	 the	process	control,	 the	maintenance	and	conservation,	 salaries	and	

other	costs	such	as	insurances,	taxes	or	rents.		

The	fixed	costs	of	both	facilities	are	quite	similar,	being	a	little	lower	the	costs	associated	to	

the	conventional	treatment.	The	main	reason	of	that,	is	the	amortization	of	the	facilities	(Figure	

10).	
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Figure	10:	Fixed	costs	including	the	amortization	of	the	facility	with	the	proposed	process	(a)	and	

conventional	plant	(b).	

	

The	cost	associated	to	the	amortization	(the	gradual	charging	to	expense	of	the	cost	over	the	

useful	life	of	the	asset)	of	the	facility	is	the	highest	amount	of	cost	in	the	total	costs.	These	costs	

are	higher	for	the	proposed	facility	(Figure	10a)	than	for	the	traditional	(Figure	10b).	The	main	

reason	 of	 that,	 is	 the	 required	 building	 of	 two	 extra	 stages,	 the	 denitritation	 and	 nitritation,	

which	 are	 not	 included	 in	 a	 traditional	 process.	 In	 this	 sense,	 the	 increment	 in	 the	 biogas	

production	obtained	with	the	proposed	technology	in	the	anaerobic	reactor	make	it	necessary	

to	 install	 bigger	 equipment	 in	 the	 gas	 line	 than	 in	 the	 traditional	 facility.	 Nevertheless,	 in	

comparison	to	 the	aerobic	systems,	 the	anaerobic	systems	produce	 less	amount	of	sludge,	so	

the	equipment	involved	in	this	stage	will	be	smaller	and	so,	the	construction	costs.	

The	rest	of	the	costs	are	similar	in	both	working	procedures.	A	small	difference	can	be	notice	

in	the	section	of	process	control.	In	the	proposed	process,	this	cost	is	higher	because	there	are	

three	additional	stages	that	should	be	controlled.	

After	the	costs	associated	to	the	amortization	in	the	fixed	costs,	the	personnel	cost	followed	

by	 the	 maintenance	 and	 facility	 conservation	 are	 the	 highest	 fixed	 costs	 associated	 to	 the	

facilities,	as	can	be	seen	in	Figure	11.	
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Figure	11:	Fixed	costs	excluding	the	amortization	costs	for	the	proposed	process	(a)	and	a	conventional	

WWTP	(b).	

	

The	variable	costs	include	the	replacement	of	membranes	(the	membranes	of	the	biological	

process	as	well	as	 the	replacement	of	 the	UV	disinfection	 lamps),	 the	consumption	of	electric	

energy,	transportation	and	discharge	of	residues	and	consumption	of	chemical	reagents.	

The	 variable	 costs	 (Figure	 12)	 associated	 to	 the	 proposed	 process	 are	 slightly	 lower	 than	

those	required	in	the	traditional	process.	The	consumption	of	electric	energy	in	one	of	the	main	

reasons	of	this	cost	difference.	It	should	be	mentioned	that	the	electric	energy	consumption	in	

the	 proposed	 method	 is	 higher	 but	 the	 generation	 of	 electricity	 is	 also	 higher.	 It	 should	 be	

noted	that	in	the	proposed	method	there	are	two	sources	of	biogas,	the	membrane	anaerobic	

reactor	 and	 the	 anaerobic	 digestion	 of	 sludge.	 In	 the	 conventional	 option	 there	 is	 only	 one	

source	of	biogas,	the	anaerobic	digestion	of	sludge.	So,	the	overall	energy	balance	shows	lower	

energy	consumption	for	the	proposed	method	than	the	conventional	one.	

The	 other	 important	 cost	 to	 analyze	 is	 the	 transportation	 and	 discharge	 of	 the	 residues.	

Focusing	 in	the	sludge	production	and	considering	that	the	sludge	production	 in	an	anaerobic	

reactor	 is	 lower	 than	 in	 an	 aerobic	 one,	 the	 proposed	 method	 has	 the	 advantage	 over	 the	

conventional	process	of	reducing	the	transportation	and	discharge	costs.		

	(a)	
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Figure	12:	Variable	costs	of	the	proposed	facility	(a)	and	the	conventional	WWTP	(b).	

	

4. CONCLUSIONS	

The	increment	in	the	available	soluble	COD	to	carry	out	the	process	does	not	imply	the	same	

amount	 of	 increments	 in	 the	 denitritation	 and	 denitrification	 potentials.	 A	 COD	 increment	 of	

15%,	21%	and	30%	means	an	 increase	 in	 the	denitritation	potential	 between	4.5%,	6.3%	and	

9%,	the	denitrification	potential	is	increase	between	1.6%,	2.2%	and	3.2%	with	the	same	change	

in	COD.	

The	use	of	a	by-pass	to	the	anaerobic	reactor	to	increase	the	soluble	COD	in	the	denitritation	

reactor	 provokes	 a	 reduction	 in	 the	 amount	 of	 biogas	 produced	which	 affects	 directly	 to	 the	

economic	viability	of	the	proposed	process.	

It	 was	 demonstrated	 that	 the	 increment	 of	 available	 methane	 in	 the	 reactor	 is	 the	most	

promising	 alternative	 to	 increase	 the	 denitrification/denitritation	 potential	 in	 both	 aspects:	

technical	and	economical.	

When	 comparing	 to	 a	 conventional	WWTP,	 it	 was	 concluded	 that	 the	 fixed	 costs	 of	 both	

alternatives	 are	 similar.	 However,	 the	 proposed	method	 in	 this	 research	work	 shows	 slightly	

higher	 costs	 than	 the	 conventional	 process.	 These	 differences	 are	 associated	 mainly	 to	 the	

amortization	 of	 the	 facility	 and	 equipment	 and	 the	 addition	 of	 new	 stages	 to	 the	 process.	 In	

terms	 of	 variable	 costs,	 the	 proposed	 method	 showed	 lower	 costs	 than	 the	 conventional	

process.	 In	 this	 case,	 the	 difference	 lies	 in	 the	 higher	 amount	 of	 produced	 energy	 and	 lower	

requirement	of	residues	accommodation.		
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The	general	 conclusions	of	 this	 PhD	Thesis	 are	presented	below.	 The	 specific	 conclusions	of	

each	research	are	presented	in	the	chapter	conclusions.		

In	this	PhD	thesis	has	been	extensively	studied	the	process	of	nitrification	and	denitrification	

to	remove	ammoniacal	nitrogen	from	the	effluent	of	an	AnMBR	reactor	that	treated	domestic	

wastewater	at	18	ºC.	

A	 SBR	 process	 was	 applied	 to	 ascertain	 its	 suitability	 for	 simultaneous	 nitrification	 and	

denitrification.	Cycle	times	of	12	h,	8	h	and	6	h	in	SBR	were	considered	in	the	study,	and	the	6	h	

cycle	 time	 was	 selected	 as	 the	 optimal	 for	 the	 treatment.	 The	 process	 was	 successful	 in	 an	

anoxic/aerobic/anoxic	 cycle	 sequence	 with	 the	 addition	 of	 methanol	 just	 before	 the	 second	

anoxic	 stage.	 Thus,	 it	 has	 been	demonstrated	 that	 the	 SBR	process	 in	 a	 single	 reactor	 at	 low	

temperature	is	a	suitable	process	for	the	simultaneous	removal	of	nitrogen	and	organic	matter	

of	a	domestic	wastewater	with	low	COD	with	only	the	addition	of	external	carbon	source.	The	

addition	of	methanol	was	a	key	point	in	the	denitrification	process	employed	as	a	model	for	the	

wastewater	by-pass	in	the	WWTP.		

The	 denitrification	 of	 domestic	 wastewater	 with	 a	 low	 concentration	 of	 COD	 could	 be	

possible	 by	 using	 the	 methane	 and	 sulfide	 that	 contains	 the	 water	 after	 the	 anaerobic	

treatment.	NO2
-
	 and	NO3

-
	were	 the	 electron	 acceptors,	while	 the	OM,	 CH4	 and	H2S	were	 the	

electron	donors.	A	fixed	film	anoxic	bioreactor	for	partial	and	total	denitrification	was	studied.		

From	 the	 one	 hand,	 nitrogen	 removal	 was	 demonstrated	 obtaining	 a	 successful	 NO2
-
	 and	

NO3
-
	elimination	when	the	feed	was	80	mg	N-NOx

-
/L,	except	when	the	feeding	was	formed	only	

by	nitrate.	 In	this	case,	the	process	was	at	the	limit	of	the	denitrification	process.	The	optimal	

HRT	to	obtain	both,	denitritation	and	denitrification	was	2	h.	The	amount	of	methane	available	

in	 the	water	was	enough	 to	 achieve	 the	 goal	 being	 the	main	electron	donor	used	with	more	

than	70%	or	participation.	

On	the	other	hand,	when	only	partial	denitrification	was	studied	in	the	same	plant	and	the	

same	HRT	of	2	h,	the	results	demonstrated	very	good	denitritation	yields	for	the	nitrite	removal	

up	 to	 75	 mg	 NO2
-
-N/L.	 For	 high	 inlet	 concentrations	 of	 nitrite,	 the	 recirculation	 of	 the	 gas	

collected	 in	 the	 anoxic	 reactor	 was	 a	 successful	 solution,	 thus	 achieving	 a	 nitrite	 removal	

efficiency	 upper	 than	 98%	 when	 the	 nitrite	 concentration	 in	 the	 feed	 was	 95	 mg	 NO2
-
-N/L.	

Specifically,	 denitritation	 is	 a	 feasible	process	 for	 the	 simultaneous	 removal	of	NO2
-
,	OM,	CH4	

and	H2S	 for	 actual	wastewater	 and	 the	 recirculation	 of	 the	 gas	 from	 the	 anoxic	 reactor	 is	 an	

efficacious	system	to	enhance	the	nitrites	removal.		
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A	 denitrification/nitrification	 integrated	 system	 with	 a	 short	 HRT	 of	 2	 h	 for	 the	 anoxic	

bioreactor	 and	 4	 h	 for	 the	 aerobic	 one	was	 studied.	 The	 plant	was	 operated	 to	 examine	 the	

effect	of	the	nitrate	recycling	and	the	COD/N	ratio	on	the	nitrogen	and	the	remaining	organic	

matter	 removal.	 The	 successful	 results	 of	 the	 system	 to	 remove	 COD	 and	 TN	 from	 domestic	

wastewater	 after	 anaerobic	 treatment	 could	 be	 achieved	 mainly	 due	 to	 the	 addition	 of	

methanol.	 Methanol	 increased	 the	 molar	 ratio	 of	 C/N	 in	 the	 wastewater	 accelerating	 the	

nitrification	and	denitrification	rates,	being	the	key	point	in	the	nitrogen	removal.	On	the	other	

hand,	 despite	 nitrate	 recycling	 did	 not	 suppose	 a	 significant	 improvement	 in	 the	 process,	 it	

improved	 the	 homogeneous	 distribution	 of	microbial	 communities	 in	 the	 reactors	 increasing	

the	 removal	 efficiency	 of	 nitrogen.	 As	 result	 of	 the	 combined	 impacts,	 it	 was	 obtained	 an	

effluent	 that	met	 the	 requirements	 of	wastewater	 discharge,	 in	 terms	 of	 organic	matter	 and	

nitrogen	content.		

It	is	noteworthy	that	instead	of	the	addition	of	methanol,	the	enhancement	of	the	C/D	ratio	

can	be	made	 (at	 least	 partially)	 by	bypassing	part	 of	 the	 feedstream	 from	a	point	 before	 the	

anaerobic	treatment	to	another	point	in	the	end	of	this	reactor.	In	this	way,	it	is	provided	to	the	

denitrification	process	a	feed	with	a	higher	concentration	in	organic	matter.	

Finally,	a	techno-economical	 feasibility	of	the	domestic	wastewater	treatment	consisting	 in	

an	anaerobic	membrane	reactor	followed	by	a	nitrogen	removal	plant	was	simulated.	Different	

scenarios	 have	 been	 assessed	 changing	 the	 concentration	 of	 the	 involved	 components	 and	

evaluating	 their	 effect	 on	 the	 nitrogen	 elimination	 capacity	 as	 well	 as	 the	 ability	 to	 produce	

biogas	in	the	anaerobic	treatment.	The	increment	in	the	available	soluble	COD	to	carry	out	the	

process	 implied	more	 increment	 in	 the	denitritation	potential	 than	 in	 the	denitrification	one.	

The	use	of	a	by-pass	to	the	anaerobic	reactor	to	 increase	the	soluble	COD	in	the	denitritation	

reactor	 provokes	 a	 reduction	 in	 the	 amount	 of	 biogas	 produced	which	 affects	 directly	 to	 the	

economic	viability	of	the	proposed	process.	It	was	demonstrated	that	the	increment	of	available	

methane	 in	 the	 reactor	 is	 the	 most	 promising	 alternative	 to	 increase	 the	

denitrification/denitritation	potential	in	both	aspects:	technical	and	economical.	

Then,	 the	most	promising	scenario	was	studied	 in	detail	and	 it	was	compared	 to	 the	costs	

associated	 to	 the	 WWTP	 with	 a	 biological	 anaerobic	 treatment	 using	 a	 MBR	 system.	 When	

comparing	an	AnMBR+Denitritation/Nitritation	plant	to	a	conventional	WWTP,	it	was	concluded	

that	 the	 fixed	 costs	 of	 both	 alternatives	 are	 similar.	 However,	 the	 proposed	 method	 in	 this	

research	work	shows	slightly	higher	costs	than	the	conventional	process.	These	differences	are	

associated	mainly	 to	 the	 amortization	 of	 the	 facility	 and	 equipment	 and	 the	 addition	 of	 new	

stages	to	the	process.	In	terms	of	variable	costs,	the	proposed	method	showed	lower	costs	than	
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the	 conventional	 process.	 In	 this	 case,	 the	 difference	 lies	 in	 the	 higher	 amount	 of	 produced	

energy	 and	 lower	 requirement	 of	 residues	 accommodation.	 The	 results	 indicated	 that	 the	

proposed	process	is	feasible	since	the	fixed	and	variables	costs	of	both	treatment	plants.	

Future	Work	

From	 the	 studies	 developed	 in	 this	 PhD,	 it	 can	 be	 concluded	 that	 the	 field	 of	 nitrogen	

removal	 in	 domestic	 wastewater	 is	 an	 interesting	 area	 with	 several	 interesting	 topics	 to	

address.	The	main	topics	to	be	developed	in	the	research	of	nitrogen	removal	are	presented	in	

the	next	paragraphs.	

It	was	observed	that	the	C/N	ratio	in	the	feed	is	one	of	the	most	critical	parameters	that	can	

affect	 directly	 the	 biological	 nitrogen	 removal	 efficiency.	 As	 the	 amount	 of	 biodegradable	

organic	 carbon	 of	 domestic	 wastewater	 after	 anaerobic	 treatment	 is	 limited,	 the	 addition	 of	

external	 carbon	 sources	 such	 as	 methanol,	 often	 becomes	 necessary	 for	 achieving	 high-

efficiency	BNR.	 It	would	be	 interesting	to	evaluate	the	effect	of	 increasing	the	C/N	ratio	using	

the	mixing	 of	 the	 anaerobic	 reactor	 effluent	 and	 the	 raw	 feed.	 That	 is	 bypassing	 part	 of	 the	

feedstream	 from	 a	 point	 before	 the	 anaerobic	 treatment	 to	 another	 point	 in	 the	 end	 of	 this	

reactor.	 In	 this	 way,	 it	 is	 provided	 to	 the	 denitrification	 process	 a	 feed	 with	 a	 higher	

concentration	in	organic	matter.	

In	the	denitrification/nitrification	 integrated	plant	(Chapter	6)	 it	was	no	possible	to	achieve	

nitritation	in	the	aerobic	reactor.	Reducing	the	aeration	to	provide	less	DO	in	the	reactor,	or	the	

HRT	not	only	did	not	 increased	the	nitrite	production,	but	nitrate	yield	got	worse.	 It	would	be	

important	to	study	the	way	to	reach	partial	nitritation	to	shortcut	the	denitrification	reactions.	

Methane	 and	 sulfide	 from	 anaerobic	 biogas	was	 considered	 as	 an	 electron	 donor	 source.	

Based	on	the	results	obtained	in	Chapter	5,	recycling	of	the	gas	collected	in	the	anoxic	reactor	

was	a	successful	solution	to	achieve	high	nitrite	removal	efficiency	for	feed	concentrations	of	95	

mg	NO2
-
-N/L.	The	gas	collected	contained	desorbed	methane	and	it	can	be	used	for	denitrify	by	

its	 recycling.	When	the	 integrated	system	was	performed	this	proceeding	was	not	possible	 to	

carry	 out	 because	 most	 of	 the	 methane	 remained	 occluded	 in	 the	 liquid	 stream	 at	 low	

temperatures.	 It	would	be	relevant	to	find	the	way	to	enhance	the	methane	desorption	to	be	

able	of	collect	 it	 in	the	top	of	the	anoxic	reactor	to	recirculate	it,	 improving	the	denitrification	

yields.	

Another	way	 of	 operation	 that	 allows	 the	 use	 of	 sulfide	 and	methane	 from	 the	 biogas	 as	

electron	donor	source,	is	the	addition	of	the	anaerobic	biogas	in	the	denitrification	reactor.	The	
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biogas	 would	 increase	 the	 methane	 and	 sulfide	 concentration	 inside	 the	 reactor,	 and	 the	

nitrite/nitrate	removal	capacity	would	also	increase.	
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