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Abstract A robust estimator for a wide family of mixtures of linear regression is pre-
sented. Robustness is based on the joint adoption of the Cluster Weighted Model and
of an estimator based on trimming and restrictions. The selected model provides the
conditional distribution of the response for each group, asin mixtures of regression,
and further supplies local distributions for the explanatory variables. A novel version
of the restrictions has been devised, under this model, for separately controlling the
two sources of variability identified in it. This proposal avoids singularities in the
log-likelihood, caused by approximate local collinearityin the explanatory variables
or local exact fits in regressions, and reduces the occurrence of spurious local maxi-
mizers. In a natural way, due to the interaction between the model and the estimator,
the procedure is able to resist the harmful influence of bad leverage points along the
estimation of the mixture of regressions, which is still an open issue in the literature.
The given methodology defines a well-posed statistical problem, whose estimator ex-
ists and is consistent to the corresponding solution of the population optimum, under
widely general conditions. A feasible EM algorithm has alsobeen provided to obtain
the corresponding estimation. Many simulated examples andtwo real datasets have
been chosen to show the ability of the procedure, on the one hand, to detect anoma-
lous data, and, on the other hand, to identify the real cluster regressions without the
influence of contamination.
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1 Introduction

Mixture models provide a quite flexible approach to statistical modeling of a wide va-
riety of random phenomena, whenever we can reasonably suppose that the observa-
tions arise from unobserved groups in the population. Underthis general framework,
the present paper provides a new proposal in the family of finite mixtures of robust
regressions (DeSarbo and Cron, 1988; de Veaux, 1989).

Assume we are provided with two quantitative random variablesX andY : X
is a vector ofexplanatoryvariables,Y is a responseor outcomevariable, and the
dependence betweenY andX may vary among the different underlying groups. By
adopting the cluster-weighted approach, we allow different scatter structures in each
group, both in the marginal distribution ofX and in the conditional distribution of
Y |X = x, as it is required by many observed dataset. The Cluster Weighted Model
(CWM), introduced in Gershenfeld (1997), decomposes the joint p.d.f. of (X, Y ) in
each component of the mixture as the product of the marginal and the conditional
distributions.

Due to its very definition, the CWM estimator is able to take into account different
distributions for the explanatory variables across groups, so overcoming an intrinsic
limitation of mixtures of regression, where they are implicitly assumed equally dis-
tributed. However, due to the possible presence of contaminating data (background
noise, pointwise contamination, unexpected minority patterns, etc.) a small frac-
tion of outliers could severely affect the model fitting. Among the available stan-
dard techniques in robust estimation, those based on removing part of the data - and
called impartial trimming procedures- present a good performance, often being an
obligatory benchmark to compare new estimators. Successful robust procedures of
this kind are, for instance, the LTS for regression models (Rousseeuw and Leroy,
1987), the trimmed k-means (Cuesta-Albertos et al., 1997),the TCLUST for cluster-
ing (Garcı́a-Escudero et al., 2008), and the robust clusterwise linear regression mod-
els (Garcı́a-Escudero et al., 2010). Here, in the frameworkof mixtures of regressions,
denoting byx andy the realizations ofX andY , standard diagnostic tools can eas-
ily identify outliers ony that fall in the range of values ofx, while the detection of
outliers on bothx andy, that may act as bad leverage points, is much more problem-
atic. Many trimming approaches are effective for the first type of outliers, but they
fail when dealing with bad leverage points. In this paper, weexploit the CWM nice
feature of modeling theX marginal distribution, to detect dangerous outliers onx. At
the same time, we also use the regression structure amongX andY to deal with out-
liers ony. In this way, by robustifying the CWM estimation, we can simultaneously
handle both type of outliers with the same formal approach. As usual when using
trimming, only the total fraction of discarded observations must be fixed in advance.

A further issue with ML estimation for CWMs is the unboundedness of the
log-likelihood function, a well-known aspect pointed out in Day (1969) for Gaus-
sian mixtures. To overcome this drawback, Hathaway (1985) introduced the use of
constrained variance estimation in univariate mixture modeling. These restrictions
have been extended to the multivariate case in different ways by McLachlan and Peel
(2004), Ingrassia and Rocci (2007) and Garcı́a-Escudero etal. (2008). By adopting
restrictions also for CWM, we arrive at setting a well-posedoptimization problem.
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Additionally, a restricted approach not only avoids singularities, it also discards non-
interesting local maximizers of the objective function (Garcı́a-Escudero et al., 2014b).
We will discuss in detail how approximate local collinearity in the explanatory vari-
ables, and approximate local exact fits in the regressions may cause, indeed, serious
troubles in CWMs.

The above considerations give rise to the robust estimationof the trimmed Clus-
ter Weighted Restricted Model (trimmed CWRM) presented hereafter. It includes an
original application of the constraints, which takes into account the specific features
of CWM and controls the relative variability between components for the sources
of variability in the model corresponding to: i) the explanatory variables, and ii) the
regression errors. The CWM, endowed with restrictions and trimming, becomes a
very competitive robust estimator for mixtures of multipleregression, with optimal
statistical properties.

We have organized the paper as follows. In Section 2 we recallthe main ideas
about the CWM. In Section 3 we present the trimmed CWRM, and introduce a feasi-
ble algorithm for its practical implementation. Then, we state the central findings of
the paper, i.e. the existence and the strong consistency of the new estimator. Section
4 provides a discussion on the effects of constraints and trimming, along with some
illustrative examples. The application of the proposed methodology to two real data
sets is shown in Section 5. Finally, Section 6 contains some concluding remarks and
sketches future research. Proofs and technical lemmas needed for our main results
are relegated in the Appendix.

2 Cluster Weighted Modeling

The Cluster Weighted Model (CWM) has been proposed in the context of media tech-
nology, to build a digital violin with traditional inputs and realistic sounds (Gershenfeld,
1997; Gershenfeld et al., 1999); in Wedel (2000). CWMs are referred to as the fam-
ily of saturated mixture regression models. In Ingrassia etal. (2012), CWMs have
been reformulated in a statistical setting showing that they are a general and flexible
family of mixture models. In fact, Ingrassia et al. (2012) show that Gaussian CWM
includes, as special cases, finite mixtures of distributions and finite Mixtures of Re-
gression models.

Let (X, Y ) be a pair of random variables, namely a vector of covariatesX and a
response variableY defined onΩ with values inX ×Y ⊆ R

d ×R and{(xi, yi)}
n
i=1

represents a i.i.d. random sample of sizen, drawn from(X, Y ). Let p(x, y) denote
the joint density of(X, Y ), and suppose thatΩ can be partitioned intoG groups, say
Ω1, . . . , ΩG. CWMs are mixture models having density of the form

p(x, y; θ) =

G∑

g=1

p(y|x; ξg)p(x;ψg)πg, (1)

wherep(y|x; ξg) is the conditional density ofY givenx in Ωg (depending on some
parameterξg), p(x;ψg) is the marginal density ofX in Ωg (depending on some pa-

rameterψg) andπg is the weight ofΩg in the mixture (withπg > 0 and
∑G

g=1 πg =
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1). Furthermore, we assume that in each groupΩg, the conditional expectation of
Y givenX = x, is a functionm(·) of x depending on some parametersβg, that is
E(Y |x, Ωg) = m(x;βg).

In this work, we have focused on models of type (1) with Gaussian components.
Thusp(x;ψg) = φd(x;µg,Σg), whereφd(·;µg,Σg) denotes the density of thed-
variate Gaussian distribution with mean vectorµg and covariance matrixΣg. More-
over, we have assumed that the conditional relationship betweenY andx in the g-
th group can be written asY = b

′
gx + b0g + εg whereεg ∼ N(0, σ2

g). Hence,
X|Ωg ∼ Nd(µg,Σg) andY |x, Ωg ∼ N(b′

gx + b0g, σ
2
g), so that model (1) special-

izes to:

p(x, y; θ) =

G∑

g=1

φ(y;b′
gx+ b0g, σg)φd(x;µg,Σg)πg , (2)

which defines thelinear Gaussian CWM. We notice here that definition (2) corre-
sponds to a mixture of regressions, with weightsφd(x;µg,Σg)πg depending also
on the covariate distributions in each componentg for g = 1, . . . , G. Finally, in the
framework of model-based clustering, each unit is assignedto one group, based on
the maximum a posteriori probability. The consideration of(2) yields to the use of
(log-)likelihood target function to be maximized as

n∑

i=1

log

[
G∑

g=1

φ(yi;b
′
gxi + b0g, σ

2
g)φd(xi;µg,Σg)πg

]
. (3)

For sake of simplicity, we will later use the notation

Dg(x, y; θ) = φ(y;b′
gx+ b0g, σ

2
g)φd(x;µg,Σg)πg

andD(x, y; θ) =
∑G

g=1 Dg(x, y; θ), where the set of all parameters of the model
is denoted byθ, and, such that (3) is simply rewritten as

∑n
i=1 log[D(xi, yi; θ)].

Additionally, the linear Gaussian CWM will be many times simply referred to as
CWM.

2.1 Two problems about CWM

The estimation of the (linear Gaussian) CWM suffers from a serious lack of robust-
ness, like it happens when using many other models based on normal assumptions
and fitted through ML estimators (see, e.g., Huber, 1981). Itis very important to be
aware of this issue, due to the common presence of noise sources in data. To illus-
trate this problem, a simulated data set ofn = 180 units (referred to asSimdata1
hereafter), has been generated from the CWM withG = 2 and 90 observations from
each component. Then we added 20 contaminating observations as either background
noise, see Figure 1(a), or pointwise contamination around the point(15, 20), see Fig-
ure 1(b). The true underlying regression lines (prior to contamination) are represented
with dotted lines, and we can see the dangerous effects of outliers on model fitting
for the standard CWM.
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Fig. 1 Simdata1: (a) original data plus background noise and CWM fitted; (b) original data plus pointwise
contamination and CWM fitted; (c) and (d) show the fitted trimmed CWRMs withα = 0.1, cX = cε =
20 to these two data sets. The dotted lines represent the true regression lines to be estimated and black
circles are the trimmed observations (here and in all the figures).

Another important issue concerns the unboundedness of the target function in (3)
when no constraints are imposed on the scatter parameters. In this case, the defining
problem is ill-posed because the loglikelihood in (3) tendsto∞ when eitherµg = xi

and|Σg| → 0 or yi = b
′
gxi+b0g andσ2

g → 0. Moreover, as a trivial consequence, the
EM algorithms often applied to fit a CWM can be trapped into non-interesting local
maximizers, called “spurious” solutions, and the result ofthe EM algorithm strongly
depends on its initialization.

Spurious solutions may be due to very localized patterns in the explanatory vari-
ables, as shown in Figure 2(a), by considering a second simulated data set (Sim-
data2). Here, data concernn = 200 observations andd = 2 explanatory variables.
The dataset has been built as follows: two sets of 90 observations for the explanatory
variableX has been drawn from two bivariate normal distributions, centered at(2, 2)
and(4, 4), respectively. Then, 20 almost collinear observations have been added to
the sample, close to the second component. The values for theresponse variableY
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have been generated by using the same linear function (for both components) with
equally distributed error terms. We can see in Figure 2(a) that the standard fit of the
CWM yields to the determination of a first spurious componentwith the 20 almost
collinear observations and a second component joining together the two groups, with
90% of the observations.

Sometimes spurious solutions may be also due to localized patterns of obser-
vations, where an approximate “exact fit” for a small number of observations can be
obtained. Figure 3 shows a third simulated data set (Simdata3) with n = 200 observa-
tions, where 196 of them have been generated from a CWM withG = 2 components
(98 observations from each component). A very small fraction of almost collinear
units (only 4 observations) on the(X, Y ) variables have been added, with a roughly
equal value (around0) for the response variable. These values, for instance, could be
due to a bad performance of the tool used to measure the response variable. It may be
seen that a fitted component including only these almost collinear observations could
arise, along the EM estimation, because a small value of one of the σ2

g parameters
yields to higher values of the log-likelihood. Then, the twomain linear structures
accounting for98% of the data points would be artificially joined together.

To overcome the previous issues, in the next section we propose a robust method-
ology by incorporating trimming and constraints to the CWM.

3 Trimmed Cluster Weighted Restricted Modeling

3.1 Problem statement

For a given sample ofn observations, the trimmed CWRM methodology is based on
the maximization of the following log-likelihood function

n∑

i=1

z(xi, yi) log

[
G∑

g=1

φ(yi;b
′
gxi + b0g, σ

2
g)φd(xi;µg,Σg)πg

]
, (4)

wherez(·, ·) is a 0-1 trimming indicator function that tell us whether observation
(xi, yi) is trimmed off (z(xi, yi)=0), or not (z(xi, yi)=1). A fixed fractionα of ob-
servations can be unassigned by setting

∑n

i=1 z(xi, yi) = [n(1 − α)]. Hence the
parameterα denotes the trimming level. Analogous approaches based on trimmed
mixture likelihoods can be found in Neykov et al. (2007), Gallegos and Ritter (2009)
and Garcı́a-Escudero et al. (2014b).

Moreover, we introduce two further constraints on the maximization in (4). The
first one concerns the set of eigenvalues{λl(Σg)}l=1,...,d of the scatter matricesΣg

by imposing

λl1(Σg1) ≤ cXλl2(Σg2) for every1 ≤ l1 6= l2 ≤ d and1 ≤ g1 6= g2 ≤ G.
(5)

The second constraint refers to the variancesσ2
g of the regression error terms, by

requiring
σ2
g1

≤ cεσ
2
g2

for every1 ≤ g1 6= g2 ≤ G. (6)
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The constantscX andcε, in (5) and (6) respectively, are finite (not necessarily equal)
real numbers, such thatcX ≥ 1, cε ≥ 1. They automatically guarantee that we
are avoiding the|Σg| → 0 andσ2

g → 0 cases. These constraints are an extension
to CWMs of those introduced in Ingrassia and Rocci (2007), Garcı́a-Escudero et al.
(2008) and Greselin and Ingrassia (2010) and go back to Hathaway (1985). The main
difference is the asymmetric and different treatment givenby the constraints, when
modeling the marginal distributionX or when modeling the regression error terms,
providing high flexibility to the model.

Let us consider now the effects of trimming in the two data sets derived from
Simdata1. In Figure 1(c) and (d) we can see that settingα = 0.1 allows to restore the
true structure of the data, by discarding the outlying observations, both in the case of
background noise and pointwise contamination. Hence, trimming modifies the ML
estimation in such a way that it is no more influenced by potential outliers and drives
it far from the previous bad results.

Commenting the use of constraints, we can see how a moderate choice ofcX for
Simdata2in Figure 2(b) allows to correctly detect theG = 2 main groups and to
avoid the disturbing effect of the spurious patterns in the explanatory variables.

Additionally, we can see that a moderate choice ofcε for Simdata3would also
allow to correctly detect theG = 2 main groups. Moreover, we can see in Figure
3(a) how only consideringα = 0.02 trimming level (trying to discard the 4 outlying
observations inSimdata3) does not solve the problem at all without the consideration
of a moderate value ofcε.

A detailed discussion about the role played byα, cX andcε is given in Section 4.

3.2 Theoretical results

The problem stated in Section 3.1 admits a population counterpart. LetP = P(X,Y )

be the probability measure inRd+1 induced by the joint distribution of the random
variablesX andY and letEP (·) denote the expectation with respect toP . LetΘcX ,cε

denote hereafter the set of all possibleθ which do satisfy constraints (5) and (6)
for given constantscX andcε. With this notation, the population problem is defined
through the double maximization ofEP

[
logD(X, Y ; θ)IA(X, Y )

]
over all possible

θ ∈ ΘcX ,cε , and over all possible subsetsA ⊂ R
d+1, with P [A] ≥ 1 − α. As usual,

IA(·) denotes the indicator function of setA. We will see that the optimal setA can
be determined directly fromθ. In more detail, fixedθ, and denoting by

R(θ, P ) = sup
u

{
u : P [(X, Y ) : D(X, Y ; θ) ≥ u] ≥ 1− α

}
,

thenA is given byA(θ) = A(θ, P ) = {(x, y) : D(x, y; θ) ≥ R(θ, P )}. Therefore,
we reduce the population problem to that of maximizing

L(θ, P ) = EP

[
logD(X, Y ; θ)I

A(θ)(X, Y )
]
, onθ ∈ ΘcX ,cε (7)

Note that we recover the original sample problem introducedin Section 3.1,
just by takingP equal to the empirical measurePn =

∑n

i=1 δ{(xi,yi)} and setting
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Fig. 2 Simdata2: Scatter plot matrix. (a) Almost collinear observations inthe explanatory variables which
are found as a cluster by CWM whenG = 2; (b) Results of fitting the trimmed CWRM withα = 0,
cX = cε = 20.

z(xi, yi) = IA(xi, yi) for the optimal setA. The way that the optimal setA is ob-
tained fromθ will be also used in the C-steps of the algorithm to be presented in
Section 3.3.

In this section, we present results guaranteeing the existence of the solutions for
both the sample and the population problem. Moreover, we state the consistency
of the sample solution to the population one. These results are derived under very
mild assumptions on the underlying distributionP . In fact, no moment conditions
are needed onP and, thus, the proposed methodology can be applied even to heavy-
tailed distributions. We will only exclude forP some “pathological” cases that are
clearly non appropriate, namely:
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Fig. 3 Simdata3:(a) Results of the trimmed CWRM fit withG = 2, α = 0.02 andcε = 1010 (almost
unrestricted) showing the detection of a spurious component due to an approximate “local exact fit” in one
of the fitted regressions; (b) results withα = 0.02, cX = cε = 20.

(PR) The support ofP is not concentrated onG regression hyperplanes and
the support ofX is not concentrated inG points inR

d, after removing a
probability mass equal toα,

where we say thatS ⊂ R
d+1 is concentrated in a “regression hyperplane” if an

“exact fit” property holds for someb0 andb in such a way thaty = b
′
x + b0 for

all (x, y) ∈ S. The previous condition holds for absolutely continuous distributionP
as well as empirical measuresPn obtained from absolutely continuous distributions
whenn is large enough.

Proposition 3.2.1 If (PR) holds forP , then there existsθ ∈ ΘcX ,cε maximizing
L(θ, P ).

The underlying distributionP is typically unknown and we often only rely on the
result of a random sample fromP . Let θ̂n denote the solution of the sample problem
for a random sample of sizen. If the population problem has a unique solutionθ0,
then the following property states thatθ̂n should be close toθ0 whenn is large.
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Proposition 3.2.2 Assume thatP be an absolutely continuous distribution with strictly
positive density function satisfying(PR) and thatθ0 is the unique maximizer of
L(θ, P ) for θ ∈ ΘcX ,cε . If {θ̂n}∞n=1 ⊂ ΘcX ,cε is a sequence of maximizers of(7)
whenP is replaced by the sequence of empirical measures{Pn}

∞
n=1, referred to a

sequence of i.i.d. samples fromP , thenθ̂n → θ0 almost surely.

Note that, apart from the (PR) condition, a uniqueness condition is also needed to
get consistency. It is also important to note that the parameters obtained by solving
the maximization (7) do not necessarily coincide with the parameters of the mixture
components appearing in the definition of the (uncontaminated) CWM. However, we
conjecture that these two different types of parameters are“close” each other when-
ever the contamination is not very overlapped with the most interior regions of the
mixture components and whenα, cX andcε are “properly” chosen. However, estab-
lishing results formalizing this idea is not an easy task (ashappens even in simpler
clustering approaches).

Although the proofs of these theoretical results, given in the Appendix, are re-
lated to previous works in Garcı́a-Escudero et al. (2008) and Garcı́a-Escudero et al.
(2014a), several specific technicalities must be sorted outfor the present case. In fact,
these technicalities are far from being straightforward and mainly have to do with
how to deal with the effect of “local collinearities” in the regression coefficients.

3.3 Algorithm

The constrained maximization of the trimmed log-likelihood in (4) on its parame-
ters is not an easy task. In this section, we present a feasible algorithm obtained by
combining the EM algorithm for CWM with that (with trimming and constraints)
introduced in Garcı́a-Escudero et al. (2014b) (see, also, Fritz et al., 2013):

1. Initialization: The algorithm is initialized several times by selecting different ini-
tial θ(0) = (π

(0)
1 , ..., π

(0)
G ,µ

(0)
1 , ...,µ

(0)
G ,Σ

(0)
1 , ...,Σ

(0)
G , b

0(0)
1 , ..., b

0(0)
G ,b

(0)
1 , ...,

b
(0)
G , σ

2(0)
1 , ..., σ

2(0)
G ). After drawingd + 2 distinct observations for each group,

we compute their sample means and sample covariance matrices as initial values
for µ(0)

g andΣ(0)
g . Additionally,G ordinary least square regressions are carried

out to obtain initialb0(0)g andb(0)
g regression parameters (G-inverse matrices are

used if needed). The mean square errors of theG regressions are used to de-
termine the initialσ2(0)

g values. IfΣ(0)
g and/orσ2(0)

g do not satisfy the required
constraints (5) and (6) then the procedure that will be described in Step 2.2 is
applied to enforce them. Finally, weightsπ(0)

1 , ..., π
(0)
G in the interval(0, 1) and

summing up to 1 are randomly chosen.
2. Trimmed EM steps:Starting from each random initializationθ(0), the following

steps are alternatively executed until convergence or until a maximum number of
iterations is reached. The implementation of trimming is clearly related to how
“concentration” steps (C-steps) are carried out to implement high-breakdown ro-
bust methods (see, e.g., Rousseeuw and Van Driessen, 1999).
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2.1. E- and C-steps:Let θ(l) be the parameters at iterationl, we computeDi =
D(xi, yi; θ

(l)) for i = 1, ..., n. After sorting these values, the notationD(1) ≤
.... ≤ D(n) is adopted. Let us consider the subset of indicesI ⊂ {1, 2, ..., n}

defined asI =
{
i : D(i) ≥ D([nα])

}
. To update the parameters, we will

take into account only the observations with indices inI, by settingτ (l)ig =

Dg(xi, yi; θ
(l))/D(xi, yi; θ

(l)) for i ∈ I andτ (l)ig = 0 for i /∈ I. Note that

τ
(l)
ig , for the observations with indices inI, are the usual “posterior probabili-

ties” in the standard EM algorithm.
2.2. M-step:From theseτig values, we update the weight and mean parameters as

π(l+1)
g =

n∑

i=1

τ
(l)
ig /[n(1− α)] and µ(l+1)

g =

n∑

i=1

τ
(l)
ig xi

/ n∑

i=1

τ
(l)
ig .

The other parameters (regression and scatter ones) are initially updated by

Tg =
n∑

i=1

τ
(l)
ig (xi − µ

(l+1)
g )(xi − µ

(l+1)
g )′

/ n∑

i=1

τ
(l)
ig ,

b
(l+1)
g =




n∑

i=1

τ
(l)
ig xix

′
i

/ n∑

i=1

τ
(l)
ig −

(
n∑

i=1

τ
(l)
ig x

′
i

/ n∑

i=1

τ
(l)
ig

)2



−1

×

(
n∑

i=1

τ
(l)
ig yix

′
i

/ n∑

i=1

τ
(l)
ig −

n∑

i=1

τ
(l)
ig yi

/ n∑

i=1

τ
(l)
ig ·

n∑

i=1

τ
(l)
ig x

′
i

/ n∑

i=1

τ
(l)
ig

)
,

b0(l+1)
g =

n∑

i=1

τ
(l)
ig yi

/ n∑

i=1

τ
(l)
ig − (b(l+1)

g )′
n∑

i=1

τ
(l)
ig x

′
i

/ n∑

i=1

τ
(l)
ig

s2g =

n∑

i=1

τ
(l)
ig

(
yi − (b(l+1)

g )′xi − b0(l+1)
g

)2/ n∑

i=1

τ
(l)
ig .

Along the iterations, due to the updates, it may happen that theTg matrices
and thes2g values do not satisfy the required constraints for the scatter param-
eters.
To perform a constrained maximization of the sample covariance matrices, the
singular-value decomposition ofTg = U ′

gEgUg is considered, withUg being
an orthogonal matrix andEg = diag(eg1, eg2, ..., egd) a diagonal matrix. Af-
ter defining the truncated eigenvalues as[egl]

X
m = min

(
cX ·m,max(egl,m)

)
,

with m being some threshold value, then the scatter matrices are finally up-

dated asΣ(l+1)
g = U ′

gE
∗
gUg,with E∗

g = diag
(
[eg1]

X
mX

opt
, [eg2]

X
mX

opt
, ..., [egp]

X
mX

opt

)

andmX
opt minimizing the real valued function

m 7→

G∑

g=1

π(l+1)
g

d∑

l=1

(
log
(
[egl]

X
m

)
+

egl
[egl]Xm

)
. (8)

Analogously, in case that thes2j parameters do not satisfy the constraint (6),
we consider the truncated variances[s2g]

ε
m = min

(
cε ·m,max(s2g,m)

)
. The
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variances of the error terms are finally updated asσ
2(l+1)
g = [s2g]

ε
mε

opt
, with

mε
opt minimizing the real valued function

m 7→

G∑

g=1

π(l+1)
g

(
log
(
[s2g]

ε
m

)
+

s2g
[s2g]

ε
m

)
. (9)

Proposition 3.2 in Fritz et al. (2013) shows thatmX
opt andmε

opt can be obtained,
respectively, by evaluating2dG+ 1 times the real valued function in (8) and
2G+ 1 times the real valued function in (9).

3. Choosing the best obtained solution:When the stopping criterium has been met,
the value of the target function (4) is computed. The parameters yielding the high-
est value of the target function are returned as the final output of the algorithm.

4 Constraints and trimming

4.1 Effect of constraints

The parametercX controls the differences among scatters for the normal distributions
used as mixture components when modeling the vector of covariatesX. It also con-
trols the deviations from sphericity in the multivariate case (d > 1). As cX < ∞, we
are avoiding that|Σg| becomes arbitrarily small, assuring a bounded contribution of
φd(xi;µg,Σg) to the log-likelihood function in (4). Moreover, a moderatevalue of
cX avoids the detection of spurious solutions, like in the caseexemplified in Figure
2. If we setcX = 1, then we force the covariance matrices to satisfy the relation
Σ1 = ... = ΣG = aId with a > 0 andId being the identity matrix inRd. On the
other hand, the larger the value ofcX , the larger the differences among covariance
matrices modeling the mixture components ofX could be.

For instance, consider the simulated dataSimdata4in Figure 4, which is modeled
according to eithercX = 1 or cX = 20, see Figure 4,(a) and (b) respectively. Note
that the component variances (Σ1 andΣ2 are positive real values becaused = 1)
are forced to be equal, i.e.:Σ1 = Σ2 in (a), whilemax{Σ1/Σ2,Σ2/Σ1} ≤ 20
holds in (b). The densities of the normal distributions considered in the fitted mixture
to model theX distribution are also represented below, to illustrate their variances.

Our recommendation is to takecX > 1 without selecting huge values for it. A
sensible choice, for instance, iscX = 20, as it worked fairly well in most of the cases
we observed in practice, if the explanatory variables are insimilar scales.

On the other hand, the constantcε represents the maximum ratio among the vari-
ances of the regression error terms. Even if the ML estimation would be attracted
by solutions in which someσ2

g → 0, due to their high contribution by means of
φ(yi;b

′
gxi + b0g, σ

2
g) to the maximization of the log-likelihood in (4), a choice of

cε < ∞ avoids that the algorithm fall into singularities. Enforcing a valuecε = 1 im-
poses the strongest constraintσ2

1 = ... = σ2
G. For instance, let us considerSimdata5

in Figure 5, which has been generated from a CWM withσ2
1 = 0.52 andσ2

2 = 0.12

(σ2
1/σ

2
2 = 25). The results of fitting the trimmed CWRM for this data set arealso

shown with bands. Indeed, in specific applications, it is useful to take into account
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Fig. 4 Simdata4: (a) Results forcX = 1, that forces equal scatters in the marginal distribution (the plotted
densities, in the lower part of the figure, represent the normal fitted components); (b) Results forcX = 20,
that allows different scatters. In both cases,α = 0.1 andcε = 20 have been chosen.

such bands, centered at the fitted regression lines and with amplitudes given by±2σg,
i.e. twice the estimated standard deviations of the regression error terms. A first so-
lution corresponding tocε = 1 < 25 is given in Figure 5 (a), while a second one
corresponding tocε = 50 > 25 is given in panel 5(b). Notice the different amplitude
of these bands. However, although different scatters can beeffective in many cases, a
huge difference between them is not recommended, as it can lead to fit a few almost
collinear observations.

An important feature of the proposed methodology is to provide a different con-
straint for the eigenvalues of the matricesΣg and for the variances of the error terms
σ2
g . This allows to deal with different scales in the explanatory and response vari-

ables, which is common in many applications. On the other hand, the procedure is
not fully affine equivariant in the explanatory variables, due to the considered con-
straints. However, if needed, it is close to affine equivariance for large values ofcX .

It is well known, see e.g. Ingrassia et al. (2012), that the linear Gaussian CWM
may be seen as included in the finite mixture of Gaussian distributions when embed-
ding it into ad+1 dimensional space. Also in the latter case, constraints areneeded to
avoid singularities and to reduce the detection of spurioussolutions. However, con-
straints giving a completely symmetric handling of the variability for the explana-
tory variables and for the error terms are not always the bestidea. For instance, as
a way to provide robustness, we could have considered the TCLUST methodology
(Garcı́a-Escudero et al., 2008) in thed+ 1 dimensional space which needs the spec-
ification of a constantc ≥ 1 to constraint the maximal ratio among theG × (d + 1)
eigenvalues. Unfortunately, Mixture of Regressions problems often require very high
values for the constantc which do not always guarantee TCLUST to be correctly
protected against spurious solutions.
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Fig. 5 Simdata5: (a) Results forcε = 1, forcing equal variances in the error terms. (b) Results fora larger
cε = 20 value. In both cases,α = 0.1 andcX = 20 have been chosen and bands of amplitude±2σg are
shown.

To illustrate the previous claims, let us considerSimdata6, of sizen = 200,
where 180 observations have been generated from a CWM with two groups, and 20
observation have been included as concentrated noise. The data set is plotted in Figure
6, where panel (a) shows the results of applying the TCLUST methodology with
c = 1.5 in dimensiond+ 1 = 2. We can see that the results are not satisfactory (the
analogous of the regression lines are the axes corresponding to the largest eigenvalue
of theΣg matrices) and, therefore, higherc values seem to be needed. But, higherc
values often yield the detection of undesired spurious solutions. For instance, panel
(b) shows the results of applying TCLUST withc = 500 with the detection of a
cluster only containing all noisy observations. On the other hand, we can see that a
proper fit is obtained in panel (c), when applying the trimmedCWRM with cX =
cε = 1.5.

It is worthy to note that asymmetric constraints also underlies some parameteriza-
tions already proposed in closely related problems as, for instance, in Dasgupta and Raftery
(1998) where the eigenvalues of the scatter matrices corresponding to the(d + 1)-
dimensional fitted mixture components are requested to beλg × {1, α, ..., α} with
α << 1.

4.2 Effect of trimming

We start from the well-known Mixture of Regressions model and first consider an
easier trimming approach based on the maximization of

n∑

i=1

z(xi, yi) log

[
G∑

g=1

φ(yi;b
′
gxi + b0g, σ

2
g)πg

]
, (10)
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Fig. 6 Simdata6:(a) TCLUST results withc = 1.5 andα = 0.1; (b) TCLUST results withc = 500 and
α = 0.1; (c) Trimmed CWRM fitting results withcX = cε = 1.5 andα = 0.1.

with
∑n

i=1 z(xi, yi) = [n(1 − α)] and imposing a constraint on the variances of the
error termsσ2

g1
/σ2

g2
≤ cε for 1 ≤ g1, g2 ≤ G. Notice that, in this case, the distri-

bution ofX is not taken into account, hence no trimming related to theX model is
considered. This straightforward robust extension will bereferred to as trimmed Mix-
ture of Regressions (Neykov et al., 2007; Garcı́a-Escuderoet al., 2010). Apart from
the constraints, this approach reduces to the traditional Mixture of Regressions when
α = 0, and leads back to the widely-applied Least Trimmed Squares(LTS) method
(see, e.g., Rousseeuw and Leroy, 1987) whenG = 1 andα > 0. It protects against
large values of(yi − b

′
gxi − b0g)

2, hence it is useful to cope with many cases of data
contamination which cause the parametersbg “breakdown”, in absence of trimming.
However, it does not prevent the model estimation from the effects of “bad” leverage
points, due to outliers inx. As it happens in ordinary least squares regression, a few
bad leverage points could provoke very disappointing results.
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For instance, consider the simulated datasetsSimdata7andSimdata8in Figure
7. Both datasets are made of 180 observations drawn from a CWMwith two groups
and with 20 noisy observations generated by two different contamination mecha-
nisms. The leftmost panels in Figure 7,(a) and (d) show the results of fitting the stan-
dard CWM; the central panels (b) and (e) concern trimmed Mixture of Regressions
(α = 0.1) and, finally, the rightmost panels (c) and (f) illustrate the proposed trimmed
CWRM (α = 0.1). We can see that the fit of the standard (untrimmed) CWM is
strongly affected by the contamination. Trimmed Mixtures of Regression are able to
resist the type of contamination in (b) but cannot afford outliers acting as bad lever-
age points, as in (e). On the other hand, the use of trimmed CWRM, as shown in (c)
and (f), resists both types of contamination. To avoid an unfair comparison, we have
not included remarkable differences in theX distributions for the two main groups
(i.e., prior to contamination), but we can see in Figure 1 howthe trimmed CWRM is
able to deal with components having different marginal distributions.
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Fig. 7 Simdata7in the upper panels (a)-(c) andSimdata8in the lower panels (d)-(f). (a) and (d) fitting
the (untrimmed) CWM; (b) and (e) fitting trimmed Mixture of Regressions; (c) and (f) applying trimmed
CWRM including a10% of contamination. In particular,α = 0.1 andcε = 20 are used in (b), (c), (e)
and (f), whilecX = 20 is used in (c) and (f).

The problem of leverage points has been addressed in Robust Regression by
down-weighting influential observations as, for instance,GM-estimators do (Krasker and Welsch,
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1992). In the context of clusterwise regression, Garcı́a-Escudero et al. (2010) pro-
posed a “second trimming”, by fixing two trimming parametersα1 andα2. Parameter
α1 controls the effect of outliers corresponding to large values of(yi − b

′
gxi − b0g)

2

while α2 aims at controlling leverage points corresponding to outlying values onx.
However, the distinction between these two types of outliers is not always so clear. On
the other hand, the unified handling of outliers provided by the trimmed CWRM si-
multaneously deals with both types of outliers. As the probability to belong to a clus-
ter is not a fixed value,πg, but depends also on the CWM weightφd(xi,µg,Σg)πg,
trimming acts before on points that lay on the farer contoursof equiprobability (i.e.
sets of points where the p.d.f. of the mixture takes a constant value) from the clus-
ter means. We are assuming that outliers are the points(xi, yi) with lower values of
D(xi, yi; θ), rather than points with greater vertical distances(yi − b

′
gxi − b0g)

2.
Other alternatives to guard CWM against contamination are based on the con-

sideration oft-distributions, instead of normal ones, see Ingrassia et al. (2012). They
provide a clear robustness gain with respect to the GaussianCWM. However, without
trimming, one single observation placed in a very remote position can still be very
harmful. In fact, we can make some components ofbg to be arbitrarily large or small,
just by moving one single observation. A small positive fraction of pointwise contam-
ination can be very dangerous too, even when it is not distantfrom the data. On the
other hand, the trimmed CWRM is more resistant to extreme contaminations, because
it does not make any assumption about how outliers have been generated. Therefore,
rather structured sources of outliers (and clearly not generated from at-distribution)
can be handled, too.

Several methods can be also found in the literature aimed at robustifying the Mix-
tures of Regressions model. Apart from those based on trimming that have been pre-
viously cited, methods based on M-estimation have been proposed in Bai et al. (2012)
and extending S-estimation in Bashir and Carter (2012). Song et al. (2014) propose
to model the error terms by a Laplace distribution, while Yaoet al. (2014) suggest to
employ thet distribution. Although all these methods improve the robustness of the
model, they do not model the marginalX distribution. Therefore, they do not take
advantage of this information to detect the different mixture components and hence
are not able to cope with outliers both onx and ony, acting as bad leverage points. To
overcome this issue, Yao et al. (2014) have recently proposed applying their robust
Mixture of Regression after using a trimming procedure (with high breakdown point)
which removes clear outliers onx. This initial trimming is unfortunately done with-
out considering theY variable, nor the joint distribution in(X, Y ), corresponding
to the different mixture components. The MCD estimator, considered for this initial
trimming, is aimed at working on a single contaminated population and can be trou-
blesome for detecting outliers when the data set includes different subpopulations.

In most of the applications, the true contamination level isunknown. Therefore,
it makes sense to consider a preventive (higher than needed)trimming levelα. This
could lead to wrongly trimmed observations, but the “cores”of the clusters and sen-
sible approximations of the regression lines are most of thetimes correctly found.
Starting from them, it is not difficult to recover wrongly trimmed observations, by
resorting to Mahalanobis distances and diagnostic regression tools (see Section 7 in
Garcı́a-Escudero et al., 2010).
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5 Real data examples

5.1 Tone data

This data set comes from an experiment in music perception introduced in Cohen
(1984) which has been analyzed in many papers concerning Mixtures of Regression,
(see, e.g. de Veaux, 1989) and their robust versions (Schlittgen, 2011; Hennig, 2002;
Bai et al., 2012; Bashir and Carter, 2012; Song et al., 2014; Yao et al., 2014). This
data set is shown in Figure 8(a) and the result of applying thetrimmed CWRM in
(b). We can see that the two main groups (interval memory judgement and partial
matching) can be detected by applying the trimmed CWRM. Furthermore,α = 0.05
allows to detect a fraction of outlying observations, within the partial matching group,
exhibiting a clear different behavior.
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Fig. 8 Tone data:(a) Data set; (b) Trimmed CWRM fitting withα = 0.05 andcX = cε = 20.

The type of outliers included in this data set are not very harmful and, thus, no dra-
matic differences can be expected in terms of the estimated parameters, when using
any (robust) Mixture of Regressions approach. So, we will proceed to artificially con-
taminate the data and use it as a benchmark for the effects of leverage points added
through pointwise contamination. This has been already done by Bai et al. (2012),
who introduced a6% of contamination at(0, 4), when applying an M-estimation ap-
proach. In our case, we will use a more complete contamination scheme by adding
9% of point contamination, placed around points(2.5, 5), (6, 4), (0, 0.5) and(5, 2.5),
successively. The first location,(2.5, 5) is a regression outlier, while the remaining
three are leverage points.

Table 1 summarizes the performance of the proposed trimmed CWRM and the
trimmed Mixture of Regressions (trimmed MR) presented in Section 4.2, both with
an α = 0.1 trimming level, for different values of the constraints factors cX and
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Contamination Trimmed CWRM Discarded Trimmed MR Discarded
location constants outliers constants outliers
(2.5, 5) cX = cε = 1 Yes cε = 1 Yes

cX = cε = 103 No cε = 103 Yes
cX = cε = 1010 No cε = 1010 No

(6, 4) cX = cε = 1 Yes cε = 1 No
cX = cε = 103 No cε = 103 No
cX = cε = 1010 No cε = 1010 No

(0, 0.5) cX = cε = 1 Yes cε = 1 No
cX = cε = 103 Yes cε = 103 No
cX = cε = 1010 No cε = 1010 No

(5, 2.5) cX = cε = 1 Yes cε = 1 No
cX = cε = 103 No cε = 103 No
cX = cε = 1010 No cε = 1010 No

Table 1 Tone data:Performance comparison between the trimmed CWRM methodology and trimmed
Mixture of Regressions (trimmed MR) with anα = 0.1 trimming level.

cε, and labeling by “Yes”/“No” the cases in which the trimming level allows/does
not allow to discard all the noisy observations. We can see that only the use of the
trimmed CWRM withα = 0.1 and with both constants fixed at their most restrictive
values is able to cope with the contamination in all the considered scenarios.

5.2 Students’ heights and weights

The data set in this example is based on students answers to a questionnaire including
simple questions about anthropometric measurements. Due to the way in which the
dataset has been collected, it contains outliers, as some students did not seriously
answer the questions, or gave bad interpretations of the measurement units, etc. Here,
we focus on the relationship between two variables in the data set, namely “Height”
(X) in cm and “Weight” (Y ) in Kg. Although gender was also considered in the study,
we will ignore it, to test the ability of our methodology to classify the individuals and
to estimate the two underlying regression models, one for each gender, in presence of
an important amount of severe outliers.

Figure 9(a) shows the original data set (which will be referred to asStudent data)
with the true gender assignments, while in (b) we have eliminated the points corre-
sponding to a wrong scale in height (students reporting height in meters instead of
centimeters), to emphasize the different linear patterns.Several implausible weight
values can be also seen. Figure 9(c) shows the results corresponding to the fit of the
CWM (whenα = 0 andcx = cǫ = 1010, i.e., no trimming and almost unrestricted).
We can see that one of the regression lines is capturing the artificial group, almost
collinear, having anomalous height values. Consequently,the main groups are joined
together and the classification error rate is very high. On the other hand, Figure 9(e)
shows the result of applying the trimmed CWRM withα = 0.1 and moderate values
of the constraints. Restrictions now avoid that the method falls into the previously
obtained spurious solution, generated by the almost collinear outliers (wrong mea-
surement units) and these points are trimmed off, together with other data points
exhibiting atypical weight values. The classification error rate for untrimmed obser-
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Fig. 9 Student data: (a) “Students’ heights and weights” data. (b)Cleaned data set obtained by deleting
the outliers due to wrong measurement scale for “height”. Effects of trimming and restrictions on CRWM
results: (c) untrimmed and almost unrestricted:α = 0 andcX = cε = 1010 ; (d) untrimmed and almost
unrestricted:α = 0 andcX = cε = 1010 for the cleaned data set; (e) trimmed and constrained:α = 0.1
andcX = cε = 20; (f) trimmed and constrained:α = 0.04 andcX = cε = 20 for the cleaned data set

vations is just12%. Figures 9(d) and (f) show the data set after eliminating thepoints
with wrong units for the height. In Figure 9(d), we can see that using the CWM,
even in this cleaned data set, again fails to detect the true groups. On the contrary,
we can see in (f) that the trimmed CWRM withα = 0.04 and moderate values of
cX andcǫ provides sensible results. It is true that simple visual inspection could have
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served to “clean” this data set but this is surely not the casewhen dealing with more
complex/high dimensional data sets on when carrying out fully unsupervised data
analyses.

6 Concluding remarks

The present work is centered on the wide family of Gaussian CWMs, that received
a growing attention in the recent literature. However, likeit happens for many other
models which depend on normal assumptions, the ML estimation for CWM suffers
from a lack of robustness. Moreover, the problem statement in terms of the likelihood
maximization is not well-posed, without constraints. Hence, here we have presented
a new estimation framework for the linear Gaussian CWM basedon trimming and
constraints, to achieve robustness, identify and discard outliers, circumvent the like-
lihood singularities and reduce the detection of spurious solutions.

Numerical studies, based on both simulated and real data, show that the new
proposal drives the estimation procedure to discard even strongly concentrated con-
taminating observations, acting as bad leverage points, which are so harmful in the
framework of Mixtures of Regressions. Apart from the effectiveness of the proposed
methodology to resist to any kind of outliers, we have also shown that a theoretically
well defined mathematical and statistical problem underlies it. The existence of op-
tima for both the population and the sample problem have beenestablished, and the
consistency of the sample solution to the population one hasbeen provided.

Further research could be focused on tuning the choice of theinvolved param-
eters. This is a complex task, as these parameters are clearly interrelated. For in-
stance, a high trimming levelα could lead to smallerG values, since components
with fewer observations may be trimmed off. Moreover, larger values ofcX andcε
could lead to higher values ofG, since more components with few observations, but
close to collinearity, may be detected. Our suggestion is that the researcher must
provide in advance part of these parameters (as a way of specifying the type of
clusters expected from the data) and, then, some data-dependent diagnostic can be
used to make appropriate choices for the rest of parameters.The use of trimmed
BIC notions (Neykov et al., 2007) or the adaptation of some graphical tools, as in
Garcı́a-Escudero et al. (2011), can be useful for this purpose.
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Appendix

The following section is organized into four parts: part A contains technical lemmas
useful for the proof of the existence of the maximizerθ for L(θ, P ) (Proposition
3.2.1) which is established in part B; part C shows preliminary results needed to
show the consistency of̂θ as an estimator forθ (Proposition 3.2.2), which is then
proved in part D.
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Part A: Preliminary results in view of Proposition 3.2.1

Four technical lemmas will be needed before attacking the proof of Proposition 3.2.1.
First of all, let us remark that, given the definition ofL(θ, P ), there exist se-

quences{θn}∞n=1 with

θn = (πn
1 , ..., π

n
G,µ

n
1 , ...,µ

n
G,Σ

n
1 , ...,Σ

n
G, b

0,n
1 , ..., b0,nG ,bn

1 , ...,b
n
G, σ

2,n
1 , ..., σ2,n

G ),
(11)

andθn ∈ ΘcX ,cε and such that

lim
n→∞

L(θn, P ) = sup
θ∈ΘcX,cε

L(θ, P ) > −∞ (12)

(the boundedness from below is obtained just by consideringthe setA as being a
ball centered at(0, 0) with P [A] ≥ 1 − α, π1 = 1, µ1 = 0,Σ1 = Id, b01 = 0 and
b1 = 0).

The proof of the existence will be done by proving that we can obtain a convergent
subsequence extracted from{θn}∞n=1 satisfying (12), and whose limitθ0 is optimal
for P .

Let us begin with Lemma 1, which provides a uniformly boundedrepresentation
of the regression coefficients, even in case of local collinearity, without loosing their
properties in the evaluation of the target function.

Lemma 1 Let {b0n}
∞
n=1 be a sequence inR, {bn}

∞
n=1 be a sequence inRd and

{An}
∞
n=1 be a sequence of sets inRd+1 verifying

lim sup
n

P [An] > 0 (13)

and such that

lim sup
n

EP

[
|b0n + b

′
nX− Y |2IAn

(X, Y )
]
< ∞. (14)

Then, we can extract subsequences{b0nk
}∞k=1, {bnk

}∞k=1 and{Ank
}∞k=1 from them

and define new sequences{d0k}
∞
k=1, {dk}

∞
k=1 and{Dk}

∞
k=1 which satisfyDk ⊆ Ank

,
P [Ank

\Dk] → 0, d0nk
→ d0 ∈ R, dnk

→ d ∈ R
d and such that

(b0nk
+ b

′
nk
X− Y )IDk

(X, Y ) = (d0k + d
′
kX− Y )IDk

(X, Y ), P -a.s., (15)

for everyk ≥ 1.

Proof: To simplify the proof, w.l.o.g., we will use the same notation for the sub-
sequences as that used for the original sequences. If the sequences{b0n}

∞
n=1 and

{bn}
∞
n=1 are bounded, then we just need to extract convergent subsequences and set

Dn = An. So, let us assume that either one or both sequences are unbounded, and
consider a sequence of compact sets{Kn}

∞
n=1 such thatKn ↑ R

d+1. Let{vnl
}dl=1 be

the normalized eigenvectors obtained from the spectral decomposition of the matrices
{VarP [X/An∩Kn]}

∞
n=1 (we useEP [·/A] and VarP [·/A] for denotingEP [·/(X, Y ) ∈

A] and VarP [·/(X, Y ) ∈ A]).
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Now, let us suppose that there exists a directionvnl
such that VarP [v′

nl
X/An ∩

Kn] → 0 then takeH with 0 ≤ H < d and such that VarP [v′
nl
X/An ∩ Kn] → 0

for every l ≥ H + 1, after a possible reordering of the coordinates. In this case,
there also exist points{unl

}dl=H+1 in R
d and a sequenceεn ↓ 0 which must satisfy

EP [|v
′
nl
(X−unl

)| > εn/An ∩Kn] → 0 for everyl ≥ H +1. Thevnl
are bounded

(unitary vectors) and theunl
must be bounded too (because, otherwise,X would not

be tight). Therefore, there exist subsequences, that will be denoted as the original
ones, such thatvnl

→ vl ∈ R
d, unl

→ ul ∈ R
d andP [|v′

l(X − ul)| > 0/An ∩
Kn] → 0 for everyl ≥ H + 1.

Let us now defineDn = An ∩ Kn ∩d
l=H+1 {v′

l(X − ul) = 0} which trivially
verifiesDn ⊂ An and thatP [An \Dn] → 0. We can rewrite

b0n + b
′
nx = b0n +

H∑

l=1

b
′
nvlv

′
lx+

d∑

l=H+1

b
′
nvlv

′
lx.

and setd0n = b0n +
∑d

l=H+1 b
′
nul anddn =

∑H

l=1 b
′
nvlv

′
l for H > 0 (while we set

dn = 0 whenH = 0). Then (15) trivially holds and it can be shown that{d0n}
∞
n=1

and{dn}
∞
n=1 are bounded sequences. This follows from the fact that (14) guarantees

that{(b0n + b
′
nX− Y )IDn

(X, Y )}∞n=1 is a tight sequence. Notice that we could see
that the previous tightness property would be contradictedif any of the{d0n}

∞
n=1 and

{dn}
∞
n=1 were unbounded by seeing thatZ = (Z1, ..., ZH) with Zl = v

′
lx satisfies

det(VarP [Z/An ∩Kn]) > 0 andd′
nx =

∑H
l=1 b

′
nvlZl.

Finally, whenever none of the sequences VarP [v
′
nl
X/An ∩ Kn] converges to 0,

we can consider the representationb0n + b
′
nx = b0n +

∑H

l=1 b
′
nvlv

′
lx and the result

would be proven in this case, too, following similar arguments as before.✷

The following Lemma 2 assures that, under the usual assumption onP , the as-
sociated fitted trimmed CWMs could not be arbitrarily close to a degenerated model
concentrated onG points, nor onG regression hyperplanes.

Lemma 2 LetP be a distribution inRd+1 satisfiying(PR):

(a) For everyb0g ∈ R, bg ∈ R
d andA ⊆ R

d+1 withP [A] = 1−α, there existsδ > 0
such that

EP

[
min

g=1,...,G
|b0g + b

′
gX− Y |2IA(X, Y )

]
≥ δ.

(b) For every set ofG points{µ1, ...,µG} ⊂ R
d andA ⊆ R

d+1 withP [A] = 1−α,
there existsδ > 0 such that

EP

[
min

g=1,...,G
‖X− µg‖

2IA(X, Y )

]
≥ δ.

Proof of (a):Let us suppose thatδ does not exist. Then, we can choose sequences
{An}

∞
n=1, {b0,ng }∞n=1 and{bn

g}
∞
n=1 such that

EP

[
min

g=1,...,G
|b0,ng + (bn

g )
′
x− y|2IAn

(x, y)

]
→ 0 with P [An] → 1− α. (16)
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Moreover, we can replace the setsAn in (16), by the data sets

A∗
n =

{
(x, y) : min

g=1,...,G
|b0,ng + (bn

g )
′
x− y|2 ≤ min{rnα, ε}

}
,

wherernα = infu{P [(x, y) : ming=1,...,G |b0,ng + (bn
g )

′
x − y|2 ≤ u] ≥ 1 − α} and

we also have the same convergence as in (16), withP [A∗
n] → 1 − α for any fixed

choice ofε > 0. Then, take

An
g =

{
(x, y) ∈ A∗

n : |b0,ng + (bn
g )

′
x− y| = min

j=1,...,G
|b0,nj + (bn

j )
′
x− y|

}
,

and, we can see that there exists at least oneg such thatP [An
g ] → pg > 0 through

a subsequence (becauseP [A∗
n] =

∑
g=1,...,G P [An

g ] → 1 − α). Thus, consider a
reordering of{1, ..., G} such thatP [An

g ] → pg > 0 for everyg ∈ {1, ..., H} (for an
appropriate subsequence, if needed). IfA∗∗

n = ∪H
g=1A

n
g , then

EP

[
min

g=1,...,G
|b0,ng + (bn

g )
′
X− Y |2IA∗∗

n
(X, Y )

]

=
H∑

g=1

EP

[
|b0,ng + (bn

g )
′
X− Y |2IAn

g
(X, Y )

]

andP [A∗∗
n ] → 1 − α. For everyg ∈ {1, ..., H}, theAn

g , b0,ng andbn
g satisfy the

conditions needed to apply Lemma 1 and, therefore, we can replace them byDn
g , d0,ng

anddn
g satisfyingDn

g ⊂ An
g , P [An

g \Dn
g ] → 0, d0,ng → d0g ∈ R anddn

g → d
0
g ∈ R

d

and (15).
Now, takeBn = ∪g=1,...,HDn

g ∩{(x, y) : ming=1,...,G |d0,ng +(dn
g )

′
x−y|2 ≤ ε}

for a fixedε, with P [Bn] → 1− α. We thus have the pointwise convergence

min
g=1,...,H

|d0,ng + (dn
g )

′
x− y|2IBn

(x, y) → min
g=1,...,H

|d0g + (d0
g)

′
x− y|2IB0

(x, y),

for anyB0 ⊂ R
d+1 with P [B0] = 1−α, and the uniform boundming=1,...,H |d0,ng +

(dn
g )

′
X− Y |2IBn

(x, y) ≤ ε. Then, the dominated convergence theorem implies

Ep

[
min

g=1,...,H
|d0,ng + (dn

g )
′
X− Y |2IBn

(X, Y )

]

→ Ep

[
min

g=1,...,H
|d0g + (d0

g)
′
X− Y |2IB0

(X, Y )

]
.

The latter convergence and (16) would prove that

Ep

[
min

g=1,...,H
|d0g + (d0

g)
′
X− Y |2IB0

(X, Y )

]
= 0,

implying that the distributionP is concentrated onG regression hyperplanes after
removing a proportionα of the probability mass and this would contradict (PR).
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Proof of (b):The proof of this results mimics the steps followed in the proof of (a).
We start by assuming the existence of subsequences{An}

∞
n=1 and{µn

g }
∞
n=1 such

that

EP

[
min

g=1,...,G
‖x− µn

g ‖
2IAn

(x, y)

]
→ 0 with P [An] → 1− α.

and we would end up by seeing that the supportX is concentrated inG points inRd.
In fact, the proof is easier because only the tightness ofP is needed (Lemma 1 is no
longer required, here).✷

Now, since[0, 1]G is a compact set, we can trivially choose a subsequence of
{θn}

∞
n=1 such thatπn

g → πg ∈ [0, 1] for 1 ≤ g ≤ G. With respect to the scatter
matrices and the variances of the error terms, we have the following possibilities:

(S1)Σn
g → Σg for 1 ≤ g ≤ G withΣg being p.s.d. matrices

(S2) min
g=1,...,G

min
l=1,...,d

λl(Σ
n
g ) → ∞

(S3) max
g=1,...,G

max
l=1,...,d

λl(Σ
n
g ) → 0

(V1) σ2,n
g → σ2

g for 1 ≤ g ≤ G with σg > 0

(V2) min
g=1,...,G

σ2,n
g → ∞

(V3) max
g=1,...,G

σ2,n
g → 0

Given thatθn ∈ ΘcX ,cε , only one of the convergences in S1-S3 and only one in V1-
V3 are possible, and the following Lemma 3 will further delimitate to the bounded
results, based on constraints (5) and (6).

Lemma 3 If {θn}∞n=1 ⊂ ΘcX ,cε converges toward the supremum ofL(θ, P ), and
(PR)holds forP , then only convergences(S1)and(V1) are possible.

Proof:We have thatL(θn;P ) can be bounded from above by

−
1

2

[
log

(
min
g

σ2,n
g

)
P [A(θn)] +

EP

[
ming |b

0,n
g + (bn

g )
′
X− Y |2I

A(θn)
(X, Y )

]

maxg σ
2,n
g

]

−
1

2

[
log

(
min
g

min
l

λl(Σ
n
g )

)
P [A(θn)]d+

EP

[
ming ‖X− µn

g ‖
2I

A(θn)
(X, Y )

]

maxg maxl λl(Σ
n
g )

]
+C,

whereC is a constant value, not depending onθn.
Therefore, given thatθn ∈ ΘcX ,cε , we see that the possible convergence of

L(θn;P ) would clearly depend on those for the sequences

log

(
σ2
n

cε

)
P [A(θn)] + EP

[
min
g

∣∣b0,ng + (bn
g )

′
X− Y

∣∣2I
A(θn)

(X, Y )

]
1

σ2
n

(17)

and

log

(
λn

cX

)
P [A(θn)]d+ EP

[
min
g

‖X− µn
g ‖

2I
A(θn)

(X, Y )

]
1

λn

, (18)
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whereλn = maxg=1,...,Gmaxl=1,...,d λl(Σ
n
g ) andσ2

n = maxg=1,...,G σ2,n
g .

On the other hand, Lemma 2 implies that a constantδ > 0 can be chosen such that
EP

[
ming |b

0,n
g +(bn

g )
′
X−Y |2IAn

(X, Y )
]

andEP

[
ming ‖X−µg‖

2IAn
(X, Y )

]
in

(17) and (18) are uniformly bounded from below byδ. Therefore, other convergences
different from (S1) or (V1) would imply thatlimn→∞ L(θn, P ) = −∞ and this
would contradict (12).✷

Lemma 4, stated below, shows that we can always find a subsequence{θn}∞n=1

with converging parameters for at least one mixture component, with weightπn
g con-

verging toward a strictly positive value.

Lemma 4 There exists a sequence{θn}∞n=1 converging toward the supremum of
L(θ, P ) and there existsH with 1 ≤ H ≤ G such that

µn
g → µg, b0,ng → b0g, b

n
g → bg and πn

g → πg > 0 for every g ≤ H

and such that the corresponding{A(θn)}∞n=1 sets are uniformly bounded.

Proof:Let us start from any{θn}∞n=1 converging toward the supremum ofL(θ, P ),
and takeAn = A(θn) and

An
g =

{
(x, y) ∈ An : Dg(x, y; θ) = max

j=1,...,G
Dj(x, y; θ)

}

for 1 ≤ g ≤ G. SinceP [An
g ] ∈ [0, 1], there exists a subsequence, denoted as the

original one, such that eachP [An
g ] converges for1 ≤ g ≤ G. Moreover, after a proper

reordering in the components ofθn, there existsH∗ ≥ 1 such thatP [An
g ] → pg > 0

for 1 ≤ g ≤ H∗. Note that thisH∗ does exist because otherwise we would have
P [An] =

∑G
g=1 P [An

g ] → 0.
We can also find a convergent subsequence ofµn

g for everyg ≤ H∗. Otherwise,
for everyη with 0 < η < pg, we could take a ballBg centered at(0, 0) with P [Bg] >
1 − pg + η and such that there existsn0 with P [Bg ∩ An

g ] > η/2 whenn ≥ n0.
Consequently, we would haveEP

[
‖X−µn

g ‖
2IAn

g

]
≥ EP

[
‖X−µn

g ‖
2IBg∩An

g

]
→ ∞

which contradicts (12). Note that the contributions of the other terms toL(θn, P ) are
controlled, because of Lemma 3.

From (12), we havelim supn EP

[
|b0,ng + (bn

g )
′
X− Y |2IAn

g
(X, Y )

]
< ∞. This,

together with the fact thatlim supn P [An
g ] = pg > 0 for g ≤ H∗, allows us to apply

again Lemma 1 to replace the{b0,ng }, {bn
g } and{An

g } sequences by appropriated
convergent sequences{d0,ng }, {dn

g } and{Dn
g }. These convergences also trivially im-

ply thatπn
g → πg > 0 for g ≤ H∗.

Otherg values could also satisfy these convergences (through subsequences and
possible alternative representations). In this case, we considerH ≥ H∗ such that all
the convergences in the statement of this Lemma hold forg ≤ H.

To see that the{A(θn)}∞n=1 are uniformly bounded, recall thatA(θn) = {(x, y) :
D(x, y; θn) ≥ R(θn, P )} and let us introduce

R̃(θn, P ) = sup
u

{
P

[
max

1≤g≤H
Dg(X, Y ; θn) ≥ u

]
≥ 1− α

}
.

Given thatD(x, y; θn) ≥ maxg Dg(x, y; θn), we trivially have the bound̃R(θn, P ) ≤
R(θn, P ). Moreover,πn

g ,µ
n
g ,Σ

n
g , b

0,n
g ,bn

g , σ
2,n
g are convergent sequences wheng ≤
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H and, then, we can also find a strictly positive constantRH satisfying0 < RH ≤
R̃(θn, P ) ≤ R(θn, P ). The setsBn = {(x, y) : maxg≤H Dg(x, y; θn) ≥ RH} sat-
isfy thatAn ⊆ Bn and all theseBn sets are uniformly bounded just by taking into ac-
count the uniform continuity of the set functions{(x, y) 7→ maxg≤H Dg(x, y; θn)}

∞
n=1

and that the parameters corresponding to the firstH groups in{θn}∞n=1 are uniformly
bounded.✷

Having established these crucial findings, we are ready to prove the existence
result.

Part B: Proof of Proposition 3.2.1

Let us start from a sequence{θn}∞n=1 converging toward the supremum ofL(θ, P ).
Thanks to Lemma 2, we know that there exists a subsequence of{θn}

∞
n=1 with

Σn
g → Σg andσ2,n

g → σ2
g for 1 ≤ g ≤ G. Moreover, by applying Lemma 4, a

further subsequence (with a proper modification, if needed)can be obtained that also
verifiesµn

g → µg, b
0,n
g → b0g,b

n
g → bg andπn

g → πg with πg > 0 for anyg with
g ≤ H and1 < H ≤ G. Let us assume that there exists someg such thatµn

g is
not bounded, or such that a bounded representation forb0,ng andbn

g (in the sense that
lim supn EP

[
|b0,ng + (bn

g )
′
X − Y |2IAn

(X, Y )] = ∞) does not exist. We will see
that we necessarily must have thatπn

g → 0 and, consequently, the role played by
µn

g , b
0,n
g andbn

g is irrelevant, given that they do not modify the value taken by the
target function. Therefore, we could modify them by using other arbitrary convergent
parameter values (of course, satisfying the desired constraints) and the proof would
be done.

To prove that, let us consider

Mn = EP

[(
log

( G∑

g=1

Dg(X, Y ; θn)

)
− log

( H∑

g=1

Dg(X, Y ; θn)

))
IAn

(X, Y )

]
.

By considering the sameRH > 0 used in the proof of Lemma 4 and the fact that
log(1 + x) ≤ x, we can see that

Mn ≤

G∑

g=H+1

EP

[
Dg(X, Y ; θn)

RH

IAn
(X, Y )

]
.

Then, it is trivial to see thatMn → 0 whenµn
g is not bounded or when no bounded

representation forb0,ng andbn
g exists for anyg > H . Consequently, ifπn

g → πg > 0
for anyg > H andθ∗ is the limit of the subsequence{πn

1 , ..., π
n
H ,µn

1 , ...,µ
n
H ,Σn

1 , ...,Σ
n
H ,

b0,n1 , ..., b0,nH ,bn
1 , ...,b

n
H , σ2,n

1 , ..., σ2,n
H }∞n=1, we would have thatlimn→∞ supL(θn;P )

= L(θ∗;P ) (becauseMn → 0) with
∑H

j=1 πj < 1. Then, we could define a new sub-

sequence{θ̃n}∞n=1 = {π̃n
1 , ..., π̃

n
G, µ̃

n
1 , ..., µ̃

n
G, Σ̃

n

1 , ..., Σ̃
n

G, b̃
0,n
1 , ..., b̃0,nG , b̃n

1 , ..., b̃
n
G,

σ̃2,n
1 , ..., σ̃2,n

G }∞n=1 with

π̃n
g =

πn
g∑k

g=1 π
n
j

for 1 ≤ g ≤ H and π̃n
H+1 = ... = π̃n

G = 0,
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with µ̃n
g = µn

g , b̃
0,n
g = b0,ng , b̃n

g = b
n
g , Σ̃

n

g = Σn
g andσ̃2,n

g = σ2,n
g for 1 ≤ g ≤ H

and parameters arbitrarily chosen wheng > H (only satisfying the required con-
straints). We finally could see thatlimn→∞ supL(θ̃n;P ) < limn→∞ supL(θn;P )
and this would contradict the optimality stated in the hypothesis of the present lemma.
✷

Part C: Preliminary results in view of Proposition 3.2.2

Before starting the proof of the consistency of the solutionfor the sample problem to
the population solution, we introduce some notation, and state some useful results.
Let{θ̂n}∞n=1 = {π̂n

1 , ..., π̂
n
G, µ̂

n
1 , ..., µ̂

n
G, Σ̂

n

1 , ..., Σ̂
n

G, b̂
0,n
1 , ..., b̂0,nG , b̂n

1 , ..., b̂
n
G, σ̂

2,n
1 , ...,

σ̂2,n
G }∞n=1 ⊂ ΘcX ,cε denote a sequence of empirical estimators obtained by solving

the empirical problems defined from the sequence of empirical measures{Pn}
∞
n=1.

First, we prove that there exists a compact setK ⊂ ΘcX ,cε such that̂θn ∈ K with
probability 1. This is done through Lemmas 5 and 6, whose proofs are quite straight-
forward adaptations of the previously given proofs of Lemmas 1, 2, 3 and 4. In those
adaptations, appropriate Glivenko-Cantelli class of functions must be considered and
the class of balls inRd+1 (which is a Glivenko-Cantelli class too) is taken to provide
bounding compact sets when needed.

Lemma 5 If P satisfies(PR), then only convergences(S1)and(V1) are possible for
theΣ̂

n

g ’s andσ̂2,n
g ’s.

Lemma 6 If (PR)holds, then we can choose a sequence{θ̂n}
∞
n=1 solving the empir-

ical problem with componentŝµn
g , b̂0,ng and b̂n

g such that their norms are uniformly
bounded.

The following two lemmas are the analogous to Lemmas 5 and 6 inGarcı́a-Escudero et al.
(2014b). Their proofs mimic the same steps, with the only reformulation of the
D(·; θ) functions, which here take into account the conditional distribution on the
Y variable.

Lemma 7 Given a compact setK ⊂ ΘcX ,cε , B ⊂ R
d+1 and[a, b] ⊂ R, the class of

functions

H :=

{
IB(·)I[u,∞)

(
D(·, θ)

)
log(D(·; θ)) : θ ∈ K,u ∈ [a, b]

}
(19)

is a Glivenko-Cantelli class.

Lemma 8 LetP be an absolutely continuous distribution with strictly positive den-
sity function. Then, for every compact setK, we have that

sup
θ∈K

|R(θ, Pn)−R(θ, P )| → 0, P -a.e. .

In fact, the condition on the existence of a strictly positive density function forP
can be removed, but this would imply the use of trimming functions as those intro-
duced in Cuesta-Albertos et al. (1997).
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Part D: Proof of Proposition 3.2.2

Taking into account Lemma 7, the consistency follows from Corollary 3.2.3 in van der Vaart and Wellner
(1996), exactly as it was done in Garcı́a-Escudero et al. (2008) and in Garcı́a-Escudero et al.
(2014b). Note that Lemmas 5 and 6 guarantee the existence of acompact setK
such that{θ̂n}∞n=1 is included inK with probability 1 andR(θ̂n, Pn) is also in-
cluded with probability 1 within an interval[a, b] due to Lemma 8. This has been
also used to simplify the target function needed to apply theaforementioned result in
van der Vaart and Wellner (1996).�
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