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Abstract—This letter presents a novel inter-sensor veg-

etation estimation framework which aims at combining

Sentinel-2 (S2) spatial resolution with Sentinel-3 (S3) spec-

tral characteristics in order to generate fused vegetation

maps. On the one hand, the Multi-Spectral Instrument

(MSI), carried by S2, provides high spatial resolution

images. On the other hand, the Ocean and Land Color In-

strument (OLCI), one of the instruments of S3, captures the

Earth’s surface at a substantially coarser spatial resolution

but using smaller spectral bandwidths, which makes the

OLCI data more convenient to highlight specific spectral

features and motivates the development of synergetic fusion

products. In this scenario, the approach presented here

takes advantage of the proposed Constrained probabilistic

Latent Semantic Analysis (CpLSA) model to produce inter-

sensor vegetation estimations which aim at synergically

exploiting MSI’s spatial resolution and OLCI’s spectral

characteristics. Initially, CpLSA is used to uncover the

MSI reflectance patterns, which are able to represent the

OLCI-derived vegetation. Then, the original MSI data is

projected onto this higher abstraction level representation

This work was supported by Generalitat Valenciana

(APOSTD/2017/007) and MINECO (ESP2016-79503-C2-2-P,

TIN2015-63646-C5-5-R projects). (Corresponding author: R.

Fernandez-Beltran.)

R. Fernandez-Beltran and F. Pla are with the Institute of New

Imaging Technologies, University Jaume I, 12071 Castellón, Spain. (e-

mail: rufernan@uji.es; pla@uji.es). A. Plaza is with the Hyperspectral

Computing Laboratory, Department of Technology of Computers and
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space in order to generate a high-resolution version of the

vegetation captured in the OLCI domain. Our experimental

comparison, conducted using four datasets, three different

regression algorithms, and two vegetation indices, reveals

that the proposed framework is able to provide a com-

petitive advantage in terms of quantitative and qualitative

vegetation estimation results.

Index Terms—Sentinel-2, Sentinel-3, Vegetation Estima-

tion, Topic Models, probabilistic Latent Semantic Analysis.

I. INTRODUCTION

The Copernicus program is a joint initiative of the

European Commission, the European Space Agency and

the European Environment Agency in order to provide

operational monitoring information from space, useful

for environment and security applications. In this con-

text, five different Sentinel Earth observation missions

have been planned to guarantee this operational provi-

sion [1]. Among all the program resources, Sentinel-

2 (S2) and Sentinel-3 (S3) missions are focused on

global monitoring services over terrestrial and aquatic

surfaces, using for this purpose high-resolution and mid-

resolution multi-spectral imagery [2]. More specifically,

S2 [3] is a polar-orbiting mission which comprises two

identical satellites: S2A, launched on 23 June 2015, and

S2B, which followed on 7 March 2017. Each satellite
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incorporates a Multi-Spectral Instrument (MSI) which

provides a versatile set of 13 spectral bands ranging from

the visible and near infrared (VNIR) to the shortwave

infrared (SWIR). Four of these bands (B02-B04, B08)

are acquired at a spatial resolution of 10 m, six bands

(B05-B07, B08A, B11, B12) at 20 m and the remaining

three bands (B01, B09, B10) at 60 m. Analogously,

S3 [4] includes a pair of satellites, called S3A and

S3B, where the first one was launched on 16 February

2016 and the second one was successfully launched

on 25 April 2018. Both satellites carry the Ocean and

Land Color Instrument (OLCI), which provides 21 bands

(Oa01-Oa21) spanning from 390 to 1040 nm VNIR

spectral range with bandwidths from 2.5 to 40 nm.

Regarding the spatial resolution of the sensor, OLCI has

global resolution requirement of 300 m.

Although S2 and S3 missions have been designed to

provide global data products of vegetation, soil and water

cover, inland waterways and coastal areas, the spectral

and spatial differences between MSI and OLCI sensors

make each satellite more suitable for a particular appli-

cation field. Whereas the higher spatial resolution in S2

enables the use of its products for characterization tasks,

with the requirement of a high level of spatial details

such as soil mapping or land use classification [5], S3

is able to capture imagery using smaller spectral band-

widths, which makes the OLCI data more convenient

to highlight specific spectral responses that represent

different features over the Earth’s surface. Specifically,

vegetation cover can exemplify this point [6]. In general,

vegetation indices, such as the Normalized Difference

Vegetation Index (NDVI) [7] and the Soil-Adjusted

Vegetation Index (SAVI) [8], seek to exploit the cor-

relation between the maximum chlorophyll absorption

wavelength and the Red-Edge electromagnetic spectrum.

As a result, the smaller VNIR spectral bandwidth of

the OLCI sensor makes that fewer wavelengths are

involved in the NDVI and SAVI computations. This

fact generates an enhanced response for plant surfaces

which eventually increases the instrument sensitivity to

detect those image areas with certain types of vegetation

[4]. Precisely, these inter-sensor differences motivate the

development of fused vegetation products to exploit MSI

spatial resolution and OLCI spectral features.

In the literature, different kinds of regression algo-

rithms have been successfully applied to conduct bio-

physical parameter estimations within the context of

Sentinel missions. Specifically, Verrelst et al. [9] re-

view several state-of-the-art machine learning regression

algorithms for S2 and S3 satellites, and Caicedo et

al. [10] assess multiple linear and nonlinear regression

algorithms with a range of remotely sensed data. Despite

the value of these and other related works, the regres-

sion process is often conducted from a single-sensor

perspective and, usually, they only consider simulated

Sentinel data [11]. This letter is focused on a more

general objective, where S2 and S3 operational products

are combined to generate fused vegetation maps with

MSI spatial resolution and OLCI spectral characteristics.

That is, the objective of this work is based on exploiting

the existing synergy between S2 and S3 missions to

generate improved vegetation estimates of the Earth

surface. Whereas standard regression algorithms are able

to generate such estimations by directly relying on low-

level reflectance values, the proposed approach takes

advantage of a newly proposed Constrained probabilistic

Latent Semantic Analysis (CpLSA) topic model to un-

cover two different kinds of discriminating patterns in the

S2 MSI spectral domain: (i) constrained-topics, which

are able to reproduce the vegetation detected by the S3

OLCI sensor, and (ii) standard-topics that represent the

rest of the non-vegetation components in S2 MSI. In this

way, image pixels are managed at a higher abstraction

level as a dual mixture of spectral patterns and, hence,
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it is possible to infer more accurate high-resolution

vegetation maps at S2 MSI spatial resolution using

only the most S3 vegetation discriminating patterns. Our

experiments considering four datasets and two different

vegetation indices reveal the advantages of the proposed

approach to generate inter-sensor vegetation estimations

when compared to three different standard regression

algorithms.

II. METHODOLOGY

A. Constrained probabilistic Latent Semantic Analysis

Based on the incremental formulation of the asymmet-

ric probabilistic Latent Semantic Analysis model [12],

we define a topic model extension, called Constrained

probabilistic Latent Semantic Analysis (CpLSA), which

is specially designed to relate inter-sensor information

throughout the high level patterns uncovered by topics.

Specifically, the proposed model (Fig. 1) considers two

diverging hidden random variables, i.e. c and z, to repre-

sent constrained-topics and standard-topics, respectively.

Note that Nd is the number of words in d, M is the

total number of documents in the collection, and shaded

nodes represent the observable variables in the model,

by analogy with the document analysis application field

[13].

Fig. 1: CpLSA model.

In this work, Θ1 ∼ {p(c|d)}, Θ2 ∼ {p(z|d)} and

Φ ∼ {p(w|c), p(w|z)} parameters are estimated by max-

imizing the complete log-likelihood function using the

expectation-maximization (EM) algorithm [14] which

performs two stages: 1) E-step, where the likelihood ex-

pected values are computed given the current estimation

of the parameters, and 2) M-step, where the new optimal

values of the parameters are calculated according to the

current settings. The E-step can be computed by using

the Bayes’ rule and the chain rule as Eqs. (1)-(2) show.

For the M-step, we calculate CpLSA likelihood partial

derivatives, set them as equal to zero, and solve the

equations in order to obtain Eqs. (3)-(6),

p(c|w, d) =
p(c, w, d)
p(w, d)

=
p(w|c)p(c|d)∑
c

p(w|c)p(c|d)
(1)

p(z|w, d) =
p(z, w, d)
p(w, d)

=
p(w|z)p(z|d)∑
z

p(w|z)p(z|d)
(2)

p(w|c) =

∑
d

n(w, d)p(c|w, d)∑
w

∑
d

n(w, d)p(c|w, d)
(3)

p(w|z) =

∑
d

n(w, d)p(z|w, d)∑
w

∑
d

n(w, d)p(z|w, d)
(4)

p(c|d) =

∑
w

n(w, d)p(c|w, d)∑
c

∑
w

n(w, d)p(c|w, d) +
∑
z

∑
w

n(w, d)p(z|w, d)

(5)

p(z|d) =

∑
w

n(w, d)p(z|w, d)∑
z

∑
w

n(w, d)p(z|w, d) +
∑
c

∑
w

n(w, d)p(c|w, d)

(6)

where n(w, d) represents the number of times the

word w appears in the document d. The EM process

is performed as follows. First, p(w|c), p(w|z), p(c|d)

and p(z|d) are randomly initialized. Then, the E-step

[Eqs. (1)-(2)] and the M-step [Eqs. (3)-(6)] are alter-

nated until the model parameters converge. As default

convergence settings, we use a 10−6 threshold in the

log-likelihood or 1000 EM iterations.

B. Inter-Sensor Vegetation Estimation Framework

The proposed S2 and S3 inter-sensor vegetation esti-

mation framework is made up of a two-step process (see

Fig. 2):
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Fig. 2: Proposed Sentinel-2 and Sentinel-3 inter-sensor vegetation estimation framework.

1) CpLSA-tra: In the first step, the proposed model is

used to learn coupled S2-S3 vegetation patterns at

S3 spatial resolution (i.e. the sensor with the lowest

spatial resolution). Specifically, the S2 input image

(I2) is initially down-sampled to S3 nominal spatial

resolution (R2) using a bi-cubic kernel. Then, a

vegetation index V is applied over the S3 input

image (I3) to generate the corresponding vegetation

map V3 = {V 1
3 , ..., V

M
3 } with M pixel values.

Additionally, R2 is vectorized in order to define

topic model documents (d) as image pixels, words

(w) as spectral bands, and document word-counts

(n(w, d)) as pixel reflectance values. Then, CpLSA

is used over R2 by fixing Θ1 ∼ p(c|d) to a scaled

and normalized version of V3, as Eqs. (7)-(8) show,

in order to learn Φ ∼ {p(w|c), p(w|z)} parameter

using C constrained-topics and Z standard-topics.

Note that the conditional probability distribution

p(c|d) defines how image pixels are described by

the target S3 vegetation map, p(w|c) represents

the reflectance patterns that generate this map and

p(w|z) contains the rest of the patterns that can be

considered noise from a vegetation-based perspec-

tive.

V̂3 =
{

V i
3 −min(V3)

max(V3)−min(V3)

}
, ∀ i ∈ [1,M ]. (7)

Θ1 =
{

V̂ i
3∑

i

V̂ i
3

}
,∀ i ∈ [1,M ]. (8)

2) CpLSA-tst: Once the Φ parameter has been esti-

mated, the proposed model is again applied to infer

the output vegetation map at S2 spatial resolution

with the S3 spectral properties. That is, CpLSA is

used over I2 by fixing the Φ parameter in order to

generate Θ1 ∼ p(c|d) and the resulting vegetation

map as E2 = p(c|d).

III. EXPERIMENTS

A. Datasets

In this work, four pairs of S2 MSI and S3 OLCI data

products have been selected (Table I). The considered

scenes include different European areas with multiple

types of vegetation to increase the data heterogeneity.

All the L1C products have been downloaded from the

Copernicus Open Access Hub platform (https://goo.gl/

uXmPxL) and they have been processed using the Sen-

tinel Application Platform (SNAP) software as follows.

The MSI products have been re-sampled to 20 m spatial

resolution to manage the images as uniform data cubes

while reducing the product size. Then, they have been

atmospherically corrected using the Sen2Cor processor

with the default settings. The OLCI products have been

re-projected onto the corresponding S2 tiles. Besides,

they have been corrected using the Rayleigh Correction

procedure since the complete atmospheric correction for

land products is not still available in the last SNAP

release. Finally, each image pair has been co-registered,
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obtaining a final image size of 5490× 5490× 13 pixels

in S2 and 366× 366× 21 in S3.

TABLE I: Dataset description.

Dataset Scene Location Sensing Date
Top-Left (Lat/Long)

Bottom-Right (L/L)

AN Natural park Andujar (Spain) 10 Mar. 2017
(38.84◦/ -4.15◦)

(37.85◦/ -2.88◦)

BR Coastal area Bourdeaux (France) 19 Apr. 2017
(45.14◦/ -1.72◦)

(44.13◦/ -0.37◦)

ML Mountain range Milan (Italy) 16 Feb./Mar. 2017
(46.05◦/ 8.99◦)

(45.05◦/ 10.39◦)

UT Northern Europe Utrecht (Netherlands) 27 Dec. 2016
(52.34◦/ 4.46◦)

(51.32◦/ 6.01◦)

B. Experimental Protocol

The experimental part of the work aims at validating

the ability of the proposed approach to estimate S3

OLCI vegetation from S2 MSI data. More specifically,

the proposed approach is compared to three standard

regression algorithms, i.e. linear regression [15], Support

Vector Regression (SVR) with Radial Basis Function

(RBF) [16], and Gaussian Process Regression (GPR)

with Squared Exponential [17], when considering two

different vegetation indices, i.e. NDVI [18] and SAVI

[8]. Regarding the experimental procedure, all the meth-

ods have been trained for each image pair using the

down-sampled S2 image (R2) and the corresponding

S3 vegetation map (V3). For the considered regres-

sion algorithms, we have used the corresponding Mat-

lab R2018b implementations with automatic scale, data

standardization and the default settings for the rest of

the parameters. For the proposed approach, C and Z

model parameters have been fixed to 1 and 3, respec-

tively. Once the training process is complete, the full-

resolution S2 product (I2) is provided as a test image

to estimate the corresponding S3 vegetation map at S2

spatial resolution (E2). Since there is no S3 vegetation

information available at the considered S2 pixel size (20

m), we adopt a reduced reference assessment protocol

to validate the results [19]. In particular, this process

consists of down-sampling the original input images by

the scaling ratio between S2 and S3 (15×). Then, the

output vegetation maps (E2) are generated at the same

spatial resolution than S3 OLCI (300 m), which allows

using the original S3 vegetation maps (V3) as reference

for a quantitative performance evaluation. As evaluation

metric, we use the Mean Squared Error (MSE) index

due to its simplicity and quadratic error computation,

which penalizes predictions that substantially differ from

the corresponding reference values. Additionally, two

statistical tests, i.e. Friedman’s [20] and Holm’s [21],

have been applied for detecting statistical differences

among the methods’ results. It should be mentioned that

both vegetation indices have been scaled and normalized,

as Eqs. (7)-(8) show, to unify their corresponding value

ranges for assessment purposes.

C. Results

Table II presents the quantitative evaluation of the

estimated vegetation results for the considered indices,

datasets and methods in terms of the MSE metric.

For each vegetation index (i.e. NDVI and SAVI), the

four considered datasets are provided in rows, whereas

columns represent the tested methods, i.e. Sentinel-2,

Linear, SVR, GPR and Proposed. Note that the first

column measures the differences between the vegetation

captured by the S2 MSI sensor with respect to the vege-

tation detected by S3 OLCI. The last column reports the

quantitative assessment of the proposed CpLSA-based

vegetation estimation framework and the last two rows

in each vegetation index provide the average MSE values

and test computational times. In addition, Table III

presents a summary of the Friedman’s (a) and Holm’s

(b) statistical tests. Regarding the qualitative evaluation,

Figs. 3-4 display the estimated vegetation maps.

One of the first noteworthy points arises when com-

paring the performance of the considered regression
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TABLE II: Quantitative MSE assessment.

Dataset Sentinel-2 Linear SVR GPR Proposed
N

D
V

I

AN 0.0815 0.0201 0.0592 0.0203 0.0103

BR 0.0847 0.0294 0.0302 0.0292 0.0123

ML 0.0431 0.0417 0.0261 0.0216 0.0115

UT 0.1127 0.0226 0.0212 0.0193 0.0152

Avg. 0.0805 0.0284 0.0341 0.0226 0.0123

Time (s) - 0.01 0.29 0.61 1.93

SA
V

I

AN 0.0825 0.0201 0.0479 0.0102 0.0094

BR 0.0460 0.0349 0.0342 0.0101 0.0087

ML 0.0214 0.0178 0.0147 0.0118 0.0081

UT 0.0701 0.0181 0.0175 0.0156 0.0119

Avg. 0.0550 0.0227 0.0285 0.0119 0.0095

Time (s) - 0.01 0.29 0.59 1.89

TABLE III: Statistical test analysis.

(a) Friedman’s test

p-value = 3.47e− 6

Algorithm Ranking

Proposed 1

GPR 2.0909

SVR 3.3636

Linear 3.5455

(b) Post-hoc Holm’s method

α = 0.10

Hypothesis z p Holm

Linear vs. Proposed 4.624048 0.000004 0.016667

SVR vs. Proposed 4.293759 0.000018 0.02

GPR vs. Proposed 1.981735 0.047509 0.05

SVR vs. GPR 2.312024 0.020776 0.033333

functions to the vegetation result obtained by Sentinel-

2: the quantitative results reported in Table II reveal

that all the tested regression functions, i.e. Linear, SVR

and GPR, are able to approximate the reference OLCI

vegetation better than the S2 MSI sensor. That is, using a

regression function from the original S2 data to the cor-

responding S3 vegetation indices allows combining MSI

spatial resolution and OLCI spectral characteristics. This

fact is also supported by the vegetation maps displayed

in Figs. 3-4, where it is possible to see that directly

computing NDVI and SAVI over S2 data (Sentinel-2

column) generates a substantially different result than

the corresponding reference (Sentinel-3 column). Note

that the number of bands considered in NDVI and SAVI

computations is rather limited; however, the regression

functions are applied over the whole spectra, which

allows for a better estimation of the actual vegetation.

AN

BR

ML

UT

Sentinel-3 Sentinel-2 Linear SVR GPR Proposed

Fig. 3: NDVI qualitative evaluation results.

AN

BR

ML

UT

Sentinel-3 Sentinel-2 Linear SVR GPR Proposed

Fig. 4: SAVI qualitative evaluation results.

Regarding the overall performance of the tested meth-

ods, GPR yields a remarkable MSE average performance

(0.0173) when compared to the Linear (0.0256) and

SVR (0.0314) regression results. The reduced spatial

resolution of S3, together with the straightforward nature

of the NDVI and SAVI indices, make that the SVR

regression function with the RBF kernel is unable to

achieve satisfactory results, with the Linear regression

function obtaining an even better average result. In

the case of GPR, it has shown to be the most robust

regressor among the three tested ones (i.e. Linear, SVR

and GPR). Nonetheless, the proposed approach is able

to provide a competitive advantage from both quanti-

tative and qualitative viewpoints. On the one hand, the
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proposed CpLSA-based framework achieves a consistent

metric improvement when estimating S3 vegetation from

S2 data, reaching the best MSE average performance

(0.0109) over all the considered methods. On the other

hand, the vegetation maps provided by the proposed

approach are certainly the most similar to the S3 data,

providing NDVI and SAVI vegetation details that are not

estimated by any of the other considered methods. For

instance, it is possible to see in the UT row of Fig. 3

that the proposed approach is the only method able to

retrieve the NDVI vegetation detected at the top-right

image corner. A similar example can be found in the

BR row of Fig. 4, where all the considered regression

functions struggle at capturing the coastal vegetation.

These results are supported by the conducted statistical

analysis. In particular, the Friedman’s test (Table IIIa)

ranks CpLSA in the first place, GPR in the second, SVR

in the third and Linear in the last position. Besides, the

computed p-value provides a high level of significance

to conduct a post-hoc multiple comparison test. Consid-

ering a confidence level of α = 0.10, the Holm’s method

(Table IIIb) rejects the statistical equality hypotheses

when comparing the proposed approach to Linear, SVR

and GPR. Note that those hypotheses with unadjusted

p-values (p) that are smaller than the adjusted Holm’s

values are rejected. The conducted analysis reveals that

the performance improvement of the proposed approach

is statistically relevant. Nevertheless, it should also be

mentioned that the proposed approach is a computation-

ally demanding model and further research should be

conducted for its operational deployment.

In general, estimating the vegetation captured by the

OLCI sensor from the MSI instrument raises the chal-

lenge of uncovering information that is not present in

the original S2 spectra, due to the different spectral

resolution of the S3 instrument. Note that the smaller

spectral bandwidths in the VNIR wavelength allows the

OLCI sensor to enhance those image areas with more

vegetation. Standard regression algorithms attempt to

directly map the S2 spectra onto the vegetation values

detected by S3. However, this straightforward approach

only relies on the low-level reflectance values acquired

by the coarser spectral resolution sensor, which even-

tually limits the resulting performance under the most

challenging scenarios. The proposed approach uses the

CpLSA semantic characterization space to relieve this

lack of spectral information by uncovering reflectance

latent patterns in the S2 spectral domain and their rela-

tionship with the S3 spectral values extracted during the

training stage. In particular, CpLSA has been specifically

designed to uncover two kind of patterns: c (constrained-

topics), which aim at reproducing S3 vegetation, and z

(standard-topics), which represent the rest of the non-

vegetation components in S2. Then, it is possible to

isolate the S2 reflectance patterns which are able to

represent the S3 vegetation (c) from noisy patterns that

do not help to map vegetation. In other words, each

S2 image pixel is managed as a dual composition of

spectral patterns instead of a collection of raw reflectance

values, which represents the input data using the most

discriminative patterns of vegetation from S3.

IV. CONCLUSIONS AND FUTURE LINES

This letter has presented an inter-sensor vegetation es-

timation framework based on topic models to effectively

estimate Sentinel-3 (S3) vegetation from Sentinel-2 (S2)

data. On the one hand, the S3 OLCI sensor allows obtain-

ing low-resolution vegetation estimations that highlight

those areas with more vegetation, due to its smaller

spectral bandwidths. On the other hand, the S2 MSI

instrument is able to generate higher spatial resolution

vegetation maps, but with a different sensitivity to the

near-infrared wavelength. Whereas standard regression

algorithms make use of low-level S2 reflectance values
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to directly estimate S3 vegetation, the proposed approach

takes advantage of the Constrained probabilistic Latent

Semantic Analysis (CpLSA) model to discriminate those

S2 reflectance patterns which are useful to retrieve S3

vegetation at S2 spatial resolution. Our experiments,

conducted using four coupled S2 and S3 data products,

reveal that the presented framework provides competi-

tive advantages, from both quantitative and qualitative

perspectives, with respect to other regression functions

available in the literature. The main conclusion that

arises from this work is the potential of probabilistic

topic models to uncover inter-sensor patterns, useful

to estimate S3 vegetation from S2 data. Although our

results are quite encouraging, more research work is

required in future developments. Specifically, our future

work is aimed at extending this work to different sensors,

biophysical parameters and deep fusion architectures.
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