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Summary 

Summary 

Cyclic di-adenosine monophosphate (c-di-AMP) is a second messenger involved in 

diverse metabolic processes such as cell wall homeostasis, biofilm formation, antibiotics and 

heat resistance, among others. In Lactococcus lactis and Enterococcus faecalis, Lactic Acid 

Bacteria used not only as research models but also as a cell factory in biotechnological 

processes, the only reported interaction partner of c-di-AMP is the pyruvate carboxylase 

enzyme, PyrCarb. Nevertheless, in the last year investigations directed its main role towards 

potassium metabolism.  

In this thesis, KupA and KupB, two potassium transporters encoded in L. lactis IL1403 

genome, are described for the first time. According to an in silico analysis, these proteins, which 

belong to the Kup/HAK/KT family, are highly conserved in this species, being therefore a strain 

independent potassium uptake system. In addition, evidence shows that both proteins are able 

to uptake this cation with high affinity, and we demonstrate that KupA as well as KupB bind to 

and are down-regulated by c-di-AMP. 

On the other hand, different strains derived from L. lactis IL1403 were developed aiming 

to modify intracellular pools of c-di-AMP in a stable system. One strategy for the reduction of 

c-di-AMP levels was the obtaining of ∆gdpP mutants via homologous recombination. 

Maintenance of this second messenger levels close to wild type ones, suggested the presence 

of another c-di-AMP degrading enzyme. A first description of a putative enzyme with this 

activity, encoded by yheB gene was done by BNPP assay. In addition, by use of a pH inducible 

vector, construction of strain L. lactis LL03 with concentrations of this second messenger above 

15 times basal levels was possible. This system was therefore selected for further investigations 

on the development of a vaccine prototype against Chagas disease.  

On the other hand, L. lactis is a promising candidate for the development of mucosal 

vaccines with more than 20 years of experimental research. Moreover, c-di-AMP has been 

reported as a strong mucosal adjuvant promoting both humoral and cellular immune responses. 

Altogether, in this thesis the development of a recombinant L. lactis strain is reported, able to 

produce both an antigen as well as an adjuvant in order to develop a novel vaccine prototype 

against the Trypanosoma cruzi parasite, the causal agent of Chagas disease. This is a tropical 

disease originated in a specific area of South America but currently spreading in four continents. 
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Summary 

Finally, an initial approach was done on c-di-AMP metabolism in E. faecalis. The 

presence of a Kup transporter was also corroborated in this species, and some basic 

characteristics of the c-di-AMP degradative pathway were explored via a ∆gdpP mutant 

construction. Finally, the impact of GdpP on the virulence of E. faecalis was analyzed by use 

of the infection model Galleria mellonella. 
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1. Introduction 

“Remember to look up at the stars and not down at your feet. Try to 
make sense of what you see and wonder about what makes the 

universe exist” Stephen Hawking 

 



Introduction 

1.1. Lactic Acid Bacteria 

Along the course of history, human beings always sought for efficient ways of 

improving quality of everyday life. When food supplies were not round the corner, one of these 

ways concerned food preservation. In this sense, a wide variety of products including meat, 

cheese, vegetables and dairies to name a few, were well conserved thanks to the process of 

fermentation. Successful results were not investigated, there was a lot of variation from one 

fermented product to the next one and optimization of these procedures was obtained after trial 

and error. A widely practiced technique consisted on separating a small portion of a successful 

batch of a fermented product and using it to start the process in fresh food. This “back-slopping” 

method allowed people to maintain food in good conditions, by transferring the microorganisms 

which made fermentation possible. In lactic fermentation, the most represented amount of 

bacteria conforming the inocula were Lactic Acid Bacteria (LAB) (1) .  

Nowadays, mechanisms of preservation are thoroughly understood and different 

combinations of LAB are used to inoculate a culture, expecting specific features in the final 

fermented product. In the cheese making industry, for instance, certain strains are used as starter 

or adjunct cultures to contribute to flavor and aroma development, or to other specific 

organoleptic features such as the formation of eyes via CO2 release (2) . Also, proteolysis and 

lipolysis are key pathways for texture and flavor improvement and so is the formation of C4 

aroma compounds like acetoin and diacetyl, both derivatives of lactic acid (3). 

The group of LAB cannot be addressed as microorganisms falling in one simple 

definition. Instead, they are referred to as a group of bacteria with certain key characteristics in 

common. Principally, the high amounts of lactic acid they produce when grown in the presence 

of a suitable carbon source, as result of homofermentation or heterofermentation, in which case 

they produce acetic acid and ethanol as well. These acidic compounds and the concomitant 

decrease in pH are one of the main reasons for the growth inhibition of undesired 

microorganisms. Moreover, LAB have less than 50% of G+C content in their genomes and they 

are non-sporulating Gram-positive bacteria. They are strictly fermentative, anaerobic or 

aerotolerant and morphologically they can be cocci or rod shape bacteria. Phylogenetically, 

LAB genera are all included in the firmicutes phylum, except for the Bifidobacterium genus, 

belonging to Actinobacteria. Genera within Firmicutes comprise: Aerococcus, Aloiococcus, 
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Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, 

Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weisella, among others (4). 

Due to its historical utilization in food industry, they have been classified as “Generally 

Regarded as Safe” (GRAS) by the Food and Drug Administration of the United States of 

America (FDA) and they have also been designated with the “Qualified Presumption of Safety” 

(QPS) according to the European Food Safety Authority (EFSA). Consequently, in the last 

decades increasing interest and lines of investigations have been opened concerning other fields 

and applications of LAB, which is how from food preservation and starter cultures they 

expanded into probiotics development, enzymes production, drugs delivery, vaccines 

formulation, among others. 

Nevertheless, within the LAB group there are also some controversial species, which 

are pathogens or opportunistic pathogens, like members of the Streptococcus and Enterococcus 

group (Fig. 1). Even though some strains of Enterococcus are able to produce bactericidal 

compounds and therefore their biotechnological applications are encouraged, special care need 

to be taken when working with microorganisms prone to acquire antibiotic resistances and turn 

into nosocomial pathogens (see below). 

Members of LAB, apart from the acidifying effect on growth media as previously 

mentioned, are also efficient inhibitors of undesired microorganisms due to the synthesis of 

bacteriocins. These are peptidic compounds with bactericidal effects on closely related bacteria 

from the same ecological niche, which provides an evolutionary advantage to the producer 

strain (5). Its effects have also been proven in more distant species, mainly when environmental 

conditions can be adjusted to favor the bacteriocin mode of action. The first recognized 

bacteriocin synthesized by L. lactis was nisin, which has been employed for decades in food 

industry for its antimicrobial action against members of Gram-positive bacteria. Noteworthy, it 

also inhibits growth of Clostridium and Bacillus spores, and different combinations of nisins, 

nisin producer starter strains and other preservation mechanisms have been applied in food 

industry and fermentation processes without health risks for consumers (6, 7). 
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Fig. 1 Schematic phylogenetic tree of LAB based on 16 rRNA gene sequence 
homology. Representative LAB species related to the food industry are included. 
Species that do not represent a risk for human health are depicted in green, 
opportunistic pathogens in red. 

Other bacteriocins active against pathogenic bacteria in human infections have prompt 

the development of probiotics. Probiotics are live microorganisms that, when administered in 

adequate amounts, confer a health benefit on the host (8). The intestinal lumen is an elaborated 

matrix with complex microbiota that varies for each host and is influenced by different direct 

and indirect agents. Examples of indirect agents are the use of antibiotics and also the diet, 

which has been referred to as the most efficient way of modulating gut microbiota (9) . Diets 

complemented with probiotics and symbiotics have a beneficial impact on the immune system 

of individuals with infectious bacterial diseases and even a connection was established between 

the increase of Lactobacillus levels and the vitamin A supplementation for Norovirus treatment 

(10). Interesting results have been obtained as well for Helicobacter pylori inhibition by use of 

LAB isolated from fermented noodle (11), and bacteriocins synthesized by LAB have also been 

reported to be active against pathogenic bacteria like Listeria monocytogenes, Staphylococcus 

aureus and Streptococcus mutans (12, 13). 
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1.1.1. Lactococcus lactis 

Lactoccus lactis is one of the most used starter culture in the cheese making industry as 

well as the best characterized LAB (14). Several strains have been thoroughly studied for their 

impact on the fermented final product, and they fall mainly into two subspecies, L. lactis subsp. 

cremoris (preferentially used as starter since they cause less bitterness), and L. lactis subsp. 

lactis (known as a fast acidifier). A biovariety can also be found within L. lactis species, i. e. L. 

lactis subsp. lactis biovar. diacetylactis, capable of citrate fermentation and therefore affecting 

flavor development via acetoin and diacetyl synthesis (15). 

From an evolutionary point of view, L. lactis has been able to colonize different 

ecological niche, like plant surfaces, the urogenital and gastrointestinal tract of mammals as 

well as other animal tissue surfaces. It can also be found in different types of foods including 

dairies, meats and fermented products. Strains from diverse sources have evolve loosing or 

gaining specific sets of genes which made possible their adaptation to the defined media 

employed in industries, the rich media of dairy matrices and the most demanding natural 

environments of non-dairy sources such as plants. Consistent with this, a recent study 

performed on 30 sequenced genomes available on the NCBI database belonging to L. lactis 

taxon, reported that 16% of the unique gene families of each genome correspond to phage 

proteins acquired through the integration of a particular pro-phage element (16). Moreover, 

about 19% of these gene families showed to be involved in mobilization and conjugation, 

transposases and IS elements, or genes encoding systems providing a beneficial niche specific 

advantage related to bacteriocin production, sugar metabolism and restriction-modification 

systems. This study also showed a clear division between lactis and cremoris subspecies, and 

allowed the determination of the core genome sizes being of 1406 and 1413 genes, respectively 

(plasmids were excluded from the study) (16). For industrially relevant L. lactis strains, the 

most important set of genes are those coding for proteins that enable lactose fermentation, the 

prevalent carbon source in dairy products. These genes are encoded in the lacABCDEFGX 

operon, which is found in plasmids of all cremoris subspecies, except for the plasmid free strain 

MG1363 and its derivative NZ9000. On the other hand, within lactis subspecies the non-

degrading lactose strains are more represented, being IL1403 one of these. Altogether, L. lactis 

is a very versatile species with a wide research history and range of options for industrial 

applications, which are currently under investigation. 
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L. lactis subsp. lactis IL1403 (from now on L. lactis IL1403) was the first sequenced 

lactis strain, and it is the plasmid free version of strain IL594 isolated from a cheese starter 

culture  (17). Together with strain NZ9000 and MG1363, it is the most used genetic and 

physiological L. lactis model in the laboratory (14) (for a summary of L. lactis strains used for 

research and industrial applications see Fig. 2 and Table I). L. lactis IL1403 has been employed 

in research for decades and its consequent adaptation and domestication led to a small genome 

of approximately 2500 open reading frames (ORF), nearly the half of other well-known 

bacterial models such as Bacillus subtilis. As a member of LAB, this strain is expected to be 

strictly fermentative, but genes related to aerobic respiration have been found in L. lactis IL1403 

genome (18). Namely, men and cytABCD operons are present, involved in menaquinone 

synthesis and cytochrome d biogenesis respectively, and even hemH, hemK and hemN for late 

steps of heme biosynthesis (oxidation of porphyrinogen and attachment of iron to heme), 

although no genes for the early steps were identified. 

L. lactis ssp. cremoris MG1363 was initially obtained as the plasmid cured progeny of 

the dairy origin NCD0712 strain (19) and it is today the model laboratory strain for genetic 

engineering and biotechnology of L. lactis (Fig. 2). From this strain also derives one 

fundamental tool for the nisin-controlled gene expression system (NICE), which was obtained 

via replacement of pepN gene (coding for an aminopeptidase) for the nisK and nisR genes (20), 

encoding a histidine-kinase and a cytoplasmic response regulator, respectively. The strain thus 

created, named NZ9000, is able to sense nisin in the medium upon which NisK 

autophosphorylates and transfers the phosphate to the counterpart of the two-component 

system, NisR, being thus activated. The active version of NisR induces in turn the PnisA 

promoter, present in the pNICE series of vectors, for which expression of a gene of interest 

cloned under it is successfully induced (21). It is important to mention that L. lactis NZ9000 

lacks 1821 nucleotides in the pepN-napC locus and when compared to the original strain 

MG1363, it has 6 point mutations independently acquired, being otherwise genetically 

equivalent (22). 

Another tool developed for L. lactis engineering and biotechnology, of special relevance 

for this work, is strain clpP-htrA, which shows reduced proteolytic activity, due to the lack of 

both major proteases Clp and HtrA (Fig. 2). Consequently it is a good strategy for the stable 

production of a heterologous protein of interest (23). 
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Fig. 2 Representative diagram of the development of L. lactis strains commonly used for genetic engineering 
and gene expression. L. lactis IL594 contains seven plasmids (pIL1 to 7), and is the parental strain of the plasmid 
free IL1403 strain. On the other hand, L. lactis MG1363 is the free plasmid version of strain NCDO712. It is also 
the parental strain of NZ9000, which carries the nisKR insertion, for nisin sensing and activation of the NICE 
system vector series. Strain clpP-htrA lacks the proteolytic enzymes HtrA and ClpP due to a deletion in the former 
case, and an erythromycin gene replacement, in the latter. 

1.1.2. Enterococcus faecalis 

Enterococcus faecalis is a natural commensal member of the human gut flora, and a 

very versatile bacterium for diverse niches colonization. As a member of the Enterococcus 

genus, it can grow in temperatures ranging from 10º C to 45º C, it can survive acidic and alkaline 

conditions (from pH 4.0 to 9.6), and can resist high salt concentrations (up to 6.5% NaCl) (24). 

E. faecalis can be found in plant materials and foods, especially in fermented products of animal 

origin, although in water and non-fermented meat articles its presence is not desired and 

normally it is used as an indicator of sanitary quality (25).  
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E. faecalis is as well one of the most controversial LAB, since it can participate in DNA 

exchange, being able to acquire antibiotic resistances, genes related to haemolysin-cytolysin 

production, proteins involved in adhesion to host tissue, or other virulence factors (26). The 

most complicated strains are the vancomycin resistant, which normally enter the host via 

wounds and catheters, causing endocarditis, bacteraemia and urinary tract infections (27). 

Nevertheless, due to E. faecalis wide genetic variability, strains isolated from clinical samples 

are significantly different from those isolated from food. Abriouel et al. showed that species 

most frequently involved in human diseases are also most frequently associated with clinical 

samples and in the same study enterococcal isolates from fruits and vegetables showed a much 

lower incidence of antibiotic resistance compared to clinical samples (28). 

Notwithstanding its controversial profile, it is a reality that Enterococcus (mainly E. 

faecalis, E. faecium and E. durans) are part of food products, either due to contamination along 

the manufacturing process or as part of dairy starter, adjunct and/or non-starter cultures (29). 

Moreover, E. faecalis is the species with the most acidifying, proteolytic and lipolytic activities, 

which as previously mentioned, exerts a strong contribution to flavor development. It is well 

known nowadays that its presence in food products like cheese and fermented meats contributes 

to the ripening process in the development of favorable organoleptic features (30). 

Some strains of E. faecalis have even been reported as probiotics and others are known 

for its bacteriocin production (31). E. faecalis synthesizes enterocin AS-48, which has a broad 

inhibitory spectrum, and offers interesting possibilities for food preservation. It has been shown 

to be active against Gram-positive bacteria like L. monocytogenes, S. aureus, Mycobacterium, 

Bacillus cereus and even some Gram-negative bacteria (32-34). 

1.2. Potassium homeostasis 

Ion homeostasis is a key factor for life in the three kingdoms. Particularly, potassium 

(K+) is the most abundant cation in the cytosol, and its uptake is essential and tightly regulated 

in all living cells. It intervenes in important cellular processes like translation, being essential 

for prokaryotic 50S and 30S ribosomal subunits activity, in charge of the peptidyl transferase 

reaction and the binding of phenylalanine-transfer RNA in vitro, respectively (35, 36). 

Potassium concentration is a limiting factor for protein synthesis, and it has been reported that 

the rate of protein synthesis slows down fourfold when K+ concentrations are under 25 mM 

(37).  
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Many enzymes require potassium as cofactor and it is also linked to bacterial 

bioenergetics, since it affects both components of the proton motive force (PMF), the pH 

gradient (∆pH, alkaline inside the cell) and the electric potential across the cellular membrane 

(∆ψ, negative inside the cell) (38). Secondary transporters involved in ∆pH generation, 

generally use the PMF generated by respiration or ATPases to actively uptake protons in 

exchange for cytoplasmic cations like Na+ or K+ (39). Therefore, potassium metabolism also 

affects pH homeostasis via cation–proton antiporters, especially crucial for non-respiring LAB, 

which acidify growth media and need to maintain alkaline values of pH inside the cells when 

extracellular values can go down to lower limits than their growing capacity (40). 

The Δψ component of the PMF is also related to potassium metabolism since in alkaline 

pH homeostasis, it enables the electrogenic influx of protons in exchange of an unequal ratio of 

Na+ or K+ efflux. Nevertheless, Na+ /H+ antiporters are more often involved in this process, 

whereas K+ /H+ antiporters take relevance under Na+ limitation (39, 41). In turn, this membrane 

potential is also important for ATP production and nutrient uptake, for which potassium 

metabolism influences cell growth as well. 

Cells also need a mechanism to alter their intracellular K+ concentrations in response to 

external solute changes. In these respect, potassium channels play a crucial role in osmotic 

stress responses. Most bacteria growing at low osmolarity use K+ as primary osmotic solute and 

when grown in high osmolarity media, potassium acts as a second messenger to trigger 

accumulation of compatible solutes. (42). In this sense bacterial cell turgor and cell viability 

under variable environmental conditions are maintained broadening colonization possibilities. 

It is important to mention that osmoregulation is also affected by the pool of compatible 

solutes. These molecules help reaching homeostasis after osmotic changes in the environment. 

Water efflux when osmolality increases outside the cell is first coped with potassium intake. 

Nevertheless, this is unsustainable when prolonged in time since it can disturb protein synthesis 

and other cellular processes and interactions affected by K+. Bacteria have therefore evolved 

developing a second phase of adaptation to osmotic stress, by synthesis of osmoprotectant 

solutes like betains, polyols, sugars, amino acids and compounds derived from them (43). A 

complex matrix is therefore established around potassium metabolism, connecting different 

cellular pathways in order to maintain homeostasis. 
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1.2.1. Potassium uptake systems 

Bacteria have evolved different systems to accumulate potassium intracellularly and 

achieve stable concentrations in order to cope with basic metabolic demands (40). Different 

high and low affinity uptake mechanisms are involved, if the bacteria are growing in media 

with low or high K+ concentrations, respectively. 

In E. coli, intracellular concentrations of K+ are kept close to 200 mM, when 

concentration in growth media is 10 mM (31). In this bacterium, there are three main potassium 

transport systems: Trk, Kdp, and Kup. Together they ensure potassium uptake in different 

growth conditions, and although mutants in the three systems cannot grow in regular media 

(unless at least 115 mM K+ is added), one of them is already enough for growth (44, 45). 

Trk system consists of four genes, which are constitutively expressed, with trkA as the 

main component and its product the predominant K+ transporter at neutral pH. It has low affinity 

for the ion and depends on ATP and proton motive force for potassium uptake (44). On the 

other hand, the KdpATPase system includes the inducible high affinity transporter KdpA, 

which is synthesized at low K+ concentrations and under osmotic stress (46). Finally, Kup 

(formerly TrkD) is also a constitutive but low affinity system and its activity increases at low 

pH, when TrkA and Kdp activities are insufficient (47). 

In other model bacterium like B. subtilis, S. aureus and L. monocytogenes, one of the 

main systems in charge of potassium uptake is Ktr, which like Trk belong to the Trk/Ktr/HKT 

family (48). Moreover, two different affinity systems can be distinguished within constitutive 

Ktr transporters: KtrCD is a low affinity system present in the three bacteria mentioned, 

whereas high affinity KtrAB is also present in B. subtilis, where it is regulated by the kimA 

riboswitch. Interestingly, another copy of the riboswitch can be found in B. subtilis, regulating 

as well kimA (formerly ydaO), coding for a member of a recently discovered potassium 

transporter family (49). An increase of K+ concentration results in accumulation of c-di-AMP 

which binds to the riboswitch and consequently represses expression of the downstream 

encoded transporters (49). Interestingly, the second messenger c-di-AMP (described in the 

following section) was proved to bind subunits KtrA and KtrC as well, upon which inhibition 

of the respective transporters occurs (50).  

As previously mentioned, potassium metabolism is an intricate network affecting 

diverse pathways, and so is potassium uptake. Even though a brief outline is made here as 
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regards major K+ transporters in model bacteria, it cannot be ignored that other minor systems 

exist as well. 

1.3.  (3’,5’) cyclic-di-adenosine-monophosphate 

(3’,5’) cyclic-di-adenosine-monophosphate (c-di-AMP) is a second messenger recently 

discovered in the crystallographic structure of DisA, a protein in charge of scanning DNA 

integrity in Thermotoga maritima (51). Therefore, the first function assigned to this compound 

was related to the DNA-damage dependent cell cycle control. Later it was also linked to cellular 

growth and cell wall homeostasis (52) as well as sporulation (53) and other cellular pathways 

like antibiotic resistance and nitrogen metabolism, among others (54).  

In pathogenic organisms, it was reported that c-di-AMP has an important role in the 

establishment of infection. For instance, in L. monocytogenes, c-di-AMP secretion after 

infection induces the immune response mediated by interferon β (55) and in Streptococcus 

pneumoniae it was observed that a double mutant strain lacking c-di-AMP degrading enzymes 

GdpP and PgpH (described below) is no longer capable of infection. Moreover, both proteins 

are involved in four key stages of pneumococcal pathogenesis: colonization, otitis media, 

pneumonia and bacteremia (56). 

c-di-AMP homeostasis is tightly controlled; low concentrations as well as its 

accumulation are detrimental for the cell. In B. subtilis, high levels of c-di-AMP lead to 

mutations that inactivate the activity or expression of its synthesizing enzyme, CdaA (see 

below) (54), and in L. monocytogenes, a double mutant in GdpP and PgpH results in growth 

defects inside and outside the host (57). Moreover, S. aureus strains lacking GdpP increase 

intracellular concentrations of c-di-AMP and are more resistant to acid stress and in general, 

higher concentrations of this second messenger are associated to increased resistance to β-

lactam antibiotics (52, 58, 59). 

The main interest on this compound was related to its essential role in rich media for 

low GC Gram-positive bacteria, since only in 2015 it was possible to obtain a mutant strain for 

the only c-di-AMP synthesizing enzyme in L. monocytogenes, in strictly controlled minimal 

media (60). 

In the last years, investigations were centered mainly in the role of c-di-AMP in 

potassium homeostasis and osmolyte transport, and even though its interaction to potassium 
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transport components was previously proven (50, 61), it was only recently that a direct 

connection was made between K+ metabolism and c-di-AMP essential role (49). In B. subtilis, 

it was shown that this second messenger also regulates synthesis of KimA (K+ importer A) via 

the kimA riboswitch, a copy of which is also found upstream ktrA, regulating its expression as 

well. Moreover, in the same study, a B. subtilis strain lacking c-di-AMP synthesizing enzymes 

was obtained under extremely low potassium concentrations (49) and in S. aureus this was 

possible in chemically defined medium and in rich medium supplemented with sodium or 

potassium chloride (62). 

1.3.1. Synthesis of c-di-AMP 

c-di-AMP is synthesized by specific di-adenilate cyclases from two ATP molecules, 

with the exception of M. tuberculosis, which can also produce it from two molecules of ADP 

(63). Three types of DAC containing enzymes are so far described, and they are all present in 

the model organism B. subtilis. The cyclase enzyme DisA, can be found in actinobacteria and 

in spore-forming firmicutes, and it associates into two interacting tetramers. It is involved in 

DNA integrity control and repair, being inhibited by damaged DNA as well as atypical DNA 

arrangements such as Holliday junctions (51). On the other hand, CdaS cyclase is only found 

in spore forming Bacillus members and in one Clostridium species, and it is exclusively 

expressed during sporulation, guaranteeing spores efficient germination. It contains two α-

helices at the N-terminal end, followed by the DAC domain at the C-terminus (64) The third c-

di-AMP synthesizing enzyme, CdaA, is the most frequently found in firmicutes. Similarly to 

CdaS, the DAC domain is located at the C-terminal end, whereas three α-helices can be found 

at the N-terminus (Fig. 3). It is important to mention that DAC containing proteins are 

extensively distributed in both Gram + and – bacteria, being much frequently found in the latter, 

and normally associated to additional domains in charge of the input and output of a variety of 

signals. Nevertheless, in the vast majority of low GC firmicutes, only one protein with a DAC 

domain is typically found.  

In many δ-proteobacteria and firmicutes, cdaA is encoded in a widely conserved gene 

cluster (described for L. lactis in section 3.1.6., Fig 42), which comprises cdaR, codifying for a 

CdaA regulatory protein, and glmM, coding for the phosphoglucosamine-6-phosphate mutase 

enzyme, capable of converting α-D-glucosamine-6-phosphate into D-glucosamine-1-

phosphate, a cell wall precursor. It is therefore not surprising that one of the first pathways 
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associated to c-di-AMP was cell wall biosynthesis, since genes responsible for the synthesis of 

related proteins are normally clustered together in the DNA. 

As previously mentioned, c-di-AMP is essential when bacteria are grown in rich media. 

Consequently, many efforts are being directed into the development of drugs able to inhibit c-

di-AMP cyclase activity and being therefore suitable for antibiotic formulation. For example, 

the anti-parasitic urea-derived drug suramin (used for African trypanosomiasis and 

onchocerciasis treatment) is proven to inhibit T. maritima DisA, competing with ATP for the 

same binding site in the enzyme (65). 

Altogether, c-di-AMP synthesis and metabolism are involved in diverse cellular 

pathways, and even though an increasing amount of information as regards this second 

messenger is being generated nowadays, its potential applications continue to expand. 

1.3.2. Degradation of c-di-AMP 

Bacteria capable of c-di-AMP synthesis also contain specific hydrolyzing enzymes in 

charge of its degradation. These proteins are phosphodiesterases, and can be divided into two 

families. The first family comprises homologues of a membrane-bound protein named GdpP, 

which consists of two transmembrane helices, a degenerate PAS domain (Per-Arnt-Sim, for 

signal transduction, (66), a modified GGDEF domain and a DHH-DHHA1 domain with a 

catalytic motif Asp-His-His. On the other hand, the second family includes an HD domain, 

where a His-Asp motif can be found, and it is separated of an N-terminal extracellular domain 

by seven transmembrane helices (Fig. 3) (67). Homologues of this group are distributed in 

cyanobacteria, bacteroidetes, fusobacteria, species of the genus Thermotoga and members of 

firmicutes, where proteins of both families are normally found together. 

The most studied phosphodiesterase, GdpP, is present in firmicutes, actinobacteria and 

spirochaetes. It degrades c-di-AMP into the dinucleotide 5’pApA and belongs to the DHH-

DHHA1 family along with another kind of phosphodiesterase, found for instance in S. 

pneumoniae, presenting a unique soluble DHH/DHHA1 domain (68). This enzyme is capable 

of degrading 5’pApA into two molecules of AMP and it is a B. subtilis NrnA homologue, 

although in this microorganism it does not hydrolyses c-di-AMP. This single domain version is 

of course smaller and cytoplasmic, and it is present in Borrelia burgdorferi y M. tuberculosis 

as the only c-di-AMP degrading phosphodiesterase (69, 70). 

19 



Introduction 

Phosphodiesterases from both groups have been proved to be controlled by the signaling 

nucleotide guanosine-tetraphosphate (ppGpp), establishing a link between c-di-AMP 

metabolism and the stringent response, designed to conserve energy during nutrient starvation. 

Both GdpP and PgpH (HD family) have been proved to be strongly inhibited by ppGpp (71, 

72)  

Biochemical characterizations have shown that phosphodiesterases have multiple 

functions and regulatory inputs, including ppGpp, heme group and nitric oxide union and 

ATPase activity (73). Moreover, gdpP mutants of S. aureus and B. subtilis were significantly 

more resistant to β-lactamic antibiotics and in general, for mutations in this enzyme phenotypes 

of stress resistance to pH, high temperatures and compounds affecting cell wall stability were 

obtained (58, 74, 75). 

 
Fig. 3. Representation of c-di-AMP synthesis and degradation. DAC containing enzymes (orange) are in charge 
of c-di-AMP synthesis. The three types of cyclases are represented: DisA, CdaA and CdaS. c-di-AMP is 
synthesized from two molecules of ATP, although M. tuberculosis and S. mutans can also use two molecules of 
ADP as substrate. The two phosphodiesterases families are depicted on the right: HD (green), hydrolyzing c-di-
AMP to AMP and DHH/DHHA1 (yellow). Within this family two types of enzymes can be distinguished: the 
most frequently membrane-bound version, which yields pApA, and the smaller soluble version, which can further 
degrade c-di-AMP to AMP. Principal pathways related to c-di-AMP metabolism are also indicated. 
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1.3.3. c-di-AMP interaction partners 

The first reported c-di-AMP interaction protein was DarR of Mycobacterium smegmatis. 

This protein is a transcriptional factor of the TetR family, which is stimulated by c-di-AMP and 

consequently binds to the promoter region of its own gene, repressing its expression. It also 

represses expression of a divergent operon, involved in fatty acid metabolism and of cspA gene, 

encoding a cold shock protein (76). 

As previously described, this second messenger has a strong influence in potassium 

homeostasis and its interaction to different potassium transporters has been reported. c-di-AMP 

binds to KtrA, the cytoplasmic regulatory component of the KtrAB potassium uptake system. 

The binding site is the regulator of conductance of K+ (RCK_C) domain, oriented towards the 

cytosol, and upon binding, it inhibits potassium uptake in B. subtilis, S. aureus and S. 

pneumoniae (50, 77). Interestingly, c-di-AMP in B. subtilis also binds to the kimA riboswitch, 

which regulates expression of ktrA as well as kimA, coding for a recently reported potassium 

importer (49). Moreover, in S. aureus this second messenger regulates all potassium uptake 

systems so far described, which includes KtrC and the KdpD subunit of the KdpDE two 

component system previously described (50, 61). 

Noteworthy, the RCK domain is present in a wide variety of proteins, like CpaA of S. 

aureus, a putative cation/proton antiporter recently proven to be regulated by c-di-AMP as well. 

Contrary to the c-di-AMP binding proteins so far described, this second messenger activates 

CpaA in S. aureus (78). On the other hand, PstA, a PII like signal transduction protein, present 

in S. aureus, L. monocytogenes and B. subtilis (where it is named DarA) also binds c-di-AMP, 

and even though several investigations were carried to elucidate its interaction to c-di-AMP, its 

function remains unknown (50, 54, 79). 

As stated, osmoregulation involves not only potassium homeostasis but also regulation 

of the synthesis and uptake of other osmolytes. c-di-AMP has been related to osmolarity 

homeostasis in both ways, i.e. potassium intake and osmoprotectants metabolism. For instance, 

c-di-AMP also interacts with OpuCA, the ATPase component of the carnitine ATP-binding 

cassette transporter OpuC (80). Interestingly, binding of c-di-AMP to OpuC occurs in the 

cystathionine-β-synthase (CBS) domain, broadening the possibilities of interactions to CBS-

containing, like L. monocytogenes CbpA and CbpB proteins of unknown function (81). 
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In L. monocytogenes, c-di-AMP also binds to CabP, a B. subtilis KtrA homologue, and 

in this bacterium as well as in L. lactis, this second messenger was linked to central metabolism, 

since it allosterically regulates pyruvate carboxylase activity (81). c-di-AMP connection to 

central metabolism and the enzymes encoded in the cdaAR glmM operon are more detailed 

described for LAB (see below). 

1.3.4. c-di-AMP and LAB 

Even though LAB importance in basic and applied science is undeniable, only a few 

approaches with regard to c-di-AMP metabolism were done so far. The synthesizing enzyme 

CdaA is encoded in the widely conserved cdaAR glmM gene cluster, in which the gene for the 

regulatory protein CdaR is also present. The third gene of the operon codes for GlmM, an 

enzyme which converts glucosamine-6-phosphate to the peptidoglycan precursor glucosamine-

1-phosphate, as previously described. 

Different combinations of L. lactis cdaA operon genes expressed in E. coli, confirmed 

that CdaR and CdaA also interact in this bacterium and evidence suggests that CdaR would 

negatively regulate CdaA (82). Moreover, GlmM also modulates CdaA activity, connecting c-

di-AMP metabolism to cell wall biosynthesis in L. lactis as well. Nevertheless, the exact 

mechanism remains unknown and, based on other model organisms, it is hypothesized that it 

would be through protein-protein interaction (82). 

One of the first studies carried out in L. lactis, allowed the identification of spontaneous 

gdpP mutants after a high temperature incubation step. Among these mutants, heat-resistant 

and salt-hypersensitive phenotypes were observed, as well as enhanced growth in sub-lethal 

concentrations of penicillin G (74). Moreover, mutants in which GdpP activity is diminished 

manifest greater acid stress resistance, and this protein was also linked to the stringent response, 

since ppGpp exerts a strong inhibition on the c-di-AMP hydrolyzing activity of the 

DHH/DHHA1 domain (72, 83). Furthermore, it has been proposed that PAS domains act as 

heme sensors, since upon binding of this compound, GdpP is strongly inhibited (84). This 

would protect cells from heme toxicity, and in accordance to this, L. lactis gdpP mutant 

manifested increased sensitivity to heme group compared to the wild type (85). 

On the other hand, it has been recently proved that pyruvate carboxylase (PC) enzyme 

from E. faecalis binds and is regulated by c-di-AMP. Interestingly, the binding site does not 
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seem to be conserved since in silico studies show that it is different from the c-di-AMP binding 

site of L. monocytogenes PC (86). This study was also extended to L. lactis and it was confirmed 

that c-di-AMP also binds to PC in this bacterium, being thus inhibited. Due to the lack of an α-

ketoglutarate and glutamate dehydrogenase enzymes, and the presence of a non-functional 

isocitrate dehydrogenase, the TCA cycle is truncated in L. lactis. Consequently, it is proposed 

that the main function of PC is the de novo synthesis of aspartate via AspC. Very importantly, 

aspartate is a precursor for other amino acids, for pyrimidine and also for peptidoglycan cross-

bridge amino acids. It is also theorized that PC is indirectly involved in osmoprotectant 

compounds synthesis, which is also one of the homeostasis mechanisms in which c-di-AMP is 

involved and would account for c-di-AMP interaction to a central metabolism enzyme (86). 

c-di-AMP synthesizing and degrading activities were confirm in CdaA and GdpP 

homologous proteins of other LAB, like Streptococcus suis and Streptococcus pyogenes (87-

89). RT-PCR studies showed in the last case that gdpP gene is expressed at least with two 

downstream genes, rpl9 and holB. The former codes for the ribosomal protein L9, whereas the 

latter encodes the δ’ subunit of DNA polymerase III (90). In the same work, a gdpP mutants 

study linked the lack of GdpP with increased resistance to the β-lactam antibiotic ampicillin, 

and the location of this enzyme inside the cell to the biosynthesis of the streptococcal virulence 

factor SpeB (secreted pyrogenic exotoxin B). Moreover, a ∆gdpP strain showed attenuated 

virulence in a murine model of subcutaneous infection. 

In S. pneumoniae one CdaA homolog was also confirmed and as previously mentioned, 

two phosphodiesterases were identified, named Pde1 and Pde2. Pde1 is the GdpP homolog, 

whereas Pde2 is the shorter cytoplasmatic version described above (Fig. 3), and although both 

can degrade c-di-AMP, the cleavage products resulting from each are different: Pde1 cleaves 

c-di-AMP into pApA and Pde2 directly hydrolyzes it to AMP. Furthermore, Pde1 as well as 

Pde2 were shown to contribute to pneumococcal virulence, and even though Pde2 orthologs 

can be found in B. subtilis, S. aureus and L. monocytogenes, degradation of c-di-AMP by these 

enzymes has not been reported yet (56, 68). 

Studies looking for c-di-AMP interaction partners in S. pneumoniae led to the 

identification of CabP, which belongs to the Trk/Ktr/HKT family of proteins and is the 

peripheral regulatory subunit of the potassium transporter SPD_0076. c-di-AMP binding to 

CabP would alter its conformation, disrupting the interaction between both parts of the K+ 
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uptake system, being thus inhibited (77). Interestingly, CabP interaction to c-di-AMP was also 

used to develop a c-di-AMP quantification method via ELISA (91). 

In S. mutans a CdaA homologue was also identified, being able to synthesize c-di-AMP 

from ATP as well as ADP. Interestingly, a cdaA mutant was obtained in the same study, 

showing increased susceptibility to peptidoglycan-targeting antibiotics and oxidative stress, and 

also higher autolytic activity than the wild type strain (92, 93). In a different study it was also 

proved that c-di-AMP mediates biofilm formation of S. mutans, and high levels of the second 

messenger up-regulates expression of gtfB, an enzyme in charge of water-insoluble glucans 

production, critical for biofilm formation and virulence of this bacterium (94). 

In the case of pathogenic bacteria, like the opportunistic LAB Group B Streptococcus 

(GBS), c-di-AMP can be secreted, activating consequently the Interferon-β (IFN-β ) response 

of the host. Interestingly, S. agalactiae, belonging to GBS, keeps extracellular c-di-AMP levels 

low thanks to CdnP, an ectonucleotidase anchored to the cell wall. It is important to mention 

that c-di-AMP degradation is different from those previously described for phosphodiesterases, 

since CdnP acts sequentially with another ectonucleotidase, NudP, to degrade c-di-AMP into 

adenosine (95). In this way, over-activation of STING and its concomitant IFN-β induction is 

avoided and virulence is promoted. 

Finally, in the opportunistic pathogen E. faecalis previously introduced, both classes of 

phosphodiesterases GdpP and PgpH where found encoded in its genome. Nevertheless, the 

obtaining of mutants involved in daptomycin resistance (an antibiotic targeting the cell 

membrane) only resulted in gdpP mutants, in agreement with previous research stating that this 

protein is more important for virulence than PgpH (57, 96). Initial mutations were also obtained 

in the liaFSR pathway, a three-component membrane stress response regulator, and it was 

observed that deletion of liaR lead to an increase in c-di-AMP intracellular levels. Even though 

the interaction between LiaFSR and c-di-AMP is not fully understood, the link between cellular 

wall damage and c-di-AMP levels was again established (96). 

1.4. American Trypanosomiasis (Chagas disease) 

American Trypanosomiasis (also known as Chagas disease) is a tropical disease caused 

by the flagellate protozoan parasite Trypanosoma cruzi. Even though the first cases were 

reported in the tropical areas of Latin America, according to the Health World Organization, an 
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estimate of 8 million people are infected worldwide with a cost of 10.000 deaths per year, 

affecting nowadays countries of North America, Europe, Asia and Australia as well (Fig. 4). 

The life cycle of T. cruzi consists of four stages: the replicative epimastigote and 

amastigote stages and the infective non-replicative metacyclic and trypomastigote stages. It also 

requires a host of the Triatomine subfamily, most commonly known as kissing bugs, or 

Vinchucas in Spanish. When these bugs bite a mammal in order to feed from its blood, they 

normally defecate nearby and the metacyclic trypomastigotes residing in the faeces (which 

normally cannot penetrate the skin) can now enter the new host through the wound. After 

infection, they transform into amastigotes so they replicate inside the host cell and differentiate 

into trypomastigotes. Once the host cell disrupts, the trypomastigotes are released to the blood 

stream and are ready to infect new cells (97). There are also other less frequent routes of 

infection, such as blood transfusion, organ transplant and vertical transmission, i.e. 2-10% of 

infants are infected by their infected mothers. Horizontal transmission is possible as well, but 

more rare, since it implies mucosal penetration through the mouse or eyes (98). 

Chagas disease manifests two clinical phases: the short acute phase of patent 

parasitemia, which is oligosymptomatic, and the chronic phase, which can remain 

asymptomatic for months or even years. The main symptoms in the chronic stage are related to 

heart failures and pathologies affecting organs of the gastrointestinal tract. For more than 40 

years, Chagas disease treatment has been based on the nitroheterocyclic compounds nifurtimox 

(NFX; 3-methyl-4-[59-nitrofurfurylideneamine] tetrahydro-4H-1,4-tiazine-1,1-dioxide; 

developed by Bayer, Germany) and benznidazole (BZ; N-benzyl-2-nitroimidazole acetamide; 

RO7-1051; developed by Laboratorio Farmacéutico do Estado de Pernambuco (LAFEPE), 

Recife, Brazil and Laboratorio ELEA, Ciudad Autónoma de Buenos Aires, Argentina), which 

have trypanocidal activity against all parasitic forms. The main drawbacks of these drugs are: 

1) their mechanisms of action are not entirely clear, 2) their side effects, which normally are 

the cause of treatment interruption and 3) the low efficacy, since during the acute phase only 

50 to 80% of patients are cured and when used in the chronic phase, percentages drop to 8-20% 

(99, 100). 

The World Health Organization (WHO) has established a set of characteristics that the 

ideal drug for Chagas disease treatment should gathered, namely: parasitological cure in both 

the acute and chronic phases, efficacy in one dose or a few doses, accessibility to affected 

population (low cost), absence of side effects or teratogenic effects, and no induction of 
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resistance. Unfortunately, there is no drug meeting all these requirements, and consequently 

new compounds are currently under investigation. Nonetheless, apart from a cure, priorities 

also fall into the improvement of diagnostics, health systems, vector control and disease 

prevention, i.e. the development of vaccines. 

 
Fig. 4 Global distribution of Chagas Disease cases. Even though it is a tropical disease which 
originally occurred in South America, it is nowadays distributed in the four continents 
represented in the picture. Numbers are based on official estimates 2006 – 2010. Adapted from 
Trends in Parasitology. 

1.4.1. Chagas prevention 

Nowadays, several investigations are directed towards the formulation of vaccines using 

as antigens key peptides or proteins involved in infection establishment. In this sense, one of 

the main candidates is the T. cruzi trans-sialidase protein (TS) (101, 102). This is an enzyme of 

160-200 kDa, which is anchored to the outer cellular membrane by 

glycosylphosphatidylinositol (GPI). It catalyzes the transfer of sialic acid from glycoproteins 

of the host to the β-Gal residues on mucine proteins covering the parasite membrane. In this 

way, T. cruzi trypomastigotes make their way into new cells upon establishment of infection, 

and they mask recognition sites for the immune system, often deriving in auto-immune 

responses. TS also helps the parasite in recognizing host cells and attaching to its sialic acids 

and/or β-Gal residues of their surface, through TS active site or other domains (103). 

TS synthesis depends on a gene superfamily, which resulting proteins range from 60 to 

more than 200 kDa. Of this superfamily, only 12 are active, and they vary by their level of 
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expression in the different stages of the parasite life cycle, their degree of glycosylation and the 

SAPA domain (shed acute phase antigen) which are tandem repeats of a 12 amino acids 

sequence. Since mammals lack TS and it is essential for the parasite because it cannot 

synthesize sialic acid the novo, this protein is currently under study as a good candidate for 

vaccine formulations. Different antigens have been developed based on this protein, and 

promising results were obtained (104). 

For example, antigens TSA-1 (Trypomastigote surface antigen-1) and Tc24 (flagellar 

calcium binding protein of 24 kDa) have been thoroughly investigated and are highly 

immunogenic. Moreover, the protective efficacy of both has been proved in mice models and 

it has been reported as well that an immunotherapeutic DNA vaccine could control Chagas 

disease, reducing parasitemia and cardiac tissue damage (105, 106). Very recently, studies 

suggested the presence of antigen-specific memory cells induced by natural infection in 

seropositive patients and, in the same work, a long lasting humoral and cellular response to 

these antigens was evidenced, even in subjects on the chronic phase, after 10 years of infection 

(107). 

1.5. Subunit vaccines  

The first world-wide spread vaccine was against smallpox in the 18th century. Upon the 

massive outbreak, it was noticed that infected people who survived the disease were immune. 

Based on this observation, a common practice of subcutaneous inoculation of smallpox virus 

into non-immune individuals was started. The virus was obtained from pustules of an infected 

person, and no regulations or thorough investigations existed for vaccination, for what 

considerable health risks existed, even though mortality caused by smallpox itself was 

significantly higher. A percentage of vaccinated patients died or contracted another disease, 

like tuberculosis or syphilis due to the lack of good hygiene conditions. Nevertheless, 

vaccination against smallpox was considered a success (108). 

During the 19th century, many others vaccines were developed, with similar strategies. 

For example, rabies virus extracted from dead infected rabbits were weakened by drying and 

then used as inocula, and killed whole cells of Vibrio cholerae were the immunization strategy 

against cholera (109, 110). Like in the former example, attenuated pathogens by drying, boiling 

or propagation through a foreign host are the base of “attenuated vaccines”. The principal 

advantages of these vaccines are their low cost and the fact that they trigger a strong, long-
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lasting immune response. Nevertheless, since the live pathogen is administered, the possibility 

exists that it can regain its virulence, and special attention needs to be paid with 

immunocompromised patients. Moreover, these vaccines need to be refrigerated, so their 

transportation and application in poor areas is an issue (111). 

An alternative to attenuated vaccines are toxoid vaccines, which do not make use of the 

pathogen at all, and are the strategy of choice for vaccine development when the disease is 

caused by a toxin synthesized by the pathogen. Such is the case of tetanus, which is caused by 

a toxin secreted by Clostridium tetani and after formaldehyde treatment, minor molecular 

changes occur and it is converted to a toxoid. The purified product is a non-toxigenic compound 

capable of stimulating the immune system to generate specific antibodies that, in the event of a 

C. tetani infection, bind to the toxin. This complex is not able to bind to the regular toxin 

receptor binding sites, so the development of the disease is prevented (112). The main benefit 

of these vaccines is the fact that there is no risk of disease nor to revert to a virulent form. 

Moreover, the compounds are normally stable and less susceptible to temperatures, light and 

humidity. Nevertheless, they normally need an adjuvant (see below) and this usually causes 

local reactions at the vaccination site. 

Another class of vaccines are the inactivated vaccines, like the case of hepatitis A 

vaccine, in which the pathogen is heated or chemically treated so that its capacity of replication 

is lost, but the antigens are still recognized by the immune system. The adaptive immune 

response is very similar to that of a toxoid vaccine, although inactivated vaccines have the 

advantage of having all antigens participating in the infection and therefore a broader range of 

antibodies is synthesized. Nevertheless, among the drawbacks of these vaccines it can be 

mentioned that one dose normally is not enough to trigger a strong signal to the adaptive 

immune system, so they are usually given in several doses and, like toxoid vaccines need to be 

adjuvanted (see below) (112). 

Finally, the latest development in vaccines are the subunit vaccines. In this case, a 

particular antigen or set of antigens are provided so they are recognized by the immune system 

and, consequently, specific B cells are produced. Subunit vaccines can be further divided into 

subgroups depending on whether the antigen is a peptidic compound or a polysaccharide, which 

will define the kind of immune response they will generate in the patient (112). If the antigen 

derives from a protein (such is the case of hepatitis B and influenza vaccines) then a T-

dependent response will be trigger, like for the case of toxoid vaccines. In the case of 
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polysaccharide derived antigens, the response will be T-independent (e.g. the pneumococcal 

vaccine Pneumovax) (113). Advantages and disadvantages are similar to those of the toxoid 

vaccines, except that with the advances of molecular biology, strategic antigens (and adjuvants) 

can be designed and combined to widen the spectra of pathogen strains against which the 

vaccine is active (114). 

1.5.1. L. lactis in the industry: its potential as delivery vector 

In the last decades, a considerable amount of research has been prompted to use food 

grade bacteria as live vaccines. The starting point to consider a bacterium suitable for antigen 

delivery is its innocuity. In this sense, L. lactis classification as GRAS and QPS as previously 

mentioned, makes it appropriate as regards safety. L. lactis can also survive its passage through 

the gastrointestinal tract (GIT) for 2-3 days, without colonizing the mucosal surface of the host 

(115). Moreover, due to its lack of lipopolysaccharide attached to their cell membrane, it does 

not stimulate the host immune response. 

This species in particular has considerable importance in medicine and the 

pharmaceutical industry, and it was in fact, the first genetically modified microorganism for the 

treatment of a human disease (116). For an outline with examples supporting L. lactis use in 

food and pharmaceutical industries, see Table I. 

In 1989 Iwaki et al. proposed for the first time the use of L. lactis for the development 

of a mucosal vaccine against caries by use of a strain expressing a surface Enterococcus mutans 

protein. When the killed recombinant bacteria were orally administered in mice, salivary IgA 

and serum IgG response to the protein were induced (117). 

Nowadays, many investigations see the use of L. lactis as an opportunity to develop 

competent treatments for diseases and conditions currently without a cure. For example, 

Inflammatory bowel diseases (IBD) like Chron’s disease and ulcerative colitis are in the urgent 

need for the formulation of an efficient and cost effective drug treatment. Even though their 

causes are not completely understood, inflammation of GIT is a common consequence. The 

first human trial with a therapeutic bacterium, genetically engineered to treat GIT inflammation 

was conducted in 2006. In this work, an L. lactis secreting interleukin-10 strain gave interesting 

immunological results and most importantly, it was demonstrated to be safe for humans (118). 
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L. lactis is therefore seen as one of the best options to deliver any molecule at the mucosa level, 

able to alleviate symptoms and provide the patient with a better life quality (119). 

Other investigations were also developed using L. lactis as a recombinant live delivery 

vector, like the study performed with the tetanus toxin fragment C (TTFC). Bacteria expressing 

TTFC anchored to the cellular membrane were subcutaneously administered in mice, and 

antibody production was proven to protect mice against the lethal infection. Nasal and oral 

administration showed similar protection efficacies. In the former, the antigen was 

intracellularly overexpressed and IgG antigen production in serum protected 75% of mice 

(120). Nevertheless, for this example, the expression system was based on E. coli T7 

bacteriophage promoter, and although it allows high expression levels of heterologous proteins 

of interest, it is not suitable for the final model of oral immunization. Since 2000 this system 

has been replaced by the nisin inducible system NICE previously described. 

Since the first reported investigations about L. lactis as a delivery vector were made, 

several others were carried using this methodology for different antigens able to elicit an 

immune response. Mice orally immunized with recombinant L. lactis secreting Brucella 

abortus superoxide dismutase were reported to develop systemic and mucosal SOD-specific 

immune responses (121). Moreover, an oral live vaccine expressing an attenuated version of 

the Staphylococcal enterotoxin type B (SEB) was also reported to elicit immune protection. In 

this study, both intracellular and secreted versions of antigen production in the intestinal mucosa 

of mice showed to stimulate production of specific IgG and IgA antibodies in the serum and 

the feces, respectively (122). Production of specific IgA in intestinal mucosa was also obtained 

when BALB/c mice were orally immunized with a strain of L. lactis constitutively expressing 

EspB, a key protein involved in the attachment of enterohemorrhagic E. coli O157-H7 (EHEC) 

to enterocytes (123). Also, a vaccine against Rhodococcus equi, the main causal agent of 

pneumonia in foals, was developed using an L. lactis recombinant strain secreting the virulence 

associated protein VapA. In this study, intragastric and intranasal routes were considered, 

obtaining both humoral and cell-mediated immune responses (124). 

As it can be appreciated, the use of L. lactis as a delivery vector of antigens synthesized 

in the cytosol, presented on the cellular membrane and secreted to the extracellular space, is a 

recently developed technology currently being exploited. Apart from its applications against 

bacterial pathogens of humans and animals with industrial relevance, interesting results were 

also obtained against the human papillomavirus and rotavirus, the most common cause of severe 
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dehydrating diarrhea in children (125, 126). When genetically modified LAB are administered 

in mucosal tissues, both mucosal and systemic immune responses are triggered. Therefore, due 

to its non-invasive application and its rather simple manipulation without the need of highly 

qualified personnel, mucosal vaccines are gaining a central position in new vaccine prototypes 

formulation. Their production would also imply a reduction in costs, since the live 

microorganism synthesizes and delivers the antigen compound of interest, without the need of 

purification (127).  

Table I. Examples of L. lactis strains and strategies with potential use in food and pharmaceutical industries 

C: cytoplasmic – S: secreted – A: cell wall anchored 

Parental 

Strain 
Strategy Product Location Application Reference 

NZ3950 NICE system L-alanine C 
Food 

sweetener 
Hols et al. 
1999 (128) 

NZ9000 Spontaneous 
mutant 

Vitamin B11 C Nutritional 
supplement 

Sybesma et 
al, 2003(129) 

NZ9000 
Spontaneous 
mutants / NICE 
system 

Vitamin B2 C “Vitamin 
factory” 

Burgess et al. 
2004 (130) 

IL1403 
pILPtuf Promoter / 
Usp45-secretion 
signal peptide  

Interleukin -6 S Adjuvant Li et al. 2015 
(131) 

Not 
informed 

pUB1000 / Usp45-
secretion signal 
peptide  

Insulin analogue S Drug 
delivery 

Agarwal et 
al. 2014 
(132) 

MG1363 pTREX 
Anti-TNF a 
nanobodies S 

Bowel 
disease 
treatment 

Vandenbrouc
ke et al. 2010 
(119) 

NZ9000 NICE system Antigen 

S 

C 

A 

Rotavirus 
vaccine 

Marelli et al. 
2011 

IL1403 
pILPtuf promoter / 
USp45- secretion 
signal peptide  

Adjuvant S Cancer 
vaccine 

Kim et al. 
2015 (133) 

MG1363 P170 promoter Allergen S Allergy 
Glenting et 
al. 2007 
(134) 

NZ9000 pSEC:LEISS 
Carcinoembryonic 
antigen (CEA) 

C 

A 
Cancer 
vaccine 

Xiaowei et 
al. 2016 
(135) 
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1.5.2. c-di-AMP as Adjuvant 

A key factor for the development of human subunit vaccines is not only to define a 

suitable antigen but also to select an adequate adjuvant. Vaccine adjuvants are compounds 

added to vaccine formulations that enhance the immunogenicity of antigens in vivo. They are 

further categorized based on their mechanisms of action, being divided into delivery systems 

(or particulate adjuvants) and immune potentiators (or immune stimulators). The former 

enhance the innate immune response either directly or through pattern-recognition receptors, 

whereas the latter help with antigen presentation and localization (136). Several advantages can 

be mentioned when describing the scope of adjuvants use, namely: stronger and longer immune 

response (especially important for weakened immune system population), improved antibody 

production against a broader spectrum of pathogenic strains, mucosal immune response 

induction, and increased biological half-life of vaccines. Hence, the amount of antigen needed 

is lowered, as well as the number of doses required for proper immune response generation, 

which consequently lowers costs of vaccination programs as well (137). 

Cyclic-di-nucleotides (CDNs) have recently emerged as pathogen associated molecular 

patterns (PAMPs) and effective adjuvants. PAMPs and adjuvants are specifically important for 

the mucosal route, when antigens suffer mechanical removal and structural modifications by 

pH changes and enzymatic degradation. Particularly 3´5´-cyclic-di-adenosine monophosphate 

(c-di-AMP) was demonstrated to be a suitable candidate for vaccine adjuvant, since it has 

showed the capacity to activate in vitro dendritic cells of murine and human origin, one of the 

most important steps to stimulate the adaptive immune response. Several investigations have 

been carried out to test this second messenger action as an adjuvant when co-administered with 

an antigen of interest. Results after intra-nasal and oral immunization showed improved 

stimulation of immune responses at both systemic and local levels. Moreover, in vivo 

experiments also evidenced that c-di-AMP can promote MHC class I restricted immune 

response by CD8+ T cells, promote specific IgG and IgA production and enhance cellular 

proliferative responses (138). This consequently triggers the stimulation of Th1, Th2 and Th17 

cells, as well as the induction of cytotoxic T lymphocytes. Moreover, it was recently 

demonstrated not only that c-di-AMP triggers a type I IFN response, but also that it down-

regulates it in the inductive phase of an adaptive immune response, which is a positive 

characteristic for its use in vaccines (139). 
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In a proposed intranasal vaccine model for Chaga’s disease, where c-di-AMP was co-

administered with antigen TC52 (essential for the parasite T. cruzi), high specific Tc52-specific 

IgA titers were found in nasal lavages. Importantly, this results were significantly different from 

those obtained in the absence of the adjuvant c-di-AMP, and only in its presence, stronger 

cellular and humoral immune responses were induced (140). In another vaccine prototype based 

on archeaosomes as delivery system of a hepatitis C virus antigen, a robust T cell immune 

response was observed when adjuvanted with c-di-AMP (141). The same study also showed 

that a partial intranasal immunization regimen also triggers the immune response, opening the 

range of possibilities as regards administration. 

Another non-invasive and economically favorable regimen of vaccine administration is 

the sublingual route. As with the intranasal, the main advantages are the simple immunization 

protocol along with its consequent possibility of being handled by personnel with no advanced 

training, which would allowed massive administration. This would provide an important benefit 

for example, during an epidemic outbreak. In this regard, a virosome-based vaccine against 

influenza virus H5N1 was tested using c-di-AMP as adjuvant, and the sublingual and intranasal 

inoculation as routes of administration, evidencing strong humoral and cellular responses (142). 

In conclusion, the formulation of mucosal, live, subunits vaccines adjuvanted with c-di-

AMP and with food grade bacteria as delivery systems proposes an innovative paradigm 

currently under investigation. 
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1.6. Objectives 

Under the theoretical framework developed, the general objective of this thesis is to 

broaden the knowledge of c-di-AMP metabolism in firmicutes, and specifically in the Lactic 

Acid Bacteria Lactococcus lactis and Enterococcus faecalis. In addition, the aim of this work 

is to approach research from two perspectives: the importance of basic investigation around this 

newly discovered second messenger, as well as the vast application spectra it offers to the 

biotechnological and pharmaceutical industries. 

Specific objectives set to accomplish the aforementioned general objectives are: 

i) To identify and characterize c-di-AMP interaction partners in L. lactis 

ii) To develop engineered strains able to modify c-d-AMP levels in L. lactis and E. 

faecalis and study their physiological impact 

iii) To formulate a vaccine prototype by use of an L. lactis strains producing high 

levels of c-di-AMP 

iv) To perform a first approach into the virulence of GdpP in E. faecalis 
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“An experiment is a question which science poses to Nature, and a 
measurement is the recording of Nature´s answer” Max Planck 

 

 



Materials and Methods 

2.1. Materials 

Lists of chemicals, commercial kits, enzymes and oligonucleotides used in this work 

are presented in the appendix. 

2.2. Strains and plasmids 

Bacterial strains and plasmids constructed for this work are detailed in the appendix. 

2.3. Methods 

2.3.1. General methods 

General methods routinely used in this work are mentioned in Table II  

Table II. General methods 
Method Reference 

Absorption measurement Sambrook et al. 1989 (143) 

DNA gel electrophoresis Sambrook et al. 1989 (143) 

Plasmid preparation from E. coli Sambrook et al. 1989 (143) 

Ligation of DNA fragments Sambrook et al. 1989 (143) 

Protein quantification 
Bradford 1976 (144) - Lowry 

1951 (145) 

Protein gel electrophoresis (denaturing) Laemmli 1970 (146) 

Sequencing according to the chain termination method Sanger et al. 1977 (147) 

2.3.2. Storage and bacterial growth 

E. coli DH5α and BL21 were grown in Luria Bertani (LB) medium at 37 ºC in aerobic 

conditions with vigorous shaking. E. coli LB650 and 2003 were grown under similar conditions 

in LB with addition of 200 mM KCl or in M9/M9mod (see Table III) supplemented with a 

suitable carbon source and 50 mM KCl, unless otherwise stated. 
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LAB were cultivated in M17 medium supplemented with 0.5% glucose (M17G), in 

aerobic conditions without shaking. Incubation temperatures were 30 ºC and 37 ºC for L. lactis 

and E. faecalis, respectively. 

In all cases -80 ºC stocks prepared in 10% glycerol were propagated twice to obtain a 

final overnight (ON) saturated culture. This was used in turn to inoculate fresh media at an 

initial optical density (ODi) of 0.05. 

Media composition 

Media composition is detailed in Table III. pH was adjusted to 7.0 or 5.5 with NaOH or 

HCl according to the experiment. In all cases, deionized water was used, and media were 

autoclaved for 20 minutes at 121 ºC and 2 bar. Thermo-labile compounds were separately 

prepared, filter-sterilized and stored at their optimal temperature. For agar plates, 1.5 % agar 

was added. 

Table III. Growth media composition 
Medium Component Quantity 

Luria Bertani (LB) (143) 

Casein Peptone 10 g 
Yeast extract 5 g 
NaCl 10 g 
dH2O Add to 1 Lt 

M17 

(Terzaghi and Sandine, 1975) 

(148) 

Bactopeptone 10 g 
Beef Extract 5 g 
Yeast extract 2.5 g 
Ascorbic Acid 2.5 g 
Sodium β-glycerophosphate 19 g 
MgCl2*1 5 mM 
MnCl2*1 1.6 mM 
dH2O Add to 1 Lt 

M9*2 

(Sambrook and Russell, 2001) 

(149) 

M9 base 20X 50 ml 
MgSO4 1M 1 ml 
CaCl2 0.1 M 1 ml 
FeCl3 1 mM 0.5 ml 
Carbon source 1 % 
Casaminoacids10 % 66 ml 
Proline 4 M 10 ml 
Thiamine 1 M 1 ml 
dH2O Add to 1 Lt 
Na2HPO4.2H2O 140 g 
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M9 base medium 
KH2PO4 60 g  
NH4Cl 20 g 
dH2O Add to 1 Lt 

*1 Added from 1M solutions, after autoclave. *2 In M9mod medium, KH2PO4 is 
replaced for equimolar quantities of NaH2PO4. 

When needed, growth media were supplemented with antibiotics as selective agents 

(Table IV), which were prepared in 1000-fold concentrated stock solutions. Deionized water 

was used for dissolution, except for erythromycin and chloramphenicol, in which cases ethanol 

was employed. Sterilization was performed by filtration and storage at -20 ºC. Antibiotics were 

added to media before inoculation. 

Table IV. Antibiotics 
Bacterium Antibiotic Concentration 

E. coli 

Ampicillin 100 mg/ml 

Erythromycin 150 mg/ml 

Chloramphenicol 30 mg/ml 

Kanamycin 
40 mg/ml1 

50 mg/ml2 

L. lactis and E. faecalis 
Erythromycin 5 mg/ml 

Chloramphenicol 10 mg/ml 
1 E. coli EC101 2 E. coli LB650 

For expression or gene deletion experiments, inducers and indicators were respectively 

added to media (Table V). 

Table V. Inducers and indicators 
Compound Stock Solution 

Arabinose 5 % p/v 

IPTG 0.5 M 

Nisin 50 µg/ml 

X-Gal 40 mg/ml in (DMF) 

2.3.3. E. coli electroporation 

E. coli electrocompetent cell preparation 
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5 ml of a saturated ON culture of the E. coli strain of interest were used to inoculate 500 

ml of LB medium at an ODi of 0.05. Cells were incubated in a 2 Lt. Erlenmeyer at 37 °C with 

vigorous shaking until OD reached 0.50. The culture was then cooled in ice for 20 min and 

centrifuged for 5 min at 5000 rpm and 4 °C. Two wash steps were performed afterwards with 

500 ml ice-cold dH2O and one with 10 ml glycerol 10%. Finally, the pellet was resuspended in 

1 ml glycerol 10% and separated in 100 µl aliquots. Samples were stored -80 °C. 

Electroporation 

Cells were electroporated as described in Dornan and Collins, 1990, under the following 

conditions: 25 µF, 2,5 kV y 200 Ω. After the pulse, 1 ml of LB was added to the electroporation 

cuvette and samples were incubated for 1 hour at the 37 ºC. Samples were plated in LB 

supplemented with the corresponding antibiotics and incubated ON. 

2.3.4. LAB electroporation 

LAB electrocompetent cell preparation 

Strains of LAB under study were grown in M17G supplemented with 0.5 M saccharose 

(M17SG) and 1% glycine. The ON saturated culture was diluted 50 times in fresh M17SG + 

1% glycine. Cells were incubated at 30 ºC or 37 ºC for L. lactis or E. faecalis, respectively until 

OD reached 0.4-0.6. The culture was then harvested for 5 minutes at 5000 rpm at 4 ºC. Pellets 

were washed in 0.5 M ice cold saccharose + 10% glycerol using half of the culture volume. 

Centrifugation was performed at 6000 g for 8 minutes at 4 ºC. Cells were resuspended in 0.5 M 

ice cold saccharose + 10% glycerol using 1/200 of the initial culture volume. 

Electroporation 

LAB were electroporated as described in Dornan and Collins, 1990, under the following 

conditions: 25 µF, 2,5 kV y 200 Ω. After the pulse, 1 ml of M17SG was added to the 

electroporation cuvette and samples were incubated for 1.5 hours at the optimal growth 

temperature of the strain under study (30 ºC for L. lactis and 37 ºC for E. faecalis). Cells were 

plated in M17SG supplemented with the corresponding antibiotics and incubated ON or until 

colonies appeared. 
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2.3.5. DNA manipulation 

DNA extraction 

For plasmidic DNA extraction from E. coli, 3 ml of a saturated ON culture was 

harvested at 4500 rpm for 5 minutes. The pellet was then resuspended and processed using the 

Wizard® Kit (Promega) or the NucleoSpin® Plasmid Kit (Macherey-Nagel), according to 

manufacturer’s instructions. Elution was performed with pre-warmed dH2O at 70 ºC.  

Genomic DNA was similarly prepared, using the Wizard® Genomic DNA Purification 

Kit (Promega) or the NucleoSpin® Microbial DNA Kit (Macherey-Nagel). 

When working with Gram-positive bacteria, 10 ml of an ON saturated culture were 

harvested and the pellet was incubated with 10 mg/ml lysozyme at 30 ºC for 30 minutes. The 

protocol was then completed using plasmidic or genomic DNA extraction kits. 

Polymerase Chain Reaction (PCR) 

Reactions were prepared in final volumes of 25 or 50 µl, using 0.2 µM of specific 

primers and 0.5 µM of dNTPs. Pfu, Taq or Phusion polymerase were used according to 

manufacturer’s instructions. PCRs were performed in a thermocycler with 30 cycles of 

denaturation, annealing and elongation (Table VI). 0.5 µl of plasmidic DNA or of a 10-fold 

dilution of genomic DNA were used as template. 

Oligonucleotides were designed using VectorNTI (Invitrogen) or Geneious 7.0.2 

(Biomatters) softwares and purchased from Sigma-Aldrich, Genbiotech or Invitrogen. A list of 

primers used in this work is provided in the appendix (Table XVII). 

Table VI. PCR steps 
Step Temperature (ºC) Time 

Initial denaturation 98.0 5’ 

Denaturation 98.0 1’ 

Annealing 52.0 – 59.0*1 45’’ 

Elongation 72.0 Variable*2 

Final elongation 72.0 10’ 

Hold 4.0 hold 

*1 According to primer melting temperature (5 degrees lower) 
*2 According to enzyme processivity and product length 
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DNA electrophoresis  

DNA electrophoresis was performed according to Sambrook et al., 1989. Horizontal 

gels were prepared in TAE buffer (Table XVIII) with agarose concentrations ranging from 0.8 

to 1.2 % according to DNA fragment size. For DNA visualization, 1X GelGreen (Biotium) or 

HD Green Plus DNA stain (INTAS Science Imaging Instruments GmbH) was added. 

Gels were submerged in TAE, samples previously stained in 1X sample buffer (0,25 % 

(p/v) bromophenol blue, 0,25 % (p/v) xilenecyanol and 30 % (p/v) glycerol) were loaded and 

run at 100 mA. DNA from λ phage digested with EcoRI and HindIII enzymes (PBL Productos 

Bio-lógicos) was loaded as reference and DNA bands were visualized using a blue-light or UV 

transilluminator. 

DNA purification 

Purification of linear DNA fragments after PCR or enzymatic digestion was performed 

using the QIAquick® PCR purification kit (QIAGEN, Hilden), or the Gel Band Purification Kit 

(GE Healthcare Life Sciences) when purifying DNA from agarose gels. Protocol was followed 

as specified by manufacturers and final elutions were done in pre-warmed dH2O at 70 ºC. 

DNA enzymatic digestion 

For DNA digestion with restriction enzymes, the protocol of Sambrook (1989) was 

generally followed. Fast Digest or regular endonucleases purchased from Thermo scientific 

were used. When linearizing plasmids, dephosphorylation was performed using Calf Intestinal 

Alkaline Phosphatase (CIAP, Promega) or FastAP Alkaline Phosphatase (Thermoscientific). In 

all cases, reactions were performed following manufacturer’s instructions. 

Ligation of DNA fragments 

Ligase enzyme was acquired from Takara or Thermoscientific and reactions were 

prepared in final volumes of 20 μl. Manufacturer’s protocols were followed, using in general 

100 ng of vector and a 1:5 molar ratio to calculate the volume of the fragment of interest. When 

ligating two DNA fragments, equimolar quantities were used. Before electroporation, ligase 

enzyme was heat-inactivated. 
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Clone screening 

In order to screen for positive clones, 3 ml of LB (10 ml of M17G in the case of LAB) 

supplemented with the corresponding antibiotics were inoculated with a putative positive 

colony (normally 12 colonies were analyzed) to obtain an ON saturated culture. 50 µl of these 

samples were harvested at room temperature at 5000 rpm for 5 minutes. Pellets were 

resuspended in 25 µl of EDTA 10 mM pH 8.0 and cells were disrupted by addition of 25 µl of 

freshly prepared crack buffer (Table VII). Samples were incubated for 5 minutes at 70 ºC and 

cooled in ice afterwards. Next, 2 µl of crack dye were added (Table VII). After 10 minutes of 

incubation in ice, samples were centrifuged for 5 minutes at 12000 rpm and 4 ºC, and they were 

finally analyzed by agarose electrophoresis. Plasmids with inserts of interest were evidenced 

by its differential migration in the gel when compared to the empty vector. 

Table VII. Clone screening solutions 
Solution Composition Concentration 

Crack buffer 
Sucrose 0.2 % p/v 
SDS 0.5 % 
NaOH 0.2 N 

Crack dye KCl 3 M 
Loading dye 1X 

DNA Sequencing 

Plasmids and fragments of interest were sent to the DNA sequencing facility at the 

University of Maine, or to SeqLab Sequence Laboratories, Göttingen GmbH. 

2.3.6. Gene deletion 

After electroporation with pBVGh vector (Table XVI), cells were incubated at 30°C in 

M17G Em5 X-Gal 100 µg/ml agar plates. 

A single blue colony was used to inoculate fresh M17G + 5 µg/ml Em, which was then 

incubated ON at 42 °C. This culture was diluted 1/100 in fresh media, and it was incubated 

again at 42 °C ON. 
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Then, cells were propagated in fresh media without antibiotic, inoculating 0.05 % of the 

culture volume. After inoculation, samples were incubated 4 hours at 30 °C and ON at 42 °C. 

This step was repeated twice. 

Serial dilutions (normally 10-4; 10-5; 10-6) were plated in medium with 100 µg/ml X-Gal 

and no antibiotic. Plates were incubated at 42 °C for 24-48 hours, or until colonies were 

distinguished. 

White colonies were restricked in plates with and without antibiotic, and those which 

were sensitive were checked by PCR using a pair of primers hybridizing in the adjacent up and 

downstream genes. A set of primers amplifying an internal sequence of the gene was also used 

as negative control. 

2.3.7. Protein preparation and analysis  

Cell disruption by French Press 

The cell body and the piston were kept in ice prior to use (French Pressure Cell, Thermo 

Scientific). Samples were also cooled and washed in buffer W (Table XVIII). Cell pellets were 

disrupted once when working with E. coli and three times when working with L. lactis. Pressure 

was 18000 psi in all cases. 

Cell disruption by Tissue Lyser 

5 ml of a LAB culture of interest were harvested for 10 minutes at 5500 rpm. Cells were 

washed in 1 ml of buffer W. Next, pellets were resuspended in lysis buffer and transferred into 

a 2 ml screw-cap microvial containing 0.5 g of glass beads (0.1 µm). Cell walls were disrupted 

using a mini-beadbeater-16 (Biospec, USA) in 3 cycles of 5 minutes, incubating the samples in 

ice for 3 minutes in each interval. Crude extracts were then processed according to the desired 

protocol. For larger samples, 4 ml of sample were similarly disrupted in a 5 ml screw-cap 

microvial using 0.8 g of glass beads. Buffers are listed in Table XVIII. 

Expression test of heterologous proteins in E. coli 

10 ml of a suitable medium were inoculated with the E. coli strains under study. When 

OD600 reached 0.5, 0.5 mM IPTG were added and cultures were incubated for three more hours 
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at 37 ºC and continuous vigorous shaking. Samples were normalized in 100 µl with equal cell 

amounts and spinned down in a table top centrifuge. Pellets were resuspended in 15 µl of SDS 

loading dye and boiled for 5 minutes at 95 ºC. Finally, the whole volume was loaded in an SDS-

PAGE gel for expression analysis. 

SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

SDS-PAGE analysis was based on Laemmli (1970) protocol. 1.0 mm polyacrylamide 

gels with concentrations ranging from 10 – 15 % were prepared according to the molecular size 

of the proteins under study (Table VIII). Samples were boiled at 95 ºC for 5 minutes in sample 

buffer. Normally, 30 μg of total protein were loaded in the gel, which was submerged in running 

buffer. Electrophoresis was performed at room temperature, at current intensity of 20 mA. 

Buffers are listed in Table XVIII. 

PageRulerTM Plus Prestained Protein Ladder (ThermoFischer Scientific) or unstained 

Low Range Molecular Marker (BioRad) were used as size standards. 

Finally, gels were analyzed by Coomassie staining, silver staining or Western Blot. 

Table VIII. SDS-PAGE Gel composition 

Solution Separating gel Stacking 
gel 

Acrylamide (Stock 30 % 
acrylamide-bisacrylamide 19:1) 10 % 12 % 15 % 5 % 

Tris-HCl (Stock 1.5 M) 375 mM*1 187.5 mM*2 

SDS (Stock 20 %) 0.1 % 

APS (Stock 10 %) 0.1 % 

TEMED 0.04 % (v/v) 0.1 % (v/v) 
*1 Tris HCl pH 8.8 *2 Tris HCl pH 6.8 

Coomassie Staining 

For Coomassie staining after SDS-PAGE, gels were incubated in Coomassie R-250 for 

30 minutes at room temperature in a rocking shaker. For protein visualization, gels were 

afterwards boiled or incubated in destaining solution containing 20 % v/v ethanol and 5 % v/v 

acetic acid until protein bands were evidenced. 

44 



Materials and methods 

Silver staining 

When protein amounts were low, visualization was accomplished by silver staining 

which allows a more sensitive detection (up to 1 ng of protein) (150). For this, the following 

protocol was followed: 

• Fixation: the gel was incubated in fixing solution, at least during 1 hour 

• Wash: 3 times with 50 % ethanol, during 20 minutes 

• Reduction: Performed in 0.02 % (p/v) Na2S2O3 

• Wash: 3 times with dH2O for 20 seconds 

• Impregnation: the gel was incubated for 15’-25’ in impregnating solution  

• Wash: 3 times with dH2O for 20 seconds 

• Development: developing solution was used until bands appeared 

• Wash: 3 times with dH2O for 20 seconds 

• Development was stopped by incubation in stopping solution 

Table IX. Silver staining solutions 
Solution Composition Concentration 

Fixing 
Methanol (100 %) 50 % (v/v) 
Acetic acid (100 %) 12 % (v/v) 
Formaldehyde (37 %) 0.1 % (v/v) 

Impregnating AgNO3 0.2 % (p/v) 
Formaldehyde (37 %) 0.037 % (v/v) 

Developing 
Na2CO3 12 % (p/v) 
Na2S2O3 0.0004 % (p/v) 
Formaldehyde (37 %) 0.05 % (v/v) 

STOP Na2-EDTA 1.86 % (p/v) 

Western blot  

After running an SDS-PAGE, the gel was incubated in transfer buffer (Table X) for 5 

minutes. Proteins were then transferred to a nitrocellulose membrane (Schleicher & Schuell 

BA85, 0,45 µm) using a mini-protean two cell unit (Bio-Rad, Hercules, CA, USA) (the sponges, 

Whatman paper and the membrane were also previously incubated in transfer buffer). Protein 

transfer was performed at 100 mA for 2 hours or at 20 mA for 12 hours, and efficiency was 

assessed by staining with Pounceau Red S (Sigma, USA). After this, the membrane was treated 

according to the following protocol: 
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• Wash: Rinse with dH2O and incubate twice in TBS for 10 minutes 

• Block: Incubate 1 hour in TBS + 5 % milk 

• Wash: Twice in TBS + 0.05 % Tween and 0.2 % Triton for 10’ minutes 

• Wash: Once in TBS for 10 minutes 

• Incubate 1 hour with Anti-His (1/200) in TBS + 5 % milk 

• Wash: Twice in TBS + 0.05 % Tween and 0.2% Triton for 10 minutes 

• Wash: Once in TBS for 10 minutes 

• Incubate 1 hour with secondary antibody in TBS + 5 % milk  

• Wash: Four times in TBS + 0,05 % Tween + 0,2 % Triton for 10 minutes 

• Wash: Once with phosphatase buffer for 10 minutes 

• Incubate in the dark in 10 ml phosphatase buffer + 33 µl 5-bromo-4-chloro-3-indoyl 

phosphate (BCIP; 50 mg/ml in 100 % DMF) + 66 µl p-nitroblue tetrazolium 

chloride (NBT; 50 mg/ml en 70 % DMF) 

Table X. Western Blot Solutions 
Solution Composition Concentration 

Transfer 
Methanol (100 %) 20 % (v/v) 
Tris 20 mM 
Glycine 150 mM 

TBS 10X 
Tris 50 mM 
NaCl 150 mM 
Adjust pH to 7.5  

Phosphatase 
buffer 

Tris 100 mM 
NaCl 100 mM 
MgCl2 10 mM 
Adjust pH to 7.5  

2.3.8. Microplate growth curves 

All microplate growth curves were performed in a final volume of 200 µl. ON saturated 

cultures were used to inoculate fresh media at an ODi of 0.05. When OD600 reached 0.5, cells 

were harvested and resuspended to inoculate microplates at an ODi of 0.05. Reads were 

performed every 15 minutes for 16 hours, at the optimal growth temperature of the 

microorganism under study. 

46 



Materials and methods 

Growth curves on minimal salt media 

When curves were performed in minimal salt M9mod media, strains derived from E. coli 

LB650 were propagated twice from -80 ºC stocks in M9mod supplemented with 50 mM KCl 

and 1 % glucose. The ON saturated culture thus obtained was used to inoculate fresh M9mod 

media supplemented with 10 µM IPTG and 0.1 mM KCl for strains E. coli LB09 and LB10, 50 

mM KCl for strain LB11 and 100 mM KCl for LB08 and LB12. When OD reached 0.5, cultures 

were harvested and incubated for 1 hour in the initial volume of fresh media, this time without 

KCl supplementation. Afterwards, cells were harvested and washed three times with fresh 

media with no KCl. These samples were then used to inoculate fresh M9mod media in 

microplates supplemented with 1 % glucose, 10 µM IPTG and different KCl concentrations 

under study. Microplates were incubated at 37 ºC with continuous orbital shaking. 

Co-expression of Kup transporters and c-di-AMP 

M9mod supplemented with 0,2 % Glycerol and 10 mM KCl  was inoculated with -80 ºC 

stock strains under study and propagated twice. With the ON saturated cultures, 10 ml of fresh 

media were inoculated at OD = 0.05. When strains reached OD = 0.5, cultures were harvested 

and resuspended in same volume of M9mod supplemented with 0,2 % glycerol and no KCl. 

Samples were incubated at 37 ºC for an hour, after which 2 wash steps with no potassium 

supplementation were performed. These washed samples were used for microplate inoculation 

supplemented with 0,1 mM KCl and 2.5 µM IPTG. Genes cloned in pBAD33 vector were 

induced with 0.005 % L-arabinose when indicated. Growth curves were obtained as previously 

described. 

Overproduction of proteins in E. coli BL21 

Overexpression genes in E. coli BL21 was carried as follows. Overnight cultures of 

strains under study were diluted to an OD600 = 0.05 in 2 Lt. of fresh LB media supplemented 

with 100 µg/ml ampicillin. When an OD600 of 0.5 was reached, 0.5 mM IPTG was added to the 

cultures, which were further incubated for 3 h.  

Overproduction of TScf in L. lactis 

Expression of TScf was carried as follows. Overnight cultures of recombinant L. lactis 

were diluted to an OD600 = 0.05 in 3 Lt. of fresh M17G medium supplemented with the 
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corresponding antibiotics. Cultures were incubated at 30º C until an OD600 of 0.5 was reached, 

when 5 ng/ml of nisin (Sigma, USA) was added to the cultures. Samples were further incubated 

for 3 h.  

Purification of His6X-tagged proteins from L. lactis 

After induction, L. lactis samples were collected by centrifugation and resuspended in 

lysis buffer. Cells were then lysed with a tissue lyser as previously described. The lysate was 

clarified by centrifugation, and NaH2PO4 and imidazole were added to a final concentration of 

100 mM and 5 mM, respectively, pH was adjusted to 8. 

Clarified lysates were applied to a Ni2+-NTA affinity column (Qiagen) previously 

equilibrated with lysis buffer and incubated at room temperature for 1 hour to allow binding. 

Then the protein was refolded by successive in-column incubations with buffer C containing 

decreasing concentrations of urea ranging from 6 M to 0 M. The column was then washed with 

buffer C plus 25 mM imidazole and the protein was eluted from the column with buffer C with 

500 mM imidazole. The purified protein was dialyzed against PBS plus 5 % glycerol; aliquots 

were kept at -80 ºC. Buffers are listed in Table XVIII. 

Purification of His6X-tagged proteins from E. coli 

E. coli induced pellets from 2 Lt. cultures were washed in buffer W and cells were 

resuspended in buffer C, to be disrupted via French Press as previously described. Samples 

were then centrifuged 10 minutes at 5000 rpm and remaining insoluble particles were removed 

by ultracentrifugation at 4 ºC and 35000 rpm for 1 hour. For purification of recombinant His6X-

tagged proteins the supernatant fraction was loaded onto a bed of 1000 μl of Ni2+-NTA resin 

(IBA) in a Poly-Prep Chromatography Column (BioRad) that had been pre-equilibrated in 

buffer C. After applying the cell extract, the column was washed 5 times with 5 ml of buffer C 

containing 10 mM imidazole. The elution was performed in steps of 5 ml, with increasing 

concentrations of imidazole (30 mM, 50 mM, 100 mM, 200 mM and 500 mM). Fractions were 

analyzed by SDS-PAGE and those were a band evidenced the presence of the protein of interest 

were pooled and concentrated by centrifugation in Vivaspin turbo 15 columns (Sartorius) for 

15 minutes at 4.000 rpm and 8 °C. 
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Protein concentration was determined by Bradford assay and samples were further 

purified and analyzed via Size-exclusion chromatography (SEC). Buffers are listed in Table 

XVIII. 

Size exclusion chromatography 

The experiments were performed at room temperature in a HiLoad 16/600 Superdex 

200 pg using an ÄKTAprime plus chromatography system (GE Healthcare Life Sciences). 

Purified protein was applied to the column previously equilibrated with 20 mM Tris-HCl, 50 

mM NaCl, pH 8.0 buffer. The program was set to 1 ml/min and several elution fractions were 

recovered, where protein concentration was measured by a spectrophotometer coupled to the 

column. A calibration run was performed with molecular weight standards and related to their 

elution volumes for both column sizes. The elution volume is directly proportional to the 

log10(Mw). 

Fig 5 Standard curve in a HiLoad 
16/600 Superdex 200 pg 
chromatography column. Proteins of 
different molecular weight were injected 
into the size-exclusion chromatography 
column. The grey line, corresponding to 
the secondary vertical axis represents the 
spectrum of elution. The logarithm of 
the molecular weight of each protein 
was plotted against its retention volume. 
The standard curve was then used to 
interpolate molecular weight from 
experimental retention times. 

Table XI. Standard values for HiLoad 16/600 Superdex 200 pg 

Mw (KDa) log10(Mw) Retention 
volume (ml) 

670 2.83 50.45 

158 2.20 64.92 

44 1.64 81.19 

17 1.23 93.02 

1.35 0.13 111.92 
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2.3.9. Protein pull-down experiment with strep-tagged magnetic beads  

Cultures of L. lactis IL1403 were grown in M17G medium until a final OD600 of 0.5, 

when cells were harvested at 10000 rpm for 5 minutes. Pellets were resuspended in 2 ml of CP1 

buffer. This suspension was disrupted using French press and centrifuged 10 minutes at 10000 

rpm and 4 ºC. The supernatant was split in two fractions of equal volume and centrifuged for 1 

hour at 68000 rpm and 4 ºC. Protein quantification of the supernatant was then performed via 

Bradford assay.  

1.2 mg of protein was then taken to a final volume of 1 ml CP1 buffer, with addition of 

glycerol 10 %, 0.004 % EDTA and 0.5 µg/ml BSA. This sample was then incubated for 0.5 

hour at room temperature in a vortex shaker with the + and – beads (see below). 

Strep-tactin beads were equilibrated with CP2 buffer. After equilibration, half of the 

tubes were incubated with biotinylated c-di-AMP in a vortex shaker for 15 minutes at room 

temperature (+ samples). Finally, the beads were washed twice with CP2. 

After incubation with pre-equilibrated beads, samples were washed four times to get rid 

of unbound proteins and finally, elution was done with 50 µl buffer E at room temperature for 

15 minutes in a vortex shaker. 

Protein elution was analyzed by SDS-PAGE and silver staining. Both + and – lanes were 

sent for peptide identification at the proteomic department of the Ernst Moritz Arndt University, 

Greifswald (Prof. Uwe Völker). Buffers are listed in Table XVIII. 

2.3.10. Differential radial capillary action of ligand assay (DrACALA) 

Genes of interest were cloned in vector pWH844 using strain E. coli BL21 as host. An 

induction test was then performed as previously described to check gene expression (Zuzanna 

Grubek Master Thesis, 2016). Plasmids under study were finally sent to Prof. Vincent Lee 

(Department of Cell Biology and Molecular Genetics, University of Maryland, U.S.A) for the 

evaluation of specific interactions between their corresponding encoded proteins and c-di-AMP 

via the DrACALA assay. 
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2.3.11. Determination of c-di-AMP intracellular levels 

20 ml cultures of L. lactis IL1403 were grown in M17G medium. When samples reached 

an OD600 of 0.50, cells were harvested at 4 ºC and 5000 rpm, and quickly frozen in liquid 

nitrogen. Two additional samples of 1 ml were taken for normalization purposes. Samples were 

collected and stored at -20 ºC until c-di-AMP extraction was performed. For this, pellets were 

resuspended in 150 µl 2 mg/ml lysozyme in TE buffer and incubated for 30 minutes at 25 ºC 

and 750 rpm. Afterwards, samples were frozen in liquid nitrogen and boiled at 95 ºC for 10 

minutes. First, an extraction with 800 µl acetonitrile:methanol 1:1 was done, after which two 

more extractions with 200 µl acetonitrile:methanol:water 2:2:1 were performed. Supernatants 

were collected and dried in a Speedvac at 40º C. Pellets were sent to Prof. Volkhard Kaever 

from the Medizinische Hochschule, Hannover for c-di-AMP quantification via mass 

spectrometry. Final data was normalized with respect to the amount of protein present in the 

sample, determined via Bradford assay. 

2.3.12. Bis(p-nitrophenyl)phosphate assay.  

Bis(p-nitrophenyl)phosphate (BNPP) assay was performed according to Bai et al. 

2013 (68). Briefly, the following reaction is set up in a final volume of 100 µl: 

Putative phosphodiesterase 0.1 µM 

Tris-HCl pH 7.5 100 mM 

Mn2Cl 100 µM 

NaCl 10 mM 

BNPP 2 mM 

dH2O for Vf = 100 µl 

Reactions were loaded in microplates and were followed in a microplate reader at 30 

ºC and λ = 410 nm during 4 hours. Incubation was performed with minimal reading intervals 

and medium shake. 
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2.3.13. Light microscopy 

For microscopic analysis of L. lactis samples, cells were grown in M17G medium at 30º 

C to the desired OD600. A volume of 0.3 μl was placed on a slide covered with a thin layer of 

1% agarose prepared in dH2O, and when dried, a coverslip was placed on the sample. Pictures 

were taken using the AxioImager M2 equipped with a digital camera AxioCam MRm and the 

AxioVision Rel 4.8 software for image uptake (Zeiss). The objectives used ECPlan-

NEOFLUAR 100X/1.3 (Zeiss). 

2.3.14. Survival analysis in Galleria mellonella 

Survival experiments in G. mellonella were performed as follows: larvae were selected 

according to their weight, which was between 0.18 and 0.35 grams. 32 individuals per group 

were then harvested ON at 30 °C. Each group was inoculated with bacterial suspensions made 

in PBS at a concentration of 9.106 CFU/larva. Inoculation site was the fifth proleg. 

After inoculation, larvae were monitored at 2-4 hours intervals for 72 hours. Then, data 

was plotted in Kaplan-Meier curves using SigmaPlot 12 software and employing LogRank and 

Holm-Sidak tests, for multiple comparisons. P value was set in 0.05 (151). 

2.3.15. Immunological experiments 

Preparation of live bacterial inoculum and immunization protocol 

2 Lt. cultures of M17G supplemented with the corresponding antibiotics and 15 ng/ml 

of nisin were inoculated with L. lactis strains of interest at ODi = 0.05. Samples were incubated 

at 30 ºC until OD600 reached 0.5. Cells were then centrifuged at 5000 rpm and 4 ºC for 10 

minutes and washed with PBS buffer, to be finally resuspended in PBS plus 10 % glycerol. 

CFU were determined in the samples to check concentrations of the range 2 – 4.109 CFU/ 100 

µl inoculum. In addition, an expression test was performed to corroborate the presence of TScf. 

Mice inoculation 

BALB/c female mice, aged 6 weeks, were acquired and housed in HEPA-ventilated 

racks at 21 – 22 ºC and 68 % humidity at the animal facility of the CIPREB (Center for Research 

and Production of Biological Reagents, School of Medicine, UNR). Animals had free access to 
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food and water and were maintained under a 12 hours light/dark period. All protocols for animal 

studies were performed in collaboration with Dra. Ana Rosa Pérez and Dr. Iván Marcipar 

groups from the Instituto de Investigación Clínica y Experimental de Rosario (IDICER 

CONICET-UNR) and the Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y 

Ciencias Biológicas, UNL (Universidad Nacional del Litoral), respectively. Moreover, these 

experiments were  approved by the Bioethics and Animal Care & Use Committees according 

to Institutional guidelines. 

Briefly, mice were immunized by oral route by three successive doses separated by two-

week intervals by gavage administration. The bacterial dose administered was set as a quantity 

of bacteria expressing 10 µg of TScf (0.3-1.106 CFU). Similar quantities of bacteria expressing 

the TScf antigen alone, the CdaA alone or the empty vector were administrated in parallel. For 

comparative purposes, a group of animals was subcutaneously immunized in parallel with 10 

µg of purified TScf adjuvanted with 3 µg of ISPA (“Gold standard” group), an ISCOMATRIX 

type adjuvant developed by Dr. Marcipar group (152). 

Cellular response (Delayed hypersensibility test) 

To test cellular response, mice were challenged with 5 µg of purified TScf by 

intradermal injection in the right footpads 12 days after the last immunization. The thickness of 

hind footpads was measured before and 24, 48 and 72 hours after the antigen injection with a 

digital Vernier caliper. Results of the delayed hypersensitivity test (DHT) were expressed as 

the difference in thickness of footpads after and before the inoculation. 
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3. Results 

“Nothing in life is to be feared, it is only to be understood. Now is the 
time to understand more, so that we fear less” Marie Curie 
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3.1. c-di-AMP and potassium uptake in L. lactis IL1403 

3.1.1. Identification of c-di-AMP interaction partners in L. lactis IL1403 

In an attempt to identify new interaction partners of c-di-AMP in L. lactis IL1403, a 

protein pull-down experiment was performed (50). As described in Materials and Methods, cell 

extracts of this strain were incubated with strep-tagged magnetic beads previously coupled to 

biotinilated c-di-AMP (+ sample). A sample incubated with the beads without previous 

treatment was used as negative control (- sample). Elutions were analyzed by SDS-PAGE and 

silver staining (Fig. 6, I) and both lanes were sent for peptide identification by mass 

spectrometry. A list of 151 different proteins was obtained, with the ratio of their presence in 

the + lane with respect to the – lane. For the list of peptides obtained after the pull-down 

experiment, see Table XIV in the Appendix. 

It is important to mention that biotinilated proteins would also bind to the strep-tag in 

the – sample, which is probably why pyruvate carboxylase was identified almost 50 times more 

represented in the – lane. On the other hand, secondary interaction partners, i.e. proteins 

interacting with c-di-AMP binding proteins, could also be eluted depending on the strength of 

the interaction. Moreover, if the interaction to c-di-AMP is not strong enough, some binding 

partners could also be washed out, or found with a low +/- ratio. To evaluate all these 

possibilities, a bibliographic search was carried out, although the vast majority of the proteins 

on the list are either uncharacterized, or no studies about them have so far been reported. Since 

there is no information available about which proteins are biotinilated, nor which are essential 

in L. lactis (which could lead to the essential role of c-di-AMP in this bacterium), an initial 

classification was made by use of the UniProt online resource.  

Fig. 6, II shows a functional classification of the 130 peptides with the highest +/- ratio, 

based on available information and amino acid sequence homology to previously studied 

proteins from other bacteria. As the pie chart shows, the most represented groups include 

transport proteins comprising a predicted glutamine ABC transporter, a glycine-betaine 

transporter, four putative ABC transporters and two uncharacterized proteins. Also, a 

considerable amount of proteins related to DNA metabolism were identified, such as the DNA 

polymerase III, subunits β and τ, the DNA mismatch repair proteins MutS and MutL, and the 

predicted proteins RecG (DNA helicase), RecN (DNA repair) and RecA (DNA 
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repair/homologous recombination). Finally, groups of proteins related to amino acid and cell 

wall metabolism were also among the most represented, including predicted amino acid 

synthesizing enzymes and proteins involved in the formation of the septal ring and cell division 

(EzrA, FtsA and FtsE, which was proved to affect translocation of K+ in E. coli (37)). 

Considering that actually most of the proteins showed a great variety of predicted 

functions and therefore they were collected under “Miscellaneous proteins”, no clear tendency 

could be distinguished. Altogether, for the subsequent specific interaction assay, the 23 peptides 

with the highest +/- ratio were selected. In other words, this selection established a cut off of 

proteins which were at least eight times more represented in the + lane than in the – lane (Table 

XII). Due to the proximity of the ratio value to the set cut off, the uncharacterized protein with 

an accession number Q9CEI1_LACLA, and the predicted septation ring formation regulator 

EzrA were as well added to the list. 

 
Fig. 6 Protein pull-down for identification of c-di-AMP interaction partners. I. 
SDS-PAGE after pull-down experiment with strep-tagged magnetic beads (see 
Materials and Methods). Bands were visualized by silver staining. + lane: sample 
eluted from beads previously treated with biotinilated c-di-AMP. – lane: sample 
eluted from beads with no previous treatment. MWM: Molecular weight marker 
(PageRulerTM Plus Prestained Protein Ladder). This experiment was performed in 
three independent replicates. Both lanes were sent for peptide identification. II. 
Functional classification of proteins obtained after MS/MS detection. Protein 
function was assigned based on reported research and sequence homology to 
previously studied proteins. 

Furthermore, at the time this experiment was performed, an increasing amount of 

evidence was directing the essential role of cdaA (and consequently c-di-AMP) towards its 

relation to potassium metabolism (153). Consequently, a search for genes coding for putative 

potassium transporters, and proteins potentially related to potassium homeostasis in L. lactis 

IL1403 was carried out. 

56 



Results 

When looking for potassium transporters encoded in L. lactis IL1403 genome by use of 

the free online software UniProt (UniProtKB, UniRef and UniParc databases), proteins KupA, 

KupB and YrbD are shown as results. These three proteins are inferred from homology since 

there is currently no reported research about them. The first two belong to the KT/KUP/HAK 

family (see below), whereas YrbD could be a voltage gated channel. Since neither potassium 

metabolism, nor its relation to c-di-AMP has been thoroughly investigated in L. lactis, the 

possibility of this second messenger interacting as well with potassium channels was 

considered. Thus, these proteins were added to the list along with the putative voltage gated 

potassium channel proteins YjdJ and YncB, with more than 60% identity to the potassium 

efflux system KefA from other Lactococcus species.  

Proteins with high homology for members of the Trk/Ktr/HKT family were also 

evaluated. Interestingly, even though putative homologous proteins to B. subtilis KtrA were 

found in some members of L. lactis species, it is not present in IL1403 nor in MG1363 strains 

studied in this work. Moreover, even though the kim riboswitch was already reported to be 

absent in Lactococcus (154), the presence of the associated potassium transporter KimA, or 

possible related proteins was also considered. No KimA homologues were found encoded in L. 

lactis genome, but the protein blast showed certain homology to an amino acid permease, LysP. 

Given the recent associations of c-di-AMP to amino acids metabolism and osmoregulation 

previously described in the introduction (62, 155), both LysP and LysQ were also included in 

the list of putative c-di-AMP interaction partners. 

It was also reported that in L. monocytogenes a mutant strain for the only c-di-AMP 

synthesizing enzyme was obtained in rich media thanks to loss of function mutations occurring 

in genes clusters oppABCDF (involved in oligopeptide import) or the gbuABC (involved in 

glycine-betain import) (60). Therefore, the homologous Opp protein of L. lactis IL1403, which 

is expected to function as an oligopeptide permease, was added as well to the list. 

Lastly, and due to the close connection between potassium and sodium homeostasis, 

Nah protein, homologous to a cation:proton antiporter was also selected. In conclusion, a final 

selection of 34 genes (Table XII) was then cloned in the E. coli expression vector pWH844 

(Zuzanna Grubek Master Thesis, 2016). After checking expression of all genes using strain E. 

coli BL21 as host, the corresponding plasmids were sent to confirm c-di-AMP specific 

interaction to the respectively encoded proteins via differential radial capillary action of ligand 

assay (DrACALA) (see Materials and Methods). 
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Table XII. Gene selection for DrACALA analysis 

Gene Putative function Reference 

dnaH DNA polymerase III, subunits β and τ1 Bolotin et al. 2011 

ezrA Septation ring formation regulator1 Bolotin et al. 2011 

ftsE Control of cell wall synthesis; ABC transporter1 Bolotin et al. 2011 

glnP Glutamine ABC transporter permease and substrate binding 
protein2 

Fulyani et al. 2013 
(156) 

kupA* Potassium transporter2 This work 

kupB* Potassium transporter2 This work 

lysP* Lysine specific permease1 Bolotin et al. 2011 

lysQ* Lysine specific permease1 Bolotin et al. 2011 

mvaA 3-hydroxy-3-methylglutaryl coenzyme A reductase1 Bolotin et al. 2011 

nah* Na+/H+ antiporter1 Bolotin et al. 2011 

oppA* Oligopeptide-binding protein1 Bolotin et al. 2011 

pdp Pyrimidine-nucleoside phosphorylase1 Bolotin et al. 2011 

prfB Peptide chain release factor 21 Bolotin et al. 2011 

racD Aspartate racemase1 Bolotin et al. 2011 

recG ATP-dependent DNA helicase1 Bolotin et al. 2011 

recJ Single-stranded DNA specific exonuclease1 Bolotin et al. 2011 

recN DNA repair protein RecN1 Bolotin et al. 2011 

relA ppGpp synthetase I1 Bolotin et al. 2011 

ribH 6,7-dimethyl-8-ribityllumazine synthase1 Bolotin et al. 2011 

rpsF 30S ribosomal protein S61 Bolotin et al. 2011 

yciH Ribonuclease J1 Bolotin et al. 2011 

yeaD Initiation-control protein YabA1 Bolotin et al. 2011 

yhfC Uncharacterized protein Bolotin et al. 2011 

yjdJ* Potassium channel protein1 Bolotin et al. 2011 

yncB* Uncharacterized protein Bolotin et al. 2011 

yqaB Uncharacterized protein Bolotin et al. 2011 

yqaD Uncharacterized protein Bolotin et al. 2011 

yrbD* Uncharacterized protein Bolotin et al. 2011 

yrgI Uncharacterized protein Bolotin et al. 2011 

yrjB Oxidoreductase1 Bolotin et al. 2011 

ytcE Uncharacterized protein Bolotin et al. 2011 

ytjA Uncharacterized protein Bolotin et al. 2011 

yueF Protease1 Bolotin et al. 2011 
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ywfH Uncharacterized protein Bolotin et al. 2011 
1Proteins inferred from homology. 2Experimental evidence available. *Genes selected independently from the pull-
down experiment 

3.1.2. c-di-AMP specific interaction to different Lactococcal proteins 

Unexpectedly, the majority of the genes selected proved to have no specific interaction 

with c-di-AMP through the DrACALA assay. Nevertheless, two of the putative K+ related 

proteins threw positive results. The corresponding genes were kupA and kupB and their products 

interact specifically with c-di-AMP according to the competition DrACALA experiment (Fig. 

7). In addition, the interaction with KupA seems to be stronger than with KupB. 

 
Fig. 7 DrACALA experiment. A: Fraction of radiolabeled c-di-AMP retained 
in induced overnight cultures. KupA and KupB specifically interact to c-di-
AMP (underlined in orange). ATP competition does not interfere with c-di-
AMP interaction in overnight (B) or subcultures lysates (C). Fresh c-di-AMP 
competition results in no 32P-c-di-AMP detected, indicating specific 
interaction. Induction of all samples was checked in overnight and midlog 
cultures (not shown). 

Because of the lack of previously reported potassium transporters in L. lactis IL1403, a 

bioinformatic search was first performed. An initial approach showed that Kup proteins are 
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widely found in bacteria as well as in species of fungi and plants. Nevertheless, the only 

reported investigation related to a Kup protein in L. lactis dates from 1997 when Quintero and 

Blatt analyzed a new transporters family in Arabidopsis and they see that it is conserved among 

different filos, since homologous sequences were found in different plant species, in L. lactis 

and also in Homo sapiens (157). However, up to date no other information can be found, which 

is why an in silico analysis of KupA and KupB was carried out. 

In the model organism E. coli, Kup acts as a potassium intake system with particular 

characteristics that distinguish it from the potassium transporter families Ktr and Kdp, 

previously described. It belongs to the Kup/HAK/KT family and, as Fig. 8 represents, it is a 

622 residues protein with 12 transmembrane fragments at the N-terminal end (158). 

A first study of the nucleotidic sequence of L. lactis IL1403 genome shows two adjacent 

genes of 2013 and 2016 base pairs, corresponding to kupA and kupB respectively, separated by 

223 bp (Fig. 8, I). The amino acid sequence alignment between them shows a 73% identity, 

whereas topology prediction using the free software Protter threw very similar structures with 

12 transmembrane segments for both proteins under study, which correlates with E. coli Kup 

protein. Moreover, as Fig. 8 II shows, the majority of conserved residues are located in the N-

terminus and particularly in the transmembrane regions. This makes sense provided E. coli does 

not synthesize c-di-AMP and, consequently, its Kup protein does not need to sense it. It is hence 

likely that in L. lactis the sensory domain has evolved from a common ancestor in the 

cytoplasmic C-terminal region, to acquire the capacity of c-di-AMP sensing and responding 

accordingly, modifying K+ intake activity. 

On the other hand, and even though the presence of acidic amino acids has been shown 

to be important for potassium transport, in Kup they are found in the transmembrane fragments 

of the protein. This has been reported as a unique feature of the Kup/HAK/KT family, not 

occurring neither for transporters of the Trk/Ktr/HKT nor for the Kdp family (158). Moreover, 

it was also proved that E. coli Kup residues D23, E116, E229 and D408 have a crucial role for 

Kup activity and its substitution for alanines resulted in a peptide that could not complement 

mutations in E. coli LB2003 to allow growth at low K+ concentrations (see below). 

Interestingly, D23 and E229 are conserved in both Kup proteins of L. lactis IL1403 and despite 

E116 and D408 are not, in both KupA and KupB an aspartic acid and a glutamic acid residue 

are found instead respectively, so conservation of acidic residues remains (Fig. 8). 
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On the other hand, sequence alignment of well-studied c-di-AMP binding potassium 

transporters shows a conserved glycine region, characteristic of Ktr family proteins. This 

GXGXXG consensus motif, typically present for nucleotide binding is not exactly conserved 

in Kup proteins but a GXXGXG inverted domain is found instead in both KupA and KupB 

(Fig. 8, II). This domain could be involved in c-di-AMP binding or could also suggest that Kup 

transporters need a cofactor like NAD for their activity (159). 

Taken together, the evidence here presented supports the fact that proteins under study 

belong to the Kup/HAK/KT family but whether they are both active potassium transporters 

needed to be further studied. 

 
Fig. 8 KupA and KupB in silico analysis. I: Gene arrangement in L. lactis IL1403 genome. kupA and kupB are 
2013 and 2016 base pairs genes respectively and are adjacently encoded. II: Predicted membrane conformation of 
KupA. Adapted from the free topology prediction Protter software. Amino acids conserved in both Kup proteins 
from L. lactis are highlighted in green, whereas those conserved in E. coli as well are represented in red. Conserved 
acidic amino acids are depicted in yellow. The cellular membrane is shown in light blue. Extra: extracellular, intra: 
intracellular. The purple box indicate a putative GXXGXG c–di-AMP binding site. 

3.1.3. KupA and KupB of L. lactis 1403 restore growth of E. coli LB650 

Heterologous expression of proteins in the model bacterium E. coli has always been one 

of the first choices when studying unknown protein functions. Consequently, a first approach 

into the functional properties of the proteins encoded by both kup genes was explored using E. 
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coli LB650 (160). This strain is a triple mutant for the main potassium transporter systems, 

having a ∆kdpABC5 ∆trkH ∆trkG genotype (see Table XV). Hence, it is unable to grow at low 

K+ concentrations. 

kupA and kupB genes were respectively cloned in a modified version of plasmid 

pWH844, lacking the N-terminal His6X-tag after digestion with EcoRI restriction enzyme, 

which site is located upstream the His6X -tag codifying sequence. For this, primers IQ682 and 

IQ683 were used, which introduce an EcoRI restriction site as well as ribosome binding site. In 

this way, any functional interference produced by the histidine residues in the proteins was 

ruled out. The resulting plasmids pIQ309 and pIQ310, (carrying kupA and kupB genes, see 

Table XVI), were electroporated in E. coli LB650, originating strains LB09 and LB10 

respectively, to check if their expression could restore growth in rich media when no KCl is 

added. As Fig. 9 shows, the strain harboring pWH844 vector cannot grow in LB, unless it is 

supplemented with 200 mM KCl. On the other hand, when a trans copy of kupA or kupB is 

present, colonies appear on the plates without extra addition of KCl, even when IPTG is not 

present. As mentioned in Material and Methods, pWH844 vector used for these constructions 

has the multiple cloning site under control of the lactose operon promoter (Plac), which is 

widely known to be leaky. Consequently, this basal expression of kupA and kupB is already 

enough to allow growth. These results show not only that the proteins under study are potassium 

transporters but also suggest that both transporters have high affinity for K+. 

 

Fig. 9 KupA and KupB restore growth of E. 
coli LB650 in LB. Left: strain LB08 carrying 
pWH884 vector grows only when 200 mM KCl 
is added to the medium (down). Center and right 
strains LB09 and LB10 carrying a trans copy of 
kupA and kupB, respectively. Both evidence 
growth with or without potassium 
supplementation. 
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3.1.4. KupA and KupB are high affinity transporters 

In order to estimate the affinity of KupA and KupB proteins for K+, a comparison to 

previously characterized transporters was made. For this, the high affinity potassium transporter 

KtrA/B from B. subtilis and the low affinity KtrC/D system from L. monocytogenes were 

employed (48, 161). The corresponding genes had been previously cloned in the modified 

version of pWH844 plasmid described in the former section, lacking the His6X-tag. The 

resulting plasmids pBP372 and pBP371 were available at Prof. Stülke’s lab and were 

electroporated in strain E. coli LB650, originating strains LB11 and LB12, respectively. 

Growth curves were then performed in minimal salt media M9 modified, where 

potassium salts were replaced by equimolar quantities of the respective sodium salt (M9mod, 

see Materials and Methods). KCl was then added to the media, to reach final concentrations 

between 0.025 – 50.0 mM, and determine in this way the concentration at which growth was 

possible. ODmax and µmax were then determined for strains E. coli LB08, LB09 and LB10, 

harboring the empty vector, and kupA and kupB genes, respectively. Strains LB11 and LB12 

were included as reference of the response of a high and a low affinity system under the 

conditions here studied.  

Both Kup proteins showed similar phenotypes, manifesting growth even at 

concentrations below 0.1 mM KCl, although growth rate and final OD600 were low (Fig. 10 and 

Table XIII) Moreover, at 1.0 mM KCl, values close to the highest ODmax and µmax are already 

reached, and coincide with values obtained for the high affinity system KtrA/B of B. subtilis. 

On the other hand, for the case of KtrC/D, growth is only possible at 10 mM K+ or higher, and 

maximum ODmax and µmax values are obtained when at least 50 mM K+ is present in the media. 

A marked difference is then established with respect to high affinity KtrA/B and Kup proteins, 

being more closely related to strain LB08 harboring the empty vector. Taken together, these 

results support the theory that both Kup proteins are high affinity potassium transporters. 

63 



Results 

 
Fig. 10 Growth parameters of E. coli LB650 derived strains. Growth curves were performed in a microplate 
reader and in minimal salt M9mod medium. ODmax (I) and µmax (II) were determined at different KCl 
concentrations. The arrow highlights parameters obtained at 1.0 mM KCl, where the different potassium 
transporter systems show clear distinct phenotypes. Both Kup proteins behaved similarly to the high affinity 
KtrA/B system. 

  Table XIII. ODmax and µmax values for E. coli LB650 derivative strains 

3.1.5.  c-di-AMP down-regulates Kup proteins 

Once specific interaction with c-di-AMP was confirmed, and KupA and KupB were 

identified as potassium transporters, the next step was to analyze the impact of this metabolite 

on the activity of both Kup proteins. To this aim, a co-expression system was established in the 

model bacterium E. coli 2003. This strain is deficient in the three major potassium uptake 

systems Trk, Kup and Kdp (∆kdpABC5 kupD1 ∆trkA, see Table XV), and is not able to grow 

in minimal salt media at low K+ concentrations without a trans complementation of a potassium 

transporter coding gene. Very importantly, and in contrast to strain LB650 (Km50 – Cm30), its 

mutations are clean, so there is no need for antibiotic supplementation of growth media. 

Moreover, E. coli lacks c-di-AMP synthesizing enzymes, for which the co-expression of cdaA 

and kup genes allows the analysis of the phenotypic effect of c-di-AMP on Kup proteins, 

without interference of host-synthesized c-di-AMP. 

 pWH844 KupA KupB KtrA/B KtrC/D 

[K+] [mM] ODmax µmax ODmax µmax ODmax µmax ODmax µmax ODmax µmax 

- ND ND 0.3 5.0E-3 0.1 3.7E-3 0.4 5.0E-3 ND ND 
0.025 ND ND 0.4 5.0E-3 0.2 7.1E-3 0.5 7.0E-3 ND ND 
0.50 ND ND 0.4 8.9E-3 0.3 1.0E-2 0.7 8.0E-3 ND ND 
0.075 ND ND 0.5 1.1E-2 0.3 1.1E-2 0.7 1.0E-2 ND ND 
0.50 ND ND 0.8 1.3E-2 0.8 1.4E-2 0.9 1.0E-2 ND ND 
1.0 ND ND 1.0 1.6E-2 1.0 1.3E-2 0.9 7.0E-3 ND ND 
10.0 0.8 4.7E-3 1.0 1.5E-3 1.0 9.0E-3 1.0 6.0E-3 1.1 9.0E-3 
50.0 1.3 1.2E-2 1.0 1.6E-2 1.1 7.0E-3 1.1 1.2E-2 1.2 1.3E-2 
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At the beginning of this thesis, several attempts were made to heterologously produce 

CdaA enzyme from L. lactis IL1403 in E. coli. Since no successful results were obtained, and 

taking into account that for the practical scope of the experiment only the production of c-di-

AMP was necessary, independently of the synthesizing enzyme, CdaA from L. monocytogenes 

(from now on CdaAlmo) was used instead. A non-active defective version of it, CdaAlmo*, was 

used as well, as negative control.  

Plasmids pIQ309 and pIQ310 (Amp100) were used for kup genes induction via IPTG, 

whereas cdaAlmo and cdaAlmo* were induced from plasmids pBP370 and pBP373 respectively 

(kindly supplied by Prof. Stülke laboratory). These plasmids are pBAD33 derivatives (Cm30, 

see Table XVI), allowing expression of genes under control of the arabinose Para promoter, 

and being therefore compatible with pWH844 derivatives previously mentioned. A system of 

co-expression was then established where potassium transporters could be induced by IPTG 

and c-di-AMP cyclases by arabinose. 

In the previous section, where growth experiments were performed in E. coli LB650 

harboring a trans copy of kupA and kupB, addition of 0.1 mM KCl to M9mod medium was 

enough for the strains under study to grow. Hence, this concentration was selected to 

supplement M9mod medium for the growth curves performed on the E. coli 2003 derivative 

strains. It is important to mention that under this potassium concentration, strain E. coli 0380, 

harboring vectors pWH844 and pBP370 (cdaAlmo), is not able to grow, which is why it was 

used as negative control. 

As seen in Fig 11, IPTG induction of kupA gene allowed growth of strains E. coli 0390 

and 0393. Nevertheless, when cdaAlmo (present in strain 0390) is also induced via arabinose 

supplementation in growth media, a severe growth detriment is evidenced (Fig 11, left). On the 

other hand, either when the inductor (arabinose) is not present (Fig 11, right), or when cdaA 

gene carries a mutation that results in an inactive enzyme (strain 0393), growth is possible 

again. 
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Fig 11 c-di-AMP effect on KupA. Growth curves were performed in minimal salt 
M9mod media, supplemented with 2.5 µM IPTG for kupA induction and with 0.005% L-
arabinose (left) or without it (right). Strain 0390 and 0393 harbor a copy of cdaAlmo and 

cdaAlmo*, respectively. Both carry as well a copy of kupA. E. coli 0380 with the 
empty vector pWH844 and pBP370 was used as negative control. 

The same experiment was performed to study the impact of c-di-AMP on KupB. In this 

case, results obtained were similar, but the growth inhibition exerted on strain 0300 (harboring 

plasmids pIQ310 with a copy of kupB and pBP370, with wild type cdaAlmo) in induced 

conditions, was milder (Fig 12, left). 

 
Fig 12 c-di-AMP effect on KupB Growth curves were performed in minimal salt M9mod 
media, supplemented with 2.5 µM IPTG for kupB induction and with 0.005% L-arabinose 
(left) or without it (right). Strain 0300 and 0303 harbor a copy cdaAlmo and cdaAlmo*, 
respectively. Both carry as well a copy of kupB. E. coli 0380 with the empty vectors 
pWH844 and pBP370 was used as negative control. 

It is important to mention that the growth inhibition observed in both cases could be 

caused by high intracellular c-di-AMP concentrations, which have been reported to be toxic for 

bacteria (54). On the other hand, it could also be due to the production of the heterologous 

CdaAlmo enzyme, which could be toxic for the cell independently of c-di-AMP concentration 

or the presence of the potassium transporters under study. This was ruled out by performing 

similar growth curves of E. coli 0380 harboring an empty copy of vector pWH844 and plasmid 

pBP370. This time, 50 mM KCl was added to growth media, and wild type growth was possible 
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under arabinose induction as well as no-induction conditions (Fig 13). As expected, strain 0383 

harboring the mutated cdaAlmo*, was not inhibited either and both strains evidenced similar 

growth phenotypes to strain 4433, with both empty vectors pWH844 and pBAD33. Altogether, 

the evidence here presented confirms that c-di-AMP downregulates KupA and KupB proteins. 

 
Fig 13 Control curves on M9mod supplemented with 50 mM KCl. High potassium 
concentrations allowed similar growth under arabinose induction (left) and no-induction 
conditions (right). 0380: pWH844 plus pBP370 (cdaAlmo), 0383: pWH844 plus pBP373 
(cdaAlmo*), 4433: pWH844 plus pBAD33. 

3.1.6. Conclusions 

In this chapter, a pull-down experiment with strep-tagged magnetic beads coupled to 

biotinilated c-di-AMP was performed in order to identify novel interaction partners of this 

second messenger in L. lactis IL1403. Even though no specific binging protein was recovered 

from this experiment, the DrACALA assay permitted the identification of two novel potassium 

transporters, which specifically interact with c-di-AMP: KupA and KupB. Minimal KCl 

concentrations restoring growth of mutant strains E. coli LB650 and 2003 in M9mod medium, 

as well as comparisons to previously studied high and low affinity systems (B. subtilis KtrA/B 

and L. monocytogenes KtrC/D, respectively) provide evidence that, unlike in E. coli, L. lactis 

Kup proteins are high affinity potassium transporters.  

An in silico analysis showed that KupA and KupB share 73% identity and when 

compared to E. coli Kup, the most conserved regions are in the transmembrane fragments, 

whereas the major variability occurs in the cytosolic C-terminal end. Moreover, after sequence 

analysis of other c-di-AMP binding proteins, a putative c-di-AMP binding domain was 

hypothesized. 

Finally, a co-expression system was constructed, allowing controlled induction of kup 

genes under study and cdaA, by use of an IPTG and an arabinose inducible promoter, 
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respectively. Growth curves performed under low potassium concentrations confirmed that c-

di-AMP has an inhibitory effect on both KupA and KupB. 
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3.2. Studies on c-di-AMP synthesizing and degrading enzymes in L. 

lactis IL1403 

3.2.1. Strain engineering for modification of intracellular c-di-AMP levels 

The first approach aiming to modify intracellular levels of c-di-AMP in L. lactis was 

directed towards deletion of the gene encoding its only synthesizing enzyme, cdaA. Several 

attempts were made by use of vector pBVGh, previously developed in our laboratory and 

described below. Since deletion in rich medium M17G was not possible, and mutants for c-di-

AMP cyclases were reported on strictly controlled minimal media, the deletion protocol was 

tuned to be performed in defined media. As previously described, lactic acid bacteria lack many 

anabolic pathways and, consequently, a considerable amount of nutrients have to be provided 

in growth media, in order to satisfy their complex metabolic requirements. Different conditions 

were thus tried, to establish a suitable defined medium, which allowed regulation of potassium 

concentration and, at the same time, high L. lactis cellular density. 

Minimal medium MS15 was employed as described by Cocaign‐Bousquet et al. (162) 

and using the same criteria as for M9 minimal salt medium in the previous chapter, potassium 

salts were replaced by equimolar quantities of the corresponding sodium salt, resulting in 

MS15m medium. Different KCl concentrations were then used to supplement MS15m and 

determine the minimum potassium molarity allowing an OD600 high enough to perform the 

different steps of the deletion protocol. Fig 14, I shows the final OD600 obtained for L. lactis 

IL1403 and NZ9000 strains after 5 days of incubation at 30º, when 1.0 – 5.0 – 10 – 100 and 

200 mM KCl were added to MS15m. Since the original protocol requires several ON incubation 

steps, use of this medium would be practically unviable.  

On the other hand, Zhang et al developed another minimal medium, which permitted 

high density growth of lactococci (163). This medium, called ZMB2 was also modified to avoid 

use of potassium salts in its initial composition, resulting in ZMB2m medium. This time, optical 

densities above 1.0 were obtained for KCl concentrations between 1.0 and 100 mM in ON 

cultures of both strains under study (Fig 14, II and III). Hence, ZMB2m medium and KCl 

concentrations of 0.25, 0.50 and 1 mM were selected to perform the deletion protocol.  
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Fig 14 L. lactis growth on minimal media. Strains IL1403 and NZ9000 were cultured in modified minimal media 
without potassium salts. KCl was added prior to inoculation at the concentrations detailed in the graphs. I: Final 
OD600 obtained in MS15m after 5 days. II and III: Final OD600 obtained in ZMB2m ON cultures. KCl 
concentrations used in the deletion protocol are marked with an asterisk. 

Even though mutants lacking c-di-AMP synthesizing enzymes were reported to be 

obtained in minimal media at low K+ concentrations (49, 60, 62), cdaA deletion was not possible 

for neither of L. lactis strains under study in this work. A second approach was also tried, where 

by use of the nisin inducible pNZ8048 vector, genomic cdaA deletion was tried when a trans 

copy was being expressed. In this way, in the absence of nisin, cells would be depleted of CdaA 

enzymes, and mutants and possible suppressors could be studied. Unfortunately, this strategy 

was not successful either, for what the focus of this research was now directed towards the 

modification of c-di-AMP intracellular pools and the obtaining of maximum and minimum 

levels compatible with growth in rich media for L. lactis IL1403. 

The starting point to this aim was the development of genetically engineered strains for 

homologous and heterologous expression of genes encoding c-di-AMP synthesizing and 

degrading enzymes. Thus, cdaA and gdpP genes from L. lactis IL1403 and E. faecalis JH2-2 

(cdaAll, gdpPll, cdaAef and gdpPef, respectively) were cloned in vector pBV153 (Fig 15, I). This 

vector was developed in our laboratory and it has the Pcit promoter upstream of the multiple 

cloning site, leaving the gene of interest under pH regulation (164). That is to say, as the pH of 

the growth medium decreases, expression of the desired protein increases. The resulting 

plasmids were named pQI101, pQI102, pQI103 and pQI104, respectively and were 

electroporated in L. lactis IL1403 originating strains LL03, LL04, LL05 and LL06, respectively 

(see Table XV). 
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Fig 15 Strain development for modification of c-di-AMP intracellular levels. I: Vector pBV153 was used for 
homologous and heterologous expression of cdaAll, gdpPll, cdaAef and gdpPef. Only cdaA is represented, but the 
same system was used in a similar way to clone gdpP genes as well. II: pBVGh vector employed for gene deletion. 
This system allows a clean deletion of the gene of interest via a double recombination event. Primers JN404 and 
JN405 as well as JN406 and JN407 were used for deletion check. 

Another strategy considered for modifying intracellular c-di-AMP concentrations was 

mutation of its degrading enzyme, GdpP. Since this is the only c-di-AMP phosphodiesterase 

reported in L. lactis, deletion of its gene via homologous recombination by use of vector pBVGh 

was performed (Fig 15, II). The selected thermosensitive vector was previously developed in 

our laboratory as well, and it allows deletion of the gene of interest via a series of incubations 

at the permissive and non-permissive temperature, without incorporation of antibiotic 

resistances in the strain under study (165). Briefly, an up and a downstream region of the gene 

are adjacently cloned in the plasmid, so homology enables the integration of the plasmid in the 

chromosome when incubating at the non-permissive temperature. When temperature is 

lowered, the plasmid jumps out and it carries the gene of interest with it. An easy white/blue 

colony screen allows identification of putative mutants, which are then checked by antibiotic 

sensitivity and by two different PCR. The first one is performed with a pair of primers 

hybridizing outside the fragments cloned (JN406 and JN407 in Fig 15, II), and the second one 

is a negative control for which primers amplifying a central region of the gene of interest are 

used (JN404 and JN405 in Fig 15, II). 
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Once deletion of gdpP was confirmed, the selected strains were restricked three times 

to check colony morphology and growth stability. Interestingly, in this process, two slightly 

different colony sizes were obtained, for which both samples were kept for later c-di-AMP 

levels determination. These strains were named L. lactis LL07 (smaller colonies) and LL08 

(bigger colonies). 

3.2.2. Phenotypic analysis of the strains developed 

The first analysis of strains constructed was performed on morphology developed in 

rich media M17G during exponential growth (Fig 16, up) and also once the stationary phase 

was reached (Fig 16, down). In the first case, the wild type phenotype can be described as short 

chains of two or four bacteria, with homogeneous and well-defined round shape. This is also 

true for strains LL05 and LL06, respectively carrying gdpPll and gdpPef genes, where no 

particular phenotype is observed. The main differences, on the other hand, were obtained for 

strains LL03 and LL04, harboring a trans copy of cdaAll and cdaAef, respectively. In both these 

cases, a slight increase in cell size can be visualized, as well as no clear division of each cell in 

dimeric chains. As previously mentioned and as it is widely known, c-di-AMP metabolism is 

closely related to cell wall biosynthesis, which is why this phenotype would indicate that cdaA 

genes are being expressed. 

 

Fig 16 Morphology of L. lactis LL00, LL03-LL06 strains. Phase contrast microscopy of strains LL00, LL03-
LL06. Bacteria were grown in M17G medium at 30 ºC and samples were taken at mid-exponential phase (up) 
and at stationary phase (down). Arrows indicate abnormal morphology. Scale bar, 2 µm. 
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Clearer phenotypes were evidenced for the stationary phase, although they were similar 

for all strains under study. Control strain LL00 harboring the empty vector formed long cocci 

shaped strains, whereas strains LL03-LL6 evidenced heterogeneous bacterial sizes and shapes, 

as well as a higher number of non-viable cells. These results indicate that morphology is more 

affected in the late exponential phase, probably due to accumulation of c-di-AMP (for strains 

LL03 and LL04) or long time exposure to low levels of this second messenger (for strains LL05 

and LL06). 

After analyzing morphology of strains developed to alter c-di-AMP intracellular levels, 

a second study was done on growth curves obtained in rich media M17G upon addition of 

different stress factors. Although induction of Pcit promoter increases as the pH of the media 

decreases, these experiments were performed at initial pH of 7.0 to avoid raising c-di-AMP 

concentrations into toxic levels. Indeed, the capacity of LAB to acidify media as result of their 

lactic acid production was ideal to increase induction gradually along growth. 

Control curves in M17G grown at 30ºC can be seen in Fig 17, where strain LL03 

carrying cdaAll gene, already shows a growth disadvantage with respect to strain LL00 

harboring vector pBV153. This detriment is evidenced by a particularly long lag phase, which 

is enhanced when temperature is raised to 37ºC. Interestingly, Smith et al. reported heat resistant 

L. lactis strains obtained after construction of gdpP mutants by use of a protocol which involved 

an incubation step at 37.5ºC (74). Taking into account that a defective gdpP strain and a strain 

with an extra copy of cdaA would have the same effect of increasing c-di-AMP concentration, 

similar phenotypes were expected. Therefore, the growth defect manifested by strain LL03, 

could suggest that an even a higher c-di-AMP concentration was reached with respect to the 

gdpP mutants, resulting toxic for the cell, or a mutation in another gene involved in heat 

resistance. 

Strains L. lactis LL05 and LL06 (gdpPll and gdpPef, respectively) also evidenced a 

growth disadvantage, although to a lesser extent than strain LL03.This time, results are in 

accordance with the heat resistance phenotype of gdpP mutants, since an extra copy of the gene 

would decrease c-di-AMP intracellular pools, causing the opposite effect. Taken together, 

evidence here presented agree with previous findings about low as well as high concentrations 

of c-di-AMP being toxic for bacteria (54). Lastly, strain LL04 harboring a trans copy of cdaAef 

gene seems to have no effect on growth, suggesting that it could be inactive in the system here 

studied. 
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Fig 17 Temperature sensitivity of strains LL00, LL03 – LL06. Growth curves were performed in 
rich media M17G at 30 ºC (left) and 37 ºC (right). Strain L. lactis LL00 harbors the empty vector 
pBV153, whereas the series LL03, LL04, LL05 and LL06 carry a trans copy of genes cdaAll, cdaAef, 
gdpPll, and gdpPef, respectively. 

Moreover, saline hypersensitivity was also reported by Smith et al. for gdpP mutant 

strains of L. lactis, and was therefore evaluated for the strains developed in this work (74). 

Concentrations of 0.25 and 0.50 M NaCl were selected to analyze their impact on growth. As 

Fig 18 shows, strain LL03 develops an unusually long lag phase of 8 hours and reaches 

stationary phase after 12 hours. Moreover, when media is supplemented with NaCl 0.50 M, a 

general detriment in growth is observed, since maximum OD600 is lowered, and strain LL03 is 

not able to grow anymore. On the other hand, strain LL05 (harboring a trans copy of gdpPll) 

also shows impaired growth, although the effect is not as marked as the one just described. 

Conversely, neither the presence of cdaAef in strain LL04, nor of gdpPef in strain LL06seems to 

have an evident impact on growth under these conditions, since in both cases growth is similar 

to strain LL00, carrying the empty vector. 

Impact of β-lactam antibiotics on strains under study was also tested. These are a class 

of antibiotics active against a group of proteins called “penicillin-binding proteins” or PBP. A 

subgroup of essential PBP are the transpeptidases, which are serine proteases in charge of the 

last step in cell wall biosynthesis: the cross-linking of neighboring peptidoglycan strands (166). 
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The β-lactam ring of these antibiotics mimics the cell wall strand, but once in contact with the 

enzyme, it forms a stable intermediate that inactivates the transpeptidase. Consequently, an 

imbalance occurs between the incorporation of new building blocks to the cell wall and the 

recycling activity of autolysins, leading to cell lysis (167). 

 

Fig 18 Saline sensitivity of strains LL00, LL03 – LL06. Growth curves were performed at 30 ºC in 
rich media M17G supplemented with 0.25 M (left) and 0.50 M (right) NaCl. Strain L. lactis LL00 
harbors the empty vector pBV153, whereas the series LL03, LL04, LL05 and LL06 carry a trans copy 
of genes cdaAll, gdpPll, cdaAef and gdpPef, respectively. 

c-di-AMP homeostasis has been reported to be connected to cell wall metabolism, and 

in fact, CdaA is modulated by GlmM, an enzyme in charge of synthesizing the cell wall 

precursor glucosamine-1-phosphate (82). Moreover, gdpP mutants in L. lactis have also been 

found to be more resistant to sublethal concentrations of penicillin G (74). Taking this into 

account, response to sublethal concentrations of penicillin and ampicillin (two β-lactam 

antibiotics) was tested for strains LL03-06.  

Once more, no significant effect was observed for strain LL04 and a growth 

disadvantage was evidenced for strain LL03 when media were supplemented with 0.25 µg/ml 

ampicillin or 0.10 µg/ml penicillin, showing a more severe effect for the latter case. On the 

other hand, even though both strains LL05 and LL06 manifested impaired growth in presence 
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of 0.25 µg/ml ampicillin, strain LL06 grew more similar to the LL00 control strain when 0.10 

µg/ml penicillin was added to the medium instead Fig 19. 

So far, only the response to β-lactam antibiotics has been reported for L. lactis strains 

with mutations altering c-di-AMP intracellular levels. Since response to different stress factors 

could also allow the identification of other pathways related to c-di-AMP metabolism, growth 

curves in presence of compounds with a different mechanism of action was evaluated. 

 

Fig 19 Response of strains LL00, LL03 – LL06 to β-lactamic antibiotics. Growth curves were 
performed at 30 ºC in rich media M17G supplemented with 0.25 µg/ml ampicillin (left) and 0.10 µg/ml 
penicillin (right). L. lactis LL00 harbors the empty vector pBV153, whereas the series LL03, LL04, 
LL05 and LL06 carry a trans copy of genes cdaAll, gdpPll, cdaAef and gdpPef, respectively. 

Vancomycin is a glycopeptide active against the second phase of cell wall synthesis, i.e. 

it binds to D-Ala-D-Ala ends of monomers being processed for its later addition to the cell wall. 

Nevertheless, once vancomycin is bound, the complex formed is no longer a substrate for 

subsequent enzymes and consequently lipid intermediates accumulate in the membrane (168). 

Considering that it affects a different stage of cell wall biosynthesis, its impact on cells with 

modified intracellular pool of c-di-AMP could give insights as regards the importance of this 

second messenger in the different stages. 
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As Fig 20 shows, only strains LL03 and LL05, harboring an extra copy of cdaAll and 

gdpPll, respectively, evidenced a negative impact on growth, when media were supplemented 

with 0.50 µg/ml vancomycin. E. faecalis enzymes seem not to affect the response, having a 

behavior similar to the control with the empty vector. 

On the other hand, lysozyme is an enzyme capable of hydrolyzing the glycosidic bonds 

on the cell wall, releasing a disaccharide formed by acetylglucosamine and muramic acid (169). 

Its impact as an antimicrobial agent has long been studied, and it has also been reported that in 

L. monocytogenes the lack of CdaR increased resistance to this compound (170). Taking into 

account that in the same work it was proved that CdaR negatively regulates CdaA in this 

bacterium, this would mean that high amounts of c-di-AMP could favor lysozyme resistance. 

Therefore, this hypothesis was tested for the strains here developed. 

In Fig 20, it can be observed that an extra copy of gdpP gene (LL05 and LL06) increased 

susceptibility to lysozyme. At a concentration of 0.10 µg/ml, LL05 and LL06 (gdpPll and 

gdpPef, respectively) strains are no longer able to grow in the time interval here presented, 

whereas the control strain reaches a final OD600 of 1.0. Taking into account that both strains are 

expected to produce higher amounts of GdpP proteins, and consequently lower their c-di-AMP 

levels inside the cell, these results agree with the ones previously described for L. 

monocytogenes. 

Interestingly, different phenotypes were evidenced for strains harboring an extra copy 

of cdaAll and cdaAef. Even though trans-expression of the former impedes growth of strain 

LL03, the phenotype observed due to expression of latter in strain LL04, agrees with the 

published results mentioned, since it confers a growth advantage with respect to the control 

LL00 strain, harboring the empty vector. 

77 



Results 

 

Fig 20 Impact of vancomycin and lysozyme on strains LL00, LL03 – LL06. Growth curves were 
performed at 30 ºC in rich media M17G supplemented with 0.50 µg/ml vancomycin (left) and 0.10 
µg/ml lysozyme (right). L. lactis LL00 harbors the empty vector pBV153, whereas the series LL03, 
LL04, LL05 and LL06 carry a trans copy of genes cdaAll, gdpPll, cdaAef and gdpPef, respectively. 

Finally, the two isolated gdpP mutants (strains LL07 and LL08) were also analyzed by 

phase contrast microscopy in order to evaluate differences in morphology. In Fig 21, images of 

bacteria during mid-exponential growth are presented (down), where a slight decrease in size 

can be seen for strain LL07, which showed smaller colonies. In addition, for both samples under 

study, well defined round shaped cells were evidenced, with no significant differences with 

respect to the control strain LL00 harboring the empty vector pBV153. 

As previously mentioned, gdpP mutants analyzed by Smith et al. showed improved 

growth at sublethal concentrations of the β-lactamic antibiotic penicillin. Therefore, both 

mutant strains LL07 and LL08 were grown in presence of ampicillin to further study possible 

phenotypic differences between them. In Fig 21, growth curves obtained in M17G 

supplemented with 5.0 µg/ml ampicillin are presented, where a detriment is evidenced for both 

strains. Interestingly, the opposite phenotype was observed in these conditions, and even a slight 

difference is observed in ∆gdpP strains LL07 and LL08, being the former more sensitive to the 

antibiotic than the latter. 
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Fig 21 Phenotypic analysis of ∆gdpP mutants Up: Growth curves performed in rich media M17G 
without (left) and with supplementation of 5.0 µg/ml ampicillin (right). Down: Phase contrast 
microscopy of strains LL00, LL07 and LL08. Bacteria were grown in M17G medium at 30 ºC and 
samples were taken at mid-exponential phase. Scale bar, 2 µm. 

3.2.3. Intracellular levels of c-di-AMP are modified in strains L. lactis 

LL03-LL08 

After analyzing phenotypes and stability of strains developed in the previous section, 

their c-di-AMP intracellular levels were determined. As mentioned, pBV153 vector is induced 

at low pH, which is why strains LL00, LL03-06 harboring this plasmid and its derivatives were 

grown at initial pH (pH0) of 7.0 and 5.5 for later c-di-AMP quantification. Briefly, cells were 

grown in M17G supplemented with 10 µg/ml Cm for strains LL00, LL03-06 and without 

antibiotic for strains LL07 and LL08. OD600 measurements were taken every hour to check 

growth (not shown). When OD600 reached 0.5, cells were harvested and pellets stored for c-di-

AMP extraction and determination. Results were normalized by the amount of protein present 

in the samples (see Materials and Methods). 

Values obtained for strain LL00 as well as IL1403 indicate that basal levels of c-di-

AMP are in the range of 19.9 – 41.3 and 28.0 – 34.1 ng of c-di-AMP per mg of protein at pH0 
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7.0 and 5.5, respectively. These levels could be significantly increased when strain LL03 with 

plasmid pIQ101 harboring cdaAll gene was grown at pH0 = 7.0. Average values obtained in 

these conditions, for three technical replicates were 334.0 and 350.0 ng of c-di-AMP per mg of 

protein in biological duplicates (Fig 22). This means that at least 8 times higher values are 

possible to obtain in L. lactis IL1403 without reaching toxic levels. Furthermore, when plasmid 

was pIQ101 was induced at pH0 5.5, c-di-AMP concentrations were almost doubled reaching 

average values of 698.4 and 652.5 ng of c-di-AMP per mg of protein in biological duplicates, 

more than 15 times higher than basal levels just mentioned. 

Accordingly to results described in the previous section, where strain LL04 with plasmid 

pIQ102 harboring a copy of cdaAef showed no particular phenotypes when grown in presence 

of different stress factors, no impact on c-di-AMP levels was manifested in this experiment 

either. At both pH0 similar values to the ones observed for the control strain LL00 were 

obtained, suggesting once more that CdaAef enzyme is not active under the working conditions 

of this study. 

 
Fig 22. c-di-AMP intracellular levels of strains LL00, LL03-06. Cells were grown in rich 
M17G medium and harvested at OD = 0.5 for c-di-AMP extraction and quantification. Strains 
were grown at pH0 = 5.5 (left) and 7.0 (right). Circles, squares and triangles correspond to 
technical triplicates. 1 and 2 indicate biological duplicates.  
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On the other hand, the presence of a trans copy of gpdPll gene in strain LL05 allowed 

reduction of intracellular c-di-AMP values to 14.4 – 29.0 and 5.7 – 11.0 ng of c-di-AMP per 

mg of protein at pH0 of 5.5 and 7.0, respectively. These values indicate that the enzyme could 

be more active at pH0 7.0, and coincide with the ones obtained for strain LL06, which were also 

lower at pH0 7.0, although results above described suggest a higher induction of the expression 

system at pH0 5.5. 

Interestingly, different results were obtained for the two gdpP mutant strains LL07 and 

LL08. In the first case, values in the range of wild type strain IL1403 were registered (Fig 23), 

whereas in the second case, intracellular c-di-AMP concentrations were almost doubled (63.6 

– 85.1 ng of c-di-AMP per mg of protein). It is important to mention that the fact that c-di-AMP 

levels are held close to wild type ones even in the absence of gdpP, suggests that there could 

be another c-di-AMP degrading enzyme encoded in L. lactis genome. 

 

Finally, the impact of ampicillin on c-di-AMP levels was analyzed for strains LL05 and 

LL06. Both were grown in rich media M17G in presence of 0.25 µg/ml and since LL06 in the 

previous section evidenced more resistance to β-lactamic antibiotics, a concentration of 0.5 

µg/ml was selected in this case as well. Fig. 25 shows that ampicillin supplementation of media 

causes a decrease of c-di-AMP levels, being the lowest concentration in the range 3.7 – 12.4 ng 

of c-di-AMP per mg of protein at pH0 7.0 for strain LL06, harboring a trans copy of cdaAef 

gene. 

Fig. 24 Intracellular concentrations of c-di-AMP in L. 

lactis ∆gdpP mutants. Strains were grown at pH0 = 7.0 and 

haversted when OD600 reached 0.5. Different c-di-AMP 

values were obtained for both gdpP mutant strains. Circles, 

squares and triangles correspond to technical triplicates. 1 

and 2 indicate biological duplicates 
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Fig. 25 Ampicillin impact on strains L. lactis LL05 and LL06. Strains were grown in in rich medium M17G 
at pH0 = 5.5 (left) and pH0 = 7.0 (right). c-di-AMP levels were taken at OD600 = 0.5. The lowest c-di-AMP 
levels are seen for strain LL06 at pH0 = 7.0. Circles, squares and triangles correspond to technical triplicates. 
1 and 2 indicate biological duplicates. 

Altogether, these results allowed us to establish working conditions where c-di-AMP 

are increased more than 15 times. Therefore, for the immunological experiments in the 

following chapter, strain LL03 as well as the system of expression with pIQ101 vector induced 

at pH0 = 5.50 were selected.  

3.2.4. Phosphodiesterases c-di-AMP in L. lactis 

In the previous section, the maintenance of wild type c-di-AMP intracellular levels in 

∆gdpP mutant strains suggests the possibility of other enzymes encoded in L. lactis genomes 

capable of degrading this second messenger. As mentioned in the introduction, the second 

family of c-di-AMP phosphodiesterases, which comprises B. subtilis PgpH, contains an HD-

domain and a His-Asp motif. Even though homologues are found in many members of 

firmicutes, a protein blast in L. lactis using this protein as query, threw no positive results. 

Another group of smaller phosphodiesterases presents only a soluble DHH/DHHA1 

domain and was found for example in S. pneumoniae and B. subtilis, although in the latter this 

enzyme does not degrade c-di-AMP. This time the protein threw a protein encoded by yheB of 

L. lactis IL1403 with 48% identity to B. subtilis NrnA and 64% to S. pneumoniae Pde2, albeit 

no further information about its function is available.  

With the aim of starting a characterization of YheB protein and evaluating whether it 

can degrade c-di-AMP, yheB gene from L. lactis IL1403 and NZ9000 was cloned in the 
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expression vector pWH844 (see Table XVI Plasmids). This vector allows E. coli overexpression 

of heterologous genes with an N-terminal His6X-tag for purification purposes. Moreover, GdpP 

proteins from both strains were cloned as well to be used as positive control of c-di-AMP 

hydrolyzing enzymes, although these experiments could not be performed due to time restraints. 

Resulting plasmids pIQ401, pIQ402, pIQ403 and pIQ404 containing genes yheBNZ, gdpPNZ, 

yheBIL and gdpPIL were electroporated in E. coli BL21, originating strains E. coli YB01, GP01, 

YB02 and GP02, respectively. 

After checking all gene sequences, an expression test was performed in rich LB medium 

at 37º. Briefly, strains were grown until OD600 reached 0.5, when 0.5 mM IPTG was added and 

cultures were incubated for three more hours. Fig 26 shows an SDS-PAGE were bands of circa 

35 kDa and 74 kDa evidence the presence of YheB and GdpP for strains YB01 – 02 and GP 

01-02, respectively. 

 

Fig 26 Expression test of strains E. coli YB01 -02 and 
GP01 -02. SDS-PAGE gel after Coomasie staining. 
Arrows indicate the presence of expression bands 
corresponding to proteins YheBNZ and YheBIL in lanes 2 
and 4, respectively as well as GdpPNZ and GdpPIL in lanes 
3 and 5, respectively. MWM: molecular weight marker. 

Once production of proteins was confirmed, both YheB proteins were purified using a 

Ni2+-NTA resin (see Materials and Methods). Fig 27 shows SDS-PAGE gels were the 

purification process is evidenced and the proteins of interest are present in fractions E3 and E4 

for YheBIL (left) and E2, E3 and E4 for YheBNZ (right). Afterwards, proteins were further 

purified via size exclusion chromatography (SEC) by use of the Äkta system to eliminate 

imidazole of the media. Samples were then concentrated and frozen in liquid nitrogen to be 

finally stored at -80º C until used. 
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Fig 27 Purification of YheBIL and YheBNZ proteins. Elutions further purified via size exclusion 
chromatography are highlighted in orange. CE: crude extract, FT: Flow through, E: elution, MWM: 
molecular weight marker. E1 – E5: 30 – 50 – 100 – 200 – 500 mM imidazole, respectively. 

A first approach into function determination of YheB proteins was performed via the 

BNPP assay. bis(4-nitrophenyl)phosphate can be cleaved by phosphodiesterases yielding 

paranitrophenol, which production can be followed colorimetrically at 410 nm ((171), Materials 

and Methods). Reactions were performed at different pH and adding Mn2+ to the media to 

analyze optimal conditions for further studies. As seen in Fig 28, YheBNZ enzyme seems to be 

more active, and both proteins evidenced increased activity when pH was raised. These results 

suggest that YheB protein could be a c-di-AMP phosphodiesterase. 

 
Fig 28 BNPP assay for YheB proteins. YheBIL (left) and YheBNZ (right) were analyzed via BNPP 
assay. Reads were performed for four hours in a microplate reader. The arrow shows increasing pH 
in the reaction media. Both graphs show higher activity when pH is raised. 
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3.2.5. Conclusions 

The aim of this chapter was to evaluate the physiological consequences when c-di-AMP 

intracellular pools are altered in L. lactis IL1403. Depletion of this secondary messenger via 

cdaA deletion was not possible in rich, nor in minimal media. The strategy was thus changed 

and responses obtained along the different experiments here presented, evidenced 

overexpression of heterologous and homologous cdaA and gdpP genes by use of pBV153 

vector.  

In general, strains here developed were more sensitive on rich media and upon the 

presence of stress factors such as NaCl, antibiotics and high temperature. The only exception 

was cdaAef overexpressed in presence of 0.1 µg/ml lysozyme, which provided a growth 

advantage. Since the resulting CdaAEF enzyme showed no great impact on c-di-AMP levels, it 

could be said that in this conditions, its activity is diminished. If this is the case, detrimental 

phenotypes obtained in the other growth curves could be due to a system were c-di-AMP levels 

are too low or too high, which has already been reported to result in impaired growth (172). 

The highest average values of c-di-AMP obtained in this work reached 698.4 and 652.5 

ng of c-di-AMP per mg of protein in biological duplicates for strain LL03. Although these 

differences could be due to methodological variations, an increment of more than 15 times with 

respect to basal levels was obtained. L. lactis LL03 was therefore selected for further studies 

on the development of a live vaccine prototype in next chapter. 

On the other hand, reduction of c-di-AMP intracellular levels by expression of gdpP 

genes was more significant at pH0 7.0. Despite the fact that the induction of the expression 

system used is higher when pH is lowered, these results lead to the hypothesis that GdpP 

enzyme activity in L. lactis would prevail when extracellular pH is closer to physiological 

values. Moreover, the biggest impact in this way was accomplished by strain LL06 grown in 

rich media M17G supplemented with 0.50 µg/ml ampicillin. Average values of technical 

triplicates were 7.4 and 7.8 ng of c-di-AMP per mg of protein, linking the impact of a β-lactamic 

antibiotic to c-di-AMP levels in L. lactis IL1403. 

Finally, the fact that ∆gdpP mutants are able to maintain c-di-AMP levels close to wild 

type ones, supports the hypothesis of the existence of at least another enzyme capable of 

hydrolyzing c-di-AMP. The main candidate found in this work is the uncharacterized YheB 

protein, which was proved here to degrade BNPP. Nevertheless, this compound is an unspecific 
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substrate for phosphodiesterases, and even though phosphodiesterase activity is evidenced here, 

and proved to increase at higher pH, further specific studies are needed to confirm it can degrade 

c-di-AMP (68). 

.
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3.3.  Development of an oral subunit vaccine prototype against Chagas 

disease 

3.3.1. Antigen design and production in L. lactis 

As mentioned in the introduction, T. cruzi trans-sialidase (TS) enzyme plays a vital role 

upon infection of the mammal host, since it catalyzes the transfer of sialic acid from the host 

glycoconjugates to the terminal β-galactopyranosyl residues of mucin-like molecules on the 

parasite's cell surface. It is also involved in different pathways leading to successful parasite 

infection and down-regulation of the host immune response (173). Therefore, TS was selected 

to develop a suitable antigen for the vaccine prototype against Chagas disease. 

The high performance of the whole TS protein as a T. cruzi antigen in vaccine prototypes 

has already been reported (174, 175). Nevertheless, considering that protein overexpression in 

LAB is not as straight forward as normally is in other bacterial models such as E. coli, an 

abbreviated fraction of the antigen was selected instead of the entire TS protein. In addition, the 

engineered L. lactis strain was designed to co-express the synthesizing enzyme of the adjuvant 

as well, which adds a detrimental factor to bacterial growth and protein expression. Altogether, 

in order to facilitate protein co-expression in L. lactis, the smallest TS protein size possible was 

selected, having at the same time the highest epitope concentration able to trigger a TS-specific 

immune response. 

Based on these criteria, an epitope prediction within the complete TS antigen sequence 

was performed by Ivan Marcipar group in Laboratorio de Tecnología Inmunológica, Facultad 

de Bioquímica y Ciencias Biológicas, UNL (Universidad Nacional del Litoral). T epitopes 

against H-2Kd MHC-I were selected for prediction, and a total of 7 epitopes were identified, 

with four of them in the central region of the protein, ranging from amino acid 326 to 497. 

Interestingly, IYNVGQVSI epitope was included in this region, which has been described as 

the main MHC-I T-cell epitope that provides protection against T. cruzi infections in BALB/c 

mice (176, 177). On the other hand, B-epitopes have shown to comprise key amino acids 

responsible for enzymatic catalysis (178), which is why antibodies developed against this 

region may potentially neutralize TS activity. Therefore, prediction of B epitopes was also 

carried out, identifying 15 out of the 50 epitopes with the highest score within the same central 

87 



Results 

region. These predictions lead to the final TS fragment selection, ranging from amino acid 326 

to 497 (Fig. 29). 

Given that synthesis of heterologous proteins may result in amino acid unbalance, the 

designed peptide was submitted to GenScript synthesis service (U.S.A.) to optimize codon 

usage for L. lactis and to incorporate NcoI and HindIII restriction sites required for cloning, as 

well as an N-terminal His6x tag to allow detection by Western blot. The resulting gene was 

named tscf and cloned into the nisin inducible pNZ8048 vector previously described (pNZTS, 

Table XVI, Fig. 29), to be finally electroporated in L. lactis NZ9000 (strain NZTS, Table XV). 

After checking the genetic construction by sequencing, several conditions of expression were 

tested. Protein overproduction was proved in some of them, but it was not possible to detect it 

again in new trials of expression (not shown). 

 
Fig. 29 Development of an optimized TS derived antigen. A: complete sequence of trans-sialidase protein. The 
selected fragment is highlighted in purple and colored amino acids within this sequence indicate epitopes. 
Underlined amino acids refer to superimposed epitopes. B: Structure modelling of whole TS (right) and the two 
sections conforming the synthetic antigen (left). C: cloning representation of his6x-tscf in plasmid pNZ8048. D: 
Expression check by SDS-PAGE (left) and Western blot analysis (right). 

As mentioned in the introduction, L. lactis clpP-htrA strain favors expression of 

heterologous genes since it lacks the two major proteases ClpP and HtrA, reducing degradation 
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of heterologous proteins. Plasmid pNZTS was electroporated in this strain, resulting in strain 

LL02 (Table XV), and this time stable overproduction of TScf peptide was obtained. Briefly, 

cells were grown in 3 liters of M17G broth at 30 ºC until OD600 reached 0.50 and induced with 

5 or 50 ng/ml nisin during 1 or 3 hours. As shown in Fig. 29, Western blot analysis using anti-

his antibodies allowed visualization of a clear band when cultures were induced for 3 hours. 

Protein identity was determined by mass spectrometry (MS/MS), confirming overproduction 

of TScf. 

3.3.2. Immune response after mucosal co-administration of L. lactis 

strains producing TScf antigen and c-di-AMP adjuvant 

Once a strain able to produce the designed antigen (LL02) as well as a strain 

synthesizing high adjuvant levels (Chapter II, strain LL03) were obtained, the next step was to 

evaluate the effectiveness of their co-administration, as proof of concept for the development 

of a new prototype of mucosal vaccine. In collaboration with Dra. Ana Rosa Perez’s group, 

from the Instituto de Investigación Clínica y Experimental de Rosario (IDICER CONICET-

UNR), three successive oral immunizations were performed in mice (see Materials and 

Methods). Studied groups were: Non-immunized (NI, mice receiving only PBS); LL02, mice 

immunized with bacteria producing the TScf antigen (L. lactis LL02, Table XV); LL02+LL03 

group, mice co-administered with L. lactis LL02 plus bacteria over-producing c-di-AMP (L. 

lactis LL03, Table XV). L. lactis LL01 strain harboring the empty pNZ8048 plasmid was also 

orally administered as control. In addition, since earlier studies showed a higher specific anti-

TS cellular response after immunization with TS plus ISCOMATRIX adjuvant by subcutaneous 

immunization (174), for comparative purposes a group of mice was also immunized with 

purified TScf  adjuvanted with ISPA (C+, Gold standard group), an ISCOMATRIX type 

adjuvant developed by Dr. Marcipar group (152). 

As shown in Fig. 30, 15 days after the last immunization, 48 hours footpad testing 

showed that L. lactis LL02+LL03 immunized group elicited a clear TS-specific cell-mediated 

immune response compared to PBS and LL01, while this difference is less significant compared 

with the L. lactis LL02 group. Interestingly, the increase in footpad thickness were similar 

between L. lactis LL02+LL03 and the Gold standard group. These results support that TScf 

sequence contains MHC-I T-cell epitopes, as was previously mentioned, but also suggest that 
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orally-administered L. lactis over-expressing cdaA gene (LL03) could be used as immune 

stimulator of the response against this antigen. 

 
Fig. 30 Graphic representation of BALB/C mice oral immunization protocol. 
A: Oral immunization scheme. Three doses were administered with 15 days 
intervals. 48 hours after the last immunization, footpad swelling and DHT were 
measured. B: Co-administration of LL02+LL03 shows a significant difference 
with respect to LL02 as well as LL01 groups. C: Morphological difference in 
footpad swelling in non-immunized mice (up) and LL01+LL02 group (down). NI: 
non-immunized. 

3.3.3. A single engineered L. lactis strain producing c-di-AMP antigen 

and TScf adjuvant: a vaccine prototype. 

Aiming to the development of a fully integrated mucosal vaccine prototype, a single 

vector carrying both genes encoding the TScf antigen and the CdaA enzyme responsible for c-

di-AMP production was designed. The first attempt to reach this consisted on amplifying from 

pIQ101 plasmid a DNA region containing the Pcit promoter, the cdaA gene and its terminator. 

After several unsuccessful attempts of cloning this fragment in the BglII restriction site 

upstream the Pnis promoter in vector pNZTS, the strategy was changed. Instead, TScf coding 

gene was amplified including the Pnis promoter and terminator of pNZTS plasmid and 

subcloned in the SalI-PstI restriction sites of vector pIQ101. The resulting p10TS plasmid 
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containing both genes was finally electroporated in L. lactis clpP-htrA strain, and the resulting 

strain was named L. lactis LL10 (Fig 31 and Table XV). 

 

Fig 31 L. lactis LL10 strain construction and growth response. Up: cloning scheme for p10TS 
obtaining. This plasmid contains tscf gene under PnisA control and cdaA gene under PcitM control. 
Down: Growth curves performed in rich medium M17G. LL00: L. lactis IL1403 + pBV153, LL01: 
L. lactis NZ9000 clpP-htrA + pNZ8048, LL02: L. lactis NZ9000 clpP-htrA + pNZTS, LL03: L. 
lactis IL1403 + pIQ101, LL09: L. lactis NZ9000 clpP-htrA + pIQ101, LL10: L. lactis NZ9000 clpP-
htrA + p10TS 

In order to standardize conditions for the following immunological experiments, 

plasmid pIQ101 harboring cdaA gene was electroporated in strain L. lactis clpP-htrA, 

originating strain LL09. Since the main target of this chapter is the formulation of a live vaccine, 

comparative growth curves were performed to check response of L. lactis IL1403 and L. lactis 

clpP-htrA strains harboring a trans copy of cdaA (Fig 31, down – left). On the other hand the 

same comparison was done for L. lactis clpP-htrA derivative strains harboring tscf gene (LL09) 

and both tscf and cdaA genes (LL10). Fig 31 shows similar responses in all cases, with 

homologous behavior for L. lactis IL1403 and L. lactis clpP-htrA derivative strains. 

Moreover, and due to the presence of two different induction systems in strain LL10, an 

expression test was performed. In the previous chapter, the highest intracellular concentration 

of c-di-AMP was obtained at pH0 = 5.5, and cultures were grown until OD600 reached 0.50. 

Since expression of tscf was induced once OD600 = 0.50 and cultures were then incubated for 3 

more hours, the following step was to set up effective conditions for both systems. Therefore, 

nisin induction for strain LL10 was tested at two time points: simultaneously with inoculation 
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(OD = 0.05) and at OD600 = 0.30, until a final OD600 of 0.50 for both cases. Three nisin 

concentrations were also evaluated; 5, 15 and 50 ng/ml, and strain LL02 induced with 0.5 ng/ml 

was used as control, for this was the condition in which TScf production was obtained in section 

3.3.1. 

As seen in Fig 32, the highest overproduction of TScf was evidenced in the crude extract 

as well as the supernatant fractions when 15 ng/ml nisin was added to growth media at the 

moment of inoculation (OD600 = 0.05). 

 
Fig 32 Synthesis of TScf in L. lactis LL10. Cultures of L. lactis LL10 were grown in rich M17G 
media supplemented with different nisin concentrations and at different times. Cells were harvested 
at OD600 = 0.5 in all cases. Crude extract (CE, left) and supernatant (Sn, right) fractions evidence a 
greater expression when 15 ng/ml nisin were added simultaneously with media inoculation. Orange 
arrows indicate TScf bands. ev: empty vector pNZ8048, MWM: molecular weight marker. 

In conclusion, for the immunological experiments performed in the following 

section inocula were prepared as follows: 2 liters of fresh M17G medium supplemented 

with the corresponding antibiotics and 15 ng/ml nisin were inoculated with the desired 

strains at OD600 = 0.05 and incubated at 30 ºC until OD600 reached 0.5. Cultures were then 

harvested and washed with PBS, to be finally resuspended at final OD600 of 2-3.109 

CFU/100 µl. An expression check to corroborate TScf presence was finally performed 

and aliquots were stored at -80 ºC until used (see Materials and Methods). 
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3.3.4.  Immune response of engineered L. lactis co-expressing antigen and 

adjuvant after mucosal administration 

With a similar protocol to the one used in section 3.3.2., BALB/C mice were inoculated 

to analyze the in vivo cell-mediated immune response of strain LL10 developed in the previous 

section. This time inoculated groups were: Non-immunized (NI, mice receiving only PBS); 

LL10, mice immunized with L. lactis LL10 (co-producing TScf and CdaA), LL02, a group of 

mice receiving bacteria producing the TScf antigen alone (L. lactis LL02) and LL09, mice 

immunized only with the c-di-AMP producer strain (L. lactis LL09). A group of mice 

immunized with L. lactis LL01 strain harboring the empty pNZ8048 plasmid and a group 

receiving TS plus the ISCOMATRIX adjuvant were included as control. 

A scheme of three doses separated by 15 days intervals, similar to the one described in 

the previous section was again used (Fig. 30, A) and footpad swelling was determined 48 hours 

after the last immunization. In Fig 33 values obtained are plotted for the groups under study, 

and a clear, significant immune response is obtained for LL10 group. These results evidence 

that live administration of L. lactis LL10 strains elicits a similar response to the control group 

immunized with purified TS and the ISCOMATRIX adjuvant. 

Fig 33 Immune response to L. lactis LL10 
strain. The immunization protocol as shown 
in Fig. 30, A was again used to evaluate the 
response of strain L. lactis LL10, co-
producing TScf antigen and c-di-AMP 
adjuvant at the same time. A: Footpad 
swelling is significantly higher for this group 
than for NI and control group LL01. B: 
Footpad swelling developed by LL10 group. 
NI: Non-immunized. 
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3.3.5. Conclusions 

In this chapter, an engineered L. lactis strain was constructed to express tscf gene coding 

a heterologous, immunogenic trans-sialidase (TS) derived peptide (LL02). TScf peptide 

condenses important T and B epitopes, and Western blot analyses confirmed its production. 

Furthermore, mice oral inoculation with a combination of strains LL02 and LL09 (derived from 

strain LL03, obtained in the previous chapter) elicited a clear immune response. This 

encouraging results lead to the development of strain L. lactis LL10, which co-produces in the 

cytosol the c-di-AMP adjuvant and the optimized TScf antigen. 

BALB/c mice oral inoculation with three doses of L. lactis LL10, triggered an immune 

response evidenced by footpad swelling. A diagram of the LL10-based vaccine explaining the 

combination of the two expression systems employed is presented in Fig 34. These results show 

that the engineered strain LL10 could result in an effective vaccine for Chagas disease, which 

is a serious public health problem in South America. 

 
Fig 34 Strain L. lactis LL10: an oral vaccine prototype. Presence of nisRK two-component system 
in L. lactis genome allows nisin sensing via NisK, upon which NisR is phosphorylated and activates 
PnisA promoter in pIQ10TS plasmid. On the other hand, low pH activates in turn PcitM promoter, 
regulating cdaA. CdaA is thus synthesized and c-di-AMP produced. Consequently, both TScf 
antigen and the adjuvant c-di-AMP are co-produced in the cytosol. 
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3.4. An approach into c-di-AMP metabolism in E. faecalis JH2-2 

3.4.1. Initial studies into cdaA metabolism 

As in most low GC firmicutes, only one c-di-AMP synthesizing enzyme is found in E. 

faecalis JH2-2 genome. Being a cdaA homologue, it is encoded in the cdaARglmM operon, as 

expected. Interestingly, glmM gene in the laboratory model strain E. faecalis JH2-2 used in this 

work, encodes a full 1356 bp open reading frame, whereas the vancomycin-resistant strain 

V583, presents a shorter version of 1026 bp in its genome, which would result in a 342 amino 

acids peptide (being the wild type version of 452 amino acids) (Fig 35). 

Fig 35 cdaARglmM operon in E. faecalis. Up: JH2-
2 strain shows full version genes (up) whereas in strain 
V583 (down) a premature stop codon occurs in glmM 
gene. 

Moreover, a search for genes present in E. faecalis genome coding for proteins with 

high homology for c-di-AMP degrading enzymes, revealed the presence of a gdpP as well as a 

pgpH homologue (Fig 36). Interestingly, the cytosolic version of the DHH family of 

phosphodiesterases was also found encoded in E. faecalis JH2-2 genome. As previously 

mentioned, the NrnA homologue in B. subtilis is not capable of degrading c-di-AMP, but the 

corresponding protein named Pde2 in S. pneumoniae possesses c-di-AMP phosphodiesterase 

activity, and it was proved that Pde1 (a GdpP homologue) as well as Pde2 affect bacterial 

growth and virulence (68). In conclusion, E. faecalis could count on three c-di-AMP degrading 

enzymes, and c-di-AMP metabolism in this species could be also related to virulence. 

Fig 36 Phosphodiesterases encoded in E. faecalis 
JH2-2 genome. 1: DNA binding protein. 2: SSU 
ribosomal protein S18p. 3: LSU ribosomal protein 
L9p. 4: dnaB. 5: gatB. 6: phoH. 7: metal-dependent 
hydrolase ybeY. 8: diacylglycerol kinase. 9: metal-
dependent hydrolase. 10: CBS containing protein. 11: 
phnA. 12: hypothetical protein 
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In the first chapter of this thesis, L. lactis Kup proteins were identified as c-di-AMP 

interaction partners. A search for genes coding for Kup homologues was therefore performed 

in E. faecalis JH2-2, which revealed one copy of kup in its genome (Fig 37). Moreover, the 

presence of other potassium transporters was as well considered in this species. Neither Kdp, 

nor Ktr homologues were found, but two genes coding for putative members of the Trk 

potassium transporter family were found. These proteins are predicted as TrkA and TrkH and 

their genetic contexts are detailed in Fig 37. Interestingly, a homologue to KimA, a novel 

potassium transporter recently described, was also found encoded in E. faecalis JH2-2 genome 

(49). 

 

Fig 37 Putative potassium transporters in E. 
faecalis JH2-2. 1: cation-transporting ATPase. 2: 
transcriptional regulator. 3: Pb, Cd, Zn and Hg 
transporting ATPase. 4: Co-Zn-Cd resistance protein. 
5: acetyl-transferase. 6: L-carnitine choline ABC 
transporter. 7: liaS. 8: liaR. 9: hypothetical protein. 10: 
bactoprenol glucosyl transferase. 11: transcriptional 
regulator. 12: dihydrofolate reductase. 13: Na+/H+ 
antiporter. 14: transcriptional regulator. 

At present, no studies about E. faecalis JH2-2 potassium transporters are available. 

Hence, kup gene was cloned in vector pWH844, similarly to kupA and kupB of L. lactis IL1403 

in chapter 1. The resulting pIQ311 plasmid was electroporated in E. coli LB650 and strain E. 

coli LB13 thus obtained was grown on rich LBG medium to check if a trans complementation 

with kup gene could restore growth at low potassium concentrations. 

As seen in Fig 38, E. coli LB13 strain restores growth on LBG supplemented with 10 

mM KCl under induced conditions. Moreover, this strain behaved similarly to LB09-LB11 

strains, harboring trans copies of high affinity potassium uptake systems. This suggests that E. 

faecalis, similarly to L. lactis, counts on the potassium transporter Kup as a high affinity K+ 

intake system. However, whether this protein, as well as the rest of the putative potassium 

transporters previously presented interact with c-di-AMP, remains unknown and proposes 

interesting future investigations. 
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Fig 38 Growth of E. coli LB derived strains on LB. LB09 – LB13: E coli 
LB650 complemented with a trans copy of kupA, kupB, ktrA/B, ktrC/D, kup, 
respectively. LB08 contains plasmid pWH844, used as negative control. 
Strains were plated on LB-agar plates supplemented with 10 mM KCl and 10 
µM IPTG (left) and 100 mM KCl and no IPTG (right). Low affinity potassium 
system KtrC/D as well as the negative control with the empty vector only grow 
at high K+ concentrations. Expression of kup genes and ktrA/B system restore 
growth under low concentrations of KCl. 

3.4.2. ∆gdpP mutant in E. faecalis JH2-2 

In order to study the response of ∆gdpP mutation in E. faecalis, deletion by use of the 

homologous recombination system previously described in section 3.2.1. and Materials and 

Methods, was performed. Briefly, up and downstream regions of gdpP gene were cloned in the 

thermosensitive vector pBVGh, and after a series of incubations at the permissive and non-

permissive temperatures, a clean deletion occurs. Antibiotic sensitive colonies are isolated, and 

mutation is checked via internal and external PCR, as well as sequencing (Fig 15). 

After confirming strain E. faecalis JH12 as a ∆gdpP mutant, a phenotypic analysis was 

carried out on growth curves performed in rich LBG media, supplemented with different stress 

factors. As seen in Fig 39, this strain does not show a particular phenotype with respect to JH2-

2 wild type strain when grown in LBG. Nevertheless, in presence of 5.0 µg/ml ampicillin, a 

hypersentivity phenotype is evidenced. This response was expected, since similar results were 

obtained for L. lactis ∆gdpP mutants. 
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Fig 39 E. faecalis JH12 growth in presence of stress factors. Growth curves were performed in 
rich LBG medium in a microplate reader. Supplements added are indicated above each graph. 
Similar growth is observed under control LBG conditions. Hypersensitivity phenotype is obtained 
in presence of 5 µg/ml ampicillin, whereas improved growth was manifested when 7.5% ethanol 
and 0.75 mM H2O2 were added to media. Wild type strain E. faecalis JH2-2 was used as control. 

Interestingly, a growth advantage is observed for the mutant strain JH12 when LBG is 
supplemented with 7.5% ethanol and 0.75 mM hydrogen peroxide. On the other hand, even 
though in LB no clear phenotype was observed when 300 mM KCl was added (not shown), in 
M17G there was a marked difference, since a hypersensitive phenotype is observed in these 
conditions (Fig 40). Noteworthy, in M17G control condition, strain JH12 evidences impair 
growth. 

In conclusion, evidence here presented, confirms that in E. faecalis c-di-AMP 
metabolism affects bacterial response to different stress factors. Altered c-di-AMP levels can 
confer a growth advantage, but it can also be deleterious for the cell. Due to the diversity of 
pathways influenced by this second messenger, effects on growth curves experiments are hard 
to analyze and more specific studies are needed. Even in rich control media LBG and M17G, 
different phenotypes were observed: the lack of GdpP seems not to affect growth in the former, 
whereas it results deleterious in the latter. 

Lastly, whether Kup, as well as the rest of putative potassium transporters previously 
presented, interact to c-di-AMP remains unknown and proposes interesting future 
investigations.  

98 



Results 

 
Fig 40 Saline sensitivity in M17G. Growth curves were performed in rich M17G medium 
in a microplate reader. Addition of 300 mM KCl results in impaired growth for E. faecalis 
JH12 (right). 

3.4.3. Virulence analysis of gdpP mutant strain E. faecalis JH2-2 using the 

greater wax moth Galleria mellonella. 

Historically, the use of invertebrate animals, like the silkworm Bombyx mori and the 

fruit fly Drosophila melanogaster, has been a very important tool for the development of model 

microorganisms enabling the study of pathogen-host interactions (179, 180). For instance, the 

development of the greater wax moth Galleria mellonella as an infection model dates from 

1938 (181), and due to its adaptability and high proliferation it is a very suitable tool to establish 

a first approach into the study of pathogenesis and virulence factors (182, 183). 

Among the most important advantages for the use of G. mellonella larvae, easy 

manipulation, low cost of colony maintenance and its accepted ethical use can be mentioned. It 

is also of great relevance the fact that these larvae can be grown at 37ºC, temperature at which 

human pathogens are adapted and therefore synthesis of most virulence factors occur (184). 

Moreover, and unlike nematode models, which lack phagocytic immune response (185), the 

insect G. mellonella is capable of eliciting humoral and cellular immune responses. Altogether, 

G. mellonella is a suitable infection model for the analysis of bacterial virulence factors 

affecting humans and other mammals (186). 

E. faecalis JH12 strain was therefore used to inoculate G. mellonella larvae and analyze 

the response and possible phenotypic differences due to the lack of the c-di-AMP degrading 

enzyme, GdpP (see Materials and Methods). Strain JH13 complemented with a trans copy of 

wild type gdpP gene cloned in vector pBV153 was use to check if, in case of obtaining a distinct 

phenotype for JH12 mutant strain, complementation occurred. 
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Fig 41 shows survival curves obtained after inoculations with 9.106 CFU per larvae. 

Length of horizontal lines along the x-axis corresponds to serial time, or survival duration until 

a larva dies. Vertical distances between horizontal lines show accumulated probability changes. 

Censured subjects are shown as black dots. 

In the case under study, the first dead individual occurs at approximately 20 hours after 

inoculation, in all three cases. Nevertheless, at t = 40 hours, 50% of larvae still survive for the 

complemented strain JH13, whereas in JH12 mutant and JH2-2 wild type strains the majority 

of larvae are already dead. Also, Kaplan-Meier survival analysis indicates a significant 

differences between the three curves, for which it can be said that the absence of gdpP gene 

diminishes virulence in E. faecalis, and complementation with vector pIQ104, harboring a wild 

type copy of gdpP, results in an even less virulent strain. Within 50 hours, JH2-2 and JH12 

groups are reduced by 90 and 80%, respectively, while 50% of JH13 group remain alive. 

A negative control was inoculated with PBS solution, which is completely innocuous 

(not shown). 

 

Fig 41 Survival Kaplan-Meier curves for 
E. faecalis strains under study. G. 
mellonella larvae were inoculated with 
9.106 CFU/larvae. E. faecalis JH2-2 (black) was 
used as control. Green: ∆gdpP mutant strain E. 
faecalis JH12. Red: E. faecalis JH13 (∆gdpP 
complemented in trans with a wild type copy of 
gdpP gene). 
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3.4.4. Conclusions and Discussion 

In this last chapter, an approach was made into c-di-AMP metabolism in E. faecalis 

JH2-2. A bioinformatic analysis of genes related to this second messenger shows that glmM 

could be interrupted in some species of the genus, just as cdaR is in L. lactis (see below). 

Furthermore, putative potassium transporters were found encoded in E. faecalis 

genome. The product of one of them, Kup, was identified as a potassium transporter, and it is 

likely to have high affinity for this cation like KupA and KupB proteins from L. lactis, 

previously described. 

On the other hand, the analysis of ∆gdpP on growth curves performed in rich media 

showed once more for this kind of mutant, a higher susceptibility to ampicillin in LBG and to 

KCl in M17G. Noteworthy, growth advantage phenotypes were evidenced in presence of 

ethanol and H2O2. Even though a complemented strain was constructed, wild type phenotypes 

restoration was not achieved (not shown). 

Finally, assays in G. mellonella showed lower virulence for ∆gdpP mutant strain JH12, 

and even though complemented strain JH13 did not restore wild type phenotype in these 

experiments either, an even lower virulence was observed. Considering that, as previously 

mentioned, c-di-AMP levels are tightly regulated, this could be due to the overexpression of 

gdpP resulting in c-di-AMP concentrations below wild type values. Nevertheless, a clear link 

between c-di-AMP metabolism and virulence was established for E. faecalis JH2-2. 
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4. General Discussions 

“Science makes people reach selflessly for truth and objectivity; it 

teaches people to accept reality, with wonder and admiration, not to 

mention the deep awe and joy that the natural order of things brings 

to the true scientist” Lise Meitner 

  

 



Discussion 

4.1. Novel potassium transporters in L. lactis IL1403 

Even though potassium is the most abundant cation in the cell and it is essential for life, 

no K+ transporter systems have so far been described for L. lactis IL1403. In silico research 

showed different systems encoded in other L. lactis strains, such as Kdp and Ktr systems, both 

well studied in model microorganisms like B. subtilis and L. monocytogenes. Nevertheless, no 

kup gene was found in their genomes, and the absence of this system is also verified in S. aureus 

and S. pneumonia. However, it is widely disseminated in numerous species of Lactobacillus 

and Enterococcus and it is also present in a few species of Streptococcus and Staphylococcus. 

Interestingly, in the L. lactis group, strains with three full copies of the kup gene can be 

found, although the most represented gene arrangement is the two-copy kupA kupB cluster, as 

for the case of L. lactis IL1403 presented in this thesis. Nonetheless, some strains only have 

one copy of the gene, like MG1363 and its derivative NZ9000, the strain of choice for genetic 

engineering in L. lactis. In these cases, a spontaneous mutation in kupB originates a stop codon, 

confirming that only one copy of the gene would be enough to regulate potassium uptake and 

satisfy the vital metabolic needs of the cell concerning cell turgor, proton motive force, and 

others. 

In the Gram-negative model bacterium E. coli, Trchounian and Kobayashi determined 

in 1999 that the main function of the only Kup in this bacterium (previously known as TrkD) 

is to uptake K+ in hyperosmotic conditions at low pH, being a constitutive, low affinity and low 

rate system (47). Moreover, it is also the case for Gram – bacteria that different amounts of kup 

gene copies can be found in the same genome. In Legionella pneumophila, the causal agent of 

legionelosis, three genes with high similarity to E. coli kup gene were found and named kupA, 

kupB and kupC (187). 

As previously mentioned, topology prediction showed that conserved residues are 

concentrated at the N-terminal end, which was expected since the cytosolic C-terminal end was 

proved to be non-essential for potassium translocation, whereas truncation of the protein in the 

loop between membrane regions 10 and 11 resulted in a non-functional peptide (158). Provided 

E. coli has no c-di-AMP synthesizing enzymes and consequently potassium transporters are not 

expected to bind the second messenger in this bacterium, it is reasonable to expect that the c-

di-AMP binding site in L. lactis has been acquired at the C-terminal cytosolic half of the protein. 
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4.2. An updated overview of c-di-AMP in L. lactis IL1403 

Even though it is well known that synthesis and degradation of c-di-AMP occurs 

through specific cyclases and phosphodiesterases (CdaA and GdpP respectively) regulation of 

CdaA by CdaR is still not exactly understood in L. lactis. Zhu et al. have suggested that CdaR 

could be a negative regulator, due to experiments carried out in E. coli with different 

combinations of the cdaA operon fragments, although further investigations are needed to 

confirm these data (82). In the same work, they report that strain MG1363 has a nucleotide 

deletion in cdaR gene, leading to a premature stop codon, and, consequently, to a shorter version 

of cdaR, which is actually annotated as a pseudogene. The resulting peptide would be 96 amino 

acids long, considerably shorter than the wild type 320 amino acid protein. They also state that 

no other L. lactis strain shows this mutation. 

Nonetheless, it seems to be also the case for L. lactis IL1403, where a different mutation 

is found, resulting in a second shorter version of cdaR, which would encode a 194 amino acid 

peptide. From the currently sequenced and assembled 35 L. lactis genomes available in the 

Genbank database, no other L. lactis strain shows this unusual genotype, i.e. excluding strains 

IL1403, MG1363 and its derivative NZ9000, the remaining 32 have the typical gene 

arrangement, which is represented in Fig 42 by the one present in SK11 strain. 

 
Fig 42 cdaARglmM operon in L. lactis. Three variations of cdaR gene 
are found among the 35 L. lactis sequenced and assembled strains 
available in the Genbank database. 

To discard the possibility that this different version of cdaR gene could be due to an 

annotation error, the whole cdaARglmM operon was sequenced, using genomic DNA and 

primers JN373, JN374, JN385, JN386, JN387, JN388 (see Table XVII). Sequences were 

assembled and alignment to the theoretical operon available in the Genbank database, allowed 

confirmation of the premature stop codon. 
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So far, only one c-di-AMP degrading enzyme was reported in L. lactis, GdpP. In this 

work, levels of c-di-AMP in ∆gdpP are maintained close to wild type ones, suggesting that 

there could be another enzyme in charge of this metabolite hydrolysis. YheB, a S. pneumonia 

Pde2 homologue is therefore proposed, and even though its phosphodiesterase activity was 

confirmed via the BNPP assay, further more specific studies are needed to confirm if it can 

degrade c-di-AMP. 

 
Fig 43. Schematic representation of pathways currently proved to be influenced by c-di-AMP in L. lactis 
IL1403. Red lines represent inhibitory effect. Black curved arrows indicate synthesis of metabolites. Black dashed 
arrows stand for transcription and translation of indicated genes to obtain the resulting protein. Question marks 
denote the lack of data to assess the modulation of CdaA by CdaR and of the stringent response metabolite 
(p)ppGpp by pApA, which has been proved in other model bacteria to modulate the c-di-AMP degrading enzyme 
GdpP. 

Moreover, it is nowadays well known that degradation of c-di-AMP yields 

phosphoadenylyl phosphoadenosine (pApA) (Fig 43). This metabolite intervenes in turn in the 

stringent response, a survival pathway activated under carbon source deprivation, although its 

specific role and its connection to the stringent response metabolite (p)ppGpp which has been 

proven to modulate GdpP activity in other model organisms (71), remains unknown in L. lactis. 
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The first confirmed modulator of c-di-AMP levels in L. lactis IL1403 was GlmM, 

negatively modulates CdaA. In this way, c-di-AMP metabolism was first linked to cell wall 

homeostasis in L. lactis. Moreover, c-di-AMP was recently proved to be involved in central 

metabolism in L. lactis IL1403 due to the negative regulation it exerts on PycA, the pyruvate 

carboxylase enzyme in charge of oxaloacetate synthesis (81). This is the first metabolite 

entering the tricarboxylic acid cycle for CO2 fixation. Nevertheless, it is important to mention 

that due to the incomplete Krebs cycle present in L. lactis, the main impact of pyruvate 

carboxylase enzyme is thought to be involved in amino acids synthesis, since oxaloacetate is 

an aspartate precursor. 

Finally, Fig 43 also depicts the novel role of c-di-AMP in L. lactis osmoregulation via 

inhibition of KupA and KupB, identified and described in this thesis. Since other potassium 

transporters are present in different strains of L. lactis, the question remains whether all these 

systems are also regulated by c-di-AMP, as KupA and KupB were proved to be. 

4.3. L. lactis + c-di-AMP: a novel vaccine delivery system 

Vaccination is one of the most important inventions in the field of public health. As 

described in the introduction, the first vaccines were obtained based on the use of attenuated or 

inactivated microorganisms. More recently, molecular techniques opened the possibility to 

develop vaccines using purified fragments of proteins and recombinant antigens. Even though 

one of the main advantages of this technology are the fewer risks for the patients, they usually 

show poor immunogenic properties, making the use of adjuvants necessary to potentiate the 

specific immune response. In addition, most of the currently used vaccines are administered via 

parenteral routes, and only a few examples of vaccines administered through mucous 

membranes are commercially available. Since several pathogens enter their hosts through 

mucosal surfaces, the development of innovative mucosal vaccines is a challenging paradigm.  

L. lactis is a versatile bacterium, which counts on decades of experimental research as 

well as industrial applications ((188), also developed in the introduction). It is a good candidate 

when considering the delivery of biologically active immunomodulatory proteins or the 

production of active biological compounds. Very importantly, the safety of L. lactis is well 

established, having GRAS and QPS status by the Food and Drugs Administration (U.S.A.) and 

the European Food Safety Authority, respectively. Hence, this microorganism offers a 

substantial potential as a delivery vector system for vaccines, particularly because it can be 
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administrated by diverse mucosal routes like oral, nasal or intravaginal, and it survives passage 

through GIT as well (189). 

In this thesis, L. lactis LL02 was constructed, allowing overproduction of c-di-AMP 

more than 15 times above wild type levels. Thus, this tool was combined with the nisin 

inducible expression system widely study in L. lactis to develop strain L. lactis LL10. This is a 

single novel bacterium designed to deliver the TScf antigen adjuvanted by c-di-AMP in the 

cytosol. Three successive oral immunizations with this prototype of L. lactis live vaccine 

elicited a clear anti-TS cellular response, indicating that oral formulations with this 

microorganism could be used as delivery of diverse heterologous antigens adjuvanted by c-di-

AMP in order to trigger specific immune protection. 

The co-existence of both molecules in the same strain of L. lactis, not only may favor 

the development of a specific immune response (by exposing immunocompetent cells to both 

molecules at the same time), but also may help to reduce the cost vaccination programs in 

developing countries. Moreover, this prototype of L. lactis overproducing c-di-AMP can be 

combined with other antigens, avoiding expensive and laborious procedures for c-di-AMP 

production, and enabling systematic research of a variety of antigens. 
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5. References 

“Science knows no country, because knowledge belongs to humanity, 

and is the torch which illuminates the world” Louis Pasteur 
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6.1. Peptide identification after c-di-AMP pull-down experiment. 

Table XIV Peptide identification after c-di-AMP pull-down experiment 

Identified Protein Accession Number Molecular 
Weight + - Ratio 

+/- 
DNA polymerase III, subunits beta and 

tau  
Q9CDM5_LACLA 61 kDa 34 < 0.5 69,00 

30S ribosomal protein S6 RS6_LACLA 11 kDa 15 < 0.5 31,00 

Uncharacterized protein Q9CIR6_LACLA 62 kDa 13 < 0.5 27,00 

PpGpp synthetase I  Q9CJ94_LACLA 84 kDa 11 < 0.5 23,00 

Protease Q9CE72_LACLA 47 kDa 11 < 0.5 23,00 

Uncharacterized protein Q9CED1_LACLA 12 kDa 11 < 0.5 23,00 

3-hydroxy-3-methylglutaryl coenzyme A 

reductase  
Q9CFB1_LACLA 45 kDa 10 

< 0.5 
21,00 

6,7-dimethyl-8-ribityllumazine synthase RISB_LACLA 17 kDa 10 < 0.5 21,00 

Aspartate racemase Q9CDJ4_LACLA 28 kDa 8 < 0.5 17,00 

Uncharacterized protein Q9CEX0_LACLA 22 kDa 8 < 0.5 17,00 

Initiation-control protein YabA YABA_LACLA 13 kDa 8 < 0.5 17,00 

ATP-dependent DNA helicase RecG Q9CDH6_LACLA 75 kDa 7 < 0.5 15,00 

Pyrimidine-nucleoside phosphorylase Q9CFM5_LACLA 47 kDa 7 < 0.5 15,00 

Oxidoreductase Q9CEV1_LACLA 28 kDa 7 < 0.5 15,00 

Uncharacterized protein Q9CFC1_LACLA 21 kDa 7 < 0.5 15,00 

Uncharacterized protein Q9CDN8_LACLA 17 kDa 7 < 0.5 15,00 

Single-stranded DNA specific 

exonuclease 
Q9CHT6_LACLA 84 kDa 6 

< 0.5 
13,00 

Glutamine ABC transporter permease and 

substrate binding protein 
Q9CES5_LACLA 78 kDa 6 

< 0.5 
13,00 

Peptide chain release factor 2  RF2_LACLA 42 kDa 6 < 0.5 13,00 

Uncharacterized protein Q9CHI4_LACLA 10 kDa 6 < 0.5 13,00 

Cell-division ATP-binding protein FtsE Q9CGX0_LACLA 26 kDa 6 < 0.5 13,00 

DNA repair protein RecN Q9CH78_LACLA 63 kDa 34 3 9,86 

Uncharacterized protein Q9CFB8_LACLA 15 kDa 45 5 8,27 

Aspartate--tRNA ligase SYD_LACLA 67 kDa 164 20 8,02 

Uncharacterized protein Q9CEI1_LACLA 13 kDa 26 3 7,57 

DNA mismatch repair protein MutL  MUTL_LACLA 74 kDa 30 4 6,78 

Glutamine--fructose-6-phosphate 

aminotransferase [isomerizing] 
GLMS_LACLA 66 kDa 206 31 6,56 
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Phosphoenolpyruvate-protein 

phosphotransferase 
PT1_LACLA 63 kDa 126 19 6,49 

Septation ring formation regulator EzrA EZRA_LACLA 66 kDa 35 5 6,45 

NADH oxidase Q9CIG9_LACLA 49 kDa 38 6 5,92 

Elongation factor 4 LEPA_LACLA 68 kDa 32 5 5,91 

ABC transporter ATP binding protein Q9CJA0_LACLA 58 kDa 61 10 5,86 

Uncharacterized protein Q9CGM2_LACLA 14 kDa 14 2 5,80 

N-acetylmuramidase Q9CED5_LACLA 50 kDa 14 2 5,80 

Universal stress protein Q9CEI3_LACLA 16 kDa 120 21 5,60 

Arginine--tRNA ligase SYR_LACLA 63 kDa 30 5 5,55 

Folylpolyglutamate synthase Q9CGE0_LACLA 48 kDa 12 2 5,00 

Homoserine dehydrogenase DHOM_LACLA 47 kDa 21 4 4,78 

Uncharacterized protein Q9CGJ5_LACLA 19 kDa 11 2 4,60 

Hydroxymethylglutaryl-CoA synthase Q9CFA9_LACLA 43 kDa 11 2 4,60 

Gamma-glutamyl phosphate reductase PROA_LACLA 45 kDa 24 5 4,45 

Sugar ABC transporter ATP binding 

protein 
Q9CFY3_LACLA 56 kDa 15 3 4,43 

ABC transporter ATP binding protein Q9CFC6_LACLA 70 kDa 31 7 4,20 

Glucose-6-phosphate isomerase G6PI_LACLA 50 kDa 10 2 4,20 

Peptide-binding protein Q9CI27_LACLA 60 kDa 14 3 4,14 

Uncharacterized protein Q9CJ15_LACLA 13 kDa 18 4 4,11 

Peptide chain release factor 3 RF3_LACLA 60 kDa 30 7 4,07 

ABC transporter ATP binding protein Q9CJC5_LACLA 61 kDa 62 15 4,03 

Chaperone protein DnaK DNAK_LACLA 65 kDa 150 37 4,01 

Lysine--tRNA ligase SYK_LACLA 57 kDa 21 5 3,91 

Probable phosphoketolase PHK_LACLA 93 kDa 9 2 3,80 

Uncharacterized protein Q9CDZ4_LACLA 18 kDa 43 11 3,78 

Uncharacterized protein Q9CID7_LACLA 17 kDa 68 18 3,70 

Peptide chain release factor 1 RF1_LACLA 40 kDa 27 7 3,67 

Uncharacterized protein Q9CFU3_LACLA 15 kDa 16 4 3,67 

UPF0145 protein YjfJ YJFJ_LACLA 12 kDa 30 8 3,59 

Signal recognition particle receptor FtsY Q9CHB9_LACLA 51 kDa 392 109 3,58 

Uncharacterized protein Q9CF71_LACLA 56 kDa 12 3 3,57 

Polysaccharide biosynthesis protein Q9CIZ9_LACLA 70 kDa 12 3 3,57 

UDP-N-acetylglucosamine 1-

carboxyvinyltransferase 2 
MURA2_LACLA 45 kDa 12 3 3,57 
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Aromatic amino acid specific 

aminotransferase 
Q9CJE0_LACLA 43 kDa 60 17 3,46 

S-adenosylmethionine synthase METK_LACLA 43 kDa 170 49 3,44 

Glycosyltransferase Q9CJ00_LACLA 38 kDa 15 4 3,44 

Uncharacterized protein Q9CDS4_LACLA 9 kDa 15 4 3,44 

Asparagine synthetase Q9CDJ2_LACLA 72 kDa 32 9 3,42 

Probable serine/threonine-protein kinase PKNB_LACLA 68 kDa 8 2 3,40 

Adenylosuccinate synthetase PURA_LACLA 47 kDa 143 43 3,30 

NifU protein Q9CEP7_LACLA 13 kDa 11 3 3,29 

ATP-dependent protease ATP-binding 

subunit 
Q9CHS9_LACLA 90 kDa 66 20 3,24 

Nicotinate phosphoribosyltransferase Q9CGJ6_LACLA 56 kDa 82 25 3,24 

Segregation and condensation protein B SCPB_LACLA 21 kDa 27 8 3,24 

50S ribosomal protein L5 RL5_LACLA 20 kDa 14 4 3,22 

Uncharacterized protein Q9CDS3_LACLA 37 kDa 36 11 3,17 

Uncharacterized protein Q9CJ16_LACLA 58 kDa 155 50 3,08 

Flotillin-like protein Q9CHJ2_LACLA 54 kDa 41 13 3,07 

Cell division protein ftsA Q9CEH1_LACLA 49 kDa 91 30 3,00 

Uncharacterized protein Q9CF27_LACLA 38 kDa 10 3 3,00 

Transcriptional regulator Q9CE68_LACLA 15 kDa 10 3 3,00 

Tagatose-6-phosphate kinase Q9CGY4_LACLA 34 kDa 7 2 3,00 

Alpha-subunit L-serine dehydratase Q9CHA7_LACLA 30 kDa 7 2 3,00 

Uncharacterized protein Q9CF30_LACLA 43 kDa 7 2 3,00 

Probable nicotinate-nucleotide 

adenylyltransferase 
Q9CIY1_LACLA 23 kDa 7 2 3,00 

Uncharacterized protein Q9CF63_LACLA 64 kDa 7 2 3,00 

Lipoprotein Q9CIN8_LACLA 31 kDa 7 2 3,00 

Uncharacterized protein Q9CEF2_LACLA 18 kDa 243 81 2,99 

tRNA uridine 5-

carboxymethylaminomethyl modification 

enzyme 

MNMG_LACLA 69 kDa 27 9 2,89 

ATP-dependent Clp protease ATP-

binding subunit 
CLPE_LACLA 83 kDa 481 168 2,86 

ATP synthase subunit delta ATPD_LACLA 19 kDa 18 6 2,85 

Endonuclease MutS2 MUTS2_LACLA 87 kDa 15 5 2,82 

30S ribosomal protein S4 RS4_LACLA 23 kDa 15 5 2,82 
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ATP-dependent Clp protease ATP-

binding subunit ClpX 
CLPX_LACLA 46 kDa 270 96 2,80 

UDP-N-acetylglucosamine--N-

acetylmuramyl-(pentapeptide) 

pyrophosphoryl-undecaprenol N-

acetylglucosamine transferase 

MURG_LACLA 39 kDa 9 3 2,71 

Uncharacterized protein Q9CEP4_LACLA 45 kDa 105 39 2,67 

Replicative DNA helicase Q9CHI5_LACLA 50 kDa 53 20 2,61 

Uncharacterized protein Q9CGB4_LACLA 48 kDa 19 7 2,60 

Aminopeptidase C PEPC_LACLA 50 kDa 6 2 2,60 

Amino acid aminohydrolase Q9CGY6_LACLA 42 kDa 6 2 2,60 

Mannose-specific PTS system component 

IID 
Q9CEX6_LACLA 34 kDa 6 2 2,60 

60 kDa chaperonin CH60_LACLA 57 kDa 219 84 2,60 

Prophage pi2 protein 02 Q9CGT3_LACLA 21 kDa 24 9 2,58 

Uncharacterized protein Q9CG71_LACLA 20 kDa 29 11 2,57 

Biotin carboxylase Q9CHF3_LACLA 49 kDa 52 20 2,56 

DNA gyrase subunit A Q9CGI5_LACLA 93 kDa 11 4 2,56 

Asparagine synthetase B Q9CIK5_LACLA 60 kDa 205 81 2,52 

UDP-N-acetylglucosamine 1-

carboxyvinyltransferase 1 
MURA1_LACLA 46 kDa 94 37 2,52 

UvrABC system protein B  UVRB_LACLA 79 kDa 76 30 2,51 

Protein RecA, chromosomal  RECA_LACLA 41 kDa 136 54 2,50 

30S ribosomal protein S10  RS10_LACLA 12 kDa 50 20 2,46 

DNA mismatch repair protein MutS  MUTS_LACLA 94 kDa 13 5 2,45 

Diadenosine 5',5'''-P1,P4-tetraphosphate 

hydrolase 
Q9CI07_LACLA 18 kDa 13 5 2,45 

Alpha-acetolactate synthase  Q7DAV2_LACLA 61 kDa 164 67 2,44 

Riboflavin biosynthesis protein RibBA  Q9CGU7_LACLA 44 kDa 8 3 2,43 

Glutamate--tRNA ligase SYE_LACLA 55 kDa 8 3 2,43 

Oligopeptide ABC transporter substrate 

binding protein 
Q9CIL2_LACLA 60 kDa 117 48 2,42 

Maltose ABC transporter substrate 

binding protein 
Q9CEZ8_LACLA 44 kDa 292 123 2,37 

GTPase HflX Q9CIY3_LACLA 43 kDa 29 12 2,36 

Uncharacterized protein Q9CDF6_LACLA 22 kDa 10 4 2,33 
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30S ribosomal protein S7 RS7_LACLA 18 kDa 10 4 2,33 

Nitrogen regulatory protein P-II Q9CF90_LACLA 13 kDa 10 4 2,33 

GTPase Der DER_LACLA 49 kDa 63 27 2,31 

Glycine betaine transport ATP-binding 

protein OpuAA 
OPUAA_LACLA 46 kDa 48 21 2,26 

Alkyl hydroperoxide reductase Q9CIL9_LACLA 21 kDa 211 94 2,24 

DNA polymerase III subunit beta DPO3B_LACLA 42 kDa 14 6 2,23 

Universal stress protein Q9CH60_LACLA 16 kDa 14 6 2,23 

Formate acetyltransferase PFL_LACLA 89 kDa 36 16 2,21 

ABC transporter ATP binding protein Q9CGN4_LACLA 72 kDa 18 8 2,18 

Spermidine/putrescine import ATP-

binding protein PotA 
POTA_LACLA 48 kDa 22 10 2,14 

Cysteine--tRNA ligase SYC_LACLA 51 kDa 7 3 2,14 

Fumarate reductase flavoprotein subunit Q9CGH2_LACLA 53 kDa 26 12 2,12 

Uncharacterized protein Q9CED6_LACLA 41 kDa 81 38 2,12 

Glucose kinase Q9CE25_LACLA 34 kDa 9 4 2,11 

Ribonuclease Y RNY_LACLA 60 kDa 11 5 2,09 

Acetate-SH-citrate lyase ligase Q9CGB0_LACLA 39 kDa 11 5 2,09 

50S ribosomal protein L14 RL14_LACLA 13 kDa 11 5 2,09 

Amino acid ABC transporter substrate 

binding protein 
Q9CDZ9_LACLA 31 kDa 13 6 2,08 

Foldase protein PrsA PRSA_LACLA 34 kDa 13 6 2,08 

NH(3)-dependent NAD(+) synthetase NADE_LACLA 30 kDa 44 21 2,07 

S-adenosylmethionine:tRNA 

ribosyltransferase-isomerase 
QUEA_LACLA 39 kDa 75 36 2,07 

Thymidylate synthase TYSY_LACLA 33 kDa 15 7 2,07 

Uncharacterized protein Q9CEI5_LACLA 40 kDa 15 7 2,07 

Uncharacterized protein Q9CIK0_LACLA 15 kDa 15 7 2,07 

30S ribosomal protein S5 RS5_LACLA 18 kDa 157 76 2,06 

UDP-N-acetylmuramoylalanine--D-

glutamate ligase 
MURD_LACLA 49 kDa 19 9 2,05 

Mannose-specific PTS system component 

IIAB 
Q9CEX8_LACLA 35 kDa 79 39 2,01 

Triosephosphate isomerase TPIS_LACLA 27 kDa 7 15 0,48 

Malonyl CoA-acyl carrier protein 

transacylase 
Q9CHF8_LACLA 34 kDa 4 9 0,47 
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Protein-tyrosine phosphatase Q9CEK1_LACLA 28 kDa 4 9 0,47 

1,4-dihydroxy-2-naphthoyl-CoA synthase Q9CHK2_LACLA 31 kDa 18 39 0,47 

Isoleucine--tRNA ligase SYI_LACLA 107 kDa 3 7 0,47 

3-hydroxyacyl-[acyl-carrier-protein] 

dehydratase FabZ 
FABZ2_LACLA 16 kDa 3 7 0,47 

Transcription termination/antitermination 

protein NusA 
Q9CHG7_LACLA 43 kDa 100 220 0,46 

Exodeoxyribonuclease A Q9CHE1_LACLA 38 kDa 6 14 0,45 

Dihydrolipoamide acetyltransferase 

component of PDH complex 
Q9CJD7_LACLA 56 kDa 42 95 0,45 

Uncharacterized protein Q9CIG7_LACLA 31 kDa 5 12 0,44 

DNA replication protein DnaD Q9CGM6_LACLA 26 kDa 8 19 0,44 

Ribonuclease 3 RNC_LACLA 26 kDa 10 25 0,41 

Uncharacterized protein Q9CE54_LACLA 32 kDa 7 18 0,41 

Ferrous ion transport protein A Q9CJ18_LACLA 17 kDa 8 21 0,40 

Uncharacterized protein Q9CHB7_LACLA 26 kDa 4 11 0,39 

Mevalonate kinase Q9CIF6_LACLA 36 kDa 2 6 0,38 

Uncharacterized protein Q9CEM6_LACLA 31 kDa 2 6 0,38 

tRNA dimethylallyltransferase MIAA_LACLA 34 kDa 2 6 0,38 

DNA-directed RNA polymerase subunit 

omega 
RPOZ_LACLA 13 kDa 2 6 0,38 

Uncharacterized protein Q9CIJ7_LACLA 23 kDa 19 52 0,37 

Putative gluconeogenesis factor GNGF_LACLA 36 kDa 3 9 0,37 

Uncharacterized protein Q9CJ34_LACLA 41 kDa 4 12 0,36 

Bifunctional protein GlmU GLMU_LACLA 49 kDa 8 27 0,31 

Uncharacterized protein Q9CHZ8_LACLA 28 kDa 2 9 0,26 

Valine--tRNA ligase SYV_LACLA 101 kDa 3 13 0,26 

Leucine--tRNA ligase SYL_LACLA 94 kDa 3 13 0,26 

DNA polymerase III PolC-type DPO3_LACLA 185 kDa 11 69 0,17 

Non-heme chloride peroxidase Q9CHB2_LACLA 31 kDa  6 0,08 

Endoribonuclease YbeY YBEY_LACLA 19 kDa  7 0,07 

Transcriptional regulator Q9CIF1_LACLA 28 kDa  8 0,06 

Uncharacterized protein Q9CHI3_LACLA 30 kDa  8 0,06 

Prophage pi3 protein 57, cI-like repressor Q9CFN7_LACLA 20 kDa  10 0,05 

Pyruvate carboxylase Q9CHQ7_LACLA 126 kDa 51 2531 0,02 
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Biotin carboxyl carrier protein of acetyl-

CoA carboxylase 
Q9CHF5_LACLA 16 kDa  32 0,02 

The dashed line indicates the cut off established for specific c-di-AMP interaction assay. 

6.2. Bacterial strains 

Table XV Bacterial strains 
Bacterial Strain Genotype/Characteristics Reference 

E. coli strains   

E coli 2003 ∆kdpABC5 kupD1 ∆trkA Hamann 1991 (174) 

E coli BL21  
E. coli B F– ompT gal dcm lon hsdSB(rB

–mB
–) 

[malB+]K-12(λS) 

Studier and Moffatt 

1986 (175) 

E. coli 0300 E. coli 2003 + pIQ310 and pBP370 - Cm30 – Amp100 This work 

E. coli 0303 E. coli 2003 + pIQ310 and pBP373 - Cm30 – Amp100 This work 

E. coli 0380 E. coli 2003 + pWH844 and pBP370 - Cm30 – 

Amp100 

This work 

E. coli 0383 E. coli 2003 + pWH844 and pBP373 - Cm30 – 

Amp100 

This work 

E. coli 0390 E. coli 2003 + pIQ309 and pBP370 - Cm30 – Amp100 This work 

E. coli 0393 E. coli 2003 + pIQ309 and pBP373 - Cm30 – Amp100 This work 

E. coli DH5α 
Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 

hsdR17 
Hanahan, 1983 (176) 

E. coli EC101 
E. coli JM101 derived. repA+ (from pWV01 

integrated in chromosome) Km40 
Law et al. 1995 (177) 

E. coli GP01 E. coli BL21 + pIQ402 This work 

E. coli GP02 E. coli BL21 + pIQ404 This work 

E. coli LB08 E. coli LB650 + pWH844 - Km50 – Cm30 – Amp100 This work 

E. coli LB09 E. coli LB650 + pIQ309 - Km50 – Cm30 – Amp100 This work 

E. coli LB10 E. coli LB650 + pIQ310 - Km50 – Cm30 – Amp100 This work 

E. coli LB11 E. coli LB650 + pBP372 - Km50 – Cm30 – Amp100 This work 

E. coli LB12 E. coli LB650 + pBP371 - Km50 – Cm30 – Amp100 This work 

E. coli LB13 E. coli LB650 + pIQ311 - Km50 – Cm30 – Amp100 This work 

E. coli LB650 ∆kdpABC5 ∆trkH ∆trkG – Km50 – Cm30 Schlösser et al. 1995 

E. coli YB01 E. coli BL21 + pIQ401 This work 

E. coli YB02 E. coli BL21 + pIQ403 This work 

E. faecalis strains   
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E. faecalis JH2-2 Cit+; RifR; FusR; plasmid free Jacob and Hobbs, 1974 

L. lactis strains   

L. lactis htrA-clpP 
NZ9000 transconjugant carrying clpP and htrA 

disruption, plasmid free - Em5 
Cortes-Perez 2006 

L. lactis IL1403 Derived from IL594 strain. Plasmid free, Trp+ Chopin et al., 1984 

L. lactis LL00 L. lactis IL1403 + pBV153  This work 

L. lactis LL01 L. lactis NZ9000 clpP-htrA + pNZ8048 This work 

L. lactis LL02 L. lactis NZ9000 clpP-htrA + pNZTS This work 

L. lactis LL03 L. lactis IL1403 + pIQ101 This work 

L. lactis LL04 L. lactis IL1403 + pIQ102 This work 

L. lactis LL05 L. lactis IL1403 + pIQ103 This work 

L. lactis LL06 L. lactis IL1403 + pIQ104 This work 

L. lactis LL07 L. lactis IL1403 ∆gdpP1s This work 

L. lactis LL08 L. lactis IL1403 ∆gdpP1b This work 

L. lactis LL09 L. lactis NZ9000 clpP-htrA + pIQ101 This work 

L. lactis LL10 L. lactis NZ9000 clpP-htrA + pIQ10TS This work 

L. lactis NZ9000 
L. lactis MG1363 containing nisKR genes integrated 

into pepN locus, plasmid free 
Kuipers 1998 

L. lactis NZTS L. lactis NZ9000 + pNZTS  This work 

6.3. Plasmids 

Table XVI Plasmids 
Plasmid Description Reference 

pBAD33 arabinose inducible - CmR 
Guzman et al. 1995 

(178) 

pBP371 pWH844 ktrC/D L. monocytogenes Stülke Lab 

pBP372 pWH844 ktrA/B B. subtilis Stülke Lab 

pBV153 
PcitM promoter, pH inducible AmpR in E. coli, 

CmR in LAB 

Marelli and Magni 

2009 

pBVGh Thermosensitive vector for gene deletion EmR 
Blancato and Magni 

2010 

pIQ101 pBV153 + L. lactis cdaAll (Pcit promoter) This work 

pIQ102 pBV153 + L. lactis cdaAef (Pcit promoter) This work 

pIQ103 pBV153 + L. lactis gdpPll (Pcit promoter) This work 

pIQ104 pBV153 + L. lactis gdpPef (Pcit promoter) This work 
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pIQ10TS 

pIQ101 derived plasmid encoding cdaA gene 

under PcitM promoter and trans-sialidase 

fragment under Pnis promoter 

This work 

pIQ309 pWH844 no His-tag + kupA IL1403 This work 

pIQ310 pWH844 no His-tag + kupB IL1403 This work 

pIQ311 pWH844 + kup JH2-2 This work 

pIQ370 pBAD33 + cdaAlmo This work 

pIQ373 pBAD33 + cdaA D171N Lmo This work 

pIQ401 pWH844 + yheB L. lactis NZ9000 This work 

pIQ402 pWH844 + gdpP L. lactis NZ9000 This work 

pIQ403 pWH844 + yheB L. lactis IL1403 This work 

pIQ404 pWH844 + gdpP L. lactis IL1403 This work 

pNZ8048 Nisin inducible expression, CmR 
De Ruyter et al. 

1996 (179) 

pNZTS 
pNZ8048 + codon optimized His6x-tagged trans-

sialidase fragment 
This work 

pUC57-TS 
pUC57 + codon optimized His6x-tagged trans-

sialidase fragment 
This work 

pWH844 IPTG inducible – N terminal His tag, AmpR Stülke Lab 

pWHdnaH pWH844 no His-tag + RBS + dnaH 
Grubek, Z. 2016 

(180) 

pWHezrA pWH844 no His-tag + RBS + ezrA Grubek, Z. 2016 

pWHftsE pWH844 no His-tag + RBS + ftsE Grubek, Z. 2016 

pWHglnP pWH844 no His-tag + RBS + glnP Grubek, Z. 2016 

pWHkupA pWH844 no His-tag + RBS + kupA Grubek, Z. 2016 

pWHkupB pWH844 no His-tag + RBS + kupB Grubek, Z. 2016 

pWHlysP pWH844 no His-tag + RBS + lysP Grubek, Z. 2016 

pWHlysQ pWH844 no His-tag + RBS + lysQ Grubek, Z. 2016 

pWHmvaA pWH844 no His-tag + RBS + mvaA Grubek, Z. 2016 

pWHnah pWH844 no His-tag + RBS + nah Grubek, Z. 2016 

pWHoppA pWH844 no His-tag + RBS + oppA Grubek, Z. 2016 

pWHpdp pWH844 no His-tag + RBS + pdp Grubek, Z. 2016 

pWHprfB pWH844 no His-tag + RBS + prfB Grubek, Z. 2016 

pWHracD pWH844 no His-tag + RBS + racD Grubek, Z. 2016 

pWHrecG pWH844 no His-tag + RBS + recG Grubek, Z. 2016 

pWHrecJ pWH844 no His-tag + RBS + recJ Grubek, Z. 2016 
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pWHrecN pWH844 no His-tag + RBS + recN Grubek, Z. 2016 

pWHrelA pWH844 no His-tag + RBS + relA Grubek, Z. 2016 

pWHribH pWH844 no His-tag + RBS + ribH Grubek, Z. 2016 

pWHrpsF pWH844 no His-tag + RBS + rpsF Grubek, Z. 2016 

pWHyciH pWH844 no His-tag + RBS + yciH Grubek, Z. 2016 

pWHyeaD pWH844 no His-tag + RBS + yeaD Grubek, Z. 2016 

pWHyhfC pWH844 no His-tag + RBS + yhfC Grubek, Z. 2016 

pWHyjdJ pWH844 no His-tag + RBS + yjdJ Grubek, Z. 2016 

pWHyncB pWH844 no His-tag + RBS + yncB Grubek, Z. 2016 

pWHyqaB pWH844 no His-tag + RBS + yqaB Grubek, Z. 2016 

pWHyqaD pWH844 no His-tag + RBS + yqaD Grubek, Z. 2016 

pWHyrbD pWH844 no His-tag + RBS + yrbD Grubek, Z. 2016 

pWHyrgI pWH844 no His-tag + RBS + yrgI Grubek, Z. 2016 

pWHyrjB pWH844 no His-tag + RBS + yrjB Grubek, Z. 2016 

pWHytcE pWH844 no His-tag + RBS + ytcE Grubek, Z. 2016 

pWHytjA pWH844 no His-tag + RBS + ytjA Grubek, Z. 2016 

pWHyueF pWH844 no His-tag + RBS + yueF Grubek, Z. 2016 

pWHywfH pWH844 no His-tag + RBS + ywfH Grubek, Z. 2016 

6.4. Oligonucleotides 

Homologous sequences hybridizing with template DNA are in italics, restriction sites are 

underlined. Fwd: forward. Rv: reverse. 

Table XVII Oligonucleotides 
Name Sequence (5’ -> 3’) Purpose 

IQ365 ACAAGTACATATGATGCTTGTTGTGGAAC (Fwd) cdaA - E. faecalis JH2-2 

IQ366 GCACTAGTAAGCTTTCATTTTGCGTTTAACC (Rv) cdaA - E. faecalis JH2-2 

IQ367 AACTAGACATATGATGCAAAAGAAGAGAATTC (Fwd) gdpP - E. faecalis JH2-2 

IQ368 CGACTAGTAAGCTTTCACTCCTGTTCATAC (Rv) gdpP - E. faecalis JH2-2 

IQ369 ACGTAACCATATGTTGACCGACTTCAATC (Fwd) cdaA - L. lactis IL1403 

IQ370 GCTCTAGAAAGCTTTTATTTGCCATTTTTC (Rv) cdaA - L. lactis IL1403 

JN371 AAACCATGGAGAACGTGAAGCAAAAGCACT (Fwd) Upstream region of cdaA - 
L. lactis IL1403 

JN372 TTTAAGCTTCGAACAAGCGTCATTAATTTTGT (Rv) Upstream region of cdaA - L. 
lactis IL1403 
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JN373 AAAAAGCTTTTGCTCACAATGGAGAATTTTTCG (Fwd) Downstream region of 
cdaA - L. lactis IL1403 

JN374 TTTCCATGGCAGAAAGATGAACCGTCGCA (Rv) Downstream region of cdaA 
- L. lactis IL1403 

JN375 AAACCATGGCCGTTTGGGCAATTGAAGACA (Fwd) Upstream region of gdpP - 
L. lactis IL1403 

JN376 TTTAAGCTTATTAAAACGGATGACCCCAATTG (Rv) Upstream region of gdpP - 
L. lactis IL1403  

JN377 AAAAAGCTTATTATGGAGCAAATGGGTGGG (Fwd) Downstream region of 
gdpP - L. lactis IL1403 

JN378 TTTCCATGGGCTTTTCTTTTTCCTTAGCTTTGG (Rv) Downstream region of gdpP 
- L. lactis IL1403 

JN379 AAACATATGGGAGTAATATTATGAATTTTGTCC
G 

(Fwd) gdpP - L. lactis IL1403 

JN380 TTTACTAGTAAGAATACAACTTTCATTTTTCGTT (Rv) gdpP - L. lactis IL1403 

JN384 TTTTCTAGATTATTTGCCATTTTTCTTTCCTCCT (Rv) cdaA - L. lactis IL1403 
(pNZ8048) 

JN385 TATTTGGGAATAAAGCAGTTCACTTAAAA (Fwd) cdaA operon sequencing 

JN386 GAAAGTAACTGTTCCTATACGTGC (Fwd) cdaA operon sequencing 

JN387 CAAAAGTCCTGAAATCAAACTGCT (Rv) cdaA operon sequencing 

JN388 AAAAAAGATAAAAAAGCTCTCCCAATAAG (Rv) cdaA operon sequencing 

JN389 TGGTTGACATTTTTCTTTGATTGTTATC (Rv) gdpP IL1403 sequencing 

JN400 AAACCATGGCCGTTTGGG (Fwd) ligation 58 amplification 
with JN401 

JN401 TTTCCATGGGCTTTTCTTTTTCC (Rv) ligation 58 amplification 
with JN400 

JN402 AAACCATGGAGAACGTGAAG (Fwd) ligation 14 amplification 
with JN403 

JN403 TTTCCATGGCAGAAAGATGAA (Rv) ligation 14 amplification 
with JN402 

JN404 AAAATGCGAGCGATGACCAA (Fwd) gdpP internal fragment - L. 
lactis IL1403 
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JN405 TTAATGGCTGTTCGACCGCT (Rv) gdpP internal fragment - L. 
lactis IL1403 

JN406 GGTTCTATGAAATTTAAAGCAGTGATTT (Fwd) gene upstream gdpP 
IL1403 Deletion check 

JN407 TTAGGCCTCGCTAATTTTGACTT (Rv)  gene downstream gdpP 
IL1403 Deletion check 

JN408 AAAACTAGTAGTTGACCCTGAACGTGAA (Fwd) Upstream region of cdaA L. 
lactis NZ9000 / deletion with 
pBVGh 

JN409 TTTGAATTCAAGCGTCATTAATTTTGTTCCT (Rv) Upstream region of cdaA L. 
lactis NZ9000 / deletion with 
pBVGh 

JN410 AAAGAATTCTAGCACATAATGGCGAGTTT (Fwd) Downstream region of 
cdaA L. lactis NZ9000 / deletion 
with pBVGh 

JN411 TTTGAGCTCTAAATGAACTGTTGCACTGC (Rv) Downstream region of cdaA 
L. lactis NZ9000 / deletion with 
pBVGh 

JN414 AAACCATGGATGAATTTTGTCCGTCGGTT (Fwd) cdaA - L. lactis IL1403 
(pNZ8048) 

JN416 CGATAACGCGAGCATAATAAAC (Fwd) pNZ8048 checking 

JN417 GCCTTGGTTTTCTAATTTTGGTTC (Rv) pNZ8048 checking 

JN418 GTTTAAACGCTTTGGGACGT (Fwd) recJ check 

JN419 GTATCGACGTTGACTTGCTT (Fwd) glnP check 

JN500 TTTGGATCCATGACCTATCGGATGGTTGA (Rv) pdp / construction in 
pWH844 / DRaCALA 

JN501 AAAAAGCTTTTATCTGATAATTTCTAGAATTTCT
TTTTGA 

(Fwd) pdp / construction in 
pWH844 / DRaCALA 

JN502 AAAGGATCCATGGAATTATCAGAAATTAGAAAT
TTACTT 

(Fwd) prfB / construction in 
pWH844 / DRaCALA 

JN503 TTTAAGCTTCTACAAGTTCCAACGGAGATA (Rv) prfB / construction in 
pWH844 / DRaCALA 

JN504 TTTGGATCCATGGCATATCAAGCATTATATAGAA
AAT 

(Rv) dnaH / construction in 
pWH844 / DRaCALA 

JN505 AAAGTCGACTTAATCATTAATTTCAACTACTTTT
TCACC 

(Fwd) dnaH / construction in 
pWH844 / DRaCALA 
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JN506 TTTGGATCCATGAAATTAACAGATTCAGTGCAAT
TTTT 

(Rv) recG / construction in 
pWH844 / DRaCALA 

JN507 AAAAAGCTTTCAATCAAAGCCCCCGTCA (Fwd) recG / construction in 
pWH844 / DRaCALA 

JN508 AAAGGATCCATGATAAAAGCAAAATATGATTGG
AAA 

(Fwd) recJ / construction in 
pWH844 / DRaCALA 

JN509 TTTAAGCTTTTATTTTTCTAATAAATTTTGATAAA
TTTCTTT 

(Rv) recJ / construction in 
pWH844 / DRaCALA 

JN510 AAAGGATCCATGTTACAAGAGATTTCAATCAAA
AATTT 

(Fwd) recN / construction in 
pWH844 / DRaCALA 

JN511 TTTGTCGACTTATTTGCTCAATAAACGTTTAGCC (Rv) recN / construction in 
pWH844 / DRaCALA 

JN512 AAAGGATCCATGGCTGATAAATATAATGTTTTC
GA 

(Fwd) yeaD / construction in 
pWH844 / DRaCALA 

JN513 TTTAAGCTTTCAGCGATACAAAAGCTCCA (Rv) yeaD / construction in 
pWH844 / DRaCALA 

JN514 TTTGGATCCATGACTAAATACGAAATTCTTTATA
TTATTCG 

(Rv) rpsF / construction in 
pWH844 / DRaCALA 

JN515 AAAGTCGACTTAAGCTTCAACTTTAACGATCATA
TG 

(Fwd) rpsF / construction in 
pWH844 / DRaCALA 

JN516 TTTGGATCCATGCCAAAGCAACTTAAAATAAAAG (Rv) yciH / construction in 
pWH844 / DRaCALA 

JN517 AAAGTCGACTTATTCATCAGGTGTCATAATCATT
G 

(Fwd) yciH / construction in 
pWH844 / DRaCALA 

JN518 AAAGGATCCATGAGTATTATAAAATTAAGCAAC
GTTTC 

(Fwd) ftsE / construction in 
pWH844 / DRaCALA 

JN519 TTTAAGCTTCTAATCATCGTAGCCGTAAACT (Rv) ftsE / construction in 
pWH844 / DRaCALA 

JN520 TTTGGATCCATGAATAAAAAATCGAGTGCTCTTT (Rv) ywfH / construction in 
pWH844 / DRaCALA 

JN521 AAAAAGCTTCTACTCCATTATAGTAAGTATCCA
GC 

(Fwd) ywfH / construction in 
pWH844 / DRaCALA 

JN522 AAAGGATCCATGAAGAAATTATTTTTCGCTCTG
G 

(Fwd) glnP / construction in 
pWH844 / DRaCALA 

JN523 TTTAAGCTTTTATTTCATTCTTTTTTCTACGCGA (Rv) glnP / construction in 
pWH844 / DRaCALA 

JN524 TTTGGATCCATGGAAAACTTCTTTACAATCTTGG (Rv) racD / construction in 
pWH844 / DRaCALA 
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JN525 AAAAAGCTTTTAATAGTCATCTAATAAATCTTTT
TTTCCC 

(Fwd) racD / construction in 
pWH844 / DRaCALA 

JN526 TTTGGATCCATGAGAAAAAAATTTTATCAAATGT
CGC 

(Rv) mvaA / construction in 
pWH844 / DRaCALA 

JN527 AAAGTCGACTTAGTTTCTGAGACTATTTAATAAA
CGG 

(Fwd) mvaA / construction in 
pWH844 / DRaCALA 

JN528 AAAGGATCCATGAAAGTTTCAATATTCTCCACTT
G 

(Fwd) yrjB / construction in 
pWH844 / DRaCALA 

JN529 TTTAAGCTTCTATGCTTTGATAAATGCTGGGT (Rv) yrjB / construction in 
pWH844 / DRaCALA 

JN530 TTTGGATCCATGCAAGCAAAATTAGTTAATAAAG
TAG 

(Rv) ytjA / construction in 
pWH844 / DRaCALA 

JN531 AAAAAGCTTTTAATGTCTTTGCTCAATATTTTGC
T 

(Fwd) ytjA / construction in 
pWH844 / DRaCALA 

JN532 TTTGGATCCATGCTTCATCTCATTAAAGAAAGC (Rv) yueF / construction in 
pWH844 / DRaCALA 

JN533 AAAAAGCTTTTACTTTTCAAGGCTGACCTC (Fwd) yueF / construction in 
pWH844 / DRaCALA 

JN534 AAAGGATCCATGCCTAAAGAACCAGATTTAACC (Fwd) relA / construction in 
pWH844 / DRaCALA 

JN535 TTTGTCGACTTAAGCATTTGTCCGTTTTACAGA (Rv) relA / construction in 
pWH844 / DRaCALA 

JN536 AAAGGATCCATGACAATTATTGAAGGAAATTTA
AGAAC 

(Fwd) ribH / construction in 
pWH844 / DRaCALA 

JN537 TTTAAGCTTTTAGCCAATCTTTCTCATTAAATCA
A 

(Rv) ribH / construction in 
pWH844 / DRaCALA 

JN538 AAAGGATCCATGACTGAAGTTTATTTTATTCGAC
AT 

(Fwd) yrgI / construction in 
pWH844 / DRaCALA 

JN539 TTTAAGCTTTTATTGCTCATAATCAATTTCAATG
ACT 

(Rv) yrgI / construction in 
pWH844 / DRaCALA 

JN540 TTTGGATCCATGAGTGAATTAGAGATTCGTAGA
TT 

(Rv)  yqaB / construction in 
pWH844 / DRaCALA 

JN541 AAAGTCGACCTATTGCTCTTCTAAATTAATCCAG
TAA 

(Fwd) yqaB / construction in 
pWH844 / DRaCALA 

JN542 AAAGGATCCATGGATAACCAAAATCAAGAAATA
GG 

(Fwd) yhfC / construction in 
pWH844 / DRaCALA 

JN543 TTTAAGCTTTTATGCGTTTGGATAGTGAATTAAA
A 

(Rv) yhfC / construction in 
pWH844 / DRaCALA 

139 



Appendix 

JN544 TTTGGATCCATGTCAAGTACTGTCATTATCCTC (Rv) ezrA / construction in 
pWH844 / DRaCALA 

JN545 AAAAAGCTTTTATAAGTAATCAGGAGTAGGTTT
ATTTTT 

(Fwd) ezrA / construction in 
pWH844 / DRaCALA 

JN546 AAAGGATCCATGGCATTTATCACCGAAAAAC (Fwd) ytcE / construction in 
pWH844 / DRaCALA 

JN547 TTTAAGCTTTTAAATTTCTGATTTTGTAAATACAC
CG 

(Rv) ytcE / construction in 
pWH844 / DRaCALA 

JN548 TTTGGATCCATGGCTTTAACGATCGAACG (Rv) yqaD / construction in 
pWH844 / DRaCALA 

JN549 AAAAAGCTTTTAAAATCCCAAGTTTATTCCAGG
C 

(Fwd) yqaD / construction in 
pWH844 / DRaCALA 

JN550 TTTGGATCCATGAAATTAAAAGATATAGAGAAAT
CAACAAA 

(Rv) yrbD / construction in 
pWH844 / DRaCALA 

JN551 AAAAAGCTTTTATTTTTCATTTAAAACCTGACGA
AG 

(Fwd) yrbD / construction in 
pWH844 / DRaCALA 

JN552 AAAGGATCCATGTTTGGAAAGTTTAATCGCTC (Fwd)  yjdJ / construction in 
pWH844 / DRaCALA 

JN553 TTTAAGCTTTCATTTATTTTTTCTATTATTTCCTT
CTAAGG 

(Rv) yjdJ / construction in 
pWH844 / DRaCALA 

JN554 TTTGGATCCATGAATGATATTTTACAACTCACAA
TTG 

(Rv) nah / construction in 
pWH844 / DRaCALA 

JN555 AAAGTCGACTTAATTATCATATTTTTTCAAGACC
ATTTTAATT 

(Fwd) nah / construction in 
pWH844 / DRaCALA 

JN556 AAAGTCGACTTGAGTCTGAGTCAAACAAGTC (Fwd) lysP / construction in 
pWH844 / DRaCALA 

JN557 TTTAAGCTTTTAATCTTTATGACGACTTAAATCA
ACC 

(Rv) lysP / construction in 
pWH844 / DRaCALA 

JN558 AAAGGATCCATGGAAAATCAAAATCAGGTCAAG (Fwd) lysQ / construction in 
pWH844 / DRaCALA 

JN559 TTTAAGCTTTTATTTTTCCCGACTCAAATCTACT (Rv) lysQ / construction in 
pWH844 / DRaCALA 

JN560 AAAGGATCCATGGGTTATGAATCTAATCGCTC (Fwd) kupA / construction in 
pWH844 / DRaCALA 

JN561 TTTGTCGACTTATGATTCTCCTTGATTTTCTTCT
G 

(Rv) kupA / construction in 
pWH844 / DRaCALA 

JN562 AAAGGATCCGTGGGTCAAGTACACTTACATAA (Fwd) kupB / construction in 
pWH844 / DRaCALA 
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JN563 TTTGTCGACTTAATGAGTTGCTGAAGCTTCT (Rv) kupB / construction in 
pWH844 / DRaCALA 

JN564 AAAGGATCCATGAACTTATTAAAAACAAACTGG
GA 

(Fwd) yncB / construction in 
pWH844 / DRaCALA 

JN565 TTTAAGCTTTTATTTTTCATAATATTTATCTAAAA
TCTCCATTTT 

(Rv) yncB / construction in 
pWH844 / DRaCALA 

JN566 TTTGGATCCATGAAAAAATTAAAAGTAACTTTAT
TGGCA 

(Rv) oppA / construction in 
pWH844 / DRaCALA 

JN567 AAAAAGCTTCTATTTGGTTGCCATCTTATCAGA (Fwd) oppA / construction in 
pWH844 / DRaCALA 

JN568 AAAGGATCCATGATAAAAGCAAAATATGATTGG
AAAG 

(Fwd) recJ / construction in 
pWH844 / DRaCALA 

JN569 TTTAAGCTTACGAAATTATTTTTCTAATAAATTTT
GATAAATTTC 

(Rv) recJ / construction in 
pWH844 / DRaCALA 

JN581 AGGTTATATTCATGACCTTTGGAAA (Fwd) relA check 

JN586 CGCTTGTTCGTGGTGTGATT (Fwd) internal fragment cdaA - L. 
lactis IL1403 

JN587 CGTAAGCTGAAATATGCCCATCA (Rv) internal fragment cdaA - L. 
lactis IL1403 

IQ668 AAAGGATCCAAGGTACCAATGAACGAAATTTTA
GAAAAAATAAAAGC 

(Fwd) yheB - L. lactis IL1403 
(pWH844) 

IQ669 TTTGGATCCCTGCAGTTATTTTAAATTATCTTGT
AATTCTTGCC 

(Rv) yheB - L. lactis IL1403 
(pWH844) 

IQ670 TTTGGATCCTTGGTACCAATGAACGAAATTTTAG
AAAAAATTAAAGCC 

(Rv) yheB - L. lactis NZ9000 
(pWH844) 

IQ671 AAAGGATCCCTGCAGTTATTTCAAGTTATCTTGT
AACTCTTG 

(Fwd) yheB - L. lactis NZ9000 
(pWH844) 

IQ682 AAAGAATTCATTAAAGAGGAGAAAATTAGAATG
GGTTATGAATCTAATCG 

(Fwd) RBS+kupA L. lactis 
IL1403 (pWH844) 

IQ683 AAAGAATTCATTAAAGAGGAGAAAACAAAAGTG
GGTCAAGTACAC 

(Fwd) RBS+kupB L. lactis 
IL1403 (pWH844) 

IQ684 AAAAGATCTAGGTTTTTATATTACAGCTCCAGG
A 

(Fwd) PcitM+cdaA from pIQ101 

IQ685 TTTAGATCTCTGGTATCTTTATAGTCCTGTCG (Rv) PcitM+cdaA from pIQ101 

IQ687 AAAGGATCCGTGTTACACAAAGCAGAGGGG (Fwd) kup - E. faecalis JH2-2 
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IQ688 TTTGTCGACATTTCTTCTATTTATGAACGATTCTT
TC 

(Rv) kup - E. faecalis JH2-2 

IQ696 AAACTGCAGGTTGAAGAAGGTTTTTATATTACA
GC 

(Fwd) hisTScf 

IQ697 TTTGTCGACGGTGGACAAATTTACATTAGTCTC (Rv ) hisTScf 

IQ706 ACAGGTACTGGCGCTAAAAAC (Fwd) External check (E. faecalis 
JH2-2 gdpP deletion) 

IQ707 GCTACGACATGAACCTTAATTTTC (Rv) External check (E. faecalis 
JH2-2 gdpP deletion) 

IQ708 CGGCTCAAACAAACCTAGATAC (Fwd) Internal check (E. faecalis 
JH2-2 gdpP deletion) 

IQ709 CTTTTGACATCGGGAATGATTTC (Rv) Internal check (E. faecalis 
JH2-2 gdpP deletion) 

6.5. Materials 

6.5.1. Buffers used in this work 

Table XVIII Buffers routinely used 
Solution Composition Concentration 

TAE 
Tris-HCl pH 8.0 40 mM 
EDTA 10 mM 
Acetic acid 0.057 % 

TE Tris-HCl pH 8.0 10 mM 
EDTA 1 mM 

Wash (W) Tris-HCl pH 7.5 100 mM 
NaCl 150 mM 

Lysis buffer 
Tris-HCl 30 mM 
Urea 8 M 
Adjust to pH 8.0  

Sample Buffer 

Tris-HCl pH 7.0 50 mM 
Dithiothreitol (DTT) 0.5 mM 
β-mercaptoethanol 4 % (v/v) 
SDS 2 % (p/v) 
Bromophenol blue 0,005 % (p/v) 
Glycerol 15 % (v/v) 

Running buffer 
Tris Base pH 8.3 25 mM 
Glycine (pH 8,3) 192 mM 
EDTA 1 mM 
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SDS 0,1 % (p/v). 

Buffer C 
Tris–HCl pH 7.4 50 mM 
NaCl 500 mM 
Glycerol 5 % 

PBS 

NaCl 8 g/l 
KCl 0.2 g/l 
Na2HPO4 1.44 g/l 
KH2PO4 0.24 g/l 
Adjust pH to 7.3  

CP1 buffer 

MgCl2 1 mM 
Tris-HCl pH 8.0 5 mM 
NaCl 230 mM 
DTT 0.5 mM 
Protease inhibitor tablet 1 unit 

CP2 buffer 

CP1 buffer 1X 
glycerol 10 % 
BSA 50 µg/ml 
EDTA 0.004 % 

Buffer E 

Tris-HCl pH 8.0 100 mM 
NaCl 1 mM 
EDTA 1 mM 
D-desthiobiotin 5 mM 

 

6.5.2. Chemicals 

Acetic acid ChemSolute/Merck 

Acryl:Bisacrylamide Roth 

L-Arabinose Sigma-Aldrich 

c-di-AMP Biolog 

Agar Roth 

Agarose PEQLAB/Genbiotech 

AgNO3 Roth 

Ammonium peroxydisulfate Roth 

Ampicillin Roth 

BCIP Sigma-Aldrich 

Biotinylated c-di-AMP Biolog 

Bromophenol blue Riedel-de Haën 

BSA AppliChem 

CaCl2 2H2O Roth 
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Casamino acids (CAA) Roth 

CDP-Star Roche 

Chloramphenicol Serva/Sigma-Aldrich 

Coomassie Brilliant Blue, G-250 Roth 

DAPI AppliChem 

D-desthiobiotin IBA 

DMSO Roth 

dNTPs Thermo Scientific 

Ethanol VWR Prolabo chemicals/Merck 

Formaldehyde Roth 

D-(+)-Glucose AppliChem 

L-glutamic acid Roth 

Glycerol Roth/Merck 

Glycine AppliChem/Sigma-Aldrich 

c-di-NMP Sigma-Aldrich 

HCl Biolog 

HDGreen Plus DNA stain Intas 

Imidazole Sigma-Aldrich 

Isopropyl β-D-1-thiogalactopyranoside PEQLAB/Sigma-Aldrich  

Kanamycin AppliChem 

KCl Roth/Merck 

KH2PO4 Roth/Merck 

K2HPO4 · 3H2O Roth/Merk 

KOH Roth/Merck 

λ-DNA Thermo Scientific 

β-mercaptoethanol Roth 

Methanol VWR Chemicals/Merck 

MgCl2 · 3H2O Roth/Sigma-Aldrich 

MgSO4 · 7H2O Roth/ Sigma-Aldrich 

MnCl2 · 4H2O Roth/ Sigma-Aldrich 

NaCl Roth/ Sigma-Aldrich 

Na2CO3 Roth/ Sigma-Aldrich 

Na2-EDTA · 2H2O Roth/ Sigma-Aldrich 

(NH4)2SO4 Fluka 

NaOH Roth/ Sigma-Aldrich 

Na2S2O3 · 5H2O Merck 
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Ni2+-NTA Sepharose Sigma-Aldrich 

NBT IBA ICN 

PageRulerTM Plus Protein Ladder Thermo Scientific 

Protease Inhibitor Tablet Sigma 

Sodium dodecyl sulfate (SDS) Roth 

Strep-Tactin Sepharose IBA 

D-(+)-Sucrose AppliChem/Sigma-Aldrich 

Tris Roth/Sigma-Aldrich 

Tryptone Roth/Oxoid 

L-Tryptophan AppliChem 

Tween-20 Sigma-Aldrich 

Yeast extract Oxoid 

X-Gal Sigma-Aldrich 

Xylene cyanol Merck 

6.5.3. Auxiliary material 

Centrifuge cups Beckmann 

Cuvettes (microlitre, plastic) Greiner 

Eppendorf tubes Greiner 

Falcon tubes Starstedt/ 

Glass beads 0.1 mm Roth 

Glass pipettes Brad 

Micropipettes Eppendorf 

Petri dishes Greiner 

Pipette tips Greiner 

Poly-prep chromatography columns BioRad 

PVDF membrane BioRad 

Nitrocellulose membrane GE Healthcare 

Vivaspin® turbo 15 Sartorius 

6.5.4. Instrumentation 

ÄKTAprime plus GE Healthcare 

Autoclave LTA 2x3x4 Zirbus Technology 
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AxioCam MRm Zeiss 

AxioImager M2 Microscope Zeiss 

Axioskop 40 Microscope Zeiss  

Gene Pulser Xcell and PC Module Bio-Rad 

Centrifuge Heraeus FRESCO 21 Thermo Scientific 

Centrifuge Heraeus Megafuge 16R Thermo Scientific 

Centrifuge Sorvall RC 6+ Thermo Scientific 

Centrifuge Sorvall WX Ultraseries Thermo Scientific 

Chrom. Data System LC-NetII/ADC Jasco 

ECPlan-NEOFLUAR 100X/1.3 Zeiss 

French pressure cell press Thermo Scientific 

Horizontal shaker 3006 GFL 

Microplate reader BioTek 

Ice machine MF 36  Scotsman 

Incubator Heraeus  Thermo Scientific 

Incubator shaker  Innova®44 series Eppendorf 

Labcycler  SensoQuest 

Magnetic stirrer KMO 2 basic  IKA-Werke 

Mini PROTEAN® System  BioRad 

Molecular Imager® Gel Doc™XR+ BioRad 

NanoDrop ND-1000  PeqLab Biotechnologie 

pH-meter Calimatic 766  Knick 

Plan Neofluar 100x/1.30  Zeiss 

Plan Neofluar 40x/0.75  Zeiss 

Power Pac Basic™  BioRad 

Press machine G.  Heinemann 

Scale CP22025  Sartorius 

Ultrospec 2100 pro spectroph. Amersham Biosciences 

UV Detector UV-2075Plus Jasco 

Sterile bench HERA safe KS12 Thermo Scientific 

HiLoad 16/600 Superdex 200 pg GE Healthcare 

ThermoStat Plus Eppendorf 

Tyssue Lyser II QIAGEN 

Vortex Schütt Labortechnik 
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Water desalination plant Millipore 

6.5.5. Commercial systems 

DNeasy® Blood & Tissue Kit QIAGEN 

NucleoSpin® Plasmid Macherey-Nagel 

peqGOLD Bacterial DNA kit PEQLAB 

QIAquick® PCR purification Kit QIAGEN 

Roti®-Quant Roth 

6.5.6. Enzymes and antibodies 

Alkaline phosphatase (AP) Thermo Scientific 

DNase I Roche 

Phusion DNA polymerase Thermo Scientific 

RNase A Roche 

Restriction enzymes Thermo Scientific 

T4-DNA ligase Thermo Scientific 

Anti-Rabbit IgG Promega 

6.6. Informatic tools 

6.6.1. Websites 

Tabla XIX Websites 

URL Provider Purpose 

http://biotools.nubic.northwestern.e

du/OligoCalc.html 
Northwestern University, USA Pimer properties analysis 

https://www.ncbi.nlm.nih.gov/pub

med/ 

National Institute of Health, 

Bethesda, USA 
Literature 

http://www.uniprot.org/ 

European Bioinformatic Institute 

(EMBL-EBI), Swiss Institute of 

Bioinformatic (SIB), Protein 

Information Resource (PIR) 

Protein information and 

analysis 
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http://www.insilico.uni-

duesseldorf.de/Lig_Input.html 
Düsseldorf University 

Insert:Vector ratio 

calculation in PCR 

https://www.expasy.org/ 
Swiss Institute of Bioinformatics 

(SIB) 
Protein topology prediction 

http://wlab.ethz.ch/protter/start/ Wollscheid Laboratory Protein topology prediction 

http://subtiwiki.uni-goettingen.de/ 
General Microbiology department, 

Göttingen University 
Literature about B. subtilis 

6.6.2. Softwares 

Table XX Softwares 

Software Provider Purpose 

Microsoft Office 2010 Microsoft Inc. Primer properties analysis 

ImageLab™ Software BioRad Image processing 

EndNote 
Clarivate 

analytics 
References 

SigmaPlot 
Systat software, 

Inc 
Plotting 

ChemoStar Imager Intas Image processing 

Image J 1.49p NIH Image processing 

AxioVision Rel. 4.8 Zeiss Image Uptake 

Geneious 7.0.2 Biomatters Ltd Bioinformatics 

 

6.7. Abbreviations 

Tabla XXI Abbreviations 

General abbreviations 

% (vol/vol)  % (volume/volume) 

Ampr Ampicillin Resistance 

APS Ammonium persulfate 

ATP adenosine triphosphate 

Au Absorption units 

Biovar. Biovariety 

BSA Bovine Serum Albumin 
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CAA Casaminoacids 

CE Crude Extract 

Cmr  Chloramphenicol resistance 

dH2O Deionized water 

DNA Deoxyribonucleic acid 

DNase DNA nuclease 

dNTP desoxyribonucleoside- triphosphate 

DTT Dithiothreitol 

EDTA N, N, N’, N’‐ ethylenediaminetetraacetic acid 

Emr Erithromycin resistance 

FDA Food and Drug Administration 

Fig. figure 

FT Flowthrough 

Fwd forward  

IPTG Isopropyl thiogalactopyranoside 

Kmr Kanamycin Resistance 

LAB Lactic Acid Bacteria 

LB Luria Bertani 

Max maximum 

MWM Molecular Weight Marker 

NAD Nicotinamide Adenine Dinucleotide (oxidized) 

NADH Reduced Nicotinamide Adenine Dinucleotide 

Ni2+-NTA nickel-nitrilotriacetic acid 

NICE Nisin Control Expression System 

NIH National Institute of Health 

Nis Nisin 

NTP ribonucleoside triphosphate 

ODx Optical density, measured at the wavelength λ = x nm 

P promoter 

PBS Phosphate buffer saline 

PCR Polymerase Chain Raction 

pH Power of hydrogen 

rbs Ribosome Binding Site 

rpm Revolutions per minute 

Rv Reverse 
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SDS sodium dodecyl sulfate 

SDS‐PAGE polyacrylamide gel electrophoresis with SDS 

Sn Supernatant  

Spp Species 

TEMED N,N,N’,N’- tetramethylethyldiamine 

Tris tris(hydroxymethyl)amino- methane 

WT wild type 

X-Gal 5-bromo-4-chloro- indolylgalactopyranoside 

Units 

A Ampere 

bp base pairs 

Da Dalton 

g gram 

h hour 

Lt. liter 

m meter 

M molar 

min minute 

Mol mol 

V volt 

ºC degree Celsius 

Prefixes 

K kilo 

m milli 

µ micro 

n nano 

Nucleosides 

A adenine 

C cytosine 

G guanine 

T thymine 

U uracil 

Amino acids nomenclature 

A Ala 

C Cys 
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D Asp 

E Glu 

F Phe 

G Gly 

H His 

I Ile 

K Lys 

L Leu 

M Met 

N Asn 

P Pro 

Q Gln 

R Arg 

S Ser 

T Thr 

V Val 

W Trp 

Y Tyr 
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