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Abstract—This letter presents a novel inter-sensor regis-

tration framework specially designed to register Sentinel-3

(S3) operational data using the Sentinel-2 (S2) instrument

as a reference. The substantially higher resolution of

the Multi-Spectral Instrument (MSI), on-board S2, with

respect to the Ocean and Land Color Instrument (OLCI),

carried by S3, makes the former sensor a suitable spatial

reference to finely adjust OLCI products. Nonetheless,

the important spectral-spatial differences between both

instruments may constrain traditional registration mech-

anisms to effectively align data of such different nature. In

this context, the proposed registration scheme advocates

the use of a topic model-based embedding approach to

conduct the inter-sensor registration task within a common

multi-spectral semantic space, where the input imagery

is represented according to their corresponding spectral

feature patterns instead of the low-level attributes. Thus,

the OLCI products can be effectively registered to the

MSI reference data by aligning those hidden patterns that

fundamentally express the same visual concepts across the
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sensors. The experiments, conducted over four different

S2 and S3 operational data collections, reveal that the

proposed approach provides performance advantages over

six different inter-sensor registration counterparts.
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I. INTRODUCTION

From early years, image registration has played a

fundamental role in many remote sensing applications,

where analyzing multiple images of the same scene

is important. For instance, image fusion [1], change

detection [2], scene classification [3] and image super-

resolution [4] are among the most popular applications

where the lack of geometrical misalignments is a key

factor. In general, the image registration process consists

of overlaying two or more images of the same scene

which have been acquired at different times, from dif-

ferent viewpoints or/and using different imaging sensors.

More specifically, this process can be defined as geomet-

rically transforming one or more input images, which are

called slave images, to the coordinate system of a given

reference image, known as master image. In order to

achieve this goal, four main steps are typically conducted

by automatic registration algorithms [5]: (a) characteriza-

tion, (b) matching, (c) transformation and (d) projection.

In the first step (a), the slave and master images are
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characterized by extracting distinctive image structures

or features. In (b), the considered image characteristics

are compared to one another in order to find the spatial

correspondences according to a specific similarity cri-

terion. In the third step (c), the transformation model

is defined and the corresponding alignment parameters

are estimated. Finally, the fourth step (d) deals with the

generation of the modified version of the slave image by

applying the previously estimated transformation and a

particular interpolation function.

In the literature, it is possible to find two main trends

when uncovering such transformations from airborne

and space optical data [6]: area-based and feature-

based methods. On the one hand, area-based registration

techniques directly use pixel intensity values to find

the geometric correspondence between the slave and

master images by optimizing a specific similarity metric.

Cross-correlation (CC) and mutual information (MI) are

the most popular metrics for registering mono- and

multi-modal optical data, respectively. Whereas CC-like

methods pursue to maximize the correlation over the

image overlap, MI-based approaches aim at maximizing

the degree of statistical dependence between the im-

ages, which eventually makes this kind of techniques

more suitable for inter-sensor scenarios where intensity

changes across sensors are logically expected [5]. De-

spite the inherent simplicity of the area-based registration

approach, these methods are still in use because of

their simple hardware implementation in real remote

sensing environments [7], [8]. Nonetheless, the high

computational demand when handling complex image

distortions and data may constrain the straightforward

nature of these characterization schemes. On the other

hand, feature-based registration techniques make use

of a set of representative points extracted from both

slave and master images to reduce the amount of input

data. These methods require defining how the corre-

sponding interest points are located, characterized and

paired according to a specific matching strategy. For

instance, Ma et al. present in [9] a remote sensing

image registration approach which employs a modified

version of the Scale-Invariant Feature Transform (SIFT)

algorithm, together with a robust key-point matching

protocol that combines position, scale and orientation

to increase the number of significant correspondences.

Another relevant work can be found in [10], where Fan

et al. define a novel matching algorithm specifically

designed for Synthetic Aperture Radar (SAR) imagery.

In particular, this approach makes use of a patch-based

descriptor that includes local intensity values as well

as geometric features to relieve the speckle noise effect

when co-registering SAR data. In [11], Yang et al. use

a multi-scale deep-learning architecture to uncover more

representative feature points to register multi-temporal

remote sensing data.

Despite the potential of all these approaches, the

inherent complexity of the multi-spectral image domain,

together with the peculiarities of the real-world sensed

data, still raise some challenges when registering air-

borne and space optical data from different operational

instruments. Note that the registration of large Earth

surface areas becomes particularly challenging when

considering rather different spectral-spatial image reso-

lutions and, hence, certain data relaxations may be useful

in operational scenarios [6]. In [12], Yan et al. introduce

two main data simplifications when registering Landsat-

8 OLI and Sentinel-2 MSI operational data in order

to reduce the process complexity while also obtaining

a sub-pixel precision. First, the authors only consider

the near infra-red (NIR) bands to estimate the inter-

sensor displacements. Second, these displacements are

effectively modelled by affine transformations.

Another important reason to simplify the problem

intricacy in operational environments is the increasing
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demand of on-board imaging applications. Some of

the most widely used processing techniques, including

the image registration task, are recommended to be

conducted from an on-board perspective in order to

relieve the ground-segment workload. Nonetheless, the

physical limitations of the hardware carried by remote

sensing platforms may impose important operational

constrains that motivate the use of simplified versions

of the data registration process. Specifically, a common

practice consists in conducting band-to-band registration

in order to align each slave image band to the closest

master one. In [13], Zhang et al. propose to register

ZiYuan-3 and GeoEye-1 multi-spectral operational data

considering the corresponding panchromatic images as

reference. However, this band-to-band strategy requires

a suitable spectral connection between sensing instru-

ments, which may not be always possible. Alternative

methods show the effectiveness of reducing the input

data dimensionality by means of shared inter-sensor

projection spaces. This is the case of the work pre-

sented by Goncalves et al. in [14] which makes use of

the Principal Component Analysis (PCA) transformation

to project and register remote sensing data. Notwith-

standing the remarkable performance achieved by these

methods in actual operational scenarios, there is still

room for improvement because of the high complexity

of unifying rather different spectral information into a

common characterization space when conducting inter-

sensor registration. This is particularly the case for the

most important currently operational Earth Observation

missions where Copernicus plays an important role.

The Copernicus programme is a joint action of the

European Commission, the European Space Agency and

the European Environment Agency in order to supply

continuous Earth information for environmental and

security applications. Within the programme resources,

Sentinel-2 (S2) [7] and Sentinel-3 (S3) [8] missions are

focused on the global monitoring of the Earth surface

by means of multi-spectral imagery and, hence, both

operations share important synergies. The S2 mission

includes two identical satellites (S2A and S2B) which

incorporate the Multi-Spectral Instrument (MSI) imaging

sensor. This instrument provides 13 bands spanning from

443 to 2190 nm spectral range, with spatial resolution

up to 10 meters per pixel (mpp). Analogously, the S3

mission comprises a pair of dedicated satellites (S3A and

S3B) that carry the Ocean and Land Color Instrument

(OLCI) sensor that provides 21 spectral bands ranging

from 400 to 1020 nm, with spatial pixel size of 300 mpp.

Being the spatial resolution of the MSI substantially

higher than the OLCI’s creates an ideal scenario to

conduct an inter-sensor image registration process where

the higher spatial resolution of the former sensor can

be used to correct possible global misalignments in the

latter.

In that scenario, this letter proposes a novel inter-

sensor image registration framework that makes use of a

semantic embedding space based on probabilistic topic

models to improve the functional registration scheme

when considering S2 MSI and S3 OLCI operational data.

From an inter-sensor perspective, registration mecha-

nisms require a particular spectral association to conduct

the registration process. However, this connection may

be difficult to define in actual production environments,

or even it may become ineffective when involving sen-

sors of a rather different nature, such could be the case

of MSI and OLCI. Topic models have been successfully

used in remote sensing due to their potential to effec-

tively manage airborne and space optical data at a higher

abstraction levels, being probabilistic Latent Semantic

Analysis (pLSA) one of the most effective models [15].

Nonetheless, this kind of probabilistic models has not yet

been used to register inter-sensor data despite their capa-

bility to relate visual semantic information [16], which
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may be a key factor to overcome inter-sensor dissimilar-

ities. From a practical perspective, topic models aim at

uncovering hidden generative patterns (known as topics)

from an input dataset, and also to express the whole data

collection as a probability distribution of topics instead

of the observable low-level features. The main issue

when registering inter-sensor imagery is the fact that

the slave and master multi-spectral domains are not the

same, since they are both defined by different imaging

sensors. To address this issue, we develop a novel inter-

sensor registration scheme that projects the multi-source

input data into a topic-based semantic embedding, where

the registration process can be conducted according to

the uncovered spectral patterns. Our experiments, which

include operational S2 MSI and S3 OLCI data and six

different registration alternatives, show the advantages

of the proposed approach for inter-sensor image regis-

tration.

II. METHODOLOGY

A. Inter-Sensor Image Registration Framework

The proposed S2 and S3 inter-sensor image regis-

tration framework consists of the following three steps

(Fig. 1):

1) Data preparation: Two different encoding proce-

dures are adopted to unify S2 MSI and S3 OLCI

spatial resolutions. On the one hand, a straightfor-

ward pixel-wise characterization approach is used

for S3, where spatial pixels represent topic model

documents (d) and unsigned integer 16-bit band

reflectance values serve as the model word-counts

(n(w, d)). On the other hand, a Bag-of-Words ap-

proach [1] is conducted to encapsulate S2 voxels,

representing S3 pixels, as histograms of visual

words. Note that the scaling ratio between both

instruments is set beforehand due to the prior

knowledge of the relative sensor resolutions, which

15× in this work. Initially, S2 data is characterized

as vectorized 3×3×13 image patches with one pixel

overlapping. Then, the k-Means clustering algo-

rithm is globally applied to these primitive features

in order to define the visual vocabulary containing

100 clusters. This setting provides a fine granularity

of S2 spectral patterns [1]. Subsequently, the S2

image is tiled into 15 × 15 × 13 image patches.

Finally, the S2 local primitive features (3× 3× 13)

within each S3 pixel (15 × 15 × 13) are encoded

as a single histogram of visual words by accu-

mulating the number of local features into their

closest cluster. From this process, we obtain two

different collections of M documents: one for S3,

D3 ∈ NM×21, and another for S2, D2 ∈ NM×100.

Note that M represents the number of spatial pixels

in S3 and also the number of 15× 15 voxels in S2.

2) Semantic embedding: Following the asymmetric

formulation of the standard pLSA model [17],

we estimate the Φ ∼ p(z|d) and Θ ∼ p(w|z)

parameters for both D3 and D2 collections by

maximizing the complete log-likelihood function

using the Expectation-Maximization (EM) algo-

rithm. In particular, the EM procedure works in

two iterative stages: the E-step [Eq. (1)], where

the expected likelihood value is calculated given

the current parameter estimates, and the M-step

[Eqs. (2)-(3)], where the new optimal parameter

values are computed according to the current state.

In this work, we use a hidden latent space with 3

units (Z = 3) and 1000 EM iterations as default

convergence settings.

p(z|w, d) =
p(z, w, d)
p(w, d)

=
p(w|z)p(z|d)∑
z

p(w|z)p(z|d)
(1)

Φ ∼ p(z|d) =

∑
w

n(w, d)p(z|w, d)∑
z

∑
w

n(w, d)p(z|w, d)
(2)
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Fig. 1. Proposed Sentinel-2 and Sentinel-3 inter-sensor image registration framework.

Θ ∼ p(w|z) =

∑
d

n(w, d)p(z|w, d)∑
w

∑
d

n(w, d)p(z|w, d)
(3)

Since D2 and D3 collections are independently

processed to estimate Φ2 ∈ RM×Z and Φ3 ∈

RM×Z respectively, we conduct an additional post-

processing optimization step to align both semantic

characterizations, that is, sorting the slave topic-

document representation according to the master

one. We find the optimal permutation matrix Π

that minimizes the inter-sensor topic-document `2

norm as Eq. (4) shows. Finally, Eq. (5) is used

to apply such permutation to Φ3. Note that the

numeric subscripts are used to identify S2 and S3

parameters.

Π = arg minΠ∗ ‖ Φ2 −Π∗ Φ3 ‖2 (4)

Φ3 = (ΠΦ3) (5)

3) Registration: This step estimates the misalignment

between the master and slave images, and also

estimates the final registered result. In particular, a

straightforward band-to-band registration approach

[12] has been adopted, considering an affine trans-

formation model together with the MI metric and

the One Plus One Evolutionary Optimizer [18] in

order to estimate the corresponding displacements

between the paired topic characterizations. Then,

the global transformation τ between the master and

slave images is computed as,

τ =
∑
i

τ(Φi
2,Φ

i
3)

Z
, (6)

where the τ operator estimates the affine displace-

ment according to the aforementioned MI-based

registration process, Φi
2 and Φi

3 represent the ith

document-topic characterizations for S2 and S3 and

Z is the number of considered topics (3). Finally,

the average inter-sensor misalignment (τ ) is applied

to each band of the input slave image to generate

the final registered result. It is important to note

that we make use of the affine model because this

transformation has been shown to be effective for

Sentinel Level-1C operational data [12].

III. EXPERIMENTS

A. Datasets

Four coupled S2 MSI and S3 OLCI image sets

have been used for the experiments (Fig. 2). All the

considered images are operational data products down-

loaded from the Copernicus Open Access Hub (https:

//goo.gl/uXmPxL). Besides, they have been processed

using the SNAP (Sentinel Application Platform) soft-

ware by re-sampling the S2 MSI product to 20 mpp

spatial resolution and re-projecting the S3 OLCI image

to the corresponding S2 tile. The products have been

also atmospherically corrected, generating a final size of

June 7, 2019 DRAFT

https://goo.gl/uXmPxL
https://goo.gl/uXmPxL


6

5490 × 5490 × 13 pixels in S2 and 366 × 366 × 21 in

S3.

• Andujar (AN): The first image set contains two

S2 and S3 data products acquired over the Sierra

de Andújar (Spain). In particular, both images were

captured on 10 March 2017 and they cover be-

tween (38.84°, -4.15°) and (37.85°, -2.88°) lati-

tude/longitude coordinates.

• Bourdeaux (BR): The second set consists of a cou-

pled S2 and S3 images, collected over Bourdeaux

(France). Specifically, these products were gath-

ered on 10 March 2017 and they include between

(45.14°, -1.72°) and (44.13°, -0.37°) coordinates.

• Madrid (MA): The third collection is made up of

two S2 and S3 images captured over Madrid (Spain)

on 9 and 10 April 2017, respectively. Both products

comprise between the (40.64°, -4.18°) and (39.66°,

-2.88°) coordinates.

• Utrecht (UT): The fourth image set includes two

aerial shots of Utrecht (Netherlands) which were

both acquired on December 27, 2017. The sensing

area covers between (52.34°, 4.46°) and (51.32°,

6.01°) coordinates.

B. Experimental Protocol

Different registration experiments have been con-

ducted to assess the proposed approach performance. For

each dataset, the S2 product has been used as the master

image and the S3 counterpart as the slave one. Moreover,

a controlled affine transformation has been applied to

each S3 product in order to slightly amplify the original

MSI and OLCI operational data misalignments. Since

there is a 15× spatial difference between the images,

the simulated transformations have been defined not to

affect the initial slave image scale (details in https:

//goo.gl/cwAjVS). Regarding the tested methods, five

different embedding procedures have been considered:

(1) PCA1-PCA1, which projects both master and slave

images to their first PCA components where the affine

transformation is estimated; (2) PCA2-PCA2, that carries

out the registration over the two first PCA components

and computes the average inter-sensor misalignment; (3)

PCA3-PCA3, which follows the same process as (2) but

with the three first PCA components; (4) Band-PCA1,

which uses the master first PCA component to register

each individual slave band; and (5) Band-Band, that con-

ducts a band-to-band registration where each slave band

is aligned to the closest master one. All these registration

mechanisms make use of the same MI-based registration

procedure than the proposed approach. Additionally, the

(6) Phase Correlation method [6] has been selected as

an alternative band-to-band registration mechanism. To

relieve the inter-sensor spatial differences, S2 images

have been sub-sampled by a 15× factor. Finally, the root

mean squared error (RMSE) and MI have been used as

quantitative metrics.

C. Results

Table I presents a quantitative assessment for the

considered data and methods in terms of the RMSE and

MI metrics. Specifically, the four datasets are provided in

rows and the columns represent the registration alterna-

tives, i.e. (0) No-Reg, (1) PCA1-PCA1, (2) PCA2-PCA2,

(3) PCA3-PCA3, (4) Band-PCA1, (5) Band-Band, (6)

Phase-Corr, and (7) Proposed. The last row also shows

the average metric results, where the best values are

highlighted in bold. Additionally, Fig. 2 highlights the

registration result of the proposed approach.

One of the first remarkable points is the advantage

of using an inter-sensor registration scheme within the

S2 and S3 context. As it was previously mentioned,

MSI has a substantially higher spatial resolution than

OLCI. Therefore, S2 imagery can be considered a valid
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TABLE I

QUANTITATIVE REGISTRATION RESULTS FOR THE CONDUCTED EXPERIMENTS.

Dataset
(0) No-Reg (1) PCA1-PCA1 (2) PCA2-PCA2 (3) PCA3-PCA3 (04) Band-PCA1 (5) Band-Band (6) Phase-Corr (7) Proposed

RMSE MI RMSE MI RMSE MI RMSE MI RMSE MI RMSE MI RMSE MI RMSE MI

AN 11004.21 8.5894 5332.26 8.6430 5306.07 8.6427 5285.51 8.6432 5282.11 8.6433 5280.17 8.6432 8979.10 8.6309 5238.03 8.6425

BR 13369.48 6.5634 5231.95 6.7237 5221.32 6.7251 5323.36 6.7251 5252.37 6.7265 5218.24 6.7250 9484.06 6.6508 5198.43 6.7259

MA 15648.41 8.8218 6460.68 8.8706 6441.18 8.8711 6559.80 8.8706 6496.11 8.8709 6486.58 8.8710 13328.33 8.8535 6448.55 8.8710

UT 16056.75 7.6188 7639.06 7.6201 7617.33 7.6227 23091.32 5.0434 7655.48 7.6214 7623.77 7.6218 11712.95 7.6317 7589.08 7.6232

AVG 14019.71 7.8984 6165.99 7.9644 6146.48 7.9654 10065.00 7.3206 6171.52 7.9655 6152.19 7.9653 10876.11 7.9417 6118.52 7.9657

(a) AN - NoReg (b) AN - Proposed (c) BR - NoReg

(d) BR - Proposed (e) UT - NoReg (f) UT - Proposed

Fig. 2. Qualitative registration results for AN, BR and UT datasets.

ground-truth reference for spatially correcting S3 prod-

ucts. Logically, the higher the sensor spatial resolution,

the lower the nominal geolocation errors. In this sense,

the quantitative results show that S2 MSI data can be

used to effectively register S3 OLCI operational products

despite the spatial resolution differences. This fact is also

supported by the reported qualitative results (Fig. 2),

where the proposed inter-sensor registration approach is

able to correct the existing spatial deviations.

Regarding the overall performance, Table I shows that

all the considered inter-sensor registration alternatives

are able to outperform the baseline scenario: (0) No-

Reg, where no registration is applied. Considering the

RMSE index, the two worst approaches were (3) and

(6), followed by (4), (1), (5) and (2). In the case of the

MI metric, a similar trend can be observed where (3) and

(6) are still the worse methods, followed by (1), (5), (2)

and (4). Despite the remarkable performance achieved by

some methods, i.e. (2) and (5), the proposed approach is

able to provide even a superior result for both metrics.

The presented method quantitatively outperforms (2) by

27.95 RMSE and 0.0003 MI units, and it also improves

(5) average result in 33.67 RMSE and 0.0004 MI units.

In general, registering inter-sensor operational data

raises the challenge of dealing with different instruments,

which is particularly relevant in the Copernicus context

due to the significant spatial differences between S2

MSI and S3 OLCI. Despite its simplicity, the band-to-

band registration approach shows a robust performance.

However, registering the first two PCA components

provides a better overall result, excluding the proposed

approach, because the input multi-spectral domains are

encapsulated into the greatest variance directions. In

this way, the registration process can be conducted over

correlated principal components, which allows unifying

the inter-sensor content. With all these considerations

in mind, there is a key factor that makes the proposed

approach more suitable to tackle this task: the inter-

sensor noise. Note that MSI and OLCI are affected

by different kinds of noise since they both have rather

different imaging models and corrections. Therefore,

it is possible that different inter-sensor noises were

captured when including more principal components,
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which logically has a negative impact on the registration

process. Precisely, this is the reason why (3) is the

worst method whereas (2) is among the best ones. The

proposed approach manages to relieve these undesirable

effects by using a multi-spectral semantic embedding

that unifies inter-sensor data at a higher abstraction level.

More specifically, the presented method makes use of

the pLSA model to project the S2 MSI and S3 OLCI

data into their corresponding generative feature patterns.

Hence, the inter-sensor registration process can be con-

ducted in a common space where visual concepts can be

represented via different multi-spectral signatures while

minimizing the effect of raw spectral data noise. Despite

the advantages of the proposed inter-sensor semantic

embedding, its performance with other instruments may

depend on the considered transformation models and

metrics [12]. Further analyses should be made on the

EM-based optimization cost for its actual operational

deployment.

IV. CONCLUSIONS

This letter presents an inter-sensor registration ap-

proach to effectively co-register S2 MSI and S3 OLCI

operational data. Traditional registration mechanisms

struggle at generating a common characterization space

when considering multi-spectral instruments of different

nature. However, the proposed method projects the mas-

ter and slave input data into a semantic embedding via

topic modeling, where the registration process can be

conducted at a higher characterization level. The input

images are represented according to their spectral feature

patterns that represent the same visual concepts across

the sensors. Then, a straightforward operational registra-

tion procedure is effectively used to estimate the global

inter-sensor displacement over this semantic space. Our

experiments, which include four operational data collec-

tions and six different registration alternatives, reveal that

the presented inter-sensor registration framework is able

to provide advantages in the context of the Copernicus

program. This work proves the potential of probabilistic

topic models to effectively uncover inter-sensor patterns,

useful to co-register S2 MSI and S3 OLCI operational

data. Future work will be focused on developing efficient

parallel implementations of the proposed approach and

studying deep inter-sensor embedding architectures.
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