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Abstract 
Optimization is a powerful tool to be applied in the process industry. It 
allows obtaining comparative improvements of a given facility finding the 
operational point that maximizes the profit. In spite of the different 
applications that concern the use of this tool, the management of 
uncertainty is a critical issue in order to propose an optimal and feasible 
solution.  

In this thesis, we present the study and application of techniques able to 
handle the uncertainties from the point of view of random behavior of 
process variables and errors in the models to be used in the optimization. 

Concerning with the random behavior of the process variables, we have 
focused our study in Stochastic Optimization as a tool to be applied in a 
processes. In particular we have tested the Two-Stage Optimization and 
Chance Constrained Optimization methods in a process example from a 
hydrodesulfuration unit. Applying this techniques, the idea is to propose an 
optimal and feasible policy to be implemented when there is a change in 
the load to be treated despite the expected uncertainties. The 
implementation of these strategies is founded in the fact that both the raw 
materials and the quality of the product to be transformed are not 
completely known, and only their probability distribution functions are 
available.  

Regarding the two-stage optimization, we have solved a discrete equivalent 
problem using a scenario realization of the original probability distribution 
function, using the scenario aggregation methodology to take into account 
the nonanticipativity constraint, solving the dynamic optimization problem 
using a sequential approach.  

On the other hand, the chance constrained optimization has been solved 
using the inverse mapping technique to estimate the probability of the 
constraints, calculating the equivalent limit on the random variable solving 
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a parameter estimation problem over the entire time prediction horizon 
with the single shooting methodology. 

Because of the large computational times observed in the resolution of 
both methods, we have presented an open loop implementation that has 
been a tested using Montecarlo simulations. Because of the discretization 
applied in the two-stage approach, we have proposed a generalization 
method based in the interpolation of the second-stage outcomes to apply 
this policy in open loop with the original probability distribution function.  

The results show that using the implementations described before, we can 
obtain an optimal trajectory for the load change problem in the 
hydrodesulfuration process that ensures a given degree of feasibility. 

About the management of the modeling errors, we have worked with Real 
Time Optimization, in order to propose the value of the stationary points 
that optimizes the process in an iterative way. In particular we have focused 
our attention in the Modifier-Adaptation Methodology as a technique to get 
over the modeling mismatch produced because of the partial knowledge of 
the system. Using previous information from literature and a simulation 
example, we have detected three challenges to be addressed in this 
methodology: infeasible operations produced in intermediate points, 
problems with the experimental gradient detection and the possibility of 
using modifiers in dynamic optimization. Each of these topics were studied. 

We have proposed an intermediate layer between the RTO and the control 
one that uses a non-model based controller to modify the value suggested 
by the RTO algorithm when a violation on the process constraints is 
detected. If the experimental gradient is calculated using the dual control 
optimization approach, we have implemented a second controller (the dual 
one) to manage the excitation level of the process. 

With respect to the gradient estimation, we have proposed another way to 
see the modifier adaptation algorithm, with a methodology that intuitively 
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finds the optimum of the process directly in the space of the gradient 
modifiers: the Nested-Modifier Adaptation method. In our proposal the 
decision variables to be applied in the process must be calculated as the 
outcomes of an inner modified optimization with the same structure as the 
one solved in the original modifier-adaptation scheme. Nevertheless, the 
update law of the modifiers is implemented in an upper optimization layer 
that uses directly the performance index from the process as a cost 
function. 

At last we have presented some preliminary ideas about the 
implementation of the modifiers to solve dynamic optimization problem in 
a receding horizon implementation, modifying the NLP equivalent of the 
problem. 

As a result of the implementations proposed in the modifier-adaptation 
approach, we can say that for the steady-state case it has been increased 
the field application of this method for those problems where the process 
gradient is difficult to obtain (or is not available) or when the 
measurements are contaminated with noise, detecting the real optimum of 
the process with an erroneous model. With this, we are able to converge in 
a feasible and robust path to the real optimum. On the other hand, in the 
dynamic case we have shown that correcting the process measurements 
with the natural response of system, it is possible to deal with modeling 
mismatch using the modifiers, provided the objective function can be 
measured at the end of the prediction horizon. 
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Resumen 
La optimización es una poderosa herramienta en la industria de procesos. 
Mediante esta es posible obtener ventajas comparativas determinado 
estimando correctamente el valor de las variables que maximizan el 
beneficio.  Independientemente de la aplicación, el tratamiento de las 
incertidumbres es un tópico transversal si se desea resolver un problema 
aplicable y factible. 

En esta tesis doctoral, se presenta el estudio y la aplicación de técnicas que 
permiten manejar estas incertidumbres, desde el punto de vista del 
comportamiento aleatorio de las variables de proceso y de los errores en 
los modelos utilizados en la optimización. 

Con respecto al tratamiento de las variables de proceso inciertas, se 
presenta la aplicación de la Optimización Estocástica como herramienta 
para hacer frente al comportamiento aleatorio de las variables de proceso. 
En particular se ha trabajado con Optimización Estocástica de dos Etapas y 
con Optimización Probabilística, aplicada en un ejemplo de un proceso de 
hidrodesulfuración presente en una refinería de petróleo. Mediante la 
aplicación de estas técnicas, se pretende encontrar una trayectoria óptima 
de las variables de decisión, que permita hacer frente a una situación de  
cambio de alimentación del sistema, asegurando un determinado grado de 
factibilidad. La idea de utilizar optimización estocástica, se basa en que 
tanto la calidad de la materia prima utilizada, como la del hidrocarburo a 
ser tratado no son conocidas completamente y sólo se dispone de su 
distribución de probabilidad.  

Con respecto a la optimización de dos etapas, se ha resuelto un problema 
simplificado basado en una discretización de la distribución de probabilidad 
original.  Referente a la restricción de no anticipatividad se ha utilizado la 
técnica de agregación de escenarios para asegurar una única trayectoria 
durante la primera etapa, resolviendo el problema de optimización 
dinámico en cada escenario mediante un método secuencial. 
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 En el caso de la optimización probabilística, se ha utilizado el método de 
mapeo inverso para estimar la probabilidad de cumplir una restricción 
utilizando la distribución de probabilidad de las variables incierta, siendo 
necesario resolver un problema de estimación de parámetros sobre todo el 
horizonte de predicción para obtener el límite equivalente en las variables 
aleatorias. Este problema se ha abordado usando el método de single 
shooting. 

Debido al alto tiempo computacional observado, se ha propuesto la 
aplicación de los resultados obtenidos en lazo abierto, para lo cual se han 
sometido a prueba utilizando simulaciones de Montecarlo.  Puesto que se 
ha resuelto un problema discreto en la optimización de dos etapas, se ha 
implementado un método basado en interpolaciones para generalizar su 
solución y así poder aplicar las trayectorias a la función de distribución de 
probabilidad continua. 

Los resultados obtenidos muestran que al tratar explícitamente las 
incertidumbres mediante las técnicas aplicadas, es posible obtener una 
solución óptima que garantice un determinado grado de factibilidad en el 
problema de cambio de carga de una unidad hidrodesulfuradora. 

Para el manejo de la incertidumbre derivada del conocimiento parcial de los 
modelos que rigen un proceso, se ha utilizado el método de Optimización 
en Tiempo Real, el cual consiste en actualizar un modelo con medidas del 
proceso para proponer de manera iterativa el valor de las variables de 
decisión que lo optimizan. En particular se ha estudiado el método de 
adaptación de modificadores  como alternativa para encontrar el óptimo de 
un proceso utilizando un modelo erróneo. A partir de una recopilación 
bibliográfica y con la ayuda de un ejemplo implementado en simulación se 
han detectado tres áreas para las cuales se proponen mejoras: 
convergencia al óptimo con puntos intermedios infactibles, problemas 
derivados con la estimación del gradiente experimental y la posibilidad de 
aplicar los modificadores en un problema de optimización dinámica. 
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Para evitar la ocurrencia de puntos factibles en la evolución del algoritmo 
de adaptación de modificadores, se ha propuesto e implementado una capa 
intermedia entre la de optimización y el control de procesos, que corrige el 
valor sugerido por la optimización en el instante en el que se detecta una 
infactibilidad, llevando el sistema hasta una región factible mediante la 
acción de un controlador no basado en modelos. Si el gradiente del proceso 
ha sido estimado mediante el método de optimización dual se ha 
implementado un segundo controlador (Dual) que asegura energía 
suficiente en el problema de estimación de gradientes.  

Se ha propuesto una forma de buscar el óptimo del proceso sin necesidad 
de estimar los gradientes del proceso, mediante la reformulación del 
método de adaptación de modificadores como un problema de 
optimización anidada: el método de Adaptación de Modificadores Anidado. 
La estructura de optimización del método anidado presenta una capa 
superior que no está basada en gradientes y que tiene como variables de 
decisión a los modificadores, lo que evita la estimación de la curvatura del 
proceso. Por otro lado, la capa interior conserva la misma estructura del 
problema de adaptación de modificadores. 

Finalmente, se han presentado algunas ideas preliminares respecto a la 
aplicación del método de adaptación de modificadores basado en 
gradientes y el anidado, para un problema de optimización dinámica con 
horizonte móvil.  

Los resultados obtenidos a partir de la implementación de los métodos 
propuestos muestran que, para el caso de la optimización estática, se ha 
ampliado el campo de aplicación de la metodología original, siendo posible 
implementarla en problemas donde los gradientes experimentales son 
difíciles de obtener (o no están disponibles), así como para aquellos 
procesos cuyas medidas están contaminadas con ruido, detectando el 
óptimo del proceso mediante un modelo erróneo, de una manera más 
robusta y siguiendo una evolución factible. Referente a la aplicación 
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dinámica, se ha mostrado que mediante la corrección de los gradientes del 
proceso con la dinámica natural del sistema, es posible encontrar el óptimo 
de un proceso en un problema de optimización dinámica con errores de 
modelado, siempre y cuando la función objetivo pueda ser medida al final 
del horizonte de predicción. 
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1.1 Introduction 
Optimization is one of the most versatile tools employed in process 
engineering. Several applications, involving the whole production structure 
of an industrial facility, are based in the solution of an optimization 
problem. Since the industrial development implies searching for 
comparative advantages with respect to the market, the idea of producing 
with the minimum amount of the available resources, such as: energy, raw 
materials and utilities, seems to be an excellent way to become more 
competitive. To do this, it is necessary to make the right decisions in the 
different time scales that a plant presents: 

Thinking in terms of months and weeks, it is necessary to plan the 
production of the factory according to the market prices. Also it is 
necessary to schedule the production, in order to ensure that the 
manufacture volume can be achieved with the available process 
units in a reasonable time. 
 
If the time-scale is reduced to days and hours, it is necessary to 
know the best way to drive the process to the optimal production 
plan from the point of view of the process variables, in order to 
minimize the use of the available resources. 
 
At last, when the time scale is fixed to minutes, it is necessary to 
control and supervise the process, following the given references 
and rejecting possible disturbances. Moreover, a correct treatment 
of the data process, allows detecting as early as possible the 
occurrence of faults in the system. 

In general, the occurrence of different time scales in a process makes 
possible the fact that the outcomes of the upper layers are part of the 
degrees of freedom of the lower ones. This Optimization Architecture 
allows producing in a safe and optimal way. 
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The general optimization problem can be represented in equation (1.1), 
where 𝑢𝑢 ∈ ℝ𝑛𝑢  are the decision variables, 𝑥𝑥 ∈ ℝ𝑛𝑥  are the dependent 
variables, 𝑓𝑓:ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝜃 → ℝ  is the performance function, 
ℎ:ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝜃 → ℝ𝑛𝑥  is the model of the process that relates the 
dependent and the independent variables, 𝑔:ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝜃 → ℝ𝑛𝑔  are 
the inequality constraints that describe the feasible region of an 
optimization problem and 𝜃 ∈ ℝ𝑛𝜃  can be considered as the parameters of 
the optimization problem. 

min
𝑢
𝑓𝑓(𝑥𝑥,𝑢𝑢,𝜃) 

𝑠. 𝑡𝑡. : 
ℎ(𝑥𝑥,𝑢𝑢,𝜃) = 0 
𝑔(𝑥𝑥,𝑢𝑢,𝜃) ≤ 0 

(1.1) 

  

From the definition of the general optimization problem already presented, 
several classifications can be proposed in order to describe the application 
of equation (1.1) to the different problems of the process industry (Figure 
1.1).   

In terms of the dependence of the model with time, the optimization 
problem can be classified as Steady state or Dynamic. If the model 
employed in the optimization problem does not consider the dynamic 
behavior of the system, the equation (1.1) can be classified as a static 
optimization problem. These kinds of problems can be applied in the upper 
layers of the Optimization Architecture, with the aim to obtain the optimal 
operation point or planning the facility. On the other hand, if the model of 
the process takes into account the evolution in time of the system, 
equation (1.1) can be described as a dynamic problem, which has its main 
applications in the lower layers (or regulatory layers) of the Optimization 
Architecture, calculating the evolution of the decision variables that change 
the system from the actual condition to the optimal one.  
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FIGURE 1.1: CLASSIFICATION OF THE OPTIMIZATION PROBLEMS 

Another classification of the equation (1.1) can be proposed according to 
the nature of the variables involved, leading to continuous, integer and 
mixed integer optimization. By using different types of variables, it is 
possible to apply the optimization problem in different processes and 
contexts, e.g. continuous and batch plants, event driven processes, among 
others. 

Furthermore, according to the nature of the functions of equation (1.1), the 
optimization problem can also be classified as linear and non-linear 
optimization. The use of linear functions allows computing faster solutions 
but the problem is in general only an approximation of the real system. 
Because of this, linear optimizations are used to solve control problems 
where the linear system is identified locally around the operation point. In 
contrast to the linear case, nonlinear problems are generally more difficult 
to solve, and even in some situations there is not guarantee of the 
existence of solutions. Since complex nonlinear models are employed, the 
use of these problems is oriented to optimizations with the objective to 
explore the entire process, finding the economic optimal operational point.  

Because of the large and diverse applications of the optimization in the 
process industry, the study in this field has been very intense. The work of 
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Biegler and Grossmann (Biegler & Grossmann, 2004) present a 
retrospective about the most important applications of the optimization in 
process industry, classifying the applications according to the type of 
optimization problem to be solved. In that article, the authors also present 
a summary of the most important methods to solve equation (1.1) and the 
available solvers. As a second part of the retrospective, Biegler and 
Grossmann present a future perspective on optimization (Ignacio E. 
Grossmann & Biegler, 2004), outlining the directions of research that are 
likely to be subject of further significant research work over the next 
decade and so on. The authors propose the following four working areas: 

Global Optimization: one of the most important limitations of the 
actual methods to solve nonlinear problems (NLP and MINLP), is 
the lack of guarantee to find a global optimum when the 
optimization problem present nonconvexities. Even though several 
developments have been proposed (especially in Chemical 
Engineering), there has been an increase in the research activity in 
this area from the year 1991, when the Journal of Global 
Optimization was published by the first time. This intensification in 
the research, gives important clues about the importance of this 
topic in the future.  
 
Logic-Based Methods: the major motivation in this area lies in 
developing symbolic representation of discrete constraints, with 
the aim to facilitate their modeling and motivate the more effective 
solution techniques that can help to reduce computational time of 
discrete-continuous optimization problems.  
 
Large-Scale Optimization: The success of optimization strategies in 
process engineering constantly motivates the desire to formulate 
and solve larger problems over a wider set of domains. Handling 
larger problems allows including more detailed models in terms of 
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temporal and spatial representation, and permits the integration of 
other models in order to improve the physical representation of the 
reality, leading in more realistic solutions to be applied.  
 
Scientific Computing: Future progresses in the previous three topics 
necessarily need more power computers in terms of hardware and 
object oriented modeling software. Therefore, it is critical to 
emphasize the efforts in developing machines and programming 
languages. 

Even though the authors propose the four topics presented above, there is 
a transversal subject that is mentioned in the first three of them: the 
uncertainty.  

Dealing with uncertainty in process optimization is a key issue if we are 
interested in proposing realistic and safe solutions. Since the optimization is 
almost all of the times based in models that are only an abstraction of the 
reality, taking into account the difference between this representation and 
the real world is mandatory to suggest valid solutions. Moreover, processes 
present some variables with random behavior that might affect the 
feasibility and the optimality of the proposed solution of the optimization; 
therefore, this behavior might be explicitly treated. 

1.2 Motivation 
In industrial processes changes in the load and type of the influents is a 
common situation. If we take as an example the petroleum industry, every 
three or four days the crude oil changes its origin, meaning that a different 
raw material must be treated. The management of the feed transition 
operation increases its difficulty, if we consider that some of the process 
streams employed to perform the chemical reactions are recycled by-
products from side processes and they might have variable and unknown 
purities too. Therefore, if a feasible and economic operation policy is 
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proposed to deal with the operational changes it must consider these 
uncertain variables.  

Even when there are important sources of uncertainty in the reactants, 
some information can be extracted from past operation in order to know at 
least approximately what are the bounds and the expected distribution of 
the unknown stream properties. If this information can be exploited in the 
optimization step, we are able to give better and safer alternative to carry 
on this operation. Therefore, an adequate use of the stochastic information 
of the uncertain variables obtained from the DCS system can be very useful 
to propose an optimal and feasible way to operate under random 
situations.  

On the other hand, obtaining operational points of complex processes is not 
a trivial task and a systematic methodology based on solving an 
optimization problem must be applied. However, because of the inherent 
difference between the model and the real process, continuous corrections 
estimated from the process data must be applied into the optimization 
problem. In the process industry, Real-time optimization (RTO) has become 
a popular tool to look for the optimal conditions despite this kind of 
uncertainties (Cutler & Perry, 1983). The authors not only conclude that 
important economic improvements can be expected when this technique is 
applied, but also remark that using RTO is an effective means of distributing 
technical know-how from research to the plant.  

The optimization that is solved in RTO layer is based in a model of the 
process, which in general is a gross representation of the reality that might 
neglect important physical dependences. This may lead to solutions that 
don not correspond to the real process optimum. For that reason, the study 
and the development of RTO methods able to overcome this mismatch is an 
important area to research in order to deal with the uncertainties that 
affect the process optimization in a better way, overcoming the partial 
knowledge of the process. 
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In summary, it can be said that the motivation of this thesis is to handle the 
uncertainty in process optimization from two points of views:  

- Incorporating the random and unknown behavior of some process 
variables in the optimization by using probabilistic information 
about their past values. 
 

- Incorporating process measurements into the optimization in order 
to find the true operational optimum point of the process using 
RTO, overcoming the uncertainty that can be attained to the errors 
produced in the modeling stage of the process. 
 

1.3 State of the Art: Handling Uncertainties in 
Process Optimization 

As it was mentioned, taking into account the uncertainties that affect the 
processes is completely necessary in order to give realistic solutions to 
different situations where the optimization is required. There are many 
ways in which these uncertainties can be considered. The most common 
approach is model updating, but other methods reported in literature 
manage the uncertainty in process optimization from the view point of: 

- Robust optimization 
- Stochastic methodologies 
- Converting the optimization in a control problem 

In this thesis, two points of view of the uncertainty will be studied: the 
treatment of random behavior of process variables using Stochastic 
Programming and overcoming the modeling mismatch in optimization by 
means of the Real Time Optimization.  

The context of both topics will be briefly summarized next. 
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1.3.1 Stochastic Programming 
In the classical approach of optimization, the equations and parameters are 
considered totally known. However, when the solution is applied to the 
reality, frequently the value of the objective function is worse than 
expected one and/or the constraints are violated (Birge & Louveaux, 1997; 
Rockafellar, 2001; Wendt et al., 2002). These problems can be attributed to 
the uncertainty that affects the system (Wendt et al., 2002).  Usually in 
process optimization, an important source of uncertainty can be assigned to 
the random behaviour of some parameters that can be described using 
random variables 𝜉𝜉  that present expected bounds and belong to a 
probability space with a given probability distribution function (PDF). Taking 
into account explicitly the stochastic behaviour that the chance variables 
can present in the optimization problem from probabilistic point of view, is 
what is called Stochastic Programming. There are other alternatives to 
handle the uncertain behaviour of random variables like fuzzy 
programming, which are clearly summarized in the review of Sahinidis 
(Sahinidis, 2004). 

Handling the unknown variables can be done with robust optimization as 
well. The essence of this methodology is finding an optimal and feasible 
solution for the random optimization problem considering all the possible 
cases. That is to say, all the values within the bounds of the unknown 
variables. Stochastic optimization problems on the other hand present a 
similar approach of the robust optimization, but taking advantage of the 
fact that the probability distribution of the random parameters can be 
obtained or estimated from available data. Therefore, it is possible finding 
an optimal policy that is feasible for almost all of the possible realizations of 
the chance variables (the degree of feasibility required can be adjusted due 
to the fact that the PDF of 𝜉𝜉 is known), optimizing the expectation of an 
objective function of the decision and the random variables. Therefore, 
applying stochastic techniques to the process optimization seems to be an 
efficient strategy to find a solution that compromises feasibility and 



HANDLING UNCERTAINTIES IN PROCESS OPTIMIZATION 

39 
 

optimality in the operation of a determined process. Because the random 
variables can have a continuous nature, it can be necessary transforming an 
infinite dimensional problem into a finite one by means of solving a 
parameterized version based in scenarios  

In the field of stochastic optimization, there are two main ways to 
understand the optimization problem: Multistage Programming and Chance 
Constrained Programming (COSP, 2012; "Preface," 2003; Sahinidis, 2004). 

1.3.1.1 Multistage Programming 
Multistage programming or Programming with recourse is based in the idea 
that there are several stages of knowledge of the random variables. At the 
beginning a set of decisions must be taken without full information of some 
random events, knowing only their probability distribution (which is a 
common assumption). As time passes, it is assumed that it is possible to 
measure or estimate the real value of the unknown variables and new 
decisions must be taken in order to correct the initial choices. It was first 
presented by Dantzig (Dantzig, 1955) who defines the concept of decision 
stages, and then commented in the work of Beale (Beale, 1955) in the 
context of solving large scale linear problems. In the paper of Dantzig it is 
presented a general model to handle explicitly the random variables for 
linear programming by means of solving multistage problems. In each 
stage, decisions must be taken considering the previous ones and the 
probability distribution function of the random variable in the future, which 
is called a multistage recursion problem.  

Starting with the basic idea of decision stages and the relationship among 
them, several approaches have been proposed in order to extend the 
original proposition of Dantzig into a more general and applicable context, 
including nonlinear problems and numerical algorithms that takes 
advantage of the particular structure of multistage problems, among 
others. 
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In terms of the probability distribution function of the random variables, 
there have been efforts to propose a numerically solvable optimization 
problem when the PDF of the random variable is continuous since the 
problem becomes infinite – dimensional. One alternative to this situation is 
to postulate a function of the random variable as a solution of the 
optimization problem, using this approach the problem becomes finite 
dimensional in the space of the parameters of the postulated function, 
which is problem – dependent for the nonlinear case. On the other hand, it 
is possible to use a Scenario Representation of the random space as a finite-
dimensional approximation of the original problem, transforming the 
original stochastic optimization problem in a large scale deterministic 
equivalent that can be solved by means of many general purpose 
optimization algorithms (Dupacova, 1995). Because of this versatility and 
generality of the scenario representation, this methodology is commonly 
used for practical problems. However, the exponential grow of the 
deterministic equivalent problem that is produced with the discrete 
assumption of the PDF, can make the problem prohibitively large. To 
overcome this issue there have been developed scenario reduction 
techniques based in: decreasing the number of scenarios adapting them 
using pass information of the random variables, to aggregate some periods 
and/or some scenarios (Römisch, 2009), selecting only the “important” 
ones with some statistical data (Dupačová et al., 2000) or using expert’s 
opinions or heuristic strategies (Dupacova, 1995; Karuppiah et al., 2010).  

On the other hand there is a lot of interest in modelling the recursive part 
of the multistage optimization problem, due to the fact that depending on 
the type of constraints utilized to describe the nonanticipativity behaviour 
of the multistage variables and the scenario description of the PDF, the 
resulting optimization problem will have a particular structure that can be 
exploited by different solvers (Birge & Louveaux, 1997), including the option 
to split the large – scale resulting problem in a primal problem and dual set 
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of problems which code can be parallelized in order to reduce the solving 
time (Kall & Wallace, 1997; Ruszczynski, 1998). 

One of the first attempts to solve industrial optimization problems 
considering the uncertainty in processes based in multistage optimization, 
appears in the works of Grossmann and co-workers introducing the concept 
of flexibility indexes (I. E. Grossmann et al., 1983; Halemane & Grossmann, 
1983). After these applications some works based on optimization under 
uncertainty using stages of decisions were modified to be used in the 
process industry (Pistikopoulos & Ierapetritou, 1995; Rooney & Biegler, 
1999, 2001, 2003).  

In process engineering, multistage programming (and its particular version, 
the two-stage programming), has been used in several applications for 
problems where the time scale between the first and the next stages is 
clearly delimited, i.e. long term decisions. For example, in optimal facility 
location problems where the first stage decision is the location and/or the 
construction of a determined factory, while the second one is the expected 
production for the already built factories. In almost all of the times this 
optimization is stated as a Mixed Integer (Non)Linear Multistage Problem 
and the applications include: off-shore gas fields (Goel & Grossmann, 2004), 
petroleum refineries (Khor et al., 2008), petrochemical networks (Al-
Qahtani et al., 2008), electric energy producers (Beraldi et al., 2008; Fleten 
& Kristoffersen, 2007) and even the allocation of water supplies from the 
highland lakes in Texas, USA (Watkins et al., 2000) among others. Long term 
planning has been also employed by Tarham and Grossmann to include the 
possibility of investing in pilot plants with the aim to reduce the uncertainty 
and take into account the possibility of expansion capacities in a particular 
plant for a given process network (Tarhan & Grossmann, 2008). In the 
context of medium term decisions, recursive programming recently has 
been used for the utilization and planning of batch multiproduct plants (Cui 
& Engell, 2010). Long and medium term decisions are stated as a multistage 
problem. However, the important outcome is obtained in the first stage 
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since it gives information about the initial investment of a production 
facility or general project. The results of the second stage, conversely, are 
only used as a guide to select correct sizes, but in practice they are not 
applied directly.  

On the other hand, the short term decisions involving uncertainty, such as 
control and real-time optimization, has been treated mostly from the point 
of view of the robust (N)MPC approach that provides robustness against  
disturbances. A significant effort has been invested in this field both 
theoretically (Limon et al., 2009; Magni & Scattolini, 2007; Rawlings & 
Mayne, 2009)  and practically, with the main idea to reject disturbances in a 
robust way. The usual robust (N)MPC is based on min-max approaches 
(Campo & Morari, 1987) that try to minimize the worst-case realization of 
the uncertainty. They can be classified in open-loop approaches, if they 
assume open-loop control in the optimization, or closed-loop approaches, if 
they assume closed-loop control in the optimization, taking feedback 
explicitly into account (Lee & Yu, 1997). As another point of view, it seems 
to be a good alternative to explore the use of multistage programming for 
this kind of applications in order to take advantage of the knowledge of the 
PDF of the random variables. However, there are no reports of the use of 
this strategy to cope with the uncertainty in short periods in the literature. 
At present, the group of System Dynamics and Process from Dortmund is 
working with the idea of using it to provide less conservative close-loop 
control than the robust (N)MPC ensuring feasibility in the outcomes of the 
control layer (Lucia et al., 2012), as it is commented in the HYCON2 report 
(Navia et al., 2011). 

1.3.1.2 Chance Constrained Optimization 
Chance constrained optimization also provides a probabilistic treatment of 
the uncertainty that affects an optimization problem, but unlike the 
multistage programming it assumes that a decision must be taken knowing 
only the probability distribution of the random variables, neglecting the 
idea of knowing the true realization of the uncertainty in the future. 
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Therefore, the uncertainty is taken into account from the point of view of 
ensuring a certain degree of feasibility in the solution of the optimization, 
no matter the value that the random variable might have within its PDF, 
focusing the approach in the reliability of the system. It was presented in 
the first time by Charnes and Cooper (Charnes & Cooper, 1959) in the 
context of independent probability constraints, and then it was extended to 
the case of problems where different constraints must be fulfilled jointly by 
Miller and Wagner (Miller & Wagner, 1965) and Prékopa (Prékopa, 1970) 

The main challenge in this area is how to calculate the probability of the 
chance constraints and most of the efforts are focused in this direction. In 
the case of some linear problems with independent chance constraints, the 
propagation of the uncertainty can be tracked and then a deterministic 
linear equivalent problem of the uncertain one can be obtained applying 
the inverse of the PDF (if exists).  

For a general set of linear chance constrained problems, Prékopa has 
presented the requirements of the PDF in order to transform the original 
uncertain constraints into standard ones (Prékopa, 1995), also the author 
has shown an extensive review of methods to solve, either analytically or 
numerically, problems where the feasible set is convex (Prékopa, 2003). In 
the context of nonlinear chance constrained optimization, some methods 
have been proposed using different solution perspectives, for instance: 
transforming the original problem into a dynamic programming one (Mine 
et al., 1976), using sampling techniques (Diwekar & Kalagnanam, 1997; 
Nemirovski & Shapiro, 2006b; Sakalauskas, 2002) and defining convex 
deterministic approximations (Nemirovski & Shapiro, 2006a), among 
others. The convexity assumption seems to be a very important drawback 
to apply previous methodologies in general nonlinear problems used in 
process optimization, since the main requirements involve dealing with a 
set of measurements that must be convex and a probability distribution 
function of the constrained variables that must be log-concave. Finding a 
convex set of measurements is quite complex in process system 
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applications, even for the most simple models based in first principles since 
the mass balance defined for each component produces non convexities in 
the feasible set of the model, which implies that if the compositions are 
probabilistic constrained this set cannot be considered for these kind of 
methods. On the other hand, the requirements of log-concavity of the PDF 
implies knowing a priori the function of the probability distribution function 
of the constrained variables, which in general is unknown, and even in the 
case when the random variables can be described using a log-concave PDF, 
the nonlinearities of the system might not preserve this characteristic, 
leading to PDFs in the constrained variables that do not fulfil the basic 
assumptions of these methodologies again. 

To overcome these limitations in the context of process system 
engineering, Wendt and co-workers have presented a methodology based 
in the inverse mapping of the PDF of the random variable, to estimate the 
probability constraints of the process outputs for the case of nonlinear 
optimizations (Wendt et al., 2002). In general, this problem consists in 
finding critical values of the random variables that are in the border of the 
confidence region such that the probability of fulfilment of the constraints 
is equal to the degree of feasibility required. The methodology proposed by 
the authors presents the advantage that the only requirement to be applied 
to solve a chance constrained problem is the existence of monotony 
between the random variable and the constrained output and the fact that 
this is not a sampling-based technique.  

The first real life application of the probabilistic constraints was formulated 
for the electrical energy sector in Hungary to reach a determined degree of 
reliability in the produced power using a linear model that was transformed 
in a deterministic one (Prékopa et al., 1980), after this application Prékopa 
summarized the numerical solution method applied in this kind of 
electricity applications(Prékopa et al., 1998). Following with linear 
applications, the probabilistic constrained optimization has been 
formulated and solved to design water reservoirs that can protect a 
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downstream area from flood (Dupačová et al., 1991). From the point of 
view of the industrial applications, there are some examples of solving the 
inventory problem in order to fulfil the uncertain demands from the 
market(Beraldi & Ruszczynski, 2001). An extensive review of applications in 
engineering and other fields like finance and food management is 
presented in the compilation of Prékopa (Prékopa, 2003). In all cases, the 
author gives details about the examples, indicating that they correspond to 
linear problems that can be solved using convexity-based techniques.  

About the applications of probabilistic constrained optimization in process 
system engineering, there are some examples for linear cases in the context 
of MPC (Henrion & Möller, 2003; Pu Li et al., 2002; P. Li et al., 2002)  and for 
nonlinear ones in examples related with the production planning to 
optimize complex process systems such as continuous and semi-batch 
distillation columns  (Arellano-Garcia & Wozny, 2009; Barz et al., 2008; Li et 
al., 2008), being the method of the inverse mapping technique (Wendt et 
al., 2002) the chosen one to estimate the probabilistic constraints.  

As it can be noted from the applications, we can say that this methodology 
is not commonly used to cope with the uncertainties in economic process 
optimization, since in these cases it is necessary to use nonlinear models. 

1.3.2 Real Time Optimization 
In the process industry, plants have a large number of units which are 
interconnected. Finding the optimal operation point of these facilities is not 
a trivial task, because of the inherent difficulties of the process itself, as 
well as the uncertainties and disturbances that continuously modify the 
operating conditions. Therefore, it is necessary to use a systematic 
mechanism to find out the optimal operating point. Real-time optimization 
(RTO) has become a popular tool in the chemical and petrochemical 
industry in order to look for the optimal conditions despite the 
uncertainties (Cutler & Perry, 1983), which can be due to the partial 
knowledge of the process. This implies solving an optimization problem 
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using inaccurate or approximated models in the decision making process 
where the operational point of the plant is calculated.  

In highly automated plants, optimal operation is typically addressed by a 
decision hierarchy involving several levels that include planning, real-time 
optimization and process control. At the RTO level, medium-term decisions 
are made on a time scale of hours to days, considering economic objectives 
in an explicit way. This step typically consists in an optimizer that 
determines the optimal conditions under slowly changing conditions 
(Marlin & Hrymak, 1997), hence steady-state assumptions are considered in 
the optimization carried out. 

Real-time optimization emerged in the late 1970’s with a two-stage 
algorithm: parameter estimation and economic optimization with the idea 
of making the model as much similar possible to the real process in the 
present conditions. In the first step, the uncertainties are taken into 
account updating the parameters of a nonlinear model of the process, while 
in the second step a new economic stationary point is found with the 
updated model (Bamberger & Isermann, 1978). The new operating point is 
then applied to the process in an iterative scheme until no further 
improvements in the cost function are observed.  

The application of the RTO is concerned with implementing economic 
decisions in real time based on an updated non-linear steady-state model, 
with a level of detail that upper (planning) layers do not have. In its 
implementation values are directly passed or translated by using a filter 
(that can involve plant operators) to the MPC layer, following the 
hierarchical Optimization Architecture (Engell, 2007).  

At the MPC level, there may be one or more MPCs, depending on the 
controller envelope(s)(Findeisen et al., 1980). The MPC(s) provides the 
minute-to minute dynamic control of the plant and provide some amount 
of optimization capability because of the RTO updates. 
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The implementation of the RTO/MPC configuration may produce important 
benefits in the plant. However, it increases significantly the complexity of 
the control system because of the continuous updates, making the model 
implemented in the MPC layer (identified for a particular condition of 
operation), inaccurate and erroneous. To justify the application of the RTO, 
it is necessary to realize that, without this layer, plant operators are not 
able to optimize set-points within the feasible range according to the 
disturbances affecting the process (Engell, 2007). Therefore, we can argue 
that the RTO is recommended when there are degrees of freedom that can 
be adjusted and when variability of the optimal operating point caused by 
changes in operating conditions is frequent (Darby et al., 2011). Besides the 
justification of the implementation in terms of the benefits, RTO presents 
and important benefit related to be an effective way of distributing 
technical know-how from research to the plant (Cutler & Perry, 1983). 

There are several challenges related to the RTO applications (Darby et al., 
2011). About the interaction with the MPC layer, there are important 
progresses in the study of the tradeoff between benefits related with the 
time scale separation, the problems derived from the differences between 
the models used in each layer and the loss of optimality produced with the 
steady state assumptions. The general solution proposed is to implement 
the dynamics into the RTO layer, transforming it into a Dynamic RTO or an 
economic driven NMPC level (Backx et al., 2000; De Prada & Valentin, 1996; 
Engell, 2007, 2009; Gonzalez et al., 2001). There are different alternatives 
to make the resulting nonlinear dynamic optimization solvable in real time. 
Among them, there are proposals that keeps the two-layer structure, such 
as: the Infrequent DRTO executions by using sensitivity-updated solutions 
keeping the two layers structure (Kadam & Marquardt, 2004; Würth et al., 
2009, 2011), the reduction of search region with stochastic criteria(Ochoa, 
Repke, et al., 2010; Ochoa, Wozny, et al., 2010) and the frequent 
application of a static model to explore the objective function in Real Time 
Evolutions (Sequeira et al., 2002; Sequeira et al., 2004). Other solutions 
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include merging the DRTO with the MPC layer, solving in each sampling 
time an NMPC with economic objectives. Since the computational times 
must be significantly reduced there are several approaches to distribute the 
entire optimizations in several local NMPCs using different methods 
(Findeisen et al., 1980; Scattolini, 2009). In particular, it has been developed 
an promising methodology based in a hierarchical architecture using a 
coordination layer that makes converge the distributed NMPCS to the 
optimum of the original one using: game theories, price driven coordination 
or Lagrangian Relaxation methods (Maestre et al., 2011; Martí et al., 2012; 
Voos, 2007). 

Moreover, there are important advances in improving the capability of the 
RTO layer to detect the optimum of the process. Because of the modeling 
mismatch, produced either from the partial knowledge of the process e.g. 
when physical dependences are not correctly modeled, or from the 
simplifications that must to be made in order to make the nonlinear model 
solvable, the classic two-step algorithm does not converge into the real 
optimum of the process because of the interaction between the two steps, 
as Roberts demonstrated in latest years of the 70’s. Since the modeling 
mismatch is a common case, there have been several attempts to 
overcome this situation adapting the model in order to take into account 
this difference and converge to the optimum of the process, which can be 
classified in three main groups according to Chachuat and co-workers 
(Chachuat et al., 2009): Model Parameter Adaptation, Modifier Adaptation 
and Direct Input Adaptation, which will be briefly mentioned next.  

1.3.2.1  Model Parameter Adaptation 
Maintaining the classical two-step structure, these methods takes into 
account the interaction already mentioned identifying the characteristics 
that the updated parameters must have to achieve the plant optimum.  

Forbes and coworkers present a method to evaluate whether the model 
available has the ability to find the real process optimum defining the 
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“Point-model Adequacy” (Forbes et al., 1994)  and the “Model Accuracy” 
(Forbes & Marlin, 1994). These strategies consist in finding a suitable choice 
of model parameters such that the optimal point of the plant coincides with 
the optimal point of the model for a given value of these parameters. Even 
though this method gives sufficient conditions to ensure process optimality 
with the two-step approach, it uses the concept of reduced gradient which 
implies that the set of active constraints must be the same for the process 
and for the model, which also must be known a priori. This, plus the fact 
that the value of the real optimum of the process must be estimated in 
order to perform a gradient matching, makes this classification scheme not 
very practical.   

Another way to take into account the interaction between the parameter 
estimation and the economical optimization is investigated by Srinivasan 
and Bonvin in a dynamic optimization problem (Srinivasan & Bonvin, 2002). 
The authors work in a run-to-run optimization for batch processes, 
attempting to change the paradigm of “identification of the model” for 
“modeling for optimization”. To do this, they identify a model that allows 
computing inputs that are nearly optimal for the reality. For this, the cost 
and constraints of a dynamic optimization problem are included in the 
identification objective creating an integrated problem, while the 
interactions between both optimization problems are taken into account by 
using appropriate Lagrange multipliers. 

1.3.2.2 Modifier Adaptation 
As it was said in the introduction of the RTO, it is necessary to manage the 
interaction between the parameter estimation and the economic 
optimization steps in order to find the process optimum. With this in mind, 
Roberts developed the ISOPE1 algorithm (Roberts, 1979) as the result of 
merging the two classical steps. In a few words, with the ISOPE algorithm 

                                                            
1  ISOPE is the acronym of “Integrated System Optimization and Parameter 
Estimation” 
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the convergence to the optimum of the process can be achieved correcting 
the objective function with a linear term that takes into account the 
difference between the gradient of the model and the process, for a square 
identification problem with only constraints in the decision variables.  

Later, Tatjewsky demonstrated that the same convergence results of the 
ISOPE method can be obtained if the parameter estimation step is replaced 
by zero order corrections for the process measurements, presenting the 
Iterative Optimizing Set-Point Control (Tatjewski, 2002). This technique was 
extended to general constrained optimizations by Gao and Engell who 
presented a first order correction in the constraints that takes into account 
the difference between the process and the model of their gradients and 
values(Gao & Engell, 2005). The constraint adaptation was proved by 
Chachuat and co-workers giving the theoretical basis for this methodology 
(Chachuat et al., 2008).  

The adaptation methodology was finally formalized by Marchietti and co-
workers who presented the Modifier Adaptation Methodology (Marchetti 
et al., 2009). The authors gave the explanation for the convergence to the 
real optimum when the adaptation in the economic optimization is 
performed correcting the gradients of the objective function and the 
constraints, from the point of view of the KKT matching between the model 
and the real process. 

1.3.2.3 Direct Input Adaptation 
Direct-input adaptation methods were developed with the idea of avoiding 
repeated numerical optimizations performed in the RTO layer by changing 
the optimization problem into a feedback control problem. The aim of this 
feedback control is to calculate the set points for the manipulated variables 
while trying to maintain certain measures of optimality fixed. The challenge 
then is to find the optimality functions calculated with the measured 
variables that must be fixed by changing the decision variables such that 
the system is driven to the real optimum. In other words, the goal is to 
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choose appropriate controlled variables in order to achieve a similar 
performance as would be realized by a (fictitious) on-line optimizing 
controller (Chachuat et al., 2009). 

In the literature, three different methods can be found to implement the 
idea of Direct Input Adaptation: Self-Optimizing Control, Extremum Seeking 
Control, and NCO Tracking, which will be explained next. For more detailed 
information, see chapter 2 of the Deliverable 3.1.1 of the HYCON2 Project  
(Navia et al., 2011). 

SELF-OPTIMIZING CONTROL: In this case the on-line optimization is 
replaced with the design of a control structure for the process, such 
that when maintaining some variables, or combination of variables, 
at fixed set points a close-to-optimal situation is attained. Ideas 
related to self-optimizing control have been presented repeatedly 
in the process control history. The first quantitative treatment was 
presented by Morari and coworkers (Morari et al., 1980). 
Nevertheless, Skogestad defined the problem in detail and was the 
first to introduce the formally of the methodology (Skogestad, 
2000).  
 
EXTREMUM SEEKING CONTROL: Following the concepts of Direct – 
Input Modifier Approach, the task of Extremum seeking control is 
to find the operating set points that maximize or minimize an 
objective function (Guay & Zhang, 2003).  Two main approaches of 
Extremum seeking control have been presented (Dochain et al.): 
perturbation-based (Krstic & Wang, 2000) and model-based (Guay 
& Zhang, 2003). In the first method, a constant perturbation signal 
is introduced to the system in order to calculate an estimate of the 
gradient of the measured objective function without any previous 
knowledge about the system (black box). On the other hand, in the 
second method, an approximation of the objective function is 
assumed to be known. This function presents parametric 
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uncertainties, and the model is used to calculate analytically its 
gradient 
 
NCO TRACKING: One common practice when conducting a transient 
operation in the industry is following a well-defined recipe (from 
the laboratory, or from the experience of the operators). However, 
due to the existence of constraints related with equipment limits 
and quality levels, which conflict with the recipes, operators will 
naturally introduce a degree of conservatism to guarantee 
feasibility moving away from these constraints, thus leading in 
suboptimal results. To reduce this backing off from constraints 
which is introduced intentionally to take care of disturbances, an 
optimization-based methodology can be applied to follow the 
constraints in an optimal way (Bonvin & Srinivasan, 2003). The 
optimal trajectories can be estimated from nominal dynamic 
models which can then be applied as reference trajectories to lower 
layers. Nonetheless, the uncertainty related with the model 
available and the disturbances that can affect the system makes the 
application of standard dynamic optimization methods ineffective. 
To overcome these problems, the authors suggest a method 
consisting in evaluating offline the optimality conditions of the 
process using a dynamic model. Once the solution of the problem is 
fully characterized, the optimality criteria can be applied in a 
feedback control in order to maintain optimality despite the 
uncertainties of the process. 

A more extensive revision of the three methodologies can be found in 
Chapter 2 of Deliverable 3.1.1 of HYCON2 project (Navia et al., 2011). 

Each of these adaptation strategies presents their own particular 
advantages and inconveniences. If we fixed our attention in direct 
adaptation methodology to classify if the model employed in the 
optimization is adequate and accurate, it is completely mandatory knowing 
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a priori the set of active constraint in the real optimum of the process, 
which can be almost impossible if some of the physical dependences are 
neglected in the modeling step. Therefore, this focus can be impractical 
when modeling mismatch is present. On the other hand, the modifier 
adaptation methodology ensures convergence to the optimum of the 
process without previous information about its location in the feasible 
space. However, the KKT matching with the real process needs a correct 
estimation of the difference between the process and the model, and since 
this method adds a first order correction in the economic optimization, it is 
necessary to measure in some way the experimental gradient of the 
process. Even when there are some alternatives to estimate this 
magnitude, they need a lot of previous information or they require applying 
some kind of perturbations to the real process, which can be inapplicable 
for some plants. Finally, the direct input adaptation presents the advantage 
that they become model-independent since online optimization is no longer 
required. However, Self-optimizing control only guarantees a solution close 
to the optimum of the process where the optimality has been obtained 
with a model that can present mismatch, Extremum-seeking control 
present the same problem than the modifier adaptation methodology 
about the continuous perturbation of the plant to estimate the gradient, in 
addition with the incapability to manage the process constraints, and finally 
NCO tracking depends on the invariance of the set of active constraints with 
the uncertainty. 

Even when every adaptation strategy presents their pluses and cons, from 
the perspective of the applicability, only the modifier Adaptation 
Methodology is able to: manage constraints, not require previous 
information of the true optimum of the process (like the set of active 
constraint) and ensure optimality for a given model.  Of course, the need to 
estimate the gradient of the process, as well as, other problems related 
with its implementations must be considered in order to make this strategy 
more realistic to be applied in a real plant. 
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1.4 Objectives  
The general objective of this thesis is to study the applicability of 
optimization methods in the process industry taking into account explicitly 
the uncertainty in models and variables. First the problem was considered 
from the stochastic approach, but the computation times obtained were 
not very promising. This motivated a change in focus toward RTO problems 
with the modifier-adaptation methodology. So, this thesis is split in two 
parts, each of them with general objectives detailed at next. 

1.4.1 Stochastic Optimization 
The main objective of this part of the thesis is to study the applicability of 
methods to manage the stochastic behavior of the random variables in an 
optimization problem, from the viewpoint of the stochastic programming. 
As a test plant a hydrodesulfuration process is chosen. 

To reach this general objective, the following particular objectives are 
proposed: 

- Identify the main sources of uncertainties in a transition problem 
corresponding to a hydrodesulfuration unit. 
 

- Study the particularities of the two-stage algorithm in terms of 
possible decompositions to be applied in dynamic optimization. 
 

- Study the simplification in the implementation of the two-stage 
optimization when the probability distribution function has a 
continuous nature. 
 

- Propose a method to generalize the discrete simplified solutions 
from the two-stage optimization, to be applied with the original 
uncertainty  
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- Study the implementation of the chance constrained optimization 
in the context of dynamic optimization with the sequential 
approach. 
 

- Apply the general algorithms of stochastic programming in the 
particular problem of the transition in a hydrodesulfuration unit. 
 

- Solve the problem of optimization under stochastic uncertainty and 
test the solution in terms of feasibility, optimality and applicability. 
 

1.4.2 Real Time Optimization 
The main objective of this part of the thesis is to propose improvements to 
be implemented in the Modifier-Adaptation Methodology, to increase its 
field of application as a valid tool to overcome the uncertainties produced 
in the RTO layer as a consequence of the modeling mismatch. 

To reach this general objective, the following particular objectives are 
proposed: 

- Study the generalities of the modifier Adaptation Methodology and 
compare its outcomes with the classic RTO method. 
 

- Identify the main challenges that the Modifier Adaptation 
Methodology presents. 
 

- Propose alternatives to solve the main problems detected, in terms 
of: 

o Infeasibilities that can be generated in the evolution of the 
process. 

o Gradient estimation step and an alternative to avoid it. 
o Dynamic versus static behavior in order to remove this 

requirement and save time. 
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- Test the alternatives proposed using process examples.  

 
- Discuss and conclude about the solutions proposed and their 

applicability in a real facility. 

1.5 Summary 
The summary of this thesis is the following:  

Chapter 2 deals with the first part of this thesis: the management of 
stochastic variables. It presents the following subsections: 

- Introduction to the stochastic programming methodology. In this 
section the basic concepts about stochastic programming are 
presented, including the explanation of the algorithms that will be 
used. 
 

- Description of the test problem. This section introduces the 
problems presented in a hydrodesulfuration plant when changes in 
the feed take place. 
 

- Formulation of the two-stage and chance constrained programming 
for the problem of the hydrodesulfuration plant tested. 
 

- Results obtained with the methods studied and tested with 
simulated random variables. Also the discussion of the results is 
presented 
 

- Conclusions about the results and their applicability. 
 

Chapter 3 presents the second part of this thesis: the study of the Modifier 
Adaptation Methodology in the context of the Real Time Optimization and 
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the improvements proposed. The following subsections are detailed in this 
chapter. 

- Introduction to the Real Time Optimization. 
 

- The Modifier Adaptation Methodology. In this section the main 
generalities of the methodology studied are explained.  
 

- Implementation of the Modifier Adaptation Methodology. In this 
section we identify the main challenges of the methodology with 
the help of an example. 
 

- Handling Infeasibilities in Modifier Adaptation Methodology. In this 
section the introduction of infeasibility controllers is presented as 
an alternative to the classic method to avoid process infeasibilities 
in the evolution of the system. The methodology proposed is tested 
in a process example.  
 

- Reformulation of the Modifier Adaptation Methodology as a Nested 
Optimization problem.  Throughout this section it is presented a 
completely new way to understand the modifier adaptation 
methodology, with the idea to avoid the gradient estimation step 
required in the original formulation. The methodology is tested in 
process examples. 
 

- A first Approach for Modifier Adaptation Methodology in Dynamic 
Real Time Optimization. In this section, an attempt to extend the 
Modifier Adaptation Methodology for Dynamic Real Time 
Optimization is presented, with the aim of using the information 
obtained in the transient of a process to reach the optimum of the 
process. The methodology proposed is tested in a process example. 
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- Conclusions: advances proposed in the field of Real Time 
optimization using Modifier Adaptation Methodology. 

Chapter 4 summarizes the main conclusions of this thesis in terms of the 
previously presented results. Also it presents the open issues for future 
work and the contributions. 

1.6 Objetivos 
El objetivo general de esta tesis es estudiar la aplicabilidad de métodos de 
optimización en la industria de procesos que consideren explícitamente las 
incertidumbres que pueden encontrarse en modelos y variables. Al 
principio el problema fue abordado utilizando un enfoque probabilístico. 
Sin embargo, los tiempos de cálculo observados no fueron  adecuados, por 
lo que se cambió el enfoque hacia la Optimización en Tiempo Real con el 
método de adaptación de modificadores. De esta forma, esta tesis se ha 
dividido en dos partes, cada una de ellas con objetivos generales diferentes. 

1.6.1 Optimización Estocástica 
El objetivo principal de esta parte de la tesis es el estudio de métodos que 
permitan manejar el comportamiento aleatorio de las variables de proceso 
desde el punto de vista de la programación estocástica, aplicados en una 
unidad de hidrodesulfuración. 

Para cumplir esta meta, se proponen los siguientes objetivos particulares: 

- Identificar las fuentes de incertidumbre principales  observadas en 
un problema de cambio de carga producido en una unidad de 
hidrodesulfuración 
 

- Estudiar las particularidades del método de optimización de dos 
etapas referidas a la descomposición que puede implementarse en 
un problema dinámico. 
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- Estudiar la aplicación de simplificaciones en la resolución de un 
problema de dos etapas, referidas a la discretización de una función 
de distribución de probabilidad continua.  
 

- Proponer un método para generalizar los resultados obtenidos a 
partir de la discretización de la distribución de probabilidad para ser 
aplicados con la incertidumbre original. 
 

- Estudiar la implementación del método de optimización 
probabilística en el contexto de un problema de optimización 
dinámica resuelto con un enfoque secuencial. 
 

- Aplicar los métodos antes estudiados a un problema de cambio de 
carga en una unidad hidrodesulfuradora. 
 

- Resolver el problema de optimización con incertidumbre 
estocástica, probando la solución obtenida en términos de 
optimalidad y factibilidad.  

1.6.2 Optimización en Tiempo Real 
El objetivo principal de esta parte de la tesis es proponer y aplicar mejoras 
al método de Adaptación de Modificadores, y de esta forma ampliar su 
campo de aplicabilidad como herramienta para manejar las incertidumbres 
en la optimización de procesos, producidas en la capa de RTO como 
consecuencia de errores de modelado.  

Para lograr esta meta, se proponen los siguientes objetivos particulares: 

- Estudiar las generalidades del método de adaptación de 
modificadores y comparar sus resultados con el método clásico de 
RTO basado en dos etapas.  
 



CHAPTER 1: INTRODUCTION 

60 
 

- Identificar los mayores desafíos del método de adaptación de 
modificadores 
 

- Proponer alternativas para resolver estos problemas, en términos 
de:  

o Violación en las restricciones de proceso, durante la 
evolución del sistema. 

o Evitar la estimación del gradiente del proceso para detector 
el óptimo del sistema.  

o Estudiar la posibilidad de implementar el método de 
adaptación de modificadores en el contexto de 
optimización dinámica. 

 
- Probar las propuestas en ejemplos de simulación.  

 
- Discutir y concluir sobre las soluciones propuestas y su campo de 

aplicabilidad. 

1.7 Esquema 
El esquema de esta tesis es el siguiente:  

El Capítulo 2 presenta la primera parte de la tesis: el manejo de las variables 
inciertas, con las siguientes secciones: 

- Introducción a la programación estocástica, donde se explican los 
conceptos básicos de la optimización estocástica incluyendo los 
algoritmos que serán implementados en el problema de 
hidrodesulfuración.  
 

- Descripción del problema. En esta sección se comentan los 
problemas relacionados en el cambio de carga en una unidad 
hidrodesulfuradora. 
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- Formulación del problema de optimización de dos etapas y 
probabilística para el sistema compuesto por la unidad 
hidrodesulfuradora. 
 

- Resultados y discusión de las trayectorias obtenidas con ambos 
métodos. 
 

- Conclusiones sobre los resultados y su aplicabilidad  

El capítulo 3 presenta la segunda parte de esta tesis: el estudio y las 
mejoras propuestas para el método de adaptación de modificadores en el 
contexto de la Optimización en Tiempo Real. Se presentan las siguientes 
secciones: 

- Introducción a la Optimización en Tiempo Real 
 

- Método de Adaptación de Modificadores. En esta sección se 
explican las generalidades del método. 
 

- Implementación del método de adaptación de Modificadores. En 
esta sección se identifican los principales desafíos a abordar en el 
método de adaptación de modificadores con ayuda de un ejemplo 
de simulación. 
 

- Manejo de Infactibilidades en el método de Adaptación de 
Modificadores.  En esa sección se presenta una alternativa para 
evitar la ocurrencia de infactibilidades en el proceso durante la 
evolución del sistema que está siendo actualizado con el método de 
adaptación de modificadores, mediante la implementación de 
controladores de infactibilidades. 
 

- Reformulación del Método de Adaptación de Modificadores como 
un problema de Optimización Anidado. En esta sección se presenta 
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una forma nueva de entender la Adaptación de Modificadores 
como un problema de optimización anidado, que permite detectar 
el óptimo de un proceso sin la necesidad de estimar los gradientes 
reales de la planta. 
 

- Método de Adaptación de Modificadores en Optimización 
Dinámica. En esta sección se presenta una propuesta para extender 
el método a optimización dinámica en tiempo real, desde el punto 
de vista clásico basado en gradientes así como del anidado 
propuesto en esta tesis.  
 

- Conclusiones de las mejoras propuestas. 

El capítulo 4 resume las conclusiones generales de esta tesis en relación a 
los resultados presentados previamente. También se comentan los puntos 
abiertos para seguir la investigación y las contribuciones realizadas. 
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ABSTRACT 

This Chapter describes two methods of stochastic economic 
programming and their application in a hydrogen consuming plant: 
Two – stage programming and Chance constrained optimization. 
We assume that the system under study presents sources of 
uncertainty that can be modeled with a binormal probability 
distribution function (PDF). Both dynamic optimization methods 
were expressed in the continuous time domain. To calculate the 
probabilistic constraints inverse mapping method was formulated 
as a nested estimation problem. On the other hand, to solve the 
two stage optimization, a discretization of the PDF in scenarios was 
applied with a scenario aggregation formulation to take into 
account the nonanticipativity constraints. Finally it was proposed a 
framework based in interpolation to generalize this solution. Both 
optimization methods were tested in terms of feasibility and 
optimality using Montecarlo simulation for the application case 
considered. The main problem appears to be the large computation 
times associated. 

KEYWORDS  

Two-stage stochastic optimization, Chance constraints 
optimization, Montecarlo simulation, Economic dynamic 
optimization, Hydrodesulfuration process 
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RESUMEN 

Este capítulo describe dos métodos de programación estocástica y 
su aplicación a un problema de optimización económica en una 
hidrodesulfuradora: programación de dos etapas y optimización 
probabilística. Se ha supuesto  que el sistema presenta fuentes de 
incertidumbre modeladas mediante una distribución de 
probabilidad binormal (PDF). Ambos métodos de optimización 
dinámica se han expresado en términos del dominio continuo del 
tiempo. Para calcular las restricciones probabilísticas, se ha 
utilizado el método de mapeo inverso reformulado como un 
problema de estimación de parámetros anidado. Por otro lado, se 
ha utilizado el método de agregación de escenarios en la 
programación de dos etapas para considerar las restricciones de no 
anticipatividad. Finalmente, se propone un método para la 
aplicación de los resultados obtenidos basado en la interpolación 
de los mismos, con la idea de generalizar la solución discreta 
obtenida en cada escenario. Los resultados, han sido probados en la 
planta de hidrodesulfuración mediante simulaciones de Montecarlo 
para dar una idea de la factibilidad en una aplicación real 

PALABRAS CLAVES 

Programación de dos etapas, Optimización probabilística,  
Simulaciones de Montecarlo, Optimización dinámica, 
Hidrodesulfuración  
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2.1 Introduction 
Uncertainty is always present in the operation of processes. Therefore, 
when optimal decisions have to be made, differences between the model 
and the reality must be considered in order to propose optimal and feasible 
policies. In some situations the uncertainty that affects the system can be 
attained to the random behavior of some process variables, which must 
considered explicitly in the optimization problem to propose a feasible 
policy to be applied in a real process. In this chapter, we have used two 
approaches of stochastic programming to overcome this problem in a test 
problem related to the optimization of the hydrogen consumption of a 
desulfuration unit from a petrol refinery, when we are facing changes in the 
operating conditions. Stochastic programming uses a probabilistic 
viewpoint to propose a feasible solution in an optimization problem when 
some of the variables present a random behavior. As it was commented in 
the state of the art, there are two main ways to solve this problem: 
multistage (and its particular case with two-stages) and chance constrained 
programming.  In this thesis both methods have been used. 

In contrast to other approaches that appear in the literature, the stochastic 
dynamic programming problem has been solved in the continuous domain, 
using a sequential approach. To do this, a control vector parameterization 
was used combining optimization methods and dynamic simulation. Two 
changes have been proposed in the stochastic methods according to the 
continuous formulation. In the implementation step of the two-stage one, 
an interpolation method is presented to overcome the loss of 
generalization that takes place when scenarios are used to describe the 
continuous PDF and an open loop policy must be applied. In the same way, 
in the chance constraint method a new approach for calculating the limits 
of the probability integrals as the solution of a parameter estimation 
problem has been proposed. The optimization results obtained with these 
methods were tested and analyzed using Montecarlo simulations. 
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The structure of this chapter is as follows: Section two presents a brief 
introduction to the stochastic optimization methods. Section three shows 
the description of a hydrodesulfuration plant and the application of the 
stochastic optimization methods to its optimal operation. In section four, 
the outcomes of the stochastic optimization with a test using Montecarlo 
simulations are presented and discussed, in order to evaluate the 
generalization method proposed. The chapter ends with some conclusions 
and comments about future work. 

2.2 Generalities of Stochastic Programming 
In general, a problem of dynamic optimization under uncertainty can be 
summarized as: 

min
𝑢
𝑓𝑓�𝑥𝑥,𝑢𝑢, 𝜉𝜉, 𝑡𝑡𝑓� 

𝑠. 𝑡𝑡. : 
ℎ(�̇�𝑥, 𝑥𝑥,𝑢𝑢, 𝜉𝜉, 𝑡𝑡) = 0, 𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0 
𝑔(𝑥𝑥,𝑢𝑢, 𝜉𝜉, 𝑡𝑡) ≤ 0 
𝑥𝑥 ∈ 𝑋,   𝑢𝑢 ∈ 𝑈,   𝜉𝜉 ∈ Ξ, 𝑡𝑡 ∈ �𝑡𝑡0, 𝑡𝑡𝑓� 

(2.1) 

Where 𝑥𝑥 ∈ ℝ𝑛𝑥  is the vector of states, 𝑢𝑢 ∈ ℝ𝑛𝑢  are the decision variables, 𝑡𝑡 
is time and 𝜉𝜉 ∈ ℝ𝑛𝜉  represents a random variable that belongs to a 
probability space with a certain probability distribution function (PDF) Ξ. 
The model of the process is given by the set of equations ℎ:ℝ𝑛𝑥 × ℝ𝑛𝑥 ×
ℝ𝑛𝑢 × ℝ𝑛𝜉 × ℝ → ℝ𝑛𝑥, the cost function to be minimized is represented by 
𝑓𝑓:ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝜉 → ℝ , while 𝑔:ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝜉 × ℝ → ℝ𝑛𝑥  denotes 
the constraints of the optimization problem. 

Many practical problems can be formulated as equation (2.1) states due to 
the presence of unknown elements. The nature of the random behavior of 
the uncertain variables can be very different, ranging from fairly constant 
but unknown values (e.g. compositions) to values that change continuously 
in a casual way (e.g. wind). The decision variables can also be very different, 
and here it is assumed that they will take values over a time horizon 
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according to an input vector parameterization. With respect to the solution 
methods, two approaches have been chosen considering the application 
target. 

2.2.1 Two – Stage Programming 
Two stage programming is a particularization of the multistage 
programming. In two–stage formulation the key idea is: we need to make a 
decision now taking into account that after a certain period of time, more 
information will be available as measurements that will contribute to 
decrease the incertitude from that time on. So, when decisions have to be 
made over a time horizon, there are stages of decisions that differ in the 
degree of knowledge of the uncertain variable:  in the first one (stage 0), a 
choice must be made knowing the initial conditions of the system and 
without any certainty about the random variables, except that they belong 
to a certain PDF. Then, in the second stage (stage 1), the decision variables 
can be chosen taking into account that the value of the random variable is 
available (measured or estimated) (Dantzig, 1955), and can be equated to 
the value that it had in the previous stage. Therefore, the decision variable 
in second stage will depend on the earlier values and on the random 
variables. If the subscripts denotes the decision stages (0 and 1), the 
general problem from equation (2.1) can be reformulated from the two-
stage point of view as (Rockafellar, 2001): 

𝑚𝑖𝑛𝑛
𝑢(·)

𝔼ξ[𝑓𝑓0(𝑢𝑢0, 𝑥𝑥0(𝜉𝜉), 𝜉𝜉) + 𝑓𝑓1(𝑢𝑢1(𝜉𝜉), 𝑥𝑥1(𝜉𝜉), 𝜉𝜉) ] 

𝑠. 𝑡𝑡. : 
𝑔0(𝑢𝑢0, 𝑥𝑥0(𝜉𝜉), 𝜉𝜉) ≤ 0 
𝑔1(𝑢𝑢1(𝜉𝜉), 𝑥𝑥1(𝜉𝜉), 𝜉𝜉) ≤ 0 
ℎ0(�̇�𝑥0(𝜉𝜉), 𝑥𝑥0(𝜉𝜉),𝑢𝑢0, 𝜉𝜉, 𝑡𝑡) = 0, 𝑥𝑥0(𝜉𝜉, 𝑡𝑡0) = 𝑥𝑥0,𝑖 , 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡1] 
ℎ1(�̇�𝑥1(𝜉𝜉), 𝑥𝑥1(𝜉𝜉),𝑢𝑢1(𝜉𝜉), 𝜉𝜉, 𝑡𝑡) = 0, 𝑥𝑥1,𝑖(𝜉𝜉, 𝑡𝑡1) = 𝑥𝑥0(𝜉𝜉, 𝑡𝑡1),

𝑡𝑡 ∈ �𝑡𝑡1, 𝑡𝑡𝑓� 
𝑥𝑥1 ∈ 𝑋𝑘,   𝑢𝑢𝑘 ∈ 𝑈𝑘, 𝑘𝑘 = {0,1} 
𝜉𝜉 ∈ Ξ 

(2.2) 
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In equation (2.2), 𝑢𝑢0 ∈ ℝ𝑛𝑢  and 𝑢𝑢1(𝜉𝜉) ∈ ℝ𝑛𝑢  represent the decision 
variables applied in stages 0 and 1 respectively. Notice that these variables 
can take several values in time according to a certain parameterization in 
each stage, but the notation has been shortened for simplicity. The initial 
states for both stages are represented as 𝑥𝑥0,𝑖 ∈ ℝ𝑛𝑥  and 𝑥𝑥1,𝑖(𝜉𝜉) ∈ ℝ𝑛𝑥  for 
stage 0 and 1 respectively, being the second one obtained as a result of the 
decision variables applied. It can be noted how the value of the uncertain 
parameter affects the evolution of the state variables in both stages. The 
functions that must be minimized are denoted as {𝑓𝑓0, 𝑓𝑓1}:ℝ𝑛𝑥 × ℝ𝑛𝑢 ×
ℝ𝑛𝜉 → ℝ for each decision stage. Due to the fact that these functions 
depend on the value of the random variables, their expected value (𝔼𝜉) 
must be used to group all these situations in a single objective function to 
be minimized. Analogous to the objective function, the model of the 
process and the inequality constraints are represented by {ℎ0,ℎ1}:ℝ𝑛𝑥 ×
ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝜉 × ℝ → ℝ𝑛𝑥  and {𝑔0,𝑔1}:ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝜉 × ℝ → ℝ𝑛𝑔  
for both stages respectively.  

In order to solve this problem for a continuous PDF it is necessary to solve a 
nested numerical integration (Birge & Louveaux, 1997). To avoid this step, it 
is possible to discretize the original PDF (D-PDF) allowing only a finite 
number of values for the random variable, called scenarios, and then solve 
problem from equation (2.2) using a weighted sum of the cost function 
(Birge & Louveaux, 1997; Dupacova, 1995; Dupačová et al., 2000; 
Ruszczynski & Shapiro, 2003; Sahinidis, 2004). The problem with the 
scenario approach is the loss of generalization in the optimization because 
the solution is valid only for the discrete values considered in the D-PDF. 
However, it allows obtaining solutions that otherwise will not be available 
numerically. 

In this work, the scenario formulation was used with the two-stage 
approach described previously. From the point of view of the uncertain 
variable 𝜉𝜉, the situation can be represented in the schematic of Figure 
2.1(a) where in stage 0 we must consider that it can have any value of the 
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scenarios chosen, while in stage 1 the value of the random variable is equal 
to the one from the first stage. In contrast, Figure 2.1(b) shows different 
realizations that could take place over time in different stages if the 
information that can be acquired in the future is not considered, leading to 
an exponential increase in the number of scenarios. 

 
FIGURE 2.1: INFORMATION ABOUT THE STOCHASTIC VARIABLE IN TWO-STAGE APPROACH 

The selection of one or other implementation strategy is related to how the 
uncertain variables affect the process. In the first case it is considered that 
the uncertainty only disturbs the system from the actual time. On the other 
hand, in the second case there are additional sources of uncertainty that 
will appear in the future. To understand this idea, consider an investment 
problem to produce two kinds of crop plants with different yields 
depending on the weather. In the first stage we must take a decision 
related with the proportion to seed that is affected by the weather, while in 
the second stage, we must decide the selling quantities of each product, 
which depends on the market prices. As we can see, in this example there 
are to sources of uncertainty that appear in different times, therefore we 
must represent the two-stage implementation of this problem as Figure 
2.1(b). Now imagine that before seeding the field, we have a customer that 
buys the entire harvest at a fixed price. In this case, we have not the second 
stage uncertainty, which implies that the stochastic optimization problem 
must be implemented as Figure 2.1(a). 
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For the decision variables, Figure 2.2 shows that in the stage 0, it is possible 
to choose only a single policy, considering all possible values of 𝜉𝜉. On the 
other hand, in stage 1 the choice can be made according to the realization 
of the random variable considered in stage 0, because is already known. Of 
course, the computation of the optimum decision variables over the entire 
time horizon is made at current time 𝑡𝑡0 considering the value of the cost 
function over both stages. 

 𝑢𝑢 

 𝑡𝑡0   𝑡𝑡𝑓𝑓  

   

𝑢𝑢1(𝑡𝑡, 𝜉𝜉𝑛𝑛) 

𝑢𝑢0(𝑡𝑡) 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑢𝑢1(𝑡𝑡, 𝜉𝜉𝑏𝑏) 

𝑢𝑢1(𝑡𝑡, 𝜉𝜉𝑎𝑎) 

 
FIGURE 2.2: DECISION VARIABLES IN THE TWO STAGES 

In the context of real time process optimization, the application of this 
method would be made according to a receding horizon policy, computing 
𝑢𝑢0 and 𝑢𝑢1 at current time but applying only 𝑢𝑢0 and computing again the 
solution at the next sampling period.  Nevertheless, there are situations in 
which the open loop solution must be applied, either due to the nature of 
the system or because an on-line solution is not available. In these cases, 
the second stage solution  𝑢𝑢1�𝜉𝜉𝑖� is only available for the discrete values 𝜉𝜉𝑖 
which may not correspond to its estimated value in the second stage. To 
overcome this problem, several policies can be chosen as the nearest 
neighbor or oversizing the discrete solution. This is shown to be more 
important than expected, as one can see in the Montecarlo test performed 
in section 2.4.3, here a method based on interpolations is proposed.  
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To see how it works, notice that as the solution of the second stage 
depends on the value of the random variable. This can be represented as an 
optimal function that depends on the uncertain variables, i.e., 𝑢𝑢1⋆  =
 𝑓𝑓𝑜𝑝𝑡(𝜉𝜉). If the random variables have a continuous nature, it is expectable 
that 𝑓𝑓𝑜𝑝𝑡  would be continuous too (for a continuous process), but when the 
problem is solved discretizing the probability function only some values of 
this optimal function can be known. This will lead to a loss of generality in 
the application of the optimal solution, because the uncertain variables are 
continuous and the solution is available only for a finite number of 
scenarios. Therefore, if there is a way to connect these solution points 
guaranteeing a definite degree of feasibility and optimality in the operation, 
for all the possible values included in the original PDF, the problem can be 
solved with a lower complexity in the optimization by using an acceptable 
approximation of the continuous solution, like Figure 2.3 shows.  

 
FIGURE 2.3: APPROXIMATED SOLUTION OBTAINED FROM SCENARIO APPROACH 

To implement the previous idea, first it is necessary to solve the stochastic 
optimization problem with the D-PDF. This will lead to a particular solution 
for each scenario considered in the D-PDF. As we are considering an open 
loop solution, in order to select the best interpolation method, some of 
them can be tested in a Montecarlo simulation with the continuous 
probability distribution function. Once that all the interpolation methods 
are tested the one that guarantees feasibility and optimality will be chosen 
for the final open-loop implementation. Figure 2.4 summarizes the 
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interpolation methodology proposed to generalize the second stage 
solution obtained for each scenario.  

 
FIGURE 2.4: DIAGRAM OF THE METHOD PROPOSED TO APPLY THE SECOND STAGE SOLUTION 

2.2.2 Chance Constraint formulation 
The works of Charmes and Cooper (Charnes & Cooper, 1959), Miller and 
Wagner (Miller & Wagner, 1965) and Prékopa (András Prékopa, 1970), 
present the method of optimization based in probabilistic constraints. This 
formulation can be understood as: finding some decision variables that 
minimize a given objective function, ensuring a probability of feasibility 
greater than a certain level of confidence. 

In general, a problem of optimization under uncertainty has the form of 
equation (2.1). Referring to the constraints 𝑔, in the process industry it is 
very common to impose limits to the output variables (𝑦 ) like the 
temperature, pressure, mole fractions, etc. guaranteeing that these 
variables must stay within a certain range, i.e.: 

𝑦𝑖𝐿 ≤ 𝑦𝑖(𝑢𝑢, 𝜉𝜉) ≤ 𝑦𝑖𝑈 , 𝑖 = 1 … 𝐼 (2.3) 

The uncertainty that affects the system is propagated itself throughout the 
model. Therefore, it is expectable that the output variables will have a 
random behavior too. Thus, the output constraints in equation (2.3) can be 
redefined in order to ensure a probability of feasibility greater than a 
confidence level 𝛼, as equation (2.4) states. 
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Pr(𝑦𝑖𝐿 ≤ 𝑦𝑖(𝑢𝑢, 𝜉𝜉) ≤ 𝑦𝑖𝑈) ≥ 𝛼𝑖 , 𝑖 = 1 … 𝐼 (2.4) 

Given the values of the decision variables, the model ℎ must be satisfied for 
any value that the random variable can take (if the problem is feasible). 
Therefore the state variables can be seen as a projection of 𝜉𝜉, which is 
equivalent to say that for a given value of the decision variables, the states 
are function of the random variables. We can also note that for a given 
value of 𝜉𝜉, a sequential resolution of the optimization problem in equation 
(2.1) can be stated. Sequential resolution means solving the optimization 
problem using an intermediate step of simulation, that is to say: for a 
certain value of the decision variables given by an optimization algorithm, 
the state variables are calculated simulating the model of the process. This 
procedure can be repeated for different values of the random variables 
obtaining a mapping of the state variables and the inequality constraints 
with respect to the uncertain variables as a function of the decision 
variables. With this approach we are able to transfer the equality 
constraints from the optimization to simulation step, using the model of the 
process to calculate the state variables for a given value of the decision and 
the random variable (Harvey Arellano-Garcia & Wozny, 2009; Li et al., 
2008). The sequential approach transforms the chance optimization 
problem to equation (2.5). 

min
𝑢
𝔼𝜉�𝑓𝑓�ℎ�𝑥𝑥,𝑢𝑢, 𝜉𝜉, 𝑡𝑡𝑓�,𝑢𝑢, 𝜉𝜉, 𝑡𝑡𝑓�� 

𝑠. 𝑡𝑡. : 
Pr(𝑦𝑖𝐿 ≤ 𝑦𝑖(𝑢𝑢, 𝜉𝜉) ≤ 𝑦𝑖𝑈 , 𝑖 = 1 … 𝐼) ≥ 𝛼 
𝑢𝑢 ∈ 𝑈, 𝜉𝜉 ∈ Ξ 

(2.5) 

Now, if we want to solve the optimization problem from equation (2.5) it is 
necessary to calculate the probability of the output variables 𝑦. This is not a 
trivial task since the PDF of these variables is in general unknown 
(commonly the PDF is only available for 𝜉𝜉). To overcome this problem, 
several methods of solution have been proposed that assumes convexity or 
linearity (Mayne & Polak, 1976; Nemirovski & Shapiro, 2006; András 
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Prékopa, 1970; A. Prékopa, 1995; András Prékopa, 2003). Other methods 
based on sampling and genetic algorithms had been suggested too 
(Loughlin & Ranjithan, 2001; Poojari & Varghese, 2008; Yang & Wen, 2005). 
On the other hand, the chance constrained optimization can be approached 
using an inverse mapping of the random variables to estimate the PDF of 
the output variable (Harvey Arellano-Garcia et al., 1998; H. Arellano-Garcia 
et al., 2003; Harvey Arellano-Garcia & Wozny, 2009; Barz et al., 2008; Li et 
al., 2008; Li et al., 2002; Li et al., 2003; Wozny & Arellano-Garcia, 2007). This 
method has no assumptions about the nonlinearities in the system and is 
not based in sampling for each step of optimization, but a regularity 
condition is required that guarantee monotony in the response of the 
model output with respect to the uncertain variable. 

The idea of the inverse mapping methodology is to translate the calculus of 
the probability of the chance constrained output satisfying the constraints, 
to the probability of the stochastic variables (which are known) being within 
a certain range. To do this, it is necessary to obtain an equivalent of the 
bounds registered in the chance constraints called 𝜉𝜉∗, where its probability 
of occurrence is the same. Then the probability can be calculated as: 

Pr(𝑦 ≤ 𝑦∗) = Pr�𝜉𝜉 ⋚ 𝜉𝜉∗� (2.6) 

Where 𝑦∗ can be 𝑦𝑈  and/or 𝑦𝐿 . A method for computing 𝜉𝜉∗  will be 
presented in Section 2.3.5.  

Next, both formulations of optimization under uncertainty will be applied to 
a case study taken from a process of the refining industry. 

2.3 Problem Formulation 

2.3.1 Process Description 
In petroleum refineries the hydrodesulfuration process is used to remove 
sulfur from the hydrocarbons to fulfill environmental policies. Another 



HANDLING UNCERTAINTIES IN PROCESS OPTIMIZATION 

87 
 

important reason for removing sulfur from the intermediate product 
naphtha streams within a petroleum refinery is that sulfur, even in 
extremely low concentrations, poisons the noble metal catalysts (platinum 
and rhenium) in the catalytic reforming units that are subsequently used to 
upgrade the octane rating of the naphtha streams.  

To perform the desulfuration reaction, hydrogen is put in contact with the 
hydrocarbon in fixed bed reactors with a specific catalyst (Commercial Ni-
Mo based catalyst) (Bellos & Papayannakos, 2003). The optimal 
management of the hydrogen provided is very important in order to 
operate efficiently and safely. That is to say: if the quantity of hydrogen 
supplied is less than the minimum required, then the catalysts used in the 
desulfurization reactors can suffer important damage. On the other hand, if 
the supply is in excess significant economic losses will be experienced 
(Sarabia et al., 2009).  

To understand the process, let us consider the simplified structure of the 
core part of a hydrodesulfuration plant represented in Figure 2.5. It can be 
seen that the hydrogen come from three sources: H4, H3 and LP. H4 and H3 
are collectors transporting hydrogen manufactured in especially dedicated 
production units where methane and steam are reformed. Each production 
unit can produce the hydrogen in different quantities and purity levels. On 
the other hand, the LP source is a recirculated stream with low hydrogen 
concentration that can proceed either from side units where the hydrogen 
is a by-product from other reactions, or from units where the excess 
hydrogen fed in the reactor is partially purified using membranes (Gómez et 
al., 2008). The mixture goes through a compressor and then is mixed with 
the hydrocarbon stream (𝑃𝐶) in order to react in a packed bed reactor (R-1, 
R-2). The products of the reaction are separated using a flash tank (T-1). 
One part of the excess of hydrogen is recirculated to the reactors while 
other (𝑃10) is purged in order to maintain a minimal purity because of the 
catalyst.  
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FIGURE 2.5: DIAGRAM OF THE HYDRODESULFURATION UNIT WITH DECISION VARIABLES 

The key operation is performed in the reactor to eliminate the undesired 
sulfur down to a given level at the plant output. The operators adjust the 
total hydrogen supply to the reactor, its temperature, etc. to attain this 
target, so that a given mode of operation implies certain hydrogen 
consumption in the reactor according to the load conditions. This is a sub-
system where settling times can be in the order of hours. To carry out the 
operation, the operators (and the basic control system) modify the 
different hydrogen streams (fresh and recycled) in order to maintain the 
required supply to the reactor(s) fulfilling the constraints imposed by 
compressors, purities and catalysts. Since there are different ways of 
providing the same amount of hydrogen that the reactor is consuming, the 
operational target is to supply the required flow to the reactors using the 
best combination of these sources (from an economic point of view), 
satisfying the set of operational constraints. 

Several problems are related to the hydrogen management and 
optimization that are worth to mention; among them, the lack of reliable 
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information about many streams and compositions, the uncertainty of the 
demands and the large scale of the system that creates additional 
difficulties. Regarding the first one, it is clear that reliable information from 
the network is required if one wishes to perform optimal decisions. This 
covers several aspects, on one hand for accounting and to compare 
different ways of functioning, and on the other hand as a basic element of 
any model based optimization. Part of this uncertainty comes from the 
measurement system, where there are many unmeasured variables and 
some instruments may need better calibration. In fact, the main problem is 
related to partial measurements, in particular, gas flows are usually 
measured with volumetric flow meters that require compensation in order 
to convert the readings to mass or normalized flows used in models based 
on mass balances (Kelly & Mann, 2005). This compensation involves 
pressure, temperature and molecular weight of the streams. Nevertheless, 
the last one is quite often unavailable because of the price and the 
reliability of the instruments measuring hydrogen purity. 

The other significant source of uncertainty comes from the changes in the 
flow, or the composition, of the hydrocarbon streams being treated in the 
hydrodesulfuration plants, which are linked to the precedence of the oil 
crude or to production policies. As mentioned before, the precedence of 
the crude oil change quite often, which modify the hydrogen demands in 
the reactor. A certain planning of the most important changes in the flow of 
the different streams of hydrocarbons is performed by the production 
planning department of the refinery, but still uncertainty exists because its 
compositions that determine the specific hydrogen consumption are not 
very well known. A typical pattern in the operation of a HDS plant is a 
transient lasting some hours followed by a stable demand. This situation 
becomes critical when a change in the hydrocarbon load takes place. This 
happens approximately every two days when new products are processed 
and the plant takes some hours to stabilize in the new operating point, 
which is desired to be optimum.  
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Therefore, it can be concluded from the description of the operation of the 
HDS that the optimization must be stated when a change in the load is 
produced, in order to estimate the correct policy to perform the transition 
and the optimal operating point at the end of the time horizon. As it was 
mentioned, in this situation the main sources of uncertainty that affects the 
process are: the composition of the hydrocarbon load that can change 
according to the type of oil that is processed and the composition of the 
hydrogen supply, and in particular the LP stream since it depends on the 
operation of other units (Sarabia et al., 2011). 

2.3.2 Model of the Process 
The internal operation of HDS involve many aspects an is the responsibility 
of the operators to maintain the hydrogen level above the minimal 
requirements to produce the desired reaction in spite of hydrocarbon load 
changes in a safe way. The internal mechanisms of the hydrodesulfuration 
process are quite complex (Gómez et al., 2008) but a simplified model will 
be used to represent its dynamics. The evolution of the hydrogen 
consumption inside the Reactors (𝑃𝑋

𝐻2) is approximated by a first order 
dynamics as equation (2.7) shows. This consumption depends on the flow 
of hydrocarbon to be desulfurized (𝑃𝐻𝐶) and the stochastic variable (𝜌), 
which represents the specific hydrogen consumption rate as a characteristic 
of the sulfur content in the hydrocarbon to be treated.  

𝜏
𝑑𝑃𝑋
𝑑𝑡𝑡

+ 𝑃𝑋 = 𝑃𝐻𝐶𝜌, 𝑃𝑋
𝐻2(𝑡𝑡0) = 𝑃𝑋0

𝐻2 (2.7) 

For the mixing point of the three hydrogen sources and the flow through 
the compressor, the total and hydrogen mole balances can be defined.   

𝑃1 + 𝑃2 + 𝑃3 = 𝑃5 
𝑃1𝑋1 + 𝑃2𝑋2 + 𝑃3𝑋3 = 𝑃5𝑋5 (2.8) 



HANDLING UNCERTAINTIES IN PROCESS OPTIMIZATION 

91 
 

Where 𝑋1 and 𝑋2 are known hydrogen compositions and 𝑃 represent flows 
according to Figure 2.5. 

Inside the reactor, the pressure is maintained constant by changing the flow 
from LP, therefore the dynamics of the total mole can be neglected unlike 
the hydrogen concentration that can change in time: 

0 = 𝑃5 − 𝑃10 − 𝑃𝑋𝐻2 
𝑉
𝑍𝑅𝑇

�𝑃
𝑑𝑋𝐻2
𝑑𝑡𝑡

� = 𝑃5𝑋5 − 𝑃𝑋 − 𝑃10𝑋𝐻2, 𝑋𝐻2(𝑡𝑡0) = 𝑋𝐻2,0 (2.9) 

In addition, some operational constraints must be defined:  

The purity of the mix stream that enters to the desulfuration unit and the 
one inside the reactor must be greater than a lower bound, because of the 
compressor an the catalyst requirements respectively.  

𝑋5𝐿 ≤ 𝑋5 
𝑋𝐻2𝐿 ≤ 𝑋𝐻2 (2.10) 

The flows of the hydrogen streams must be within a certain range, which is 
given by the production limits. 

𝑃1𝐿 ≤ 𝑃1 ≤ 𝑃1𝑈 
𝑃2𝐿 ≤ 𝑃2 ≤ 𝑃2𝑈 
𝑃3𝐿 ≤ 𝑃3 ≤ 𝑃3𝑈 

(2.11) 

The nomenclature of the model used from equation (2.7) to (2.11) is 
presented in Table 2.1. 
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TABLE 2.1 NOMENCLATURE EMPLOYED ON THE HYDROGEN CONSUMPTION UNIT 

Variable  Meaning Units 
𝑃𝑖 Molar flow of stream 𝑖  𝑘𝑘𝑚𝑜𝑙/ℎ 
𝑃𝐻𝐶  Flow of hydrocarbon to be treated 𝑚3/ℎ 
𝑃𝑋𝐻2 Consumption of 𝐻2 inside the reactor 𝑘𝑘𝑚𝑜𝑙/ℎ 
𝑋𝑖 Molar fraction of 𝐻2 in stream 𝑖 Adimensional  
𝑋𝐻2 Molar fraction of 𝐻2 inside the reactor Adimensional 
𝜏 Time constant of the 𝐻2 consumption ℎ 
𝜌 Ratio hydrogen/hydrocarbon 𝑘𝑘𝑚𝑜𝑙/𝑚3 
𝑉 Reactor volume 𝑚3 
𝑃 Pressure in the reactor 𝑎𝑎𝑡𝑡𝑚 
𝑇 Temperature in the reactor 𝐾 
𝑅 Universal constant of gases 𝑎𝑎𝑡𝑡𝑚 · 𝑚3/𝐾 𝑘𝑘𝑚𝑜𝑙 
𝑍 Compressibility factor Adimensional 

𝑃𝑖𝐿,𝑃𝑖𝑈 Bounds of the flow rate of stream 𝑖 𝑘𝑘𝑚𝑜𝑙/ℎ 
𝑋𝑖𝐿 Bound of the molar fraction of 𝐻2 in stream 𝑖 Adimensional 

 

2.3.3 Optimization Problem 
As it was stated in the process description, the optimization problem is 
formulated in the framework of economic dynamic optimization and it 
consists in finding the best combination of hydrogen sources that produces 
the desulfuration of a given hydrocarbon when a change in the load is 
produced, fulfilling the constraints of the process. The objective function is 
given by equation (2.12), where 𝐶𝐻4 and 𝐶𝐻3 are the costs of pure hydrogen 
from each fresh hydrogen source. This cost must be minimized over the 
entire transient that involves the load change. The dynamic model of the 
plant has three degrees of freedom, which means that if three of the 
variables have a fixed value and the random variables are known, the 
complete system is determined. Therefore, it can be said that the 
optimization problem based in this model has three decision variables, 
which are chosen as the same ones that the operators can modify in the 
plant: 𝑃1, 𝑃2 and 𝑃10. Hence, the dynamic optimization problem can be 
summarized as: compute the flows 𝑃1 , 𝑃2  and 𝑃10  that minimize the 
equation (2.12), subject to the model of the process and the operational 
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constraints represented from equations (2.7) to (2.11), in spite of the 
uncertainty of 𝜌 and 𝑋3, for a given change in the hydrocarbon load. 

𝐶𝑜𝑠𝑡𝑡 =  � 𝐶𝐻4𝑋𝐻4𝑃1 + 𝐶𝐻3𝑋𝐻3𝑃2 𝑑𝑡𝑡
𝑡𝑓

𝑡0
 (2.12) 

For the nominal values of Table 2.2, a deterministic dynamic optimization 
has been solved using the single shooting method with control vector 
parameterization.  

TABLE 2.2 VALUE OF THE PARAMETERS, BOUNDS AND INITIAL CONDITIONS FOR DETERMINISTIC 
OPTIMIZATION 

Parameter Value Parameter Value 
𝐶𝐻4 88100 𝑡𝑡𝑓 10 
𝐶𝐻3 77000 𝑇 623.15 
𝜌 12.6 𝑃3𝐿 0 
𝑃𝐻𝐶  102 𝑃3𝑈 5000 
𝜏 0.3 𝑋5𝐿 0.9 
𝑉 100 𝑋𝐻2𝐿  0.7 
𝑃 68 𝑃1𝐿 0 

𝑃𝑋𝐻20 682.5 𝑃1𝑈 1400 
𝑋𝐻20  0.9 𝑃2𝐿 0 
𝑋1 0.991 𝑃2𝑈 790 
𝑋2 0.931 𝑃10𝐿   0 
𝑋𝐿𝑃 0.85 𝑃10𝑈   1500 

 

The optimal trajectories of the decision and the state variables are 
presented in Figure 2.6. These trajectories were obtained applying the 
single shooting approach, for a time horizon of 10 hours. The decision 
variables were discretized in 16 periods with constant values. The 
optimization took 1.5 minutes. 

Results are as one can expect: because the purities are above their lower 
limits at the initial time, the optimal trajectories of the decision variables try 
to bring the hydrogen concentrations to their bounds. To do this, first the 
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hydrogen purge is completely closed to accumulate impurities inside the 
reactor and to consume less fresh hydrogen, optimizing the cost function. 
Once that the purity inside the reactor reaches its minimal value the 
optimal policy increases the flow of the purge with the aim to maintain the 
purity constraint active. About the hydrogen fed it can be noted that only 
the stream coming from H4 is used, because the ratio purity/cost is lower in 
this unit than in H3.    

 
FIGURE 2.6: OPTIMAL RESULTS OF DETERMINISTIC PROBLEM 

Nevertheless, in practice there are two main sources of uncertainty that 
add difficulty to the operation and can produce infeasibilities: (1) the 
demands of hydrogen in the reactors depend on the quality of fuel loaded, 
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which generally is an unknown mixture, and (2) the purity of the 
recirculation stream that comes from other processes can suffer changes 
over time. Using historical data from a refinery, these variables can be 
modeled using a binormal probability distribution function (Figure 2.7 and 
equation (2.13)). In this graph 𝜉𝜉1 and 𝜉𝜉2 are the random variables that 
correspond to the specific hydrogen consumption 𝜌 and to the purity 𝑋3 in 
the LP stream respectively.  

 
FIGURE 2.7: PROBABILITY DISTRIBUTION OF THE RANDOM VARIABLES 

Ξ(𝜉𝜉1, 𝜉𝜉2) ≔
1

2𝜋𝜎1𝜎2√1 − 𝑟
exp�−

1
2(1 − 𝑟) �

𝜇1 − 𝜉𝜉1
𝜎1

−
(𝜇1 − 𝜉𝜉1) ∗ (𝜇2 − 𝜉𝜉2)

𝜎1𝜎2
 +

𝜇2 − 𝜉𝜉2
𝜎2

�� 
(2.13) 

Being 𝜇𝑖 and 𝜎𝑖  the mean and standard deviation of the random variable 𝜉𝜉𝑖, 
while 𝑟 is the correlation index.  

A Montecarlo simulation can applied to the results from the deterministic 
optimization presented in Figure 2.6,  in order to see how the random 
behavior of the uncertain parameters 𝜉𝜉1  and 𝜉𝜉2  affect the constrained 
purities. The results of these simulations are presented in Figure 2.8, 
showing their evolution in time and probability distribution. 
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From the simulation, it can be noted that the distribution of purities is 
centered in their lower bound, but approximately the 50% of the times the 
system is operating in the infeasible part of the optimization problem, 
decreasing the life cycle of the catalysts and the compressors, which is not 
an optimal way to operate. 

Consequently, an adequate management of these uncertainties is required 
in order to ensure an optimal and feasible operating policy taking into 
account the random nature of these variables, which leads to the use of 
stochastic optimization in this system. 

 
 

FIGURE 2.8: HYDROGEN PURITY OBTAINED IN MONTECARLO SIMULATION 

2.3.4 Two – Stage Formulation in the HDS 
In order to set up the stochastic problem using this formulation, it is 
necessary to define the stages of decision and the information that can be 
available in each of them. In the first stage (stage 0) the hydrogen flows and 
the purge 𝑃1,0, 𝑃2,0 and 𝑃10,0, will be decided knowing only the PDF of the 
random variables. In the second stage, the value of these random variables 
is assumed to be available (measured in the laboratory or estimated), and 
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the decisions about the hydrogen production for the second stage: 𝑃1,1, 𝑃2,1 
and 𝑃10,1, will be calculated as a function of them. In terms of time, the first 
stage goes from 𝑡𝑡0 to 𝑡𝑡1, which is a reasonable period for estimating (or 
measuring) the real value of the random variables. 

Now the original optimization problem presented before must be 
reformulated from the point of view of the two-stage approach. To do this, 
a discretization of the PDF in 25 values (5 for each variable) was performed 
in order to solve the problem by using the scenario approach. The 
discretized PDF is shown in Figure 2.9. 

 
FIGURE 2.9: SCENARIO DISCRETIZATION OF THE PDF 

Equation (2.14) shows the stochastic reformulation of the problem 
presented from the point of view of the two stage representation, where 𝑘𝑘 
denotes the stage of decision and j the scenarios, 𝑁𝑆𝑐 represents the total 
number of scenarios, and the probability of occurrence for each of them is 
defined as Pr(𝑗). 

It can be noted from equation (2.14a) that the decision variables from the 
first and the second stages can have as many values as scenarios are. 
However, during the first stage the random variable has not been estimated 
yet, hence a single decision must be computed, which implies that each 

decision variable 𝑃1,0
𝑗 , 𝑃2,0

𝑗  and 𝑃10,0
𝑗  must have the same value for all the 
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scenarios. This condition is called “nonanticipativity” and it is represented 
in the last constraint of the optimization problem from equation (2.14b), 
where if the problem is feasible, the first stage decision in every scenario 
must be equal to the most representative one (since it is multiplied by its 
probability of occurrence). This large optimization problem can be 
separated in as many problems as scenarios are by using the scenario 
aggregation method (Kall & Wallace, 1997). To do this it is necessary to 
eliminate the constraints that relate all the scenarios in the first stage. This 
can be done using the Augmented Lagrangian method.  

min
𝐹1,𝐹2,𝐹10

� Pr(𝑗) �� 𝐶𝐻4𝑋𝐻4𝑃1,0
𝑗 + 𝐶𝐻3𝑋𝐻3𝑃2,0

𝑗 𝑑𝑡𝑡
𝑡1

𝑡0𝑗∈𝑁𝑆𝑐

+ � 𝐶𝐻4𝑋𝐻4𝑃1,1
𝑗 + 𝐶𝐻3𝑋𝐻3𝑃2,1

𝑗 𝑑𝑡𝑡
𝑡𝑓

𝑡1
� 

𝑠. 𝑡𝑡. : 
𝑃1,𝑘
𝑗 𝑋1 + 𝑃2,𝑘

𝑗 𝑋2
𝑗 + 𝑃3

𝑗𝜉𝜉2
𝑗 = 𝑃5

𝑗𝑋5
𝑗 

𝑃1,𝑘
𝑗 + 𝑃2,𝑘

𝑗 + 𝑃3
𝑗 = 𝑃5

𝑗 
0 = 𝑃5

𝑗 − 𝑃10,𝑘
𝑗 − 𝑃𝑋𝐻2

𝑗 
𝑉𝑃
𝑍𝑅𝑇

�
𝑑𝑋𝐻2

𝑗

𝑑𝑡𝑡
� = 𝑃5

𝑗𝑋5
𝑗 − 𝑃𝑋𝑗 − 𝑃10,𝑘

𝑗 𝑋𝐻2
𝑗 , 𝑋𝐻2

𝑗 (𝑡𝑡0) = 𝑋𝐻20 

𝜏
𝑑𝑃𝑋

𝑗

𝑑𝑡𝑡
+ 𝑃𝑋

𝑗 = 𝑃𝐻𝐶𝜉𝜉1
𝑗 , 𝑃𝑋

𝑗(𝑡𝑡0) = 𝑃𝑋0 

𝑡𝑡 ∈ �𝑡𝑡0, 𝑡𝑡𝑓� 
𝑃3𝐿 ≤ 𝑃3

𝑗 ≤ 𝑃3𝑈 
𝑋5𝐿 ≤ 𝑋5

𝑗 , 𝑋𝐻2𝐿 ≤ 𝑋𝐻2
j  

𝑃1𝐿 ≤ 𝑃1,𝑘
𝑗 ≤ 𝑃1𝑈 

𝑃2𝐿 ≤ 𝑃2,𝑘
𝑗 ≤ 𝑃2𝑈 

𝜉𝜉1
𝑗, 𝜉𝜉2

𝑗 ∈ Ξ 

𝑘𝑘 = �
0, 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡1)
1, 𝑡𝑡 ∈ �𝑡𝑡1, 𝑡𝑡𝑓�

� , 𝑗 = 1 …𝑁𝑆𝐶    

(2.14a) 

𝑃𝑚,0
𝑗 =

∑ Pr(𝑖)𝑃𝑚,0
𝑖𝑁𝑆𝑐

𝑖=1

∑ Pr(𝑖)𝑁𝑆𝑐
𝑖=1

, 𝑚 = {1,2,10} (2.14b) 
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The augmented Lagrangian method consists in removing complicated 
equality constraint (ℎ) from an optimization problem, augmenting the 
objective function with a term that takes into account the Lagrange form of 
the particular constraint to be removed plus a penalty term. Each of these 
modifications of the objective function must be multiplied with a proper 
variable corresponding to the Lagrange multiplier (𝜈 ) and a penalty 
multiplier (𝑟) respectively. Once that the original optimization is redefined 
with the augmentation in the objective function, the idea is solving it 
iteratively updating the multipliers until eventually the results of the 
modified problem are equal to the original one. This condition is verified 
when the updated Lagrange multipliers converge to a stationary. In 
practice, the update formula from equation (2.15) can be used in two-stage 
programming (Kall & Wallace, 1997), while the penalty term can be 
increased slowly or kept fixed at a given value (Luenberger & Ye, 2008). 

𝜈𝑛+1 = 𝜈𝑛 + 𝑟ℎ (2.15) 

In the two-stage representation of the HDS, we are interested in removing 
the nonanticipativity constraint since is the only one that links all the 
scenarios in the first stage. To do this, first of all we need to define the 
aggregated variable from equation (2.16) that can be understood as the 
most representative decision variable in the first stage for all the scenarios.  

𝑃�𝑚,0 ≔
∑ Pr(𝑖)𝑃𝑚,0

𝑖𝑁𝑆𝑐
𝑖=1

∑ Pr(𝑖)𝑁𝑆𝑐
𝑖=1

,   𝑚 = {1,2,10} (2.16) 

With the aggregate variable we can define the modified cost function 
augmented with the nonanticipativity constraint that is reformulated using 
the definition of 𝑃�𝑚,0. 
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min
𝐹1,𝐹2,𝐹10

⎩
⎪
⎪
⎨

⎪
⎪
⎧ � (𝐶𝐻4𝑋𝐻4𝑃1,0

𝑗 + 𝐶𝐻3𝑋𝐻3𝑃2,0
𝑗 )𝑑𝑡𝑡

𝑡1

𝑡0
+

� �𝐶𝐻4𝑋𝐻4𝑃1,1
𝑗 + 𝐶𝐻3𝑋𝐻3𝑃2,1

𝑗 �𝑑𝑡𝑡
𝑡𝑓

𝑡1
+

� � 𝜇𝑚�𝑃𝑚,0
𝑗 − 𝑃�𝑚,0� + 𝑟𝑚�𝑃𝑚,0

𝑗 − 𝑃�𝑚,0�
2

𝑚={1,2,10}

𝑑𝑡𝑡
𝑡1

𝑡0 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

 (2.17) 

Even though we have removed the hard nonanticipativity constraint from 
equation (2.14), there still remains a bonding between all the scenarios in 
the first stage but now in the augmented objective function. Therefore, we 
cannot split the large problem into smaller ones for each scenario yet. 
Nevertheless, we can note that if an estimator of the aggregated variable ( 
𝑃�𝑚,0
𝐸 ) is known before the optimization is solved, then it is possible to solve 

equation (2.14) for each scenario j because there is not linking constraints 
among them as we can see from equation (2.18).  

The estimator  𝑃�𝑚,0
𝐸  can be computed before the optimization using the 

iterative procedure of the augmented Lagrangean method, replacing the 
solution of each scenario obtained in the previous iteration in equation 
(2.16). 

Therefore, the complete two – stage optimization for the HDS can be solved 
in the following iterative way: 

Step 0: Set the iteration counter in zero, 𝑛𝑛 = 0. Choose 𝜇𝑚𝑛 , 𝑟𝑚𝑛,𝑃�𝑚,0
𝐸 𝑛,𝑚 =

{1,2,10} . The first guess can be obtained from the solution of the 
deterministic optimization for each scenario. 

Step 1: 𝑛𝑛 = 𝑛𝑛 + 1 

Step 2: Solve the dynamic optimization problem from equation (2.17) 
∀𝑗 = 1 …𝑁𝑆𝑐  using a sequential approach and a control vector 
parameterization. 
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Step 3: Update the estimator 𝑃�𝑚,0
𝐸 𝑛,𝑚 = {1,2,10}, using equation (2.16)  

Step 4: if �𝑃�𝑚,0
𝐸 𝑛 − 𝑃𝑚,0

𝑗 �
𝑝

< 𝜖, ∀𝑗 = 1 …𝑁𝑆𝑐 stop, else go to step 5 

Step 5: Update Lagrange multiplier  𝜇𝑚𝑛  and penalty factor 𝑟𝑚𝑛  according to 
the Augmented Lagrangian method from equation (2.15) and go to Step 1. 

min
𝐹1,𝐹2,𝐹10

⎩
⎪
⎪
⎨

⎪
⎪
⎧ � (𝐶𝐻4𝑋𝐻4𝑃1,0

𝑗 + 𝐶𝐻3𝑋𝐻3𝑃2,0
𝑗 )𝑑𝑡𝑡

𝑡1

𝑡0
+

� �𝐶𝐻4𝑋𝐻4𝑃1,1
𝑗 + 𝐶𝐻3𝑋𝐻3𝑃2,1

𝑗 �𝑑𝑡𝑡
𝑡𝑓

𝑡1
+

� � 𝜇𝑚�𝑃𝑚,0
𝑗 − 𝑃�𝑚,0

𝐸 � + 𝑟𝑚�𝑃𝑚,0
𝑗 − 𝑃�𝑚,0

𝐸 �
2

𝑚={1,2,10}

𝑑𝑡𝑡
𝑡1

𝑡0 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

 

𝑠. 𝑡𝑡. : 
𝑃1,𝑘
𝑗 𝑋1 + 𝑃2,𝑘

𝑗 𝑋2
𝑗 + 𝑃3

𝑗𝜉𝜉2
𝑗 = 𝑃5

𝑗𝑋5
𝑗 

𝑃1,𝑘
𝑗 + 𝑃2,𝑘

𝑗 + 𝑃3
𝑗 = 𝑃5

𝑗 
0 = 𝑃5

𝑗 − 𝑃10,𝑘
𝑗 − 𝑃𝑋𝐻2

𝑗 
𝑉𝑃
𝑍𝑅𝑇

�
𝑑𝑋𝐻2

𝑗

𝑑𝑡𝑡
� = 𝑃5

𝑗𝑋5
𝑗 − 𝑃𝑋𝑗 − 𝑃10,𝑘

𝑗 𝑋𝐻2
𝑗 , 𝑋𝐻2

𝑗 (𝑡𝑡0) = 𝑋𝐻20 

𝜏
𝑑𝑃𝑋

𝑗

𝑑𝑡𝑡
+ 𝑃𝑋

𝑗 = 𝑃𝐻𝐶𝜉𝜉1
𝑗 , 𝑃𝑋

𝑗(𝑡𝑡0) = 𝑃𝑋0 

𝑡𝑡 ∈ �𝑡𝑡0, 𝑡𝑡𝑓� 

𝑃3𝐿 ≤ 𝑃3
𝑗 ≤ 𝑃3𝑈 

𝑋5𝐿 ≤ 𝑋5
𝑗 

𝑃1𝐿 ≤ 𝑃1,𝑘
𝑗 ≤ 𝑃1𝑈 

𝑃2𝐿 ≤ 𝑃2,𝑘
𝑗 ≤ 𝑃2𝑈 

𝑘𝑘 = �
0, 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡1)
1, 𝑡𝑡 ∈ �𝑡𝑡1, 𝑡𝑡𝑓�

� 

(2.18) 

As a result of solving the algorithm presented, there will be available a 
single optimal trajectory for the decision variables in the first stage 
according to the control parameterization chosen. For the second stage, 
there will be as many trajectories of the decision variables as scenarios 
were considered, in a similar way as Figure 2.2 shows. If a receding horizon 
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policy is used, only the value of the decision variables computed at current 
time are going to be applied to the process. 

2.3.5 Chance Constrained Formulation 
In contrast with the two-stage formulation chance constrained optimization 
does not assume that there are diverse stages of knowledge of the random 
variable. The method allows obtaining decision variables that guarantee a 
certain degree of feasibility for all the period considered in the 
optimization, without the knowledge of the uncertain values. Taking this 
into account, the original problem of optimal hydrogen feeding can be 
reformulated as equation (2.19), where the probabilistic constrained output 
is represented in equation (2.19b). 

The model can be included in a simulation step to solve the dynamic 
optimization using a sequential approach. This implies that the decision 
variables are updated in each iteration using some optimization technique 
(SQP, for example), and these values are used to run a dynamic simulation 
in order to calculate the states, the constraints and the objective function 
of the system, which are passed back to the optimization routine to update 
the decision variables again. Therefore, the chance constraints from 
equation (2.19b) must be computed in each optimization step, by solving 
the simulation of the system for a given value of the decision variables.  

The main difficulty of the chance constrained optimization is linked to the 
evaluation of the probability of the constraints, as it was mentioned 
previously. Arellano – García and co-workers proposed the inverse mapping 
method (Harvey Arellano-Garcia & Wozny, 2009) for calculating the 
probability of the constraints through the probability distribution of the 
random variables, which are assumed known. The only assumption that the 
system must fulfill is the monotony condition of the chance constraints with 
respect to, at least, one random variable. 
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min
𝐹1,𝐹2,𝐹10

� (𝐶𝐻4𝑋𝐻4𝑃1 + 𝐶𝐻3𝑋𝐻3𝑃2)𝑑𝑡𝑡
𝑡𝑓

𝑡0
 

𝑠. 𝑡𝑡. : 
𝑃1𝑋1 + 𝑃2𝑋2 + 𝑃3𝜉𝜉2 = 𝑃5𝑋5 
𝑃1 + 𝑃2 + 𝑃3 = 𝑃5 
0 = 𝑃5 − 𝑃10 − 𝑃𝑋𝐻2 
𝑉𝑃
𝑍𝑅𝑇

�
𝑑𝑋𝐻2
𝑑𝑡𝑡

� = 𝑃5𝑋5 − 𝑃𝑋 − 𝑃10𝑋𝐻2, 𝑋𝐻2(𝑡𝑡0) = 𝑋𝐻20 

𝜏
𝑑𝑃𝑋
𝑑𝑡𝑡

+ 𝑃𝑋 = 𝑃𝐻𝐶𝜉𝜉1, 𝑃𝑋(𝑡𝑡0) = 𝑃𝑋0 

𝑡𝑡 ∈ �𝑡𝑡0, 𝑡𝑡𝑓� 
𝑃1𝐿 ≤ 𝑃1 ≤ 𝑃1𝑈 
𝑃2𝐿 ≤ 𝑃2 ≤ 𝑃2𝑈 
𝑃3𝐿 ≤ 𝑃3 ≤ 𝑃3𝑈 
𝜉𝜉1, 𝜉𝜉2 ∈ Ξ 

(2.19a) 

Pr{𝑋5 ≥ 𝑋5𝐿} = 1 − Pr�𝑋5𝐿𝑂 ≥ 𝑋5� ≥ 𝛼1 
Pr{𝑋𝐻2 ≥ 𝑋𝐻2𝐿 } = 1 − Pr�𝑋𝐻2𝐿𝑂 ≥ 𝑋𝐻2� ≥ 𝛼2 (2.19b) 

As it was mentioned, the inverse mapping method is based in estimating 
the value of the probability constrained output variables by using the PDF 
of the random variables, estimating an equivalent of the boundary of the 
chance constraints 𝑦∗  in the domain of 𝜉𝜉 , called 𝜉𝜉∗ . The monotony 
condition that is required for this methodology implies that, keeping all the 
system constant, for each value of 𝜉𝜉, lets say 𝜉𝜉 = 𝜉𝜉𝑎, there is an equivalent 
value of 𝑦 = 𝑦𝑎  that can be obtained solving the model ℎ  and that 
increases or decreases its value monotonically with 𝜉𝜉. This indicates that 
the probability of occurrence of 𝑦𝑎 must be the same than the probability 
of occurrence of 𝜉𝜉𝑎 (See Figure 2.10).  

Therefore, if we are interested in calculating the probability of 𝑦 = 𝑦∗ then 
it is necessary to solve the inverse mapping of ℎ in order to estimate the 
equivalent value 𝜉𝜉∗ that is replaced in its PDF Ξ. Taking in to account now 
the chance inequality constraints, the probability of 𝑦 ≥ 𝑦∗  might be 
equivalent to Pr�𝜉𝜉 ⋚ 𝜉𝜉∗�, where the direction of the inequality in the 
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random variables will depend on the sign of the monotony. That is to say,  if 
an increase in the value of 𝑦  increases the equivalent value of 𝜉𝜉  the 
monotony is positive and the sign of the chance constraint is preserved, 
meaning that Pr(𝑦 ≥ 𝑦∗) = Pr(𝜉𝜉 ≥ 𝜉𝜉∗). On the other hand, if an increase 
in 𝑦 produces a decrease in its equivalent 𝜉𝜉, then the monotony is negative 
and the sign of the chance constraint changes its direction, which is 
equivalent to Pr(𝑦 ≥ 𝑦∗) = Pr(𝜉𝜉 ≤ 𝜉𝜉∗). 

 
FIGURE 2.10: DIAGRAM OF THE INVERSE MAPPING METHODOLOGY 

For the hydrodesulfuration plant the hydrogen purities 𝑋5 and 𝑋𝐻2 are the 
chance constrained outputs, as it is presented in equation (2.19b). For these 
variables the monotony can be checked in the following way: if all variables 
remain constant and the purity of the stream LP (𝜉𝜉2) increase its value, the 
hydrogen purities 𝑋5 and 𝑋𝐻2 will also increase its value. On the other 
hand, if 𝜉𝜉2 decreases 𝑋5 and 𝑋𝐻2  will decrease too. Hence, the monotony of 
the chance constrained variables with respect to the random variable 𝜉𝜉2 is 
positive, which implies that the inequality of the chance constraints 
preserves their direction. The problem then is to compute for which values 
of 𝜉𝜉2 the chance constrained variables reach their limits. Consequently, the 
chance constraints can be translated to the fulfillment of a similar 
inequality but on the variable 𝜉𝜉2 (equation (2.20)). 

 

 

Monotony 

𝑌𝑖: = 𝑃𝑃𝑃(𝑦𝑖) 

𝑦𝑖∗ 

Ξ 𝜉𝜉∗ = ℎ−1(𝑢𝑢, 𝑦𝑖∗) 

𝑦𝑖∗ = ℎ(𝜉𝜉∗,𝑢𝑢) 

𝜉𝜉𝐿 
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Pr{𝑋5 ≥ 𝑋5𝐿} = 1 − Pr{𝜉𝜉2∗𝑋5 ≥ 𝜉𝜉2} ≥ 𝛼1 
Pr{𝑋𝐻2 ≥ 𝑋𝐻2𝐿 } = 1 − Pr{𝜉𝜉2∗𝑋𝐻2 ≥ 𝜉𝜉2} ≥ 𝛼2  

Pr{𝜉𝜉2∗𝑋5 ≥ 𝜉𝜉2} = � � Ξ(𝜉𝜉1, 𝜉𝜉2)𝑑𝜉𝜉2
𝜉2∗𝑋5

−∞
𝑑𝜉𝜉1

∞

−∞
 

Pr{𝜉𝜉2∗𝑋𝐻2 ≥ 𝜉𝜉2} = � � Ξ(𝜉𝜉1, 𝜉𝜉2)𝑑𝜉𝜉2
𝜉2∗𝑋𝐻2

−∞
𝑑𝜉𝜉1

∞

−∞
 

(2.20) 

Here Ξ is the joint PDF of the uncertain variables.  

From the integrals of equation (2.20) it can be noted that the probability of 

fulfillment of the constraints is calculated as a function of  𝜉𝜉2
∗𝑋5  and 𝜉𝜉2

∗𝑋𝐻2. 
So, when computing the integrals, for every value of 𝜉𝜉1 from −∞ to ∞, the 
corresponding values of  𝜉𝜉2∗𝑋5and 𝜉𝜉2∗𝑋𝐻2 must be computed in order to 
evaluate the inner integral.  These limits can be obtained for given values of 
the decision variables, replacing the value of the constrained variables in 
the model equations by its bounds and solving the equations ℎ for the 
variable 𝜉𝜉2. To do this Arellano García and Wozny (Harvey Arellano-Garcia & 
Wozny, 2009) propose to discretize the variables by using orthogonal 
collocation and then replacing the bounds of the constraints at the final 
time, solving a set of nonlinear equations for 𝜉𝜉∗. Regarding the good results 
that they present, their procedure only guarantees that the equality 𝑦 = 𝑦∗ 
can be ensured at the end of the time horizon, meaning that the original 
problem is forced to be feasible only at 𝑡𝑡 = 𝑡𝑡𝑓. In this work we have used a 
different method that considers the entire time horizon. Taking the 
advantage of the sequential approach employed to solve the dynamic 
optimization, the limits 𝜉𝜉∗  can be computed minimizing the difference 
between the constrained variable and its bound from 𝑡𝑡0 to 𝑡𝑡𝑓, solving the 
parameter estimation problem presented in equation (2.21), where the 
values of 𝑃1, 𝑃2 and 𝑃10 are known because are the ones given by the 
optimizer in each iteration of the optimization problem from equation 
(2.19). 
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min
𝜉2
∗𝑋5
‖𝑋5 − 𝑋5𝐿‖ 

ℎ(𝑃1,𝑃2,𝑃3,𝑃5,𝑃10,𝑃𝑋 ,𝑋𝐻2,𝑋5𝐿, 𝜉𝜉1, 𝜉𝜉2∗𝑋5) = 0 

min
𝜉2∗𝑋𝐻2

‖𝑋𝐻2 − 𝑋𝐻2𝐿 ‖ 

ℎ(𝑃1,𝑃2,𝑃3,𝑃5,𝑃10,𝑃𝑋,𝑋𝐻2𝐿 ,𝑋5, 𝜉𝜉1, 𝜉𝜉2∗𝑋𝐻2) = 0 

(2.21) 

Being ℎ the model of the system from equations (2.7), to (2.9) with the 
values of 𝑋𝐻2 and 𝑋5 replaced by their lower bounds.  Once that the limits 
𝜉𝜉2∗𝑋5and 𝜉𝜉2∗𝑋𝐻2 are calculated, the inner integral of the PDF in (2.20) can be 
evaluated and the procedure is repeated until the range of 𝜉𝜉1is covered, 
obtaining in this way the value of the probability for a given values of the 
decision variables. For the computation of the integrals, a trapezoidal rule 
was used. Since the computation of the probability implies that 𝜉𝜉1 can have 
infinite values, the whole range of this value used in equation (2.21) was its 
99.5% confidence interval, that is to say: 𝜉𝜉 ∈ [𝜇1 − 3𝜎1, 𝜇1 + 3𝜎1] . A 
schematic of the sequential optimization method is represented in Figure 
2.11 

The following algorithm summarizes the proposed chance constrained 
method using the sequential approach for solving the stochastic dynamic 
optimization problem: 

Step 0: Set the iteration counter in zero 𝑛𝑛 = 0. Choose the initial guesses 
for decision variables 𝑃1𝑛,𝑃2𝑛,𝑃10𝑛 . Calculate the objective function and the 
constraints from equation (2.19). 

Step 1: 𝑛𝑛 = 𝑛𝑛 + 1 

Step 2: Estimate the new decision variables  𝑃1𝑛,𝑃2𝑛,𝑃10𝑛 , using an 
optimization procedure (for example SPQ). 

Step 3: Calculate the cost function of equation (2.19) by dynamic simulation 
with the current decision variables. 
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Step 4: For each 𝜉𝜉1 within its range, obtain the value of 𝜉𝜉2∗𝑋𝐻2, 𝜉𝜉2∗𝑋5  solving 
(2.21). 

Step 5: Calculate the probability of the chance constrained variables from 
equation (2.20) 

Step 6: If the KKT conditions are fulfilled under a certain degree of 
tolerance, stop. Otherwise, go to step 2. 

 
 

FIGURE 2.11: DIAGRAM OF THE SOLUTION METHOD OF CHANCE CONSTRAINED OPTIMIZATION 

2.4 Results and Discussion 
In order to test the two ways of coping with stochastic optimizations they 
were applied in the hydrodesulfuration problem of the example, assuming 
at 𝑡𝑡0 a step change on the flow and quality of the hydrocarbon stream that 
feeds the reactor, simulating a change in the type of hydrocarbon to be 
treated. The load change can be described as: starting from a hydrocarbon 
flow of 𝑃𝐻𝐶0  with a sulfur quantity equivalent to 𝜌𝐻𝐶0 , change the conditions 

in the feed of the system to 𝑃𝐻𝐶
𝑓  and 𝜉𝜉1 respectively. As before, the other 

stochastic variable 𝜉𝜉2 will be the purity of LP feed: 𝑋3. The values of the 
parameters used in the optimizations for both methods are the same ones 
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used in the deterministic optimization (Table 2.2). In terms of the available 

information during the optimization, only the value of 𝑃𝐻𝐶
𝑓  is known, since 

in general this is a decision imposed by production requirements. On the 
other hand, 𝜉𝜉1 and 𝜉𝜉2are unknown at 𝑡𝑡0 but it is possible to estimate their 
value after a certain period of time 𝑡𝑡1 by means of laboratory analysis that 
can be implemented offline. Means (𝜇), variances (𝜎) and correlation 
coefficient (𝑟) of the stochastic variables, as well as other additional 
parameters like the minimum degree of feasibility imposed in the 
optimization (𝛼), are summarized in Table 2.3. 

TABLE 2.3 ADDITIONAL VALUES FOR STOCHASTIC OPTIMIZATION 

Parameter Value Parameter Value 

𝜇1 �
𝑘𝑘𝑚𝑜𝑙
𝑚3 � 

12.6 𝛼1,𝛼2 0.9 

𝜇2 0.85 𝑟 - 0.5 

𝜎1 �
𝑘𝑘𝑚𝑜𝑙
𝑚3 � 0.4 𝑡𝑡1(ℎ) 1.5 

𝜎2 0.013   

 

The results obtained with each methodology, were tested using a 
Montecarlo simulation with 1e3 realizations of the random variables, 
simulated from the original PDF of Figure 2.7. This test has been proposed 
with the idea of confirming the level of feasibility of the outcomes obtained 
with the approximated methods implemented in the stochastic 
optimization. The solutions proposed by both methods and the results of 
the Montecarlo tests are presented below. 

The single shooting methodology for both stochastic optimization methods 
tested, were implemented in EcosimPro 4.6.(Internacional, 2009). This is a 
simulation environment that uses DASSL as numerical integrator to solve 
the DAE system (Brenan et al., 1989).  DASSL is a code for solving index zero 
and one system of differential/algebraic equations of the form: 
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ℎ(�̇�𝑥, 𝑥𝑥,𝑢𝑢, 𝑡𝑡) = 0, 𝑥𝑥(𝑡𝑡0) = 𝑡𝑡0 (2.22) 

The basic idea for solving DAE systems using numerical ODE methods is to 
replace the derivative in equation (2.22) by a difference approximation, and 
then to solve the resulting (non)linear system for the solution at the current 
time 𝑡𝑡𝑛+1 using Newton's method. For example, replacing the derivative in 
equation (2.22) by the first order backward difference, we obtain the 
following implicit Euler formula: 

ℎ �
𝑥𝑥𝑛+1 − 𝑥𝑥𝑛
Δ𝑡𝑡𝑛+1

, 𝑥𝑥𝑛+1,𝑢𝑢, 𝑡𝑡𝑛+1� = 0, (2.23) 

Being Δ𝑡𝑡𝑛+1 the step size of the integration. The algorithm that is 
implemented in DASSL is an extension of this idea, but instead of using 
always a first order approximation of the derivatives, it approximates the 
variation over time by a 𝑘𝑘𝑡ℎ  order backwards differentiation formula, 
where 𝑘𝑘 can vary from one to five. On every time step it chooses the order 
𝑘𝑘 and the step size, based in the behavior of the solution. 

Regarding the optimization layer of the single shooting approach applied in 
EcosimPro, it was employed the Sequential Quadratic Algorithm (SQP) 
implemented in the NAG routines (Numerical Algorithms, 1998). The SQP 
method consists in solving the KKT conditions of the problem by using 
iteratively a quadratic approximation of the original nonlinear optimization 
problem of equation (2.24). Starting from an initial guess, the idea of the 
methodology is to build a second order approximation of the Lagrangean 
function and a linear representation of the constraints to solve an 
approximated quadratic problem. The outcome of the optimization 
procedure is used to find the direction where the next iterant will be, which 
is obtained after solving a line search problem. This procedure is then 
repeated in a sequential manner until no improvements in the objective 
function, or no changes in the decision variables are observed (Biegler 
Lorenz, 2010).  
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min
𝑢
𝑓𝑓(𝑢𝑢) 

𝑠. 𝑡𝑡. : 
ℎ(𝑢𝑢) = 0 
𝑔(𝑢𝑢) ≤ 0 

(2.24) 

To solve equation the SQP problem it is necessary to estimate first and 
second order derivatives. The implementation of the NAG routines in 
EcosimPro estimates the gradient with a perturbation-based method 
applying the finite differences calculation, while the Hessian is obtained 
from a Quasi-Newton approximation.  

2.4.1 Results from Two – Stage Optimization  
As it was mentioned, to cope with the numerical difficulties that suppose 
the solution of the two-stage implementation when the uncertainty is 
described with a continuous PDF, the scenarios technique has been used to 
transform the original problem into a finite-dimensional one. Figure 2.9 
represents the scenario representation of the PDF that describes 𝜉𝜉1 and 𝜉𝜉2. 
It was built discretizing the confidence interval of the 99.95% of each 
random variable in five values, giving a total number of 25 scenarios, which 
is translated in the same number of individual optimizations to be solved in 
every iteration of the Lagrangian aggregation methodology. In order to 
reduce this number, all the scenarios with less than 1% of probability of 
occurrence were neglected. This action decreased the number of random 
variable combinations until 10, explaining the 99.04% of probability.  

For each scenario, the dynamic optimization problem was solved using the 
single shooting method. The discretization of the decision variables was 
performed by using control vector parameterization with eight possible 
values for each stage. Therefore, there are 48 decision variables per 
scenario, giving a total number of decision variables in the entire stochastic 
optimization problem equal to 480. The optimization took about 9h. Results 
are given in Figure 2.12.  
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Notice that this high computation time prevent the method from being 
applied on-line, but the results are still applicable in open loop if changes in 
operation mode are planned in advance and enough historical data are 
available to estimate the probability distribution of the uncertain variables, 
which is the case of an HDS operation. Computing the solution off-line 
provides a pattern to bring the process in the best possible way to a new 
optimal steady state. Then, when the feed change takes place, the stage-0 
solution is used to guarantee feasibility even if there is no information 
about the value of the random variable and then, provided the uncertain 
variables can be estimated from measurements, stage-1 policies gives 
optimality. This way of acting is the basic idea of the multistage 
optimization, since the assumption of several stages of knowledge implies 
that at the beginning, when we do not know about the value of the 
uncertain variables, we have to take a decision that must present a 
compromise between feasibility and optimality. And later, when we are 
able to estimate or have some feedback about the value of random 
variable, then it is necessary to implement corrective actions that drive the 
process to the optimality. 

Figure 2.12 shows the trajectories of the decision variables for the control 
parameterization chosen and the constrained purities over time. It can be 
noted that for the first stage (until 𝑡𝑡1  = 1.5ℎ), the decision variables have 
only one value because of the nonanticipativity requirement that now can 
be understood as a constraint imposed over the complete trajectory 
described for each decision variable during the entire first stage, hence 
there are 280 nonanticipativity constraints to augment the objective 
function. Once that the unknown variables are estimated, after 𝑡𝑡1, the 
system decides which are the optimal trajectories according to the value of 
the random parameters, that is why there are ten different control 
trajectories for times greater than 1.5h, which depends on the value of the 
combination of 𝜉𝜉1 and 𝜉𝜉2 for every scenario considered, regarding to the 
corrective actions that the two-stage optimization presents.  
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FIGURE 2.12: RESULTS OF THE 2-STAGE OPTIMIZATION FOR EACH SCENARIO CONSIDERED 

The effect that these trajectories have in the constrained variables is also 
represented in Figure 2.12. It can be noted that during the first stage, the 
purities shows as many trajectories as scenarios are, since the process 
dependent variables are function of the value of the random and the 
decision variables. In each of the trajectories presented, the purities 
decrease their values trying to reach the constraint, giving the idea of the 
optimality that the two-stage methodology tries to obtain, however, the 
uncertainty in the value of the random variable forces the system to stay 
inside the feasible region for all the scenarios considered, taking into 
account the feasibility for all the possible values that the random variable 
may have. Again, if now we focus our attention to the period when the 
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uncertain parameters are estimated (after 1.5h), the different trajectories 
calculated for the decision variables sends the constraints to their lower 
limit, which again can be understood from the point of view of the 
corrections that the method must implement in order to look for the 
optimality once that the random variables are known. These corrective 
actions can be observed also comparing these results with the ones from 
deterministic optimization (Figure 2.6). In order to ensure an optimal use of 
the hydrogen, classic optimization suggests not to use hydrogen that comes 
from H3 (𝑃2), because is more expensive in terms of the purity delivered. 
Unlike deterministic optimization, the results from two – stage optimization 
suggests opening 𝑃2 in order to maintain the feasibility, until the value of 
the random variable is estimated. At this moment, this value is set to zero 
searching for optimality. 

In the literature of multistage optimization, some indexes are defined that 
attempts to look for justifications of the stochastic optimization, in terms of 
comparing the efforts that are necessary to make to solve a very 
complicated problem, with the possibility of invest the time improving the 
estimation step of the uncertain variable. That is to say, evaluate the use of 
stochastic optimization in terms of whether it is necessary its application or 
it is better to improve the efforts required to estimate the uncertain 
variables in real time. One of the indexes used for this purpose is the 
Estimated Value of Perfect Information (𝐸𝑉𝑃𝐼) (Birge & Louveaux, 1997). 
This index presents the implicit assumption that it is possible, in some way, 
measuring the uncertain variable during the entire optimization period. The 
index compares the value in objective function that would be obtained if for 
each scenario the uncertain variable is known perfectly, with the one 
obtained in two-stage programming. Since the perfect situation supposes 
that the uncertain variable is available, this index makes sense in process 
optimization when it is possible to measure directly or indirectly the 
random variables by means of reliable online sensors. It is defined as the 
difference between the cost function under perfect information (𝐶𝑂𝑆𝑇𝑃𝐼), 
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calculated as the weighted sum of the objective function for each scenario 
if the random variable is known in the first stage, and the objective function 
obtained in the two stage optimization (𝐶𝑂𝑆𝑇𝑇𝑆). If this index is defined 
relative (𝐸𝑃𝑉𝐼𝑅) to the 𝐶𝑂𝑆𝑇𝑃𝐼  as equation (2.25) shows, it represents the 
percentage of the costs that must be spent due to not having complete 
knowledge of the system, i.e. how much can be saved if hydrogen and 
hydrocarbon analyzers are used in order to measure these variables online, 
instead of using the results from this optimization. For this problem the 
𝐸𝑉𝑃𝐼𝑅  is 6.2%.  

𝐸𝑉𝑃𝐼𝑅 = �
 𝐶𝑂𝑆𝑇𝑇𝑆 − 𝐶𝑂𝑆𝑇𝑃𝐼

𝐶𝑂𝑆𝑇𝑃𝐼
�100 

𝐶𝑂𝑆𝑇𝑃𝐼 =
∑ Pr(𝑖)𝐶𝑂𝑆𝑇(𝑖)𝑁𝑆𝑐
𝑖=1

∑ Pr(𝑖)𝑁𝑆𝑐
𝑖=1

 
(2.25) 

2.4.2 Results from Chance Constrained Optimization  
The iterative procedure from Figure 2.11 has been used to solve the chance 
constrained formulation for the HDS example. In order to calculate the 
limits of integration in the calculus of probability it has been implemented a 
nested dynamic optimization using the single shooting approach. The total 
optimization took 8.5h to reach the optimal point. Notice that the same 
discussion as in two-stage optimization applies regarding the use of the 
solution in practice in real time.  Figure 2.13 summarizes the value of the 
optimal decision variables for a probability of feasibility for 𝑋𝐻2 and 𝑋5 
equal to 90%. 

The evolution of the optimal trajectories obtained with the chance 
constrained approach, are quite similar to the results obtained with the 
deterministic optimization, since there is a single trajectory for each 
decision variable, but with the difference that probabilistic criteria has been 
taken into account in order to ensure a fixed degree of feasibility. 



HANDLING UNCERTAINTIES IN PROCESS OPTIMIZATION 

115 
 

 
FIGURE 2.13: VALUE OF THE DECISION VARIABLES FOR CHANCE CONSTRAINED OPTIMIZATION  

Regarding  the actions that the decision variables produce in the system, it 
can be noted that there are no corrective actions in terms of feasibility and 
optimality. This is reflected in the value of 𝑃2 which is always close to zero, 
but is still a positive number. Because 𝑃2 presents a less convenient ratio 
between purity and production cost (as it was pointed out in the 
deterministic optimization outcomes), the gap between zero and the 
optimal trajectory of this variable can be interpreted as the compromise 
among optimality and feasibility, that is to say, the additional price that 
must be paid, in order to ensure a feasible operation with a given value of 
probability. About the other decision variables, comparing with Figure 2.6 
or 2.12, it can be said that 𝑃10  has increased its value, because it is 
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necessary to take in to account more scenarios where the system must be 
feasible, meaning that the most of the probability distribution of the 
constrained variable 𝑋𝐻2 must be inside the feasible region which can be 
obtained only if there is an increase in the flow purged from the reactor. 
The growth on the purged flow compared with the deterministic case, 
implies that more hydrogen must enter in the reactor in order to keep the 
pressure constant and since the hydrogen concentration in the low purity 
stream has a random behavior, the optimization increases the consumption 
of high purity hydrogen (𝑃1) because of the optimality of working with this 
type of source, as it was pointed out previously, but keeping the shape of 
the trajectory, implying also that the method tries to bring the limit of the 
90% of the distribution function of the constrained purities close to their 
lower bound. As a summary we can argue that according to the formulation 
of this method of optimization, the increments in these variables can be 
explained in order to ensure feasibility 90% of the times. This statement has 
been tested with a Montecarlo simulation, in order to confirm the analysis 
done about the trajectories of the state constrained variables. The results 
of the trajectories as well as their cumulative histograms at are represented 
in Figure 2.14. 

The cumulative histogram of the constrained variables in the stochastic 
simulations shows how the methodology moves the center of mass of their 
probability distribution function into a feasible region in order to ensure the 
accomplishment of the probabilistic constraints, placing the limit of the 
feasibility imposed in the tail representing the 10% of the probability of 
occurrence, meaning  that solving the parameter estimation problem to 
estimate the value of the limit of the probability integral 𝜉𝜉∗, we have 
achieved the goal to propose a policy that is feasible in 90% of the cases, 
during the whole transient of the experiment considered in the 
optimization.  
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FIGURE 2.14: EVOLUTION OF THE PURITIES USING CHANCE CONSTRAINED FORMULATION 

The center of mass of a probability distribution can be viewed as the case 
that presents a probability of occurrence equal to 50%, which in 𝑋𝐻2 is 
equal to 0.77 and in 𝑋5 is 0.913. The gap between the lower bound of the 
constrained purities and the center of the mass of their probability 
distribution functions gives information about the optimality of the chance 
results, and in particular about the tradeoff that must be considered to 
cope with infeasibilities. It tell us how much we need to move the lower 
limit of the constrained variable in order to ensure a feasible operation in 
the 90% of the cases when applying an optimal policy obtained from an 
optimization, i.e. it is the security back-off that we need to take into 
account in order to overcome the unknown part of the process in 
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optimization, as Figure 2.15 schematizes. As it is expected, we can note that 
an increase in the percentage of feasibility imposed in the probabilistic 
optimization will be translated in a loss of optimality with respect to the 
deterministic one, however, this is the price that we must pay in order to 
operate in a safe way. The confidence level is a designer criteria and it 
depends on the type of constraints. In particular in this application, this is a 
compromise among the degree of degradation of the catalyzer, the capacity 
of the compressors and the economic losses of the overall process. 

 

 
FIGURE 2.15: SCHEMATIC REPRESENTATION OF THE EFFECT OF THE BACK-OFF IN THE OPTIMALITY 

From the evolution in time of the purities of Figure 2.14, it can also be 
noted the change in the center of the mass of the distributions of the 
trajectories. Moreover, the shape of these trajectories give some insights 
about the optimality that the method tries to reach, noting that, as in the 
deterministic case, the decision variables tries to decrease their value in 
order to consume less fresh hydrogen, moving the process into a more 
economic point, which again can be understood as the mean of the 
probability distribution of the constrained variables.  

2.4.3 Open Loop Application 
Since both optimizations approaches, two-stage and chance constraints, 
have been solved in times that makes the online application impossible, it is 

Feasible 
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Security 
Back-off 
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Optimum 

Stochastic 
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necessary to study the open loop implementation of the previous solutions. 
To do this, we have tested the previous outcomes using a Montecarlo 
simulation with 1e3 realizations of the random variables, simulated from 
the original continuous PDF.  

Regarding the optimal trajectories from chance constrained optimization 
we already show their performance with stochastic simulations. As a result 
of the simulations it can be said that the direct open loop implementation 
of the trajectories increases the degree of feasibility to 90%. Bearing in 
mind the security that must be considered, the decisions that the method 
takes to solve a problem are equivalent to increasing the lower bounds of 
the inequality constraints.  

On the other hand, the results obtained from the two-stage optimization 
cannot be applied directly since it was solved using the scenarios approach, 
because the trajectories for 𝑃1, 𝑃2 and 𝑃10 in the second stage are only 
available for the discretized scenarios considered. Owing to the original PDF 
has a continuous nature, it is necessary to find a way to apply these results 
for the values of the uncertain parameters not considered previously. In 
this thesis we have evaluated the use of three strategies: 

Nearest Neighborhood: With this method, the idea is to use the closest 
value of the random variable compared with the scenarios that had been 
considered in the optimization step. Therefore, the random variables from 
the continuous PDF will be compared with the discretized ones and it will 
be applied the decision variable calculated for the nearest scenario used in 
optimization, in order to take into account the optimality. 

Oversize the System: The decision applied in simulation will be the one 
calculated for the nearest scenario that oversize the system, i.e.: for the 
random variables simulated, the decision applied will be the one calculated 
for the nearest scenario with greater ratio hydrogen – hydrocarbon and 
lower hydrogen purity in the recycled stream, in order to ensure feasibility. 
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Interpolation: The decision variable applied in the simulation will be 
interpolated between the results obtained for the scenarios. Linear and 
Akima interpolation methods were used, the last one being a continuously 
differentiable sub-spline interpolation with piecewise third order 
polynomials (Akima, 1970). 

Figure 2.16 shows a summary of the methods for open loop 
implementation of the two-stage optimization, schematized over the 
surface of the optimal trajectories of the decision variables that would be 
obtained if the two- stage optimization was solved with the original PDF. In 
the figure, 𝜉𝜉𝑖𝐷  is the discrete value of the random variables for the 
scenarios, 𝜉𝜉𝑖𝑆 is the value of the random variable simulated with the original 
continuous PDF. The grid represents the optimal function, the white dots 
indicate the trajectory of the decision variables obtained for each scenario 
used in optimization and the star marks the location of the true optimal 
trajectory of the decision variable for 𝜉𝜉𝑖𝑆 . The black dot denotes the 
trajectory of the decision variables that finally was applied in the 
simulation.  

 

 
 

FIGURE 2.16: REPRESENTATION OF THE OPEN-LOOP IMPLEMENTATION METHODS OF THE TWO-
STAGE OPTIMIZATION 

Because of the decision variables implemented in the process simulation 
can be different to the ones calculated in the optimization, the 𝐸𝑉𝑃𝐼𝑅  may 
change with respect to the one previously presented. Therefore, the value 
from equation (2.25) does not represent a fair evaluation of the open loop 
implementation for the two-stage solution over the alternative of online 
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measurements. To consider this change, an analogous index is defined: the 
relative estimated value of perfect information in simulation (𝐸𝑉𝑃𝐼𝑅𝑆). This 
index is calculated as the average of the difference between the cost 
function under perfect information and the real cost obtained applying the 
strategies of implementation, as equation (2.26) shows. Here, 𝑁𝑀𝑐𝑆  is the 
number of Montecarlo simulations performed. 

𝐸𝑉𝑃𝐼𝑅𝑆 =
∑ � 𝐶𝑂𝑆𝑇𝑇𝑆(𝑖) − 𝐶𝑂𝑆𝑇𝑃𝐼(𝑖)

𝐶𝑂𝑆𝑇𝑃𝐼(𝑖)
�𝑁𝑀𝑐𝑆

𝑖=1

𝑁𝑀𝑐𝑆
100 (2.26) 

Table 2.4, summarizes the results of the Montecarlo simulations in terms of 
mean and standard deviation of the hydrogen purities for the cases studied. 
In each row, the results obtained applying open loop solutions from the 
methods tested are presented. In columns: 𝐸𝑉𝑃𝐼𝑅𝑆,  mean, variance and 
% 𝐼𝑛𝑛𝑓𝑓 for the chance constrained variables. Notice that the index named 
% 𝐼𝑛𝑛𝑓𝑓 corresponds to the percentage of the times when the purities were 
lower than their bounds. Regarding optimality the last two columns of  
Table 2.4 presents the mean and the standard deviation of the costs. It can 
be noted that the results of two-stage optimization are separated in: 
“Nearest scenario”, “Overestimate”, “Linear Interpolation” and “Akima 
Interpolation”, taking into account the different ways to apply the discrete 
outcomes in the second stage of this technique, as mentioned above.  

About the infeasibility percentage for the two constrained variables 
(columns 4 and 7), it can be noted that applying the trajectories obtained 
with deterministic optimization, about 50% of the times the operation is 
out of the bounds, in concordance with Figure 2.8. This is because the 
distributions of the hydrogen purities are centered in the lower bound of 
the constraints, due to the fact that the optimization had been performed 
using the mean value of the random variables. 
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TABLE 2.4 SUMMARY OF THE MONTECARLO SIMULATIONS 

Optimization  
Method  

EVPIR
S 

(%) X5 XH2 COST (k€)   

  µ σ 
103 

% 
Inf. µ σ 

102 
% 
Inf. µ σ 

102 

Deterministic N/A 0.900 8.7 44.1 0.700 3.2 49.4 0.548 N/A 

Chance  
Constrained N/A 0.913 8.4 12.6 0.770 2.7 9.9 0.658 N/A 

Two – Stage:  
Nearest 
Scenario  

6.2 0.900 4.7 44.2 0.700 1.5 48.4 0.567 10.3 

Two – Stage:  
Overestimate 22.8 0.908 4.4 0 0.728 1.4 0.8 0.655 9.2 

Two – Stage:  
Linear  
Interpolation 

7.1 0.900 2.1 0 0.700 0.7 1 0.571 9.5 

Two – Stage:  
Akima  
Interpolation 

7.8 0.900 2.1 0 0.701 0.7 1 0.575 9.5 

Worst 
Scenario -  0.93 7.6 0 0.8 2.5 0.8 0.730 N/A 

 

The infeasibilities in chance constrained optimization are closer to 10%, 
which was already presented in the Figure 2.14. This result is expected 
considering that a confidence level of 90% has been imposed in the 
resolution of the optimization problem. The differences between these 
percentages and the values imposed can be due to the numerical 
approximation of the probability calculus. In addition, it can be noted that 
the mean of the hydrogen purities has been moved above their lower 
bound, and the standard deviations are similar with respect to deterministic 
optimization. The previous facts indicate that the optimizer search for some 
decision variables that allocate the infeasibilities in the tail of their 
distribution, confirming earlier discussions about the optimal trajectories. 
Regarding optimality, it can be noted from the last columns that the cost of 
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using a policy that ensures feasibility without knowing the value of the 
uncertain variable implies an amount of 20% with respect to the 
trajectories obtained with deterministic optimization, which can be 
understood as the increase in the prices because of growing the lower 
bound of the purities. 

For the two – stage formulation, Table 2.4 shows differences in the degree 
of feasibility and the optimality depending on the strategy used to 
implement the results.  

The percentage of infeasibilities and the mean of the purities in the nearest 
scenario strategy are similar to the ones registered in deterministic 
optimization. However, the standard deviation has been reduced in a half. 
This situation can be explained understanding that using this strategy is 
equivalent to split the original PDF in ten pieces (the number of scenarios) 
and then solving a deterministic optimization. Each of them will be solved 
with the mean of the random variables inside every piece, hence it’s 
expectable that in about a 50% of the times the uncertain variables will  
underestimate the system and the other half of the times will be  
overestimated (Harvey Arellano-Garcia & Wozny, 2009). In addition, the 
decrease in the standard deviation is explained due to the range of the 
chance variable is bounded in each scenario with respect to the complete 
PDF. About optimality, it can be noted that the average of the cost function 
is the same than from deterministic optimization, which leads to the 
𝐸𝑉𝑃𝐼𝑅𝑆 equal to the 𝐸𝑉𝑃𝐼𝑅. This is quite expected because of the analogy of 
deterministic optimization over each scenario using the mean value of 
stochastic variables. 

Using the method that overestimates the system, feasibility is ensured for 
almost all the possible values of the uncertain variables. As the system is 
always overrated, the mean of purity constraints must be inactive. Both 
situations can be observed in Table 2.4. This strategy also can be explained 
by splitting the original PDF in pieces and then solving several deterministic 
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optimizations. However, in this case rather to use the mean of the 
uncertain variables, the worst case inside each piece is applied. Therefore, 
is analogous to the worst case optimization, but with the advantage that 
the unknown variable is bounded by each scenario. This overestimation of 
the system leads to an operation which is, in average, more expensive than 
the expected by the stochastic optimization. Therefore, the 𝐸𝑉𝑃𝐼𝑅𝑆 is more 
than 5 times bigger than the observed in optimization.  

Regarding the results obtained interpolating the discretized optimal 
solution, Table 2.4 shows that the feasibility percentage, mean and 
standard deviation are the same for the two methods tested: linear and 
Akima interpolation. It can be noted that the feasibility percentages, being 
very low, are not as good as the results from worst case optimization. 
However, in terms of dispersion of the constrained variables, these values 
are lower than all the other strategies testes, which mean that a most 
homogeneous operation policy can be expected. Because of this, the mean 
of the purities are equal to their lower bounds. About the optimality of 
applying the interpolated solutions, it can be said that the cost function is 
the lowest for the strategies able to ensure an appropriate level of 
feasibility. About the 𝐸𝑉𝑃𝐼𝑅𝑆, it can be said that is  bigger than the 𝐸𝑉𝑃𝐼𝑅  in 
15%. Comparing this index and the percentages of feasibility with respect to 
the other strategies of application it can be argued that this is the optimal 
way to apply the results of the two – stage optimization for this problem. 

2.5 Conclusions 
From the results presented, it can be concluded that it is possible to solve a 
two-stage optimization for an optimal process operation using the scenario 
aggregation method and the single shooting technique. Nevertheless, due 
to the large computation times, in order to be an attractive way to handle 
uncertainties in processes, it is necessary to review the dynamic 
optimization procedure and the optimization resources. This is because in 
the current implementation, most of the time employed by the SQP solver 
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used in this work is spent in the estimation of the gradients using finite 
differences. Another way to reduce the solution time is parallel 
computation, so that each scenario problem can be solved separately in a 
processor to solve the entire problem.  

The results obtained using the scenario approach can be generalized for 
continuous uncertain variables using the interpolation method proposed 
here. This idea allows solving the two – stage optimization, simplifying the 
calculus in order to be applied in a continuous process. The way in which 
implementation of the second stage decision is made proved to be more 
important than expected, according to the test performed. 

Regarding the chance constrained optimization, it can be concluded that by 
solving a parameter estimation problem, the inverse mapping method can 
be applied in a continuous way in order to calculate the probability for 
constrained variables, and to estimate the security back-off in the bounds 
of the inequality constraints. Anyhow, again is necessary to review the 
methods of dynamic optimization and the resources used, to implement 
these ideas from the point of view of process optimization. As a new point 
of view, the chance constrained optimization in open loop, might be useful 
for a new close loop procedure with deterministic optimization, provided is 
available an adequate mapping between the feasibility percentage required 
for the process and the corresponding security back-off to be implemented 
in the inequality constraints.  

About the comparison of both methods tested, the ratio between the 
percentage of feasibility and the objective function is better for the two – 
stage optimization with the interpolation procedure. To conclude what 
formulation works better for this case, it is necessary to complement this 
analysis. Because the two – stage optimization is valid only if it is possible to 
estimate (using some method) the random variables before the second 
stage, unlike chance constrained formulation that ensures a level of 
feasibility with no need of this estimation. In the problem of hydrogen 
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consumption, the random variables could be estimated before the second 
stage occurs by combining state estimation methods and some laboratory 
analysis. Therefore, the two – stage formulation would work better in 
absence of important uncertainties related to the measurement procedure. 

The work developed here can be viewed as a set point updater for the 
hydrogen flow controllers. If improvements in the computation time were 
available, it would be interesting to close the loop reformulating this 
application as a stochastic model predictive controller. But, even in its 
current formulation, it can contribute to easy the implementation path of 
advanced optimal decision making tools in industry, and the integration 
with other approaches to the optimization of complete hydrogen 
distribution network for a refinery (Sarabia et al., 2009). 
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ABSTRACT 

This chapter is focused in the modifier-adaptation methodology 
implemented in the RTO layer of the optimization architecture, to 
overcome the uncertainties related with the mismatch produced in 
the modeling stage. In particular we present three proposals to deal 
with some challenges related with its application. (1) An 
intermediate layer between the RTO and the model control stage to 
avoid the infeasibilities that can be produced in the evolution of the 
method. (2) A reformulation of the modifier-adaptation method as 
a nested optimization problem to evade the step related with the 
estimation of the process gradients, increasing the application of 
the method for systems where the process derivative is not 
available. (3) A proposal to include the modifiers in the context of 
dynamic optimization, in order to manage the modeling mismatch 
for a receding horizon problem. Every proposal has been tested and 
compared with previous development in simulation examples, with 
the aim to evaluate their performance. As a conclusion we can say 
that applying the strategies presented, we are able to converge to 
the real optimum of the process for a RTO implementation, in a 
feasible way and skipping the process gradient estimation, making 
the whole algorithm more robust in terms of real life applications. 
Regarding the inclusion of the modifiers in dynamic optimization, 
only preliminary results and a very limited implementation have 
been presented, however some ideas can be useful for more 
general applications in the future. 

KEYWORDS  

Real time optimization, Modeling mismatch, Uncertainty, Modifier-
Adaptation methodology, Infeasibility controller, Nested modifier-
adaptation, Dynamic optimization. 
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RESUMEN 

Este capitulo se enfoca en el método adaptación de modificadores 
utilizado en la capa de optimización en tiempo real para evitar la 
incertidumbre en la optimización producida por errores de 
modelado. En particular se han propuesto tres modificaciones para 
mejorar su implementación. (1) Inclusión de una capa intermedia 
entre la optimización y el control que modifica el valor de las 
variables de decisión sugeridas por el optimizador si es que se 
detecta una violación en las restricciones del proceso, haciendo 
factible la convergencia del algoritmo. (2) Reformulación del 
método de adaptación de modificadores como un problema de 
optimización anidado, con el objetivo de evitar la estimación de los 
gradientes del proceso y así ampliar su marco de aplicación. (3) 
Inclusión de los modificadores en un problema de optimización 
dinámica con horizonte móvil, con la idea de manejar la 
incertidumbre en la capa de optimización si es que esta tiene 
características dinámicas. Cada una de las propuestas ha sido 
aplicada a ejemplos de simulación para estudiar su desempeño y 
compararlo con el método actual. A modo de conclusión, se puede 
indicar que para la optimización estática se ha detectado el óptimo 
del proceso de manera factible y sin la necesidad de estimar las 
derivadas del proceso, haciendo el método más robusto a las 
condiciones reales. Respecto a la optimización dinámica, se ha 
propuesto la inclusión de los modificadores para un reducido 
conjunto de sistemas, sin embargo estas ideas pueden ser útiles 
para aplicaciones más generales en el futuro. 

PALABRAS CLAVES 

Optimización en tiempo real, Error de modelado, Incertidumbre, 
Adaptación de modificadores, Control de infactibilidades, 
Adaptación de modificadores anidada, Optimización dinámica. 
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3.1 Introduction 
Real time optimization is a tool that is used in industrial facilities to improve 
the benefits of a process. In many real applications, an optimization layer is 
present above the control level with the aim of updating the set-points of 
the control layer using an economic criterion. A modern process plant may 
have thousands of measurements and control loops, so, in practice, a 
hierarchy for control and decision making is used as shown in Figure 3.1, 
where this structure is based on the successive refinement of time scales 
from top to bottom (Darby et al., 2011; Young, 2006). In addition, there are 
also varying spatial scales, from the plant planning layer at the top to unit 
regulatory control via single PID loops at the bottom. 

 
FIGURE 3.1: OPTIMIZATION HIERARCHY  

Each of the layers present in the optimization hierarchy has different 
objectives, and therefore different optimization problems to be solved.  
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PLANNING: is concerned with “what and how” based on economics 
and forecasts, and answers such questions as what feedstock to 
purchase, which products to make, and how much of each product 
to make. In almost all refineries and larger chemical plants, a linear 
program (LP) or successive LP is used for planning and is based on 
an overall plant profit objective function. 
 
SCHEDULING: is concerned with “when”. Scheduling addresses the 
timing of actions and events necessary to execute the chosen plan, 
with the key consideration of being feasible. Scheduling deals with 
such issues as the timing of the deliveries of feeds, product lifting 
and operating mode changes, and avoiding storage problems 
(overflow or shortage). A range of tools are used across the 
industry for scheduling, from whiteboards and spreadsheets to 
tools involving simulation models, heuristic rules, and optimization 
(Valleur & Grue, 2004).  
 
REAL TIME OPTIMIZATION: is executed in real time at different 
intervals, and there is automatic, continual feedback from the 
process (indicated by the solid lines entering from the right in 
Figure 3.1). At the planning and scheduling levels, feedback and 
model updating is not automatic and is performed intermittently 
(indicated by dotted lines in Figure 3.1). Outputs from planning and 
scheduling are shown as dotted lines to signify that human 
intervention is required to determine and set certain objectives of 
the next level, which are normally not simply a one-to-one 
translation of objectives to targets and limits. Day-to-day logistical 
issues from scheduling can have a significant impact on plant 
operations, overriding decisions that are made at the local 
optimization level and requiring target and limit changes at the 
constraint control level. The goal is to calculate the process optimal 
operating point or optimal operating trajectory to be applied for 
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feedback controllers of directly subordinate layers. Usually, the task 
of this layer is implemented by a real-time optimization package 
(RTO) which is concerned with implementing business decisions in 
real time based on a calibrated non-linear steady-state model, with 
model detail that the planning model does not have. RTO is 
implemented for economically justified cases and is typically 
formulated based on a profit function of the plant. However, RTO is 
not only optimization but a complex structure consisting on several 
subsystems for measurement validation, steady-state detection, 
process model updating, and model-based optimization, all of 
which are important for a successful performance. Gattu and 
coworkers and Bieker and coworkers describe the industrial 
requirements and challenges of RTO in refineries and offshore oil 
and gas production systems (Bieker et al., 2006; Gattu et al., 2003).  
Sometimes, instead of RTO, this level reduces to a local economic 
optimization, limited to a process unit using the same models as in 
the MPC layer. 
 
CONSTRAINT (MULTIVARIABLE MPC) CONTROL: The MPC(s) provide the 
minute-to-minute dynamic control of the plant and give some 
amount of optimization capability. Although industries have 
invested heavily in MPC controllers, an adequate use and judicious 
implementation is necessary (Young, 2006) due to sub-optimal 
and/or poor outcomes reported by many industry experts (Wang, 
2011). 
 
DISTRIBUTED CONTROL SYSTEM (DCS): which is designed to collect and 
record sensor measurements from the process and implement the 
regulatory control (typically PID), usually it is executed on a second 
time scale (sub-second to multi-second). The DCS layer is typically 
the main operator interface for monitoring and controlling the 
plant including generating alarms for abnormal situations. Also 
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implemented at this level are advanced regulatory controls such as 
cascade controllers, ratio controllers, constraint controllers, and 
sequencing controls.  

The hierarchical nature of planning, scheduling, and control follows the 
natural flow of decisions in an organization and exists in every production 
environment. Clearly, they have to work together in a coordinated and 
integrated fashion. The integration should be based not only on technical 
solutions but on changes in human behavior to get acceptance and use of 
more sophisticated tools and changes in the proper organizational structure 
(Shobrys & White, 2002) . The hierarchical structure, also allows separating 
in an appropriate way the different decisions that must be taken in the 
process, since the layers are executed in different time scales and with 
different kinds of models. 

RTO presents important challenges to be addressed, such as, proposing 
algorithms that manage the existing model uncertainty and handling the 
interaction between the RTO and MPC layers.  

The developments of algorithms able to find the optimum of the process 
under modeling mismatch assumptions, is a topic that has been studied 
since the RTO methodology first appears with the two-stage algorithm 
proposed by Bamberger and Isermann (Bamberger & Isermann, 1978): 
parameter estimation and economic optimization, that is solved in an 
iterative way. In their implementation the authors proposed adapting the 
nonlinear model of the plant, by means of solving a parameter estimation 
step before the economic optimization using the available measurements 
from the process (equation (3.1)), obtaining the value of the uncertain 
parameters 𝛼 that makes the model as close as possible to the real plant. 
With the updated model, the second step is solving the economic 
optimization to obtain the next value of the manipulated variables to be 
applied in the upper layers of the process (equation (3.2)). Figure 3.2 
summarizes the two-level algorithm implementation. 
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min
𝛼
𝑃𝑖𝑑 ≔ (𝑦 − 𝑦�𝑘)𝑇𝑅(𝑦 − 𝑦�𝑘) 

𝑠. 𝑡𝑡. : 
ℎ(𝑦,𝑢𝑢𝑘−1,𝛼) = 0 
 𝑔(𝑦,𝑢𝑢𝑘−1,𝛼) ≤ 0 

(3.1) 

min
𝑢∈𝑈

𝑃𝑒𝑐𝑜 ≔ 𝑓𝑓(𝑦,𝑢𝑢,𝛼𝑘) 
𝑠. 𝑡𝑡. : 
ℎ(𝑦,𝑢𝑢,𝛼𝑘) = 0 
𝑔(𝑦,𝑢𝑢,𝛼𝑘) ≤ 0 

(3.2) 

Being: 𝑦 ∈ ℝ𝑛𝑦  the measured variables, 𝑢𝑢 ∈ ℝ𝑛𝑢  the decision variables, 
𝛼 ∈ ℝ𝑛𝛼  the uncertain parameters, 𝑓𝑓:ℝ𝑛𝑦 × ℝ𝑛𝑢 × ℝ𝑛𝛼 → ℝ the objective 
function,  𝑔:ℝ𝑛𝑦 × ℝ𝑛𝑢 × ℝ𝑛𝛼 → ℝ𝑛𝑔  the inequality constraints of the 
optimization and ℎ:ℝ𝑛𝑦 × ℝ𝑛𝑢 × ℝ𝑛𝛼 → ℝ𝑛𝑦  the model of the process. 
The bar “  ̅  ” represent the variables that are directly measured or 
estimated from the process, while the subscript 𝑘𝑘 denotes the actual RTO 
iteration.  

 
FIGURE 3.2: IMPLEMENTATION OF THE TWO-STAGE ALGORITHM 

In Figure 3.2, it can be noted that the outcomes of the optimization 
problem, can be filtered in order to make the evolution of the RTO 
application smoother. Even though this step is optional, in practice it is 
applied most of the times by the operators (Darby et al., 2011). In general 
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terms the filtering procedure can be understood as a maximum size of the 
step, reducing locally the feasible region of the optimization around the 
actual operating point or using the past values from RTO iterations in an 
affine combination with the actual solution of the equation (3.2). 

Most of the times, the model will not be a faithful representation of the 
reality, either because of the partial knowledge of the process or due to the 
simplifications that makes the optimization solvable in a reasonable time. 
Moreover, the two problems interact such that the solution of the 
optimization problem is dependent upon the values of the model 
parameters, that is to say, 𝑢𝑢𝑘(𝛼𝑘). While the parameter estimates will 
change according to the controller settings given by the economical 
optimization in previous iteration, i.e., 𝛼𝑘(𝑢𝑢𝑘−1). These two factors: the 
interaction of the two layers and the modeling mismatch,  produce that the 
two-step algorithm by itself will not necessarily converge to the optimum of 
the process (Roberts, 1979). Therefore, this interaction must be taken into 
account in the adaptation step in order to achieve the real optimum of the 
process under modeling mismatch.  The convergence to this point has been 
studied  by Biegler and coworkers who present the conditions to reach the 
optimum of a complex problem by using a simplified one: (1) The gradient 
of both models must be the same in every point within the entire feasible 
region, and (2) the KKT conditions of the complex model must correspond 
to the KKT conditions of the simplified one (Biegler et al., 1985). Later, 
Forbes and Marlin apply this idea to real process optimization, giving 
analogous conclusions about necessary conditions to reach the process 
optimum in a model-based optimization: at the real optimum, the KKT 
conditions of the process must be the same than the ones of model (Forbes 
& Marlin, 1994; Forbes et al., 1994).  

To cope with the uncertainty already mentioned and to drive the process to 
its real optimum point, there have been several developments in RTO, 
including steady-state and dynamic systems. Chachuat and coworkers 
(Chachuat et al., 2009) classified these developments in three main groups 
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according to how the adaptation of the model and/or the decision variables 
are performed when measurements are available: model-parameter 
adaptation, modifier-adaptation, and direct input adaptation. The authors 
present an exhaustive analysis of the three methodologies concluding that 
the modifier-adaptation method presents important advantages over the 
other approaches since it combines the main characteristics of both: model-
based optimization and direct adaptation of inputs using measurements 
directly from the process. Taking this into account, in this thesis we have 
worked using this strategy. 

3.2 Modifier-Adaptation Methodology 
As it was said previously, it is necessary to manage the interaction between 
the parameter estimation and the economic optimization step in order to 
find the process optimum. With this in mind, the ISOPE2 algorithm was 
presented by Roberts (Roberts, 1979). Briefly, the ISOPE decouples both 
problems by introducing two additional constraints (equation (3.3)). 

𝛼𝑘 = 𝜎𝑘 
𝑢𝑢𝑘 = 𝑣𝑘 (3.3) 

With the coupling relation, the two steps of the RTO algorithm can be 
rewritten as: 

min
𝛼
𝑃𝑖𝑑 ≔ (𝑦 − 𝑦�𝑘−1)𝑇𝑅(𝑦 − 𝑦�𝑘−1) 

𝑠. 𝑡𝑡. : 
ℎ(𝑦, 𝑣𝑘−1,𝛼) = 0, 𝑔(𝑥𝑥,𝑦,𝑣𝑘−1,𝛼) ≤ 0 

(3.4) 

min
𝑢∈𝑈

𝑃𝑒𝑐𝑜 ≔ 𝑓𝑓(𝑦,𝑢𝑢𝑘𝜎𝑘) 
𝑠. 𝑡𝑡. : 
ℎ(𝑦,𝑢𝑢,𝜎𝑘) = 0, 𝑔(𝑦,𝑢𝑢,𝜎𝑘) ≤ 0 

(3.5) 

                                                            
2  ISOPE is de acronym of “Integrated System Optimization and Parameter 
Estimation” 
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Assuming that the optimum is inside the feasible region and denoting the 
economic optimization problem as min𝑢 𝑃𝑒𝑐𝑜(𝑢𝑢,𝜎), the stationary point of 
the integrated problem can be summarized as:  

∇𝑢ℒ = ∇𝑢𝑃𝑒𝑐𝑜𝑘 − 𝜆𝜆𝑘 = 0, ∇𝛼ℒ = ∇𝛼𝛼2 𝑃𝑖𝑑𝑘 − 𝜇𝑘 = 0 
∇𝑣ℒ = ∇𝛼𝑣2 𝑃𝑖𝑑𝑘 + 𝜆𝜆𝑘 = 0, ∇𝜎ℒ = ∇𝜎𝑃𝑒𝑐𝑜𝑘 + 𝜇𝑘 = 0 (3.6) 

Being 𝜆𝜆 and 𝜇 the Lagrange multipliers of equation (3.3) and ℒ represents 
the Lagrangean function of the integrated problem, defined as: 

ℒ = 𝑃𝑒𝑐𝑜𝑘 + 𝜆𝜆𝑇(𝑣𝑘 − 𝑢𝑢) + 𝜇𝑇(𝛼𝑘 − 𝜎𝑘) + 𝜂𝑇∇𝜎𝑃𝑖𝑑𝑘 (3.7) 

Since the optimum is inside the feasible region, the stationary point of the 
equation (3.6) correspond to the conditions of the optimum of the 
unconstrained problem from equation (3.8), which is a modified version of 
equation (3.5) when the inequality constraints 𝑔 are not active. 

min
𝑢∈𝑈

𝑃𝑒𝑐𝑜 ≔ 𝑓𝑓(𝑦,𝑢𝑢,𝛼) + 𝜆𝜆𝑘𝑇𝑢𝑢 
𝑠. 𝑡𝑡. : 
ℎ(𝑦,𝑢𝑢,𝛼)  

(3.8) 

The parameter 𝜆𝜆𝑘 can be obtained solving equation (3.6). If it is assumed 
that the parameter estimation problem is square, i.e., 𝑛𝑛𝑦 = 𝑛𝑛𝛼 , the 
expression to calculate the Lagrange multiplier 𝜆𝜆𝑘 is: 

𝜆𝜆𝑘𝑇 = [∇𝑣𝑦�𝑘−1 − ∇𝑣𝑦𝑘−1][∇𝛼𝑦𝑘−1]−1[∇𝜎𝑓𝑓𝑘−1],  (3.9) 

In equation (3.9) and during the entire chapter, the 𝑘𝑘 − 1  subscript 
indicates that the quantities have been calculated with the values of the 
previous RTO iteration, also ∇𝑛𝑚 and ∇𝑛𝑝2 𝑚  represent the partial 

derivatives 𝜕𝑚
𝜕𝑛

 and 𝜕
2𝑚

𝜕𝑛𝜕𝑝
 respectively. 
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Assuming that equation (3.3) holds, and applying the chain rule to equation 
(3.9), 𝜆𝜆𝑘 becomes in a modifier that takes into account the difference of the 
gradient of the cost function with respect to the decision variable 𝑢𝑢, 
between the model and the process evaluated at the previous RTO 
iteration. Therefore, 𝜆𝜆𝑘  can be viewed as a corrector of the gradient, 
because it changes the direction of the cost function calculated with the 
model using data available from the measurements: the gradient of the real 
outputs. Convergence analysis of the algorithm to the true optimum of the 
process is presented by Brdys and Roberts (M. Brdys et al., 1987; M. Brdys 
& Roberts, 1987). Starting with the ISOPE algorithm, Roberts and coworkers 
present some variations, in order to include a wide range of industrial 
situations (Roberts, 1995), and take into account indirectly the process 
dependent inequality constraints (M. Brdys et al., 1986; M. Brdys & 
Roberts, 1986; Lin, Chen, et al., 1988; Lin, Hendawy, et al., 1988; Michalska 
et al., 1985).  

The success of the ISOPE method (and its derivatives) relies not only on the 
idea that the interaction between both optimization problems is 
considered, but on the fact that the optimality conditions of the model and 
the process are fulfilled in the same point (under the supposition of a 
perfect matching between the predicted and measured outputs). Hence, 
the true optimal operation can be found if the algorithm converges (M. 
Brdys & Roberts, 1987). Later, Tatjewski showed that the convergence to 
the true optimum in the ISOPE method does not depend on the parameter 
estimation problem, but only on the equality between the output of the 
process and the model in each iteration. For this reason, the same results 
can be obtained using a bias corrector in the constraints of the model that 
is updated in each iteration using the process measurements (Tatjewski, 
2002). Because of the parameter estimation is no longer needed, the 
author proposed another name for the algorithm: Modifier gradient 
optimization set-point control (equation (3.10)). 
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min
𝑢∈𝑈

𝑃 ≔ 𝑓𝑓(𝑦 + 𝑏𝑏𝑘,𝑢𝑢,𝛼) + 𝜆𝜆𝑘𝑇𝑢𝑢 
ℎ(𝑦 + 𝑏𝑏𝑘,𝑢𝑢,𝛼) = 0 

𝑤𝑖𝑡𝑡ℎ: 
𝜆𝜆𝑘𝑇 ≔ ∇𝑢𝑓𝑓�̅�−1 − ∇𝑢𝑓𝑓𝑘−1, 𝑏𝑏𝑘 ≔ 𝑦�𝑘−1 − 𝑦𝑘−1 

(3.10) 

It can be noted that the subscript “eco” has been neglected, since the 
parameter estimation step has been replaced by the bias corrector 𝑏𝑏𝑘 that 
ensures the equality between the measurements from the process and the 
predictions of the model, under convergence assumptions. The modified 
optimization from equation (3.10), takes into account first and zero order 
corrections of the model, which are calculated with data from the process. 
Following these ideas, Gao and Engell proposed an extension of the method 
of Tatjewski in order to handle process-dependent constraints (Gao & 
Engell, 2005). The authors defined the constraint modifier 𝛾𝛾𝑘 and 𝑏𝑏𝑘, to 
adapt the process dependent inequality constraints with a zero and first 
order correction (equation (3.11)).  

min
𝑢∈𝑈𝑚

𝑃 ≔ 𝑓𝑓(𝑦 + 𝑏𝑏𝑘,𝑢𝑢,𝛼) + 𝜆𝜆𝑘𝑇𝑢𝑢 

𝑠. 𝑡𝑡. : 
ℎ(𝑦 + 𝑏𝑏𝑘,𝑢𝑢,𝛼) = 0 
𝐺𝑚 ≔ 𝑔(𝑢𝑢,𝛼) + 𝛾𝛾𝑘𝑇(𝑢𝑢 − 𝑢𝑢𝑘−1) + 𝜖𝑘 ≤ 0 
𝑈𝑚 = [𝑢𝑢𝐿,𝑢𝑢𝑈] 
𝑢𝑢𝐿 ≔ 𝑢𝑢𝑘−1 − Δ𝑢𝑢, 𝑢𝑢𝑈:𝑢𝑢𝑘−1 + Δ𝑢𝑢 

𝑤𝑖𝑡𝑡ℎ: 
𝜆𝜆𝑘𝑇 ≔ ∇𝑢𝑓𝑓�̅�−1 − ∇𝑓𝑓𝑘−1, 𝑏𝑏𝑘 ≔ 𝑦�𝑘−1 − 𝑦𝑘−1 
𝛾𝛾𝑘𝑇 ≔ ∇𝑢�̅�𝑘−1 − ∇𝑢𝑔𝑘−1, 𝜖𝑘 ≔ �̅�𝑘−1 − 𝑔𝑘−1 

(3.11) 

It can be noted that the feasible region of the decision variables 𝑈𝑚has 
been reduced in order to make the corrected inequality constraint 𝑔𝑚 
closer to the one estimated from the process. Using this method, the 
authors reached optimum yield of recovery in a simulated batch 
chromatography system identified from a pilot-scale system.  
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The modified constraint 𝑔𝑚, has the following properties: 

Its value is the same as the value of the constraint measured from 
the process if 𝑢𝑢 = 𝑢𝑢𝑘−1. 
 
Its first-order derivative has the same value as the one estimated 
from the process if 𝑢𝑢 = 𝑢𝑢𝑘−1. 

Therefore, under convergence assumptions (𝑢𝑢𝑘−1 → 𝑢𝑢𝑘) complementary 
slackness and primal feasibility from the necessary conditions of optimality 
(NCO) of equation (3.11), have only terms measured from the process. 

From the equality of the KKT conditions of the model with the process, the 
use of modifiers was generalized by Marchietti and coworkers (Marchetti et 
al., 2009a), presenting the Modifier-Adaptation Methodology (equation 
(3.12)). The authors removed the modifier 𝑏𝑏𝑘, justifying the use of the 
remaining modifiers since, under convergence assumptions, they allow 
matching the KKT conditions of the modified model with the ones from the 
process. In equation (3.12) we have neglected the model ℎ(·) since the 
equality between 𝑦 and 𝑦� is no longer needed. 

min
𝑢∈𝑈𝑚

𝑃 ≔ 𝑓𝑓(𝑢𝑢,𝛼) + 𝜆𝜆𝑘𝑇𝑢𝑢 

𝑠. 𝑡𝑡. : 
𝐺𝑚 ≔ 𝑔(𝑢𝑢,𝛼) + 𝛾𝛾𝑘𝑇(𝑢𝑢 − 𝑢𝑢𝑘−1) + 𝜖𝑘 ≤ 0 
𝑈𝑚 = [𝑢𝑢𝐿,𝑢𝑢𝑈] 

(3.12) 

The KKT conditions of equation (3.12) are: 

∇𝑢𝑓𝑓𝑘 + 𝜆𝜆𝑘𝑇 + 𝜇𝑘𝑇(∇𝑢𝑔𝑘 + 𝛾𝛾𝑘𝑇) + 𝜉𝜉𝑈𝑇 − 𝜉𝜉𝐿𝑇 = 0 
𝜇𝑇(𝑔(𝑢𝑢,𝛼) + 𝛾𝛾𝑘𝑇(𝑢𝑢 − 𝑢𝑢𝑘−1) + 𝜖𝑘) = 0 
𝜇 ≥ 0, 𝑔(𝑢𝑢,𝛼) + 𝛾𝛾𝑘𝑇(𝑢𝑢 − 𝑢𝑢𝑘−1) + 𝜖𝑘 ≤ 0 

(3.13) 

Assuming that the iterative algorithm converges into a stationary point, 
then 𝑢𝑢𝑘−1 → 𝑢𝑢𝑘 → 𝑢𝑢⋆. If we replace this assumption in equation (3.13), it 
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can be easily obtained the optimality conditions the process, as equation 
(3.14) shows. 

∇𝑢𝑓𝑓̅⋆ + 𝜇⋆𝑇∇𝑢�̅�⋆ + 𝜉𝜉𝑈𝑇 − 𝜉𝜉𝐿𝑇 = 0 
𝜇𝑇(�̅�⋆) = 0 
𝜇 ≥ 0, �̅�⋆ ≤ 0 

(3.14) 

Therefore, by modifying the economic optimization with 𝜆𝜆, 𝛾𝛾 and 𝜖 the 
iterative implementation of the modifier-adaptation methodology will 
converge to the real optimum of the process. This algorithm has the 
advantage that it is not necessary to know a priori the active set of 
constraints in the process optimum. Also, it relaxes the conditions of 
reaching the process optimum: the adequacy and accuracy of the model of 
the process defined previously by Forbes and coworkers (Forbes & Marlin, 
1994; Forbes et al., 1994) are reduced to ensure that the second derivative 
of the cost function with respect to the manipulated variables evaluated in 
the process optimum must be positive definite: ∇𝑟2𝑓𝑓(𝑢𝑢�⋆) > 0, condition 
that does not depend on the modifier values, but only in the model, and it 
is necessary to ensure optimality with the second order sufficient 
conditions.  

Even though the methodology can converge to the process optimum, it can 
be done following an infeasible path since there is not guarantee of 
feasibility in intermediate iterations. To overcome this situation, the 
authors suggest the use of a first order filter (equation (3.15)), in order to 
smooth the evolution of the solutions reaching the true optimum of the 
process avoiding infeasible points.  

𝜆𝜆𝑘𝑇 = (1 − 𝐾𝜆)𝜆𝜆𝑘−1𝑇 + (1 − 𝐾𝜆)�∇𝑢𝑓𝑓�̅�−1 − ∇𝑢𝑓𝑓𝑘−1� 
𝛾𝛾𝑘𝑇 = �1 − 𝐾𝛾�𝛾𝛾𝑘−1𝑇 + �1 − 𝐾𝛾�(∇𝑢�̅�𝑘−1 − ∇𝑢𝑔𝑘−1) 
𝜖𝑘 = (1 − 𝐾𝜖)𝜖𝑘−1 + (1 − 𝐾𝜖)(�̅�𝑘−1 − 𝑔𝑘−1) 

(3.15) 

Being 𝐾𝜆, 𝐾𝛾 and 𝐾𝜖 matrices with the adequate dimensions which act as 
filter constants. The use of the filter from equation (3.15) also helps to the 
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convergence of the algorithm (Marchetti et al., 2009a, 2010). There are not 
methods to estimate values of 𝐾. However, in general it is recommended 
the use of diagonal matrices that makes the correction of each modifier 
independent of the others. This is the only recommendation that can be 
applied in practice, because convergence criteria are given only for 
optimization problems where the value of the process optimum is known a 
priory, which is a contradiction for a RTO scheme. The modifier-adaptation 
algorithm has been summarized in Figure 3.3.  

 
FIGURE 3.3: IMPLEMENTATION OF THE MODIFIER-ADAPTATION ALGORITHM 

It can be noted that at the top of the diagram is represented the process 
gradient estimation step, unlike the gradient estimation of the model which 
is not represented. This is because the model derivatives can be obtained 
easily, however the process gradients can be very hard to estimate, and in 
fact this is the key issue in the implementation of the methodology as it will 
be seen in the next section where a simulation example will help to identify 
the challenges of the algorithm. 
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3.3 Implementation of the Modifier-
Adaptation Methodology  

The modifier-adaptation approach allows reaching the true optimum of the 
process in an iterative implementation, updating some modifiers with 
information measured or estimated directly from the process, which 
implies some additional efforts related with the identification of the 
modifiers. In particular there is an important assumption in the 
methodology: the capacity to estimate the process gradient in an accurate 
way. This is the key issue of the RTO methods based in modifiers: ISOPE, 
modifier gradient optimization set-point control and modifier-adaptation 
methodology(M. A. Brdys & Tatjewski, 2005; Gao & Engell, 2005; Mansour 
& Ellis, 2003; Marchetti et al., 2009b).  

In chapter 4 of the book of Brdys and Tatjewski (M. A. Brdys & Tatjewski, 
2005) there is an interesting discussion about the estimation of the process 
mapping derivatives. The authors justifies the importance of the method to 
estimate the process derivatives based in the fact that the time spent in 
their evaluation may be significantly higher than the whole remaining 
measurement and calculation during each iteration. That is why many 
attempts have been made to overcome this weak point, to find more 
effective realizations of the perturbation-based algorithms. There are three 
groups of these methodologies according of the type of information used to 
estimate the gradients: steady-state measurements, dynamic 
measurements and other attempts to add dynamic behavior to the 
modified RTO layer. The first two will be discussed in this section and are 
summarized in the work Mansour and Ellis (Mansour & Ellis, 2003), while 
the last one will be treated in section 3.7, since it also tries to overcome the 
challenges of the RTO methods related with the already commented 
interaction produced between the control and the optimization layers in 
the process decision hierarchy.  
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Process Derivative Mapping using steady state measurements: 
There are three main methods that attempt to estimate the process 
derivatives using the information from the measurements obtained in the 
steady state. 

FINITE DIFFERENCES (Roberts, 1979): This is the most straightforward 
approach to estimate the values of the process derivatives and was 
presented by Roberts at the same time as the ISOPE algorithm. It 
consists on applying several changes around the actual operating 
point in order to evaluate the changes in the outputs. According to 
Ellis and Mansour, this method can give sufficient accuracy of the 
process derivatives in an acceptable time span for a small and 
noise-free process with reasonably rapid dynamics. However, it has 
been shown to be inefficient for large and slow processes because 
of the time needed for the estimation. In addition, the inherent 
noise of process signals reduces the performance of this method 
considerably (Mansour & Ellis, 2003). 
 
DUAL CONTROL OPTIMIZATION (M. Brdys & Tatjewski, 1994): To 
calculate the gradients with this technique, it is assumed that there 
are as many past values of the measured variables as number of 
manipulated variables. Then, by using the definition of directional 
derivative, the partial derivative of each measurement can be 
estimated. In this calculus, the inversion of a matrix formed with 
the differences of the manipulated variables in different time 
instants is required; therefore, its condition number is crucial to 
estimate gradients accurately and with low influence of the process 
noise. A mixed estimation has been proposed by Gao and Engell 
(Gao & Engell, 2005). Marchetti and coworkers presented a work 
were the condition number of the difference matrix is taken into 
account in the optimization problem. In this work, the authors 
exhibit a complete description about the error sources to calculate 
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the gradients: truncation introduced by finite difference 
approximation of the derivatives and measurement noise 
(Marchetti et al., 2010). 
  
BROYDEN’S APPROXIMATION (Roberts, 2000): This method is based on 
the Broyden family of algorithms (Luenberger & Ye, 2008) to 
update the previous estimate of the derivatives by using the actual 
measurements of the process. Even though no additional 
perturbations are required for this method, special care must be 
taken to avoid numerical errors in the update. Also, the influence of 
the initial guess of the gradient required in Broyden methods 
should be noted.  

Some authors also add an additional method based in the existence of 
parallel units that can be perturbed at the same time in order to estimate 
the process gradients in few global iterations. Even when this approach 
reduces the total RTO iterations, the assumption of the existence of parallel 
units working at the same time and at the same conditions reduces its 
application to a few systems such as micro reactors (Srinivasan, 2007). In 
addition, an interesting work has been presented to overcome the 
imposition of identical units (Woodward et al., 2009), but the requirements 
of the existence of more than one unit working in parallel is mandatory. 
Because of the use of steady state measurements from the units at the 
same time, this methodology can be classified as the parallel version of the 
previous methods.  

Process Derivative Mapping using dynamic measurements: The idea 
here is to identify locally a dynamic model in the transient between two 
RTO iterations. 

DYNAMIC MODEL IDENTIFICATION METHOD (H. Zhang & Roberts, 1990): 
This method is based on dynamic identification in the context of 
optimization presented by Bamberger and Isermann (Bamberger & 
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Isermann, 1978). The key issue is to approximate the real process 
by a local dynamic model using real process information. Because 
of the dynamic characteristic of the model, the waiting time for the 
steady state is avoided and the steady-state derivatives are 
calculated directly from the model derived from the identified 
dynamic representation. The local dynamic models can be linear 
and non-linear, and it is not necessary to predefine its structure 
(Mansour & Ellis, 2003; Y. Zhang & Forbes, 2006). Applying this 
method, the authors ensure that the real process optimum can be 
achieved on-line, even if both models are very rough (the dynamic 
and the steady-state models). The scheme is suited for various 
types of constraints and nonlinearities (H. Zhang & Roberts, 1990).  

The idea of using dynamic data to estimate the gradients seems to be very 
promising since it might not be necessary perturbing additionally the 
system to estimate the gradients, as steady-state methods does. However, 
severe difficulties can be found in the identification step that can 
compromise seriously the correct estimation of process derivatives. To get 
sufficiently accurate identification results the plant must be sufficiently 
excited, since it can hardly be assumed that passive identification 
experiment based in the measured recorded in the transient between two 
RTO iterations can always deliver sufficiently rich data. Hence, it is 
necessary planning an active identification experiment around the actual 
operating point adding additional dynamic perturbations into the process, 
falling in the same paradigm than the perturbation methods based in 
steady-state measurements. Moreover, these experiments are by no means 
easy to design (M. A. Brdys & Tatjewski, 2005), because identification 
methods for dynamic models are designed to get accurate information to 
reflect the local dynamics of the plant, not the static behavior of the 
system.  

On the other hand, the methods based in static measurements sound as a 
reliable alternative to obtain an adequate mapping of the process 
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gradients, since they use steady-state measurements from the system. 
Therefore they are going to be compared in this section. In particular we 
will work with finite differences and with dual control optimization because 
of the convergence problems of the Broyden’s algorithm previously 
commented. 

The finite differences approach was presented with the ISOPE 
algorithm(Roberts, 1979). It is based in applying directly the definition of 
the finite differences into the process, perturbing the system around the 
actual point as many times as decision variables are. If 𝑢𝑢𝑘 ∈ ℝ𝑛𝑢represents 
the actual operating point and 𝒹 ∈ ℝ𝑛𝑢  is the perturbation step used to 
calculate the finite differences, the process derivatives of the objective and 
the inequality constraints can be obtained as: 

𝜕𝑓𝑓�̅�
𝜕𝑢𝑢𝑖

≈
𝑓𝑓�̅��𝑢𝑢𝑘𝑖 ± 𝒹𝑖� − 𝑓𝑓�̅��𝑢𝑢𝑘𝑖 �

±𝒹𝑖
, ∀𝑖 = 1 …𝑛𝑛𝑢 

𝜕�̅�𝑘
𝜕𝑢𝑢𝑖

≈
�̅�𝑘�𝑢𝑢𝑘𝑖 ± 𝒹𝑖� − 𝑓𝑓�̅��𝑢𝑢𝑘𝑖 �

±𝒹𝑖
, ∀𝑖 = 1 …𝑛𝑛𝑢 

(3.16) 

Equation (3.16) shows that it is necessary perturbing the process 𝑛𝑛𝑢 times 
to estimate the process gradient and go to the next RTO iteration. This 
requirement can become the application of the modifier-adaptation 
methodology impossible for slow process and also for systems with many 
decision variables. 

A new idea was proposed by Tatjewski and Brdys using the last 𝑛𝑛𝑢 + 1 
measurements to estimate the gradients, using an approximation of the 
directional derivatives, obtaining an estimate of the process gradient 
without the need of perturbations around the actual point: the Dual Control 
Algorithm.  

Assuming that there is a collection of 𝑛𝑛𝑢 + 1 points 𝑢𝑢𝑘 ,𝑢𝑢𝑘−1, … ,𝑢𝑢𝑘−𝑛𝑢  
applied in the past RTO iterations, the vectors of differences with respect to 
previous points (𝑠𝑘𝑖) can be defined as: 
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𝑠𝑘𝑖 = 𝑢𝑢𝑘−𝑖 − 𝑢𝑢𝑘, ∀𝑖 = 1 …𝑛𝑛𝑢 (3.17) 

Supposing that the vectors 𝑠𝑘𝑖 are linearly independent, it is possible to 
formulate a nonsingular square matrix 𝑆𝑘 ∈ ℝ(𝑛𝑛𝑢 × 𝑛𝑛𝑢): 

𝑆𝑘 = [𝑠𝑘1 ⋯ 𝑠𝑘𝑛𝑢]𝑇 (3.18) 

The directional derivative 𝑃𝑦�𝑗(𝑢𝑢𝑘 , 𝑠𝑘𝑖) of the j-th plant output 𝑦�𝑗  at a point 
𝑢𝑢𝑘 in a direction 𝑠𝑘𝑖, can be defined as: 

𝑃𝑦�𝑗(𝑢𝑢𝑘, 𝑠𝑘𝑖) ≔ lim
𝛽→0

𝑦�𝑗 �𝑢𝑢𝑘 + 𝛽 𝑠𝑘𝑖
‖𝑠𝑘𝑖‖

� − 𝑦�𝑗(𝑢𝑢𝑘)

𝛽
 (3.19) 

Assuming that 𝑦�𝑗  has a continuous derivative, 𝑃𝑦�𝑗(𝑢𝑢𝑘 , 𝑠𝑘𝑖) can also be 
rewritten as a function of its partial derivative with respect to 𝑢𝑢𝑘: 

‖𝑠𝑘𝑖‖𝑃𝑦�𝑗(𝑢𝑢𝑘, 𝑠𝑘𝑖) = 𝑠𝑘𝑖𝑇
𝜕𝑦�𝑗𝑘
𝜕𝑢𝑢

 (3.20) 

Which can be generalized for 𝑛𝑛𝑢 directions as: 

𝑆𝑘
𝜕𝑦�𝑗𝑘
𝜕𝑢𝑢

= �
‖𝑠𝑘1‖𝑃𝑦�𝑗(𝑢𝑢𝑘, 𝑠𝑘1)

⋮
�𝑠𝑘𝑛𝑢�𝑃𝑦�𝑗�𝑢𝑢𝑘, 𝑠𝑘𝑛𝑢�

� (3.21) 

On the other hand, from the definition of 𝑃𝑦�𝑗(𝑢𝑢𝑘 , 𝑠𝑘𝑖) in equation (3.19), 
defining 𝛽 = ℊ‖𝑠𝑘𝑖‖  and assuming that ‖𝑠𝑘𝑖‖ → 0 , the limit can be 
removed : 

‖𝑠𝑘𝑖‖𝑃𝑦�𝑗(𝑢𝑢𝑘, 𝑠𝑘𝑖) =
𝑦�𝑗(𝑢𝑢𝑘 + ℊ𝑠𝑘𝑖) − 𝑦�𝑗(𝑢𝑢𝑘)

ℊ
 (3.22) 
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Selecting ℊ = 1, the equation (3.22) can be replaced in equation (3.21). 

Solving for 
𝜕𝑦�𝑗𝑘
𝜕𝑢

, a relation between the past measurements and the actual 

process derivative of the 𝑦�𝑗  measurement can be obtained. 

𝜕𝑦�𝑗𝑘
𝜕𝑢𝑢

= (𝑆𝑘)−1 �
𝑦�𝑗(𝑢𝑢𝑘−1) − 𝑦�𝑗(𝑢𝑢𝑘)

⋮
𝑦�𝑗�𝑢𝑢𝑘−𝑛𝑢� − 𝑦�𝑗(𝑢𝑢𝑘)

� (3.23) 

Therefore, defining 𝑦�1 = 𝑓𝑓̅  and 𝑦�𝑗+1 = �̅�𝑗 , 𝑗 = 1 …𝑛𝑛𝑔  it is possible to 
estimate the modifiers by using the actual operating point and the past 𝑛𝑛𝑢 
measurements. It can be noted that the inversion of the 𝑆𝑘  matrix is 
required in order to obtain the process derivative, which implies that an 
additional constraint must be added in the degree of excitation of the 
process in order to ensure an accurate gradient guess in the next RTO 
iteration: the inverse of the condition number of the 𝑆𝑘 matrix (𝛿(𝑆𝑘)), 
calculated with the next operating point, must be greater than a lower limit 
𝛿𝐿. This is the static equivalent of dual control optimization with respect to 
deal with active identification methods. Therefore, the Dual Modifier-
Adaptation Methodology can be defined as equations (3.24) and (3.25) 
shows. 

min
𝑢∈𝑈𝑚

𝑃 ≔ 𝑓𝑓(𝑢𝑢,𝛼) + 𝜆𝜆𝑘𝑇𝑢𝑢 

𝑠. 𝑡𝑡. : 
𝐺𝑚 ≔ 𝑔(𝑢𝑢,𝛼) + 𝛾𝛾𝑘(𝑢𝑢 − 𝑢𝑢𝑘−1) + 𝜖𝑘 ≤ 0 
𝑈𝑚 = [𝑢𝑢𝐿,𝑢𝑢𝑈] 

(3.24) 

𝛿(𝑆𝑘) ≥ 𝛿𝐿 (3.25) 

The constraint from equation (3.25) represents the dual characteristic of 
the method: while the rest of the optimization tries to converge to the 
optimum of the modified model (primal objective from equation (3.24)), 
the dual constraint ensures that in the next RTO iteration the system will 
have enough energy to estimate the process gradient again (dual objective). 
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Equation (3.25) reduces the feasible region with respect to the original 
modified problem, which implies a loss of optimality in the RTO iteration 
that some authors justify in terms of the possibility to estimate the gradient 
of the process (M. Brdys & Tatjewski, 1994; M. A. Brdys & Tatjewski, 2005; 
Marchetti et al., 2010). 

3.3.1 Application to an Oxygen Consumption Reactor 
Finite differences and dual optimization was implemented in a modifier 
adaptation approach for a simulated reality with the aim to study the 
convergence to the real optimum of the process, by using a model with 
mismatch. Also the two-stage application was tested to justify the use of 
the modifiers. 

The system is the CSTR reactor from Figure 3.4 that uses oxygen to perform 
a chemical reaction (Navia et al., 2012). In this unit, two streams (𝐺1 and 
𝐺2) each of them with a mixture of nitrogen and oxygen with different 
concentrations, are mixed and fed to a continuous stirred reactor (𝐺𝑖𝑛). 
Together with the gas mixture, an aqueous solution containing sodium 
sulphite (𝑁𝑎𝑎2𝑆𝑂3) and cobalt chloride (𝐶𝑜𝐶𝑙2) is sent to the reactor to be 
treated (𝑃𝑖𝑛), with the objective to transform the entire sodium sulfite 
present in the liquid influent. The transformation is produced by means of 
the oxygen that comes from the gas mixture 𝐺𝑖𝑛, which can diffuse from 
the gas phase to the bulk of the solution and react with the 𝑁𝑎𝑎2𝑆𝑂3, 
producing sodium sulfate (𝑁𝑎𝑎2𝑆𝑂4) with the help of 𝐶𝑜𝐶𝑙2 that acts as a 
catalyzer (equation (3.26)). 

𝑁𝑎𝑎2𝑆𝑂3 +
1
2
𝑂2

𝐶𝑜𝐶𝑙2�⎯⎯�𝑁𝑎𝑎3𝑆𝑂4 (3.26) 

The aqueous product of the reaction is removed from the vessel in the 𝑃𝑜𝑢𝑡  
stream, keeping the level of the reactor constant. Because of the solubility 
limits of oxygen in water, only a fraction of the oxygen fed can be used in 
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the reactor, while the unused gas leaves the unit in the 𝐺𝑜𝑢𝑡  stream that 
can be manipulated in order to control the pressure of the system. 

 
FIGURE 3.4: DIAGRAM OF THE OXYGEN CONSUMPTION REACTOR 

3.3.1.1 Model of the Oxygen Consumption Reactor 
To model the reactor, we have used a first order approach, considering the 
following assumptions: 

- Because of the system is working at 1 bar, we can assume that the 
gases behaves ideally. 

- The stirrer of the reactor makes the hydrodynamic behavior inside 
the vessel very similar to the CSTR3 model. 

- Zero concentration of 𝑁𝑎𝑎2𝑆𝑂4 and 𝑂2 in the aqueous influent 
- The Nitrogen is considered as an inert in the entire system, 

therefore its diffusion rate can be neglected. 
- The reaction from equation (3.26) is the only one that is happening 

inside the reactor, and no parallel reactions are verified. 
- The equilibrium produced in the gas-liquid interface can be 

modeled using the Henry’s Law because of the poor solubility of the 
oxygen. 

                                                            
3 CSTR is the acronym for Continuous Stirred Tank Reactor 
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Mole Balance in the liquid phase for each compound: 

𝑉
𝑑
𝑑𝑡𝑡
�𝐶𝑁𝑎2𝑆𝑂3

𝑜𝑢𝑡 � =  𝑃𝑖𝑛�𝐶𝑁𝑎2𝑆𝑂3
𝑖𝑛 −  𝐶𝑁𝑎2𝑆𝑂3

𝑜𝑢𝑡 � − 𝑉 ∙ 𝑟𝑁𝑎2𝑆𝑂3 (3.27) 

𝑉
𝑑
𝑑𝑡𝑡
�𝐶𝑁𝑎2𝑆𝑂4

𝑜𝑢𝑡 � =  −𝑃𝑖𝑛�𝐶𝑁𝑎2𝑆𝑂4
𝑜𝑢𝑡 � + 𝑉 ∙ 𝑟𝑁𝑎2𝑆𝑂4 (3.28) 

𝑉
𝑑
𝑑𝑡𝑡
�𝐶𝑂2

𝑜𝑢𝑡� = 𝑁𝐴 ∙ 𝑉 −  𝑃𝑖𝑛 ∙ �𝐶𝑂2
𝑜𝑢𝑡� − 𝑉 ∙ 𝑟𝑂2  (3.29) 

Where 𝑟𝑂2 is the rate of conversion of the solubilized oxygen due to the 
chemical reaction, which can be calculated as: 

𝑟𝑂2 = 𝐾 ∙ 𝐶𝑁𝑎2𝑆𝑂3
𝑜𝑢𝑡 𝐴 ∙ 𝐶𝐶𝑜𝐵 ∙ 𝐶𝑂2

𝑜𝑢𝑡𝐶 (3.30) 

The relationship between the compounds involved in the chemical reaction 
can be obtained from the stoichiometric coefficients: 

𝑟𝑁𝑎2𝑆𝑂3 =  𝑟𝑁𝑎2𝑆𝑂4 =
1
2
∙ 𝑟𝑂2  (3.31) 

Mole balance in gas phase: 

�
𝑃 ∙ 𝑉𝑔
𝑅 ∙ 𝑇

�
𝑑
𝑑𝑡𝑡
�𝑌𝑂2

𝑜𝑢𝑡� = 𝜌𝑂2�𝐺
𝑖𝑛 ∙ 𝑌𝑂2

𝑖𝑛 − 𝐺𝑜𝑢𝑡 ∙ 𝑌𝑂2
𝑜𝑢𝑡� − 𝑉 ∙ 𝑁𝐴 

𝐺1𝑌𝑂2
1 + 𝐺2𝑌𝑂2

2 = 𝐺𝑖𝑛𝑌𝑂2
𝑖𝑛 

(3.32) 

𝜌𝑂2(𝐺𝑖𝑛 − 𝐺𝑜𝑢𝑡) −𝑁𝐴 ∙ 𝑉 = 0 (3.33) 

The variable 𝑁𝐴 corresponds to the oxygen flux transferred between each 
phase. Generally, in gas – liquid reactors, this term is a function of the 
gradient of the concentrations between the interface and the liquid bulk 
(Treybal, 1980). Assuming thermodynamic equilibrium in the interface, the 
oxygen concentration in the liquid that is in contact with the gas bubble, is 
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equal to maximum concentration that can be reached for a given 
temperature: the saturation concentration obtained from the Henry’s Law, 
obtained from equations (3.34) and (3.35).  

𝑁𝐴 = 𝐾𝐿𝐴 ∙ �𝐶𝑂2
𝑆𝐴𝑇 − 𝐶𝑂2

𝑜𝑢𝑡� (3.34) 

𝐶𝑂2
𝑆𝐴𝑇 = �

𝑃
𝐻
� ∙ 𝑌𝑂2

𝑜𝑢𝑡 (3.35) 

The nomenclature used in the model is listed in Table 3.1 and the 
superscripts “in” and “out” can be followed from Figure 3.4. 

TABLE 3.1 NOMENCLATURE EMPLOYED IN THE OXYGEN CONSUMPTION REACTOR 

Symbol Meaning Units 
𝐶 Molar concentration in liquid phase 𝑚𝑜𝑙/𝑙 
𝑃 Volumetric liquid flow 𝑙/ℎ 
𝐺 Volumetric gas flow 𝑙/ℎ 
𝐻 Henry’s constant 𝑎𝑎𝑡𝑡𝑚 
𝐾𝐿𝐴 Volumetric mass transfer coefficient  𝑙/ℎ 

𝐾,𝐴,𝐵,𝐶 Kinetic parameters  -  
𝑁𝐴 Molar flux in the interface 𝑚𝑜𝑙/𝑙 ℎ 
𝑃 Pressure 𝑎𝑎𝑡𝑡𝑚 
𝑇 Temperature º𝐶 
𝑅 Gas Constant 𝑎𝑎𝑡𝑡𝑚 𝑙 /𝐾 𝑚𝑜𝑙 
𝑉 Volume of the liquid in the reactor 𝑙 
𝑉𝑔 Volume of the gas chamber  𝑙 
𝑌 Mole fraction in gas phase - 
𝑟 Conversion rate 𝑚𝑜𝑙/𝑙 ℎ 
𝜌 Molar density 𝑚𝑜𝑙/𝑙 

 

In the system, the liquid influent 𝑃𝑖𝑛 and effluent 𝑃𝑜𝑢𝑡, and also the system 
pressure 𝑃 can be considered as known disturbances, whereas the influent 
gas streams 𝐺1 and 𝐺2 are manipulated variables that can be modified to 
fulfill certain operational goals. 
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3.3.1.2 RTO of the Oxygen Consumption Reactor 
The purpose of the unit is to transform the entire incoming sulfite in sulfate 
in the cheapest way, finding the best combination of influents 𝐺1 and 𝐺2 
since both streams present different purities and costs.  

Because of the main purpose of the unit is to ensure the entire conversion 
of sulfite, enough oxygen must be fed in the reactor, meaning that the gas 
must be fed at least in a stoichiometric relation with the sulfite that can be 
viewed as the limiting reactive in equation (3.26). Defining the optimization 
problem in the stoichiometric point, i.e., minimizing the oxygen cost such 
that the outlet concentration of the dissolved oxygen and the sulfite are 
equal to zero, is not the best way to face the system for two main reasons: 
(1) in the real implementation there will be necessary the measurement of 
both concentrations, traduced in a more expensive installation since two 
composition probes are required, and (2) owing  to the fact that the kinetic 
of the reaction under the presence of the catalyzer is very fast (Zhao et al., 
2005) any disturbance will make the system infeasible. However, if we 
assume that an excess of oxygen must be fed to cope with possible 
disturbances in the feed, the constraint of transforming the entire influent 
sulfite in sulfate can be ensured maintaining the oxygen concentration in 
the liquid bulk of the reactor (𝐶𝑂2

𝑜𝑢𝑡) greater than a lower bound (𝐶𝑂2
𝐿𝑂) 

because of the instantaneous reaction rate. This also implies that only the 
measurement of the oxygen concentration is necessary to check if the 
system is feasible. Therefore, the economic optimization problem to be 
solved in the RTO layer can be expressed as: minimizing the cost of oxygen, 
keeping the dissolved oxygen concentration at the aqueous effluent greater 
than a lower bound (equation (3.36)). Where 𝐶𝐺1  and 𝐶𝐺2  are the costs of 
𝐺1 and 𝐺2 respectively. In the optimization problem 𝐺𝐿and 𝐺𝑈 represent 
the lower and upper bounds of the manipulated variables.  

Note that the optimization problem to be solved requires the exact model 
of the process in order to achieve the convergence to its optimum. 
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However, this situation is not realistic since there are several physical 
mechanisms that are not completely known: in particular we will focus our 
attention in the mass transfer that occurs in the gas-liquid interface and in 
the chemical reaction. 

min
𝐺
𝑃 ≔ 𝐶𝐺1𝐺1

2 + 𝐶𝐺2𝐺2
2 

𝑠. 𝑡𝑡. : 
 𝑃𝑖𝑛�𝐶𝑁𝑎2𝑆𝑂3

𝑖𝑛 −  𝐶𝑁𝑎2𝑆𝑂3
𝑜𝑢𝑡 � − 𝑉 ∙ 𝑟𝑁𝑎2𝑆𝑂3 = 0 

 −𝑃𝑖𝑛�𝐶𝑁𝑎2𝑆𝑂4
𝑜𝑢𝑡 � + 𝑉 ∙ 𝑟𝑁𝑎2𝑆𝑂4 = 0 

𝑁𝐴 ∙ 𝑉 −  𝑃𝑖𝑛 ∙ �𝐶𝑂2
𝑜𝑢𝑡� − 𝑉 ∙ 𝑟𝑂2 = 0 

𝑟𝑂2 = 𝐾 ∙ 𝐶𝑁𝑎2𝑆𝑂3
𝑜𝑢𝑡 𝐴 ∙ 𝐶𝐶𝑜𝐵 ∙ 𝐶𝑂2

𝑜𝑢𝑡𝐶  
𝜌𝑂2�𝐺

𝑖𝑛 ∙ 𝑌𝑂2
𝑖𝑛 − 𝐺𝑜𝑢𝑡 ∙ 𝑌𝑂2

𝑜𝑢𝑡� − 𝑉 ∙ 𝑁𝐴 = 0 
𝐺1𝑌𝑂2

1 + 𝐺2𝑌𝑂2
2 = 𝐺𝑖𝑛𝑌𝑂2

𝑖𝑛 
𝜌𝑂2(𝐺𝑖𝑛 − 𝐺𝑜𝑢𝑡) −𝑁𝐴 ∙ 𝑉 = 0 
𝑁𝐴 = 𝐾𝐿𝐴 ∙ �𝐶𝑂2

𝑆𝐴𝑇 − 𝐶𝑂2
𝑜𝑢𝑡� 

𝐶𝑂2
𝑆𝐴𝑇 = �

𝑃
𝐻
� ∙ 𝑌𝑂2

𝑜𝑢𝑡 

 
𝑔 ≔ 𝐶𝑂2

𝐿𝑂 − 𝐶𝑂2
𝑜𝑢𝑡 ≤ 0 

𝐺 ≔ [𝐺1 𝐺2]𝑇 , 𝐺 ∈ [𝐺𝐿,𝐺𝑈] 

(3.36) 

In bubbled reactors, as the one used in the example, mass transfer is very 
often the limiting phenomenon (Quijano et al., 2010). Several factors can 
affect this effect: bubble diameter, power of the stirrer, temperature, 
pressure and gas flow among others. In general the mass transfer 
coefficient can be estimated as the product of the contribution of these 
effects using non-dimensional numbers (Treybal, 1980). For a given system, 
where only the gas flow can change while the rest of the factors that can 
affect the mass transfer can be considered constants,  the value of 𝐾𝐿𝐴 can 
be expressed as: 

𝐾𝐿𝐴 = 𝑚(𝐺𝑖𝑛)𝑛 (3.37) 

Where 𝑚 and 𝑛𝑛 are parameters that can be estimated experimentally or 
calculated from available correlations.  
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Regarding the chemical reaction that occurs at the bulk of the liquid phase, 
it can be said that the order of this reaction can change with the 
concentration of the reactants (Zhao et al., 2005). Therefore, kinetic 
parameters 𝐴, 𝐵 and 𝐶 from equation (3.30) are uncertain.  

The previous discussion about the physical phenomena inside the reactor, 
give insights about the main sources of uncertainty of the system. Also, 
they provide the causes of more important modeling mismatches that can 
be expected. Therefore we can simulate the modeling mismatch expected 
in the real implementation using different expressions in the real process 
and the model used in the RTO layer, for the mass transfer and the 
chemical reactions. Table 3.2 summarizes the simulated modeling mismatch 
with the value of the parameters used in the process and the model. 

TABLE 3.2 VALUE OF THE PARAMETERS USED IN THE PROCESS AND THE MODEL FOR THE OXYGEN 
CONSUMPTION EXAMPLE 

System  𝒏 𝒎 𝑨 𝑩 𝑪 𝑲 
Process 0.7 0.3342 1 0.5 1 3.7e9 
Model 1 0.062 0 0 0 0.029 

 

Note that the difference in the value of the parameters used in the model 
and the process implies a structural mismatch, because of the conversion 
rate in the model is constant, while in the process it depends on the 
concentration of the chemical compounds in the liquid phase. 

The rest of the value for the parameters of the Oxygen consumption 
reactor that are common for the model and the process are summarized in 
Table 3.3. 
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TABLE 3.3 VALUE OF THE PARAMETERS FOR THE OXYGEN CONSUMPTION EXAMPLE 

Parameter  Value 
𝑉 3 
𝑉𝐺  2 
𝑃 1.8 
𝑇 25 
𝑌𝑂2
1  0.7 

𝑌𝑂2
2  0.9 
  

Since the objective function of the optimization problem only depends on 
the decision variables, it is not necessary to use the gradient modifier of the 
objective function 𝜆𝜆, because there is no uncertainty in this part of the 
model. On the other hand, the inequality constraint depends on the model 
of the process, therefore it must be corrected with 𝛾𝛾 and 𝜖. The correction 
with the corresponding modifiers of the optimization problem from 
equation (3.36) is presented in equation (3.38). 

min
𝐺
𝑃 ≔ 𝐶𝐺1𝐺1

2 + 𝐶𝐺2𝐺2
2 

𝑠. 𝑡𝑡. : 
𝑆𝑡𝑡𝑒𝑎𝑎𝑑𝑦 − 𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑒 𝑚𝑜𝑑𝑒𝑙  
𝑔𝑚 ≔ 𝐶𝑂2

𝐿𝑂 − 𝐶𝑂2
𝑜𝑢𝑡 + 𝛾𝛾𝑘𝑇(𝐺 − 𝐺𝑘−1) + 𝜖𝑘 ≤ 0 

𝐺 ≔ [𝐺1 𝐺2]𝑇 , 𝐺𝐿 ≤ 𝐺 ≤ 𝐺𝑈 
𝑤𝑖𝑡𝑡ℎ: 

𝛾𝛾𝑘𝑇 ≔ �−
𝜕𝐶𝑂2

𝑜𝑢𝑡������
𝑘−1

𝜕𝐺
+
𝜕𝐶𝑂2

𝑜𝑢𝑡
𝑘−1

𝜕𝐺
� 

𝜖𝑘 ≔ −𝐶𝑂2
𝑜𝑢𝑡������

𝑘−1
+ 𝐶𝑂2

𝑜𝑢𝑡
𝑘−1

 

(3.38) 

Besides the modifier-adaptation, the two-step algorithm will be applied in 
this example in order to analyze the effect produced by the corrections in 
the evolution of the algorithm. Because of the uncertainty has been 
focused in the physical phenomena that is produced inside the reactor, in 
the first step the parameters 𝑚  and 𝐾  will be updated using the 
information of the concentration of the outlet oxygen from the effluent of 
the process in the last operating point. Following the two-step paradigm, 
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with the updated model an economic optimization problem will be solved 
to estimate the optimal values of 𝐺. Equation (3.39) and (3.40) summarizes 
the two steps needed to apply this methodology.  

min
𝑃
𝑃𝑖𝑑 ≔ �𝐶𝑂2

𝑜𝑢𝑡������
𝑘−1

− 𝐶𝑂2
𝑜𝑢𝑡�

2
 

 
𝑠. 𝑡𝑡. : 
𝑆𝑡𝑡𝑒𝑎𝑎𝑑𝑦 − 𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑒 𝑚𝑜𝑑𝑒𝑙 𝑒𝑣𝑎𝑎𝑙𝑢𝑢𝑎𝑎𝑡𝑡𝑒𝑑 𝑎𝑎𝑡𝑡 (𝐺𝑘−1,𝑃) 
𝑃 ≔ [𝑚 𝐾]𝑇 

(3.39) 

min
𝐺
𝑃𝑒𝑐𝑜 ≔ 𝐶𝐺1𝐺1

2 + 𝐶𝐺2𝐺2
2 

𝑠. 𝑡𝑡. : 𝑆𝑡𝑡𝑒𝑎𝑎𝑑𝑦 − 𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑒 𝑚𝑜𝑑𝑒𝑙 𝑒𝑣𝑎𝑎𝑙𝑢𝑢𝑎𝑎𝑡𝑡𝑒𝑑 𝑎𝑎𝑡𝑡 (𝐺,𝑃𝑘) 
𝑔𝑚 ≔ 𝐶𝑂2

𝐿𝑂 − 𝐶𝑂2
𝑜𝑢𝑡 ≤ 0 

𝐺 ≔ [𝐺1 𝐺2]𝑇 , 𝐺 ∈ [𝐺𝐿,𝐺𝑈] 
𝑃𝑘 ≔ 𝑃 ≔ [𝑚𝑘 𝐾𝑘]𝑇 ≔ 𝑎𝑎𝑟𝑔𝑚𝑖𝑛𝑛�𝑒𝑞𝑢𝑢𝑎𝑎𝑡𝑡𝑖𝑜𝑛𝑛 (3.39)� 

(3.40) 

3.3.1.3 Results of the RTO methods in the Oxygen Consumption 
Reactor 

The RTO methodologies, where tested in the oxygen consumption reactor, 
starting from three different feasible points (In the coming Figures: A, B and 
C) in order to analyze their convergence to the optimum of the process, 
which is represented in the figures with R. This point was obtained 
previously solving the optimization problem with the real model of the 
process, and mapping the entire feasible region, and lies on the constraint. 

The evolutions of the decision variables are presented in Figure 3.5 for the 
two-step algorithm. In the figure the inequality constraint of the process 
𝑔 ≥ 𝑔𝐿 is also represented by a discontinuous straight line, as well as the 
cost function.  

The evolution of the two-step algorithm shows that the method converges 
into stationary points different than the real optimum of the process. As it 
was mentioned in the introduction, the interaction that is produced 
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between the two steps makes this method unable to identify the real 
optimum of the process. This interaction is also reflected in the fact that the 
three final points where different, which can be understood as the result of 
the relation that is produced between the estimation of the parameters 
that depends on the previous operating point of the process and the 
economic optimization as function of the previous model update.  

 
FIGURE 3.5: EVOLUTION OF THE DECISION VARIABLES WITH THE TWO-STEPS ALGORITHM IN THE 

OXYGEN CONSUMPTION REACTOR  

Even though the final point is a function of the starting one, in the three 
cases there is a common pattern in the evolution of the decision variables: 
an off-set with respect to the real constraint. In the trajectories starting 
from A and B this gap very notorious since after the third iteration, the path 
formed with the decision variables approaches the real optimum forming a 
parallel manifold with the inequality constraint. On the other hand, in the 
initial C-point trajectory, this behavior is not so easy to see since the 
imaginary line 𝐶𝑅���� is almost perpendicular to the inequality constraint in the 
optimum, implying that the trajectory described by the evolution might 
have the same direction; however, it can be noted how the last two 
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iterations changes the course of the evolution producing again a trajectory 
that runs in parallel with respect to 𝑔 ≥ 𝑔𝐿. Because of the real optimum is 
produced when the inequality constraint is active, the existence of this gap 
indicates how the two-step algorithm detects this active condition, which is 
quite expectable considering that the obvious solution of the optimization, 
even with modeling mismatch, is to supply the minimum quantity of oxygen 
that ensures feasibility. However, only the corrections in the parameters of 
the model are not enough to estimate accurately the process constraint, 
explaining the observed off-set.  

Figures 3.6 and 3.7 present the evolution of the modifier adaptation 
methodology from equation (3.38), calculating the process derivatives with 
finite differences and dual method respectively.  

 
FIGURE 3.6: EVOLUTION OF THE DECISION VARIABLES WITH THE MODIFIER ADAPTATION 

ALGORITHM USING FINITE DIFFERENCES APPROACH IN THE OXYGEN CONSUMPTION REACTOR. 
DOTS REPRESENT THE PERTURBATIONS REQUIRED TO CALCULATE THE FINITE DIFFERENCES 

Unlike the two-step algorithm, the correction of the curvature of the 
constraint of the model with process gradient information obtained from 
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the two methods tested, allows to estimate in a correct way the real 
inequality constraint. This can be observed in the fact that the evolution of 
the modifier-adaptation methodology from the three starting points 
detects the active constraint and place the path over it, until the real 
optimum of the process is detected. 

As the gap between the model and the process has disappeared, a first 
order correction of the constraint is necessary in order to estimate it in an 
adequate way. This result is in concordance with the ones reported in the 
work of Marchietti and coworkers for a run-to-run batch reactor, where 
only a correction using 𝜖 is considered because of the process noise that 
makes the estimation of the process gradient impractical (Chachuat et al., 
2009), which produces an off-set with the process optimum that is on the 
inequality constraints. 

 
FIGURE 3.7: EVOLUTION OF THE DECISION VARIABLES WITH THE DUAL MODIFIER ADAPTATION 

ALGORITHM IN THE OXYGEN CONSUMPTION REACTOR 

Regarding the performance of the two methods implemented to estimate 
the process derivatives, it can be noted that the finite differences approach 
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converges forming a straight line, meaning that the method estimates the 
optimum of the process forming an optimal path with respect to the 
number of iterations; however, it is necessary to take into account the 
necessary perturbations that must be added in each RTO point 
(represented with black dots in Figure 3.6), which increase the number of 
total RTO iterations by a factor of two. On the other hand, the evolution of 
the dual modifier adaptation is not so straight as the finite difference 
approach, noting that changes in the direction of the RTO iterations occurs 
before converging to the optimum of the process. Nevertheless, the 
number of iterations is significantly lower with respect to the 
implementation of the finite differences. This result is quite expected based 
in the idea that the method estimates the process derivatives from the 
previous iterations, and justify the fact that most of the authors working in 
the modified optimization methods, are using this strategy to estimate the 
process derivatives (Gao & Engell, 2005; Marchetti et al., 2010; Rodger, 
2010), since it gives the less number of RTO iterations.  

It is important to mention that the changes observed in the evolution of the 
dual modifier adaptation methodology, are produced because of the 
necessary excitation that the dual constraint imposes to system in order to 
estimate correctly the process gradient in the next iteration. At the same 
time, one can observe that they create some infeasibilities in the trajectory. 

3.3.1.4 Remarks in the Modifier-Adaptation Implementation for the 
Oxygen Consumption Reactor 

From the results of the implementation of the modifier-adaptation 
methodology in the oxygen consumption reactor, it can be said that the 
correction of the available model with the curvature data from the process 
is necessary in order to estimate in an accurate way the optimality 
conditions of the process. Also we can say that the method used to 
estimate the process gradients affects evolution of the system from the 
point of view of number of iterations and shape of the path formed with 
the decision variables. 



CHAPTER 3: REAL TIME OPTIMIZATION 

170 
 

Both remarks indicate that the implementation of the dual modifier 
adaptation methodology seems to be the best available alternative, in 
order to converge to the real optimum of the process in the less possible 
iterations, which is in accordance with the results from literature (M. Brdys 
& Tatjewski, 1994; M. A. Brdys & Tatjewski, 2005; Gao & Engell, 2005; 
Marchetti et al., 2008, 2009b, 2010). Taking this into account, the dual 
methodology will be applied throughout this thesis as a default 
implementation method in the modifier-adaptation algorithm. 

3.4 Challenges on the Modifier-Adaptation 
Methodology  

In previous sections we have reviewed the modifier adaptation 
methodology as an alternative to find the real optimum of the process, 
overcoming the unavoidable modeling mismatch that always exists 
between the real process and the abstractions used in the model-based 
optimization.  

The implementation presented above also has reaffirmed the idea that in 
order to converge to the process optimum reducing the number of 
iterations, the dual algorithm must be implemented. However, there is a 
tradeoff in the number of iterations and the straightness of the path 
formed with the evolution of the decision variables, produced from the 
need to have an excited system to estimate the modifiers in an accurate 
way. This fact, plus the inherent condition of the modifier adaptation 
methodology where the convergence is ensured but not in a feasible path, 
can be important issues to be considered in the application of this 
algorithm, since feasibility is always over optimality. Taking this into 
account, it is necessary the application of some procedure able to cope with 
infeasibilities in the evolution of the system, in order to fulfill both, 
feasibility and optimality. 
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Besides, we have supposed that the convergence to the real optimum is 
ensured if the process derivatives can be estimated. However, this is not a 
trivial task, in particular for processes where the gradient can be very 
expensive to obtain or for processes with measurements contaminated 
with noise. The assumption of the gradient estimation is one of the bases of 
the modifier-adaptation methodology, no matter the method used to 
estimate the curvature of the real system. Hence, it is necessary to review 
this assumption in order to increase the field of application of the methods 
based in modifiers for the cases when the process derivatives are not 
available. 

Finally, it has been mentioned previously the problems that appear in the 
interaction between the RTO and the control layers. As an alternative to get 
over this situation, there are several approaches, but one of the more 
promising ones is adding dynamic characteristics to the RTO layer (Engell, 
2007; Gonzalez et al., 2001; Kadam & Marquardt, 2004; Würth et al., 2009, 
2011). With this in mind, it is interesting trying to apply the concepts of 
modifiers in dynamic optimization, in order to handle with modeling 
mismatch in dynamic scenarios. 

Therefore there are three main points where we focus our attention in 
order to increase the range of application of the modifier-based methods: 

- Handling Infeasibilities 
 

- Avoiding the process gradient estimation step 
 

- Appling the modifiers in dynamic optimization 

These three topics are going to be discussed in the coming sections. 
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3.5 Handling Infeasibilities in Dual Modifier -
Adaptation Methodology 

In process operation, feasibility is the most important issue. The usual 
practice in industrial facilities is using the degrees of freedom of the plant 
to ensure feasibility and the remaining ones to find improvements in the 
profit. This situation reflects the importance that the operators give to the 
operational constraints.  

Safety is related with this fact, translated in ensuring that pressures, 
temperatures and other process variables must be always within the design 
boundaries. In the same way, optimality might also be affected in the case 
of infeasible operations of the process, for example: catalysts can be 
damaged if the concentrations of impurities are greater than a given value, 
chemical products might become useless if the formulation is not within the 
specifications or important fines can be applied if a given factory does not 
have enough stock of materials.  

Modifier-adaptation methodology allows the convergence to the real 
optimum of the process but not always in a feasible path. Marchetti and 
coworkers, aware of this situation, recommend tuning the 𝐾 matrix of the 
filter from equation (3.16) with low values in order to converge in a smooth 
way to the real optimum. Nevertheless, the chosen values will depend on 
the system and there is not a tuning procedure to estimate the values of 
the matrix that avoid (or at least reduce) the infeasibility occurrence 
(Marchetti et al., 2009a). A reduction in the constant of the filter can 
decrease the infeasibilities produced because of the aggressiveness of the 
updates of the in the modifier, nonetheless the ones produced because of 
the need of excitation of the system are not handled with this approach.  
Also it has been proposed the use of a NMPC to cope with the 
infeasibilities, however, the modeling mismatch assumption makes this 
alternative (and any other, based in models) not realistic.  
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In this section we propose the use of an infeasibility non-model based 
controller that modifies the values given by the RTO layer with the dynamic 
information from two consecutive RTO iterations to cope with possible 
infeasibilities. 

3.5.1 The Infeasibility Controller 
The option proposed here is to reduce the occurrence of infeasibilities in 
the intermediate points of the RTO evolution, by performing continuous 
corrections on the suggested values of the RTO layer in the transient 
produced between the 𝑘𝑘 and the 𝑘𝑘 + 1  RTO iteration. With these 
corrections the idea is keeping all the time the system in the feasible side of 
the optimization region, waiting for the next steady state to look for 
optimality again.   

The controller must work in the following way: if the infeasibilities are 
detected by a supervisory intermediate layer, the infeasibility controller is 
activated performing continuous corrections in the value of the decision 
variables at every sampling time until the system is driven into feasible 
conditions. The controller can be any non-model based one, such as a PI 
controller. 

Assuming that the process constraints can be directly measured or 
estimated, which is a valid assumption considering that the modifiers are 
calculated using these variables, the infeasibility error of the process 
constraint 𝑔 during the 𝑘𝑘 RTO iteration, measured in the 𝑛𝑛𝑡ℎ sampling time 
of the infeasibility controller (𝑒𝑔𝑛𝑘), can be defined as the maximum among 

zero and the difference between its lower (or upper) bound 𝑔𝐿, and the 
measured constrained variable at the current time (�̅�𝑘𝑛 ):  

𝑒𝑔𝑛𝑘 ≔ max{𝑔𝐿 − �̅�𝑘𝑛, 0} (3.41) 

The definition from equation (3.41) can be seen as an infeasibility error with 
respect to the model, because when the constraint is not violated the error 
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is equal to 0. Once the system crosses the border line of feasibility, the 
error becomes different to zero and corrective actions in the set-points 
given by the RTO layer must be applied for instance using the equation 
(3.42). However, any other non-model control law can be applied.  

𝑢𝑢𝑘𝑛
# = 𝑢𝑢𝑘𝑛−1 + 𝐾𝑔𝑒𝑔𝑛𝑘 

𝑤𝑖𝑡𝑡ℎ: 
𝑢𝑢𝑘0 ≡ 𝑢𝑢𝑘   

(3.42) 

The corrections should modify the values from the RTO layer, if and only if 
an infeasibility is detected, whereas in other cases the solution proposed by 
the upper layer remains unchanged and the RTO implementation is the 
same than the method explained previously. Taking into account that 𝑢𝑢𝑘0 is 
equal to the last value given by the RTO layer (𝑢𝑢𝑘), if we suppose that the 
system remains feasible during the complete transient, taking, let us say 𝑚 
sampling times. Replacing these assumptions in equation (3.42) we obtain 

that 𝑢𝑢𝑘𝑚
# = 𝑢𝑢𝑘0 = 𝑢𝑢𝑘, which is the solution of the RTO, meaning that during 

the whole transient the system tracked the set-point given by the upper 
layer. On the other hand, if the system detects infeasibilities the 
infeasibility error becomes positive and the set-points proposed by the RTO 
layer are updated with the proportional and the integral action of equation 
(3.42) until the system reaches feasibility again and the controller is 
deactivated. 

If dual control optimization has been used as a method to estimate the 
process gradients, the corrections in the decision variables can affect the 
dual constraint from equation (3.25), which might lead to inaccurate 
estimation of the process gradient in the next RTO execution. Therefore, an 
additional controller can be added to ensure compliance with this 
constraint. Defining the infeasibility error of the inverse of the condition 
number in the 𝑛𝑛𝑡ℎ sampling time during the 𝑘𝑘 RTO iteration (𝑒𝛿

𝑛
𝑘) as:  
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𝑒𝛿𝑛𝑘 = max�𝛿𝐿 − 𝛿𝑛#, 0� (3.43) 

The inverse of the condition number in the actual sampling time (𝛿𝑛#) can 
be calculated as the difference between previous values recorded in the 
RTO layer, and the actual correction proposed by the infeasibility controller 
given by equation (3.42): 

𝛿𝑛# ≔ 𝛿�𝑆𝑘𝑛
#� 

𝑆𝑘𝑛
# = [𝑠𝑘0𝑛 ⋯ 𝑠𝑘𝑛𝑢−1

𝑛 ] 
𝑠𝑘0𝑛 = 𝑢𝑢𝑘−𝑖 − 𝑢𝑢𝑘𝑛

#, ∀𝑖 = 0 …𝑛𝑛𝑢 − 1 
(3.44) 

Note that the variable 𝑢𝑢𝑘−𝑖 represents the values given in the 𝑖 previous 
RTO iterations, which could also by modified by the infeasibility control 
layer in previous iterations. Finally, the value to be applied to the process 
can be calculated from the controller from equation (3.45). Therefore, we 
can argue that the primal feasibility of the optimization problem has been 
taken into account with the controller from equation (3.43), while the dual 
feasibility is controlled in equation (3.45).  

𝑢𝑢𝑘𝑛 = 𝑢𝑢𝑘𝑛
# + 𝐾𝑑𝑒𝑑𝑛𝑘  (3.45) 

Analogous to the primal infeasibility controller, the dual one has the 
property of preserving the last value of the RTO layer if the problem is 
feasible (which can be demonstrated setting 𝑒𝑑𝑛𝑘  and 𝑒𝑔𝑛𝑘  to zero ∀𝑛𝑛 =
1 …𝑚), whereas this value changes to look for dual feasibility if the process 
is on the infeasible region. 

Due to the fact that we are dealing with two different kinds of feasibilities: 
primal and dual, the system must have enough degrees of freedom to 
ensure that all the constraints are going to be fulfilled. If this is the case, 
then the pairing must be done following the RGA paradigm (Bristol, 1966) 
giving priority to the primal constraints. On the other hand, if there is not 
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enough degrees of freedom available, the dual constraint can be removed 
and replaced by the use of the finite differences approach as the alternative 
to estimate the process derivative when the dual constraint is violated, in 
the same way than Gao and Engell propose the alternation of both 
perturbation-based methods (Gao & Engell, 2005). The decision of using 
one or another method to estimate the process curvature would be taken 
according to the value of equation (3.44). The implementation of the 
infeasibility controller with the primal and dual feasibility objectives is 
summarized in Figure 3.8. 

 
FIGURE 3.8: PRIMAL-DUAL INFEASIBILITY CONTROLLER 

3.5.2 The Infeasibility Controller Implemented in 
the Oxygen Consumption Reactor 

To test the performance of the infeasibility controller in it has been applied 
to the oxygen consumption reactor from Figure 3.4.  

As it was commented, the best way to apply the modifier adaptation 
methodology in this system is using the dual control optimization approach. 
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This method allows converging to the real optimum of the process by 
means of estimating the process gradient using an approximation of the 
directional derivatives. However, the tradeoff between the number of 
iterations and the straightness of the evolution of the system, can produce 
additional infeasible points with respect to the ones that would be obtained 
if finite differences method is applied, because of the need to maintain a 
constantly excited system.  

Figure 3.9 reproduces in more detail Figure 3.7, showing the progress of the 
dual modifier adaptation highlighting the infeasibilities with dashed circles. 
Figure 3.10 presents a close up of the evolution near to the optimum of the 
real process, emphasizing again the infeasibilities. 

 
FIGURE 3.9: EVOLUTION OF THE DUAL-MODIFIER ADAPTATION WITH INFEASIBILITIES 

These infeasibilities can be generated either because of an incorrect 
approximation of the inequality constraint or due to the need of 
maintaining an adequate level of excitation in the system in order to 
estimate accurately the process gradients. However, if we compare the 
evolution of the dual methodology with the one obtained with finite 
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differences (Figure 3.6), it can be noted that the correction in the inequality 
constraint is good enough to detect the active constraint in the feasible 
region; therefore, we can suspect that the infeasibilities are produced 
because of the dual constraint (equation (3.25)).  

 
FIGURE 3.10: CLOSE-UP OF THE EVOLUTION OF THE DUAL-MODIFIER ADAPTATION WITH 

INFEASIBILITIES NEAR TO THE REAL OPTIMUM  

As it was mentioned, decreasing the constant of the filter is recommended 
to make the evolution of the method as smooth as possible, reducing the 
aggressiveness in the update of the model. Nevertheless, the dual 
constraint is not affected directly by the modifiers since it only restricts the 
decision variables, hence no important changes in the infeasibility 
occurrence might be expected. Taking this into account, we propose 
handling the infeasibilities produced by applying the infeasibility controller 
from Figure 3.8.  

Regarding the implementation, we can note that since the optimization 
problem has two decision variables and two constraints: the primal with the 
oxygen concentration and the dual with the inverse of the condition 
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number, there are enough degrees of freedom to apply completely the 
controller proposed. The matching between the controlled and the 
manipulated variables has been done giving priority to the primal 
constraint. This means that the oxygen concentration has been matched 
with the high purity stream, owing to the fact that the control action in this 
controlled variable must be done with less effort, implying that if an 
infeasibility is detected the deviation with respect to the value given by the 
RTO layer will be as minimum as possible to keep the constraint active. This 
matching implies that the dual constraint has to be controlled with the low 
purity stream. 

Figure 3.11 and 3.12 show the optimal solution given by the dual modifier-
adaptation layer and the real value applied to the process after being 
corrected by the infeasibility controller, denoted with “RTO” and “REAL” 
respectively. The difference among these values is given by the corrections 
made during the transient between two consecutive iterations: the path 
named “RTO” corresponds to the 𝑢𝑢𝑘 decision variables from Figure 3.8, 
while the manifold with the name “REAL” is representing 𝑢𝑢𝑘𝑚, being 𝑚 the 
total number of sampling periods needed to reach the steady state from 
the 𝑘𝑘𝑡ℎ to the 𝑘𝑘𝑡ℎ + 1 RTO iteration. 

From Figure 3.11 and 3.12 it can be noted how the system reaches the 
optimum of the process in an analogous way than the original dual 
methodology but without infeasible paths. If we focus our attention in the 
track that starts from C in Figure 3.11, it is observed that the evolution of 
the method proposed is equal to the dual methodology with no corrections, 
since there have not been detected infeasibilities in the primal constraint. 
This situation is expectable taking into account that the controller has been 
inactive and it was pointed previously that if this situation happens the 
proposed controller maintains the same value than the one given by the 
optimizer. On the other hand, the original paths starting from A and B both 
present an infeasibility occurrence at the moment when the primal 
constraint is detected. From Figure 3.11 it can be noted how the application 
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of the corrections given by the proposed controllers are sufficient to bring 
back the system to the feasible region. Near the optimum it can be noted 
from Figure 3.12 how the real time optimization layer proposes infeasible 
points. However, again the controller is able to manage the occurrence of 
these points. Therefore we can say that the infeasibilities in the oxygen 
concentration have been avoided completely during the whole evolution of 
the process. Regarding the number of iterations needed to reach the 
optimum, we can say that they have increased in a factor closer to 10% 
with respect to the original situation, concentrating this growth in the 
region closer to the optimum. This can be explained noting that near the 
convergence point, the feasible region where the controller can bring the 
system is very limited, therefore, in order to keep the system excited the 
controller must reduce the distance between two iterations. This idea is 
reflected in the diagram from Figure 3.13, where it has been represented 
the dual and the primal constraint for a general process with two decision 
variables. 

 
FIGURE 3.11: EVOLUTION OF THE DUAL MODIFIER ADAPTATION WITH THE INFEASIBILITY 
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FIGURE 3.12: CLOSE-UP OF THE EVOLUTION OF THE DUAL-MODIFIER ADAPTATION WITH THE 

INFEASIBILITY CONTROLLER NEAR TO THE REAL OPTIMUM 

 
FIGURE 3.13: REPRESENTATION OF THE ACTION OF THE INFEASIBILITY CONTROLLER IN THE REGION 

NEAR TO THE REAL OPTIMUM. DASHED ARROWS SHOW THE EVOLUTION OF THE RTO LAYER, 
WHILE SOLID ARROWS REPRESENT THE ACTION OF THE INFEASIBILITY CONTROLLER 
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Assuming that the outcome of the RTO layer at 𝑘𝑘 iteration produces the 
infeasible point 𝑢𝑢𝑘+1, and there is enough control action to bring the 
system into the feasible region, the infeasibility controller will change the 
location of the decision variable applying 𝑢𝑢𝑘+1𝑚 , as is represented in Figure 
3.13. However, this action implies that the next point in the RTO iteration 
would be farther than 𝑢𝑢𝑘 with respect to the real optimum. Applying the 
same idea to the next RTO points, it will be an increase in the number of 
total iterations. Even though the number of iterations has been enlarged, 
the system is still able to find the real optimum of the process because of 
the dual controller that allows estimating the gradient in an accurate way, 
detecting the direction where the real optimum is. 

3.5.3 Remarks about the Infeasibility Controller  
The implementation of the proposed method shows that it is possible to 
handle the infeasibilities generated during the dual modifier-adaptation 
evolution. This however, is valid if and only if there is sufficient control 
action available to shift the controlled constraints into the feasible region, 
i.e., there is not saturation on the manipulated variable. This can be 
managed choosing the pairing between the manipulated and the controlled 
variables with an adequate criterion, such as the steady-state gain. 

The approach proposed in this section presents some characteristics of the 
self-optimizing control methodology, proposed by the group of Professor S. 
Skogestad(Halvorsen et al., 2003; Skogestad, 2000a, 2000b). This method is 
based in solving an offline static optimization in order to identify the 
necessary conditions of optimality of the model, such as, active constraints 
and zeros gradients, and then generate controllers in charge of keeping 
these variables in their nominal values in spite of the disturbances. The 
authors also comment the possibility to run successive online RTO’s with 
less frequency in order to evaluate if the NCO remains unchanged. In our 
approach, we assume that the infeasibility is produced due to the fact that 
the optimization layer has detected that the real optimum is closer to a 
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constraint (or is on the active constraint), but because of an inaccurate 
modification of the model and/or the excitement condition imposed by the 
dual constraint, the outcome of the upper layer is not in the feasible region. 
Then, controlling the constraints is equivalent to keep the complementary 
slackness conditions of the NCO of the process approximation in their 
nominal values. At the same time, if there are remaining degrees of 
freedom that have not been used for control, the directions of the zero 
gradients are given by the unchanged decision variables from the upper 
optimization layer. Therefore, besides looking for feasibility, we also can be 
looking for a point close to optimality around the operating point. The 
detection of the real optimum of the process in the oxygen consumption 
reactor can give a clue about this idea, since it finds the real optimum of the 
process in a feasible path, and with an increase in the number of RTO 
iterations that can be understood as the tradeoff between feasibility and 
optimality. 

3.6 Modifier-Adaptation Methodology as a 
Nested Optimization Problem 

Coming back to the modifier-based methods, there is an important 
assumption about their applicability and convergence properties: the 
capacity to estimate the experimental gradients.  The entire modifier 
methods, from the ISOPE algorithm to the modifier-adaptation 
methodology present this assumption as a fundamental base to find the 
real optimum of the process.  

As it was pointed out and tested with an example in section 3.3.3, the 
method to evaluate the gradient can modify the path of convergence. 
Nevertheless, no matter the chosen method the theory indicates that it will 
be able to find the optimum of the process under modeling mismatch 
assumption. Even though the idea is very promising in terms of the 
requirements of the model used in the optimization, i.e., model adequacy, 
model accuracy and set of active constraints, in terms of the real 
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applications, this might be a problem since the gradient can be: (1) 
expensive to obtain, for example in interconnected processes where the 
perturbations needed to calculate the gradients can affect other units, or 
(2) inaccurate when we are dealing with noisy process measurements. In 
the first case, we can try to perturb as less as possible the system in order 
to decrease the degree of excitation of the process; nonetheless, there is a 
tradeoff between this point and the quality of the estimations which 
becomes critical if we take into account the noise that can be present in the 
measurements.  

As a response of this fact, one can say that the dual methodology can be 
used to estimate the process derivative, with a significantly lower number 
of additional perturbations; however, the addition of the dual constraint 
may force to compute a policy that guarantees a good estimation of the 
process gradients, changing the direction of the iterations as well as 
increasing its number, which, as it was pointed in previous section, can 
produce infeasible points. 

Consequently, we can locate the applicability of the modifier-adaptation 
method to systems where the gradient is not expensive to obtain and the 
influence of the noise in the measurements can be handled correctly to 
obtain an accurate estimation of the gradient.  

In this section we present a different way to understand the modifier-based 
optimization as a nested optimization problem: the Nested modifier-
Adaptation Methodology. This method allows working with no information 
of the process gradient if it is not available. 

3.6.1 The Nested Modifier-Adaptation 
Notice that the iterative implementation of the modifier-adaptation 
methodology from Figure 3.3 can be summarized as follows: for a given 
value of the modifiers, obtained with any of the methods available to 
calculate the gradient of the process, an optimization problem is solved 
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using equation (3.11) in order to calculate and apply the next operation 
point to the process. Once the process has reached the steady state, apply 
the method to re-evaluate the gradient of the process, and with this value 
compute the modifiers in order to solve again the modified problem from 
equation (3.11), repeating this until no further changes in the decision 
variables are observed.  

Because of the convergence assumption of the modifier-adaptation 
methodology states that a null change in the decision variables implies that 
the optimum of the process has been found, the iterative implementation 
already described can be viewed as a continuous update of the modifiers 
using a gradient based criterion, with the final goal to obtain the real 
optimum of the process. 

In principle, any policy for updating the modifiers could be used, provided 
that improve the proposed optimum and respect the process constraint. 
With this idea in mind, one can iterate with the modifiers over the modified 
optimization until the optimum of the process is found, replacing the 
gradient estimation and the modifier calculus steps by any other method 
that takes into account the minimization of the cost function measured 
directly from the process. In particular, it is possible to implement an upper 
(or outer) optimization layer that uses the modifiers as decision variables to 
be applied over the inner modified optimization from equation (3.12) in 
order to obtain the decision variables to be applied into the process, and 
uses the cost function obtained from the process as the objective function 
of the upper layer.  

The purpose of the upper optimization layer is to obtain the optimum of 
the process iterating with the modifiers. When selecting the optimization 
method, we can take into account that their decision variables, the gradient 
modifiers are not constrained, so that we can implement any unconstrained 
method. In particular a gradient-free algorithm can be used in this step, 
avoiding the need of estimating process gradients 
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This is the basic idea of the nested-modifier adaptation methodology 
presented in this section and summarized in the following algorithm: 

STEP 0: Set k = 0 and start the algorithm with an initial guess of the 
modifiers α0, γ0 and ϵ0. 
 
STEP 1: Once the process steady state is reached, measure the value 
of the process cost function fk̅  and the process constraint g�k . 
Compute ϵk = g�k − gk. 
 
STEP 2: Update the modifiers 𝜆𝜆𝑘 and 𝛾𝛾𝑘 by using the value of fk̅ and 
the optimization algorithm of the upper layer. Check convergence 
of the upper optimization layer. If the process optimum has been 
found stop, if not go to step 3 (optional) or step 4. 
 
STEP 3 (OPTIONAL): Filter the modifiers given by the upper 
optimization layer using the equation (3.15). 
 
STEP 4: Calculate the decision variable uk , solving the inner 
modified optimization problem from equation (3.11), using the 
modifiers λk and γk given by the upper optimization layer (which 
could be filtered from step 3), and the value of ϵk  calculated 
directly from the available measurements of g�k−1. 
  
STEP 5: Apply the decision variable uk into the process and wait 
until the next steady state. Go to step 1. 
 

It can be noted that the proposed methodology only uses the modifiers 𝜆𝜆 
and 𝛾𝛾 as the decision variables, and the cost function of the process as the 
objective function for the upper optimization layer. The value of 𝜖𝑘, on the 
other hand, is calculated in the same way than in the original modifier 
adaptation methodology because it can be obtained directly from the 
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measurements. Notice that the process constraints are not considered in 
the outer optimization, but in the inner one, that uses 𝑢𝑢 as a decision 
variables. 

Figure 3.14 summarizes the nested modifier-adaptation methodology 
described, where one can see the analogy in the implementation with 
respect to the original modifier-adaptation algorithm, where the process 
gradient estimation step has been substituted by an upper optimization 
block.   

 
FIGURE 3.14: DIAGRAM OF THE NESTED MODIFIER-ADAPTATION METHOD PROPOSED 

The termination criteria of the nested optimization is given by the 
convergence of the upper layer that in general, for unconstrained 
problems, are the relative changes of the cost function or the decision 
variables to be applied. These ones are equivalent to the original method, 
since in the modifier-adaptation methodology no changes in 𝑢𝑢𝑘 implies that 
the process optimum has been found. 
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Regarding the characteristics of the optimum found with the proposed 
methodology, one can say that only local optimum can be guaranteed for a 
non-convex problem, in the same way than the original approach. 

The upper optimization layer is continuously iterating with the modifiers 
with the aim of finding the optimum of the process. This implies that at 
every iteration of the algorithm implemented it is necessary to solve the 
inner modified optimization and then apply its solution to the process to 
obtain the value of the real cost function. If a gradient-based algorithm 
were implemented in the upper layer, it would be necessary to apply 
additional perturbations into the real system to estimate the gradient of 
the measured cost function, in a similar way than the original modifier-
adaptation methodology does. However, if we use a gradient-free 
algorithm in the upper layer, there is no need to estimate the gradient of 
the process in order to look for the real optimum. Hence, the nested 
modifier-adaptation methodology can be seen as a generalization of the 
previous method, because the new architecture allows working with: (a) 
previous gradient-based method, (b) its alternative based in a gradient-free 
algorithm and (c) a combination of both options. This way to see the 
modified adaptation methodology can be very useful, since it allows 
implementing it when process gradients are not available and/or are 
difficult to obtain. Accordingly, the Nelder – Mead (NM) algorithm has been 
chosen for this task. 

The NM algorithm works with the idea of finding the optimum of the 
process exploring the cost surface by means of a geometric figure with 
𝑛𝑛𝜆 + 𝑛𝑛𝛾  +  1 vertices: the simplex. Each vertex corresponds to a set of 
values of the decision variables and is associated with its corresponding 
value of the cost function. Then, with 4 basic operations: reflection, 
expansion, contraction and shrinking, the algorithm iterates with the set of 
decision variables looking for the optimum, as Figure 3.15 shows. The main 
reason to choose the NM algorithm is because it is particularly 
parsimonious in function evaluations per iteration, since in practice it 
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typically requires only one or two function evaluations to construct a new 
iteration, while several popular direct search methods use 𝑛𝑛𝜆 + 𝑛𝑛𝛾   or more 
function evaluations to obtain a new simplex (Lagarias et al., 1998). This 
property is very important considering that each function evaluation 
implies changing the operation point of the real process. The other reason 
why this method is chosen to update the modifiers is the popularity that it 
has in the chemical engineering field for nonlinear optimizations when the 
gradients are not available: experimental design, optimization of analytics 
tests, etc. (Walters et al., 1991). 

 
FIGURE 3.15: DIAGRAM OF THE SIMPLEX IN THE UPPER OPTIMIZATION 

Regarding the initialization of the outer optimization, the easiest choice is 
𝜆𝜆0 = 𝛾𝛾0 = 0, which corresponds to the nominal solution of the model 
without considering uncertainty. However, any other can be applied. 

Besides the suppression of the gradient estimation step, using a direct 
search algorithm instead a gradient-based method, allows to obtain better 
results in noisy environments (Walters et al., 1991), making the entire 
algorithm more robust to real process conditions.  Moreover, another 
advantage of the proposed method is the fact that one of the most 
sensitive parameters to tune in modifier-adaptation methodology based in 
the calculus of the gradients of the process is neglected: the size of the 
perturbation to estimate the gradient, translated in the dual methodology 
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as the specification of 𝛿𝐿, a number that is not easy to select a priori and, as 
we will see in the implementation examples presented in section 3.6.3, very 
sensitive to the path of convergence to the real optimum of the process. 
Therefore, the removal of the gradient estimation step also implies a 
simpler way to apply the modifier approach compared with the original 
one. 

3.6.2 Formalization of the Nested Modifier-
Adaptation Methodology 

The idea of the nested procedure is quite intuitive since if the system 
reaches a stationary point, the feasibility of the process is ensured by the 
definition of 𝜖. Therefore, if the process cost function cannot be improved, 
it means that the real optimum of the constrained process (local if the 
problem is not convex) has been found. In this section a formal 
convergence proof is proposed . 

Starting from the optimality conditions of the modified problem (where the 
dependencies of 𝑓𝑓 and 𝑔 have been omitted to simplify the notation): 

∇𝑢𝑓𝑓𝑘 + 𝜆𝜆𝑘𝑇 + 𝜇𝑘𝑇(∇𝑢𝑔𝑘 + 𝛾𝛾𝑘𝑇) = 0 (3.46) 

𝜇𝑇(𝑔 + 𝛾𝛾𝑘𝑇(𝑢𝑢 − 𝑢𝑢𝑘−1) + 𝜖𝑘) = 0 (3.47) 

𝜇 ≥ 0, 𝑔 + 𝛾𝛾𝑘𝑇(𝑢𝑢 − 𝑢𝑢𝑘−1) + 𝜖𝑘 ≤ 0 (3.48) 

We can note that if a stationary point has been reached, for any value of 𝜆𝜆 
and 𝛾𝛾 it is true that: 

𝜖 = �̅� − 𝑔 
𝑢𝑢 = 𝑢𝑢𝑘−1 (3.49) 

This implies that the primal and dual feasibility constraints (equation 
(3.48)), as well as the complementary slackness from equation (3.47), are 
fulfilled. 
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𝜇𝑇�̅� = 0, �̅� ≤ 0, 𝜇 ≥ 0 (3.50) 

Also, we can compute the gradient of the complementary slackness 
condition (equation (3.47)) with respect to the modifiers of the gradients. 

𝜇𝑇(∇𝑢𝑔 + 𝛾𝛾𝑘𝑇)∇𝜆𝑢𝑢 + (𝑔 + 𝛾𝛾𝑘𝑇(𝑢𝑢 − 𝑢𝑢𝑘−1) + 𝜖𝑘)𝑇∇𝜆𝜇 = 0 
𝜇𝑇(∇𝑢𝑔 + 𝛾𝛾𝑘𝑇)∇𝛾𝑢𝑢 + (𝑔 + 𝛾𝛾𝑘𝑇(𝑢𝑢 − 𝑢𝑢𝑘−1) + 𝜖𝑘)𝑇∇𝛾𝜇 = 0 (3.51) 

In the stationary point, independent of the value of 𝜆𝜆 and 𝛾𝛾, condition 
(3.49) can be applied in equation (3.51): 

𝜇𝑇(∇𝑢𝑔 + 𝛾𝛾𝑇)∇𝜆𝑢𝑢 + �̅�𝑇∇𝜆𝜇 = 0 
𝜇𝑇(∇𝑢𝑔 + 𝛾𝛾𝑇)∇𝛾𝑢𝑢 + �̅�𝑇∇𝛾𝜇 = 0 (3.52) 

From equation (3.52) there are two possibilities for a given constraint �̅�𝑖: 

𝜇𝑖 = 0 → �̅�𝑖∇𝑢𝜇 = 0 
�̅�𝑖 = 0 → �̅�𝑖∇𝑢𝜇 = 0 (3.53) 

Therefore, we can say that: 

�̅�𝑇∇𝑢𝜇 = 0 (3.54) 

From the result of equation (3.54) and using the definition of 𝜖 and the 
chain rule, equation (3.52) can be rearranged as equation (3.55) shows. 

𝜇𝑇∇𝜆�̅� + 𝜇𝑇(𝛾𝛾𝑇 − ∇𝑢𝜖)∇𝜆𝑢𝑢 = 0 
𝜇𝑇∇𝛾�̅� + 𝜇𝑇(𝛾𝛾𝑇 − ∇𝑢𝜖)∇𝛾𝑢𝑢 = 0 (3.55) 

On the other hand, if equation (3.46) is multiplied by the gradient of 𝑢𝑢 with 
respect to 𝜆𝜆 and 𝛾𝛾  we obtain: 

∇𝑢𝑓𝑓∇𝜆𝜇 + 𝜆𝜆𝑇∇𝜆𝜇 + 𝜇𝑇(∇𝑢𝑔 + 𝛾𝛾𝑇)∇𝜆𝜇 = 0 
∇𝑢𝑓𝑓∇𝛾𝜇 + 𝜆𝜆𝑇∇𝛾𝜇 + 𝜇𝑇(∇𝑢𝑔 + 𝛾𝛾𝑇)∇𝛾𝜇 = 0 (3.56) 
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Combining equation (3.56) with equation (3.52) gives: 

∇𝑢𝑓𝑓∇𝜆𝜇 + 𝜆𝜆𝑇∇𝜆𝜇 − �̅�𝑇∇𝜆𝑢𝑢 = 0 
∇𝑢𝑓𝑓∇𝛾𝜇 + 𝜆𝜆𝑇∇𝛾𝜇 − �̅�𝑇∇𝛾𝑢𝑢 = 0 (3.57) 

Relation that can be simplified using the condition from equation (3.54): 

∇𝑢𝑓𝑓∇𝜆𝜇 + 𝜆𝜆𝑇∇𝜆𝜇 = 0 
∇𝑢𝑓𝑓∇𝛾𝜇 + 𝜆𝜆𝑇∇𝛾𝜇 = 0 (3.58) 

So far, we can say that equations (3.55) and (3.58) holds for any value of 𝜆𝜆 
and 𝛾𝛾, provided the iterative implementation of the method has reached a 
stationary point.  

If we consider now the implementation of the upper optimization layer into 
the process, the necessary conditions of optimality of this system are: 

∇𝜆ℒ̅ = ∇𝜆𝑓𝑓̅ + 𝜇𝑇∇𝜆�̅� = 0 
∇𝛾ℒ̅ = ∇𝛾𝑓𝑓̅ + 𝜇𝑇∇𝛾�̅� = 0 (3.59) 

𝜇𝑇�̅� = 0, 𝜇 ≥ 0, �̅� ≤ 0 (3.60) 

Equation (3.60) is fulfilled for any stationary point of the nested 
optimization problem using the definition of 𝜖 , as it was mentioned 
previously. On the other hand, from equation (3.59) the derivative  ∇𝜆�̅� and 
∇𝛾�̅� must be zero because of the unconstrained characteristic of the upper 
layer. Replacing this condition in equation (3.55) we have: 

(𝛾𝛾𝑇 − ∇𝑢𝜖)∇𝜆𝑢𝑢 = 0 
(𝛾𝛾𝑇 − ∇𝑢𝜖)∇𝛾𝑢𝑢 = 0 (3.61) 

On the other hand, in the optimum of the nested problem ∇𝜆𝑓𝑓̅ = ∇𝛾𝑓𝑓̅ = 0, 
replacing this condition in equation (3.58) we have: 
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�∇𝑢𝑓𝑓 − ∇𝑢𝑓𝑓̅ + 𝜆𝜆𝑇�∇𝜆𝜇 = 0 
�∇𝑢𝑓𝑓 − ∇𝑢𝑓𝑓̅ + 𝜆𝜆𝑇�∇𝛾𝜇 = 0 (3.62) 

Provided ∇𝜆𝑢𝑢 and ∇𝛾𝑢𝑢 are full rank matrices, equation (3.61) and (3.62) 
implies that at the optimum of the nested optimization problem:  

𝛾𝛾𝑇 = ∇𝑢𝜖 = ∇𝑢�̅� − ∇𝑢𝑔 (3.63) 

𝜆𝜆𝑇 = ∇𝑢𝑓𝑓̅ − ∇𝑢𝑓𝑓 (3.64) 

Equations (3.63) and (3.64) mean that at the optimum of the nested 
optimization problem, the modifiers are the ones given by the original 
modifier-adaptation methodology provided the gradients of 𝑢𝑢 with respect 
to 𝜆𝜆 and 𝛾𝛾 are full rank matrices. Since we have assumed that a stationary 
point has been reached, we can say that the real optimum of the process 
coincides with the one obtained with the proposed method.  

3.6.3 Examples of Implementation of the Nested 
Modifier-Adaptation Methodology 

To illustrate the method, the proposed Nested algorithm was applied in 
several examples, using the fminsearch and the fmincon routines from the 
optimization toolbox of MATLAB(Mathworks, 2007), as optimization 
algorithms for the upper and the nested layers. The implementations have 
been compared with dual modifier-adaptation methodology for different 
degrees of excitation of the system. This is equivalent to modify the lower 
bound of the dual constraint 𝛿𝐿 with the aim to justify the elimination of 
this tuning parameter due to its sensitivity. The dual methodology was 
chosen to estimate the gradient of the process because of its comparative 
advantages already mentioned. 

The first two examples: a convex optimization problem and a system with 
three interconnected tanks(Marchetti et al., 2009a) present parametric 
uncertainty. The aim of these applications is to compare the response of 
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the algorithm under absence and presence of noise in the process 
measurements. The next two examples: The Otto-Williams Reactor(Forbes 
et al., 1994; Williams & Otto, 1960) and a Continuous Bioreactor(Golden & 
Ydstie, 1989) shows the implementation of the modifier adaptation 
methodology under the presence of structural mismatch, being the 
application of the last reactor very difficult because of a change in the 
behavior of the system in the vicinity near the optimum of the process. 
Finally the last implementation is in a run-to-run batch reactor with 
structural uncertainty and process noise (Chachuat et al., 2009). 

3.6.3.1 Convex Optimization 
This example is a simulated process optimization extracted from the work 
of Marchetti and co-workers(Marchetti et al., 2009a) and it was used to 
introduce the modifier adaptation methodology. In this case, the difference 
between the process and the model is the value of four uncertain 
parameters which are not updated during the iterations of the RTO 
algorithm. 

Consider the convex optimization problem from equation (3.65), where 𝑢𝑢 
are the decision variables, 𝜃 represent the parameters and 𝑔 is a single 
inequality constraint. 

min
𝑢
𝑓𝑓 ≔ (𝑢𝑢1 − 𝜃1)2 + 4(𝑢𝑢2 − 2.5)2 

𝑠. 𝑡𝑡. : 
𝑔 ≔ (𝑢𝑢1 − 𝜃1)2 − 4(𝑢𝑢2 − 𝜃4)𝜃3 − 1 ≤ 0 
𝑢𝑢: [𝑢𝑢1 𝑢𝑢2]𝑇 , 𝑢𝑢 ∈ [0,∞) 

(3.65) 

The target is to find the optimum of the process, represented as a 
simulated reality with a given set of correct parameters, using the nested 
modifier-adaptation methodology applied into a model that has a set of 
erroneous parameters (corresponding to a simulated modeling mismatch). 
Table 3.4 summarizes the values of the parameters considered. 
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TABLE 3.4 VALUE OF THE PARAMETERS USED IN THE PROCESS AND THE MODEL FOR THE CONVEX 
OPTIMIZATION  EXAMPLE 

System  𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 
Simulated Process 3.5 2.5 -0.4 1.0 

Model 2 1.5 -0.5 0.5 
 

Because of the cost and the constraint are affected with the modeling 
mismatch, the three modifiers 𝜆𝜆, 𝛾𝛾  and 𝜖  from equation (3.11) can be 
applied in this example. The evolution of the dual and the nested modified-
adaptation method will be compared for different strategies of adaptation 
of these modifiers: correction with the three modifiers, corrections only in 
the constraint and correction in the gradient of the objective function and 
in the bias of the constraint, following the same application presented in 
the original paper. 

Regarding the implementation of both methods, the starting point was the 
optimum of the model. From this initial point, the first two iterations were 
used to estimate the gradients with the finite difference approach, because 
dual methodology needs at least two previous operation points to calculate 
the gradients as equation (3.24) shows. In the case of the nested 
methodology, this gradient was employed as a good initial guess of the 
decision variables for the NM algorithm, in order to start both in the same 
conditions. 

Figures 3.16 and 3.17 show the evolution of the dual methodology for two 
different values of 𝛿𝐿. In these figures there are three graphs corresponding 
to three different sets of values of 𝐾𝜆, 𝐾𝛾 , and 𝐾𝜖 , which have been changed 
in order to test their influence in the detection of the real optimum of the 
process. In these Figures the points M and R represent the optimum of the 
model and the process respectively.  
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FIGURE 3.16: EVOLUTION OF THE DUAL METHODOLOGY WITH 𝜹𝑳 = 𝟎.𝟏. GREY AND BLACK THIN 

LINES ARE THE COST AND THE CONSTRAINT OF THE PROCESS (SOLID) AND THE MODEL (DASHED) 

 
FIGURE 3.17: EVOLUTION OF THE DUAL METHODOLOGY WITH 𝜹𝑳 = 𝟎.𝟐. GREY AND BLACK THIN 

LINES ARE THE COST AND THE CONSTRAINT OF THE PROCESS (SOLID) AND THE MODEL (DASHED)  

u1

u 2

Dual Modifier-Adaptation  δL = 0.1

 

 

M → 

R →

2 2

2

4

4

2

4

4

6

6
1.5 2 2.5 3 3.5

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

 K
λ
=K

γ
=K

ε
=0.8

 K
λ
=0, K

γ
=K

ε
=0.8

 K
λ
=0.8, K

γ
=0, K

ε
=0.8

2

2

2

2

4
4

4

6

2

2

2

4

4

4

4

6

6

6

8

u1

u 2

Dual Modifier-Adaptation δL = 0.2

 

 

M → 

R →

1.5 2 2.5 3 3.5
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

 K
λ
=K

γ
=K

ε
=0.8

 K
λ
=0, K

γ
=K

ε
=0.8

 K
λ
=0.8, K

γ
=0, K

ε
=0.8



HANDLING UNCERTAINTIES IN PROCESS OPTIMIZATION 

197 
 

It can be noted from Figures 3.16 and 3.17, how the use of different 
strategies of adaptation makes the iterative algorithm converge not to the 
same values, being the full adaptation policy in red (the use of the three 
modifiers), the only one that converges to the real optimum of the process 
for both values of 𝛿𝐿  tested. These results completely agree with the ones 
given previously in literature. Nevertheless, the authors do not mention the 
method employed to estimate the gradient of the simulated process.  

The sensitivity of the dual methodology with respect to the value of 𝛿𝐿 can 
be observed comparing both figures. It can be seen how the paths obtained 
with 𝛿𝐿 = 0.1 converges in 6 iterations into a neighbourhood close to the 
real optimum, detecting the real active constraint. On the other hand, the 
evolution with 𝛿𝐿 =  0.2 takes 9 iterations to detect the active constraints, 
nevertheless, the convergence path is infeasible since it crosses the 
constraint �̅�. This behaviour indicates that the lower the value of the dual 
constraint, the more direct way to reach the optimum, but notice that this 
implies a potential worse estimation of the process gradient. Conversely, 
the choice of a larger value of this bound can generate infeasible points in 
the RTO path as can be observed. The effect in the feasible region of the 
dual constraint has been studied in the work of Marchetti and 
coworkers(Marchetti et al., 2010). For the two dimensional case, the 
feasible region of the dual constraint consists of two discs with the same 
radius centered at the same distance from the centroid of the previous two 
decision variables, in an orthogonal direction to the line defined with these 
two last values (Figure 3.18).  

The size of the discs are inversely proportional with respect to 𝛿𝐿, which 
implies that the operation points must be inside a smaller disc while the 
greater is the bound of the inverse of the condition number. This is 
translated in to a system with more energy to estimate the gradient, but 
with an evolution of the dual modifier adaptation that is continuously 
changing its direction, configuring a less direct way to reach the optimum. 
Because the modifiers 𝛾𝛾 and 𝜖 allows to estimate the real behaviour of the 
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process constraint only around the actual operating point (Gao & Engell, 
2005), these changes on the direction of the evolution can produce a 
violation of the process constraint in the region where the approximation is 
no longer valid.  

 
FIGURE 3.18: FEASIBLE REGION OF THE DUAL CONSTRAINT FOR DIFFERENT VALUES OF 𝜹𝑳 

Figure 3.19 shows the same comparison of the adaptation strategies of 
Figures 3.16 and 3.17 using the nested methodology proposed. Similar to 
the original dual method, the only policy that reaches the real optimum of 
the process is the full modifier-adaptation: when all the modifiers are taken 
into account, while the rest of the adaptation approaches get stuck in a 
suboptimal but feasible operation point. But using this method, the 
evolution of the solutions do not present the zigzag behavior of Figure 3.17 
and the algorithm converges in a direct path in to a neighborhood of the 
process optimum, using 5 iterations to detect the active constraint, 
whereas the rest of the iterations attempts to refine the search of the real 
optimum. The evolution in the nested optimization problem is similar to the 
dual modifier-adaptation methodology with smaller values in 𝛿𝐿 , but 
without the need to select this parameter. 
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FIGURE 3.19: EVOLUTION OF THE NESTED METHODOLOGY. GREY AND BLACK THIN LINES ARE THE 

COST AND THE CONSTRAINT OF THE PROCESS (SOLID) AND THE MODEL (DASHED) 

The reason why the nested methodology presents a more direct way to 
estimate the process optimum in this example is because of the dual 
constraint has been removed. This can be done since the search criteria is 
no longer the gradient of the process, but is a direct search, implying that in 
every iteration the algorithm is only looking for the optimum of the process, 
no taking care about the degree of excitation of the system. 

In dual procedure, there exists an important trade-off in the choice of 𝛿𝐿.  
As it was told previously, a smaller value of this parameter implies a more 
direct evolution in the solutions. However, a lower parameter means that 
the gradient can be poorly estimated and also the noise in the 
measurements can be amplified. To test the sensitivity of 𝛿𝐿 with respect to 
the noise, an additive error was simulated in the cost function and the 
constraint of the process. The stochastic simulated noise presents a 
uniform probability distribution centered in zero with amplitude of ± 5% 
with respect to its expected range. 
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The same values of 𝛿𝐿  used in the noise-free scenario were employed to 
iterate with the dual modifier adaptation, while the finish tolerance was 
increased in one order of magnitude, as Brdys and coworkers recommend 
for the dual ISOPE methodology (M. A. Brdys & Tatjewski, 2005). 

The results of dual and nested methodology, applying 15 trials for each 
method tested under stochastic noise conditions, are presented from 
Figure 3.20 to Figure 3.22.    

The evolution of dual modifier- adaptation under noisy conditions, shows 
how the wrong election of 𝛿𝐿can make this method more sensitive to the 
noise stopping convergence because of a gradient estimation problem. 
From Figure 3.20 it can be noted that it presents similar performance than 
the no noise conditions for the first 3 iterations of the dual estimation of 
the gradient, after this, when the solution approaches the optimum, the 
algorithm diverges. This can be explained because starting from a value that 
is far away from the optimum of the process implies significant changes in 
the operation points, which can be translated as an inactive dual constraint, 
hence a well estimate gradient at the next iteration. As the system gets 
closer to the process optimum, the next operating point might be close 
enough to the previous values which can activate the dual constraint, 
generating an 𝑆𝑘 matrix more sensitive to the noise.  On the other hand, 
the path from Figure 3.18 does not present a different behavior closer to 
the optimum, meaning that for a large enough value in the lower bound of 
the dual constraint, the algorithm converges into a neighborhood close to 
the real optimum. Nevertheless, the election of a big value in 𝛿𝐿 is not free, 
because it causes infeasibilities in the evolution of the algorithm in the 
same way than the noise free scenario. These problems are avoided with 
the proposed nested methodology, as the excitation requirement of the 
system disappear and the feasible region remains unchanged with respect 
to the original optimization problem, i.e., the dual constraint has been 
removed. 
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FIGURE 3.20: EVOLUTION OF THE DUAL METHODOLOGY WITH 𝜹𝑳 = 𝟎.𝟏 UNDER NOISE 

CONDITIONS. GREY AND BLACK THIN LINES ARE THE COST AND THE CONSTRAINT OF THE PROCESS 
(SOLID) AND THE MODEL (DASHED) 

 
FIGURE 3.21: EVOLUTION OF THE DUAL METHODOLOGY WITH 𝜹𝑳 = 𝟎.𝟐 UNDER NOISE 

CONDITION. GREY AND BLACK THIN LINES ARE THE COST AND THE CONSTRAINT OF THE PROCESS 
(SOLID) AND THE MODEL (DASHED) 
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FIGURE 3.22: EVOLUTION OF THE NESTED METHODOLOGY UNDER NOISE CONDITIONS. GREY AND 
BLACK THIN LINES ARE THE COST AND THE CONSTRAINT OF THE PROCESS (SOLID) AND THE MODEL 

(DASHED)  

Comparing the evolution under noise conditions of the nested methodology 
with the dual one, it is clear that the convergence is less sensitive to the 
measurement error. This is because the way in which the algorithm reaches 
the real optimum is quite similar to the case when there is not noise, i.e. 5 
iterations to detect the active constraint and the rest to locate the optimum 
of the process. 

As a remark in the implementation of the nested methodology in this 
convex optimization example, we can say that the optimum of the process 
is found in a similar way than the gradient based methodology, that is to 
say, when all the modifiers have been used, but with the advantage that no 
process gradient information is required. Also under noisy scenario, the 
adaptation strategy based in a direct search algorithm seems to be more 
robust than the previous gradient based method.  
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Regarding the infeasibilities that can be generated because of the dual 
constraint, it is important to mention that they can be handled with the 
infeasibility controller from section 3.5, nevertheless, the suppression of 
the gradient estimation step, allows converging in a feasible path tuning 
only the filter constants, because the dual constraint is not present in the 
nested modifier approach. 

3.6.3.2 Three Interconnected Tanks 
The second example used to test the proposed methodology is a system 
with three tanks (𝑇1, 𝑇2 and 𝑇3) from Figure 3.23. In this problem, the tanks 
are interconnected between them allowing the storage and the exchange 
of water.  The complete system receives flows of water 𝑞𝑝1 and 𝑞𝑝2 from 
the pumps 𝑃1 and 𝑃2, while the outflows (𝑞1, 𝑞2 and 𝑞2) are the result of 
the fluid-dynamic potential between the surface and the bottom of each 
tank and the opening of the manual valves 𝑉1, 𝑉2 and 𝑉3 respectively. Inside 
the tanks, the difference between the liquid levels (ℎ1, ℎ2 and ℎ3), will give 
the direction of the water that pass through the interconnections: 𝑞12 and 
𝑞32, whereas their flows also depend on the head loss produced by the 
valves 𝑉12 and 𝑉32.  

 
FIGURE 3.23: DIAGRAM OF THE THREE INTERCONNECTED TANKS.  
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This example was employed in the work of Marchetti and coworkers to test 
the modifier adaptation methodology in a real system (Marchetti et al., 
2009a). Nevertheless, since the experimental setup is not available, the 
process and the model will be simulated in a similar way than the convex 
optimization example from section 3.6.3.1: using a model with different 
parameters for the process and the optimization. 

A steady state model of the system can be derived using a first principle 
approach. 

Mass balances in each tank: 

𝑞𝑝1 − 𝑞1 − 𝑞12 = 0 
𝑞12 + 𝑞32 − 𝑞2 = 0 
𝑞𝑝2 − 𝑞3 − 𝑞32 = 0 

(3.66) 

To describe the flow that passes through the valves it can be used the 
Torricelli’s law that relates the flow with the liquid level and the 
hydrodynamic losses in the valves.   

𝑞𝑖 = 𝐴𝑎𝑎𝑖�ℎ𝑖, 𝑖 = 1,2,3 

𝑞𝑗2 = 𝑠𝑖𝑔𝑛𝑛�𝑑𝑗2�𝐴𝑎𝑎𝑗2��𝑑𝑗2�, 𝑗 = 1,3 

𝑑𝑗2 ≔ ℎ𝑗 − ℎ2, 𝑗 = 1,3 
(3.67) 

The operational goal of the system is keeping the liquid inside the tanks 
within a safe rage, consuming the lowest energy in the pumps. If the 
voltage that needs to be applied in each pump is denoted as 𝑢𝑢1 and 𝑢𝑢2 for 
𝑃1 and 𝑃2 respectively, this operational task must be reached solving the 
optimization problem from equation (3.68). In this equation it is assumed 
that the water flow pumped is proportional to the signal to the pumps and 
the energy consumed is also proportional to the square of that signal, being 
𝑤𝑗  the proportional constant of the influent flow from the pumps. 
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min
𝑢
𝑓𝑓 ≔ 𝑢𝑢12 + 𝑢𝑢22 

𝑠. 𝑡𝑡. : 
𝑠𝑡𝑡𝑒𝑎𝑎𝑑𝑦 − 𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑒 𝑚𝑜𝑑𝑒𝑙 𝑓𝑓𝑟𝑜𝑚 𝑒𝑞𝑢𝑢𝑎𝑎𝑡𝑡𝑖𝑜𝑛𝑛 (3.66)𝑎𝑎𝑛𝑛𝑑 (3.67) 
𝑞𝑝𝑗 = 𝑤𝑗𝑢𝑢𝑗 , 𝑗 = 1,2 
𝑢𝑢 = [𝑢𝑢1 𝑢𝑢2]𝑇, 𝑢𝑢 ∈ [𝑢𝑢𝐿,𝑢𝑢𝑈] 
ℎ𝑗 ∈ [ℎ𝐿,ℎ𝑈] 

(3.68) 

A summary of the nomenclature used in the three tanks example is 
presented in Table 3.5 

TABLE 3.5 NOMENCLATURE EMPLOYED IN THE THREE INTERCONNECTED TANKS EXAMPLE 

Parameter  Meaning  Units 
𝐴 Transversal area of each tank  𝑐𝑚2 
𝑎𝑎𝑖 Proportional constant of the valve 𝑉𝑖 𝑐𝑚0.5/𝑚𝑖𝑛𝑛 
𝑎𝑎𝑗2 Proportional constants of the valve 𝑉𝑗2 𝑐𝑚0.5/𝑚𝑖𝑛𝑛 
𝑑𝑗2 Difference on the liquids heights from tank 

𝑇𝑗with respect to tank 𝑇2 
𝑐𝑚 

ℎ𝑖 Liquid height in tank 𝑇𝑖 𝑐𝑚 
ℎ𝐿, ℎ𝑈 Bounds for ℎ 𝑐𝑚 
𝑞𝑖 Effluent from the bottom of tank 𝑇𝑖 𝑙/𝑚𝑖𝑛𝑛 
𝑞𝑝𝑗  Influent water from pump 𝑃𝑗 𝑙/𝑚𝑖𝑛𝑛 
𝑞𝑗2 Flow interchanged between tanks 𝑇𝑗  and tank 𝑇2 𝑙/𝑚𝑖𝑛𝑛 
𝑢𝑢𝑗  Voltage applied to the pump 𝑃𝑗 𝑉 
𝑤𝑗 Proportional constants of pump 𝑃𝑗 𝑙/𝑚𝑖𝑛𝑛𝑉 

 

The values of the parameters used from equation (3.66) to equation (3.68) 
are summarized in Table 3.6. They correspond to the original calibration 
coefficients obtained by Marchetti and coworkers, after an identification 
stage with the original experimental setup.   

As it was mentioned previously, to simulate the modeling mismatch 
different values in the parameters for the model and the process for 
equation (3.67) must be used. The difference between the process and the 
model corresponds to a clogging situation in the valves 𝑉12 and 𝑉32, which 
can be translated in a reduction on the flow coefficient: 
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𝑎𝑎𝑗2𝑀 =
𝑎𝑎𝑗2𝑃

2
, 𝑗 = 1,3 (3.69) 

In equation (3.69), the superscript 𝑃 represents the value of the parameter 
used in the simulated process and is the same than the one presented in 
Table 3.6, whereas the parameter with subscript 𝑀 denotes the one used in 
the model of the process with mismatch. 

TABLE 3.6 VALUE OF THE PARAMETERS USED THREE INTERCONNECTED TANKS EXAMPLE 

Parameter  Value Parameter  Value 
𝐴 154 𝑤1 13.22 
𝑎𝑎1 0.1203 𝑤2 14.96 
𝑎𝑎2 0.0613 ℎ𝐿 5 
𝑎𝑎3 0.1141 ℎ𝑈 30 
𝑎𝑎12 0.0381 𝑢𝑢𝐿 0 
𝑎𝑎32 0.0285 𝑢𝑢𝑈 8 

 

Following the same procedure of the example from section 3.6.3.1, dual 
and nested modifier- adaptation methodologies were applied starting from 
the optimum of the model, while the first two iterations were used to 
estimate the gradient of the process using the finite difference approach. In 
this example, only the modifiers of the constraints of the liquid levels, i.e.: 
𝛾𝛾and 𝜖 where updated because the constraints that restrict the value of 𝑢𝑢𝑗  
as well as the cost function only depends on the decision variables and 
there is no uncertainty on them.  

Figure 3.24 shows a comparison of the evolution of the decision variables 
𝑢𝑢1 and 𝑢𝑢2 for the dual and the nested modifier-adaptation method with full 
modification (𝛾𝛾 and 𝜖). In the figure, the dual modifier-adaptation has been 
tested for different degrees of excitation of the system, which is reflected in 
an implementation with different values for 𝛿𝐿. As in previous example, M 
and R highlights the location of the optimum of the model and the process 
respectively. As it is expected, it can be noted that the mismatch changes 
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the location of these two points, nevertheless both for the model and for 
the process lies on the active constraint ℎ2 ≥ ℎ𝐿. On the other hand, Figure 
3.25 shows a comparison on the evolution of the objective function with 
the dual and the nested methods implemented. 

 
FIGURE 3.24: EVOLUTION OF THE DECISION VARIABLES FOR THE DUAL AND THE NESTED MODIFIER 
ADAPTATION IN THE THREE TANKS EXAMPLE. GREY LINE IS DE COST FUNCTION, BLACK LINES ARE 

THE CONSTRAINT 𝒉𝟐 ≥ 𝒉𝑳 FOR THE PROCESS(SOLID) AND MODEL (DASHED)  

From Figures 3.24 and 3.25 it can be noted how the evolution of the 
decision variables of the dual methodology is affected by the value of the 
lower bound of the dual constraint, following different paths in the 
convergence to the real optimum. In a similar way than the example from 
section 3.6.3.1, a lower value of this parameter implies a more rapid 
convergence to the real optimum due to the fact that the use of larger 
values of 𝛿𝐿 reduce the feasible region of the dual constraint (Figure 3.18). 
The performance of the dual methodology can be observed more clearly in 
the evolution of the objective function (Figure 3.25), where the more tight 
constraint needs only 5 iterations to find a region close to the optimum 
(coinciding with the detection of the active constraint), while the other two 
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values of 𝛿𝐿 tested needs 11 and 15 iterations to detect this region. On the 
other hand, the evolution of the nested approach shows a convergence 
similar to the dual case with the lower value of 𝛿𝐿 , converging in 5 
iterations into the closer region of the real optimum. 

 
FIGURE 3.25: EVOLUTION OF THE OBJECTIVE FUNCTION FOR THE DUAL AND THE NESTED 

MODIFIER ADAPTATION IN THE THREE TANKS EXAMPLE.  

As we can see, in the unlikely situation of a process without noise, the 
convergence of the nested methodology is comparable with the dual 
algorithm with lower values in 𝛿𝐿 in terms of optimality. Nevertheless, as 
can be seen next, the trade-off between a larger feasible region and a 
system with low excitation levels gives an additional advantage to the use 
of the proposed methodology in terms of its robustness. To show this, an 
additive noise was applied in the measurements of the liquid levels of the 
process, using a uniform probability distribution function centered in zero 
with a range of 0.1 cm. Figure 3.26 and 3.27 shows the evolution of the 
decision variables and the cost function respectively, for the dual and the 
nested approach for 15 trials for every method under noisy condition. 
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FIGURE 3.26: EVOLUTION OF THE DECISION VARIABLES FOR THE DUAL AND NESTED MODIFIER- 
ADAPTATION IN THE THREE TANKS EXAMPLE. GREY LINE IS DE COST FUNCTION, BLACK LINES ARE 

THE CONSTRAINT 𝒉𝟐 ≥ 𝒉𝑳 FOR THE PROCESS (SOLID) AND MODEL (DASHED) , UNDER NOISY 
CONDITIONS 

As it can be expected, the presence of noise affects the convergence to the 
real optimum of the gradient-based modifier methodology, being the effect 
on measurement disturbances more critical when a lower excitation in the 
system is set. This is equivalent to the poor performance observed for the 
lower value of 𝛿𝐿  tested. In fact, it can be seen from Figure 3.27 that the 
evolution of the dual methodology with 𝛿𝐿 = 0.01 presents the largest 
dispersion in the evolution of the cost function of the process, and even the 
stagnation in different points for some trials tested. Increasing the value of 
this bound implies a better estimation of the process gradient which can be 
observed in the fact that the other two dual methodologies converges into 
the real optimum (𝛿𝐿 = 0.1 and 0.2). However, an increase on the energy 
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of the system implies the decrease of the size of the dual feasible region, 
meaning that if 𝛿𝐿 is overestimated it can be produced infeasible points, as 
we already mentioned and shown in the oxygen consumption example 
from section 3.5.2 and the convex optimization example from section 
3.6.3.1, observing also this phenomenon in the three tanks example in the 
path formed with 𝛿𝐿 = 0.2. Unlike the dual modifier – adaptation, Figure 
3.26 shows again how the evolution of the nested methodology proposed 
in this work seems to be less sensitive to the measurement noise, 
converging in a similar way than the noise free scenario. For all the cases 
tested, it can be noted from Figure 3.27 just how the algorithm spends the 
same 5 first iterations to converge into a region closer to the optimum, 
corresponding to the detection of the active constraint in Figure 3.26, while 
the rest of the iterations are used to refine the search, as the same as the 
dual case with larger values of 𝛿𝐿, but with the advantage of removing a 
non-convex dual constraint, keeping the original feasible region of the 
modified problem.  

 
FIGURE 3.27: EVOLUTION OF THE OBJECTIVE FUNCTION FOR THE DUAL AND THE NESTED 

MODIFIER ADAPTATION IN THE THREE TANKS EXAMPLE, UNDER NOISY CONDITIONS. 
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As a remark in the implementation of the nested methodology in the three 
tanks example, we can mention that for this example the gradient-free 
approach converges in a similar way than the previous modifier-adaptation 
scheme with a wide feasible region of the dual constraint, but with 
robustness comparable with a system that has enough excitation to 
estimate the gradient of the process adequately, even in the presence of 
process noise.   

Since, a tighter dual feasible region is required to get over the process noise 
and ensure the convergence to the optimum of the process in real life 
conditions, the nested approach also helps reducing the occurrence of 
infeasibilities, since it has been neglected the constraint of persistent 
excitation. These infeasibilities could also be treated with the infeasibility 
controller from section 3.5; however, as we pointed in previous example, if 
the dual constraint is no longer needed, they can be handled tuning the 
filter constants in a correct way. 

3.6.3.3 Otto-Williams Reactor 
This example, tries to show and compare the behavior of the nested 
approach when the uncertainty is in the form of structural mismatch, that is 
when the difference between the model and the process includes its 
structure and not only a change in the value of some parameters. 

The Otto Williams Reactor is a CSTR that has been used widely in the 
literature to study the performance of different RTO approaches with 
modeling mismatch. (Forbes et al., 1994; Marchetti, 2009; Roberts, 1979; 
Rodger, 2010; Yale Zhang & Fraser Forbes, 2000).  The system consists of a 
continuous reactor that is fed with two sources of raw material 𝐴 and 𝐵, by 
means of the streams 𝑃𝐴  and 𝑃𝐵  respectively. Inside the vessel, three 
parallels reactions take place forming 4 new compounds: 𝐶, 𝐸, 𝐺 and 𝑃, as 
equation (3.70) shows. These compounds, along with the unused reactive, 
leave the reactor from the bottom of the vessel in a single stream 𝑃𝑅. Figure 
3.28 schematizes the Otto-Williams Reactor, where 𝑋𝑖 represents the mass 
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fraction of the 𝑖  compound inside the reactor and 𝑇𝑅  is the reactor 
temperature. 

 
FIGURE 3.28: DIAGRAM OF THE OTTO-WILLIAMS REACTOR. 

𝐴 + 𝐵
𝑘1→ 𝐶, 𝐵 + 𝐶

𝑘2→ 𝑃 + 𝐸, 𝐶 + 𝑃
𝑘3→ 𝐺 (3.70) 

The system can be described using a first principles approach. The mass 
balance for each compound in the vessel can be defined: 

𝑉𝑅
𝑑𝑋𝐴
𝑑𝑡𝑡

= 𝑃𝐴 − 𝑃𝑅𝑋𝐴 − 𝑉𝑅𝑟1 

𝑉𝑅
𝑑𝑋𝐵
𝑑𝑡𝑡

= 𝑃𝐵 − 𝑃𝑅𝑋𝐵 − 𝑉𝑅𝑟1
ℳ𝐵

ℳ𝐴
− 𝑉𝑅𝑟2 

𝑉𝑅
𝑑𝑋𝐶
𝑑𝑡𝑡

= −𝑃𝑅𝑋𝐶 + 𝑉𝑅𝑟1
ℳ𝐶

ℳ𝐴
− 𝑉𝑅𝑟2

ℳ𝐶

ℳ𝐵
− 𝑉𝑅𝑟3 

𝑉𝑅
𝑑𝑋𝐸
𝑑𝑡𝑡

= −𝑃𝑅𝑋𝐸 + 𝑉𝑅𝑟2
ℳ𝐸

ℳ𝐵
 

𝑉𝑅
𝑑𝑋𝐺
𝑑𝑡𝑡

= −𝑃𝑅𝑋𝐺 + 𝑉𝑅𝑟3
ℳ𝐺

ℳ𝐶
 

𝑉𝑅
𝑑𝑋𝑃
𝑑𝑡𝑡

= −𝑃𝑅𝑋𝑃 + 𝑉𝑅𝑟2
ℳ𝑃

ℳ𝐵
− 𝑉𝑅𝑟3

ℳ𝑃

ℳ𝐶
 

𝑃𝑅 = 𝑃𝐴 + 𝑃𝐵 

(3.71) 

Where ℳ𝑖 represents the molecular weight of the compound 𝑖, and 𝑟𝑗  is 
the molecular reaction rate of the chemical reaction 𝑗 defined with respect 
to its limiting reactive.  
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Since we are dealing with pseudo-compounds it is necessary to define the 
relation among their molecular weight. This can be obtained assuming that 
ℳ𝐴 = ℳ𝐵 = ℳ𝑃. Under this consideration the ratios from equation (3.71) 
are: 

ℳ𝐵

ℳ𝐴
=
ℳ𝑃

ℳ𝐵
= 1,   

ℳ𝐶

ℳ𝐴
=
ℳ𝐶

ℳ𝐵
=
ℳ𝐸

ℳ𝐵
= 2,   

ℳ𝐺

ℳ𝐶
= 1.5,   

ℳ𝑃

ℳ𝐶
= 0.5 (3.72) 

Regarding the reaction rate, it can be calculated as the product of the 
concentration of the compounds involved in the reactions(Levenspiel, 
1999): 

𝑟1 = 𝑘𝑘1𝑋𝐴𝑋𝐵 
𝑟2 = 𝑘𝑘2𝑋𝐵𝑋𝐶 
𝑟3 = 𝑘𝑘1𝑋𝐶𝑋𝑃 

(3.73) 

Where 𝑘𝑘𝑗  is the kinetic constant of the reaction 𝑗 that can be obtained using 
an Arrhenius expression. 

𝑘𝑘𝑗 = 𝑘𝑘𝑗0 exp�−
𝐸𝐴𝑗
𝑇𝑅
� (3.74) 

Being 𝐸𝐴𝑗  the activation energy from reaction 𝑗. 

The operational goal for this system is to maximize the steady-state profit 
of the reactor, which can be expressed as a function of the flow rate of the 
compounds (equation (3.75)).  

𝑓𝑓𝑂𝑡𝑡𝑜 ≔ 𝑃𝑅(𝑋𝑃𝑃𝑃 + 𝑋𝐸𝑃𝐸) − 𝑃𝐴𝑋𝐴𝐶𝐴 − 𝑃𝐵𝑋𝐵𝐶𝐵 (3.75) 

Being 𝑃𝑗  the price of produced compound 𝑗 and 𝐶𝑖  the cost of the raw 
material 𝑖.To achieve the operational objective, the system can be operated 
changing the flow rate 𝑃𝐵 and also the reactor temperature 𝑇𝑅  by means of 
the heating/cooling system.  
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The mass fraction of the product 𝐶 is one order of magnitude below the 
rest of the compounds. Therefore, a common choice in a gross 
representation of the process is considering only the other five species, 
with the corresponding modeling mismatch. Forbes and Marlin(Forbes & 
Marlin, 1996), defined a model of the Otto Williams example to be used in 
the model-based optimization, neglecting the existence of the product 𝐶 
and considering only two parallel reactions inside the reactor (equation 
(3.76)).  In these reactions, the compound 𝐶 is not present because this is 
an intermediate product. This fact implies that normally it will not be 
detected by laboratory measurements in steady-state; therefore, it seems 
to be a reasonable source of mismatch.  

𝐴 + 2𝐵
𝑘�1→ 𝑃 + 𝐸, 𝐴 + 𝐵 + 𝑃

𝑘�2→ 𝐺 + 𝐸 (3.76) 

With this given source of modeling mismatch, the steady state model to be 
used in the RTO layer is the following: 

𝑃𝐴 − 𝑃𝑅𝑋𝐴 − 𝑉𝑅�̃�1 − 𝑉𝑅�̃�2 = 0 
𝑃𝐵 − 𝑃𝑅𝑋𝐵 − 2𝑉𝑅�̃�1 − 𝑉𝑅�̃�2 = 0 
−𝑃𝑅𝑋𝐸 + 2𝑉𝑅�̃�1 = 0 
−𝑃𝑅𝑋𝐺 + 3�̃�2 = 0 
−𝑃𝑅𝑋𝑃 + 𝑉𝑅�̃�1 −  𝑉𝑅�̃�2 = 0 
𝑃𝑅 = 𝑃𝐴 + 𝑃𝐵 

�̃�1 = 𝑘𝑘�1𝑋𝐴(𝑋𝐵)2 
�̃�2 = 𝑘𝑘�2𝑋𝐴𝑋𝐵𝑋𝑃 

𝑘𝑘�𝑗 = 𝑘𝑘�𝑗
0 exp�

𝐸𝐴�𝑗

𝑇𝑅
� , 𝑗 = 1,2 

(3.77) 

Where the tilde represents the parameters used in the model with 
mismatch. 

Hence, the model based optimization can be summarized as: finding the 
decision variables 𝑃𝐵  and 𝑇𝑅  inside a feasible space, such that they 
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maximize the profit, subject to a model that takes into account only five 
compounds and two chemical reactions, corresponding to the simulated 
modeling mismatch: 

min
𝐹𝐵,𝑇𝑅

−𝑓𝑓𝑂𝑡𝑡𝑜 

𝑠. 𝑡𝑡. : 
𝑠𝑡𝑡𝑒𝑎𝑎𝑑𝑦 − 𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑒 𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡𝑡ℎ 𝑚𝑖𝑠𝑚𝑎𝑎𝑡𝑡𝑐ℎ 𝑓𝑓𝑟𝑜𝑚 𝑒𝑞𝑢𝑢𝑎𝑎𝑡𝑡𝑖𝑜𝑛𝑛 (3.77) 
𝑃𝐵 ∈ [𝑃𝐵𝐿,𝑃𝐵𝑈] 
𝑇𝑅 ∈ [𝑇𝑅𝐿,𝑇𝑅𝑈] 

(3.78) 

The nomenclature used in the Otto-Williams Reactor is presented in Table 
3.7. 

TABLE 3.7 NOMENCLATURE EMPLOYED IN THE OTTO-WILLIAMS REACTOR 

Variable  Meaning  Units 
𝑃𝐴,𝑃𝐵 Mass inlet flow  of 𝐴 and 𝐵 𝑘𝑘𝑔/𝑠 
𝑃𝑅 Mass outlet flow 𝑘𝑘𝑔/𝑠 
𝑇𝑅 Reactor Temperature º𝐶 
𝑋𝑖 Mass fraction of the 𝑖 compound Adimensional 
𝑉𝑅 Reactor holdup 𝑘𝑘𝑔 
𝑟𝑗 Molecular reaction rate of reaction 𝑗 in the process 𝑘𝑘𝑚𝑜𝑙/𝑙 𝑠 
�̃�𝑗 Molecular reaction rate of reaction 𝑗 in the model with 

mismatch 
𝑘𝑘𝑚𝑜𝑙/𝑙 𝑠 

𝑘𝑘𝑗 Kinetic constant of reaction 𝑗 in the process 𝑘𝑘𝑚𝑜𝑙/𝑙 𝑠 
𝑘𝑘�𝑗 Kinetic constant of reaction 𝑗 in the model with mismatch 𝑘𝑘𝑚𝑜𝑙/𝑙 𝑠 
𝑘𝑘𝑗0 Kinetic constant in the Arrhenius expression for reaction 𝑗 in 

the process 
𝑘𝑘𝑚𝑜𝑙/𝑙 𝑠 

𝑘𝑘�𝑗
0

 Kinetic constant in the Arrhenius expression for reaction 𝑗 in 
the model with mismatch 

𝑘𝑘𝑚𝑜𝑙/𝑙 𝑠 

𝐸𝐴𝑗 Energy constant in the Arrhenius expression for reaction 𝑗 in 
the process 

º𝐶 

𝐸𝐴�𝑗 Energy constant in the Arrhenius expression for reaction 𝑗 in 
the model with mismatch 

º𝐶 

𝑃𝐵𝐿,𝑃𝐵𝑈 Bounds for 𝑃𝐵 𝑘𝑘𝑔/𝑠 
𝑇𝑅𝐿 ,𝑇𝑅𝑈 Bounds for 𝑇𝑅 º𝐶 

 

The values of the parameters utilized from equation (3.71) to equation 
(3.78) are summarized in Table 3.8. 
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TABLE 3.8 VALUE OF THE PARAMETERS EMPLOYED IN THE OTTO-WILLIAMS REACTOR 

Parameter  Value Parameter  Value 
𝑃𝐴 1.8725 𝐸𝐴1�  -8077.6 
𝑉𝑅 2105 𝐸𝐴2�  -12438.5 
𝑘𝑘10 1.6599×106 𝑃𝐵𝐿 3 
𝑘𝑘20 7.2177×108 𝑃𝐵𝑈 6 
𝑘𝑘20 2.6745×1012 𝑇𝑅𝐿 70 
𝐸𝐴1 -6666.7 𝑇𝑅𝑈 100 
𝐸𝐴2 -8333.3 𝑃𝑃 1143.38 
𝐸𝐴3 -11111 𝑃𝐸  25.92 

𝑘𝑘�1
0

 2.611×1012 𝐶𝐴 76.23 

𝑘𝑘�2
0

 1.655×108 𝐶𝐵 114.34 

 

The nested, along with the dual modifier-adaptation methods, where 
tested starting from two different points: (A) the optimum of the model 
and (B) a boundary of the feasible region. Because the system presents only 
inequality constraints in the decision variables, to modify the optimization it 
is necessary only the corrector of the gradient of the objective function 𝜆𝜆. 
As in the previous examples, the first two iterations were used to estimate 
the gradients with the finite difference approach, which have been used as 
a starting point for the NM algorithm in the upper optimization layer of the 
nested methodology. 

Figures 3.29 and 3.30 present the comparison of the evolution of the 
decision variables and the objective function, for the nested and the dual 
modifier – adaptation method, changing the lower bound of the dual 
constraint in the last case and starting from (A). In these figures R 
represents  the optimum of the process. 

The results of the modifier-adaptation methodology from Figures 3.29 and 
3.30 show that the nested methodology converges into the real optimum of 
the process in the minimum number of iterations compared with the dual 
approach: starting from the first two iterations, where the finite difference 
approach was implemented to give good initial iterators, the nested 
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method converged in 8 iterations. On the other hand, the convergence of 
the dual approach was a function of the level of excitation of the system, 
noting that for a gradient estimated with 𝛿𝐿 = 0.05 the path converged 
into a point different to the required one, unlike the manifolds formed with 
𝛿𝐿 = 0.1 and 0.15 which were able to find the optimum of the process, in 
17 and 57 iterations respectively. As it was discussed in previous examples, 
an increase in the excitation level on the dual methodology improves the 
estimation of the gradient, which is translated in the detection of the real 
optimum of the process; nevertheless, this is not free because the number 
of iterations must growth as a consequence of the reduction in the feasible 
region of the dual modified problem.  

 
FIGURE 3.29: EVOLUTION OF THE DECISION VARIABLES FOR THE DUAL AND THE NESTED MODIFIER 

ADAPTATION IN THE OTTO-WILLIAMS REACTOR STARTING FROM (A). BLACK DASHED LINE IS DE 
COST FUNCTION OF THE PROCESS  
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FIGURE 3.30: EVOLUTION OF THE OBJECTIVE FUNCTION FOR THE DUAL AND THE NESTED 

MODIFIER ADAPTATION IN THE OTTO-WILLIAMS REACTOR STARTING FROM (A) 

Comparing now the path formed with the two methodologies, it can be 
noted from previous figures that the proposed algorithm finds the optimum 
of the process in a more direct way, because the method does not need 
estimating the gradient of the process to update the modifiers. Instead of 
this it uses directly the cost function measured from the process and a 
geometric method based in previous points, which has no limitations about 
forming linear combinations with the next decision variables. This result is 
in concordance with the discussions from previous examples.  

Now we are interested in evaluating the performance of the algorithm 
starting from a point which is farther from the real optimum of the process. 
Figure 3.31 and 3.32 present the same comparison from Figures 3.29 and 
3.30, but starting from (B). In these figures R represents the optimum of the 
process. 
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FIGURE 3.31: EVOLUTION OF THE DECISION VARIABLES FOR THE DUAL AND THE NESTED MODIFIER 

ADAPTATION IN THE OTTO-WILLIAMS REACTOR STARTING FROM (B). BLACK DASHED LINE IS DE 
COST FUNCTION OF THE PROCESS  

 
FIGURE 3.32: EVOLUTION OF THE OBJECTIVE FUNCTION FOR THE DUAL AND THE NESTED 

MODIFIER ADAPTATION IN THE OTTO-WILLIAMS REACTOR STARTING FROM (B) 
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The results from Figure 3.31 and 3.32 do not agree with the ones starting 
from (A), noting that in this case the best way to apply the modifier 
adaptation methodology, in terms of convergence and number of 
iterations, is using the dual approach with a degree of excitation equivalent 
to 𝛿𝐿 = 0.05 converging in only 13 iterations, indicating that the process 
gradient has been estimated accurately and the feasible region is large 
enough to no interfere in the evolution of the algorithm. On the other 
hand, the nested methodology again is able to locate the real optimum of 
the process; nevertheless its convergence takes a number of iterations 
three times larger. The path formed by this method shows an important 
reduction in the objective function in the first iterations because of the 
good initial points given, after this, the gradient-free approach iterates with 
the modifiers changing the shape of the simplex, forming a zone where the 
iterations are very close between them explaining the growth in the 
number of iterations. Its performance is comparable with the path obtained 
with the dual methodology for 𝛿𝐿 = 0.1, which finds the optimum in a 
similar number of iterations. In contrast, the dual methodology with 
𝛿𝐿 = 0.15 fails in finding the optimum of the process because of the 
reduction on the dual feasible region.  

The fact that the optimum of the process is reached in less iterations with 
the lowest value of the dual bound starting from (B), but it was not able to 
find the process optimum if the starting point is (A) indicates that the dual 
constraint was not active in all the iterations from Figure 3.31 and 3.32. This 
can explain the correct detection of the curvature of the process (confirmed 
with the detection of the process optimum), and also the lower number of 
iterations needed for convergence. This condition can be very complicated 
in the implementation of the dual methodology, since an accurate gradient 
estimation of the process must be ensured in all the cases within the 
feasible region, implying that even when the process optimum has been 
found in a few iterations with 𝛿𝐿 = 0.05 starting from (B), the more robust 
way to apply the dual approach for he Otto-Williams reactor is using dual 
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bound larger. Taking this into account, the proposed gradient-free 
methodology produces similar results than the dual approach in terms of 
the ability to find the process and the number of iterations to converge. 

As a remark in the implementation of the nested approach in the Otto-
Williams example, we can say that the proposed methodology can detect 
the optimum of the process in a similar way than the gradient-based 
approach for a problem with structural mismatch, as the same as in 
previous examples with parametric uncertainty, without the need to 
estimate the process gradients. The convergence of the suggested method 
is comparable with the dual approach with enough energy to estimate 
accurately the gradients of the process. Nevertheless, it is important to 
mention that because of the excitation of the system can be removed its 
application seems to be easier than the gradient-based algorithm. 

3.6.3.4 Continuous Bioreactor 
In the same line as the previous Otto-Williams reactor, this example tries to 
test the nested modifier-adaptation methodology in a system with 
structural modeling mismatch, but with the additional difficulty of a change 
in the behavior of the process in a region closer to the optimum as we will 
see next. 

The example is a bioreactor that has been used previously to test RTO 
methodologies (Y. Zhang & Forbes, 2006), and was presented in the context 
of the Adaptive Extremum Control (Golden & Ydstie, 1989). The system 
contains a continuous culture that grows inside a bio-CSTR. With the 
adequate constant aeration (Air), mixing conditions, substrate 
concentration at the feed (𝑆0) and pH (𝑁𝑎𝑎𝑂𝐻), the dilution rate 𝑃 of the 
reactor can be modified in order to change the concentration of the cells 
(or biomass) at the effluent of the reactor (𝑋). To be more precise, the real 
manipulated variable of the system is the flow rate of the feed (𝑃); 
nevertheless, if the volume of the reactor (𝑉 ) is constant, these two 
variables are equivalent (𝑃 = 𝑃/𝑉). Figure 3.33 schematizes the system. 
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FIGURE 3.33: DIAGRAM OF THE CONTINUOUS BIOREACTOR. 

The continuous bioreactor can be described using a first principle approach 
that will be used as a simulation of the real process (Golden & Ydstie, 1989), 
following a dynamic fermentation process. 

A mass balance at the cells can be written assuming that there is no 
biomass in the influent 𝑃 and the reactor volume remains constant: 

𝑑𝑋
𝑑𝑡𝑡

= (𝜇 − 𝑃)𝑋 (3.79) 

Where 𝜇 is the specific growth rate of the microorganisms that can be 
modeled using the Monod equation. 

𝜇 = 𝜇𝑚𝑎𝑥
𝑆

𝐾𝑆 + 𝑆
 (3.80) 

Being 𝜇𝑚𝑎𝑥 and 𝐾𝑆 constants of the model, and 𝑆 the concentration of the 
substrate inside the vessel, which can be obtained with a mass balance: 

𝑑𝑆
𝑑𝑡𝑡

= −
𝜇𝑋
𝑌

+ 𝑃(𝑆0 − 𝑆) −𝑚𝑐𝑋 (3.81) 
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In equation (3.81) 𝑆0 is the concentration of the biomass in the influent, 𝑌 is 
a yield that takes into account the proportion of substrate that is 
transformed into biomass, while 𝑚𝑐  is a constant that takes into account 
the relative quantity of the substrate that the biomass uses for its internal 
metabolism.  

The operational goal of the system is to maximize the production of cells in 
steady state. This can be expressed as a product of the dilution rate and the 
concentration of the microorganisms: 

𝑓𝑓𝐵𝑖𝑜 ≔ 𝑋𝑃 (3.82) 

The concentration of biomass in steady-state (equation (3.83)), can be 
obtained combining equations (3.79) to equation (3.81), setting the time 
derivatives to zero. 

𝑋 =
𝑌𝑃

𝑚𝑐 + 𝑃�����
𝑌𝑜𝑏𝑠 

�𝑆0 −
𝐾𝑆𝑃

𝜇𝑚𝑎𝑥 − 𝑃
�

�����������
Δ𝑆

 
(3.83) 

Note that Equation (3.83) becomes singular when 𝑃 =  𝜇𝑚𝑎𝑥.  

Equation (3.83) can be viewed as a product between the consumed 
biomass (Δ𝑆)) and an observed yield (𝑌𝑜𝑏𝑠) that depends on the dilution 
rate. In order to test the modifier methods using an incorrect model, we 
will suppose that the observed yield of 𝑋 is constant. Equation (3.84) 
describes the approximation employed in the model of the process. 

𝑋 = 𝑌�𝑜𝑏𝑠 �𝑆0 −
𝐾�𝑆𝑃

𝜇�𝑚𝑎𝑥 − 𝑃
� (3.84) 

The parameters empathized with a tilde have the same meaning than the 
ones described previously, but they have been used in the model with 
different values. Note that the equation (3.84) in addition to the parametric 
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uncertainty, presents a structural mismatch with respect to the equations 
used to model the process since the observed yield does not depend on 
other variables.  

As a summary, we can express the optimization problem to be solved in the 
continuous bioreactor example as: 

min
𝐷

−𝑓𝑓𝐵𝑖𝑜 
𝑠. 𝑡𝑡. : 

𝑋 = 𝑌�𝑜𝑏𝑠 �𝑆0 −
𝐾�𝑆𝑃

𝜇�𝑚𝑎𝑥 − 𝑃
� 

𝑃 ∈ [𝑃𝐿,𝑃𝑈] 

(3.85) 

The value of the upper bound of 𝑃 must be chosen below 𝜇�𝑚𝑎𝑥  since it can 
produce a singularity in the model.  

The nomenclature for the continuous bioreactor is summarized in Table 3.9, 
whereas the values of the parameters are presented in Table 3.10. 

TABLE 3.9 NOMENCLATURE EMPLOYED CONTINUOUS BIOREACTOR 

Variable  Meaning  Units 
𝑃 Dilution Rate  1/ℎ 
𝑆 Substrate concentration 𝑔/𝑙 
𝑋 Biomass concentration 𝑔/𝑙 
𝑆0 Substrate concentration at the influent 𝑔/𝑙 
𝜇 Specific growth rate of the biomass 1/ℎ 

𝑃𝐿 ,𝑃𝑈 Bounds of 𝑃 1/ℎ 
𝐾𝑆 Half-saturation constant for the process 𝑔/𝑙 
𝐾�𝑆 Half-saturation constant for the model 𝑔/𝑙 
𝑌 Yield coefficient of the biomass with respect to the available  

substrate  
Adimensional 

𝑌�𝑜𝑏𝑠 Observed yield of the biomass with respect to the consumed 
substrate. 

Adimensional 

𝑚𝑐  Maintenance coefficient 1/ℎ 
𝜇𝑚𝑎𝑥  Maximum specific growth rate of the biomass for the 

process 
1/ℎ 

𝜇�𝑚𝑎𝑥  Maximum specific growth rate of the biomass for the 
process 

1/ℎ 
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TABLE 3.10 VALUE OF THE PARAMETERS EMPLOYED IN THE CONTINUOUS BIOREACTOR 

Parameter  Value 
𝑃𝐿 0 
𝑃𝑈 0.42 
𝑆0 5 
𝑚𝑐 0.025 
𝐾𝑆 0.09 
𝑌 0.5 

𝜇𝑚𝑎𝑥 0.35 
𝐾�𝑆 0.19 
𝑌�𝑜𝑏𝑠 0.4 
𝜇�𝑚𝑎𝑥 0.42 

 

The mismatch of the bioreactor produces an interesting effect with respect 
to the real behavior of the system. Figure 3.34 shows a comparison of the 
objective function 𝑓𝑓𝐵𝑖𝑜  and the biomass concentration 𝑋  between the 
process and the model for the entire feasible region of 𝑃. 

 
FIGURE 3.34: STEADY-STATE MAPPING OF THE PROCESS AND THE MODEL FOR THE OBJECTIVE 
FUNCTION AND THE CONCENTRATION OF BIOMASS. SUBSCRIPTS “P” AND “M” DENOTES THE 

PROCESS AND THE MODEL RESPECTIVELY. 

Because of the modeling mismatch, the optimum of the process (R) does 
not match with the one from the model (M), situation that is quite 
expectable. However, from Figure 3.34 it can be observed that the dilution 
rate that optimizes the performance index of the approximated model of 
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the reactor causes a washout in the steady state of the real process. 
Washout is a peculiar phenomenon for continuous culture systems. It 
consists in a complete removal of the cells inside the reactor (𝑋 = 0) when 
the dilution rate is greater than the cell growth rate. Taking this into 
account, it is clear that the model of the process is a poor representation of 
the behavior of the process. 

Because of the inequality constraints in equation (3.85) are on the decision 
variables, it is only necessary the use of the corrector of the gradient of the 
objective function 𝜆𝜆. Regarding the washout phenomenon, the feasible 
region on each iteration must be reduced in order to avoid this situation as 
equation (3.86) shows, where a trust region equation has been added. 

min
𝐷

−𝑓𝑓𝐵𝑖𝑜 
𝑠. 𝑡𝑡. : 
𝑠𝑡𝑡𝑒𝑎𝑎𝑑𝑦 −𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡𝑡ℎ 𝑚𝑖𝑠𝑚𝑎𝑎𝑡𝑡𝑐ℎ 𝑓𝑓𝑟𝑜𝑚 𝑒𝑞𝑢𝑢𝑎𝑎𝑡𝑡𝑖𝑜𝑛𝑛 (3.84) 
𝑃𝑘 ∈ [𝑃𝑘𝐿,𝑃𝑘𝑈] 
𝑃𝑘𝐿 ≔ max(𝑃𝐿,𝑃𝑘−1 − Δ𝑃/2) 
𝑃𝑘𝑈 ≔ min(𝑃𝑈,𝑃𝑘−1 + Δ𝑃/2) 

(3.86) 

For the gradient based modifier-adaptation, the finite differences approach 
has been used in order to avoid the dual constraint that can cause problems 
with the washout phenomenon. Regarding the nested approach, the first 
iteration with finite differences has been used as a starting point for the 
upper optimizer. 

The evolution of the decision variables and the objective function for the 
gradient-based methodology are summarized in Figure 3.35. In this 
implementation, the size of the local feasible region was Δ𝑃 = 0.01. This 
value is extremely sensitive in terms of the convergence, noting that if it is 
increased, the algorithm does not converge and the decision variable 
bounces around the optimum of the process. 
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The convergence to the real optimum of the process in the gradient-based 
approach takes around 40 iterations. It can be noted that the path formed 
with the decision variables is very straight, unlike the dual modifier 
adaptation method that in general generates a zigzag manifold. This result 
is similar to the one obtained in the oxygen consumption reactor from 
section 3.3.1, and, as it was mentioned previously, can be explained in 
terms of the reduction of the feasible region because of the dual constraint. 

 

 
FIGURE 3.35: EVOLUTION OF THE MODIFIER ADAPTATION METHODOLOGY WITH FINITE 

DIFFERENCES FOR THE CONTINUOUS BIOREACTOR. GREY DASHED LINE SHOWS THE OPTIMUM OF 
THE PROCESS. 

Regarding the detection of the optimum of the process, the shrinking of the 
local feasible region, as a consequence of changing the bounds in the 
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decision variables in each iteration, allows to converge to the desired point. 
The decrease in the feasible region avoids the washout phenomenon that 
produces important instabilities in the algorithm. The problems in the 
convergence can be explained noting that if the decision variable is 
approaching the real optimum from below, the gradient of the process is 
more positive than the derivative from the model. As result of this, the 
value of decision variable will increase. If the feasible region is not 
constrained, the next operating point could pass the optimum of the 
process (not detecting it) and fall in the region closer to the washout 
phenomenon. If this is the case, now the process derivative will be more 
negative than the gradient of the model, moving the system again into the 
region before the optimum of the process, repeating this behavior over and 
over and explaining the observed bouncing for larger values of Δ𝑃. The 
problem in the change on the sign of the modifiers, can be viewed also as a 
consequence of an inaccurate correction of the objective function using a 
first order approximation in the region close to the optimum of the process.  

Regarding the implementation of the nested methodology, the fminsearch 
function might present problems in the optimization when the optimum of 
the process is near a discontinuous region (Mathworks, 2007).  If the 
algorithm is applied directly as in previous examples, the nested 
methodology finds the optimum of the process, but it still searches in the 
entire region. Figure 3.36 shows the implementation of the Nelder-Mead 
algorithm in the continuous bioreactor. The outcome of the NM algorithm 
was the real optimum of the process, as the same as the gradient-based 
approach. In spite of this, the evolution of the method shows that the 
algorithm does not stop in this point and continues iterating on the rest of 
the feasible region. This behavior can be explained based in the fact that 
there is an important change in the rate of change of the objective function 
on both sides of the process optimum. As a consequence of this, if the 
system starts from a point below the optimum of the process, the size of 
the simplex will be bigger than the one required when the process pass the 
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real optimum, because of the rate of change is increased after this point. 
This implies that the next RTO iteration will be farther from the required 
point. In order to avoid this situation, we have tried working with smaller 
local feasible regions with no positive results. 

 

 
FIGURE 3.36: EVOLUTION OF THE NESTED MODIFIER-ADAPTATION  METHODOLOGY FOR THE 

CONTINUOUS BIOREACTOR.  GREY DASHED LINE SHOWS THE OPTIMUM OF THE PROCESS. 

With the purpose of making the nested methodology applicable in this case, 
we have used the previous knowledge of the system to stop the algorithm 
when a situation of possible optimum is detected. Even when the point of 
washout is not known a priori, these kinds of systems exhibit this 
phenomenon for some value of the dilution rate. Furthermore, starting 
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from a suboptimal operation point (on the left side of the process optimum 
in Figure 3.34) an increase on the dilution rate will rise the concentration of 
the cells inside the vessel because there is additional available subtract to 
produce more biomass. This increase is maintained until the maximum 
growth rate (an unknown parameter) is exceeded. After this point, the cells 
inside the reactor have not enough residence time to create more 
microorganisms, decreasing the concentration of the biomass and 
producing the washout. As this is an expectable behavior of the continuous 
cell cultures, we can try to detect the point when the change in the 
performance of the reactor is produced, postulating it as a point (or a 
region) close to the real optimum. As a criterion to detect a candidate for 
process optimum, it has been used the change in the tendency of the 
objective function. 

If we are interested in refining the search, we can implement a gradient 
based methodology before the gradient free algorithm, following the 
analogy that some global optimization solvers, like the SSm GO (Egea et al., 
2007), implement in their routines. As it was commented in section 3.6.1, 
the possibility of mixing the two approaches (gradient free with gradient-
based) is one of the contributions that the reinterpretation of the modifiers 
presents, giving an additional degree of adaptation to the modifier method 
depending on the particular characteristics of the system. 

The implementation of the mixed (nested and gradient-based) modifier-
adaptation methodology is summarized in Figure 3.37.  

The outcomes obtained applying the previous idea, are summarized in 
Figure 3.38. We have tested the early detection of a possible optimum for 
the two scenarios: not refining the search and using the gradient based 
methodology to find the optimum of the process, corresponding to the 
upper and the lower row of the Figure 3.38 respectively. The gradient of the 
process in the last case has been estimated with the finite differences 
approach. 
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FIGURE 3.37: IMPLEMENTATION OF THE MIXED MODIFIER-ADAPTATION  

For the case of no refining in the search of the optimum of the process 
(upper row of Figure 3.38), the nested methodology with the early 
detection of the process optimum is able to stop once the change in the 
tendency of the objective function is detected. As a result of this, the 
washout phenomenon is no longer observed and the iterations finish in a 
neighborhood of the process optimum. The last decision variable proposed 
by the nested methodology is not exactly the real optimum of the process 
but an operating point that is slightly above this value, producing a mild 
deterioration of the objective function corresponding to a 0.35% with 
respect to the real value. This worsening in the objective function can be 
understood as a tradeoff with respect to the number iterations obtained 
with the gradient-based algorithm, and it can be a good indicator regarding 
if it is necessary the refining of the search using the gradient-based 
methodology or not.  

Even when the worsening obtained in the objective function can be 
acceptable for a real application, taking into account the reduction in the 
number of iterations of 50%, we have refined the search applying the 
gradient-based methodology to the outcomes from the NM algorithm in 
order to test the complete method. The evolution of the mixed 
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methodology can be observed in the lower row of Figure 3.38, where the 
starting point of the refinement iterations is highlighted with a black arrow. 

 

 
FIGURE 3.38: EVOLUTION OF THE NESTED MODIFIER-ADAPTATION  METHODOLOGY FOR THE 
CONTINUOUS BIOREACTOR WITH TERMINATION FUNCTION.  UPPER ROW GREY DASHED LINE 

SHOWS THE OPTIMUM OF THE PROCESS 

As it can be observed from the lower row of Figure 3.38, the mixed 
approach finds the optimum of the process by adjusting the results given by 
the NM algorithm with early the optimum detection, using a gradient based 
algorithm. Starting from the end of the gradient-free methodology it was 
necessary 11 iterations to converge to the real optimum of the process. 
That is to say: to reduce a 0.35% in the objective function measured from 
the process, it was necessary to increase the number of iterations in 45% 
with respect to apply only the gradient-free scheme. Even though the 
application of the gradient-based method seems to be unjustified to find 
the optimum in this example, taking into account the effort in the number 
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of iterations and the almost no additional improvement in the cost function 
that was obtained, in real application the optimum of the process is not 
known a priory. Therefore, when the NM algorithm stops the operator does 
not know how far is from this point, but only the progresses in the 
performance index with respect to the starting point. Hence, the decision of 
applying the refinement or using directly the outcomes from the NM 
algorithm cannot be taken based in distance with respect to the final goal, 
and it must be based in the criterion of the operator and in its previous 
knowledge of the system considering the progress achieved. In any case, 
the nested methodology with the early stop criterion only is able to find a 
region where the optimum could be according to the expected behavior 
around this point. 

As a remark in the implementation of the Nested methodology in the 
continuous bioreactor example, we can say that for a problem with 
structural mismatch where the optimum of the process is closer to a region 
that can produce important changes in the operation mode of the system 
with respect to the nominal mode, the implementation of the proposed 
methodology by itself is not recommended, requiring additional 
information about the process behavior to early detect a region where the 
process optimum could be. With this scheme we can avoid falling in 
problematic regions of operation that can originate important damages in 
the system, but not detecting the optimum of the process. Depending on 
the progress observed from the start of the algorithm to the early stopping 
criterion, we can apply additional perturbations into the system in order to 
improve the objective function of the process using a gradient-based 
methodology. For both updates criteria: gradient-based and direct search, 
special care must be taken in the size of the feasible region for each RTO 
iteration with the intention of remaining in the nominal operation region 
during the entire evolution of the algorithm.  
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3.6.3.5 Run to Run Semi-Batch Reactor 
Previous two examples have shown the expected evolution of the proposed 
nested approach when structural mismatch is observed. On the other hand, 
the examples of convex optimization and the three interconnected tanks 
have tested the methodology under the presence of process noise with 
parametric uncertainty. Putting aside the particularities in the application of 
the nested-modifier adaptation for each example, it is observed in all the 
cases that the algorithm converges to the real optimum (or into a region 
close to it), with almost no information about the process derivatives. The 
example presented in this section deals both with structural mismatch and 
process noise. In addition, it considers the process dynamics. 

The system was presented as a test example in the work of Chachuat and 
coworkers in the context of a comparison among different ways to look for 
the real optimum of a process in RTO (Chachuat et al., 2009). It consists in a 
semi-batch reactor (Figure 3.39) that is used to produce 2-acetoacetyl 
pyrrole (C) from pyrrole (A) and diketene (B). Initially, the vessel contains a 
solution rich in A, plus some amount of the other compounds and sub-
products from parallel reactions that can occur: dehydroacetic acid (D), 
Oligomers (E) and other undesired by-products (P). From the beginning 
until the end of the batch (𝑡𝑡𝑓 = 250 𝑚𝑖𝑛𝑛), an inlet solution (F) with 
constant concentration of diketene (𝐶𝐵𝑖𝑛) can be fed into the reactor, being 
possible regulate its flow rate during the whole period in order to change 
the concentrations of the products and the end of the batch. 

The reactions that take place in the reactor can be summarized as: 

𝐴 + 𝐵
𝑘1→ 𝐶 

2𝐵
𝑘2→ 𝑃 

𝐵
𝑘3→ 𝐸 

𝐶 + 𝐵
𝑘4→ 𝑃 

(3.87) 
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FIGURE 3.39: DIAGRAM OF THE SEMI-BATCH REACTOR 

A first-principles model can be proposed to describe the process based in 
mass balances: 

𝑑𝐶𝐴
𝑑𝑡𝑡

= −𝑟1 −
𝑃
𝑉
𝐶𝐴 

𝑑𝐶𝐵
𝑑𝑡𝑡

= −𝑟1 − 2𝑟2 − 𝑟3 − 𝑟4 +
𝑃
𝑉
�𝐶𝐵𝑖𝑛 − 𝐶𝐵� 

𝑑𝐶𝐶
𝑑𝑡𝑡

= 𝑟1 − 𝑟4 −
𝑃
𝑉
𝐶𝐶  

𝑑𝐶𝐷
𝑑𝑡𝑡

= 𝑟2 −
𝑃
𝑉
𝐶𝐷 

𝑑𝑉
𝑑𝑡𝑡

= 𝑃 

(3.88) 

Being 𝐶𝑖  the molar concentration of the 𝑖 compound, 𝑉 the reaction volume 
and 𝑟𝑗  the molar concentration rate from reaction 𝑗 , which can be 
calculated as the product of the concentrations of the reactants: 

𝑟1 = 𝑘𝑘1𝐶𝐴𝐶𝐵 
𝑟2 = 𝑘𝑘2𝐶𝐵2 
𝑟3 = 𝑘𝑘3𝐶𝐵 
𝑟4 = 𝑘𝑘4𝐶𝐵𝐶𝐶 

(3.89) 

The operational goal of the system is finding the optimal profile of the flow 
rate of feed F, such that the production of C at the final time is maximized, 
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keeping 𝐶𝐵 and 𝐶𝐷 lower than some upper bounds, solving the following 
optimization problem: 

min
𝐹(𝑡)

𝐽𝐵𝑎𝑡𝑐ℎ ≔ −𝐶𝐶�𝑡𝑡𝑓�𝑉�𝑡𝑡𝑓� 

𝑠. 𝑡𝑡. : 
𝑃𝑟𝑜𝑐𝑒𝑠𝑠: 𝑒𝑞𝑢𝑢𝑎𝑎𝑡𝑡𝑖𝑜𝑛𝑛𝑠 (3.88)𝑎𝑎𝑛𝑛𝑑 (3.89) 
𝐶𝐵�𝑡𝑡𝑓� ≤ 𝐶𝐵𝑈 
𝐶𝐷�𝑡𝑡𝑓� ≤ 𝐶𝐷𝑈 
𝑃(𝑡𝑡) ∈ [𝑃𝐿,𝑃𝑈], 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡𝑓] 

(3.90) 

Regarding the model of the process, as a source of mismatch, we have 
neglected the existence of the last two reactions from equation (3.87), 
since they are parallel reactions that in general present conversion rates 
with orders of magnitude lower than the first two. This is equivalent to set 
𝑘𝑘3, 𝑘𝑘4 equal to zero. 

Therefore, we can summarize the model-based optimization to be 
implemented in the RTO layer as: 

min
𝐹(𝑡)

𝐽𝐵𝑎𝑡𝑐ℎ ≔ −𝐶𝐶�𝑡𝑡𝑓�𝑉�𝑡𝑡𝑓� 

𝑠. 𝑡𝑡. : 
𝑀𝑜𝑑𝑒𝑙 𝑤𝑖𝑡𝑡ℎ 𝑜𝑛𝑛𝑙𝑦 𝑡𝑡𝑤𝑜 𝑟𝑒𝑎𝑎𝑐𝑡𝑡𝑖𝑜𝑛𝑛𝑠 
𝐶𝐵�𝑡𝑡𝑓� ≤ 𝐶𝐵𝑈 
𝐶𝐷�𝑡𝑡𝑓� ≤ 𝐶𝐷𝑈 
𝑃(𝑡𝑡) ∈ [𝑃𝐿,𝑃𝑈], 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡𝑓] 

(3.91) 

In the optimization problem from equation (3.91), we are interested in 
obtaining a dynamic trajectory to be applied during the entire batch that 
minimizes the cost function and fulfill the inequality constraint at the end of 
the run. Even when this is not a steady-state problem, we can implement 
the modifier-adaptation methodology in a similar way than the steady 
problem, taking into account that the process measurements used to 
estimate the modifiers will be calculated after the batch is finished, and the 
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decision variable calculated in the model based optimization will be applied 
in the next batch. 

The nomenclature for equations (3.88) to (3.91) is summarized in Table 
3.11, while the values of the parameters used in the simulated process as 
well as the initial states, are summarized in Table 3.12 (Chachuat et al., 
2009) 

TABLE 3.11 NOMENCLATURE EMPLOYED IN THE SEMI-BATCH REACTOR 

Variable  Meaning  Units 
𝐶𝑖 Molar concentration of compound 𝑖 𝑚𝑜𝑙/𝑙 
𝐶𝐵𝑖𝑛 Molar concentration of B in the inlet solution 𝑚𝑜𝑙/𝑙 
𝑃 Flow rate of the inlet solution 𝑙/𝑚𝑖𝑛𝑛 
𝑉 Volume of the reactor 𝑙 
𝑟𝑗 Conversion of reaction 𝑗 𝑚𝑜𝑙/𝑙 𝑚𝑖𝑛𝑛 
𝑘𝑘𝑗 Kinetic constant of reaction 𝑗 𝑙/𝑚𝑜𝑙 𝑚𝑖𝑛𝑛 

or 1/𝑚𝑖𝑛𝑛 
𝑃𝐿,𝑃𝑈 Bounds of 𝑃 𝑙/𝑚𝑖𝑛𝑛 
𝐶𝑖𝑈 Upper bound of concentration of 𝑖 𝑚𝑜𝑙/𝑙 
𝑡𝑡0 Initial time of the batch 𝑚𝑖𝑛𝑛 
𝑡𝑡𝑓 Final time of the batch 𝑚𝑖𝑛𝑛 

 

TABLE 3.12 VALUE OF THE PARAMETERS AND INITIAL STATES EMPLOYED IN THE SEMI-BATCH 
REACTOR 

Parameter  Value States  Value 
𝑘𝑘1 0.053 𝐶𝐴(𝑡𝑡0) 0.72 
𝑘𝑘2 0.128 𝐶𝐵(𝑡𝑡0) 0.05 
𝑘𝑘3 0.028 𝐶𝐶(𝑡𝑡0) 0.08 
𝑘𝑘4 0.001 𝐶𝐷(𝑡𝑡0) 0.01 
𝐶𝐵𝑖𝑛 5 𝑉(𝑡𝑡0) 1 
𝑡𝑡0 0   
𝑡𝑡𝑓 250   
𝑃𝐿 0   
𝑃𝑈 2×10-3   
𝐶𝐵𝑈 0.025   
𝐶𝐷𝑈 0.15   
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As it was mentioned previously, the simulated mismatch consists of 
neglecting the last two reactions from equation (3.87) setting their 
corresponding kinetic constants to zero. This, far from being a parametric 
uncertainty, reflects a structural mismatch since physical dependences 
among the variables have been omitted because of partial knowledge of 
the real process.  

The dynamic optimization from equation (3.90) must be transformed into a 
finite dimensional one, parameterizing the variables to solve it using 
standard NLP techniques. In general, there are two approaches to do this: 
simultaneous and sequential (Biegler Lorenz, 2010). In the simultaneous 
approach, both state and decision variables are discretized using some 
colocation strategy. On the other hand, in sequential approach only the 
decision variables are parameterized, while the state variables are 
calculated in an intermediate step using a DAE solver (as it was already 
presented in Chapter 2). To solve equation (3.87) we have applied the 
sequential approach.  

The optimal trajectory of the real process was obtained solving equation 
(3.90) using two different control vector parameterizations as Figure 3.40 
shows. The first implementation (dashed grey line) was obtained with a 
piece-wise constant parameterization dividing the batch time in 100 
constant-length intervals. It can be noted that the solution can be 
characterized by three arcs: (1) from 𝑡𝑡0 to 𝑡𝑡𝑠 the feed is at its upper bound, 
(2) from 𝑡𝑡𝑠 to 𝑡𝑡𝑚 we have assumed for simplicity that the feed remains 
practically constant in an intermediate flow rate and (3) from 𝑡𝑡𝑚 to 𝑡𝑡𝑓 the 
flow rate of the feed is equal to zero. Taking this into account, a new 
parameterization was used dividing the time horizon in three intervals with 
different lengths, where in the first one 𝑃 = 𝑃𝐿, in the second 𝑃 = 𝑃𝑠 and 
in the third 𝑃 = 0. The decision variables in this case are the length of the 
first interval (𝑡𝑡𝑠), the intermediate value of 𝑃 in the second arc (𝑃𝑠) and the 
length of the third interval ( 𝑡𝑡𝑚 ). The solution of this second 
parameterization is in solid black line in Figure 3.40. The difference in both 
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parameterizations is a degradation in the cost function obtained in the 
second parameterization from 𝐽𝐵𝑎𝑡𝑐ℎ = 0.5081  to 𝐽𝑏𝑎𝑡𝑐ℎ = 0.5079 . The 
trajectories of the final constrained states are presented in Figure 3.41, 
where it can be noted that for both parameterizations the optimal solution 
of the process is when the inequality constraints over 𝐶𝐵 and 𝐶𝐷 are active. 
The optimum of the process is 𝑡𝑡𝑠⋆ = 7.91(𝑚𝑖𝑛𝑛), 𝑃𝑠⋆ = 1.1 × 10−3(𝑙/𝑚𝑖𝑛𝑛) 
and 𝑡𝑡𝑚⋆ = 229.14(𝑚𝑖𝑛𝑛). 

 
FIGURE 3.40: OPTIMAL PROFILE OF F(T) FOR THE PROCESS OF THE SEMI-BATCH REACTOR 

 
FIGURE 3.41: OPTIMAL TRAJECTORY OF 𝑪𝑩 AND 𝑪𝑫 FOR THE PROCESS OF THE SEMI-BATCH 
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The same two parameterizations were used to obtain the optimum of the 
model solving equation (3.91). The optimal trajectory of 𝑃(𝑡𝑡) with 100 
constant-length values and three arcs is presented in Figure 3.42, as can be 
seen the optimal trajectory of the model with mismatch presents the same 
structure than the ones computed with the real process: three arcs with 
constant flow rate of the feed, being the optimum of the model: 
𝑡𝑡𝑠⋆ = 5.67(𝑚𝑖𝑛𝑛), 𝑃𝑠⋆ = 0.7 × 10−3(𝑙/𝑚𝑖𝑛𝑛) and 𝑡𝑡𝑚⋆ = 205.2(𝑚𝑖𝑛𝑛). 

 
FIGURE 3.42: OPTIMAL PROFILE OF 𝑭(𝒕) FOR THE MODEL OF THE SEMI-BATCH REACTOR 
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function of 23.72%.  
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trajectory is applied to the process the inequality constraints at final time 
are inactive, explaining the loss of optimality as a consequence of the 
modeling mismatch. 

 
FIGURE 3.43: TRAJECTORY OF 𝑪𝑩 AND 𝑪𝑫 FOR THE PROCESS AND THE MODEL OF THE SEMI-

BATCH REACTOR, APPLYING THE OPTIMAL TRAJECTORY FROM OF THE MODEL 

The dual methodology as well as the proposed nested approach has been 
implemented in this example using the complete set of the modifiers, since 
the uncertainty is present in both the objective function and the inequality 
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FIGURE 3.44: EVOLUTION OF THE DUAL AND THE NESTED METHODOLOGY FOR  THE SEMI-BATCH 

REACTOR 
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The trajectories of the decision and the constrained variables from the 
process, obtained applying the outcomes from the dual and the nested 
methods are compared with the expected optimal trajectories from the 
process in Figure 3.45 and 3.46 respectively.  

 
FIGURE 3.45: COMPARISON OF THE OPTIMAL TRAJECTORIES OF 𝑭(𝒕) FROM THE RTO LAYER 

 
FIGURE 3.46: COMPARISON OF THE TRAJECTORIES OF 𝑪𝑩 AND 𝑪𝑫 FROM THE PROCESS, APPLYING 
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concentration peak of 𝐶𝐵 (at 𝑡𝑡 = 9.7 (𝑚𝑖𝑛𝑛)), nevertheless at 𝑡𝑡𝑓 𝐶𝐵 and 𝐶𝐷 
are in their upper bounds. Therefore, we can say that, the RTO approaches 
were able to converge to the optimum of the process. 

An additive measurement noise was simulated in the state variables 𝐶𝐵, 𝐶𝐶  
and 𝐶𝐷, using a Gaussian zero mean distribution function with a 99.5% of 
confidence interval equivalent to the 10% of the expected range of the 
molar concentrations. The evolution of the objective function as well as the 
decision variables for the dual approach are presented in Figures 3.47 and 
3.48 for different values of 𝛿𝐿, while the nested algorithm is shown in 
Figure 3.49. In each figure, it is represented the evolution of the 
consecutive batches for 10 different realizations of the stochastic noise. 

 
FIGURE 3.47: EVOLUTION OF THE DUAL METHODOLOGY FOR THE SEMI-BATCH REACTOR WITH 
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As it is expected, in the gradient-based methodology the evolution of a 
system poorly excited presents more sensitivity with respect to the 
measurement noise, observing differences in the capability to converge to 
the real process depending on the energy to estimate its gradients.  

The evolution of the decision variables in the case of 𝛿𝐿 = 0.05 shows how 
the random nature of the measurements is reflected in the path formed by 
the dual approach producing a chaotic progression. Regarding the evolution 
of the objective function, it can be noted that in some cases the system is 
able to converge into a region close to the optimum of the real system but 
in a noisy way. The poor ability of the methodology to estimate the process 
optimum as well as the dispersion in its evolution is the consequence of a 
bad estimation of the experimental derivatives. 

 

 
FIGURE 3.48: EVOLUTION OF THE DUAL METHODOLOGY FOR THE SEMI-BATCH REACTOR WITH 

𝜹𝑳 = 𝟎.𝟏, UNDER THE INFLUENCE OF PROCESS NOISE 
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If the bound of the dual constraint is increased, the process growth its 
capability to estimate accurately the real gradients, which implies a 
diminution in the dispersion of the path formed by the decision variables 
and the objective function with 𝛿𝐿 = 0.1. In this case, the system is able to 
detect the process optimum in all of the times using less iterations to reach 
a region close to the convergence point and following a more regular 
trajectory, as a product of the improvement in the estimation of the 
experimental derivatives. 

 
FIGURE 3.49: EVOLUTION OF THE NESTED METHODOLOGY FOR THE SEMI-BATCH REACTOR UNDER 

THE INFLUENCE OF PROCESS NOISE 
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the noise-free scenario. The algorithm takes about 7 iterations to converge 
into a region close to the optimum of the process, and after this, the 
remaining 23 iterations are used to improve the objective function. This 
result is quite expectable, considering that the volume of the simplex 
proposed by NM algorithm decreases as the objective function is improved, 
which means that when the process is near to its  optimum the size of the 
simplex is more affected by the noise of the objective function, worsening 
the convergence rate to the desired point. This can also explain the small no 
influence of the noise during the first iterations. 

As in the noise free scenario, both dual and nested methodologies were not 
able to detect the real value of 𝑡𝑡𝑠 . However, as it was commented 
previously, the poor influence of this decision variable over the value of the 
optimum makes this fact less important considering the improvements 
observed in the objective function applying the RTO layer.   

As a remark in the implementation of the nested methodology in the semi-
batch reactor, we can say that it was able to find the real optimum of the 
process under structural modeling mismatch and noise-free scenario in a 
similar way than the gradient-based methodology, but in less batch runs. If 
the measurements are contaminated with random noise, the nested 
approach was capable to estimate a region close to the optimum of the 
process in a similar way than the noise-free scenario, unlike the gradient 
based methodology that was more sensitive to the process noise. 

3.6.4 Remarks about the Nested Modifier-
Adaptation 

The basic ideas of the modifier-adaptation methodology suggest a 
convergence of the RTO layer to the real optimum of the process, 
correcting the gradients of the model using the information about gradient 
of the process. Following this notion, it is mandatory to estimate in an 
accurate way the experimental gradients to achieve the convergence to the 
desired point. As it was commented, there are some methods to estimate 
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the process derivatives that in general need a system with enough energy 
to calculate the modifiers in an appropriate way, being the dual approach 
the most recommended from the point of view of the tradeoff between 
accuracy and number of perturbations needed. The last point is a key issue 
in its application to processes, since it is not desirable perturbing the 
system because of its collateral effects.  

Even if dual methodology is the best alternative to estimate the process 
gradients, we have shown in the examples that there are important 
tradeoffs between the energy of the system and the size of the feasible 
region because of the reduction in this area as a consequence of the dual 
constraint. The bound of this constraint, and by extension the size of the 
feasible region, depends on the system and of course on the reliability of 
the process measurements. That is to say: it must be tuned correctly in 
order to give enough energy to the system to estimate the gradients in a 
good way in spite of possible errors in the measurements from the process, 
but taking care about the feasible region in order avoid blocking the path of 
convergence to the desired point. As it was shown in previous examples, if 
this bound is well tuned, the dual methodology is able to detect the 
optimum of the process. Nevertheless, its convergence also depends in this 
bound, obtaining more or less iterations depending on its value. 

Previous description, gives some insights about the difficulty of applying 
this method in real life, not only because of the need to estimate the 
gradient and the continuous perturbations on the process, but also because 
of the tradeoff that exists with the size of the feasible region of an artificial 
constraint (artificial in the sense that it is not related with the process itself) 
and the strong relation that it has with respect to the process noise.  

To remove these implementation issues related to the estimation of the 
process curvature, in this section we have proposed another way to see the 
modifier adaptation algorithm, with a methodology that intuitively finds the 
optimum of the process directly in the space of the gradient modifiers. In 
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our proposal the decision variables to be applied in the process must be 
calculated as the outcomes of an inner modified optimization problem with 
the same structure as the one solved in the original modifier-adaptation 
scheme. Nevertheless, the update law of the modifiers is implemented in 
an upper optimization layer that uses as a performance index the cost 
function measured from the process. The assumption of convergence of the 
modified model implies that the best feasible point to be reached 
corresponds to the optimum of the process. Regarding now that the 
feasibility is considered in the nested approach updating the bias of the 
inequality constraints, which are measured directly from the process, 
implies that the best feasible point to be the reached when the process cost 
function is minimized in the space of the gradient modifiers must be also a 
feasible point that is a minimizer of the process. A formal proof of the 
convergence of the nested approach has been proposed. 

The advantage of understanding the gradient modifiers as decision 
variables of an outer optimization problem, lies in the fact that it is possible 
to explore different alternatives to update the modifiers according to the 
characteristics of the process itself. With this in mind, we can select as a 
convenient update law a gradient-free algorithm in order to avoid the 
problems related with the estimation of the experimental gradient. 

We have applied this idea into a set of examples that were used previously 
in the literature of process optimization with different kind of mismatch: 
parametric and structural. Moreover, we have tested the influence of 
additional random perturbations in the measurements considering noise-
free and noisy scenarios. In all the studied cases, our proposal was capable 
of finding a region close to the real optimum of the process as the former 
gradient-based methodology did, regardless of the nature of the mismatch. 
However, this point was reached without the need to estimate the process 
derivatives during its evolution, traduced in most of the cases in a reduction 
in the number of iterations needed to converge. In spite of the number of 
iterations, the fact that the nested methodology detected the real optimum 
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of the process is a very important result, due to the fact that we have 
overcome the modeling mismatch neglecting the main assumption of the 
modifier adaptation strategy: the estimation of the process derivatives. 

For the cases where the direct search approach is not recommended in 
certain regions of the process, we have shown in the example of the 
continuous bioreactor that it is possible converging to the real optimum, 
combining both gradient-based and gradient-free approaches taking the 
advantage of previous knowledge of the process, with an important 
reduction in the number of estimations of the process derivatives, 
confirming the idea of applying the best update law depending of the 
system. 

From the point of view of the implementation of the nested methodology, 
it seems to be easier to apply it comparing with the gradient-based 
approach since it is not necessary to: take care about the degree of 
excitation of the process and impose additional constraints into the model.  

With respect to the performance of the nested approach under noisy 
scenarios, it can be observed from the tested examples that its evolution 
towards the optimum of the process seems to be almost insensitive, unlike 
the gradient based approach that is affected in more or less magnitude 
depending on the degree of excitation of the system. This result is quite 
expected considering that if the process measurements are contaminated 
with noise, their gradients can amplify the noise from the process 
depending on the size of the change employed, making critical the selection 
of an adequate level of excitation of the system. On the other hand, an 
algorithm based in direct search uses directly the measurements to update 
the decision variables, meaning that the size of the process noise remains 
unaltered, making the nested methodology more insensitive to the 
contaminations of the measurements. These ideas also can be viewed from 
the point of view of selecting the best update method depending on the 
system: for those kinds of systems where the measurements are 
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contaminated with noise, it is recommended the use of a direct search 
algorithm or a gradient based one with enough energy to estimate 
accurately the process gradients.  

As a summary, we have presented a method with a formal proof that is able 
to converge to the real optimum of the process in the context of RTO with 
modeling mismatch, in a similar way than the modifier adaptation would 
do, but without the need to take care about the excitation of the system 
and the estimation of the experimental gradient, assuming the convergence 
of the gradient-free algorithm implemented in the upper layer.  

3.7 Modifier Adaptation Methodology in the 
Context of Dynamic Optimization 

As it was mentioned in the introduction of this chapter, the hierarchical 
structure given by the separation of the problem according to their 
temporal scales is a very useful way of thinking in terms of ordering the 
different goals that an industrial facility must fulfill.  

Nevertheless, there are emerging problems derived by the fact that using 
different time scales also implies using not the same models in each layer in 
terms of details and scope of application. Focusing our attention in the 
interaction among the RTO and the control layer, these problems can be 
summarized as inconsistency of both models and suboptimal operations 
due to the steady-state assumption to perform the optimization. In terms 
of the inconsistency of both models, it can be said that as a product of this 
fact, suboptimal and even infeasible points can appear by the incapability of 
the control scheme to follow the references given by the upper layer. On 
the other hand, the steady-state assumption can generate also suboptimal 
operating points, but now because of the possible disturbances that can 
affect the system during the transient, which can change the location of the 
real optimum, being necessary waiting until the next steady state to detect 
these changes and take the correcting actions. 
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To face these problems, several authors coincide in the idea of giving 
dynamic characteristics to the process optimization layer, transforming it in 
a DRTO stage (D from dynamic) (De Prada, 2004; Engell, 2007, 2009; Helbig 
et al., 2000; Kadam et al., 2002; Würth et al., 2009, 2011). The differences 
among the applications of the DRTO fundamentally lay in its frequency of 
execution, which is translated in keeping the two layers of optimization or 
merging them, for the cases of low and high frequencies respectively. 

In any of the cases, it is important to study the effect of the modeling 
mismatch in terms of the ability to converge to the real optimum of a 
process in the DRTO layer. To do this, in this section we have tried to apply 
the ideas of the modifier adaptation method into a dynamic optimization 
problem. 

3.7.1 Modified Dynamic Optimization 
This is not a new concept and it was already presented in the work of 
Becerra and coworkers in the context of the DISOPE algorithm (Becerra, 
1994; Becerra & Roberts, 1996; Becerra et al., 1998; Roberts & Becerra, 
1999). In these works, the authors use a procedure analogous to the ISOPE 
method to solve a complicated NMPC problem by using an easier 
equivalent. To do this, it is necessary to use some modifiers in the objective 
function that take into account the differences in the partial derivatives 
between the complicated model and the simplified one. 

Taking this into account, and considering that the infinite dimensional 
dynamic optimization of the process from equation (3.92), can be 
transformed into an NLP equivalent by parameterizing the decision 
variables and using a sequential approach, the implementation of the 
modifiers in the finite dimensional equivalent is quite immediate as it was 
shown in the example of the semi-batch reactor from section 3.6.3.5. 
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min
𝑢(𝑡)

𝑃 ≔ 𝑓𝑓̅�𝑢𝑢, 𝑥𝑥,𝑦, 𝑡𝑡𝑓� 

𝑠. 𝑡𝑡. : 
ℎ�(�̇�𝑥, 𝑥𝑥,𝑦,𝑢𝑢, 𝑡𝑡) = 0, 𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0 
�̅��𝑢𝑢, 𝑥𝑥,𝑦, 𝑡𝑡𝑓� ≤ 0 
𝑢𝑢(𝑡𝑡) ∈ 𝑈 

(3.92) 

Where the bar “ ̅” indicates the quantities from the process 𝑡𝑡0 and 𝑡𝑡𝑓 are 
the initial and final time and the rest of the variables have the same 
meaning than the ones already presented previously. After the 
discretization step in the decision (and the state) variables, the NLP 
equivalent of equation (3.92) can be expressed as equation (3.93) 

min
𝑝∈𝑃

𝑃 ≔ 𝑓𝑓̅�𝑝𝑝, 𝑡𝑡𝑓� 

𝑠. 𝑡𝑡. : 
�̅��𝑝𝑝, 𝑡𝑡𝑓� ≤ 0 
𝑃 = [𝑝𝑝𝐿,𝑝𝑝𝑈] 

(3.93) 

Being 𝑝𝑝 the time independent parameters used in the discretization of 𝑢𝑢. 
The KKT conditions of this equation are analogous to equation (3.14), 
therefore the correctors needed to modify the NLP equivalent from 
equation (3.93) have the same definitions than the steady-state modifier 
adaptation methodology. 

Even when the application of the modifiers is quite similar to the steady-
state case, their implementation implies that process variables must be 
measured at 𝑡𝑡𝑓, that is to say, it is necessary to know the value of 𝑓𝑓̅�𝑡𝑡𝑓� and 
�̅��𝑡𝑡𝑓�. This requirement implies that if we are interested in the iterative 
implementation of the DRTO layer using a receding horizon approach, it is 
necessary to measure or estimate the process variables at the end of the 
prediction horizon to know the value of the objective function and the 
inequality constraints, which is a very restrictive assumption. Therefore, the 
methodology shown in this section can be applied only in a very small set of 
cases that present this condition. 
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If we define the iterative implementation of the model-based DRTO layer in 
its 𝑘𝑘𝑡ℎ iteration applied every Δ𝑡𝑡𝐷𝑅𝑇𝑂 as: 

min
𝑝
𝑃 ≔ 𝑓𝑓�𝑝𝑝,𝛼, 𝑡𝑡(𝑘+1)� 

𝑠. 𝑡𝑡. : 
𝑔�𝑝𝑝,𝛼, 𝑡𝑡(𝑘+1)� ≤ 0 
𝑝𝑝 ∈ 𝑃, 𝑡𝑡 ∈ [𝑡𝑡𝑘, 𝑡𝑡𝑘+1) 

(3.94) 

Being Δ𝑡𝑡𝑘 ≔ 𝑡𝑡𝑘+1 − 𝑡𝑡𝑘  the prediction horizon and 𝛼 the parameters of the 
model.  

 The requirement of measuring the process variables at final time, implies 
that Δ𝑡𝑡𝐷𝑅𝑇𝑂 = Δ𝑡𝑡𝑘 , which is one of the limitations of the proposed 
approach. Taking this into account, we can apply the modifiers to the 
model-based optimization as: 

min
𝑝
𝑃𝑚 ≔ 𝑓𝑓�𝑝𝑝, 𝑡𝑡(𝑘+1)� + 𝜆𝜆𝑘𝑇𝑝𝑝 

𝑠. 𝑡𝑡. : 
𝐺𝑚 ≔ 𝑔(𝑝𝑝,𝛼, 𝑡𝑡𝑘+1) + 𝛾𝛾𝑘(𝑝𝑝 − 𝑝𝑝𝑘−1) + 𝜖𝑘 ≤ 0 
𝑝𝑝 ∈ 𝑃, 𝑡𝑡 ∈ (𝑡𝑡𝑘, 𝑡𝑡𝑘+1] 
 
𝑤𝑖𝑡𝑡ℎ: 

𝜆𝜆𝑘 ≔
𝜕𝑓𝑓�̅�
𝜕𝑝𝑝

−
𝜕𝑓𝑓𝑘
𝜕𝑝𝑝

 

𝛾𝛾𝑘 ≔
𝜕�̅�𝑘
𝜕𝑝𝑝

−
𝜕𝑔𝑘
𝜕𝑝𝑝

 

𝜖𝑘 ≔ �̅�𝑘 − 𝑔𝑘 

(3.95) 

Where the notation used in equation (3.95) can be understood as 
𝑦𝑘 ≔ 𝑦(𝑡𝑡𝑘) and 𝑦�𝑘 ≔ 𝑦�(𝑡𝑡𝑘), being 𝑦 = {𝑓𝑓,𝑔}. 

3.7.2 Estimation of the Process Gradient 
The gradients of the process can be estimated using a perturbation based 
method in order to quantify the effect that a variable has on the process 
measurements at 𝑡𝑡𝑘. Considering the time evolution of the process variable 
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𝑦� ∈ ℝ when the parameter 𝑝𝑝 has been perturbed in Δ𝑝𝑝 units from Figure 
3.50, an approximation of the experimental gradient of the process would 
be calculated as equation (3.96) shows, assuming enough excitation on the 
process. 

𝜕𝑦�𝑘
𝜕𝑝𝑝

≈
𝑦�𝑘 − 𝑦�𝑘−1
𝑝𝑝𝑘−1 − 𝑝𝑝𝑘−2

=
Δ𝑦�𝑘
Δ𝑝𝑝𝑘

  (3.96) 

𝑡𝑡𝑘𝑘  𝑡𝑡𝑘𝑘−1 𝑡𝑡𝑘𝑘−2 

𝑝𝑝𝑘𝑘−2 

𝑝𝑝𝑘𝑘−1 

𝑦�𝑘𝑘−1 

𝑦�𝑘𝑘  
𝑦� 

𝑝𝑝 

} 

} 

Δ𝑦�𝑘𝑘  

Δ𝑝𝑝𝑘𝑘  

 
FIGURE 3.50: DIAGRAM OF THE EVOLUTION OF THE PROCESS VARIABLE 𝒚 FOR A CHANGE IN 𝒑 

Equation (3.96) corresponds to the finite differences implementation of the 
perturbation based method used in the steady-state approach. It assumes 
that the gradient of 𝑦 with respect to 𝑝𝑝 can be estimated as the ratio of the 
finite change in these variables keeping constant the rest of the 
independent variables. However, in a dynamic system the trajectory of the 
dependent variables, and by addition their values at discrete times, do not 
depend only on the decision variables but also on their natural dynamic 
response. This idea is very easy to understand considering the extreme case 
when Δ𝑝𝑝 = 0. Under this scenario, and supposing that the process has not 
reached the steady-state, 𝑦�𝑘−1 ≠ 𝑦�𝑘  indicating that there is another 
dependence that must be considered in equation (3.96).  



CHAPTER 3: REAL TIME OPTIMIZATION 

256 
 

For a period Δ𝑡𝑡𝑘  small enough to ensure �̇�𝑥(𝑡𝑡𝑖) · �̇�𝑥�𝑡𝑡𝑗� > 0,∀𝑡𝑡𝑖 ≠ 𝑡𝑡𝑗 ,
�𝑡𝑡𝑖 , 𝑡𝑡𝑗� ∈ Δ𝑡𝑡𝑘, a given system is not in steady-state when the state variables 
�̅�𝑥𝑘−2 ≠ �̅�𝑥𝑘−1 for Δ𝑝𝑝 = 0. Taking this into account, we can understand the 
natural dynamic response of a system in the time point 𝑡𝑡𝑘  as a dependence 
on the change of its initial states.  

Therefore, the evolution of 𝑦�(𝑡𝑡𝑘) can be stated as: 

𝑦�𝑘 = 𝜙�𝑘 ≔ 𝜙�(𝑝𝑝𝑘−1, �̅�𝑥𝑘−1) (3.97) 

To estimate an expression for the gradient of the dynamic process with 
respect to the parameter 𝑝𝑝 we can apply a Taylor expansion to equation 
(3.97) around 𝑦�𝑘−1. 

𝑦� = 𝑦�𝑘−1 +
𝜕𝜙�𝑘−1
𝜕𝑝𝑝

(𝑝𝑝 − 𝑝𝑝𝑘−2 ) +
𝜕𝜙�𝑘−1
𝜕𝑥𝑥

(�̅�𝑥 − �̅�𝑥𝑘−2 ) + 𝜊2 (3.98) 

Replacing equation (3.98) with the measured and applied values at 𝑡𝑡𝑘, the 
gradient of the process can be obtained neglecting the higher order terms, 
assuming that the value of Δ𝑡𝑡𝑘  is small enough to represent the 
dependence of 𝜙 with respect to 𝑝𝑝 and 𝑥𝑥 as a lineal equation. 

 𝑦�𝑘 ≈ 𝑦�𝑘−1 +
𝜕𝜙�𝑘−1
𝜕𝑝𝑝

(𝑝𝑝𝑘−1 − 𝑝𝑝𝑘−2 ) +
𝜕𝜙�𝑘−1
𝜕𝑥𝑥

(�̅�𝑥𝑘−1 − �̅�𝑥𝑘−2 ) 

 

⟹  
𝜕𝜙�𝑘
𝜕𝑝𝑝

≈
𝜕𝜙�𝑘−1
𝜕𝑝𝑝

≈
𝑦�𝑘 − 𝑦�𝑘−1
𝑝𝑝𝑘−1 − 𝑝𝑝𝑘−2���������

𝐴

−
𝜕𝜙�𝑘−1
𝜕𝑥𝑥

�
�̅�𝑥𝑘−1 − �̅�𝑥𝑘−2
𝑝𝑝𝑘−1 − 𝑝𝑝𝑘−2 

�
���������������

𝐵

 
(3.99) 

Equation (3.99) can be viewed as an extension of the finite-difference 
approach used in the steady state RTO implementation, since the right 
hand side term named “A” is the same than equation (3.96), whereas the 
term “B” can be understood as a dynamic correction of the gradient as a 
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consequence of the changes in the states because of the unsteady behavior 
of the system. 

Assuming that the states can be measured, it is necessary to estimate 𝜕𝜙𝑘−1
𝜕𝑥

  

in order to calculate the derivatives with respect to the decision variables, 
and therefore, the modifiers. This value must be calculated using the 
variation of the process measurements obtained when Δ𝑝𝑝 = 0.  Figure 3.51 
shows the trajectory of the output and the state for 𝑡𝑡 ∈ (𝑡𝑡𝑘−1, 𝑡𝑡𝑘]. Over this 
period 𝑝𝑝 remains constant, therefore the changes in 𝑦 are only due to the 
evolution in the states of the system. 

𝑡𝑡𝑘𝑘  𝑡𝑡𝑘𝑘−1 𝑡𝑡𝑘𝑘−1 +
𝛥𝛥𝑡𝑡𝑘𝑘

2
 

𝑝𝑝𝑘𝑘−1 

𝑦�𝑘𝑘−1 

𝑦� 

𝑝𝑝 

} 

} 

Δ𝑦�𝑘𝑘  

Δ�̅�𝑥𝑘𝑘  
�̅�𝑥𝑘𝑘−1 = �̅�𝑥𝑘𝑘−1,0 

 

�̅�𝑥 

 �̅�𝑥𝑘𝑘−1,1 

 

𝑦�𝑘𝑘−1,1 

 

𝑦�𝑘𝑘−1,2 = 𝑦�𝑘𝑘  

 

 
FIGURE 3.51: DIAGRAM OF THE EVOLUTION OF THE PROCESS VARIABLE 𝒚  AND THE STATE 𝒙 WHEN 

𝒑 IS CONSTANT 

For a process with one state, the diagram from Figure 3.51 suggests that if 
it is possible measuring the output and the state variable at an intermediate 

point between 𝑡𝑡𝑘−1 and 𝑡𝑡𝑘 , an estimation of the gradient 𝜕𝜙𝑘−1
𝜕𝑥

 can be 
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calculated as the double of the ratio among the change in 𝑦�  over the 
variation of �̅�𝑥, when 𝑝𝑝 remains constant as equation (3.100) shows.  

𝜕𝜙�𝑘−1
𝜕𝑥𝑥

≈ 2
𝑦�𝑘 − 𝑦�𝑘−1,1

�̅�𝑥𝑘−1,1 − �̅�𝑥𝑘−1
= 2

Δ𝑦�𝑘
Δ�̅�𝑥𝑘

 (3.100) 

It is necessary multiply the ratio by 2 because when Δ𝑡𝑡𝑘  is split in a half to 

measure the intermediate point is equivalent to estimate 
𝜕𝜙�𝑘−1/2

𝜕�̅�
. 

If the system presents 𝑛𝑛 states, the equation (3.100) can be generalized 

cutting Δ𝑡𝑡𝑘  in 𝑛𝑛 + 1  parts, estimating 
𝜕𝜙�𝑘−1/𝑛+1

𝜕𝑥
 using the directional 

derivatives approach used in the steady-state RTO presented in section 3.3, 
applied into the dynamic problem as: 

𝜕𝑦�𝑗𝑘
𝜕𝑥𝑥

= (𝑆𝑘)−1 �
𝑦�𝑘,𝑛 − 𝑦�𝑘

⋮
𝑦�𝑘,1 − 𝑦�𝑘

� 

𝑆𝑘 = [𝑠𝑘,1 ⋯ 𝑠𝑘,𝑛]𝑇 
𝑠𝑘,𝑖 = �̅�𝑥𝑘−1,𝑛+1−𝑖 − �̅�𝑥𝑘−1 

(3.101) 

It can be noted that, as the dual approach, it is necessary to ensure a good 
condition number of matrix 𝑆𝑘 for equation (3.101), which is in the same 
direction of estimating accurately the gradients with respect to 𝑝𝑝 imposing 
enough excitation on the system. In addition we can complement the 
possibilities to estimate the gradients with respect of the states using local 
dynamic model identification with the measured data in the intermediate 
points. 

3.7.3 Nested Modifier-Adaptation in Dynamic 
Optimization 

The nested approach presented in section 3.6 can also be extended for the 
case of dynamic optimization. Due to the fact that there is no need to 
estimate the process gradients with respect to the decision variables, it 
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seems to be a good alternative in this context. As it was presented in 
example 3.6.3.5, its application is immediate in terms of modify the NLP 
equivalent of the dynamic optimization. However, the assumption of 
measuring the cost function from the process at the end of the time horizon 
cannot be removed owing to the fact that this value is the performance 
index to update the modifiers. 

In RTO we have shown that the improvement in the performance index 
measured from the process can be used as a criterion to change the value 
of the modifiers. This idea, has the implicit assumption that the changes in 
the process cost function are produced mainly because of the variation in 
the value of the decision variables applied, which, as it was explained in 
previous section, is a consequence of the decision variables proposed by 
the upper layer. Therefore, implicitly there is a one to one relation between 
the modifiers and the value of the cost function. In spite of important 
disturbances, this is true for every steady state reached by the process. 
Nevertheless, as it was pointed in section 3.7.2, under dynamic 
considerations the evolution of the system is also a consequence of its 
natural dynamic response. Therefore, the performance index to update the 
modifiers in the upper layer must reflect the effect that the value of the 
modifiers has on this variable. To obtain this, we can focus our attention in 
equation (3.99), where the evolution of the process variable 𝑦�𝑘 can be 
viewed as a contribution of two factors: 𝑝𝑝𝑘−1 and �̅�𝑥𝑘−1, which also means 
that the change in 𝑦�𝑘  with respect to 𝑦�𝑘−1  is a function of the same 
contributions: 

Δ𝑦�𝑘 ≔  𝑦�𝑘 − 𝑦�𝑘−1 ≈
𝜕𝜙𝑘−1
𝜕𝑝𝑝

(𝑝𝑝𝑘−1 − 𝑝𝑝𝑘−2 ) +
𝜕𝜙𝑘−1
𝜕𝑥𝑥

(𝑥𝑥𝑘−1 − 𝑥𝑥𝑘−2 ) (3.102) 

Being the first term on the RHS of equation (3.102) the contribution of a 
change in 𝑝𝑝 and the second term the influence of the natural response. 
Consequently, the expected change in 𝑦� as a result of a modification in 𝑝𝑝 
can be obtained as: 
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Δ𝑦�𝑘
𝑝 = Δ𝑦�𝑘 −

𝜕𝜙𝑘−1
𝜕𝑥𝑥

(𝑥𝑥𝑘−1 − 𝑥𝑥𝑘−2 ) (3.103) 

Equation (3.103), as well as equation (3.99) in the gradient-based approach, 
is an extension of the performance evaluation of the process in steady-
state. In addition, the objective of the optimization problem is minimizing 
𝑓𝑓;̅ therefore, this expression also must be evaluated in the performance 
index to be used in the upper layer. Taking these two objectives into 
account, we can define the value of the cost function that the upper layer 
must use to update the modifiers as: 

𝑓𝑓�̅�
𝑢𝑝𝑝𝑒𝑟 = 𝜔𝑓𝑓�̅� + Δ𝑓𝑓�̅�

𝑝 (3.104) 

Being Δ𝑓𝑓�̅�
𝑝 the variation of the cost function measured from the process 

due to the change on 𝑝𝑝 and 𝜔 a weighting coefficient. The term Δ𝑓𝑓�̅�
𝑝 can be 

calculated from equation (3.103).  

Correcting the cost function in equation (3.104), implies the use of the 
gradients with respect to �̅�𝑥𝑘  that can be obtained as it was pointed 
previously. 

Regarding the modifiers given by the upper layer in the iterative 
implementation of a receding horizon approach, it is important to note that 
we are looking for a trajectory of the modifiers, not for a fixed optimal 
value as in steady state approach. Considering that a direct search 
algorithm gives only static values to be evaluated in the objective function 
(the process), makes necessary parameterizing the modifiers as a curve in 
time, being the decision variables given by the upper layer the time 
invariant parameters for this trajectory, represented as 𝑃𝜆  and 𝑃𝛾  in 
equation (3.86). 
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𝜆𝜆(𝑡𝑡) = 𝑓𝑓𝜆(𝑃𝜆, 𝑡𝑡) 
𝛾𝛾(𝑡𝑡) = 𝑓𝑓𝛾�𝑃𝛾, 𝑡𝑡� (3.105) 

The proposed implementation of the Nested approach in DRTO is 
summarized in Figure 3.52. 

 
FIGURE 3.52: DIAGRAM OF THE IMPLEMENTATION OF NESTED APPROACH IN DRTO 

3.7.4 Application example  
The proposed implementation of the modifiers in the context of a receding 
horizon problem has been applied in a very simple example. 

It consist in the tank of Figure 3.53, with two sources of inlet water flow 𝑃𝑖𝑛1  
and 𝑃𝑖𝑛2  and an outlet flow 𝑃𝑜𝑢𝑡. The idea is keeping the water level ℎ in a 
reference value ℎ𝑆𝑃. To achieve this goal we can implement a model-based 
optimization that minimizes the distance between the actual liquid level 
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and its reference, manipulating the inlets flow 𝑃𝑖𝑛1  changing the voltage (𝑢𝑢) 
applied to the pump 𝑃1 . Equation (3.106) shows the corresponding 
optimization problem, where we have used a first principle approach to 
model the system. 

 
FIGURE 3.53: DIAGRAM OF THE LEVEL CONTROL IN THE TANK 

min
𝑢(𝑡)

𝑓𝑓 ≔ 𝑒(𝑡𝑡𝑘+1) 

𝐴
𝑑ℎ
𝑑𝑡𝑡

= 𝑃𝑖𝑛1 + 𝑃𝑖𝑛2 − 𝑃𝑜𝑢𝑡(𝑡𝑡), ℎ(𝑡𝑡𝑘) = ℎ0 
𝑑𝑒
𝑑𝑡𝑡

= (ℎ(𝑡𝑡) − ℎ𝑆𝑃)2, 𝑒(𝑡𝑡𝑘) = 0 

𝑃𝑜𝑢𝑡(𝑡𝑡) = 𝑎𝑎𝑉�ℎ(𝑡𝑡) 
𝑃𝑖𝑛1 = 𝑤𝑢𝑢(𝑡𝑡) 
𝑡𝑡 ∈ (𝑡𝑡𝑘, 𝑡𝑡𝑘+1] 
𝑢𝑢 ∈ [𝑢𝑢𝐿,𝑢𝑢𝑈] 

(3.106) 

Here 𝑒 is the accumulated error of the controlled variable, 𝐴 corresponds to 
the transversal area of the tank, 𝑎𝑎𝑉 is the constant of the outlet valve 𝑉1 
and  𝑤 is the constant of the pump to convert the applied voltage into flow. 
To solve the infinite dimensional optimization problem from equation 
(3.106), we have parameterized the decision variable with a zero order 
function:  𝑃𝑖𝑛1 (𝑡𝑡) = 𝑝𝑝𝐹  being 𝑝𝑝𝐹  a constant value.  
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The nomenclature used in this example, as well as the value of the 
parameters are summarized in Table 3.13 and 3.14 respectively. 

TABLE 3.13 NOMENCLATURE EMPLOYED IN THE DYNAMIC TANK 

Variable  Meaning  Units 
𝑃 Volumetric flow 𝑙/𝑚𝑖𝑛𝑛 
𝐴 Transversal area of the tank 𝑐𝑚2 
𝑎𝑎𝑉 Constant of the valve V 𝑐𝑚2.5/𝑚𝑖𝑛𝑛 
ℎ Liquid height 𝑐𝑚 
ℎ𝑆𝑃 Reference of the liquid height 𝑙/𝑚𝑖𝑛𝑛 
𝑒 Error of the liquid height w.r.t. its reference 𝑐𝑚2 
𝑤 Pump constant 𝑙/𝑚𝑖𝑛𝑛𝑉 
𝑢𝑢 Voltage applied to the pump 𝑉 

𝑢𝑢𝐿,𝑢𝑢𝑈 Bounds of 𝑢𝑢 𝑉 
 

TABLE 3.14 VALUE OF THE PARAMETERS EMPLOYED IN THE DYNAMIC TANK 

Parameter  Value 
𝐴 154 
𝑎𝑎𝑉 0.1203 
𝑃𝑖𝑛2  10 
𝑤 13.22 
𝑢𝑢𝐿 0 
𝑢𝑢𝑈 8 

 

The simulated mismatch to be applied in this example corresponds in a 
change in the value of the constant of the valve of the process, while the 
model-based optimization uses its nominal value from Table 3.14. 

𝑎𝑎𝑉𝑃𝑟𝑜𝑐𝑒𝑠𝑠 =
𝑎𝑎𝑉
𝛽

 (3.107) 

Two extreme values of 𝛽 has been used to illustrate the effect of the 
modeling mismatch on the controlled process. Figure 3.54 shows the 
evolution of the system starting from ℎ(𝑡𝑡0) = 5 𝑐𝑚, applying the outcomes 
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from the model based optimization with no corrections. It can be noted 
that the system does not reach the optimum of the process (ℎ = ℎ𝑆𝑃). 

 
 

FIGURE 3.54: EVOLUTION OF THE LIQUID HEIGHT FROM THE PROCESS APPLYING THE MODEL BASED 
OPTIMIZATION WITH MISMATCH 

The gradient-based modifier-adaptation methodology has been applied in 
the example, correcting the gradient of the objective function using 𝜆𝜆. The 
evolution of the liquid height starting from ℎ(𝑡𝑡0) = 5𝑐𝑚 is presented in 
Figure 3.55, for the same values of 𝛽 already used in Figure 3.54. 

 
FIGURE 3.55: EVOLUTION OF THE LIQUID HEIGHT FROM THE PROCESS APPLYING THE MODIFIER-

ADAPTATION METHODOLOGY 

Figure 3.55 shows how the method is able to find the optimum of the 
process, iterating with the gradient of the process, for the two simulated 
mismatches. For the case of 𝛽 = 0.3 it can be noted that the first two 
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iterations (from 𝑡𝑡 = 0 to 𝑡𝑡 = 20) the liquid height follows the tendency of 
the case with no correction, since for these points the value of 𝜆𝜆 has been 
set to 0 and the first gradient has been calculated. After these points, the 
system changes its direction reaching the desired set point. Similarly, in the 
evolution of ℎ(𝑡𝑡) for 𝛽 = 1.7 it can be noted that after the third iteration, 
the system presents corrective actions in order to find the optimum of the 
process with the process derivatives.  

As it was mentioned in section 3.7.3 in dynamic implementation, the 
modifiers can be viewed as a trajectory, since the effect that they have 
depends on the time when they were applied. Figure 3.56 shows the path 
drawn by the modifiers in time, noting that they converge into a stationary 
point when the algorithm has detected the optimum of the process. 

 
FIGURE 3.56: EVOLUTION OF 𝝀 IN THE MODIFIER-ADAPTATION METHODOLOGY 

 

Starting from the same initial point ℎ(𝑡𝑡0), the nested approach has been 
implemented. Bearing in mind the evolution of 𝜆𝜆 from Figure 3.56 a first 
order dynamics has been implemented for 𝑓𝑓𝜆 (equation (3.108)).  
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𝜆𝜆(𝑡𝑡𝑘) =
𝑃𝜆2

𝑃𝜆1
+ �𝑃𝜆3 −

𝑃𝜆2

𝑃𝜆1
� exp�−�𝑃𝜆1�𝑡𝑡𝑘� (3.108) 

The reason why we use this function is because it converges into the 

stationary point 𝑃𝜆
2

𝑃𝜆
1 when 𝑡𝑡𝑘 → ∞ and we can interpret the parameters 𝑃𝜆

𝑖  

as: the stationary point of 𝜆𝜆, the expected time constant of the evolution of 
the modifier and its initial value. In spite of this, other functions might also 
be used provided their convergence into a stationary point. 

The evolution of the controlled liquid height when the nested modifier-
adaptation approach is applied in the example of the dynamic tank is 
represented in Figure 3.57. 

 
FIGURE 3.57: EVOLUTION OF THE LIQUID HEIGHT FROM THE PROCESS APPLYING THE NESTED 

MODIFIER-ADAPTATION METHODOLOGY 

It can be noted that applying the corrections on the gradient of the model 
using the outer optimization, the system has converged into the real 
optimum for both cases tested. Regarding the time that the method 
requires to detect the process optimum, we can say that it has increased by 
a factor of two with respect to the gradient-based approach. This can be 
explained taking into account that the upper optimization has augmented 
the number of decision variables with respect to the number of modifiers, 
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which implies that the gradient-free algorithm needs more iterations to 
look for the optimum of the process.   

Regarding the trajectory of the modifiers, it can be noted from Figure 3.58 
that the path has reached at the end of the optimization the same values 
than the ones obtained with the gradient-based implementation. 

 
FIGURE 3.58: EVOLUTION OF 𝝀 IN THE NESTED MODIFIER-ADAPTATION METHODOLOGY 

To test the behavior of the modified optimization under an incipient 
mismatch: we have increased the flow rate of 𝑃𝑖𝑛2  in the process following a 
step and a ramp function starting from 𝑡𝑡𝐷. With respect to the model, this 
value has remained unchanged at its nominal value (Table 3.14). Figure 
3.59, shows the evolution of the liquid height for the gradient-based and 
the nested modifier adaptation. In the first column it is presented the 
response of the process under the step change, while the second column 
shows the same but for the ramp case. In the figure it is also presented the 
changes in the incoming flow in the last row. 
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FIGURE 3.59: EVOLUTION OF THE PROCESS UNDER CHANGES IN  𝑭𝒊𝒏𝟐  FOR THE GRADIENT-BASED 
AND THE NESTED MODIFIER-ADAPTATION METHODOLOGY 

As in the nominal values of 𝑃𝑖𝑛2 , we can  note that the modifier adaptation 
methodology is able to detect a point closer to the optimum of the process 
both for the gradient-based and the nested approach.  
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Concerning the gradient-based methodology, the evolution of the liquid 
level changes with respect to the nominal case from Figure 3.55, just after 
the change in the influent is produced, being more notorious the effect of 
the step change. Nevertheless, the system immediately updates the 
corrections with the measurements and the process is driven into its 
optimum in a similar way than the previous example. 

On the other hand, the nested methodology converges into a region closer 
to the optimum of the process, noting the presence of an optimality gap in 
the ramp scenario. This is produced because of the decrease in the size of 
the simplex when the objective function is improved, which is equivalent to 
a reduction in the search region as time passes and with this the 
possibilities to adapt it to new conditions. The effect of the disturbances in 
the evolution of the liquid height can be viewed as an increase in the 
perturbations that the NM algorithm uses to evaluate the new edges of the 
simplex after the occurrence of the disturbance. 

Even though in both cases the nested optimization reached a region close 
to the real optimum of the process, it can be pointed out that its 
convergence is very sensitive with respect to its initial values, noting that if 
the sign of the initial iterant of 𝑃𝜆2 is different to the optimal one, the 
optimization was not able to detect the optimum and it got stuck in a sub-
optimal point.  

3.7.5 Remarks on the Dynamic Implementation of 
the Modifier-Adaptation Methodology 

The assumption of measuring the process quantities at the final time of 
each iterative implementation is one of the most restrictive constraints of 
this proposal because of the problems related with the stability that can be 
experienced. On the other hand, the need to estimate the gradients of the 
process with respect to the state variables, can also be a very difficult 
problem both from the point of view of implementation it (in general, the 
state variables cannot be measured) and the state estimation for systems 
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with many states, which requires enough energy to ensure either a well-
conditioned matrix 𝑆 or an accurate identification experiment. This can 
produce important problems in the stability of the system that might be 
unjustifiable with respect to the profit earned with the DRTO method. 

Anyhow, we can say that for the system studied, with only one decision 
variable in the optimization, waiting until the final time to run another 
DRTO iteration, and with only one state the proposed approach seems to 
work in an adequate way, being possible to overcome the modeling 
mismatch tested and also adapting the system for changing uncertain 
conditions produced when the value of the disturbances are modified. This 
is based in the fact that the process has been driven from a feasible to its 
optimal point using only the corrections in the gradient of the cost function. 

Regarding the nested implementation, the sensitivity of the upper layer 
with respect to the initial points, makes necessary to study other strategies 
to calculate the profit index to update the modifiers. On the other hand, the 
idea of iterating over the trajectory needs to be more developed in terms of 
its characteristic as well as the number of parameters required to define it 
because of the growth in the number of iterations required to converge. 

Therefore, we can argue that for a very particular kind of system, we have 
presented a proposal to apply the modifiers ideas in the context of dynamic 
optimization. Far from being a general strategy to be implemented as the 
steady-state approach, the ideas presented in this section can be used as a 
starting point for future and more general applications.  

3.8 Conclusions  
Modifier-adaptation technique is a strong proposal for RTO to deal with the 
modeling mismatch that can be produced in the modeling stage. Since this 
is a fact that cannot be avoided because of the inherent partial knowledge 
of the process and/or the necessary simplifications that must be done in 
order to have a solvable model to be used in optimization, it is mandatory 
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its application (or the application of the other methods to overcome 
uncertainty in the model).  

Even though this methodology allows converging into the real optimum of a 
process using an inaccurate model, there are open issues to be exploited. In 
this work we have tried to face three of them providing results that 
contribute to the advance in this field. 

Regarding the violation of the constraints that can be produced in the 
evolution of the modifier method, we have presented the application of an 
intermediate stage between the RTO and the control layer that handles the 
occurrences of infeasibilities. With this methodology we can cope with 
them assuming enough control availability. Also, we have shown a second 
controller to take into account the dual constraint when the gradient of the 
process is estimated using the approximation of the directional derivatives, 
ensuring, if possible, an accurate estimation of the process derivatives. 
About the pairing of the manipulated set point and the inequality constraint 
using the steady-state gains seems to be a good idea, bearing in mind that 
there are two kinds of inequality constraints: primal and dual, being the 
first ones more important to keep them in the feasible region. With the 
application of the proposed controller we have avoided successfully the 
occurrences of infeasibilities generated as a consequence of the reduction 
of the original feasible region as a product of the dual constraint in a test 
example.  

Under the assumption that the infeasibility is produced because of the RTO 
layer has detected that the optimum of the process lies on the inequality 
constraint, but the modification of the model is not good enough to 
estimate in a correct way the process constraint, the controller can also be 
understood as a way to follow the complementary slackness condition of 
the process. 
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With respect to the gradient estimation, we have shown an alternative 
approach, with the purpose of increasing its robustness and simplify its 
implementation. The idea behind is to substitute the errors in the gradients 
by a direct correction given by an upper gradient-free optimization layer, 
that can operate without constraints. 

Regarding the comparison of the proposed nested methodology with the 
dual modifier adaptation, it can be said that, for the set of examples tested, 
the convergence to the real optimum is quite similar to the case when a 
relaxed dual constraint is employed for a noise free scenario. On the other 
hand, when the process measurements are contaminated with noise, the 
method behaves in a more robust way. Also it can be said that the 
implementation of the nested methodology is easier than the dual one, 
since one of the most sensitive parameters, the degree of excitation of the 
system to estimate accurately the gradient (the lower bound of the dual 
constraint) is neglected, as well as the additional non convex dual 
constraint that has no physical meaning in the real system.  

Since the proposed methodology has found the real optimum of the 
process in a robust way, it makes the nested modifier-adaptation method 
an attractive alternative for real-time implementation. 

Also, we can conclude that the reformulation of the modifier adaptation 
methodology as a nested optimization problem, allows understanding in a 
better way the concept of modifiers. This permits looking for additional 
alternatives to update the modifiers, with the idea of finding the best 
update algorithm that can be applied into the system, i.e., if the system has 
not important influences in the process noise and the process gradient is 
cheaper to obtain, then a gradient based methodology can be applied. 
However, if there is noise in the system and/or the gradient of the process 
is not available or is expensive to obtain, the use a direct search algorithm 
can be a better alternative, working in a similar way than the field of model 
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optimization does, where the best optimization algorithm depends on the 
type of the problem to be solved. 

A proof of the equivalence of the optimality conditions between the 
gradient based modifier-adaptation and the nested modifier methodology 
has been provided. 

Finally, concerning with the implementation of the modifier-adaptation 
technique in the context of dynamic optimization, we have proposed a very 
restricted approach to converge to the real optimum of the process in a 
receding horizon implementation for the gradient based and the nested 
approach. The main assumption to apply these ideas is the possibility to 
measure the process variables at the end of the time horizon, which can 
produce instability issues in many applications.  

Anyway, for the example tested, we have shown that if we are able to 
measure the objective function at the end of the prediction horizon, using 
an estimation of the gradient of the objective function corrected with the 
natural evolution of the system it is possible to detect the real optimum of 
the process modifying the gradients of the objective function. On the other 
hand, the implementation of the nested approach correcting the 
performance index with the evolution of the system and the definition of 
the modifier trajectory, allows finding the optimum of the process, 
nevertheless, since the path of the modifiers must be parameterized it 
produces an increase in the number of decision variables, translated in a 
slow convergence rate to the stationary point. 
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4.1 Final Conclusions 
This work presents a study of how to handle the uncertainty present in the 
process optimization from the point of view of the stochastic nature of 
process variables and the modeling mismatch that can be experimented in 
the model-based optimization implemented in the RTO layer.  

In chapter 2 we have presented the application of stochastic optimization 
for a hydrodesulfuration unit. With the aim to overcome the unknown and 
random behavior of the quality of the raw materials and the products to be 
treated, we have tested the implementation of two methodologies: chance 
constrained optimization and two-stage programming.  

We have proposed an optimal policy to be applied in open loop that 
guarantees a given degree of feasibility in the process constraints, in spite 
of the uncertain behavior of the random variables, solving a dynamic 
optimization problem in the continuous domain of time. Regarding the  
implementation the conclusions are:  

- In the two-stage optimization, a solution method has been 
proposed for the scenario aggregation methodology that allows 
obtaining a unique trajectory of the first-stage decision variables 
using the single shooting approach. 
 

- The discrete optimal trajectories obtained with the scenario 
approach in the second stage of the two-stage optimization, can be 
efficiently generalized for the original distribution probability by 
means of an interpolation step tested with Montecarlo simulations. 
Using the interpolations and the Montecarlo simulations it is 
necessary to redefine the estimated value of perfect information, 
since the application of the decision variables of the second stage 
depends on the interpolation method chosen.  
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- The probability of fulfillment of the inequality constraints in the 
chance constrained optimization can be calculated with the inverse 
mapping technique, estimating the bounds of the integrals solving a 
parameter estimation problem with the single shooting approach.  
 

- Both, two-stage and chance constrained optimization have been 
successfully applied in the hydrodesulfuration unit in terms of 
optimality and feasibility.  
 

- Comparing the outcomes obtained with the two methods, it seems 
to be more efficient the use of the two-stage optimization. 
However, this requires an intermediate future step where the 
random variables must be estimated, unlike the chance constrained 
optimization where no additional information is required. 
 

- Due to the high computational times observed, we have proposed 
the open loop execution based on an interpolation stage. 
Nevertheless, the implementation in a real application requires 
improving this time.  

In chapter 3 we have studied the modifier-adaptation methodology as an 
efficient way to deal with the unavoidable modeling mismatch in model-
based optimization, oriented to reach the optimum of a process. Also it has 
been discussed and proposed some improvements to overcome the 
implementation issues of this methodology in terms of: avoiding violations 
in the process constraints, skipping the estimation of the process gradient 
and applying the modifiers in dynamic optimization.  

In this chapter we have proposed and tested methodologies that increase 
the field of application of this approach, making it feasible, robust and 
easier to apply in real conditions. From the specific objectives for this part 
of the thesis the conclusions are: 
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- We have studied and tested the generalities of the modifier 
adaptation methodology comparing them with the classic two-step 
approach, noting that the systematic correction of an erroneous 
model, and in particular its curvature, allows finding the real 
optimum of a process. 
 

- Using previous analysis from literature and a test example, we have 
identified the main challenges of this methodology: the presence of 
infeasible points in its evolution, the problems related with the 
process gradient estimation step and the possibility to apply it in 
dynamic optimization.  
 

- We have reduced the occurrence of infeasibilities in the evolution 
of the methodology, implementing an infeasibility controller that 
corrects the decision variables given by the RTO layer when the 
constraints are violated. Also we have proposed a second controller 
to estimate the process gradient accurately if needed. 
 

- We have detected the optimum of the process without the need to 
estimate the process gradients, reformulating the modifier-
adaptation methodology as a nested optimization problem using a 
gradient-free algorithm in the upper optimization layer.  
 

- The reformulation as a nested problem allows increasing the 
application of the modifier-adaptation approach, using different 
update methods according to the characteristics of the system.  
 

- We have tested the nested approach in several examples, noting 
that the method detects the optimum of the process in a similar 
way than the gradient-based approach when the process gradient is 
well estimated, but without the need to estimate the process 
derivatives which makes its implementation easier. 
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- Also, we have increased the field of application of the modifier-

adaptation methodology for those kinds of systems where the 
gradient is not available or is affected with process noise, showing a 
robust behavior in these conditions. The methodology has also 
been tested in a runt-to-run batch application with good results 
 

- Regarding the implementation of the modifiers in dynamic 
optimization, we have proposed some preliminary ideas, correcting 
the gradients of the process with its natural dynamic response. Also 
we have applied the same idea to the nested approach for the 
same kind of problems. This first approach can be viewed as a 
starting point for future work. 

As a final conclusion we can mention that we have studied and proposed 
methods oriented to implement and improve the treatment of the 
uncertainties in process optimization, from the point of view of stochastic 
behavior of the variables and the partial knowledge of the process. 

4.2 Open Issues 
From the developments proposed in this thesis, it is necessary to comment 
what we think that it is necessary to improve and keep researching. 

For the stochastic optimization, it is mandatory closing the loop of the two-
stage and the chance constrained implementation, which only can be done 
if the computational times are reduced considerably. To do this, we plan to 
continue the study of reduction techniques that use previous values of the 
random variables to decrease its expected range in the next optimization. In 
the same way, other numerical environments can be used to reduce the 
computation times. Also, it is necessary testing these methodologies in a 
wider range of applications.  
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Concerning the applications for the modifier-adaptation method, we 
propose the study of other type of controllers to manage the infeasibilities 
together with the influence on the performance of this intermediate layer 
with respect to the pairing between the controlled inequality and the 
manipulated set-points. 

In the nested modifier-adaptation it is necessary to extend the test with 
real world applications.  

Finally, in the dynamic implementation of the modifier-adaptation and the 
nested approach for a receding horizon problem, it is compulsory removing 
the condition of waiting until the end prediction horizon and continue the 
research in order to extend the application to this important type of 
systems. 
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4.3 Conclusiones Finales 
En este trabajo se ha presentado un estudio sobre el manejo de las 
incertidumbres en la optimización de procesos desde el punto de vista del 
comportamiento aleatorio de las variables, así como de los errores de 
modelado que pueden encontrarse en la capa de optimización en tiempo 
real.  

En el capítulo 2 se ha presentado la aplicación de técnicas de optimización 
estocástica. Con el objetivo de manejar el comportamiento aleatorio de la 
calidad de las materias primas y de los productos a ser transformados, se ha 
probado la implementación de dos metodologías: optimización de dos 
etapas y optimización probabilística. 

Se ha propuesto una política de operación óptima a ser aplicada en lazo 
abierto, que garantiza la factibilidad en la operación a pesar del 
comportamiento aleatorio de las variables de proceso, mediante la 
resolución de un problema de optimización dinámica en el dominio 
continuo del tiempo. Con respecto a la implementación, las conclusiones 
son: 

- Para la aplicación de la optimización de dos etapas, la técnica de 
agregación de escenarios implementada con el método de single 
shooting ha permitido obtener una única trayectoria para la 
primera etapa. 
 

- Las soluciones óptimas obtenidas para la segunda etapa utilizando 
la discretización de la función de probabilidad original, han sido 
generalizadas eficientemente mediante la propuesta de 
interpolación. Es importante destacar que esta generalización 
implica redefinir el concepto de valor estimado de información 
perfecta, puesto que la aplicación de las variables de decisión en la 
segunda etapa depende del método de interpolación escogido. 
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- Para la optimización probabilística, la probabilidad de las 
restricciones de desigualdad se ha calculado mediante el método 
de mapeo inverso, estimando los límites de integración en las 
variables aleatorias resolviendo un problema de estimación de 
parámetros mediante el método de optimización secuencial. 
 

- Tanto la optimización de dos etapas como la de restricciones 
probabilísticas han sido aplicadas de manera satisfactoria en un 
ejemplo de una unidad de hidrodesulfuración, en términos de 
optimalidad y factibilidad. 
 

- Comparando los resultados obtenidos con ambos métodos, parece 
ser más eficiente el uso de la optimización de dos etapas en este 
sistema, sin embargo este requiere un paso intermedio de 
estimación de las variables inciertas (fuera de línea), a diferencia de 
la optimización probabilística que no necesita información 
adicional. 
 

- Debido a los tiempos computacionales observados, se ha propuesto 
la aplicación en lazo abierto utilizando el método de interpolación. 
Sin embargo, la implementación final requiere mejorar los tiempos 
de resolución.  
 

En el capítulo 3 se ha estudiado el método de adaptación de modificadores 
como una técnica que permite detectar el óptimo de un proceso utilizando 
modelos erróneos, derivados a partir de un conocimiento parcial del 
sistema real. A partir de este estudio, se han identificado los desafíos que 
presenta este método, para los cuales se han propuesto algunas mejoras en 
términos de: evitar violaciones en las restricciones del proceso, proponer 
una alternativa que evite la necesidad de estimar el gradiente del proceso y 
probar la aplicación de los modificadores en optimización dinámica. 
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En este capítulo se han propuesto y probado métodos que incrementan el 
campo de aplicación de esta técnica, haciendo su implementación más 
robusta, factible y sencilla de aplicar para condiciones más cercanas a la 
realidad. Para los objetivos específicos de esta parte de la tesis, las 
siguientes conclusiones se pueden listar: 

- Se ha estudiado la técnica de modificación de adaptadores, 
comparándola con el método clásico de RTO basado en dos etapas 
para un ejemplo de simulación. Los resultados indican que la 
corrección de un modelo (y en especial su curvatura), permite 
detectar el óptimo de un proceso. 
 

- Mediante el análisis previo de la literatura y con la ayuda de un 
ejemplo, se han identificado algunos desafíos que requieren 
estudio en el método de adaptación de modificadores: 
infactibilidades en la evolución hacia el óptimo, problemas 
relacionados con la estimación del gradiente del proceso y 
posibilidad de aplicación en optimización dinámica.   
 

- Se ha reducido la ocurrencia de infactibilidades en la convergencia 
del método, mediante la implementación de un controlador de 
infactibilidades que se activa cuando las restricciones son violadas, 
modificando el valor dado por la capa de RTO. Adicionalmente se 
ha implementado un segundo controlador (dual) que mantiene la 
excitación del sistema. 
 

- Se ha implementado un método que permite detectar el óptimo del 
proceso sin estimar los gradientes del mismo, mediante la 
reformulación del método original como un problema de 
optimización anidado, que utiliza un algoritmo de optimización de 
búsqueda directa en la capa superior. 
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- La reformulación como una optimización anidada permite 
aumentar el campo de aplicación del método original, puesto que 
es posible escoger el método de actualización dependiendo de las 
características del sistema. 
 

- Se ha probado el método de optimización anidada en varios 
ejemplos, mostrando como el método propuesto converge hacia el 
óptimo del proceso  (o una región cercana a él) de la misma forma 
como lo haría el método basado en gradientes si es que las 
derivadas del proceso estuviesen bien estimadas. Lo anterior 
descartando la información de las derivadas del proceso, lo que 
adicionalmente simplifica su implementación. 
 

- Adicionalmente, se ha ampliado la aplicación del método de 
adaptación de modificadores para aquellos sistemas en los cuales el 
gradiente no está disponible o está contaminado con ruido del 
proceso, lo que implica un comportamiento más robusto del 
método en condiciones reales. 
 

- Referente a la implementación de los modificadores en la 
optimización dinámica, se han propuesto algunas ideas 
preliminares sobre la corrección de los gradientes del proceso 
utilizando la respuesta natural del sistema. Adicionalmente se ha 
implementado el método anidado para el mismo tipo de 
problemas. Este es un primer intento que puede servir como base 
en futuros desarrollos.  
 

Como conclusión final, se puede indicar que se han estudiado y propuesto 
métodos que permiten el manejo de las incertidumbres y mejoran su 
tratamiento en la optimización de procesos, tanto desde el punto de vista 
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del comportamiento aleatorio de las variables de proceso, como de los 
errores de modelado derivados del conocimiento parcial del sistema real. 

4.4 Trabajo Futuro 
A partir de lo presentado en esta tesis, se cree necesario comentar los 
temas que se abren y que deben seguir explorándose. 

Desde el punto de vista de la optimización estocástica, es imprescindible 
aplicar la optimización de dos etapas y la probabilística cerrando el lazo de 
control, lo cual sólo puede hacerse si es que se reducen los tiempos 
computacionales de manera considerable. Para realizar esto, se planea 
continuar la investigación con el estudio de técnicas que permitan reducir el 
rango esperado en las variables aleatorias en la optimización siguiente, a 
partir de las medidas disponibles del proceso. En la misma dirección, 
también se compararán las posibles mejoras obtenidas al probar otros 
programas computacionales. Adicionalmente se propone la 
implementación de estos métodos en otros ejemplos de optimización de 
procesos. 

Para el caso de las aplicaciones propuestas en el campo de la optimización 
en tiempo real, se propone el estudio del desempeño de otro tipo de 
controladores en el corrector de infactibilidades así como de la influencia 
que tiene el emparejamiento de las desigualdades controladas con respecto 
a las consignas manipuladas. 

En el método de optimización anidada, se propone continuar con las 
pruebas utilizando sistemas reales. 

Por último, referente a la implementación dinámica para un problema de 
horizonte móvil, es completamente necesario buscar formas de eliminar la 
restricción de esperar hasta el final del horizonte de predicción y así 
continuar con la investigación referente a la aplicación de estos métodos en 
sistemas dinámicos. 
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