
Multi-Oriented Windowed Harmonic Phase

Reconstruction for Robust Cardiac Strain Imaging

Lucilio Cordero-Grande∗,a,b, Javier Royuela-del-Vala, Santiago
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Abstract

The purpose of this work is to develop a method for direct estimation of
the cardiac strain tensor by extending the harmonic phase reconstruction on
tagged magnetic resonance images to obtain more precise and robust mea-
surements. The extension relies on the reconstruction of the local phase of
the image by means of the windowed Fourier transform and the acquisition of
an overdetermined set of stripe orientations in order to avoid the phase inter-
ferences from structures outside the myocardium and the instabilities arising
from the application of a gradient operator. Results have shown that increas-
ing the number of acquired orientations provides a significant improvement
in the reproducibility of the strain measurements and that the acquisition of
an extended set of orientations also improves the reproducibility when com-
pared with acquiring repeated samples from a smaller set of orientations.
Additionally, biases in local phase estimation when using the original har-
monic phase formulation are greatly diminished by the one here proposed.
The ideas here presented allow the design of new methods for motion sen-
sitive magnetic resonance imaging, which could simultaneously improve the
resolution, robustness and accuracy of motion estimates.
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1. Introduction

Magnetic Resonance (MR) tagging allows to track material points through
time. This is of special relevance, for instance, in the analysis of myocardial
local motion, whose anomalies are directly related with impaired cardiac
function. Hence, local functional indicators extracted from this analysis such
as the strain tensor may provide a higher predictive value than global cardiac
imaging parameters such as the ejection fraction (Axel et al., 2005; Simpson
et al., 2013). The basis of MR tagging consists in the generation of a set of
saturated magnetization planes which may be subsequently tracked through-
out the cardiac cycle so as to estimate the motion of material points (Shehata
et al., 2009; Ibrahim, 2011; Jeung et al., 2012). Usually, these planes are ar-
ranged in a parallel setting in such a way that the imaged magnetization is
modulated by a given wave vector.

Regarding the analysis of MR tagging, an important family of methods
are based on extracting the phase of the complex image obtained by filtering
the isolated peaks of the spectrum that correspond to the magnetization
modulation. Hence, this class of methods performs motion estimation by
phase-based optical flow, in which the constant pixel brightness assumption
is replaced by the potentially more reliable constant pixel phase assumption.
The seminal work by Osman et al. (2000) shows that this HARmonic Phase
(HARP) methodology not only permits to reconstruct small displacements1

but also to reconstruct the deformation gradient tensor without imposing any
condition on the deformation field. Furthermore, this technique is generally
faster than intensity-based ones and, in addition, dense measurements can
be recovered. Despite its potential, without a proper reconstruction scheme,
it is prone to be corrupted by intravoxel phase dispersion, noise, and spectral
interferences (especially at the endo- and epicardial boundaries), which are
further accentuated in the estimation of the deformation gradient tensor,
as it involves the application of a gradient operator on the reconstructed
phases. Not coincidentally, a recent study by Swoboda et al. (2014) has
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1Although, for accurately doing so, motion tracking methods should be adapted to the
information provided by HARP.
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reported a somewhat poor interstudy and intrastudy reproducibility of strain
measurements using the HARP method.

A comprehensive description of HARP reconstruction that pays attention
to its dynamic range, resolution, noise properties, and characteristic artifacts
is provided in Parthasarathy (2006). First, following Osman et al. (2000),
a communications theory description of tagged images is developed which
establishes that these images can be interpreted as the spatial analogue of an
AM-FM signal so that the tissue strain would be equivalent to the instanta-
neous frequency of the signal. The author claims that HARP reconstruction
is a way to obtain the instantaneous (i.e. local) phase of the signal on the
basis of the monocomponent assumption, which states that the signal can be
described by a single spectral component that modulates a narrow range of
Fourier harmonics that vary as a function of time. With this interpretation in
mind, HARP can be understood as a spatial phase demodulation technique
and therefore part of the vast literature on temporal phase demodulation
could be adapted for motion estimation. In Cordero-Grande et al. (2011),
we proposed one technique to demodulate the local phase where we showed
the relevance of balancing the spatio-spectral concentration of the HARP
filters (trying to follow the spatial variation of the orientation and spacing
of the tag pattern) by using the Windowed Fourier Transform (WFT). This
Windowed HARP (WHARP) technique turned out to be effective in improv-
ing the accuracy in the reconstruction of the local phase. Subsequently, the
method has been refined in Fu et al. (2013) by estimating the widths of the
WFT on the basis of the instantaneous spatial frequencies as given by a
Gabor Wavelet Transform analysis.

On the other hand, also in Parthasarathy (2006), a characterization of
the main artifacts observed in HARP reconstructed images is carried out. In
the circumferential strain case, the author describes the causes involved in
the presence of a so-called zebra artifact as well as the reason why the ra-
dial strain estimation using the conventional HARP method is usually highly
inaccurate —limitations in estimating radial strain have also been reported
for other methods (Tobon-Gomez et al., 2013)—. However, the proposed
strategy for the improvement of strain estimation is based on postprocessing
the strain maps in order to diminish the influence of corrupted estimations
—see also Abd-Elmoniem et al. (2006)—. Here we suggest a completely dif-
ferent methodology for improving the strain reconstruction using the HARP
method which resembles previous contributions such as using Complemen-
tary SPAtial Modulation of Magnetization (Kuijer et al., 2001) (CSPAMM)
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or TruHARP (Agarwal et al., 2010) in that it tries to resolve the corrupted
areas of the estimated tensor using additional data rather than postprocess-
ing. However, instead of varying the phase of the modulation function to
remove spectral peaks interferences, we propose a complementary approach
that consists in the acquisition of an overdetermined set of stripe orientations
in order to get rid of the orientation dependent phase interferences. This idea
has been usually applied in diffusion tensor imaging acquisitions (Papadakis
et al., 1999; Jones et al., 1999), where an overdetermined set of gradient
orientations have proven to be beneficial in order to diminish the noise in
the reconstruction of the diffusion tensor (and mandatory in order to ob-
tain non-Gaussian representations of the diffusion). Preliminary versions of
this work have been presented in the past (Cordero-Grande and Alberola-
López, 2012; Cordero-Grande et al., 2014) and some other related techniques
have been suggested recently (Bruurmijn et al., 2013); here, we give the full
details of the equations involved and provide experimental evidence about
the improvement in the accuracy and reproducibility of the strain estimates
obtained by the proposed Multi-Oriented Windowed HARP (MOWHARP)
method with respect to standard HARP.

In Section 2 we present the theory behind the MOWHARP method; the
application of this methodology to real data is described in Section 3; main
results regarding the reproducibility of measurements and implications of the
experiments carried out are included in Section 4; insight into the practical
application of the proposed methodology together with its main advantages
and drawbacks are provided in Section 5; and conclusions are established in
Section 6.

2. Theory

MR tagging is usually performed by SPAMM (Axel and Dougherty, 1989)
or a variant of this technique. SPAMM is grounded on the ability of altering
the magnetization of the tissue (within the limitations of relaxation times in
MR) even in the presence of motion. The tagging procedure is based on the
superposition of a spatial modulation over the applied gradients. To achieve
this, a ψ0 radiofrequency (RF) pulse must be applied, followed by P joint
applications of a gradient and another pulse ψp. This process will generate
a spatial modulation by P sinusoidal functions on the gradient direction.
Thus, just after the application of a spatial modulation indexed by i and
given by a wave vector ki, with ki = kiui, where ki is the wave number of
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the modulation (which depends on the amplitude of the applied gradient)
and ui is its orientation vector (which corresponds to the orientation of the
applied gradient), the image equation is written

Ii(X) = I0(X)
P∑
p=0

cp cos(2πpkTi X), (1)

where X denotes the material coordinate, I0(X) corresponds to the anatomic
image, P is the SPAMM order, and cp is a set of amplitude terms that
depend on the train of RF pulses applied. This modulation is translated into
a convolution with a Dirac δ distribution in the spectral domain:

Si(k) =
P∑
p=0

cp
2

(S0(k + pki) + S0(k− pki)), (2)

with Si and S0 being, respectively, the FTs of Ii and I0. In high order
SPAMM the sharpness of the magnetization profiles is controlled by choosing
different amplitude terms.

The temporal evolution of a SPAMM image can be written as

Ii(x, t) = I0(X(x, t))
P∑
p=0

cp(X(x, t), t) cos(2πpkTi X(x, t)) (3)

where x denotes the spatial coordinate, X(x, t) denotes the material coor-
dinate X corresponding to the spatial coordinate x at time t, and cp(X, t)
varies in t due to the T1 relaxation of the tissue at X. For the 1-1 SPAMM ac-
quisition one has that P = 1 (Crum et al., 1998) and, assuming ψ = ψ0 = ψ1,

c0(X, t) = 1− sin2(ψ)e
− t
T1(X)

c1(X, t) = sin2(ψ)e
− t
T1(X) .

(4)

A commonly used value is ψ = 45 ◦ in order to preserve the positivity of
the image and maximize the tag contrast. Additionally, in 1-1 SPAMM, the
wave number is inversely proportional to the wavelength or spacing of the
stripes, ki = 1/λi.

In this paper we focus on 2D MR HARP images, as 3D acquisitions are
rarely used in clinical practice. As stated in Osman et al. (2000), 2D HARP
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motion reconstruction using the SPAMM technique requires a minimum of 2
linearly independent wave vectors. Our proposal extends the aforementioned
HARP methodology for the estimation of the deformation gradient tensor by
allowing the application of a set of I ≥ 2 wave vectors (with a minimum of 2
of them being linearly independent) and present the reconstruction equations
in this case. The reconstruction is decomposed in the following steps:

• Calculation of the local phase of the image (Section 2.1). This step is
based on the method presented in Cordero-Grande et al. (2011).

• Estimation of the material deformation gradient tensor (Section 2.2).
This step is based on the method presented in Cordero-Grande and
Alberola-López (2012) for synthetic data and preliminarily applied to
real data in Cordero-Grande et al. (2014).

• Calculation of the Green-Lagrange strain tensor (Section 2.3). This
step expresses the Green-Lagrange strain tensor in terms of the material
deformation gradient tensor.

2.1. Local phase

Let kTi = kiui = ki(u
1
i , u

2
i ), with 1 ≤ i ≤ I be the set of acquired wave

vectors. For a given cardiac phase, we denote the image corresponding to
one of the acquired wave vectors as Ii[n], where n = [n1, n2], with 1 ≤ nj ≤
N j (j = {1, 2}), where N j is the number of pixels along direction j. By
periodically extending this image with period N = [N1, N2], we can define
its 2D discrete WFT as:

Si[m,q] =
1

Q1Q2

∞∑
n1,n2=−∞

Ii[n]w[n−m]e
−j2π

2∑
j=1

qjnj

Qj

, (5)

where m = [m1,m2] with 1 ≤ mj ≤ N j, q = [q1, q2] with 1 ≤ qj ≤ Qj, and w
represents an analysis window of compact support whose size is Q = [Q1, Q2].
This window is real, even, of unit norm, and monotonically decreasing for
positive values of its argument. Hence, the discrete WFT is defined as a set
of discrete FTs of the result of windowing an image throughout its support.

The WFT provides a representation of the image spectrum in the sur-
roundings of each pixel of the original image, so HARP Band-Pass (BP)
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filtering techniques can be directly applied on the spatially localized spec-
trum of the image. Then, for each pixel m, we build a filter Hi parameterized
spatially by λ, Hλ

i [m,q] = H
λ[m]
i [q] to filter the WFT:

Ŝi[m,q] = Hλ
i [m,q]Si[m,q] (6)

The WHARP image can be reconstructed in the spatial domain by using
an Inverse discrete WFT (IWFT)

Îi[n] =
∞∑

m1,m2=−∞

Q1∑
q1=1

Q2∑
q2=1

Ŝi[m,q]w[n−m]e
j2π

2∑
j=1

qjnj

Qj

(7)

and extracting the phase:
φi[n] = ∠Îi[n]. (8)

This procedure for local phase estimation is sketched in Figure 1.

BP Filter IWFTWFT
Si

Ii
Ŝi 6Îi

φi

Hi ww

Figure 1: Flowchart of the local phase calculation. The analysis is performed in a region
of interest surrounding the myocardium. For those steps in which a complex signal is
generated, only the magnitude and logarithm of the magnitude (respectively for spatial
and spectral signals) is represented.

2.2. Material deformation gradient tensor

We can arrange the set of wave vectors kTi in matrix form by:

K = 2π


kT1
kT2
...
kTI

 , (9)
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so the linear independence condition implies that rank(K) = 2. The spatial
deformation gradient tensor

f(x) =
∂X

∂xT
(x) (10)

is related with the gradient of the local phase φi(x) by (Osman et al., 2000):

2πkTi f(x) =
∂∗φi
∂xT

(x) = min

{
∂φi
∂xT

(x),
∂W(φi + π)

∂xT
(x)

}
, (11)

with W(·) the wrapping operator, which maps its argument in the interval
[−π, π). The discretization of the gradient operator is achieved by first ap-
plying forward and backward finite differences both for the original phase
and the π-shifted one, then taking the minimum as indicated in (11), and
finally averaging them to construct the centered finite differences.

Rearranging the gradient of the phase images in matrix form:

Y(x) =



∂∗φ1

∂xT
(x)

∂∗φ2

∂xT
(x)

...

∂∗φI
∂xT

(x)


, (12)

one has (now in discrete form)

Y[n] = Kf [n]. (13)

Alternatively, the material deformation gradient tensor F[n] = f−1[n] can be
described by:

K = Y[n]F[n]. (14)

In order to estimate F[n], one could resort to the Least Squares (LS)
method, so:

F[n] = (YT [n]Y[n])−1YT [n]K. (15)
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However, considering the fact that the introduction of an overdetermined
set of stripes pursues the minimization of phase interferences, which intro-
duce outliers when performing the HARP image gradient computation, our
proposal is to resort to the Least Absolute Deviation (LAD) method, due
to its robustness (Cordero-Grande and Alberola-López, 2012). Hence, the
reconstruction is performed iteratively by:

Fl+1[n] = (YT [n]Wl[n]Y[n])−1YT [n]Wl[n]K, (16)

with Wl[n] a diagonal weight matrix obtained, at iteration l, by:

W jj
l [n] =

1√√√√ 2∑
h=1

(
Kjh −

2∑
g=1

Y jg[n]F gh
l [n]

)2
(17)

and establishing F0[n] = I, with I the identity matrix. An analogous set of
equations could be used to estimate f [n].

The whole procedure is sketched in Figure 2.

LADmin

K

Y
∇x

∇xW2π(·+ π)

Φ F

Figure 2: Flowchart of the material deformation gradient tensor estimation. The LAD
step is only performed inside the myocardial region (see Section 3 for a description of how
this region is defined in our experiments) to avoid numerical instabilities due to unreliable
tagging information outside the myocardium (due to fading and fluid motion). For those
steps in which a vectorial or tensorial signal is generated, the different components are
represented as different images. An exemplary modulation orientation is represented for
those steps in which all the modulation components should be considered.
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2.3. Green-Lagrange strain tensor

The target for standard myocardial motion analysis is to estimate the
Green-Lagrange strain tensor E, which is defined by:

E[n] =
1

2
(FT [n]F[n]− I), (18)

Once E[n] is estimated, we can compute its radial, circumferential and shear-
ing components by contraction:

ERR[n] =RT [n]E[n]R[n]

ECC[n] =CT [n]E[n]C[n]

ERC[n] =RT [n]E[n]C[n],

(19)

using the material polar coordinate system (R,C). Usually, one is interested
in the so-called Green-Lagrange ejection strain which is the one that relates
the maximum deformation at End-Systole (ES) with the reference configu-
ration at End-Diastole (ED). Thus, for calculating the aforementioned de-
scriptor, the above procedure should be applied to the ES cardiac phase.
Otherwise, it should be repeated for each phase in order to obtain a full de-
scription of the mechanical behaviour of the myocardium along the cardiac
cycle.

The Green-Lagrange strain components computation is sketched in Fig-
ure 3.

RC

CC

ERC

ECC

RR ERR

F
E

Strain

Figure 3: Flowchart of the Green-Lagrange strain components calculation. For those
steps in which a tensorial signal is generated, the different components are represented as
different images.
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3. Materials and methods

For the validation of the proposed approach on real data, we have ac-
quired a medial slice on an adult volunteer using a MR SPAMM SENSitivity
Encoding (SENSE) Turbo Field Echo (TFE) sequence on a Philips Achieva

3T scanner. The image has a spatial resolution of 1.333 × 1.333 mm2 and
a slice thickness of 8 mm. The acquisition parameters are TE = 3.634 ms,
TR = 6.018 ms and flip angle α = 10◦. Regarding the tagging parame-
ters, we validate the method for a fixed tag spacing of ki = k = 1/λ, with
λ = 7 mm and compare the results of acquiring different number of orienta-
tions ui = (cos(θi), sin(θi)) for the stripes. Similar experiments to the ones
presented here could be carried out to compare the results of varying the
tag spacing of the acquired SPAMM sequences —see Cordero-Grande and
Alberola-López (2012) for some synthetic experiments in this regard— but
in this paper we have preferred to focus on studying the effect of introducing
an overdetermined set of orientations, as the reconstruction design becomes
simpler in this case. We have also acquired a SENSE balanced TFE cine se-
quence with a spatial resolution of 1.25×1.25 mm2, a slice thickness of 8 mm,
TE = 1.663 ms, TR = 3.325 ms and α = 45◦. The cine sequence is acquired
at the same slice location as the tagging sequence. The myocardium is seg-
mented at ED and ES for the cine sequence and at ED for all the acquired
orientations of the tagging sequence. The cine segmentation at ED is used
to align the tagging orientations to a common reference system to correct for
patient motion. The ES segmentation is used to define a region of interest
on which to compute meaningful measures of the strain.

In the first experiment (Section 4.1) we use the number and orientations
of the stripes that are shown in Table 1, which are selected to fully span the
plane uniformly for each set. This seems a natural choice both to promote
maximally incoherent interferences between the anatomical information and
the deformed modulation pattern and to optimally condition the inversion
problem in (16).

The validation is carried out using the estimates of the material defor-
mation gradient tensor FI at ES for each stripe set and value of I indicated
before. Ideally, the tensors should be equal for all the studied cases. There-
fore, a natural measure of the reproducibility of the estimation method for
a predefined value of I would be the similarity between the estimated ten-
sors from both sets with number of stripes I. To that end, we have used
the Frobenius Norm Difference (FND) of the tensors obtained from the two
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I = 2 I = 3
Set 1 θ1 = 0◦ θ2 = 90◦ θ1 = −30◦ θ2 = 30◦ θ3 = 90◦

Set 2 θ1 = −45◦ θ2 = 45◦ θ1 = −60◦ θ2 = 0◦ θ3 = 60◦

I = 6 I = 9

Set 1
θ1 = −60◦ θ4 = 30◦ θ1 = −70◦ θ4 = −10◦ θ7 = 50◦

θ2 = −30◦ θ5 = 60◦ θ2 = −50◦ θ5 = 10◦ θ8 = 70◦

θ3 = 0◦ θ6 = 90◦ θ3 = −30◦ θ6 = 30◦ θ9 = 90◦

Set 2
θ1 = −75◦ θ4 = 15◦ θ1 = −80◦ θ4 = −20◦ θ7 = 40◦

θ2 = −45◦ θ5 = 45◦ θ2 = −60◦ θ5 = 0◦ θ8 = 60◦

θ3 = −15◦ θ6 = 75◦ θ3 = −40◦ θ6 = 20◦ θ9 = 80◦

I = 18

Set 1
θ1 = −80◦ θ4 = −50◦ θ7 = −20◦ θ10 = 10◦ θ13 = 40◦ θ16 = 70◦

θ2 = −70◦ θ5 = −40◦ θ8 = −10◦ θ11 = 20◦ θ14 = 50◦ θ17 = 80◦

θ3 = −60◦ θ6 = −30◦ θ9 = 0◦ θ12 = 30◦ θ15 = 60◦ θ18 = 90◦

Set 2
θ1 = −85◦ θ4 = −55◦ θ7 = −25◦ θ10 = 5◦ θ13 = 35◦ θ16 = 65◦

θ2 = −75◦ θ5 = −45◦ θ8 = −15◦ θ11 = 15◦ θ14 = 45◦ θ17 = 75◦

θ3 = −65◦ θ6 = −35◦ θ9 = −5◦ θ12 = 25◦ θ15 = 55◦ θ18 = 85◦

Table 1: Stripe orientations used in experiment 1.

stripe sets at a given I:

FNDI(x) =

√√√√ 2∑
m=1

2∑
n=1

(F I,1
mn(x)− F I,2

mn(x))2. (20)

Hence, for each I we generate a FND distribution using the pixels inside the
myocardium. Consequently, we have carried out MannWhitney U-tests to
find significant differences in the median —subsequently denoted by ν(FND)—
of these distributions. Additionally, we measure the percentage of improve-
ment in the median reproducibility when introducing a larger number of
stripes.

As for the second experiment (Section 4.2), we have tested whether a
larger reproducibility can be achieved by repeated acquisition of certain stripe
orientations or, alternatively, by extending the stripe set to span the ori-
entation space uniformly. To that end, we have obtained the same FND
distribution as in the preceding experiment but now considering the stripe
sets included in Table 2. Once again, we pursue to find significant differ-
ences in the medians of the distributions involved and measure the median
reproducibility improvement.

A synthetic experiment (Section 4.3) is performed to aid the interpre-
tation of results on real data. An incompressible radially varying defor-
mation has been applied over the magnetization patterns according to r =
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I = 6 with repeated orientations I = 6 spanning the plane

Set 1
θ1 = 0◦ θ3 = 0◦ θ5 = 90◦ θ1 = −60◦ θ3 = 0◦ θ5 = 60◦

θ2 = 0◦ θ4 = 90◦ θ6 = 90◦ θ2 = −30◦ θ4 = 30◦ θ6 = 90◦

Set 2
θ1 = −45◦ θ3 = −45◦ θ5 = 45◦ θ1 = −75◦ θ3 = −15◦ θ5 = 45◦

θ2 = −45◦ θ4 = 45◦ θ6 = 45◦ θ2 = −45◦ θ4 = 15◦ θ6 = 75◦

Table 2: Stripe orientations used in experiment 2.

√
R2 − γR2

i , where r is the radial spatial coordinate (after applying the defor-
mation), R is the radial material coordinate, γ is a parameter that accounts
for the degree of deformation applied, and Ri is the inner radius of an annu-
lus taken as a reference of the myocardial structure. In our experiment we
have generated an image of size 192× 192, with an annulus given by Ri = 28
and Ro = 40, with Ro its outer radius. The spacing of the tags is given by
λ = 7.15. Four strain estimation procedures are compared using the combi-
nations of the minimum number of orientations (I = 2) versus a large number
of orientations (I = 36) and non-windowed versus windowed local phase es-
timation. We refer to these methods as HARP (I = 2 / non-windowed),
WHARP (I = 2 / windowed), MOHARP (I = 36 / non-windowed), and
MOWHARP (I = 36 / windowed)2. As in all other experiments, the HARP
analysis for I > 2 is performed by using the conventional HARP filter to
estimate the local phase and the proposed LAD deformation gradient tensor
estimator.

Finally, for visual illustration we show the results of the application of
the method to the stripe sets included in Table 3 (Section 4.4).

Regarding implementation details, in accordance with the discussion and
experiments in Cordero-Grande et al. (2011), we have resorted to an analysis
Gaussian window w of size Q = [32, 32]. Its expression, up to a proportion-
ality factor to ensure its unit norm, is

w[n] ∝ e
−8

2∑
j=1

(
nj

Qj−1

)2
, (21)

where the factor 8 guarantees that the truncation occurs where the window
values are close to zero. On the other side, we have used a circumferential
spectral filter H with radius r centered, at a given spatial location, at the

2To refer to methods using I > 2 orientations we will use the prefix MO or specify the
number of orientations depending on the level of information required.
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I = 2 I = 3
θ1 = 0◦ θ2 = 90◦ θ1 = −60◦ θ2 = 0◦ θ3 = 60◦

I = 4 I = 6
θ1 = −45◦ θ3 = 45◦ θ1 = −60◦ θ3 = 0◦ θ5 = 60◦

θ2 = 0◦ θ4 = 90◦ θ2 = −30◦ θ4 = 30◦ θ6 = 90◦

I = 9 I = 12
θ1 = −80◦ θ4 = −20◦ θ7 = 40◦ θ1 = −75◦ θ4 = −30◦ θ7 = 15◦ θ10 = 60◦

θ2 = −60◦ θ5 = 0◦ θ8 = 60◦ θ2 = −60◦ θ5 = −15◦ θ8 = 30◦ θ11 = 75◦

θ3 = −40◦ θ6 = 20◦ θ9 = 80◦ θ3 = −45◦ θ6 = 0◦ θ9 = 45◦ θ12 = 90◦

I = 18
θ1 = −80◦ θ4 = −50◦ θ7 = −20◦ θ10 = 10◦ θ13 = 40◦ θ16 = 70◦

θ2 = −70◦ θ5 = −40◦ θ8 = −10◦ θ11 = 20◦ θ14 = 50◦ θ17 = 80◦

θ3 = −60◦ θ6 = −30◦ θ9 = 0◦ θ12 = 30◦ θ15 = 60◦ θ18 = 90◦

I = 36
θ1 = −85◦ θ7 = −55◦ θ13 = −25◦ θ19 = 5◦ θ25 = 35◦ θ31 = 65◦

θ2 = −80◦ θ8 = −50◦ θ14 = −20◦ θ20 = 10◦ θ26 = 40◦ θ32 = 70◦

θ3 = −75◦ θ9 = −45◦ θ15 = −15◦ θ21 = 15◦ θ27 = 45◦ θ33 = 75◦

θ4 = −70◦ θ10 = −40◦ θ16 = −10◦ θ22 = 20◦ θ28 = 50◦ θ34 = 80◦

θ5 = −65◦ θ11 = −35◦ θ17 = −5◦ θ23 = 25◦ θ29 = 55◦ θ35 = 85◦

θ6 = −60◦ θ12 = −30◦ θ18 = 0◦ θ24 = 30◦ θ30 = 60◦ θ36 = 90◦

Table 3: Stripe orientations used for visual illustration.

maximum of the spectra k̂[m] (i.e., the ridge of the WFT) in the surround-
ings of the reference spatial frequency of the tags ki, which is computed
by considering a region {k : 0.6ki < k < 1.4ki ∧ |∠k− θi| < π/6}. Hence, we
can write the filter parameters as λ[m] = (k̂[m], r). Defining a radial variable
with center k̂[m] and normalized to the bandwidth r, ρ[q] = |q − k̂[m]|/r,
the filter reads:

Hλ[m][q] =

{
1 if ρ[q] ≤ 1

e−
(ρ[q]−1)2

2σ2 otherwise,
(22)

with σ = 0.05 typically. We can normalize the filter bandwidth with respect
to the wave number of the applied modulation by using the parameter µ =
r/k. In the experiments we have tested the values of the filter bandwidth
given by µb = 0.05 + 0.05b, with 1 ≤ b ≤ 11, therefore with 0.1 ≤ µb ≤ 0.6.

4. Results

4.1. Reproducibility of increased number of orientations

In Figure 4a we show the results of ν(FND) for the sets included in Ta-
ble 1 both for the application of the HARP and the WHARP analysis for
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the range of values of µ considered whereas in Figure 4b the correspond-
ing FND Cumulative Distribution Function (CDF) for µ = 0.35 is shown.
The results included in Figure 4a confirm our hypothesis that increasing the
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Figure 4: FND for the sets considered in Table 1 (different number of orientations) using
both windowed and non-windowed analysis.

number of orientations increases the reproducibility of the strain measure-
ments as assessed by the median of the FND calculated from two settings
of the orientations set. The decrease in the median of the FND when in-
creasing the number of orientations is consistent against changes in the filter
bandwidth µ and the use of either the FT (HARP method) or the WFT
(WHARP method). The results in Figure 4b suggest that there is also a
consistent improvement in the reproducibility when assessed by the whole
range of quantiles of the FND distribution. Regarding the differences between
the MOHARP and MOWHARP methods, no conclusions can be established
about their respective reproducibilities from this experiment.

In Figure 5 we show the probability density function (PDF) of the ERR,
ECC and ERC strain components for the sets considered in Table 1 for
µ = 0.35 both for the application of the HARP and the WHARP analy-
sis. From Figure 5a, the differences in the estimated ERR between both
methods appear to be appreciable. The HARP method seems to largely un-
derestimate the radial component of the strain tensor, a shortcoming that
has been previously reported (Parthasarathy, 2006), whereas the values of
the WHARP method seem closer to the ones expected in an adult volunteer.
Although this effect is partly due to the bandwidth used in this experiment,
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Figure 5: Strain PDF for the sets considered in Table 1 (different number of orientations)
for µ = 0.35 using both windowed and non-windowed analysis.

the crucial point is that even if the reproducibility of both methods seems
to be similar, the actual measures obtained by both might greatly differ.
We will perform a simulation based study of this effect in Section 4.3. This
inconsistency in the estimated measurements seems to largely disappear for
the ECC component (Figure 5b) and substantially diminish for the ERC

(Figure 5c). Additionally, no important systematic errors in the estimated
distributions are visually observed for this bandwidth when changing the
number of orientations.

Finally, in Table 4 we include the results of the Mann Whitney U-tests
on the FND distributions of different number of orientations when applying
the MOWHARP technique for some of the considered µ values. Moreover,
the percentage of median reproducibility improvement in strain estimates
when acquiring new orientations is also provided for every pair of compared
number of stripes. These results further support that increasing the number
of orientations increases the reproducibility of the strain measurements as
suggested in Figure 4a. Additionally, also from Table 4, we observe the
percentage of improvement in the median reproducibility to be noteworthy,
which is due to the strong artifacts produced by the HARP and WHARP
methods.

4.2. Reproducibility of repeated measurements versus extended orientations

In Figure 6a we show the results of ν(FND) for the sets included in
Table 2 both for the application of the MOHARP and the MOWHARP
methods for the range of values of µ considered, whereas in Figure 6b the
corresponding FND CDF for µ = 0.35 is shown. Analogously to the results
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I1 = 2 I1 = 3 I1 = 6 I1 = 9

µ = 0.15

I2 = 3 2.1 / < 10−9 / 46 — — —
I2 = 6 3.2 / < 10−9 / 70 1.1 / < 10−9 / 45 — —
I2 = 9 3.4 / < 10−9 / 76 1.3 / < 10−9 / 55 0.2 / 1 · 10−7 / 18 —
I2 = 18 4.2 / < 10−9 / 92 2.1 / < 10−9 / 85 1.0 / < 10−9 / 73 0.7 / < 10−9 / 67

µ = 0.25

I2 = 3 2.1 / < 10−9 / 50 — — —
I2 = 6 3.1 / < 10−9 / 73 0.9 / < 10−9 / 45 — —
I2 = 9 3.3 / < 10−9 / 80 1.2 / < 10−9 / 59 0.3 / 1 · 10−8 / 25 —
I2 = 18 3.9 / < 10−9 / 93 1.8 / < 10−9 / 86 0.9 / < 10−9 / 75 0.6 / < 10−9 / 67

µ = 0.35

I2 = 3 2.4 / < 10−9 / 52 — — —
I2 = 6 3.5 / < 10−9 / 75 1.0 / < 10−9 / 48 — —
I2 = 9 3.6 / < 10−9 / 79 1.2 / < 10−9 / 56 0.2 / 2 · 10−6 / 16 —
I2 = 18 4.3 / < 10−9 / 94 1.9 / < 10−9 / 87 0.9 / < 10−9 / 75 0.7 / < 10−9 / 71

µ = 0.45

I2 = 3 3.3 / < 10−9 / 53 — — —
I2 = 6 4.8 / < 10−9 / 76 1.4 / < 10−9 / 48 — —
I2 = 9 5.1 / < 10−9 / 81 1.7 / < 10−9 / 59 0.3 / 7 · 10−5 / 21 —
I2 = 18 5.9 / < 10−9 / 94 2.6 / < 10−9 / 87 1.1 / < 10−9 / 74 0.8 / < 10−9 / 68

µ = 0.55

I2 = 3 4.2 / < 10−9 / 34 — — —
I2 = 6 8.6 / < 10−9 / 70 4.4 / < 10−9 / 54 — —
I2 = 9 10.0 / < 10−9 / 81 5.8 / < 10−9 / 71 1.4 / < 10−9 / 37 —
I2 = 18 11.2 / < 10−9 / 91 7.1 / < 10−9 / 87 2.6 / < 10−9 / 71 1.3 / < 10−9 / 54

Table 4: Mann Whitney U-tests on the FND distributions among different number of
orientations I1 (columns) and I2 (rows). Left: ν(FND)I1 − ν(FND)I2(%). Center: P -
value. Right: (ν(FND)I1 − ν(FND)I2)/ν(FND)I1(%).

presented in Section 4.1, from Figure 6a we can see that the reproducibility
is increased when extending the orientation set with regard to repeating
the measurements for the same total number of acquired orientations and
therefore same acquisition time. In this case one also encounters that the
results are consistent against changes in µ and the use of either the MOHARP
or MOWHARP methods and when assessed not just in terms of the median
but of the whole range of quantiles of the FND distribution, as reflected in
Figure 6b.

In Figure 7 we show the PDF of the ERR, ECC and ERC strain compo-
nents for the sets considered in Table 2 for µ = 0.35 both for the application
of the MOHARP and the MOWHARP methods. Comments included in Sec-
tion 4.1 about the reproducibility and discrepancies between the MOHARP
and MOWHARP methods also apply to this case.

Finally, in Table 5 we include the results of the Mann Whitney U-tests
on the FND distributions of repeated measurements versus extended ori-
entations for the application of the MOWHARP analysis for some of the
considered µ values. Moreover, a measure of the median reproducibility im-
provement obtained when acquiring an extended set of orientations is also
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Figure 6: FND for the sets considered in Table 2 (repeated measurements / extended
orientations) using both non-windowed and windowed analysis.

provided. Interestingly, we observe that, for the number of orientations stud-

µ = 0.15 µ = 0.25 µ = 0.35 µ = 0.45 µ = 0.55
1.4 / < 10−9 / 51 1.0 / < 10−9 / 46 0.9 / < 10−9 / 44 1.0 / < 10−9 / 41 3.2 / < 10−9 / 46

Table 5: Mann Whitney U-tests on the FND distributions between different orientation
configurations. Left: ν(FNDra) − ν(FNDeo)(%) with FNDra denoting the case with re-
peated angles and FNDeo the one with extended orientations. Center: P -value. Right:
(ν(FND)ra − ν(FND)eo)/ν(FND)ra(%).

ied in this experiment, the strategy here proposed is able to almost double the
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Figure 7: Strain PDF for the sets considered in Table 2 (repeated measurements / extended
orientations) for µ = 0.35 using both non-windowed and windowed analysis.
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reproducibility of the obtained estimations. Moreover, the results are consis-
tent against changes of µ. Improved reproducibility when using an extended
set of orientations than when repeating the measurements for the same ori-
entations is a key feature of the MOWHARP method, as it demonstrates
the prominence of orientation dependent artifacts with respect to noise for
standard HARP reconstructions. Further insight into this property is given
in the synthetic experiment that follows.

4.3. Validation on synthetic data

Sections 4.1 and 4.2 have shown the ability of the proposed acquisition
of an extended set of stripe orientations to improve the reproducibility of
strain estimations using both the MOHARP and MOWHARP techniques.
However, the results in Figures 5 and 7 show that there is a significant
difference in the strain estimations given by both techniques, especially in
the radial case. Thus, a synthetic experiment has been conducted to justify
our claims about the bias reduction when using the windowed analysis as
well as to illustrate about the demonstrated advantages of multi-orientation
for real data.

An incompressible radially varying deformation has been applied over
the magnetization patterns as described in Section 3. We have assumed
no structure is present in the underlying image so as to avoid the artifacts
provoked by interferences from the anatomical component, which simplifies
the interpretation of results. Thus, the annular region is used to study the
difference between the estimated (Ê) and the ground truth (E) strain, not
as an anatomical model. The bandwidth of the BP filters applied is set to
µ = 0.35.

First, the estimation variance, var(Ê), for each of the strain components
is calculated as the difference between the mean squared error, MSE(Ê), and
the squared estimation bias, (B(Ê))2, and plotted in a logarithmic scale.
Results are shown in Figure 8. For small deformations, the estimation vari-
ance remains negligible for all methods. As the deformation gets larger, a
transition point is reached in which the I = 2 methods (HARP/WHARP)
are no longer able to provide meaningful estimates of the strain so that
the estimation variance explodes. From the curves in Figure 8, the transi-
tion point for this experiment could be located around deformation levels
of γ = 0.35 for HARP and γ = 0.5 for WHARP and it remains approxi-
mately the same for the different strain components. The huge variance of
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the recovered strain for large deformations is provoked by the artifacts in-
troduced by certain components of the strain modulation being discarded
by BP filtering. However, in our view, when using a large number of ori-
entations (MOHARP/MOWHARP), these artifacts appear incoherently dis-
tributed circumferentially, so that, by using the LAD estimator, only those
orientations that provide meaningful pointwise estimates of the deforma-
tion gradient tensor are effectively accounted for and the estimation remains
stable. These results are consistent with the improved reproducibility of
multi-oriented methods in real data, as shown in Sections 4.1 and 4.2.
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Figure 8: Strain estimation variance (in a logarithmic scale) for different degrees of defor-
mation and µ = 0.35.

Second, the estimation bias, B(Ê), is calculated for stable estimators
(MOHARP/MOWHARP) and shown in Figure 9. In this case, we see that
both are unbiased for small deformations but, once again, after a given tran-
sition point, both start to deviate from the ground truth. This also can
be attributed to discarded spectral components of the strain. Namely, ÊRR

(positive) and ÊCC (negative) are biased towards zero, whereas no bias is
observed in ÊRC because it is identically zero in our phantom. However, due
to its ability to follow the spatial variation of the orientation and spacing of
the tag pattern, the bias of the MOWHARP method remains consistently
lower. These results are in accordance with the shift towards zero observed
for HARP and MOHARP estimations in Figures 5 and 7.

In this experiment, estimation errors are provoked by the bandwidth of
the BP filter being too small to capture the frequency modulation introduced
by the deformation. Thus, in this setting, they could be mitigated by increas-
ing the bandwidth. However, in a more realistic scenario, artifacts coming
from the anatomical signal will also influence the estimation and they will
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Figure 9: Strain estimation bias for different degrees of deformation and µ = 0.35.

increase with increased bandwidths so that a satisfactory tradeoff is usually
less likely for HARP than for MOWHARP. This is further investigated below
by visual inspection of the estimations in real data.

4.4. Visual results

In Figures 10, 11 and 12 we respectively show the results of the ERR,
ECC and ERC for some of the considered µ values and the set of orientations
included in Table 3 both for the MOHARP and MOWHARP methods.

Visual results illustrate about the influence of the main parameters of
our method in the reconstruction of the strain tensor from tagged MR im-
ages. From Figure 10a we can see that the result for the radial component
of the strain by means of the HARP method (I = 2, left column) is unsatis-
factory: when using small bandwidths µ the radial strain is underestimated
whereas when incrementing µ significant artifacts start to appear. The emer-
gence of artifacts is greatly limited by the use of a larger number of orien-
tations but obviously at the price of increasing the acquisition time. When
using MOWHARP (see Figure 10b) both undesirable effects seem to be ap-
preciably diminished as the results appear more consistent among different
bandwidths —additional related considerations were established in Cordero-
Grande et al. (2011, 2014)—. Differences between both methods are observed
even at large number of orientations, showing the fundamental limitation of
the non-windowed analysis to recover large strains. Similar results are ob-
served for the circumferential component of the strain in Figure 11 although
acceptable results are obtained from MOHARP for both large I and µ in
this case. Finally, the estimation of the radial-circumferential component of
the strain in Figure 12 seems to stay somewhere in between the radial and
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Figure 10: ERR strain for the sets included in Table 3.

circumferential estimates: biases introduced by the HARP analysis seem to
be present but they are not so strong as in the radial case.

5. Discussion

From the results in Section 4 we can see that our methodology is effec-
tive in improving the robustness and accuracy when obtaining direct strain
measurements from tagged MR sequences. Accuracy improvement is mostly
based on the reconstruction technique adopted, where the FT is substituted
by the WFT in order to better detect the local phase of the modulation
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Figure 11: ECC strain for the sets included in Table 3.

pattern. On the other side, in the implementation here presented, the ro-
bustness improvement comes at the expense of introducing an overload in
the acquisition time due to the need of acquiring different orientations of the
modulated magnetization pattern.

Longer acquisition times (that, for naive acquisition extensions, vary lin-
early with the number of acquired orientations) would in turn increase the
likelihood of other artifacts to affect the image quality, such as those arising
in the presence of arrythmias or longer apneas. However, different tech-
niques may be implemented to accelerate the acquisition of the modulations
set. Probably the most important consideration to be kept in mind in this
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Figure 12: Strain components for the sets considered in Table 3.

regard is that only a reduced subset of the k-space, given by a region around
the spectral peak, is needed to reconstruct the local phase using the HARP
method (Sampath et al., 2003), which also holds in our extension. Addi-
tionally, different harmonics may be simultaneously acquired provided that
their spectral peaks can be separated by a proper k-space filtering, which can
subsequently accelerate the acquisition process (indeed, this idea is applied
in grid-like and high order SPAMM acquisitions).

Important open tasks, specially for simultaneous multi-harmonic acqui-
sition, would be the combined design of optimal analysis windows and BP
filters, the automatic estimation of the BP filter bandwidth, and the de-
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sign of optimal modulation sampling patterns if different tag spacings are
to be sampled. Indeed, our reconstruction method could be readily applied
to grid-like acquisitions, and, by designing adequate BP filters and using a
straightforward extension of the proposed ridge detector, it may as well be
extended to high order SPAMM analysis. However, additional local phase
information will likely be counteracted by increased interferences, which may
be difficult to balance. In this regard, extensions of the current methodol-
ogy to diminish the influence of the anatomical signal on the demodulated
deformations may also help in obtaining cleaner estimations.

Regarding reconstruction times, we believe the method is fully feasible for
offline reconstructions to be used in clinical applications provided adequate
hardware is available. On the one side, the most demanding computations
(windowed local phase computation and LAD estimation) admit massive
GPU accelerations. On the other side, considering computations are mostly
performed on a pixelwise basis, the dimensions of the problem can be signif-
icantly reduced with a proper masking of the myocardial tissue. Namely, in
our current implementation under MATLAB, windowed local phase computa-
tion (GPU-based) takes around 0.1 s per orientation and the LAD estimation
(CPU-based) between 0.1 s (I = 2) and 1 s (I = 36).

All in all, we think that the proposed methodology brings new opportuni-
ties in the design of SPAMM acquisition sequences for HARP imaging, par-
ticularly when combined with modern acquisition protocols such as Ibrahim
et al. (2006); Stoeck et al. (2012) and also considering that when the interest
resides in measuring the mechanical properties of the myocardium, selective
excitation methods may be adopted to reduce the field of view to be encoded.
Although the 3D extension of the reconstruction pipeline in Section 2 would
be conceptually straightforward, 3D SPAMM acquisition still presents signifi-
cant challenges (Rutz et al., 2008; Stoeck et al., 2012). In addition, the design
of optimal coverage of the orientation space might be more intricate than in
the 2D case, particularly if attempted to be adapted to the myocardial ge-
ometry. On the other hand, we believe that the ideas here introduced might
also be useful for Displacement ENcoding with Stimulated Echoes (Kuijer
et al., 2006) (DENSE) or even Phase Contrast (PC) acquisitions.

Finally, we would like to stress that the acquisition extension we propose
in this paper, i.e., that of gathering an overdetermined set of modulations
in order to improve the robustness of strain estimation, is not so evident as
it may appear at first glance. The reason is that this extension is not just
based on gathering a large amount of data so as to avoid a noise-related
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shortcoming of the measurement process, but it is devised to correct for the
specific artifacts appearing in conventional HARP reconstruction. This can
be noted by paying attention to the use of the LAD estimator instead of
the LS one. A comparative study of the gain provided by both estimators
in a synthetic dataset was developed in Cordero-Grande and Alberola-López
(2012) and is not repeated here for the sake of conciseness, but the results
conclusively supported the hypothesis that the LAD estimator is better suited
for this reconstruction problem.

6. Conclusions

A method for the reconstruction of the strain tensor in tagged MR se-
quences is presented which builds upon (1) the use of the WFT for an un-
biased estimation of the local phase of the modulation pattern and (2) the
acquisition of an overdetermined set of stripes in order to limit the influence
of outliers derived from the combination of phase interferences and the gradi-
ent operation. The method has significantly improved both the accuracy and
the reproducibility of myocardial deformation measurements with respect to
a standard acquisition in which just two orthogonal orientations are acquired
and a standard HARP analysis is performed. Taking the considerations in-
cluded in Section 5 into account, new families of acquisition protocols can
potentially be designed for motion sensitive MR imaging, which could simul-
taneously improve the resolution, robustness and precision in the analysis of
motion.
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Alberola-López, C., 2011. Improving harmonic phase imaging by the
windowed Fourier transform, in: 8th IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, Chicago, USA. pp. 520–523.

Crum, W.R., Berry, E., Ridgway, J.P., Sivananthan, U.M., Tan, L.B., Smith,
M.A., 1998. Frequency-domain simulation of MR tagging. J Magn Reson
Imaging 8, 1040–1050.

27



Fu, Y.B., Chui, C.K., Teo, C.L., 2013. Accurate two-dimensional cardiac
strain calculation using adaptive windowed Fourier transform and Gabor
wavelet transform. Int J Comput Assist Radiol Surg 8, 135–144.

Ibrahim, E.S.H., 2011. Myocardial tagging by cardiovascular magnetic res-
onance: evolution of techniques–pulse sequences, analysis algorithms, and
applications. J Cardiovasc Magn Reson 13, 36.

Ibrahim, E.S.H., Stuber, M., Schär, M., Osman, N.F., 2006. Improved my-
ocardial tagging contrast in cine balanced SSFP images. J Magn Reson
Imaging 24, 1159–1167.

Jeung, M.Y., Germain, P., Croisille, P., El ghannudi, S., Roy, C., Gangi,
A., 2012. Myocardial tagging with MR imaging: Overview of normal and
pathologic findings. RadioGraphics 32, 1381–1398.

Jones, D.K., Horsfield, M.A., Simmons, A., 1999. Optimal strategies for
measuring diffusion in anisotropic systems by magnetic resonance imaging.
Magn. Reson. Med. 42, 515–525.

Kuijer, J.P.A., Hofman, M.B.M., Zwanenburg, J.J.M., Marcus, J.T., van
Rossum, A.C., Heethaar, R.M., 2006. DENSE and HARP: Two views on
the same technique of phase-based strain imaging. J Magn Reson Imaging
24, 1432–1438.

Kuijer, J.P.A., Jansen, E., Marcus, J.T., van Rossum, A.C., Heethaar, R.M.,
2001. Improved harmonic phase myocardial strain maps. Magn. Reson.
Med. 46, 993–999.

Osman, N.F., McVeigh, E.R., Prince, J.L., 2000. Imaging heart motion using
harmonic phase MRI. IEEE Trans Med Imaging 19, 186–202.

Papadakis, N.G., Xing, D., Huang, C.L.H., Hall, L.D., Carpenter, T.A., 1999.
A comparative study of acquisition schemes for diffusion tensor imaging
using MRI. J Magn Reson 137, 67–82.

Parthasarathy, V., 2006. Characterization of Har-
monic Phase MRI: Theory, Simulations, and Applica-
tions. Ph.D. thesis. The Johns Hopkins University.
http://speech.umaryland.edu/publications/vijay dissertation.pdf.

28



Rutz, A.K., Ryf, S., Plein, S., Boesiger, P., Kozerke, S., 2008. Accelerated
whole-heart 3D CSPAMM for myocardial motion quantification. Magn
Reson Med 59, 755–763.

Sampath, S., Derbyshire, J.A., Atalar, E., Osman, N.F., Prince, J.L., 2003.
Real-time imaging of two-dimensional cardiac strain using a harmonic
phase magnetic resonance imaging (HARP-MRI) pulse sequence. Magn
Reson Med 50, 154–163.

Shehata, M.L., Cheng, S., Osman, N.F., Bluemke, D.A., Lima, J.A., 2009.
Myocardial tissue tagging with cardiovascular magnetic resonance. J Car-
diovasc Magn Reson 11, 55.

Simpson, R.M., Keegan, J., Firmin, D.N., 2013. MR assessment of regional
myocardial mechanics. J Magn Reson Imaging 37, 576–599.

Stoeck, C.T., Manka, R., Boesiger, P., Kozerke, S., 2012. Undersampled cine
3D tagging for rapid assessment of cardiac motion. J Cardiovasc Magn
Reson 14, 60.

Swoboda, P.P., Larghat, A., Zaman, A., Fairbairn, T.A., Motwani, M.,
Greenwood, J.P., Plein, S., 2014. Reproducibility of myocardial strain and
left ventricular twist measured using complementary spatial modulation of
magnetization. J Magn Reson Imaging 39, 887–894.

Tobon-Gomez, C., De Craene, M., McLeod, K., Tautz, L., Shi, W., Hen-
nemuth, A., Prakosa, A., Wang, H., Carr-White, G., Kapetanakis, S.,
Lutz, A., Rasche, V., Schaeffter, T., Butakoff, C., Friman, O., Mansi,
T., Sermesant, M., Zhuang, X., Ourselin, S., Peitgen, H.O., Pennec, X.,
Razavi, R., Rueckert, D., Frangi, A., Rhode, K., 2013. Benchmarking
framework for myocardial tracking and deformation algorithms: An open
access database. Med Image Anal 17, 632–648.

29


