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0 Introduction

It is a question of M. Brunella to decide if the following alternative is true:

Let F be a singular holomorphic foliation of codimension one in the pro-
jective space P3. If there is no projective algebraic surface invariant by
F , each leaf is a union of algebraic curves.

The answer to this question is known [10] to be positive in the case of a generic
pencil of foliations.

This work concerns a local version of the above alternative. Consider a germ F
of singular holomorphic foliation of codimension one in (C3, 0) and assume that it
has no invariant germ of analytic surface. We prove, under some conditions on the
foliation, that there exists a neighborhood of the origin which is a union of semi-
transcendental leaves.

A key remark for understanding germs of foliations without invariant germs of
surface is that they must be dicritical. In a general we say that F is dicritical if
there exists a holomorphic germ of map

φ : (C2, 0) → (C3, 0)

(x, y) 7→ (φ1(x, y), φ2(x, y), φ3(x, y))

such that φ((y = 0)) is invariant by F and the pullback φ∗F of the foliation F co-
incides with the foliation dx = 0 in (C2, 0). In [5] it is proved that any nondicritical
foliation in (C3, 0) has an invariant germ of analytic hypersurface; this is also true
in any ambient dimension [8].

In this paper we consider only Relatively Isolated Complex Hyperbolic germs of
foliations in (C3, 0), that we shall refer to as “RICH foliations”, for short. A germ F
of singular holomorphic foliation of codimension one in (C3, 0) is a RICH foliation
if there exists a reduction of singularities for F

S : (C3, 0) = M0
π1←−M1

π2←− · · · πN←−MN

such that for any 1 ≤ k ≤ N we have

1. The center Yk−1 ⊂ Mk−1 of the blow-up πk is nonsingular, has normal cross-
ings with the total exceptional divisor Ek−1 ⊂ Mk−1 and is invariant by the
transform Fk−1 of F .
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2. The intersection Yk−1 ∩ (π1 ◦ π2 ◦ · · · ◦ πk−1)−1(0) is a single point.

Moreover, we ask (Complex Hyperbolic) that all the points of MN are simple and
without saddle-nodes in the sense of the general reduction of singularities in dimen-
sion three [4].

The condition “Complex Hyperbolic” has been frequently considered since the
publication of the paper [2], where the authors consider germs of foliations in di-
mension two, called “generalized curves”, without saddle-nodes in the reduction of
singularities.

The condition “Relatively Isolated”is less restrictive than “Absolutely Isolated”.
It contains as examples the case of equireduction along a curve and the foliations
of the type df = 0, where f = 0 defines a germ of surface with absolutely isolated
singularity. The absolutely isolated singularities of vector fields have been studied in
[1], whereas for the case of codimension one foliations on (C3, 0) the singular locus
has codimension two unless we have a holomorphic first integral as proved in [14].
Anyway, in the paper [7], the authors consider foliations desingularized essentially
by punctual blow-ups, which gives also a condition more restrictive than being Rel-
atively Isolated.

Let us recall, see for instance [16], that a germ of foliation G on (C2, 0) contains a
nodal separator if in the reduction of singularities there is a singularity analytically
equivalent to dy − λdx = 0 where λ is a non rational positive real number.

Consider a germ of curve Γ contained in the singular locus of F . We say that
F is generically dicritical along Γ if it is dicritical at a generic point of Γ. This is
equivalent to saying that in the reduction of singularities S there exists a dicritical
(generically transversal) component D of the exceptional divisor EN ⊂ MN such
that π1 ◦π2 ◦ · · · ◦πN(D) = Γ. Moreover, we can verify this fact at the equireduction
points of Γ by doing an essentially two-dimensional reduction of singularities [4]. If
F is not generically dicritical along Γ, it is known [4] that the equiredution along Γ
is given by the (nondicritical) reduction of singularities of the restriction G of F to a
plane section transversal to Γ at a generic point. In this case, we say that F is gener-
ically nodal along Γ if this is such a plane transversal section G has a nodal separator.

The main result in this work my be stated as follows:

Theorem Let F be a RICH foliation in (C3, 0). Assume that there is no germ of
invariant analytic surface for F . Then one of the two properties holds:

4



1. There exists a neighborhood W of the origin 0 ∈ C3 such that for each leaf
L ⊂ W of F in W there is an analytic curve γ ⊂ L with 0 ∈ γ.

2. There is an analytic curve Γ contained in the singular locus Sing F such that
F is generically dicritical or generically nodal along Γ.

Note that in order to verify possibility 2 it is enough to perform finitely many
blow-ups with center in the irreducible components of Sing F .
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1 Preliminaries

1.1 Codimension one holomorphic foliations

Let M be a complex manifold of dimension n and let ΩM be its cotangent sheaf -
that is to say, it is the sheaf of germs of differential holomorphic 1-forms over M . A
holomorphic singular foliation of codimension one F , over M , is an integrable and
invertible OM -submodule of ΩM such that the quotient ΩM/F is torsion-free. This
means that for each point p ∈ M we can find local coordinates x1, x2, . . . , xn such
that the stalk Fp is generated by a differential 1-form

Ω =
n∑
i−1

bidxi, bi ∈ OM,p

where Ω ∧ dΩ = 0 and the coefficients b1, b2, . . . , bn have no common factor. The
singular locus Sing F is locally given by

Sing F = {b1 = b2 = · · · = bn = 0} .

It is a closed analytic subset of M of codimension ≥ 2. An irreducible element
f ∈ OM,p (resp. ÔM,p) is a separatrix (resp. formal separatrix ) if, and only if, f
divides Ω ∧ df . This means that, outside Sing F , the closed analytic hypersurface
(f = 0) is contained in a leaf of F .

Though the description of F near a singular point can be quite complicated, the
theorem below asserts that, on the other hand, in a neighborhood of a regular point
this task is much simpler:

Theorem 1 (Frobenius) Let Ω be an integrable 1-form over M and p a point
such that Ω(p) 6= 0. There exist two germs of functions u, f ∈ OM,p such that
u(p) 6= 0, df(p) 6= 0 and

Ωp = udf .

It is sometimes useful to regard a foliation F as adapted to a normal crossings
divisor E ⊂M .

A subset E ⊂ M is a normal crossings divisor on M is a union of finitely
many nonsingular hypersurfaces such that at each point p ∈ M we can find local
coordinates x1, x2, . . . , xn such that

E =

(
e∏
i=1

xi = 0

)
, e ∈ {1, 2, . . . , n} .
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Let ΩM [−E] be the sheaf of germs of differential meromorphic 1-forms over M which
have at most simple poles along E. A holomorphic codimension one foliation adapted
to E over M is a pair (F , E) where F is an OM -submodule of ΩM [−E] such that

(a) F is locally free of rank one.

(b) F ∧ dF = 0.

(c) ΩM [−E]/F is torsion-free.

Let’s take a moment to explain the consequences of this definition at each point
of M . Let JE be the sheaf of ideals that define the divisor E ⊂ M and fix a point
p ∈ M ; we may choose local coordinates x1, x2, . . . , xn (which are simply a regular
system of parameters of the local ring OM,p) such that

JE,p =

(∏
i∈A

xi

)
· OM,p, A ⊂ {1, 2, . . . , n} .

Then the stalk ΩM,p[−E] is generated by{
dxi
xi

}
i∈A
∪ {dxi}i/∈A .

Therefore, Fp is generated by a differential meromorphic 1-form

ω =
∑
i∈A

ai
dxi
xi

+
∑
i/∈A

aidxi, ai ∈ OM,p

such that ω ∧ dω = 0 and a1, a2, . . . , an have no common factor.

Let F(M,E) be the space of holomorphic codimension one foliations adapted
to E. Given (F , E) ∈ F(M,E) and a point p ∈ M , the adapted order νp(F , E) is
(using the notation above)

νp(F , E) = min{νp(ai); i = 1, 2, . . . , n} .

The singular locus of (F , E) is given by

Sing (F , E) = {p ∈M ; νp(F , E) ≥ 1} .

It is a closed analytic subset of X and since ΩM [−E]/F has no torsion, it has codi-
mension ≥ 2.

7



If E = ∅, we recover the usual notion of holomorphic codimension one foliation.
Furthermore, there is a bijection

hol : F(M,E)→ F(M, ∅)

defined by the following property:

If (G, ∅) = hol(F , E), then G
∣∣∣
M−E

= F
∣∣∣
M−E

.

This implies that if Fp is generated by the 1-form ω above, then Gp is generated by

Ω =

(∏
i∈A∗

xi

)
ω ,

where A∗ = {i ∈ A;xi does not divide ai}. Note that xi = 0 where i ∈ A∗ are
precisely the components of E that are separatrices.

Now fix (G, ∅) ∈ F(M, ∅) and a point p ∈ M . Assume Gp is generated by the
1-form Ω above. We have already defined what is a separatrix (resp. formal separa-
trix) of (G, ∅). An invariant analytic space of (G, ∅) is an irreducible closed analytic

space K ⊂M such that Ω
∣∣∣
K

= 0 at nonsingular points of K. In this case, we’ll say

that K is invariant by G. If H ⊂M is an analytic hypersurface which is invariant for
G, then it defines, at each point p ∈ H, a separatrix of G. Conversely, an irreducible
hypersurface H ⊂ M is invariant for G if and only if it defines a separatrix at each
point p ∈ H.

Let (F , E) ⊂ F(M,E) and fix and irreducible component D of E. We say F is
a nondicritical component of E for (F , E) if and only if D is invariant for hol(F , E).
Otherwise we say that F is a dicritical component of E for (F , E). Therefore, using
the notation above, we have that

A∗ =
{
i ∈ A; (xi = 0) is a nondicritical component for (F , E)

}
.

Let Y ⊂ M be a nonsingular analytic subspace of M . We say that Y has
normal crossings with E if the following holds: at each point p ∈ Y there are local
coordinates x1, x2, . . . , xn and sets A,B ⊂ {1, 2, . . . , n} such that

E =

(∏
i∈A

xi = 0

)
and Y =

⋂{
xi = 0; i ∈ B

}
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locally at p. Assume Y and E have normal crossings and let π : M ′ →M be a blow-
up centered at Y . Call E ′ = π−1(E∪Y ) (with reduced structure); then E ′ ⊂M ′ is a
normal crossings divisor on M ′. Now, if (F , E) ∈ F(M,E) and hol(F , E) = (G, ∅),
there exist unique (F ′, E ′) ∈ F(M ′, E ′) and (G ′, ∅) ∈ F(M ′, ∅) such that

F ′
∣∣∣
M ′−π−1(Y )

= F
∣∣∣
M−Y

and G ′
∣∣∣
M ′−π−1(Y )

= G
∣∣∣
M−Y

under the isomorphism π : M ′ − π−1(Y ) → M − Y . Furthermore hol(F ′, E ′) =
(G ′, ∅). In this situation, we say (F ′, E ′) is the adapted strict transform of (F , E)
by π and that (G ′, ∅) is the strict transform of (G, ∅) by π. We denote π∗F = F ′,
π∗G = G ′.

We will go into more detail about the properties of blow-up morphisms in the
next section.

In this work, we will consider holomorphic codimension one foliations of (C3, 0) =
M . At some points, however, we will regard the restriction of these foliations to a
non-invariant transversal two-dimensional section, which results in a codimension
one foliation of C2. Thus in this chapter we also recall some concepts, definitions
and results concerning foliations in dimension two.

1.2 Blow-up morphisms

Let M be a complex manifold, dim M = n. In this section, we recall the definition
of the blow-up of a point p ∈M , and the definition of the blow-up of a smooth an-
alytic subset S ⊂M that has normal crossings with M and such that codim S ≥ 2.
We focus our attention in the local equations. We refer to the vast literature for the
universal property of the blow-up, the properness and other intrinsic properties of
these morphisms.

Consider the set

Σ =
{

(x,X) ∈ Cn × Pn−1; x ∈ X
}
.

Let’s write x = (x1, x2, . . . , xn) ∈ Cn, X = [X1 : X2 : · · · : Xn] ∈ Pn−1. So x ∈ X
means that [x] = [(x1, x2, . . . , xn)] ∈ Pn−1 is precisely

X = [X1 : X2 : · · · : Xn] = [(X1, X2, . . . , Xn)] .
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Since (x1, x2, . . . , xn) ∼ (X1, X2, . . . , Xn) if and only if there exists a λ ∈ C∗ such
that (x1, x2, . . . , xn) = λ(X1, X2, . . . , Xn), we get that, whenever xj, Xj 6= 0,

x1

X1

=
x2

X2

= · · · = xn
Xn

= λ .

So whenever xj, Xj 6= 0, the equations

xi
xj

=
Xi

Xj

, i 6= j

define the set Σ ⊂ Cn×Pn−1. We regard Σ with the induced topology of Cn×Pn−1.

Consider the first projection

π : Σ → Cn

(x,X) 7→ x
.

Suppose x = (x1, x2, . . . , xn) ∈ Cn, x 6= 0: there exists a i ∈ {1, 2, . . . , n} such that
xi 6= 0. Therefore [x] ∈ Pn−1 is well defined, and we may put π−1(x) = (x, [x]) ∈

∑
.

So apart from the choice of representant of the class [x], π is injective. Naturally, π
is surjective. Therefore

π : Σ− π−1(0)→ Cn − {0}
is a isomorphism. We have that π−1(0) = (0, [a1 : a2 : · · · : an]) such that 0 ∈
λ(a1, a2, . . . , an); thus

π−1(0) = {0} × Pn−1 ' Pn−1 .

The map π is called the blow-up of the origin of Cn, the set π−1(0) is called
the exceptional divisor and the set Σ ∪ π−1(0) is the new ambient space, also of
dimension n.

Now we would like to write the map π in local charts. Let

Hj =
{

[a1 : a2 : · · · : an] ∈ Pn−1; aj 6= 0
}
.

Note that Hj ' Cn−1. We put

Σj = Σ ∩ (Cn ×Hj) =
{

(x,X); Xj 6= 0
}
.

Finally, we define

Φj : Σj → Cn

(x,X) 7→
(
X1

Xj
, X2

Xj
, . . . ,

Xj−1

Xj
, xj,

Xj+1

Xj
, . . . , Xn

Xj

)
.
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The map π ◦Φ−1
j will give the expression of π in the local chart Σj. For instance,

in the case n = 2, we have

Φ1 : Σ1 −→ C2

((x1, x2), [X1 : X2]) 7→
(
x1,

X2

X1

)
and

Φ2 : Σ1 −→ C2

((x1, x2), [X1 : X2]) 7→
(
X1

X2
, x2

)
.

So
Φ−1

1 : C2 − {(0, y)} −→ Σ1

(a, b) 7→
(

(a, ab), [1 : b]
)

and
Φ−1

2 : C2 − {(x, 0)} −→ Σ2

(a, b) 7→
(

(ab, b), [a : 1]
) .

Hence
π ◦ Φ−1

1 ((a, b)) = (a, ab) is the first local chart ,

π ◦ Φ−1
2 ((a, b)) = (ab, b) is the second local chart .

If n = 3, we have

Φ1 : Σ1 −→ C3

((x1, x2, x3), [X1 : X2 : X3]) 7→
(
x1,

X2

X1
, X3

X1

)
,

Φ2 : Σ2 −→ C3

((x1, x2, x3), [X1 : X2 : X3]) 7→
(
X1

X2
, x2,

X3

X2

)
,

Φ3 : Σ3 −→ C3

((x1, x2, x3), [X1 : X2 : X3]) 7→
(
X1

X3
, X2

X3
, x3

)
.

So
Φ−1

1 : C3 − {(0, y, z)} −→ Σ1

(a, b, c) 7→
(

(a, ab, ac), [1 : b : c]
) ,

Φ−1
2 : C3 − {(x, 0, z)} −→ Σ2

(a, b, c) 7→
(

(ab, b, bc), [a : 1 : c]
) ,
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Φ−1
3 : C3 − {(x, y, 0)} −→ Σ3

(a, b, c) 7→
(

(ac, bc, c), [a : b : 1]
) .

Therefore

π ◦ Φ−1
1 ((a, b, c)) = (a, ab, ac) is the first local chart ,

π ◦ Φ−1
2 ((a, b, c)) = (ab, b, bc) is the second local chart ,

π ◦ Φ−1
3 ((a, b, c)) = (ac, bc, c) is the third local chart .

So in dimension n, we will have

Φ−1
j : Cn − {xj = 0} → Σj

(x1, . . . , xn) 7→
(

(x1xj, x2xj, . . . , xj−1xj, xj, xj+1xj, . . . , xnxj),

[x1 : · · · : xj−1 : 1 : xj+1 : · · · : xn]
)

and therefore

π ◦ Φ−1
j ((x1, . . . , xn)) = (x1xj, x2xj, . . . , xj−1xj, xj, xj+1xj, . . . , xnxj)

is the j-th local chart of the blow-up of the origin 0 ∈ Cn.

Now we wish to perform the blow-up of an analytic subset S ⊂ M that has
normal crossings with M and such that codim S ≥ 2. For each point p ∈ S, we can
find local coordinates at p such that

S =

∏
i∈Ap

xi = 0

 where Ap ⊂ {1, 2, . . . , n} .

To make the notation easier, we will write

S =
(
x1 = x1 = · · · = xk = 0

)
, k ≤ n− 2.

The only coordinates we will modify will be x1, x2, · · · , xk; the others will be kept
as they are. Naturally, when we perform the blow-up of the origin, we modify all
coordinates given that

{0} = {x1 = x2 = · · · = xn = 0} .

For j = 1, 2, . . . , k, we will once again consider the sets

Σj = Σ ∩ (Cn ×Hj) =
{

((x1, . . . , xn), [X1 : · · · : Xn]); Xj 6= 0
}
.
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Now we will define the maps

Ψj : Σj → Cn

(x,X) 7→
(
X1

Xj
, X2

Xj
, . . . ,

Xj−1

Xj
, xj,

Xj+1

Xj
, . . . , Xk

Xj
, xk+1, . . . , xn

)
.

So

Ψ−1
j : Cn − {xj = 0} → Σj

(x1, . . . , xn) 7→
(

(x1xj, . . . , xj−1xj, xj, xj+1xj, . . . , xkxj, xk+1, . . . , xn),

[x1 : · · · : xj−1 : 1 : xj+1 : · · · : xk : xk+1

xj
: . . . : xn

xj
]
)

and

π ◦Ψ−1
j ((x1, . . . , xn)) = (x1xj, . . . , xj−1xj, xj, xj+1xj, . . . , xkxj, xk+1, . . . , xn)

is the j-th local chart of the blow-up of S ∈ Cn. For each point p ∈ S, we have that

π ◦Ψ−1
j (p) ' Pk−1 .

For example, suppose we want to blow-up the z-axis of C3, Z = {x = y = 0}.
We will consider the maps

Ψ1 : Σ1 → C3

((x1, x2, x3), [X1 : X2 : X3]) 7→
(
x1,

X2

X1
, x3

)
and

Ψ2 : Σ2 → C3

((x1, x2, x3), [X1 : X2 : X3]) 7→
(
X1

X2
, x2, x3

)
.

Therefore
Ψ−1

1 : C3 − {(0, y, z)} → Σ1

(a, b, c) 7→
(

(a, ab, c), [1 : b : c
a
]
)

and
Ψ−1

2 : C3 − {(x, 0, z)} → Σ2

(a, b, c) 7→
(

(ab, b, c), [a : 1 : c
b
]
) ,

thus we have

π ◦Ψ−1
1 ((a, b, c)) = (a, ab, c) is the first local chart ,

π ◦ Φ−1
2 ((a, b, c)) = (ab, b, c) is the second local chart .

Note that for each point p ∈ Z, π−1(p) ' P1. So π−1(Z) ' Z × P1.
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Figure 1: Explosion of the origin of R2

For example, if π : M ′ →M = (R2, 0) is the blow up of the origin in R2 we have
that

π ◦ φ−1
1 (x, y) = (x′, x′y′) ,

π ◦ φ−1
2 (x, y) = (x′′y′′, y′′) .

Hence the change of coordinate is given by y′ 7→ 1

x′′
and π−1(0) ' P1.

1.3 Simple singularities in dimension two

Throughout this section, M will denote a complex manifold of dimension two. Let
F be a holomorphic codimension one foliation of M , and let p ∈ M be a singular
point of F . Given local coordinates x, y at p, let ω = a(x, y)dx + b(x, y)dy be a
generator of F .

Definition 1 We say that p is a simple singularity of F if the jacobian matrix

Jp(ω;x, y) =


− ∂b
∂x

(p) −∂b
∂y

(p)

∂a

∂x
(p)

∂a

∂y
(p)


has two eigenvalues, (λ, µ) 6= (0, 0), such that if λµ 6= 0 then λ/µ /∈ Q>0. We say
that the origin is a saddle-node singularity if λµ = 0; in the case λµ 6= 0, we say
the origin is a complex hyperbolic singularity.
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This definition depends neither on the choice of generator ω nor on the choice of
local coordinates. Thus we can rewrite the local generator of F as

ω = (λxdy − µydx) + ω1,

where the coefficients of ω1 have order ≥ 2.

Remark 1 There are exactly two formal invariant curves at the origin, Γx and Γy,
tangent to Lx = T0(x = 0) and Ly = T0(y = 0) respectively. The directions Lx and
Ly are called the proper directions of the singular point 0 ∈ C2. If µ 6= 0 then Lx is a
strong proper direction, and it is weak otherwise; the same for Ly. Briot-Bouquet’s
Theorem asserts that if Lx is strong, then Γx is convergent.

This discussion is resumed in the following lemma, whose proof we omit (it may
be found in [6]):

Proposition 1 Through a simple singularity pass exactly two formal curves, at least
one of them convergent.

One very important characteristic of the simple singularities is that they are
stable under blow-up.

Proposition 2 Let π : M1 → M0 = M be the blow-up morphism centered at p.
Suppose that p is a simple singularity of F such that the quotients of the eigenvalues
are {α, 1/α}. Let F1 be the strict transform of F . Then

1. the exceptional divisor E = π−1(p) is invariant by F ;

2. the foliation F1 has exactly two singular points, p1, p2 in E, and the quotients
of the eigenvalues are, respectively,{

α− 1,
1

α− 1

}
,

{
α

1− α
,
1− α
α

}
.

In particular, the points p1, p2 are simple singularities of F1.

In [16], J-F. Mattei and D. Maŕın give the following definition:

Definition 2 Let F be a codimension one foliation of M , dim M = 2. A point p ∈
Sing F is a nodal singularity if the 1-form that generates F locally at p is given by

ωp = (λ1y + · · ·)dx+ (λ2x+ · · ·)dy

with λ1λ2 6= 0 and λ1/λ2 ∈ R<0 \Q<0.
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Remark 2 The topological characterization of a nodal singularity is the existence
of a saturated closed set whose complement is disconnected and such that each
connected component is a neighborhood of one of the two separatrices (without the
origin). That is to say, this saturated closed set acts like a separator of leaves of the
foliation near the separatrices at the point. Suppose Γx = (x = 0), Γy = (y = 0)
are the two separatrices at p. So if ∆ ⊂M is a one-dimensional section transversal
to Γy at a regular point q and not invariant by the foliation (say, for instance, that
∆ = {1} × D), we have that SatF(∆) is not a neighborhood of the nodal point p.
This phenomenon is not seen in the complex hyperbolic singularities which are not
nodal: at those points, if ∆ is like before, then SatF(∆) is in fact a neighborhood
of the singular point. We will study this situation in detail in Chapter 4.

1.4 Reduction of singularities in dimension two

This section is devoted to recalling, without much detail, the proof of a very known
and important result due to Seidenberg [24], which can be stated as follows:

Theorem 2 Let F be a codimension one singular foliation of M , dim M = 2.
There exists a morphism π : M → M0 = M , composition of finitely many blow-ups
centered at points, such that every singularity of π∗F is simple.

The proof of Theorem 2 is split in two parts: first we perform finitely many
blow-ups centered at points in order to obtain pre-simple singularities ; second, we
make the passage from pre-simple singularities to simple ones, also by performing
finitely many blow-ups.

Definition 3 Let F be a codimension one foliation of M and let p ∈M be a singular
point of F . We will say p is a pre-simple singularity if, given local coordinates x, y
at p such that F is generated by the 1-form ω = a(x, y)dx+ b(x, y)dy, the matrix

Jp(ω;x, y) =


− ∂b
∂x

(p) −∂b
∂y

(p)

∂a

∂x
(p)

∂a

∂y
(p)


is non-nilpotent.

Though we have fixed the local coordinates at the singular point this definition
does not depend on them, nor on the choice of the local generator ω. As a conse-
quence of the definition, we have that p is a pre-simple singularity if the linear part
of the vector field
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X(x, y) = b(x, y)
∂

∂x
+ a(x, y)

∂

∂y

has one nonzero eigenvalue. Like the simple singularities, the pre-simple singularities
are also stable under blow-up. Let p ∈ M be a pre-simple point of F which is not
a simple singularity. Then the vector field X locally at p has one of the following
types:

1. X = mx
∂

∂x
+ ny

∂

∂y
+ · · · , m, n ∈ Z>0 ;

2. X = x
∂

∂x
+ (y + x)

∂

∂y
+ · · · .

We will now exhibit a series of arguments which will lead to the proof of Theorem
2, but beforehand, let’s fix some notation.

Remark 3 - Notation Let F be a codimension one foliation of M . We will
repeatedly work with a sequence

M = M0 ←−π1 M1 ←−π2 · · · ←−πN Mn ← · · · (1)

composition of blow-ups morphisms such that:

− the center of π1 is a singular point of F , p ∈M = M0;

− the center of πs is a point ps−1 ∈Ms−1, s ≥ 2;

− Ds
s = π−1

s (ps−1) ' P1;

− Ds
i is the strict transform by πs of Ds−1

i , i < s;

− Es = Ds
1 ∪Ds

2 ∪ · · · ∪Ds
s−1 ∪Ds

s is the exceptional divisor;

− F1 = π∗1F , . . . ,Fs = π∗iFs−1, i ≥ 2, where π∗iFi−1 denotes the trans-
form of Fi−1 by πi.

Note that each Ds
i is isomorphic to P1 and that at each stage, the exceptional

divisor Es has normal crossings with Ms. We will fix E0 ⊂ M = M0, the first
divisor, to be the empty set. If Γs−1 ⊂Ms−1 is a curve, then Γs will denote its strict
transform by πs.

The first result concerning we would like to exhibit is the following:

17



Lemma 3 Let F be a codimension one foliation of M , p a singular point of F , and
let Γ be a formal nonsingular curve passing through p. Consider a sequence like (1)
such that pi = Γi ∩ π−1

i (pi−1). If pi is a singular point of Fi for every i ∈ N, then Γ
is an invariant curve of F .

Proof: Assume that Γ = (y = 0) locally at p. We wish to show that Γ1 is invariant
by F1 and therefore Γ will be invariant by F .

Take local coordinates x′, y′ at p1 given by x′ = x, y′ = y/x. Note that Γ1 =
(y′ = 0). The exceptional divisor E1 is given at p1 by x′ = 0. Even if x′ = 0 is
dicritical, we write a generator of (F1, E

1) as

ω1 = a1(x′, y′)
dx′

x′
+ b1(x′, y′)dy′ ,

where a1, b1 have no common factor. The fact that p1 is singular implies that

νp1(a1) ≥ 1 .

We perform the second blow-up and we obtain

ω2 = a2(x′′, y′′)
dx′′

x′′
+ b2(x′′y′′)dy′′

where x′′ = x′ = x, y′′ = y′/x′ and, putting ν2 = min {νp1(a1), νp1(b1) + 1},

a2 =

[
1

x′′

]ν2

a1 + y′′b1

b2 =

[
1

x′′

]ν2−1

b1 .

Note that ν2 ≥ 1. We repeat the argument. Note that y′ = 0 is invariant by F1 if
and only if we have a1 = y′ã1. Suppose, by absurd, that we have the contrary; thus
we can write

a1 = xm1u1(x) + y′ã1, u1(0) 6= 0 .

a2 = xm2u2(x) + y′′ã2, u2(0) 6= 0 .

· · · , · · ·

The computations above show that m2 = m1 − ν2 < m1, but this cannot occur
indefinitely and we arrive to a contradiction.

�
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Remark 4 The result is also valid if Γ is a singular curve.

Given a point p ∈M and a divisor with normal crossings E ⊂M , we will denote
ep(E) as the number of components of E passing through p. Given a foliation F and
a normal crossings divisor E, we denote Einv, respectively Edic, the normal crossings
union of the invariant components of E by F , respectively dicritical components of
E by F .

Now we recall the definition of the Milnor number of a foliation at a point p ∈M .
Let F be a codimension one foliation in M such that, given local coordinates x, y
at p, F is generated by the 1-form

ω = a(x, y)dx+ b(x, y)dy .

The Milnor number of F at p, µp(F), is the intersection multiplicity of the curves
{a = 0} and {b = 0} at p,

µp(F) = ip(a, b) .

Suppose π1 : M1 → M is a blow-up centered at p, and put E1 = π−1
1 (p).

Noether’s formula combines the multiplicity of intersection before and after π1:

ip(a, b) = νp(a) · νp(b) +
∑
p′∈E1

ip′(a
′, b′) ,

where νp(a), νp(b) are the orders of a, b at p and (we are considering the first local
chart, x = x′, y = x′y′)

a′(x′, y′) =
1

x′νp(a)
a(x′, x′y′)

b′(x′, y′) =
1

x′νp(b)
b(x′, x′y′) .

We use Noether’s formula to achieve the next result, whose proof we will omit
but may be found in several places, such as in [6].

Lemma 4 Suppose π1 : M1 →M is a blow-up centered at p, E1 = π−1
1 (p). If m be

the minimum of the multiplicities of a, b, then

1. µp(F) = m2 − (m+ 1) +
∑
p′∈E1

µp′(F1) if π1 is nondicritical ;

2. µp(F) = (m+ 1)2 − (m+ 2) +
∑
p′∈E1

µp′(F1) if π1 is dicritical.
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Let us start the proof of Theorem 2. In order to do that, let’s assume it is false;
thus we can find an infinite sequence of blow-ups

S : M0 ←−π1 M1 ←−π2 · · ·

as in Remark 3 with the following conditions:

1. The center pi−1 of πi is not a simple point of Fi−1;

2. Each pi ∈ π−1
i (pi−1) .

Let us show that S cannot exist.

Let Iq = µq(Fi) − eq(Ei
inv); we wish to see the behavior of Iq under blow-ups.

Due to Lemma 4, if m ≥ 2 and πi+1 is the blow-up centered at pi, dicritical or not,
we have that ∑

p′∈Di+1
i+1

µp′(Fi+1) < µpi(Fi) .

Thus for every point p′ ∈ Di+1
i+1, µp′(Fi+1) < µpi(Fi) and Ip′ < Ipi ; that is to say, if

m ≥ 2, Ipi decreases with each blow-up. So let’s see what happens when m = 1.

Lemma 5 In the situation above,

− if m = 1 and πi+1 is dicritical, then pi is pre-simple;

− if m = 1, epi(E
i) = 2, then pi is pre-simple;

− if pi is not pre-simple, then Ipi ≥ Ip′ ∀ p′ ∈ Di+1
i+1. Furthermore, we

have a strict inequality if πi+1 is dicritical.

Proof: For the first assertion, consider the dicritical divisor Di+1
i+1: there exist two

distinct points in Di+1
i+1 and two smooth curves, Γ1 and Γ2, invariant by Fi+1 and

transversal to Di+1
i+1 at these points. Take local coordinates x, y at pi such that

πi+1(Γ1 ∪ Γ2) = (xy = 0). Then Fi is generated by the 1-form

ω = ya(x, y)dx+ xb(x, y)dy .

Since m = 1, either a(pi) 6= 0 or b(pi) 6= 0; suppose a(pi) 6= 0. Then we can divide ω
by a and obtain another generator for Fi, ω∗ = ydx+ xb∗(x, y)dy. Thus the matrix

Jpi(ω
∗
1;x, y) =

(
? ?
0 1

)
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has at least one nonzero eigenvalue, and pi is pre-simple.

Now for the second assertion: there are two invariant components of Ei passing
through pi, thus ω = ya(x, y)dx + xb(x, y)dy is a local generator of Fi at pi; we
repeat the argument above.

For the last assertion, we need only consider the case where m = 1, epi(E
i) = 1

and πi+1 is nondicritical. The points in Di+1
i+1 either have ep′(E

i+1) = 1 or 2. Consider
a point q ∈ Di+1

i+1 such that eq(E
i+1) = 1. There exists another point q′ ∈ Di+1

i+1 such
that eq′(E

i+1) = 2 (for example, q′ = Di+1
i ∩Di+1

i+1). Then

µpi(Fi) = −1 +
∑

p′∈Di+1
i+1

µp′(Fi+1) ≥ −1 + µq(Fi+1) + µq′(Fi+1) ≥ µq(Fi+1) ,

which implies Ipi ≥ Iq since epi(E
i) = eq(E

i+1) = 1. Now, for the points that, like q′,
have eQ(Ei+1) = 2, note that µpi(Fi) ≥ −1+µq′(Fi+1), therefore Ipi = µpi(Fi)−1 ≥
µq′(Fi+1)− 2 = Iq′ .

�

Corollary 3 Given any sequence S as in Remark 3, there exists an index k such
that pk is pre-simple.

Proof: Suppose, by absurd, that there exists a sequence S as in Remark 3 such
that pi is not pre-simple for every i ∈ N. If there exists an index s ∈ N such that πi
is dicritical for i ≥ s, then Ipi decreases infinitely, which is not possible. Therefore
we may assume that, apart from finitely many indices, πi is nondicritical. Then Ipi
must stabilize; thus except for finitely many indices, we may assume Ipi = Ipi+1

for
all i. Due to Lemma 5, this implies that for all i, epi(E

i) = 1 and m = 1. Then the
points pi are the points of intersection of the strict transform (at each stage Mi) of
a nonsingular formal curve Γ ⊂M (the construction of Γ is similar to the argument
used in the proof of Proposition 1). By Lemma 3, Γ is invariant by F and since the
blow-ups πi are nondicritical, it follows that the pi are pre-simple singularities. We
arrive to an absurd and we are done.

�

This concludes the first part of the proof of Theorem 2, which is to get pre-simple
singularities. Now we move on to the passage from pre-simple to simple.

Proposition 6 Let p ∈M be a pre-simple singularity of F . There exits a morphism
π = MN →M = M0, composition of finitely many blow-ups centered at points, such
that all the singularities of π∗F = FN are simple.
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Proof: Put

Res(F , p) =

{
0 if α /∈ Q>0

m+ n if α = m
n

is an irreducible fraction, m,n ∈ Z>0
,

where α is the quotient of the eigenvalues of the matrix Jp(ω;x, y). So a singularity
q is simple if and only if Res(F , q) = 0. The argument is that, after blowing-up a
pre-simple singularity, if singularities which are not yet simple (and they must be
pre-simple, due to the stability property) appear, then the residue strictly decreases.
Since it cannot decrease infinitely, after finitely many blow-ups the residue of the
singularities in the last divisor will be zero.

If p is a pre-simple but not simple singularity, after a linear change of coordinates
the matrix Jp(ω;x, y) has one of the following forms:

1. JD(0, 0) =

(
1 0
0 1

)
;

2. JD(0, 0) =

(
1 1
0 1

)
;

3. JD(0, 0) =

(
m 0
0 n

)
.

The first case corresponds to π1 being a dicritical blow-up; in the divisor D1
1 =

π−1
1 (p) there are no singularities, and the result follows.

In the second case, we will find only one singular point of F1, p′ ∈ D1
1, which is

the origin of the first local chart x = x′, y = x′y′. We have that

Jp′(ω
′;x′, y′) =

(
1 0
? 0

)
,

and p′ is, therefore, a simple singularity. The origin of the second local chart
x = x′′y′′, y = y′′ is not a singularity of F1.

Finally, in the third case, we will find two singularities on D1
1, the origins of the

local charts; call them p0 and p∞. The eigenvalues of the jacobian matrix of p0 are
m,n−m, whereas the eigenvalues of the jacobian matrix of p∞ are n,m−n. So we
have that

Res(F , p) = m+ n > n = m+ n−m = Res(F1, p0) ,

Res(F , p) = m+ n > m = n+m− n = Res(F1, p∞) .

�
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1.5 Camacho-Sad’s theorem

In [3], C. Camacho and P. Sad proved that every holomorphic foliation F of (C2, 0)
admits an invariant analytic curve. If, during the reduction of singularities of F , one
component of the exceptional divisor happens to be dicritical, then each leaf of the
final transform of F which intersects this component is projected onto an analytic
curve; hence, in this case, F indeed admits infinitely many invariant analytic curves.
In this section we will exhibit a method, due to J. Cano (see [9]), for constructing
invariant analytic curves in the case of nondicritical foliations.

Let F be a foliation of (C2, 0) and let Γ be an invariant curve which is not
singular. Given local coordinates x, y at the origin, we may assume that Γ = {y = 0}
and that F is generated by the 1-form

ω = yã(x, y)dx+ b(x, y)dy, ã(x, y), b(x, y) ∈ C{x, y} .

The index I(F ,Γ; 0) of F relative to Γ at 0 ∈ C2 is defined by

I(F ,Γ; 0) = residue at 0 ∈ C2 of − ã(x, 0)

b(x, 0)
.

That is to say, if

− ã(x, 0)

b(x, 0)
=
∑

cix
i ∈ C{x}[x−1] ,

then I(F ,Γ; 0) = c−1. The index does not depend on the choice of coordinates nor
on the choice of the generator ω of F .

We are interested in the behavior of the index under blow-ups, and also on
calculating directly the index at simple singularities. The proof of the following
result is based on the classical Residue Theorem of one complex variable. For further
details see [6].

Proposition 7 Let π : M ′ → M0 = (C2, 0) be a blow-up centered at the origin,
E = π−1(0) ⊂M ′ be the exceptional divisor, F ′ = π∗F be the strict transform of F
and Γ′ be the strict transform of Γ. Suppose π is not dicritical. Then

•
∑
p′∈E

I(F ′, E; p′) = −1

• I(F ′,Γ′; q′) = I(F ,Γ; 0)− 1 where q′ = Γ′ ∩ E.
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Now let’s suppose 0 ∈ C2 is a simple singularity of the foliation F . We recall
(Remark 1) that there are two formal invariant curves at the origin, Γx and Γy,
which are tangent to Lx = T0(x = 0) and Ly = T0(y = 0) respectively. If µ 6= 0 then
Lx is a strong proper direction, and it is weak otherwise; the same for Ly. If Lx is
strong, then Γx is convergent.

Lemma 8 In the situation above, we have that

• if Lx is a weak direction, then I(F ,Γy; 0) = 0;

• if λµ 6= 0, then I(F ,Γx; 0) · I(F ,Γy; 0) = 1.

Proof: Firstly let’s suppose Lx is a weak direction; thus µ = 0 and the origin
is a saddle-node singularity. Thus Ly is necessarily strong, and therefore Γy is
convergent. Choosing local coordinates x, y, we may write Γy = (y = 0) and F is
generated by the 1-form

ω = yã(x, y)dx+ b(x, y)dy

where ã(0, 0) = 0 and b(x, 0) = xu(x), u(0) 6= 0. Thus we can write

ã(x, y) =
∑
i+j≥1

aijx
iyj = a10x+ a01y + a20x

2 + a11xy + a02y
2 + · · ·

b(x, y) = xu(x) + y(· · ·) .

So

−ã(x, 0)

b(x, 0)
=
−(a10x+ a20x

2 + · · ·+ ak0x
k + · · ·)

xu(x)
= − a10

u(x)
− x

u(x)
(· · ·) ∈ C{x} ,

and therefore I(F ,Γy; 0) = 0. That is to say, the index of the “strong” curve of a
saddle-node singularity is zero.

Now suppose λµ 6= 0: then the origin is a complex hyperbolic singularity and
both directions Lx, Ly are strong, hence both curves Γx and Γy are convergent. Thus
we may assume that Γx = (x = 0), Γy = (y = 0) and we can write ω as follows:

ω = y(−µ+ a1(x, y))dx+ x(λ+ b1(x, y))dy

where a1(0, 0) = b1(0, 0) = 0. Writing

a1(x, y) =
∑
i+j≥1

aijx
iyj = a10x+ a01y + a20x

2 + a11xy + a02y
2 + · · ·
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b1(x, y) =
∑
i+j≥1

bijx
iyj = b10x+ b01y + b20x

2 + b11xy + b02y
2 + · · · ,

we have that

−(−µ+ a1(x, 0))

x(λ+ b1(x, 0))
=

µ− (a10x+ a20x
2 + · · ·+ ak0x

k + · · ·)
λx+ x(b10x+ b20x2 + · · ·+ bk0xk + · · ·)

and therefore I(F ,Γy; 0) = c−1 = µ/λ. On the other hand we have that

−(λ+ b1(0, y))

y(−µ+ a1(0, y))
=

λ− (b01y + b02y
2 + · · ·+ b0ky

k + · · ·)
µy − y(a01y + a02y2 + · · ·+ a0kyk + · · ·)

and therefore I(F ,Γx; 0) = c−1 = λ/µ, and the second assertion follows.

�

We are especially interested in calculating the index of a foliation at a nodal
singularity. Suppose that 0 ∈ C2 is a nodal point of F . Thus choosing local
coordinates x, y, the local generator ω can be written as follows (Definition 2):

ωp = λ1ydx+ λ2xdy

where λ1λ2 6= 0 and λ1/λ2 ∈ R<0 \ Q<0. Thus I(F ,Γx; 0) = −λ2/λ1 ∈ R>0 and
I(F ,Γy; 0) = −λ1/λ2 ∈ R>0.

Remark 5 Let F be a foliation on M = (C2, 0) and assume that the blow-up π :
M1 →M0 = (C2, 0) is not dicritical. If there is a nodal singularity p ∈ π−1

1 (0) = E1

of F1 = π∗1F , there exists another singular point q 6= p, q ∈ E1, such that q is not a
nodal singularity of F ′. Indeed, we have just seen that I(F1, E

1; p) ∈ R>0; since∑
p′∈E1

I(F1, E
1; p′) = −1 ,

there must exist a point q ∈ E1 such that I(F1, E
1; q) /∈ R>0. Hence q is not a nodal

singularity of F1.

Now we will exhibit the algorithm for constructing invariant curves of a foliation
F of (C2, 0). As we have remarked before, we will suppose that F is not dicritical,
otherwise we would find infinitely many invariant curves.

Definition 4 (J. Cano) Let F be a foliation over an analytic manifold M of dimen-
sion two; consider a normal crossings divisor E ⊂M without dicritical components
of F . We will say the pair (F , E) satisfies property (?) at a point p ∈ M if one of
the following properties is satisfied:
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(?)− 1 The point p belongs to only one irreducible component of E (that is to say,
ep(E) = 1) and

I(F , E; p) /∈ Q≥0 .

(?) − 2 The point p belongs to two irreducible components D1, D2 of E (that is to
say, ep(E) = 2) and there exists a real number a > 0 such that

I(F , D1; p) ∈ Q≤−a ,

I(F , D2; p) /∈ Q≥−1/a .

Theorem 4 Suppose (F , E) satisfies property (?) at the point p ∈M . Let π : M ′ →
M be the blow-up centered at p and suppose π is not dicritical. Let F ′ = π∗F ,
D = π−1(p), E ′ = D ∪ π−1(E). Then there exists a point p′ ∈ D such that (F ′, E ′)
satisfies property (?) at p′.

Proof: (see [9]). Suppose, by absurd, that the assertion is false. Firstly let’s consider
the case ep(E) = 1: let D1 be the irreducible component of E which contains p and
D′1 be its transform by π. Since the pair (F , E) satisfies property (?) at p, we have
that I(F , E; p) /∈ Q≥0. Let q = D ∩ D′1. Then for every point p′ ∈ D, p′ 6= q, we
have that ep′(E

′) = 1 and, since (F ′, E ′) does not satisfy property (?) at p′, we have
that I(F ′, D; p′) ∈ Q≥0. Due to Proposition 7 it follows that

I(F ′, D; q) = −1−
∑
p′ 6=q

I(F ′, D; p′) ∈ Q≤−1 .

However, since (F ′, E ′) does not satisfy property (?) at q, it follows that

I(F ′, D′1; q) ∈ Q≥−1 (take a = 1) .

But also due to Proposition 7 we have that

I(F , E; p) = I(F ′, D′1; q) + 1 ∈ Q≥0 ,

which is an absurd and we are done.

Now suppose ep(E) = 2: p ∈ D1∩D2, D1, D2 ⊂ E. So there exists a real number
a > 0 such that

I(F , D1; p) ∈ Q≤−a ,

I(F , D2; p) /∈ Q≥−1/a .
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Let D′1, D
′
2 be the transforms of D1, D2 respectively and let q1 = D′1∩D, q2 = D′2∩D.

So, like in the other case, for every p′ ∈ D, p′ 6= q1, q2 we have by hypothesis that
I(F ′, D; p′) ∈ Q≥0. Therefore

I(F ′, D; q1) + I(F ′, D; q2) = −1−
∑

p′ 6=q1,q2

I(F ′, D; p′) ∈ Q≤−1 .

However, we have that

I(F ′, D′1; q1) = I(F , D1; p)− 1 ∈ Q−(a+1) ;

since (F ′, E ′) does not satisfy property (?) at q1, it follows that

I(F ′, D; q1) ∈ Q≥−1/(a+1) .

This implies that

I(F ′, D; q2) =
(
I(F ′, D; q1) + I(F ′, D; q2)

)
− I(F ′, D; q1) ∈ Q≤−a/(a+1) .

But since (F ′, E ′) does not satisfy property (?) at q2, it follows that

I(F ′, D′2; q2) ∈ Q−(a+1)/a .

However, this implies that

I(F , D2; p) = I(F ′, D′2; q2) + 1 ∈ Q≥−1/a ,

which is an absurd and we are done.

�

Note that if p ∈ E is a simple singularity of F such that ep(Einv) = 2, then (F , E)
does not satisfy property (?) at p. Indeed, suppose p = D1 ∩D2 where D1, D2 are
irreducible components of E invariant by F . Then if I(F , D1; p) · I(F , D2; p) =
0 (that is to say, p is a saddle-node singularity), clearly (F , E) does not satisfy
property (?)− 2 at p. In the case I(F , D1; p) · I(F , D2; p) = 1, then p is a complex
hyperbolic singularity and I(F , D1; p) = µ/λ, I(F , D2; p) = λ/µ (Lemma 8). So
if I(F , D1; p) ∈ Q≤−a then I(F , D2; p) ∈ Q≥−1/a and once again (F , E) does not
satisfy property (?)−2 at p. Hence if p is a simple singularity of F such that (F , E)
satisfies property (?) at p then ep(Einv) = 1. In this case we have

I(F , E; p) 6= 0 .
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Assume we can choose local coordinates x, y at p such that p = (x, y) = (0, 0) and
E = (y = 0). By Lemma 8, I(F , E; p) 6= 0 implies that Lx = (x = 0) is not a weak
direction; that is to say, Lx is a strong direction and therefore the formal curve Γx
at p (which exists because p is a simple singularity) is convergent. Thus we may
write Γx = (x = 0).

Now suppose we have a nondicritical foliation F of (C2, 0); we wish to construct
an analytic curve Γ which is invariant for F . Let π1 : M1 → M0 = (C2, 0) be the
blow-up of the origin, F1 = π∗F , E = π−1

1 (0). Since∑
p∈E

I(F1, E; p) = −1 ,

there exists a point p1 ∈ E such that (F , E) satisfies property (?) at p1. Note that
(F , E) in fact satisfies property (?) − 1, since ep1(E) = 1. If p1 is simple, we have
just seen that there exists a convergent analytic curve Γ1 transversal to E and in-
variant for F ; thus Γ = π1(Γ1) and we are done. If p1 is not simple, we blow-up p1.
By the theorem of reduction of singularities in dimension two (Theorem 2), after
a finite number of blow-ups we will find a point pk which is simple and such that
(Fk, Ek) satisfies property (?) at pk. Most importantly, as remarked above, we must
have epk(Ek) = 1; thus we find an analytic curve Γk which is invariant for Fk and is
projected onto an analytic curve Γ invariant for F .

In [21] the authors give a proof of a stronger version of Camacho-Sad’s theorem.

1.6 Dimensional type

Let F be a germ of singular holomorphic foliation of codimension one on (Cn, 0).

Definition 5 We say that F has dimensional type ≤ n − k at the origin if there
are k germs of nonsingular vector fields ξ1, ξ2, . . . , ξk tangent to F such that

ξ1(0), ξ2(0), . . . , ξk(0)

are C-linearly independent tangent vectors. In this case there is a submersion

φ : (Cn, 0)→ (Cn−k, 0)

and a codimension one foliation G on (Cn−k, 0) such that F = φ∗G.
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In other words, there are local coordinates x1, x2, . . . , xn at the origin 0 ∈ Cn

such that F is generated by the integrable 1-form

ω =
n−k∑
i=1

ai(x1, x2, . . . , xk)dxi .

We say that τ is the dimensional type of F if τ = n − k where k is the maximum
possible with the above property.

Due to Frobenius Theorem, we have that τ = 1 if and only if F is nonsingular.
We remark that the dimensional type of F has been defined as the largest number
of variables needed to generate F locally at the origin; we could also say, for short,
that τ is the dimensional type of the origin. Moreover, for every point p near it, the
dimensional type of p (or equivalently, of F at p) is smaller or equal to the dimen-
sional type of the origin 0 ∈ Cn. Hence we may interchangeably say “dimensional
type of a point” to mean “dimensional type of the foliation at the point”. The di-
mensional type of the foliation is simply the largest number found when computing
the dimensional type of each point individually.

For instance, if n = 2, then every singular foliation F has dimensional type two.
If n = 3, a singular foliation F of (C3, 0) has dimensional type two if there are local
coordinates x, y, z at the origin such that F is generated by a 1-form

ω = a(x, y)dx+ b(x, y)dy .

That is to say, F is a cylinder in (C3, 0) over the foliation G of (C2, 0) given by the
1-form

ωG = a(x, y)dx+ b(x, y)dy .

In this case, the z-axis Z = {x = y = 0} is contained in the singular locus of
F . Furthermore, for every two-dimensional section ∆p transversal to Z at a point
p = (0, 0, p) we have that p is a singularity in dimension two of the induced two-
dimensional foliation F|∆p

. Indeed, we have that F|∆p
= G for every p ∈ Z. Note

that Z may be contained in one or two irreducible components of a normal crossings
divisor E ⊂ (C3, 0) which are invariant for the foliation F . That is to say, we also
include the possibility of existence of a normal crossings divisor E such that Z ⊂ E.
For instance, in the local coordinates x, y, z we may have E = {x = 0}, E = {y = 0}
or E = {xy = 0}. So F has dimensional type two, and every point of Z also has
dimensional type two.
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1.7 Simple singularities in dimension n ≥ 2

Let F be a codimension one foliation in M = (Cn, 0), n ≥ 2 and E ⊂ M a normal
crossings divisor. Let τ be the dimensional type of the origin. If τ = 1, as a
consequence of Frobenius Theorem, the origin is a regular point of F . So suppose
τ ≥ 2.

Definition 6 (CH-simple) We will say that the origin is a Complex Hyperbolic
Simple Point of F if there exist convergent local coordinates x1, x2, . . . , xn such that
F is given by ω = 0 where

ω =
τ∑
i=1

(λi + ai(x1, x2, . . . , xτ ))
dxi
xi

with ai(0) = 0 for all i = 1, 2, . . . , τ and
∑
λimi 6= 0 if m 6= 0,mi ∈ Z>0.

We will decompose the divisor E ⊂M as follows:

E = Einv ∪ Edic

where Einv is the union of the irreducible components of E invariant by F and Edic
is the union of the components of E that are generically transversal to F (dicritical
components). The origin is CH-simple for the pair F , E (or “adapted to E”) if and
only if, in addition, the coordinates x1, x2, . . . , xn may be chosen in such a way that

E ⊂

(
n∏
i=1

xi = 0

)
; Edic ⊂

(
n∏

i=τ+1

xi = 0

)
; (2)

(
τ−1∏
i=1

xi = 0

)
⊂ Einv ⊂

(
τ∏
i=1

xi = 0

)
.

In the case that Einv =

(
τ−1∏
i=1

xi = 0

)
we say that we have a trace CH-simple point.

In this case we find an invariant hypersurface H = (xτ = 0) such that E ∪ H is a

normal crossings divisor. If Einv =

(
τ∏
i=1

xi = 0

)
we say that we have a CH-simple

corner.

Remark 6 The hypersurfaces (xi = 0), i = 1, 2, . . . , τ are the only invariant hy-
persurfaces at a CH-simple singularity. This can be viewed by performing a single
blow-up of the origin and considering a plane section. On the other hand, (xj = 0)
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are generically transversal to F for j = τ+1, τ+2, . . . , n. Note also that the singular
locus is given by

Sing F =
⋃

1≤i<j≤τ

(xi = xj = 0) .

All the singularities around a CH-simple point are also CH-simple. Note that
there are no saddle-nodes with τ = 2 around a CH-simple singularity. There is a
more general definition of simple singularity (see [5], [4]) that allows the existence
of two-dimensional saddle-nodes. Although we are only interested in CH-simple
singularities, we include the general definition for the sake of completeness.

Definition 7 We say that the origin is a simple singularity if it has one of the
following types:

A There exist formal local coordinates x̂1, x̂2, . . . , x̂τ and a function

ϕ : u = x̂λ1
1 x̂

λ2
2 · · · x̂λττ with

∑
λimi 6= 0 if m 6= 0, mi ∈ Z>0 ,

such that F is given by ω = 0 where

ω = ϕ∗α , α =
du

u
.

That is to say,

ω =
τ∑
i=1

λi
dx̂i
x̂i

.

B There exist formal local coordinates x̂1, x̂2, . . . , x̂τ and a function

ϕ :

{
u = x̂p1

1 x̂
p2

2 · · · x̂
pk
k , k ≤ τ

v = x̂λ2
2 x̂

λ3
3 · · · x̂λττ

with
τ∑

i≥k+1

λimi 6= if m 6= 0, mi ∈ Z>0 ,

such that F is given by ω = 0 where

ω = ϕ∗α , α =
du

u
+ ψ(u)

dv

v
, ψ(0) = 0 .

That is to say,

ω =
k∑
i=1

pi
dx̂i
x̂i

+ ψ(x̂p1

1 x̂
p2

2 · · · x̂
pk
k ) ·

τ∑
i=2

λi
dx̂i
x̂i

.

Note also that
τ∏
i=1

xi = 0 are the only invariant formal hyperplanes at a simple

singularity. As in the case CH-simple, we say that the singularity is adapted to E if
the formal coordinates may be chosen in such a way that we have (2) and we take
a similar definition for corner and trace points.
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1.8 Reduction of singularities in dimension three

The reduction of singularities in dimension two has been generalized in dimension
three by F. Cano and D. Cerveau in the nondicritical case in [5] and later in the
general case by F. Cano in [4]. The main result of [4] is the following

Theorem 5 Let X be a three-dimensional germ, around a compact analytic set,
of nonsingular complex analytic space. Let F be a holomorphic singular foliation
of codimension one and D be a normal crossings divisor on X. Then there is a
morphism π : X ′ → X composition of a finite sequence of blow-ups with nonsingular
centers such that:

(1) Each center is invariant by the strict transform of F and has normal crossings
with the total transform of D.

(2) The strict transform F ′ of F in X ′ has normal crossings with the total transform
D′ of D and it has at most simple singularities adapted to D′.

Essentially, Theorem 5 asserts that given a holomorphic codimension one fo-
liation F of (C3, 0) it is possible to find a morphism π : M ′ → M = (C3, 0),
composition of a finite number of blow-ups with adequate centers, such that every
point of F ′ = π∗F is simple as described in Section 1.7.

We will introduce the notation that will be used throughout the text. Note that
it is very similar to the notation given in Remark 3.

Remark 7 Let π = π1 ◦ π2 ◦ · · · ◦ πN : MN → M0 = (C3, 0) be a morphism of
reduction of singularities of F ,

(C3, 0) = M0 ←−π1 M1 ←−π2 · · · ←−πN MN . (3)

For 1 ≤ s ≤ N , we will denote:

− σs = π1 ◦ π2 ◦ · · · ◦ πs

− ρs = πs+1 ◦ πs+2 ◦ · · · ◦ πN

− Ys−1 is the center of πs

− Ds
s = π−1

s (Ys−1)

− Ds
i is the strict transform by πs of Ds−1

i , i < s

− Es = Ds
1∪Ds

2∪· · ·∪Ds
s is the exceptional divisor in each step, Es ⊂Ms

− F1 = π∗1F , . . . , Fs = π∗sFs−1 , . . . , FN = π∗NFN−1 = π∗F .
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Figure 2: Example of arrangement of the irreducible components of the divisor.
Di, Dk, Dl are invariant components, Dj and Dj′ are dicritical components and S̃ is
a convergent separatrix.

As in the two-dimensional case, we denote by ep(E) the number of irreducible
components of the normal crossings divisor E through p. We remark that in each
intermediate ambient space Ms, the irreducible components of the divisor Es and
Ys (the center of πs+1) have normal crossings. We may write Es = Es

inv ∪ Es
dic as

before. Theorem 5 assures that for every point p ∈ MN , we have that 1 ≤ τp ≤ 3,
0 ≤ ep(E

N) ≤ 3 and the following inequality holds:

τp − 1 ≤ ep(E
N
inv) ≤ τp .

Hence if ep(E
N
inv) = τp − 1, p is a trace point; and it is a corner in the case

ep(E
N
inv) = τp.

The set σ−1
s (0) ⊂ Ms is a compact analytic subset that can be described as

follows. First, if s = 0, we have σ−1
0 (0) = {0}. If s ≥ 1, we have that σ−1

s (0) ⊂ Es
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and
σ−1
s (0) = π−1

s (σ−1
s−1(0)) .

Moreover if Ys−1 = {p} is a point, we have that p ∈ σ−1
s−1(0) and thus Ds

s ⊂ σ−1
s (0).

If Ys−1 is a curve, we have two possibilities:

a) Ys−1 is a compact curve, Ys−1 ⊂ σ−1
s−1(0). In this case Ds

s = π−1
s (Ys−1) is a

compact divisor contained in σ−1
s (0).

b) Ys−1 is a germ of curve at a single point Ys−1 ∩ σ−1
s−1(0) = q. In this case π−1

s (q)
is a compact curve contained in Ds

s and Ds
s is a germ of hypersurface around

π−1
s (q). In particular Ds

s is a noncompact component of Es.

As we will see further, in this work we will never encounter possibility a).

1.9 The argument of Cano-Cerveau

In [5], F. Cano and D. Cerveau exhibit a method for constructing an invariant germ
of surface once you have a reduction of singularities as in Theorem 5 and Remark
7. It essentially says that, if there are no dicritical components in the exceptional
divisor EN ⊂MN , it is possible to continue each germ of invariant surface that rests
on a curve of the singular locus whose points are trace singularities of dimensional
type two and thus construct, by projection, an invariant germ of surface at the origin
0 ∈ C3.

The main result of [5] is the following

Theorem 6 (Existence of separatrices in dimension three) If F is a germ of holo-
morphic singular foliation of codimension one over (C3, 0) given by ω = 0 then one
of the following properties are satisfied:

(i) F has a germ of invariant surface.

(ii) There is an analytic mapping σ : (C2, 0) → (C3, 0) such that σ∗ω is not iden-
tically zero and the foliation given by σ∗ω = 0 has infinitely many analytic
solutions through the origin.

We shall give here a brief description of Cano-Cerveau’s argument. Suppose F
does not fulfill (ii). Then after the reduction of singularities we do not encounter
dicritical irreducible components in EN ⊂MN that project onto the origin (compact
components). Consider the set
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Tr Sing FN = U {Y ; Y is an irreducible component of Sing FN
which is generically contained in only one irre-
ducible component of EN}.

Thus Tr Sing FN is a union of curves such that generically, every point of each
curve is a trace singularity of dimensional type two. Furthermore, it is clear that
each Y ⊂ Tr Sing FN has normal crossings with EN and satisfies the following
properties:

−Y is not a singular curve;
− Either Y ⊂ π−1(0) and in this case it is a global compact curve; or
Y ∩ π−1(0) = pY is one point and Y is a germ at pY , in which case π(Y )
is a germ of curve at the origin 0 ∈ C3;
− If Y 6= Y ′, then either Y ∩ Y ′ = ∅ or Y ∩ Y ′ = pY,Y ′ is a single point.

Let Γ be a connected component of Tr Sing FN : Γ = Y1 ∪ Y2 ∪ · · · ∪ Yl where
the generical point of each Yi is a trace singularity of dimensional type two, and the
intersection points Yi∩Yj are trace singularities of dimensional type three. Then for
each point p ∈ Γ there exists a formal separatrix Sp; let us assume Sp is convergent.
By analytic triviality we may continue in an analytic way Sp to the points q ∈ Γ
such that eq(E

N
inv) ≤ ep(E

N
inv). The difficulty lies in continuing Sp to the points q′

where eq′(E
N
inv) = 2, that is to say, to the points of Γ which are trace singularities

with dimensional type three. Nevertheless, it can also be done. Therefore we can
“glue” the local separatrices Sp in order to obtain a closed hypersurface SΓ which
gives, locally, a separatrix at each point of Γ. Due to the fact that the reduction
of singularities (3) is a proper morphism, SΓ is projected to a convergent germ of
separatrix S ⊂ (C3, 0) of the foliation F .

It remains to show that there is at least one connected component Γ of Tr Sing
FN that supports a convergent separatrix as above. Let ∆ be a non-degenerate two-
dimensional section of F . Such a section exists due to the Transversality Theorem
of [19]. So F|∆ is a codimension one foliation in a two dimension ambient space
such that the origin 0 ∈ ∆ is an isolated singularity. Since it is the restriction of
a nondicritical foliation, F|∆ is also nondicritical in dimension two. By [3], there
exists at least one convergent separatrix γ of F|∆. So γ is a nonsingular invariant
curve of F that is not contained in Sing F . We have the following
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Figure 3: The argument of Cano-Cerveau

Lemma 9 [5] The strict transform of γ under the reduction of singularities of F ,
γN = π∗γ, is nonsingular, not contained in Sing FN and transversal to EN at a
point p ∈ EN such that ep(E

N
inv) = 1.

With this lemma we conclude that the set Tr Sing FN is not empty by showing
that the final transform of γ intersects EN at a point p which is a trace singularity of
dimensional type two; thus we find a curve contained in Tr Sing FN passing through
it (see Figure 3).

The presence of a compact dicritical component can prevent the extension process
of constructing the separatrix S ⊂ (C3, 0). For instance, in Jouanolou’s example
(see [12]), it is possible to construct a conic foliation F of (C3, 0) such that after
a single blow-up centered at the origin we obtain only simple singularities, and
the exceptional divisor - which only has one compact component - is generically
transversal to the strict transform F ′. Let G be a codimension one foliation of
(C2, 0) with only simple singularities and which has no invariant curves. We may
build F so that the intersection of F ′ and the exceptional divisor is precisely the
foliation G. Since G has no invariant curves and F is a conic foliation of (C3, 0), we
have that F has no invariant surfaces. The foliation F is given by the differential
1-form

ω = (xmy − zm+1)dx+ (ymz − xm+1)dy + (zmx− ym+1)dz, m ≥ 2 .
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Figure 4: Jouanolou’s example

This is the primary example of a holomorphic codimension one foliation in ambient
space with dimension higher than two that has no invariant hypersurfaces.

However, there are other situations in which Cano-Cerveau’s argument works
even if there are dicritical irreducible components in the exceptional divisor. For in-
stance, if Sing F has codimension two, in ambient space dimension three this means
that Sing F is a union of germs of curves at 0 ∈ C3. If all dicritical irreducible
components generated during the reduction of singularities of F are projected onto
these germs of curves, Cano-Cerveau’s argument is still valid. That is to say, if the
dicritical components of the divisor are not compact, there is no risk of losing the
compactness of the prolongation of the local invariant surfaces Sp when intersecting
with these components, since the intersection of Sp and a dicritical component re-
sults in a germ of curve.

The argument is still valid when we have meromorphic first integrals in the
compact dicritical components (see [23]).

1.10 Generic equireduction

In this section we assume that the ambient space M has dimension three, although
most of the properties are also true in higher dimension. Thus we consider a complex
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analytic manifold M of dimension three (we will assume that M is either compact
or a germ over a compact set), a codimension one singular foliation F on M , and
we also fix a normal crossings divisor E ⊂M .

We start by defining the adapted singular locus Sing(F , E) of F relatively to E.
We recall that F and E have normal crossings at a point p ∈M if and only if F is
nonsingular at p and

E ∪H

defines a normal crossings divisor locally at p, where H is the only invariant hyper-
surface of F through p. Then we define

Sing(F , E) =
{
p ∈M ; F and E do not have normal crossings at p

}
.

By definition, we have that Sing F ⊂ Sing (F , E). Moreover Sing(F , E) is a closed
analytic subset of M of codimension at least two (to see this it is enough to remark
that if F is tangent to a hypersurface D, then F and D have normal crossings at a
generic point of D). Let us also remark that

Sing F = Sing(F , ∅) .

Before giving the precise definition of point of equireduction, let us introduce the
finite equireduction bamboos. Given a point p ∈ M , a finite equireduction bamboo
for F , E of length N ≥ 0 over p is given by

B :
{

(Mk,Fk, Ek, Yk, pk;Uk)
}N
k=0

where we have the following properties:

1. Uk
ik
↪→Mk is an open subset of Mk, k = 0, 1, . . . , N .

2. Yk ⊂ Uk is a closed connected nonsingular curve having normal crossings with
Ek ∩ Uk, k = 0, 1, . . . , N .

3. M0 = M and πk : Mk → Uk−1 is the blow-up with center Yk−1 for k =
1, 2, . . . , N .

4. E0 = E and Ek = π−1
k (Yk−1 ∪ (Ek−1 ∩ Uk−1)) for k = 1, 2, . . . , N .

5. p0 = p and πk(pk) = pk−1 for k = 1, 2, . . . , N .

6. pk ∈ Yk, k = 0, 1, . . . , N .
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7. ik ◦ πk induces an étale morphism Yk → Yk−1 at pk.

Moreover, F0 = F , Fk is the transform by πk of Fk−1|Uk−1
and we add the

conditions

8. Sing(Fk|Uk , E
k ∩ Uk) = Yk.

9. If Dk
k = π−1

k (Yk−1) is dicritical for Fk, we have one of the following properties:

a) (complete transversality) For each q ∈ Yk−1 the fiber π−1
k (q) is generically

transversal to Fk.
b) (verticality) For each q ∈ Yk−1 the fiber π−1

k (q) is invariant by Fk.

Remark 8 The existence of a finite equireduction bamboo of length N = 0 simply
means that Sing (F , E) is a nonsingular curve at p having normal crossings with E.
Note that this property is satisfied at the generic points of the curves contained in
Sing(F , E).

We can represent such a bamboo in a displayed way by the diagram

B : M
i0←↩ U0

π1← M1
i1←↩ U1

π2← · · · πN← MN
iN←↩ UN

∪ ∪ ∪ ∪ ∪ ∪
E,F Y0 3 p0 E1,F1 Y1 3 p1 EN ,FN YN 3 pN

Definition 8 We say that a point p ∈ M is a point of equireduction for F , E if
Sing(F , E) is a nonsingular curve at p having normal crossings with E and for any
finite equireduction bamboo

B :
{

(Mk,Fk, Ek, Yk, pk;Uk)
}N
k=0

there is an open set W ⊂ UN , pN ∈ W such that the blow-up

σ : M̃ → W

with center YN ∩W satisfies

1. If Ẽ = σ−1(YN∪(EN∩W )) and F̃ is the transform of FN by σ, then Sing(F̃ , Ẽ)
is a (possibly empty) union of nonsingular curves having normal crossings with
Ẽ.

2. For any q ∈ Sing(F̃ , Ẽ) the induced morphism Sing(F̃ , Ẽ)→ YN ∩W is étale.
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3. If σ is a dicritical blow-up, the we have either a) or b) where

a) Each fiber σ−1(r) is generically transversal for r ∈ YN ∩W .

b) Each fiber σ−1(r), r ∈ YN ∩W , is invariant by F̃ .

Remark 9 The bamboo B may be extended to several branches of length N + 1,
except in the case that Sing(F̃ , Ẽ) = ∅. This case only occurs for a dicritical
(completely transversal) morphism σ.

Let p ∈M be a point with dimensional type τp = 2. So there exists a neighbor-
hood U ⊂M , p ∈ U , and a germ of nonsingular vector field ξ in U which is tangent
to F . Hence Sing(F , E) ∩ U is a nonsingular curve; moreover, it is contained in
each invariant component of E ∩ U passing through p. If π : M ′ →M is a blow-up
centered at Y = Sing(F , E) ∩ U , we have that F1 is tangent to the vector field ξ1,
the transform of ξ by π. Therefore, in the case that Sing(F1, E

1) 6= ∅, for any q ∈
Sing(F1, E

1) we can find a neighborhood Uq ⊂ M1 such that Sing(F1, E
1) ∩ Uq is

a nonsingular curve contained in each invariant component of E1. Repeating the
argument, we conclude that p is an equireduction point.

However, the properties “p ∈ M is an equireduction point for F , E” and “the
dimensional type of p is two” are not equivalent. Take for instance M = (C3, 0),
E = ∅ and F is the foliation given by ω = 0 where

ω = d[xy(x− y)(y + (z + 1)x)] .

So Sing(F , E) = Sing F = (x = y = 0). By performing just one nondicritical blow-
up π1 : M1 → M0 = M centered at Y0 = (x = y = 0), we obtain that every point
of Sing(F1, E

1) is simple. Note that Sing(F1, E
1) is the union of four nonsingular

curves which are locally isomorphic to Y0. If we continue performing blow-ups we
will only obtain simple singularities. Hence every point p ∈ Sing(F , E) is an equire-
duction point for F , E. However, note that the dimensional type of every point p ∈
Sing(F , E) is not two. Indeed, suppose we have τp = 2. Then locally at p the vector
field ξ = ∂/∂z is tangent to F . Hence F1 is (locally) tangent to the vector field
ξ1 = ∂/∂z, the transform of ξ bi π1. We have that π−1

1 (p)∩ Sing(F1, E
1) gives four

points; call them p′1, p
′
2, p
′
3, p
′
4. Since F1 is (locally) tangent to ξ1, for q ∈ Sing(F , E)

near p we have that π−1
1 (q)∩ Sing(F , E) gives the same four points p′1, p

′
2, p
′
3, p
′
4. This

is an absurd due to the fact that one of these points corresponds to the intersection
of π−1

1 (q) with the transform S ′ of the invariant hypersurface S = (y+(z+1)x = 0),
which depends on the point p (see Figure 5).
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Figure 5: Equireduction is not equivalent to dimensional type two.

Let us state the main results on equireduction that we need in this work. The
precise proofs may be found in [4], [8].

Proposition 10 Let p ∈ M be an equireduction point for F , E. Then there is an
open set U ⊂M , p ∈ U , and a finite sequence of blow-ups

U
π1←− M1

π2←− M2 ←− · · ·
πN←− MN

that gives a reduction of singularities of F , E and has the following properties (with
the notation as usual):

1. The center of πk is Sing(Fk−1, E
k−1), which is a nonsingular curve having

normal crossings with Ek−1, for k = 1, 2, . . . , N .

2. The induced morphism Sing(Fk, Ek)→ Sing(Fk−1, E
k−1) is étale.

3. Each dicritical component of the exceptional divisor of πk is either vertical
(condition b) of Definition 8) or has no invariant fibers.

4. All the points in Sing(FN , EN) are simple points of dimensional type τ = 2.
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As a consequence of Proposition 10 we obtain the genericity of the equireduction
property.

Proposition 11 The set of points p ∈ M that are not points of equireduction for
F , E is a finite set of points.

The properties above allow us to define the generic character of an irreducible
curve Γ ⊂ Sing(F , E). We can consider an open set U ⊂ M such that U ∩ Γ is
connected,

Sing(F , E) ∩ U = U ∩ Γ

and U ∩ Γ is precisely the set of equireduction points in Γ. Now, we can take U as
in Proposition 10 and perform a canonical reduction of singularities

RΓ : U
π1←− M1 ←− · · ·

πN←− MN .

The behavior of this reduction of singularities gives the generic character of Γ.

Definition 9 We say that F is generically dicritical along Γ if and only if one of the
blow-ups πk of RΓ is dicritical; otherwise we say that F is generically nondicritical
along Γ. In the second case, we say that F is generically nodal along Γ if and
only if there is an irreducible component of Sing(FN , EN) that corresponds to a
two-dimensional nodal simple singularity (recall that the dimensional type of the
singularities in MN is two).

It is interesting to indicate the relationship between a two-dimensional transver-
sal section and the generic behavior of F , E along a curve.

Proposition 12 Assume that F , E is generically nondicritical along Γ or that it is
generically dicritical but without vertical components along Γ. Take an equireduction
point p ∈ Γ and a two-dimensional plane ∆, p ∈ ∆, transversal to F . Then the
sequence RΓ induces by section a reduction of singularities of F|∆ where the dicritical
and nondicritical components coincide with the ones for F .

We finish this section with the following result:

Proposition 13 Let M = (C3, 0), E = ∅ and F be a codimension one foliation on
M . Suppose the origin 0 ∈M is an equireduction point for F , E. Then there exists
a germ of analytic surface S ⊂M invariant by F .

Proof: Let π = π1 ◦ π2 ◦ · · · ◦ πN : MN →M0 = M be the reduction of singularities
given by Proposition 10. Hence each component of the final exceptional divisor
EN ⊂MN is noncompact and we are done.

�
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2 Brunella’s local alternative for RICH foliations

2.1 Complex Hyperbolic foliations

In this section we will only consider Complex Hyperbolic simple singularities (Defini-
tion 6). These singularities are the high-dimension version of the simple singularities
in the sense of Seidenberg [24] given by vector fields with two nonzero eigenvalues.

Let us define Complex Hyperbolic Foliations. In dimension two, these foliations
are exactly the “generalized curves” introduced by C. Camacho, A. Lins-Neto and
P. Sad in [2]. We recall that a foliation F of (C2, 0) is called a generalized curve if,
and only if, there is a reduction of singularities of F

M0 = (C2, 0) ←−π1 M1 ←−π2 · · · ←−πN MN

such that all the singular points of the final transform FN of F are of complex hy-
perbolic type; that is, we do not accept saddle-nodes in the reduction of singularities
of F . Let us remark that “dicritical generalized curves” are allowed. The definition
of a generalized curve in dimension two does not depend on the particular reduction
of singularities. Moreover, even in the dicritical case, it is known that the reduction
of singularities of a generalized curve coincides with the reduction of singularities
of its set of invariant curves. Also, all the formal invariant curves of a generalized
curve are convergent, since the existence of non-convergent invariant curves implies
the rising of saddle-nodes in the reduction of singularities.

In dimension three, D. Cerveau uses the terminology “quasi-regular” foliation to
denote nondicritical germs of foliation having a reduction of singularities such that
the generic points of the lines of singularities are not saddle-nodes for a transversal
section (see [11]). Also in the nondicritical case J. Mozo and P. Fernndez use the
terminology “generalized surface” [20]. Anyway, as we shall see, we are mainly in-
terested in the study of dicritical situations.

For dimension n ≥ 2, we give the following definition:

Definition 10 (CH foliation) Let F be a germ of singular holomorphic foliation of
codimension one on (Cn, 0). We say that F is a Complex Hyperbolic Foliation (for
short, CH foliation) at the origin if for any map

ϕ : (C2, 0)→ (Cn, 0)

generically transversal to F we have that ϕ∗F is a generalized curve in the sense of
Camacho, Lins-Neto and Sad [2], that is, there are no saddle-nodes singularities in
the reduction of G.
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Proposition 14 Let F be a germ of CH foliation on M = (C3, 0) and assume that
π : M ′ → M defines a reduction of singularities in the sense of Theorem 5. Then
all the points in M are CH-simple for π∗F .

Proof: Fix a reduction π and suppose, by absurd, that there are points of Sing F ′
which are not CH simple for F ′, where F ′ = π∗F . Let ∆ ⊂ M ′ be a plane section

transversal to F ′ and ∆
i
↪→M ′ be the canonical immersion. Hence

ϕ̃ = π ◦ i : ∆→M ′

is a map generically transversal to F such that the foliation ϕ̃∗F = F ′|∆ is not a
generalized curve, which is an absurd.

�

Lemma 15 Let F be a germ of singular holomorphic foliation of codimension one
on (Cn, 0) having a CH-simple point at the origin. Then F is a CH foliation.

Proof: Let φ : (C2, 0) → (Cn, 0) be a map which is generically transversal to F .
Suppose, by absurd, that G = φ∗F is not a generalized curve. So, up to doing the
reduction of singularities of G, we can find another map φ̃ : (C2, 0) → (Cn, 0) such
that the origin is a saddle-node singularity of G̃ = φ̃∗F . By performing finitely many
local blow-ups of (C2, 0), there is a map π : (C2, 0)→ (C2, 0) such that if ψ = φ̃ ◦ π
we have that

1. The foliation ψ∗F has a saddle node at the origin.

2. If we write ψ(z1, z2) = (ψ1(z1, z2), ψ2(z1, z2), . . . , ψn(z1, z2)), then

ψi(z1, z2) = ui(z1, z2)zai1 z
bi
2 ; i = 1, 2, . . . , n

where ai, bi ∈ Z≥0 and ui(0, 0) = 0.

Since F is given by a 1-form of the type

ω =
τ∑
i=1

(λi +Bi(x1, x2, . . . , xn))
dxi
xi
, Bi ∈ C{x1, . . . , xn}, Bi(0) = 0 ,

we have that

ψ∗ω =
τ∑
i=1

(λi +Bi ◦ ψ)
dψi
ψi

=
τ∑
i=1

(λi +Bi ◦ ψ)
{
ai
dz1

z1

+ bi
dz2

z2

+
dui
dui

}
=

τ∑
i=1

ai(λi +Bi ◦ ψ)
dz1

z1

+
τ∑
i=1

bi(λi +Bi ◦ ψ)
dz2

z2

+
τ∑
i=1

(λi +Bi ◦ ψ)
dui
ui
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Hence the foliation ψ∗F is given by a vector field whose eigenvalues are

α =
τ∑
i=1

biλi, β = −
τ∑
i=1

aiλi .

We are assuming that αβ = 0; suppose α = 0. In view of the non-resonance of the
residual vector, we have that bi = 0 for all i = 1, 2, . . . , τ . This implies that

ψi(z1, z2) = ui(z1, z2)zbi2 for i = 1, 2, . . . , τ .

However, since ψ(0) = 0, we have that bi 6= 0 for some i ∈ {1, 2, . . . , τ}. Hence ψ∗F
is nonsingular at the origin, which is an absurd and we are done.

�

Proposition 16 Let F be a germ of singular holomorphic foliation of codimension
one on (Cn, 0). Assume that there exists a sequence of blow-ups

(Cn, 0) = M0
π1←−M1

π2←− · · · πN←−MN

such that for any 1 ≤ s ≤ n we have

1. The center Ys−1 ⊂ Ms−1 os the blow-up πs is nonsingular, has normal cross-
ings with the total exceptional divisor Es−1 ⊂ Ms−1 and is invariant by the
transform Fs−1 of F .

2. Each p ∈MN is a complex Hyperbolic Simple Point for the pair (FN , EN).

Then F is a CH foliation.

Proof: Let π : MN → M0 be the composition π = π1 ◦ π2 ◦ · · · ◦ πN of all the
blow-ups. Consider a map φ : (C2, 0) → M0 generically transversal to F . By the
universal property of the blow-up, there exists a map

σ : ∆̃→ (C2, 0)

that is the composition of a sequence of blow-ups and lifts φ. That is to say, there
is a map

φ̃ : ∆̃→MN

such that π ◦ φ̃ = φ ◦ σ. Applying Lemma 15 to the foliation G̃ = φ̃∗π∗F = σ∗φ∗F ,
we have that G̃ only has points of type generalized curve. Hence G = σ∗F is a
generalized curve and the result follows.

�
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We do not exclude the possibility of a CH foliation being dicritical. For instance,
the foliation in (C3, 0) given by the 1-form

ω = (ym+1 − zxm)dx+ (zm+1 − xym)dy + (xm+1 − yzm)dz

is Complex Hyperbolic and dicritical. Moreover it is known that this foliation has
no invariant surface [12]. Another example of CH foliations are the logarithmic
foliations given by a 1-form ω of the type

ω =
k∑
i=1

λi
dfi
fi

; λi ∈ C, i = 1, 2, . . . , k ,

which correspond to the levels of the multivaluated function fλ1
1 fλ2

2 · · · f
λk
k .

Remark 10 In ambient space dimension three, any germ of codimension one foli-
ation admits a reduction of singularities [4]. A reduction of singularities is called
Complex Hyperbolic if all the points of π∗F are CH-simple. Due to Proposition 16,
we have that if F admits a complex hyperbolic reduction of singularities then F
itself is a CH foliation and thus all the reduction of singularities of F are also com-
plex hyperbolic. This condition has been considered as a definition in [20], where
the authors regard the so called generalized surfaces, which are the nondicritical CH
foliations in ambient space dimension three. In the nondicritical case, it is proved in
[20] that the reduction of singularities of the invariant surfaces automatically gives
the reduction of singularities of the considered CH foliation. Next we state a re-
sult of this nature in any ambient dimension which can be proved as in the three
dimensional case.

Proposition 17 Let F be a germ of nondicritical CH foliation on (Cn, 0) of di-
mensional type n. Assume that the invariant hypersurfaces of F are exactly the

coordinate hyperplanes
n∏
i=1

xi = 0. Then the origin is a CH-simple point.

Proof: See [20].

�

2.2 Relatively Isolated CH foliations

The RICH foliations that we introduce here define the main class of foliations of
(C3, 0) we are going to consider. Its name comes from

Relatively Isolated Complex Hyperbolic.
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In the previous section we have given the definition of CH foliations; now we will
ask, in addition, that the foliation presents a few non-restrictive conditions during
its reduction of singularities.

The expression “absolutely isolated singularities” usually refers to singularities
that can be desingularized by using only punctual blow-ups. In the case of vector
fields this kind of singularities were studied in any dimension in [1]. There is a
work describing codimension one singularities of foliations desingularized by punc-
tual blow-ups [7], where the authors ask for nondicritical conditions and specific
additional properties for the line of singularities (Poincaré type).

Anyway, for the case of codimension one foliations it is very special to encounter
isolated singularities in ambient space dimension n ≥ 3. In fact, the Singular Frobe-
nius Theorem of Malgrange [14] assures that is this is the case, the foliation has a
first integral and then it coincides with the “levels” of a given function. Moreover,
the definition of simple singularity for a triple (F , E,M) gives always a non-isolated
singularity for n ≥ 3, n = dim M .

Thus, there is only a small interest in considering the case of isolated singular-
ities and, anyway, they will never produce isolated singularities at the end of the
reduction of singularities.

On the other hand, we have seen that in ambient space dimension three we
have generic equireduction properties for the curves of singularities. So it is rea-
sonable to ask isolated isolated properties only for the singular locus created over
the origin by the reduction of singularities. These reasons justify the next definition.

Definition 11 (RICH) Let F be a foliation of (C3, 0). We will say F is a Relatively
Isolated Complex Hyperbolic Foliation if F is a CH foliation and there exists a
reduction of singularities of F

S : (Cn, 0) = M0
π1←−M1

π2←− · · · πN←−MN

such that for any 1 ≤ s ≤ N

1− The center Ys−1 ⊂ Ms−1 of the blow-up πs is nonsingular, has normal cross-
ings with the total exceptional divisor Es−1 ⊂ Ms−1 and is invariant by the
transform Fk−1 of F .

2− The intersection Yk−1 ∩ (π1 ◦ π2 ◦ · · · ◦ πs−1)−1(0) is a single point.
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Figure 6: The type of blow-ups allowed for RICH foliations
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Remark 11 As a consequence of item 2− of the above definition, the center of
each πs of the reduction S is never a compact curve; it is either a point or a germ
of curve, for all s = 1, 2, . . . , N − 1.

Remark 12 Each time a compact curve appears in the singular locus Sing Fs, for
s = 1, 2, . . . , N − 1, this curve is generically simple.

Remark 13 As a consequence of Proposition 14 all the points in MN are CH simple.

The condition “relatively isolated” is less restrictive than “absolutely isolated”.
One example of relatively isolated is the case of equireduction along a curve; another
example are foliations of the type df = 0 where f = is a germ at the origin of surface
with isolated singularity.

2.3 Main result

The main result of this work may be stated as follows:

Theorem 7 Let F be a RICH foliation in (C3, 0). Assume that there is no germ
of invariant analytic surface for F . Then one of the two properties holds:

(1) There is a neighborhood W of the origin 0 ∈ C3 such that for each leaf L ⊂ W
of F in W there is an analytic curve γ ⊂ L with 0 ∈ γ.

(2) There is an analytic curve Γ ⊂ (C3, 0) contained in the singular locus Sing F
such that F is generically dicritical or generically nodal along Γ.
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3 The case without nodal components

In this chapter we are going to prove Theorem 7 in the particular case that there
are no nodal components, to be introduced in the text. In this case, Theorem 7 may
be stated as follows:

Theorem 8 Let F be a RICH foliation in (C3, 0) and assume that there is no germ
of invariant analytic surface for F . If there are no nodal components in Sing FN ,
then there is a neighborhood W of the origin 0 ∈ C3 such that for each leaf L ⊂ W
of F in W there is an analytic curve γ ⊂ L with 0 ∈ γ.

3.1 Nodal components

In this section we will define the concept of nodal components of a RICH foliation
in dimension three and exhibit some of its properties. But first, let us generalize
the definition of nodal point in dimension n. Let F be a codimension one foliation
on (Cn, 0). Recall (Definition 6) that the origin is a CH-simple point if we can find
local coordinates x1, x2, . . . , xn such that F is given by ω = 0 where

ω =
τ∑
i=1

(λi + ai(x1, x2, · · · , xn))
dxi
xi

with ai(0) = 0 for all i = 1, 2, . . . , τ and
∑
λimi 6= 0 if m 6= 0, m1 ∈ Z>0.

We remark that the residual vector is well defined as an element of the projective
space [λ] ∈ Pτ−1

C up to permutation of the coordinates.

Definition 12 Assume F has a CH-simple point at the origin with τ ≥ 2. We say
that the origin is a nodal singularity if and only if the residual vector can be chosen
as

λ = (λ1, λ2, · · · , λτ−1,−1)

where λi ∈ R>0 for i = 1, 2, . . . , τ − 1.

Remark 14 Nodal singularities may be normalized in a convergent way.

Remark 15 In dimension three a nodal singularity of dimensional type three is
contained in exactly two generically nodal curves of the singular locus of the foliation.
Indeed, the foliation is given by

ω = (λ+ a(x, y, z))
dx

x
+ (µ+ b(x, y, z))

dy

z
+ (−1 + c(x, y, z))

dz

z
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Figure 7: Nodal singularity of dimensional type three. We will always denote gener-
ically nodal curves as we do in this picture (curves C1 and C2). Curves which are
not generically nodal will always be denote by “clean” lines (like the curve Z).

where a(0) = b(0) = c(0) = 0 and λ, µ ∈ R>0. Call C1 = (y = z = 0), C2 = (x =
z = 0), Z = (x = y = 0). The curves C1 and C2 are generically nodal; on the other
hand, the curve Z is not.

Proposition 18 Let F be a foliation on M = (C3, 0) and assume the origin is a
nodal singularity of F with dimensional type three. Call Γ1,Γ2 ⊂ Sing F the two
curves passing through the origin which are generically nodal. Let q be a point in
Γ1, q 6= 0, and let q′ be a point in Γ2, q′ 6= 0. There exists an open set U ⊂ M ,
q ∈ U such that

q′ ∈ SatF(U) .

Proof: Due to Remark 14, the proof is done by direct integration.

�

51



Figure 8: The neighborhood of the union of two generically nodal curves given by
Proposition 18.

Now let F be a RICH foliation in M = (C3, 0) and let us fix a reduction of
singularities

S : M0 = M
π1←−M1

π2←− · · · πN←−MN

such that for any 1 ≤ s ≤ N we have

1. The center Ys−1 ⊂Ms−1 of the blow-up πs is nonsingular, has codimension at
least two, has normal crossings with the exceptional divisor Es−1 ⊂Ms−1 and
is invariant by the transform Fs−1 of F .

2. The intersection Ys−1∩σ−1
s−1(0) is a single point, where σs−1 = π1◦π2◦· · ·◦πs−1.

3. All the points of MN are CH-simple for the pair FN , EN .

Let us give some notations associated to this particular sequence of blow-ups.
Given 0 ≤ s ≤ s′ ≤ N we denote πss = idMs and

πss′ = πs+1 ◦ πs+2 ◦ · · · ◦ πs′ : Ms′ →Ms

is s < s′. We take special notations for some particular cases:

ρs = πNs : MN →Ms; σs = πs0 : Ms →M0 = (C3, 0) .
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Finally, we denote π = πN0 = ρ0 = σN : MN → M0 the morphism of reduction of
singularities. We decompose the exceptional divisor Es into irreducible components

Es = Ds
1 ∪Ds

2 ∪ · · · ∪Ds
s

where Ds
i is the strict transform by πs of Ds−1

i for i < s and Ds
s = π−1

s (Ys−1). We
write

Es
inv ⊂ E, respectively Es

dic ⊂ Es

the union of the irreducible components of Es invariant by Fs, respectively the
generically transversal (dicritical) components of Es. This notation will be used
again in Chapter 4.

Remark 16 The morphisms πss′ are morphisms of germs

πss′ : (Ms′ , σ
−1
s′ (0))→ (Ms, σ

−1
s (0))

around the compact sets σ−1
s (0) ⊂ Ms and σ−1

s′ (0) ⊂ Ms′ . In particular π is a
morphism of germs

π : (MN , π
−1(0))→ (C3, 0) .

In view of the properties of the sequence of reduction of singularities, an irreducible
component Ds

i of the exceptional divisor Es is compact if and only if the center Yi−1

of πi−1 is a single point; moreover, this is equivalent to saying that Ds
i ⊂ σ−1

s (0).
Conversely, the irreducible component Ds

i is not compact if and only if the center
Yi−1 is a germ of curve (that is necessarily not contained in σ−1

i−1(0)).

Take a connected component C of the singular locus Sing FN . Note that C is a
connected union of non-singular irreducible curves

C = C1 ∪ C2 ∪ · · · ∪ Cm

and that C has normal crossings with the exceptional divisor EN .

Definition 13 We say that C is a nodal component for F ,S if and only if all the
points of C are nodal singularities of F . We say that F has no nodal components
if there exists a reduction of singularities S as before such that there are no nodal
components for F ,S.

Let C ⊂ Sing FN be an irreducible curve which is generically nodal. It is possible
that C is not contained in a nodal component. In this case there exists a point q ∈ C
such that q has dimensional type three but is not a nodal singularity of FN . Such
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Figure 9: Example of a generically nodal curve C which is not contained in a nodal
component.

a point q is called a point of interruption for the nodality. Thus a nodal component
is a connected component of Sing FN union of generically nodal curves and without
interruption points. An example of this situation is given as follows.Choose local
coordinates x, y, z at q such that FN is given by

ω = (λ+ a(x, y, z))
dx

x
+ (µ+ b(x, y, z))

dy

z
+ (−1 + c(x, y, z))

dz

z

where a(0) = b(0) = c(0) = 0 and λ /∈ R>0, µ ∈ R>0, µ/λ /∈ R>0. Hence C is the
curve (y = z = 0). Note that the other curves of the singular locus containing q,
which are locally given by (x = y = 0), (x = z = 0), are not generically nodal.

Remark 17 A nodal component C is irreducible if and only if all of its points have
dimensional type two.

3.2 Local study of complex hyperbolic simple singularities

In this section we continue the study of the behavior of leaves of a foliation near
complex hyperbolic simple points in dimensions two and three. Our first result is
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given by Proposition 18. In this section we prove the following result for n = 2, 3:

Proposition 19 Assume that F has a CH-simple point at the origin of Cn which
is not a nodal singularity and suppose that F is defined in a neighborhood U of the
origin by the integrable 1-form

ω =
τ∑
i=1

(λi + bi(x1, x2, · · · , xn))
dxi
xi
, bi(0) = 0 .

Take an index j ∈ {1, 2, . . . , τ}, a point R ∈ (xj = 0)\ Sing F close enough to the
origin and consider the transversal curve to xj = 0 given by

∆ = U ∩ pr−1
j (prj(R)) ,

where prj : Cn → Cn−1 is the linear projection that avoids the j-th coordinate. Then

the saturation by the foliation of ∆ jointly with the coordinate hyperplanes
τ∏
i=1

xi = 0

define a neighborhood of the origin.

Initially let us regard the two-dimensional case. Let F be a codimension one
foliation on M = (C2, 0) such that the origin is a CH-simple point of F and let
E ⊂ M be a normal crossings divisor. Firstly, we will consider the cases where the
1-form ω above is linearizable. We will fix U = D2

r = Dr × Dr, where

Dr = {x ∈ C; |x| ≤ r}, 0 < r < 1 .

The following result has been presented by J.F. Mattei and D. Maŕın in [15].

Lemma 20 Let F be a foliation on (C2, 0) given by ω = 0 where

ω = ydx+ λxdy , λ ∈ C \ R<0 .

Let ∆ = {(r, 0)} × Dε, Dε = {y ∈ C; |y| ≤ ε}, 0 < ε ≤ r. Then there exists
0 < δ ≤ r such that

D2
δ = Dδ × Dδ ⊂ SatF|D2

r
(∆) .

Proof: Let q0 = (x0, y0) /∈ E = (xy = 0) be a point in D2
r. The leaf of F|D2

r
passing

through q0 is given by Lq0 = (x = c0y
−λ) where c0 = x0y

λ
0 ∈ C∗. Hence

ϕq0(t) = (x0e
λt, y0e

−t), t ∈ C
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Figure 10: Scheme of Lemma 20.

is a parametrization of Lq0 . We are only interested in the values of t such that
ϕq0(t) ∈ D2

r. Consider the set

Aq0 = {t ∈ C; ϕq0(t) ∈ D2
r} = {t ∈ C; |x0e

λt| ≤ r, |y0e
−t| ≤ r} .

So Aq0 is a connected subset of C such that 0 ∈ Aq0 ; thus Lq0 = ϕq0(Aq0) is connected.
By writing

λ = λ1 + iλ2 , λ1, λ2 ∈ R

t = t1 + it2 , t1, t2 ∈ R

we have that

|x0e
λt| ≤ r is equivalent to λ1t1 − λ2t2 ≤ ln(r/|x0|) ,

|y0e
−t| ≤ r is equivalent to t1 ≥ −ln(r/|y0|) .

The argument of the proof is the following: we wish to find a polydisc D2
δ such

that for each point q0 ∈ D2
δ , q /∈ E, the leaf Lq0 of F|D2

r
passing through q0 cuts the

transversal section ∆. Hence D2
δ ⊂ SatF|D2

r

(∆). That is to say, if

ϕq0(t) = (x0e
λt, y0e

−t) = (ϕq0,1(t), ϕq0,2(t)) ,
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we want to see that it is possible to find a suitable t̃ such that ϕq0(t̃) ∈ ∆, or, in
other words,

ϕq0,1(t̃) = r, |ϕq0,2(t̃)| < ε .

The points tk = t1k + it2k such that ϕq0,1(tk) = r are the solutions of the system{
λ1t1k − λ2t2k = ln

(
r
|x0|

)
λ1t2k + λ2t1k = θ r

x0
+ 2πk, k ∈ Z .

(4)

In the system above, θ r
x0

denotes the argument of the complex number
r

x0

. We have

the following cases to consider:

Case 1: λ1 > 0, λ2 > 0.

Rewriting system (4), we obtain
t2k =

λ1

λ2

t1k −
ln (r/|x0|)

λ2

(a)

t2k =
−λ2

λ1

t1k +
1

λ1

(
θ r
|x0|

+ 2πk
)
, k ∈ Z . (b)

Equation (a) represents a real line R with slope
λ1

λ2

> 0 and passing through the

point
(

0,− ln(r/|x0|)
λ2

)
∈ R2. For each k ∈ Z, (b) represents a real line Sk which is

orthogonal to R; we are looking for the intersection points {R ∩ Sk, k ∈ Z}.

Isolating t1k, we obtain:

λ2
1 + λ2

2

λ1λ2

t1k =
ln(r/|x0|)

λ2

+
1

λ1

(
θ r
|x0|

+ 2πk
)
, k ∈ Z .

Since λ1, λ2 > 0, we have that t1k →∞ when k →∞ and therefore

lim
k→∞
|ϕq0,2(tk)| = lim

k→∞
|y0e

−tk | = lim
k→∞

|y0|
eRe(tk)

= lim
k→∞

|y0|
et1k

= 0 .

Note that, with the sequence of values tk = t1k + it2k found above, we have that

lim
k→∞
|y0e

−tk | = 0
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for any starting point q0 = (x0, y0) ∈ D2
r \ E = {xy = 0}; in other words,

D2
r ⊂ SatF|D2

r

(∆) .

In the case λ1 < 0, λ2 < 0, we have that |ϕq0,2(tk)| = |y0e
−tk | tends to zero when

k → −∞; hence we also conclude that D2
r is contained in SatF|D2

r

(∆). By symmetry,

in both cases we have that D2
r is contained in SatF|D2

r

(∆′) where ∆′ = Dε×{y = r}.

Case 2: λ1 > 0, λ2 < 0.

Rewriting system (4) we obtain
t2k = − λ1

|λ2|
t1k +

ln(r/|x0|)
|λ2|

(a)

t2k =
|λ2|
λ1

t1k +
1

λ1

(
θ r
|x0|

+ 2πk
)
, k ∈ Z . (b)

Equation (a) represents a real line R with slope − λ1

|λ2|
< 0 and for each k ∈ Z (b)

represents a real line Sk which is orthogonal to R.

Isolating t1k, we obtain:

−(λ2
1 + λ2

2)

λ1|λ2|
t1k = − ln(r/|x0|)

|λ2|
+

1

λ1

(
θ r
|x0|

+ 2πk
)
, k ∈ Z .

Hence when k →∞, we have that t1k → −∞, t2k →∞. So it follows that

lim
k→∞
|ϕq0,2(tk)| = lim

k→−∞
|y0e

−tk | = lim
k→−∞

|y0|
eRe(tk)

= lim
k→−∞

|y0|
et1k

= 0 .

Once again, we remark that in this case, as in Case 1, we have that

D2
r ⊂ SatF|D2

r

(∆) .

In the case λ1 < 0, λ2 > 0, we have that t1k → ∞, t2k → −∞ when k → ∞ and
hence

lim
k→∞
|ϕq0,2(tk)| = lim

k→∞
|y0e

−tk | = lim
k→∞

|y0|
eRe(tk)

= lim
k→∞

|y0|
et1k

= 0 .

And once again, we conclude that D2
r ⊂ SatF|D2

r

(∆). By symmetry, in both cases we

have that D2
r is contained in SatF|D2

r

(∆′) where ∆′ = Dε × {y = r}.
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Case 3: λ1 = 0.

So system (4) can be rewritten as
t2k = − 1

λ2

ln
(
r/|x0|

)
(a)

t1k =
1

λ2

(
θ r
|x0|

+ 2πk
)
, k ∈ Z . (b)

Therefore (a) is a horizontal line in R2 and for each k ∈ Z, (b) is a real vertical line.
Given that

if λ2 > 0 then t1k →∞ when k →∞ (i)
if λ2 < 0 then t1k →∞ when k → −∞ , (ii)

it follows that

|ϕq0,2(tk)| = |y0e
−tk | → 0 when k →∞ in case (i),

|ϕq0,2(tk)| = |y0e
−tk | → 0 when k → −∞ in case (ii).

Again we conclude that D2
r is contained in SatF|D2

r
(∆). By symmetry, we also have

D2
r ⊂ SatF|D2

r

∆′, where ∆′ is as before.

Case 4: λ2 = 0, λ1 ∈ R>0.

We remark this is the last case to consider. Since λ = λ1 ∈ R>0, the set Aq0
relative to a point q0 = (x0, y0) ∈ D2

r \ E = {xy = 0} is

Aq0 =

t = t1 + it2 ∈ C ; −ln
(
r/|y0|

)
≤ t1 ≤

ln
(
r/|x0|

)
λ

 .

We are interested in the points tk ∈ Aq0 such that ϕq0,1(tk) = r. Then, rewriting
system (4), they will be the points tk = t1k + it2k ∈ Aq0 which satisfy

t1k =
1

λ
ln
(
r/|x0|

)
t2k =

1

λ

(
θ r
|x0|

+ 2πk
)
.

So in this case we have that

|ϕq0,2(tk)| = |y0e
−tk | = |y0|

eRe(tk)
=
|y0|
et1k

=
|y0|(

r/|x0|
)1/λ

= |y0|
(
|x0|
r

)1/λ

,

59



which does not depend on k ∈ Z. So in order to have |ϕq0,2(tk)| < ε, we must have

|y0|(|x0|/r)1/λ < ε .

Consider the mapping
ρ : M → R2

(x, y) 7→ (|x|, |y|) .

The image of the set

{(x, y) ∈M ; |y|(|x|/r)1/λ < ε} ⊂M

by ρ is the set
{ỹ(x̃/r)1/λ < ε} ⊂ R2

≥0 ,

where ỹ = |y|, x̃ = |x|. Since λ > 0, {ỹx̃1/λ = ε} is a hyperbole and the polydisc

D̃2 =

{
(x̃, ỹ) ∈ R2

≥0 ;
x̃ < rελ/2 ,
ỹ < ε1/2

}
is contained in {|y|(|x0|/r)1/λ < ε}. In M we put

D2
δ =

{
(x, y) ∈ D2

r ; |x|, |y| < δ where δ = min{ελ/2, ε1/2}
}
.

Hence if q0 ∈ D2
δ and tk are the solutions of system (4), |ϕq0,2(tk)| < ε. Therefore

D2
δ is contained in SatF|D2

r

(∆), and, by symmetry, D2
δ ⊂ SatF|D2

r

∆′, where ∆′ is as

before.

�

Now we will regard the cases when the 1-form ω is not linearizable. Due to the
following result, we may assume that

ω = y(λ+ f(x, y))dx+ xdy where λ ∈ R>0 .

Theorem 9 (Poincaré)[22] Let

ω = xdy + αydx+ · · · with α /∈ R>0 ∪Q<0 .

Then the foliation F given by (ω = 0) is linearizable, i. e. there exist holomorphic
coordinates X, Y such that F is given by

Xdy + αY dx .
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Lemma 21 Let F be a foliation on (C2, 0) given by

ω = y(λ+ f(x, y))dx+ xdy

where λ ∈ R>0, |λ + f(x, y)| > λ̃, |λ + Ref(x, y)| > λ̃ and |λ + Imf(x, y)| > λ̃ for
some λ̃ > 0. Let ∆ = {(r, 0)}×Dε. Then there exists δ = δ(λ̃, ε) depending only on
λ̃, ε, with 0 < δ ≤ r such that

Dδ × Dδ ⊂ SatF|D2
r

(∆) .

Proof: We want to find a δ > 0 which depends only on λ̃, ε, such that for each
point p0 = (x0, y0) ∈ D2

δ there exists a path

γ : [0, 1] → D2
r

t 7→ γ(t) = (γ1(t), 0)

whose lifting γ̃ of γ from p0 (that is to say, the pre-image of γ in the leaf of F|D2
r

which contains the point p0) is contained in D2
r and satisfies

γ̃(1) = (r, γ̃2(1)) with |γ̃2(1)| < ε .

Consider Dr × {0} and the point (x0, 0) ∈ Dr × {0}. Let

α(t) = (x0e
2πit, 0), t ∈ [0, 1] .

There exists a t0 such that x0e
1πit0 ∈ [0, r]; put s0 = x0e

2πit0 and let

β(t) = (s0 + t(r − s0), 0), tı[0, 1] .

We will fix
γ = β ◦ α .

Let α̃, β̃ be the liftings of α, β. Hence γ̃ = β̃ ◦ α̃. We can write

α̃(t) = (x0e
2πit, α̃2(t))

β̃(t) = (s0 + t(r − s0), β̃2(t)).

If β̃(0) = (s0, ỹ0), we have that |β̃2(1)| < |ỹ0|. So we need to find a δ with the
following property: if α̃(0) = (x0, y0) with |x0| < δ, |y0| < δ, then for all t ∈ [0, 1]
we have that

|α̃2(1)| < ε .
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Figure 11: Scheme of Lemma 21.
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We have α̃ ′(t) = (2πix0e
2πit, α̃2

′(t)). Since ω|α̃(t)(α̃
′(t)) ≡ 0, it follows that

ω|α̃(t)(α̃
′(t)) = α̃2(t) · 2πix0e

2πit · (λ+ f) + x0e
2πitα̃2

′(t) = 0.

Hence
α̃2
′(t) = −2πiα̃2(t)(λ+ f) .

Let ρ(t) = |α̃2(t)|2 = α̃2(t) · α̃2(t). So

ρ ′(t) = α̃2(t) · α̃2
′(t) + α̃2

′(t) · α̃2(t) .

We have that
α̃2
′(t) = 2πi α̃2(t)(λ+ f) ;

hence

ρ ′(t) = 2πi α̃2(t)α̃2(t)(λ+ f)− 2πi α̃2(t)α̃2(t)(λ+ f)

= 2πi ρ(t)
[
(λ+ f)− (λ+ f)

]
= 2πi ρ(t) · (−2i Im(f))

= 4π ρ(t)Im(f) ∈ R .

However, since |λ+ Imf | > λ̃ > 0, we have that |4πIm(f)| < K, where K ∈ R>0

is a constant who depends on λ̃. Hence for t ∈ [0, 1] we have that

|α̃2(t)|2 = ρ(t) < δeKt, δ ∈ R>0 .

We take δ = εeK and the result follows.

�

Now let us go to the proof of Proposition 19 for n = 3.

Assume that F is defined in D3
r where Dr = {x ∈ C; |x| ≤ r}, r > 0. If the origin

is a CH-simple point of F with dimensional type two, we can write the generator of
F in D2

r as follows:

ω =
dx

x
+ (λ+ b(x, y))

dy

y
where a(0) = b(0) = 0 and λ /∈ R<0 .

Let R = (r, 0, 0) ∈ (y = 0), ∆ = {(r, y, 0); y ∈ Dε}. Consider the plane section
Γ = (z = 0) ∩ D3

r. We have that the origin is a CH-simple point of F|Γ. Due to
the previous lemmas we have that SatF|

Γ

(∆) ∪ ((xy = 0) ∩ Γ) is a neighborhood of
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the origin in the section Γ. However, since the origin is a point with dimensional
type two, there is a nonsingular vector field ξ tangent to F and so it follows that
SatF(∆) ∪ (xy = 0) is a neighborhood of the origin.

Now suppose the origin has dimensional type three. Thus we can write the
generator of F as

ω =
dx

x
+ (λ+ b(x, y, z))

dy

y
+ (µ+ c(x, y, z))

dz

z

with b(0) = c(0) = 0 and λ /∈ R<0, µ /∈ R<0. Let R = (r, r, 0) ∈ (z = 0), ∆ =
{(r, r, z); z ∈ Dε}. If ω can be normalized, the result follows by applying Lemma
20 to F restricted to, for instance, the plane sections Γ = {x = r}, Γ′ = {y = r}.
So suppose ω cannot be normalized; thus we have λ, µ ∈ R>0. There exists a
neighborhood U ⊂ D3

r of the origin where b and c are sufficiently small. Take a
point (0, y0, 0) ∈ U and consider the section Γ = {y = y0}. So F|Γ is given by

ω|Γ =
dx

x
+ (µ+ c(x, y0, z))

dz

z
.

Due to Lemma 21, we find δ > 0 such that the polydisc Dδ ×{y0}×Dδ is contained
in SatF|

Γ

(∆Γ) where ∆Γ ⊂ Γ is a one-dimensional section transversal to {z = 0}
such that ∆Γ ⊂ SatF|D3

r

. Since there is uniformity in the existence of δ, we have that

Dδ × Dδ × Dδ ⊂ SatF|D3
r

(∆)

and the result follows.
�
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Figure 12: Proof of Proposition 19 for dimensional type two.

Figure 13: Proof of Proposition 19 for dimensional type three.
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3.3 Brunella’s alternative without nodal components

In this section we consider a RICH foliation F in M = (C3, 0) which does not admit
a germ of invariant surface. Let

S : π = π1 ◦ π2 ◦ · · · ◦ πN : MN →M0 = M

be a reduction of singularities of F as in Section 3.1. We will assume that F has no
nodal components.

We want to find a neighborhood W ⊂ M of the origin such that each leaf of F
in W has a germ of analytic invariant curve. We are supposing F does not admit
a germ of invariant surface; as remarked in Sections 1.9 and 1.10, this implies that
there exists a compact component DN

j of the exceptional divisor EN ⊂ MN which
is dicritical. Write

EN
c,dic ⊂ EN

dic

the union of the compact components of EN
dic and consider the set

H = union of leaves of FN which intersect EN
c,dic .

Note that H is a saturated set. For each leaf L ∈ H we fix a regular point

q ∈ L ∩DN
j where DN

j ⊂ EN
c,dic .

Hence we can find a germ of analytic curve γ ⊂ L. Indeed, if x, y, z are local
coordinates at q we have that F is given by dz = 0 (see Figure 14),

DN
j = (y = 0), L = {z = 0}, γ = (x = z = 0) .

Since π(EN
c,dic) = 0 we have that π(γ) = γ̃ is a germ of analytic curve such that

γ̃ ⊂ π(L) ∪ {0} .

We are going to show that H ∪ EN is a neighborhood of π−1(0).

Remark 18 Assume H ∪ EN is a neighborhood of π−1(0). Then W = π(H ∪ EN)
is a neighborhood of the origin 0 ∈ C3 such that for each leaf L ⊂ W of F in W
there is an analytic curve γ ⊂ L with 0 ∈ γ and therefore we have Theorem 8.

Proposition 22 H ∪ EN is a neighborhood of π−1(0) .
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Figure 14: A leaf L intersecting a dicritical component DN
j .

In order to simplify the exhibition of the next arguments, we give the following
definition:

Definition 14 Let DN
i ⊂ EN be an invariant irreducible component. We will say

DN
i is partially covered if H ∪ EN is a neighborhood of DN

i \ (Sing FN ∩ DN
i ). A

subset A ⊂MN is said to be well covered if H ∪ EN is a neighborhood of A.

Lemma 23 Let DN
i be an invariant irreducible component of π−1(0). If there exists

a one-dimensional section ∆ ⊂MN transversal to DN
i at a regular point q such that

∆ \ {q} ⊂ H, then DN
i is partially covered.

Proof: Let ∆q ⊂ MN be a one-dimensional section transversal to DN
i at a regular

point q ∈ DN
i and such that ∆q \ {q} ⊂ H. Since H is a saturated set we have that

SatFN (∆q) ⊂ H ∪ EN .

Let q′ ∈ DN
i , q′ 6= q be a regular point. There exists a compact path

α : I = [0, 1]→ DN
i

such that α(0) = q, α(1) = q′ and α(I) ∩ (Sing FN ∩DN
i ) = ∅.

Since q is a regular point, there exists a neighborhood of q, Vq ⊂MN , such that
FN is given by dz = 0 in Vq. That is to say, Vq is an open foliated set. Taking a
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smaller ∆q if necessary, we may assume that ∆q ⊂ Vq. We cover the path α with
a finite number of open foliated sets such that the last one of these, Vq′ , contains
the point q′. Let ∆q′ ⊂ MN be a one-dimensional section transversal to DN

i at the
point q′ such that ∆q′ ⊂ Vq′ . So

∆q′ ⊂ SatFN |Vq
(∆), which implies that ∆q′ \ {q′} ⊂ H .

Thus H ∪EN is a neighborhood of every regular point of DN
i and the result follows.

�

Lemma 23 asserts that the behavior of the section ∆ can be “pushed” from one
regular point to another along a compact path which avoids the singularities of the
foliation and in that way it is possible to cover all the regular points of the compo-
nent.

Now let us go to the proof of Proposition 22.

First reduction: it is enough to show that all the invariant components of EN

are partially covered. If we have this result, we can cover any curve of the singular
set which is not generically nodal. Moreover, if we have a curve Γ ⊂ Sing FN which
is generically nodal, we can find a finite chain (see Figure 15)

Γ, p1,Γ1, p2,Γ2, . . . , pk,Γk, q

where p1 ∈ Γ∩Γ1, p2 ∈ Γ1∩Γ2, . . ., pk ∈ Γk−1∩Γk are nodal points with dimensional
type three, Γ1,Γ2, . . . ,Γk are generically nodal and finally q ∈ Γk is not nodal (in
particular τq = 3). Taking an invariant component DN

j 3 q we see by Proposition 19
that q is well covered. Now we follow the sequence Γk,Γk−1, . . . ,Γ1,Γ through the
points pk, pk−1, . . . , p1 to deduce that Γ is also well covered in view of Proposition 18.

Now, let us show that all the invariant components of EN are partially covered.
In view of the connectedness of the dual graph of EN (note that any component
intersecting a dicritical component is partially covered), it is enough to show that if
DN
i and DN

j are two invariant components of EN such that DN
i ∩DN

j 6= ∅, then we
have:

DN
i partially covered ⇒ DN

j partially covered.

Let us show this.

In order to be complete in our proof, we extend the divisor EN to a bigger one
ẼN locally around the invariant components by adding an additional irreducible
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Figure 15: Scheme of the sequence Γ, p1,Γ1, p2,Γ2, . . . , pk,Γk, q.

invariant component associated to each connected component of the union of trace
curves (see the description of Cano-Cerveau’s argument, Section 1.9). This technical
trick allows us to do our argument assuming that all the points of our interest are
in fact simple corners, we do not insist more on this.

So we have DN
i ∩DN

j 6= ∅ and DN
i is partially covered. We have to prove that

DN
j is also partially covered. If DN

i ∩DN
j is not generically nodal, we are done by

Proposition 19. So assume that DN
i ∩DN

j is generically nodal; call Γ = DN
i ∩DN

j .
Since Γ is not contained in a nodal component, we find a point of interruption q in
the connected component of the union of generically nodal curves that contains Γ.
This implies the existence of a sequence

Γ, p1,Γ1, p2,Γ2, . . . , pk,Γk, q

as in the argument of the first reduction. Now, let us show that for each s =
0, 1, 2, . . . , k there is a partially covered component D̃is of ẼN such that Γs ⊂ D̃is .
Once we prove this, we see that q ∈ Γk ⊂ D̃ik is well covered in view of Proposition
19. Now we finish by applying Proposition 18 along Γk, pk,Γk−1, . . . ,Γ1, p1,Γ to see
that Γ is well covered and hence DN

j ⊃ Γ is necessarily partially covered.

It remains to prove the existence of D̃is . We take D̃i0 = DN
i and we proceed

by induction assuming that D̃is−1 exists. Consider the point ps ∈ Γs−1 ⊂ D̃is−1 .

Now, if Γs ⊂ D̃is−1 , we take D̃is = D̃is−1 ; otherwise, the point ps is a corner and we

take D̃is such that D̃is−1 ∩ D̃is is not generically nodal and Γs ⊂ D̃is . Of course, by

Proposition 19, D̃is is partially covered.
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Figure 16: Existence of D̃is .

�
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4 Infinitesimal singular locus of RICH foliations

In this chapter we will study the behavior of a nodal component for a RICH foliation
in intermediate steps of the reduction of singularities and prove Brunella’s local
alternative as given by Theorem 7.

4.1 CH pre-simple corners

Let F be a germ of codimension one foliation on M = (Cn, 0) of dimensional type τ
and E ⊂M be a normal crossings divisor. In this section, we will give the definition
of Complex Hyperbolic pre-simple corner for the pair F , E and describe the behavior
of these points under blow-up in the case n = 3.

Definition 15 Let F be a germ of codimension one foliation on M = (Cn, 0) of
dimensional type τ and let E ⊂ M be a normal crossings divisor. We say that the
pair F , E has a Complex Hyperbolic pre-simple corner at the origin if and only if
there are local coordinates x1, x2, . . . , xn such that F is given by ω = 0 where

ω =
τ∑
i=1

(λi + bi(x1, x2, . . . , xτ ))
dxi
xi
, bi ∈ C{x2, x2, . . . , xτ}, bi(0) = 0

with
τ∏
i=1

λi 6= 0 and

Einv =

(
τ∏
i=1

xi = 0

)
, Edic ⊂

(
n∏

i=τ+1

xi = 0

)
.

Note that if we add the non-resonance condition, we recover a simple CH corner
(Definition 6).

Remark 19 Suppose n = 3 and consider a point p ∈ M . As before, let ep(Einv)
denote the number of invariant components of E passing through p. If ep(Einv) = 1
then p is a CH pre-simple corner if and only if p is a regular point of F . Or,
equivalently, we have that p ∈ Sing(F , E) and p is a CH pre-simple corner then
ep(Einv) ≥ 2.

For the rest of this section, we will assume that F is a CH foliation of M = (C3, 0)
and E ⊂M is a normal crossings divisor. Let Y ⊂M be a nonsingular variety with
codimension at least two having normal crossings with E and invariant by F . Let

π : M ′ →M
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be the blow-up centered at Y and consider the normal crossings divisor E ′ =
π−1(E ∪ Y ) ⊂ M ′. Denote F ′ = π∗F the transformed foliation of F by π,
D = π−1(Y ). We will denote e0(Einv) the number of invariant components of E
through the origin.

We will prove the following results:

Proposition 24 In the conditions above, if the origin is a CH pre-simple corner
for F , E than any point p ∈ π−1(0) is a CH pre-simple corner for F ′, E ′.

Proposition 25 In the conditions above, if the origin is not a CH pre-simple corner
for F , E, then there exists a point q ∈ π−1(0) which is not a CH pre-simple corner
for the pair F ′, E ′.

Let us begin with the proof of Proposition 24.

Proof of Proposition 24: Suppose 0 ∈ C3 is a CH pre-simple corner for F , E. The
case that the origin has dimensional type one is immediate. So first let’s suppose
that the origin has dimensional type two. Then F is given by ω = 0 where

ω = (λ+ a(x, y))
dx

x
+ (µ+ b(x, y))

dy

y

with a(0) = b(0) = 0 and λµ 6= 0. So E = (xy = 0). There are several cases to
consider.

First case: Y = {0} and π is not dicritical. Hence λ + µ 6= 0. The first local
chart is x′ = x, y′ = y/x, z′ = z/x and we have

π∗ω = (λ+ µ+ x(· · ·))dx
x

+ (µ+ x(· · ·))dy
′

y′
.

So all the points in the first local chart are CH pre-simple corners for F ′, E ′. The
second local chart is x′ = x/y, y′ = y, z′ = z/y and we have

π∗ω = (λ+ y(· · ·))dx
′

x′
+ (λ+ µ+ y(· · ·))dy

y

and once again we see that all the points of the second local chart are CH pre-simple
corners for F ′, E ′. Finally, the third local chart is x′ = x/z, y′ = y/z, z′ = z and we
have

π∗ω = (λ+ z(· · ·))dx
′

x′
+ (µ+ z(· · ·))dy

′

y′
+ (λ+ µ+ z(· · ·))dz

z
.

Hence all the points in the third local are also CH pre-simple corners for F ′, E ′.

72



Figure 17: First case for dimensional type two: Y = {0} and π is not dicritical.

Second case: Y = 0 and π is dicritical. Hence λ+ µ = 0. In the first local chart
we have

π∗ω = (· · ·)dx+ (µ+ x(· · ·))dy
′

y′
.

So there are no singular points in the first local chart; by symmetry, there are no
singular points in the second local chart as well. In the third local chart we have

π∗ω = (λ+ z(· · ·))dx
′

x′
+ (µ+ z(· · ·))dy

′

y′
+ (· · ·)dz .

The only singular point in π−1(0) is the origin of the third local chart. However we
see that the vector field

ξ = (λ+ z(· · ·)) ∂

∂x′
− zc′ ∂

∂z

is nonsingular and tangent to F ′ (c′ is the coefficient of dz in π∗ω). Hence the origin
of the third chart is a CH pre-simple corner for F ′, E ′ with dimensional type two.
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Figure 18: Second case for dimensional type two: Y = {0} and π is dicritical.

Third case: Y = (x = y = 0) and π is not dicritical. Hence λ+ µ 6= 0. The first
local chart is x′ = x, y′ = y/x, z′ = z and we have

π∗ω = (λ+ µ+ x(· · ·))dx
x

+ (µ+ x(· · ·))dy
′

y′
.

The second local chart is x′ = x/y, y′ = y′, z′ = z and

π∗ω = (λ+ y(· · ·))dx
′

x′
+ (λ+ µ+ y(· · ·))dy

y
.

In both cases, we only find CH pre-simple corners in π−1(0).

Fourth case: Y = (x = y = 0) and π is dicritical. Hence λ + µ = 0. In the first
local chart we have

π∗ω = (· · ·)dx+ (µ+ x(· · ·))dy
′

y′
.

Hence there are no singular points in π−1(0) in the first local chart; by symmetry,
there are no singular points in the second local chart as well. So all the points in
π−1(0) are CH pre-simple corners with dimensional type one.
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Figure 19: The image on the top shows the third case for dimensional type two:
Y = (x = y = 0) and π is not dicritical. The image at the bottom shows the fourth
case for dimensional type two: Y = (x = y = 0) and π is dicritical.
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Now suppose the origin has dimensional type three. Then F is given by ω = 0
where

ω = (λ+ a(x, y, z))
dx

x
+ (µ+ b(x, y, z))

dz

z
+ (δ + c(x, y, z))

dz

z

with a(0) = b(0) = c(0) = 0 and λµδ 6= 0. Once again, there are several cases to
consider.

First case: Y = {0} and π is not dicritical. Hence λ + µ + δ 6= 0. In the first
local chart we have

π∗ω = (λ+ µ+ δ + x(· · ·))dx
x

+ (µ+ x(· · ·))dy
′

y′
+ (δ + x(· · ·))dz

′

z′
.

So we see that all the points of π−1(0) are CH pre-simple corners for F ′, E ′ in the
first local chart. By symmetry, all the points of π−1(0) are CH pre-simple corners
for F ′, E ′ in the second and third local charts as well.

Second case: Y = {0} and π is dicritical. Hence λ+ µ+ δ = 0. In the first local
chart we have

π∗ω = (· · ·)dx+ (µ+ x(· · ·))dy
′

y′
+ (δ + x(· · ·))dz

′

z′
.

The origin of the first local chart is the only singular point. However, we see that
the vector field

ξ = (µ+ x(· · ·)) ∂
∂x
− y′a′ ∂

∂y′

is nonsingular and tangent to F ′ (a′ is the coefficient of dx in π∗ω). Hence the origin
of the first chart is a CH pre-simple corner for F ′, E ′. By symmetry, we have the
same situation in the second and third local charts.
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Figure 20: The image on the top shows the first case for dimensional type three:
Y = {0} and π is not dicritical. The image at the bottom shows the second case for
dimensional type three: Y = {0} and π is dicritical.
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Third case: Y = (x = y = 0) and µ + λ 6= 0. Hence π is not dicritical. In the
first local chart we have

π∗ω = (λ+ µ+ · · ·)dx
x

+ (µ+ · · ·)dy
′

y′
+ (δ + · · ·)dz

′

z′
.

So we see that all the points of π−1(0) are CH pre-simple corners for F ′, E ′ in the
first local chart. By symmetry, all the points of π−1(0) are CH pre-simple corners
for F ′, E ′ in the second local chart as well.

Fourth case: Y = (x = y = 0), µ + λ = 0 and π is dicritical. In the first local
chart we have

π∗ω = (· · ·)dx+ (µ+ · · ·)dy
′

y′
+ (δ + · · ·)dz

′

z′
.

So the origin of the first local chart is the only singular point. However, the vector
field

ξ = (µ+ · · ·) ∂
∂x
− y′a′ ∂

∂y′

is nonsingular and tangent to F ′ (a′ is the coefficient of dx in π∗ω). Hence the origin
is a CH pre-simple corner for F ′, E ′ with dimensional type two. By symmetry, we
have the same situation in the second local chart.

Fifth case: Y = (x = y = 0), µ+ λ = 0 and π is not dicritical. In the first local
chart we have

π∗ω = f(x, y′, z′)
dx

x
+ (µ+ g(x, y′, z′))

dy′

y′
+ (δ + h(x, y′, z′))

dz′

z′

with f(0) = g(0) = h(0) = 0 and x 6 |f . We can write

f(x, y′, z′) = xa′(x, y′, z′) + z′φ(z′) ,

g(x, y′, z′) = xb′(x, y′, z′) + z′ψ(z′) ,

h(x, y′, z′) = xc′(x, y′, z′) + z′η(z′) .

All points of dimensional type two are CH pre-simple corners. Suppose, by absurd,
that the origin of the first chart q is not a CH pre-simple corner for F ′, E ′. Consider
a point R = (0, y0, 0) and the plane section ∆ = {y = y0}. We have that F ′|∆ is
given by the 1-form

(xa′(x, y0, z
′) + z′φ(z′))

dx

x
+ (δ + h(x, y′, z′))

dz′

z′
.

So the point (0, y0, 0) is a saddle-node singularity of F ′|∆. However, since F is a
CH foliation, there cannot exist saddle-node singularities in the restriction to plane
sections after blow-ups. Hence q is a CH pre-simple corner for F ′, E ′. By symmetry
we have the same situation in the second local chart.

�

78



Figure 21: The image on the top shows the third case for dimensional type three:
Y = (x = y = 0) and µ + λ 6= 0. The image in the middle shows the fourth case:
Y = (x = y = 0), µ+ λ = 0 and π is dicritical. The image at the bottom shows the
fifth case: Y = (x = y = 0), µ+ λ = 0 and π is not dicritical.
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Now let us prove Proposition 25. We consider several situations that will be
treated next. The first one is when Y = {0} and π is dicritical. Since D = π−1(0) is
generically transversal, F ′|D defines a foliation in P2 ' D. Note that if e0(Einv) = 0
Proposition 25 is immediate: there exists a point q ∈ D which is singular for F ′|D;
this point is not a CH pre-simple corner for F ′, E ′.

Lemma 26 Suppose Y = {0} and that π is dicritical. If the origin is not a CH
pre-simple corner for F , E then for each invariant component Ei ⊂ Einv there exists
a point q ∈ E ′i = π−1(Ei) ∩D which is not a simple corner for the pair F ′, E ′.

Proof: Let us recall the relationship between the degree of a foliation G in P2 and
the singular points along invariant lines (see [6]). Suppose L is a projective line
invariant by G. Given local coordinates x, y, we may put L = (y = 0). Let

ξ = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y

be a vector field which is tangent to G. Hence ξ|L = a(x, 0)∂/∂x. For every point
p ∈ L, let αp = νp(a(x, 0)). Thus p is a singular point of G if and only if αp ≥ 1.
We have that ∑

p∈L

αp = ∂0G + 1 .

There are several cases to consider.

First case: e0(Einv) = 1. Let E1 be the invariant component of E through the
origin. Due to Remark 19, we want to see that the set Sing F ′ ∩ (E ′1 ∩ D) is not
empty. Suppose, by absurd, that every point of E ′1 ∩ D is a CH pre-simple corner
for F ′, E ′. Hence all the points of the projective line E ′1 ∩ D are regular points of
F ′|D; this implies that ∂0F ′|D = −1 and we arrive to an absurd.

Second case: e0(Einv) = 2. Let E1, E2 be the invariant components of E through
the origin. Suppose, by absurd, that every point of (E ′1 ∩ D) ∪ (E ′2 ∩ D) are CH
pre-simple corners for F ′, E ′. So the point p = (E ′1 ∩ E ′2) ∩ D is the only singular
CH pre-simple corner; in particular, we have that ∂0F ′|D = 0. By a result of [18],
we obtain that the dimensional type of the origin 0 ∈ C3 is two, which is an absurd.
Hence ∂0F ′|D ≥ 1 and we have the following options:

1. αq ≥ 2, in which case q is not a CH pre-simple corner for F ′, E ′ and we are
done.
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2. αq = 1; in this case we find a pair of points p1 ∈ E ′1∩D, p2 ∈ E ′2∩D, p1, p2 6= q,
such that αp1 , αp2 ≥ 1. Hence p1, p2 are not CH pre-simple corners for F ′, E ′
are we are done.

Third case: e0(Einv) = 3. Let E1, E2, E3 be the components of E through the origin.
Suppose, by absurd, that every point of

(E ′1 ∩D) ∪ (E ′2 ∩D) ∪ (E ′3 ∩D)

is a CH pre-simple corner for F ′, E ′. This implies that ∂0F ′|D = 1. Let us show
that this cannot be. Note, due to Remark 19, that there is transversality between
F ′ and D along each invariant projective line E ′i ∩D.

We have that F is locally given by ω = 0 where

ω = a(x, y, z)
dx

x
+ b(x, y, z)

dy

z
+ c(x, y, z)

dz

z

where a, b, c have no common factor and x 6 | a, y 6 | b, z 6 | c. Put r = order0(a, b, c).
So we may write

a(x, y, z) = Ar(x, y, z) + · · ·

b(x, y, z) = Br(x, y, z) + · · ·

c(x, y, z) = Cr(x, y, z) + · · ·

where Ar, Br, Cr are homogeneous polynomials of degree r. Let

Ω = XY Zω(X, Y, Z) = Ωr+2 + Ωr+3 + · · · .

Since π is a dicritical blow-up, we have that

Ωr+2(R) ≡ 0

where R is the radial vector field. Hence it follows that

Ar +Br + Cr ≡ 0 .

Now we will see that F ′|D as a foliation in P2 is the same foliation given by
Ωr+2 = 0. It is only necessary to check if both foliations coincide in the first chart
of the blow-up π. Let V0 be the open set related to the first local chart. We have
the change of coordinate maps

V0
y=Y/X−→ C , V0

z=Z/X−→ C .
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So
Ωr+2 = Y ZAr(X, Y, Z)dX +XZBr(X, Y, Z) +XY Cr(X, Y, Z)dZ .

In the first chart, the foliation Ωr+2 = 0 is given by the restriction of Ωr+2 to the
projective space X = 1; hence

Ωr+2

∣∣∣
X=1

= zBr(1, y, z)dy + yCr(1, y, z)dz .

On the other hand, in the first local chart the change of coordinates is x′ = x,
y′ = y/x, z′ = z/x and hence

π∗ω = (ã+ b̃+ c̃)
dx

x
+ b̃

dy′

y′
+ c̃

dz′

z′

where
ã = a(x, xy′, xz′) = xr(Ar(1, y

′, z′) + x(· · ·)) ,

b̃ = b(x, xy′, xz′) = xr(Br(1, y
′, z′) + x(· · ·)) ,

c̃ = c(x, xy′, xz′) = xr(Cr(1, y
′, z′) + x(· · ·)) .

Call ω′ =
1

xr
π∗ω. Since Ar + br + Cr ≡ 0, it follows that

ω′ =
1

xr

[
x(· · ·)dx

x
+
(
Br(1, y

′, z′) + x(· · ·)
)dy′
y′

+
(
Cr(1, y

′, z′) + x(· · ·)dz
′

z′

)]
.

We have that F ′|D is given by ω′|x=0 where

ω′
∣∣∣
x=0

= Br(1, y
′, z′)

dy′

y′
+ Cr(1, y

′, z′)
dz′

z′
.

So we conclude that F ′|D and the foliation given by Ωr+2 = 0 are the same. Note
that since Ar +Br +Cr ≡ 0 we have that Br(1, y

′, z′) and Cr(1, y
′, z′) have no com-

mon factor.

As a consequence of this it follows that the degree of the F ′|D is r + 1. Hence,
in the case ∂0F ′|D = 1, we have that r = 0. So we can write the coefficients of ω as
follows:

a(x, y, z) = λ+ · · ·

b(x, y, z) = µ+ · · ·

c(x, y, z) = δ + · · ·
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with λ+ µ+ δ = 0. Suppose we have µ = 0. So F ′ is given by ω′ = 0 where

ω′ = y′z′(· · ·)dx+ xz′(· · ·)dy′ + y′(δ + x(· · ·))dz′ .

Let us see that there is tangency between F ′ and D in this case. In the first chart,
the tangency points of F ′ and D = (x = 0) are given by the set (ω∧dx = 0)∩(x = 0),
which gives us the set (x = y′ = 0). This is an absurd, as we have remark earlier.
Therefore we have that λµδ 6= 0, which implies that the origin is a CH pre-simple
point. This is an absurd.

So we conclude that ∂0F ′|D ≥ 2. By a direct computation of the degree along
each invariant line E ′i ∩D we see that there exist three points, at least two of them
distinct, p1 ∈ (E ′1 ∩E ′2) ∩D, p2 ∈ (E ′2 ∩E ′3) ∩D, p3 ∈ (E ′1 ∩E ′3) ∩D which are not
CH pre-simple corners for F ′|D.

�

Lemma 27 Suppose Y = {0} and that π is not dicritical. If the origin is not a
CH pre-simple corner for F , E then there exists a point q ∈ D which is not a CH
pre-simple corner for the pair F ′, E ′.

Proof: There are several cases to consider.

First case: e0(Einv) = 0. Let ∆ ⊂ M be a plane section generically transver-
sal ([19]) to F and ∆′ its transform by π. There exists a point q ∈ D ∩ ∆′ which
is singular for F ′|′∆; hence q is not a CH pre-simple corner for F ′, E ′ and we are done.

Second case: e0(Einv) = 1. Let E1 be the component of Einv through the origin,
∆ ⊂ M a plane section transversal to E1 at the origin and ∆′ its transform by π.
Suppose, by absurd, that every point of D is a CH pre-simple corner for F ′, E ′.
Hence F ′|∆′ has only one singularity, which moreover is a CH pre-simple corner for
F ′|∆′ , E ′ ∩∆′. This implies that 0 ∈ ∆ is a CH pre-simple corner for F|∆, E ∩∆.
However, since e0(Einv) = 1, it follows that 0 ∈ ∆ is a regular point of F|∆; this
implies that 0 ∈ C3 is a regular point of F , which is an absurd.

Third case: e0(Einv) = 2. Let E1, E2 be the components of Einv through the origin,
∆ ⊂M a plane section transversal to E1 ∩E2 at the origin and ∆′ its transform by
π. We may assume that the point E ′1 ∩E ′2 ∩E ′3 does not belong to ∆′. Suppose, by
absurd, that all the points in D are CH pre-simple corners for F ′, E ′. Hence F ′|∆′
has two singular points which are both CH pre-simple corners for F ′|∆, E ′ ∩ ∆′.
Then 0 ∈ ∆ is a CH pre-simple corner for F|∆, E ∩ ∆. By a result in [18], this
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Figure 22: Lemma 27. The image at the top shows the first case, and the image of
the bottom shows the second case.
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implies that the dimensional type of the origin is two and thus a CH pre-simple
corner given by the saturation of F|∆ by a nonsingular vector field transversal to
∆. This is an absurd since 0 ∈ C3 is not a CH pre-simple point for F , E.

Fourth case: e0(Einv) = 3. Suppose, by absurd, that every point of D is a CH
pre-simple corner for F ′, E ′. We have that F is locally given by ω = 0 where

ω = a(x, y, z)
dx

x
+ b(x, y, z)

dy

z
+ c(x, y, z)

dz

z

where a, b, c have no common factor and x 6 | a, y 6 | b, z 6 | c. Let r = order0(a, b, c).
Then

a(x, y, z) = Ar(x, y, z) + · · ·

b(x, y, z) = Br(x, y, z) + · · ·

c(x, y, z) = Cr(x, y, z) + · · · .

Let Pr = Ar + Br + Cr. Since π is not dicritical, we have that Pr 6≡ 0. In the firs
local chart x′ = x, y′ = y/x, z′ = z/x we have that

π∗ω = xr
[
(Pr(1, y

′, z′) + x(· · ·))dx
x

+ (Br(1, y
′, z′) + x(· · ·))dy

′

z′

+(Cr(1, y
′, z′) + x(· · ·))dz

′

z′

]
.

Since 0 ∈M is not a CH pre-simple corner for F , E we have that either Pr is not
a constant polynomial or r = 0 and A0B0C0 = 0. Suppose we have the first case.
We may assume that, in the first chart, Pr(1, y

′, z′) is a polynomial with degree d,
1 ≤ d ≤ r. The set

{Pr(1, y′, z′) = 0} ∩ (x = 0)

gives a curve of the singular locus Sing F ′ such that each of its points is not a CH
pre-simple corner for F ′, E ′. If r = 0 and A0B0C0 = 0 we find two-dimensional
saddle-nodes for F ′ and F cannot be a CH foliation, which is an absurd.

�

For the following two lemmas we will assume Y ⊂ Sing F is a germ of curve. Let
eY (Einv) denote the number of invariant components of E which generically contain
Y ; hence we have that 0 ≤ eY (Einv) ≤ 2.
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Lemma 28 Suppose that Y ⊂ Sing F is a germ of curve such that eY (Einv) = 0
and that π is centered at Y . If the origin is not a CH pre-simple corner for F , E
and e0(Einv) = 1, then there exists a point q ∈ π−1(0) which is not a CH pre-simple
corner for F ′, E ′. In particular, if π is not dicritical, there exists an invariant germ
of curve γ ⊂ Sing F ′ such that γ ⊂ D = π−1(Y ) and γ has normal crossings with
E ′.

Proof: We take local coordinates x, y, z at the origin such that

E1 = (z = 0) ,

Y = (x = y = 0) .

Hence F is given by ω = 0 where

ω(x, y, z) = a(x, y, z)dx+ b(x, y, z)dy + c(x, y, z)
dz

z
.

Put ν = order(x,y)(a, b) and µ = order(x,y)(c). Note that µ ≥ 1 since Y is invariant
by F . We can write

a(x, y, z) = Aν(x, y; z) + Aν+1(x, y; z) + · · · ,

b(x, y, z) = Bν(x, y; z) +Bν+1(x, y; z) + · · · ,

c(x, y, z) = Cµ(x, y; z) + Cµ+1(x, y; z) + · · · .

In the first local chart we have x′ = x, y′ = y/x, z′ = z. Let

Pν+1(x, y; z) = xAν(x, y; z) + yBν(x, y; z) .

Then Pν+1(x, xy′; z) = xν+1Pν+1(1, y′; z). Hence

π∗ω = xν+1
(
Pν+1(1, y′, z) + x(· · ·)

)dx
x

+ xν+1
(
Bν(1, y

′, z) + x(· · ·)
)
dy′

+ xµ
(
Cµ(1, y′, z) + x(· · ·)

)dz
z
.

Firstly, suppose that µ ≥ ν + 1. In this case, we can divide π∗ω by xν+1:

ω′ =
1

xν+1
π∗ω =

(
Pν+1(1, y′; z) + x(· · ·)

)dx
x

+
(
Bν(1, y

′; z) + x(· · ·)
)
dy′

+ xµ−ν−1
(
Cµ(1, y′; z) + x(· · ·)

)dz
z
.
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Figure 23: Lemma 28.

If Pν+1(1, y′; z) 6≡ 0 then (x = 0) = D is invariant by F ′ and π is nondicritical.
If, on the other hand, Pν+1(1, y′; z) ≡ 0, then

ω′ = (· · ·) dx+
(
Bν(1, y

′; z) + x(· · ·)
)
dy′ + xµ−ν−1

(
Cµ(1, y′; z) + x(· · ·)

)dz
z
.

Note that if Pν+1(1, y′; z) ≡ 0 then Bν(1, y
′; z) 6= 0 (otherwise we would have

Aν(1, y
′; z) = 0 = Bν(1, y

′; z), which is an absurd). Therefore, in this case, D is
not invariant by F ′ and the blow-up π is dicritical.

Now suppose that 1 ≤ µ ≤ ν. In this case, we can divide ω(x, xy′, z) by xµ:

ω′ =
1

xµ
π∗ω = xν−µ

(
Pν+1(1, y′; z) + x(· · ·)

)
dx+ xν−µ+1

(
Bν(1, y

′; z) + x(· · ·)
)
dy′

+
(
Cµ(1, y′; z) + x(· · ·)

)dz
z
.

Therefore we also have that D is a dicritical component of E ′ and the blow-up π is
also dicritical.

Nondicritical case: The set

{Pν+1(1, y′, z) = 0} ∩ (x = 0)
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gives a curve of the singular locus distinct from (x = z = 0) = π−1(0). Moreover,
there exists a point of intersection of {Pν+1(1, y′, z) = 0} and (x = z = 0) = π−1(0);
this point is not a CH pre-simple corner for F ′, E ′ and we are done.

Dicritical cases: In both cases, we are looking for the singular points of F ′ in π−1(0).
In the first chart, π−1(0) is the y′-axis (x = z = 0). Firstly suppose µ ≥ ν + 1,
Pν+1(1, y′; z) ≡ 0. Then Sing (zω′) ∩ (x = z = 0) is the set

(z = 0) ∩ {xν−µ−1Cµ(1, y′; z) = 0} .

If µ > ν + 1 then F ′ is tangent to D along the curve (x = z = 0)and hence every
point p ∈ (x = z = 0) is not a CH pre-simple corner for F ′, E ′. If µ = ν+ 1 we have

Sing(zω′) ∩ (x = z = 0) = {Cµ(1, y′; z) = 0} .

We have that Cµ(1, y′, z) = P (ỹ, z̃) has a zero of the form (ỹ0, 0); hence the point
(0, ỹ0, 0) ∈ π−1(0) ∩D is a point which is not a CH pre-simple corner for F ′, E ′. In
the case 1 ≤ ν ≤ µ we have that Sing (zω′) ∩ (x = z = 0) is the set

(z = 0) ∩ {Cµ(1, y′; z) = 0}

and we repeat the previous argument.

�

Lemma 29 Suppose Y is a germ of curve in the singular locus Sing F with eY (Einv) =
1, 2. Assume that there exists Ei ⊂ Einv such that 0 ∈ Ei, Y 6⊂ Ei. If the origin
is not a CH pre-simple corner for F , E, then there exists a point q ∈ π−1(0) which
is not a CH pre-simple corner for F ′, E ′. In particular, if π is not dicritical, there
exists an invariant germ of curve γ ⊂ Sing F ′ such that γ ⊂ D = π−1(Y ) and γ has
normal crossings with E ′.

Proof: There are two cases to consider: e0(Einv) = 2 and e0(Einv) = 3.

First case: e0(Einv) = 2. We take local coordinates x, y, z at the origin such that

E1 = (z = 0) ⊂ Einv ,

E2 = (y = 0) ⊂ Einv ,

Y = (x = y = 0) ⊂ E2.

Hence F is given by ω = 0 where

ω(x, y, z) = a(x, y, z)dx+ b(x, y, z)
dy

y
+ c(x, y, z)

dz

z
.
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If ν = order(x,y)(a) = order(x,y)(b)− 1, µ = order (x,y)(c), we can write

a(x, y, z) = Aν(x, y; z) + Aν+1(x, y; z) + · · ·

b(x, y, z) = Bν+1(x, y; z) +Bν+2(x, y; z) + · · ·
c(x, y, z) = Cµ(x, y; z) + Cµ+1(x, y; z) + · · ·

where Ai, Bi, Ci, as in Lemma 28, are homogeneous polynomials in the variables
x, y of degree i. Thus we have (Aν , Bν+1) 6= (0, 0), Cµ 6= 0.

In the first local chart we have x = x, y = xy′, z = z. Let

Pν+1(x, y; z) = xAν(x, y, ; z) +Bν+1(x, y; z) .

Then Pν+1(x, xy′; z) = xν+1Pν+1(1, y′; z). Hence

π∗ω = xν+1
(
Pν+1(1, y′, z) + x(· · ·)

)dx
x

+ xν+1
(
Bν+1(1, y′, z) + x(· · ·)

)dy′
y′

+ xµ
(
Cµ(1, y′, z) + x(· · ·)

)dz
z
.

Firstly suppose that µ ≥ ν + 1. Then we may divide ω(x, xy′, z) by xν+1:

ω′ =
1

xν+1
π∗ω =

(
Pν+1(1, y′; z) + x(· · ·)

)dx
x

+
(
Bν+1(1, y′; z) + x(· · ·)

)dy′
y′

+ xµ−ν−1
(
Cµ(1, y′; z) + x(· · ·)

)dz
z
.

If Pν+1(1, y′; z) 6≡ 0 then (x = 0) = D is invariant by F ′ and π is nondicritical. If,
on the other hand, we have Pν+1(1, y′; z) ≡ 0, then

ω′ = (· · ·)dx+
(
Bν+1(1, y′; z) + x(· · ·)

)dy′
y′

+ xµ−ν−1
(
Cµ(1, y′; z) + x(· · ·)

)dz
z
.

Note that Pν+1(1, y′; z) ≡ 0 implies that Bν+1(1, y′; z) 6= 0; otherwise, we would
have Bν+1(1, y′; z) = Aν(1, y

′; z) = 0, which is an absurd. Thus (x = 0) = D is not
invariant by F ′ and π is dicritical.

Now suppose 1 ≤ µ ≤ ν. Then we may divide ω(x, xy′, z) by at most xµ:

ω′ =
1

xµ
π∗ω = xν−µ

(
Pν+1(1, y′; z) + x(· · ·)

)
dx+ xν−µ+1

(
Bν+1(1, y′; z) + x(· · ·)

)dy′
y′

+
(
Cµ(1, y′; z) + x(· · ·)

)dz
z
.
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Since Cµ(1, y′; z) 6= 0, we have that (x = 0) = D is not invariant for F ′ and π is
dicritical.

Nondicritical case: The set

{Pν+1(1, y′, z) = 0} ∩ (x = 0)

gives a curve of the singular locus distinct from (x = z = 0) = π−1(0). Hence there
exists a point of intersection of {Pν+1(1, y′, z) = 0} and (x = z = 0) = π−1(0); this
point is not a CH pre-simple corner for F ′, E ′ and we are done.

Dicritical cases: In both cases, we are looking for the singular points of F ′
in π−1(0). In the first chart, π−1(0) is the y′-axis (x = z = 0). Firstly suppose
µ ≥ ν + 1, Pν+1(1, y′; z) ≡ 0. Then Sing (zω′) ∩ (x = z = 0) is the set

(z = 0) ∩ {xν−µ−1Cµ(1, y′; z) = 0} .

If µ > ν + 1 then F ′ is tangent to D along the curve (x = z = 0) and all the points
in this curve are not CH pre-simple corners for F ′, E ′. If µ = ν + 1 then

Sing(zω′) ∩ (x = z = 0) = {Cµ(1, y′; z) = 0} .

We have that Cµ(1, y′, z) = P (ỹ, z̃) has a zero of the form (ỹ0, 0); hence the point
(0, ỹ0, 0) ∈ π−1(0) ∩D is a point which is not a CH pre-simple corner for F ′, E ′. In
the case 1 ≤ ν ≤ µ we have that Sing (zω′) ∩ (x = z = 0) is the set

(z = 0) ∩ {Cµ(1, y′; z) = 0}

and we repeat the previous argument.

Second case: e0(Einv) = 3. We take local coordinates x, y, z at the origin such that

E1 = (z = 0) ⊂ Einv ,

E2 = (y = 0) ⊂ Einv ,

E3 = (x = 0) ⊂ Einv ,

Y = (x = y = 0) = E2 ∩ E3 .

Hence F is given by ω = 0 where

ω(x, y, z) = a(x, y, z)
dx

x
+ b(x, y, z)

dy

y
+ c(x, y, z)

dz

z
.
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Figure 24: Lemma 29. The image at the top shows the case eY (Einv) = 1, and the
image at the bottom show the case eY (Einv) = 2.
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If ν = order(x,y)(a, b), µ = order (x,y)(c), we write

a(x, y, z) = Aν(x, y; z) + Aν+1(x, y; z) + · · ·

b(x, y, z) = Bν(x, y; z) +Bν+1(x, y; z) + · · ·
c(x, y, z) = Cµ(x, y; z) + Cµ+1(x, y; z) + · · ·

where Ai, Bi, Ci, once again, are homogeneous polynomials in the variables x, y of
degree i. Thus (Aν , Bν) 6= (0, 0), Cµ 6= 0.

In the first local chart we have x = x′, y = x′y′, z = z′. Let

Pν(x, y; z) = Aν(x, y, ; z) +Bν(x, y; z) .

Then Pν(x, xy
′; z) = xνPν(1, y

′; z). Hence

π∗ω = xν
(
Pν(1, y

′, z) + x(· · ·)
)dx
x

+ xν
(
Bν(1, y

′, z) + x(· · ·)
)dy′
y′

+ xν
(
Cµ(1, y′, z) + x(· · ·)

)dz
z
.

Suppose µ ≥ ν. Then we may divide ω(x, xy′, z) by xν :

ω′ =
1

xν
π∗ω =

(
Pν(1, y

′; z) + x(· · ·)
)dx
x

+
(
Bν(1, y

′; z) + x(· · ·)
)dy′
y′

+ xµ−ν
(
Cµ(1, y′; z) + x(· · ·)

)dz
z
.

If Pν(1, y
′; z) 6≡ 0 then (x = 0) = D is invariant by F ′ and π is nondicritical. If, on

the other hand, we have Pν(1, y
′; z) ≡ 0, then

ω′ = (· · ·)dx+
(
Bν(1, y

′; z) + x(· · ·)
)dy′
y′

+ xµ−ν
(
Cµ(1, y′; z) + x(· · ·)

)dz
z
.

Note that Pν(1, y
′; z) ≡ 0 implies that Bν(1, y

′; z) 6= 0; otherwise, we would have
Bν(1, y

′; z) = Aν(1, y
′; z) = 0, which is an absurd. Thus (x = 0) = D is not invariant

for F ′, and π is dicritical.

Now suppose 1 ≤ µ < ν. Then we may divide ω(x, xy′, z) by xµ:

ω′ =
1

xµ
π∗ω = xν−µ−1

(
Pν(1, y

′; z) + x(· · ·)
)
dx+ xν−µ

(
Bν(1, y

′; z) + x(· · ·)
)dy′
y′

+
(
Cµ(1, y′; z) + x(· · ·)

)dz
z
.
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Since Cµ(1, y′; z) 6= 0, we have that (x = 0) = D is not invariant by F ′ and π is
dicritical.

Nondicritical case: The set

{Pν(1, y′, z) = 0} ∩ (x = 0)

gives a curve of the singular locus distinct from (x = z = 0) = π−1(0). Hence there
exists a point of intersection of {Pν(1, y′, z) = 0} and (x = z = 0) = π−1(0); this
point is not a CH pre-simple corner for F ′, E ′ and we are done.

Dicritical cases: In both cases, we are looking for the singular points of F ′
in π−1(0). In the first chart, π−1(0) is the y′-axis (x = z = 0). Firstly suppose
µ ≥ ν + 1, Pν(1, y

′; z) ≡ 0. Then Sing (zω′) ∩ (x = z = 0) is the set

(z = 0) ∩ {xν−µ−1Cµ(1, y′; z) = 0} .

If µ > ν + 1 then F ′ is tangent to D along the curve (x = z = 0) and all the points
in this curve are not CH pre-simple corners for F ′, E ′. If µ = ν + 1 then

Sing(zω′) ∩ (x = z = 0) = {Cµ(1, y′; z) = 0} .

We have that Cµ(1, y′, z) = P (ỹ, z̃) has a zero of the form (ỹ0, 0); hence the point
(0, ỹ0, 0) ∈ π−1(0) ∩D is a point which is not a CH pre-simple corner for F ′, E ′. In
the case 1 ≤ ν ≤ µ we have that Sing (zω′) ∩ (x = z = 0) is the set

(z = 0) ∩ {Cµ(1, y′; z) = 0}

and we repeat the previous argument.

�

Remark 20 Lemmas 28 and 29 are still valid in the case that there does not exist
an invariant component of E which is transversal to Y .

4.2 Singular locus of a RICH foliation

Let F be a RICH foliation in M = (C3, 0) and let’s fix a reduction of singularities

S : M0 = M
π1←−M1

π2←− · · · πN←−MN
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as in Section 3.1. Recall that for 0 ≤ s ≤ s′ ≤ N we denote πss = idMs and

πss′ = πs+1 ◦ πs+2 ◦ · · · ◦ πs′ : Ms′ →Ms

is s < s′. In particular,

ρs = πNs : MN →Ms; σs = πs0 : Ms →M0 = (C3, 0)

and π = πN0 = ρ0 = σN : MN → M0 is the morphism of reduction of singularities.
We decompose the exceptional divisor Es into irreducible components

Es = Ds
1 ∪Ds

2 ∪ · · · ∪Ds
s

where Ds
i is the strict transform by πs of Ds−1

i for i < s and Ds
s = π−1

s (Ys−1) and
we write Es

inv ⊂ E, Es
dic ⊂ Es.

We will frequently do arguments by induction on the height q ∈ σ−1
s (0). This

number is defined by

ht(q) = ]{s′ ≥ s; q ∈ πss′(Ys′)} .

Note that ht(q) = 0 if and only if q is a CH-simple point of Fs. Moreover, if q ∈ Ys
then ht(q′) < ht(q) for all q′ ∈ π−1

s+1(q).

This section is devoted to proving the following result:

Proposition 30 Let q ∈ σ−1
s (0) be a point which is not a CH pre-simple corner for

Fs, Es. Take a nondicritical irreducible component Ds
i of Es (that is, Ds

i ⊂ Es
inv)

with q ∈ Ds
i . Assume that there is no germ of curve Ys′, with s ≤ s′, such that

q ∈ πss′(Ys′) ⊂ Ds
i .

Then there exists a curve Γ contained in the singular locus Sing Fs such that

q ∈ Γ ⊂ Ds
i

and Γ 6⊂ Ds
j for any j 6= i.

Proof: We do induction on the height ht(q). If ht(q) = 0, q is a CH trace point
and we are done. Assume that ht(q) ≥ 1. Let b > s be the first index such that
q ∈ πs(b−1)(Yb−1). There are several cases to consider.
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First case: the center Yb−1 is a point Q and πb is a nondicritical blow-up. We per-
form the blow-up πb; by Proposition 25 there exists a point q′ ∈ π−1

b (Q) = Db
b that

is not a CH pre-simple corner for Fb, Eb. We apply the induction hypothesis to
q′; since Db

b is compact (it is isomorphic to P2) and invariant we find a compact
curve Γ̃ ⊂ Db

b in the singular locus of Fb which is not contained in another invariant
component of the exceptional divisor Eb. The curve Γ̃ must intersect the projective
line Db

i ∩Db
b at a point q′′. It follows that the point q′′ is not a CH pre-simple cor-

ner; we apply the induction hypothesis to Db
i at q′′ to find Γ′ and we take Γ = πkb(Γ

′).

Second case: Yb−1 = {Q} and πb is a dicritical blow-up. By Proposition 25, there
exists a point q′ ∈ Db

i ∩Db
b which is not a CH pre-simple corner for Fb, Eb. We apply

the induction hypothesis to the point q′ as before.

Third case: Yb−1 is a curve. In this case Db−1
i is transversal to Yb−1 in view of

the hypothesis on Ds
i . By Proposition 25 there exists a non CH pre-simple corner

q′ ∈ π−1
b (Q) = Db

i ∩Db
b where Q is the (only) point over q such that πs(b−1)(Q) = q.

We apply induction hypothesis to Db
i at q′ to obtain a curve Γ′ ⊂ Db

i and we put
Γ = πkb(Γ

′).

�

Remark 21 Note that it is possible to have Γ = πss′(Ys′) with the properties that
p ∈ Γ ⊂ Sing F , Γ ⊂ Es

i and there is no j 6= i with Γ ⊂ Es
j .

4.3 Structural results: continuation of nodal curves

In this section we consider a RICH foliation F in M = (C3, 0) without invariant
analytic surface and we fix a reduction of singularities

S : M0 = M
π1←−M1

π2←− · · · πN←−MN

as in Section 3.1. We recall that π : MN → M0 denotes the composition of all the
blow-ups in the sequence S.

Definition 16 Let C ⊂ Sing FN be an nodal component of F ,S. We say that C is
of good type if and only if we have one of the following possibilities:

1. C ∩ EN
dic 6= ∅.

2. π(C) 6= {0}, that is to say, there exists a germ of curve in π(C).

95



The following statement is the technical result that we need to complete the
proof of Theorem 7.

Proposition 31 All the nodal components of F ,S are of good type.

Let us start the proof of Proposition 31. We do an argument by contradiction, by
considering a fixed nodal component C that is not of good type. That is, we assume
that C ∩ EN

dic = ∅ and π(C) = {0}. For any 0 ≤ s ≤ N , we denote Cs = ρs(C).
We have that Cs ⊂ σ−1

s (0) and hence Cs is a connected union of compact analytic
subsets of Es. We have two possibilities: either Cs is a single point or it is a finite
union of compact irreducible analytic curves

Cs = Γs1 ∪ Γs2 ∪ · · · ∪ Γsks .

Let us remark that the curves Γsi ⊂ σ−1
s (0) will never be used a center of blow-up

in the sequence S. In particular, the generic points of Γsi are CH simple for Fs, Es

and only finitely many points in Γsi will be modified by subsequent blow-ups. Also
Cs+1 has the form

Cs+1 = Γs+1
1 ∪ Γs+1

2 ∪ · · · ∪ Γs+1
ks+1

where ks+1 ≥ ks and for each 1 ≤ i ≤ ks the curve Γs+1
i is the strict transform of Γsi

by πs+1.

Lemma 32 Take a point q ∈ σ−1
s (0). Then the following properties are satisfied:

A [Continuation at corners] Suppose eq(E
s
inv) = 3 and let Ds

i , D
s
k, D

s
l be the three

irreducible components of Es containing q. Suppose Ds
i ∩ Ds

k ⊂ Cs. Then
Ds
k ∩ Ds

l ⊂ Cs or Ds
i ∩ Ds

l ⊂ Cs, and moreover, in the first case we have
Ds
i ∩Ds

l 6⊂ Cs, and in the second case we have Ds
k ∩Ds

l 6⊂ Cs.

C’ [Nondicriticalness of corners] Suppose eq(E
s
inv) = 2 and let Ds

i , D
s
k be the two

irreducible components of Es containing q. If Ds
i ∩Ds

k ⊂ Cs then q /∈ Es
dic.

Proof: As in Proposition 30, the proof will be done by induction on the height of
q. Suppose initially that ht(q) = 0. Then q is already a simple point and will not
be a center of explosion. Furthermore, if q belongs to a germ of curve γ, then γ will
also not be a center of explosion. So there exists only one point q′ ∈ MN such that
ρs(q

′) = q.

C’ Since q′ ∈ C ⊂ MN and C is not of good type, it follows directly that q′ /∈ EN
dic.

Hence q does not belong to Es
dic.
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Figure 25: Case C’. We denote the hypothesis data with an arrow pointing towards
inside the curve.

A We have that eq′(E
N
inv) = 3, DN

i ∩DN
k ⊂ C and C is a nodal component; therefore

exactly one of the curves DN
i ∩ DN

l or DN
k ∩ DN

l is an irreducible component of C
whereas the other is not, and the result follows.

Now suppose that A and C’ are true for every point with height ≤ h − 1 and
assume ht(q) =h. Let b > s be the first index such that q ∈ πs(b−1)(Yb−1). Let
q′ ∈ Yb−1 be the point such that πs(b−1)(q

′) = q. Note that since C’ is valid for every
point with height ≤ h − 1 it follows that πb is nondicritical. We recall we denote
π−1
b (Yb−1) = Db

b.

C’ (see Figure 25) Suppose q belongs to a dicritical component Ds
j ⊂ Es

dic: so

q′ ∈ Db−1
j ⊂ Eb−1

dic . Since πb is nondicritical, by the induction hypothesis we may

apply A to the point Q = Db
b ∩ Db

i ∩ Db
k. Thus we find a point Q′ ∈ Db

i ∩ Db
b (or

Q′ ∈ Db
k ∩Db

b) such that Q′ ∈ Db
j ⊂ Eb

dic, which is an absurd.

A (see Figure 26) The result follows by applying the induction hypothesis to the
points Q1 = Db

b ∩ Db
i ∩ Db

k, Q2 = Db
b ∩ Db

k ∩ Db
l and Q3 = Db

b ∩ Db
i ∩ Db

l in the
case Yb−1 = {q′}; and by applying the induction hypothesis to the points Q1 =
Db
b ∩Db

i ∩Db
k and Q2 = Db

b ∩Db
i ∩Db

l in the case that Yb−1 is a germ of curve of the
singular locus Sing Fb−1.

�
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Figure 26: Case A. We denote the hypothesis data with an arrow pointing towards
inside the curve, and the conclusion data with an arrow point towards outside the
curve.
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With Lemma 32 we can see that the properties that C fulfills at the end of the
reduction of singularities can already be seen at intermediate stages in the case of
curves which are generically corner. The next result assures the same is true for
irreducible components of Cs which are trace curves (by trace curve we mean to say
a curve of the singular locus which is generically contained in only one invariant
component of the exceptional divisor).

Lemma 33 Take a point q ∈ σ−1
s (0) with eq(E

s
inv) ≥ 2. If eq(E

s
inv) = 2, Ds

i , D
s
k

will denote the two invariant components of Es containing q. If eq(E
s
inv) = 3, Ds

i ,
Ds
k, D

s
l will denote the three invariant components of Es containing q. Assume that

there is no germ of curve Ys′, with s ≤ s′, such that

q ∈ πss′(Ys′).
Then the following properties are satisfied:

B [Transition of trace curves]

B.1 Suppose eq(E
s
inv) = 2 and that Ds

i ∩Ds
k ⊂ Cs. If there exists a trace curve

Γi ⊂ Ds
i such that q ∈ Γi and Γi 6⊂ Cs, then there exists a trace curve

Γk ⊂ Ds
k such that Γk ⊂ Cs and q ∈ Γk.

B.1’ Suppose eq(E
s
inv) = 2 and that Ds

i ∩Ds
k ⊂ Cs. If there exists a trace curve

Γi ⊂ Ds
i such that q ∈ Γi and Γi ⊂ Cs, then there exists a trace curve

Γk ⊂ Ds
k such that Γk 6⊂ Cs and q ∈ Γk.

B.2 Suppose eq(E
s
inv) = 2 and that Ds

i ∩Ds
k 6⊂ Cs. If there exists a trace curve

Γi ⊂ Ds
i such that q ∈ Γi and Γi ⊂ Cs, then there exists a trace curve

Γk ⊂ Ds
k such that Γk ⊂ Cs and q ∈ Γk.

B.2’ Suppose eq(E
s
inv) = 2 and that Ds

i ∩Ds
k 6⊂ Cs. If there exists a trace curve

Γi ⊂ Ds
i such that q ∈ Γi and Γi 6⊂ Cs, then there exists a trace curve

Γk ⊂ Ds
k such that Γk 6⊂ Cs and q ∈ Γk.

B.3 Suppose eq(E
s
inv) = 3 and that Ds

i ∩Ds
k, D

s
i ∩Ds

l , D
s
k ∩Ds

l 6⊂ Cs. If there
exists a trace curve Γi ⊂ Ds

i such that q ∈ Γi and Γi ⊂ Cs, then there
exist trace curves Γk ⊂ Ds

k, Γl ⊂ Ds
l such that Γk,Γl ⊂ Cs and q ∈ Γk,Γl.

B.3’ Suppose eq(E
s
inv) = 3 and that Ds

i ∩Ds
k, D

s
i ∩Ds

l , D
s
k ∩Ds

l 6⊂ Cs. If there
exists a trace curve Γi ⊂ Ds

i such that q ∈ Γi and Γi 6⊂ Cs, then there
exist trace curves Γk ⊂ Ds

k, Γl ⊂ Ds
l such that Γk,Γl 6⊂ Cs and q ∈ Γk,Γl.

B.4 Suppose eq(E
s
inv) = 3 and that Ds

i ∩Ds
k, D

s
k ∩Ds

l ⊂ Cs but Ds
i ∩Ds

l 6⊂ Cs.
If there exists a trace curve Γi ⊂ Ds

i such that q ∈ Γi and Γi ⊂ Cs, then
there exist trace curves Γk ⊂ Ds

k, Γl ⊂ Ds
l such that Γk 6⊂ Cs, Γl ⊂ Cs

and q ∈ Γk,Γl.
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B.4’ Suppose eq(E
s
inv) = 3 and that Ds

i ∩Ds
k, D

s
k ∩Ds

l ⊂ Cs but Ds
i ∩Ds

l 6⊂ Cs.
If there exists a trace curve Γi ⊂ Ds

i such that q ∈ Γi and Γi 6⊂ Cs, then
there exist trace curves Γk ⊂ Ds

k, Γl ⊂ Ds
l such that Γk ⊂ Cs, Γl 6⊂ Cs

and q ∈ Γk,Γl.

B.5 Suppose eq(E
s
inv) = 3 and that Ds

i ∩Ds
k, D

s
i ∩Ds

l ⊂ Cs but Ds
k ∩Ds

l 6⊂ Cs.
If there exists a trace curve Γi ⊂ Ds

i such that q ∈ Γi and Γi ⊂ Cs, then
there exist trace curves Γk ⊂ Ds

k, Γl ⊂ Ds
l such that Γk,Γl 6⊂ Cs and

q ∈ Γk,Γl.

B.5’ Suppose eq(E
s
inv) = 3 and that Ds

i ∩Ds
k, D

s
i ∩Ds

l ⊂ Cs but Ds
k ∩Ds

l 6⊂ Cs.
If there exists a trace curve Γi ⊂ Ds

i such that q ∈ Γi and Γi 6⊂ Cs, then
there exist trace curves Γk ⊂ Ds

k, Γl ⊂ Ds
l such that Γk,Γl ⊂ Cs and

q ∈ Γk,Γl.

C [Nondicriticalness] If q ∈ Cs, then q /∈ Es
dic.

Proof: As before, the proof is done by induction on the height of q. Suppose
ht(q) = 0. Then q is already a simple point and will not be a center of explosion.
Furthermore, if q belongs to a germ of curve γ, then γ will also not be a center of
explosion. So there exists only one point q′ ∈MN such that ρs(q

′) = q.

C Since q′ ∈ C ⊂ MN and C is not of good type, it follows directly that q′ /∈ EN
dic.

Hence q /∈ Es
dic.

B We have that q′ is a simple point with dimensional type three. Thus B.3 - B.5’
cannot occur in the case ht(q) = 0. Cases B.1 - B.2’ follow directly from the facts
that since q′ is a simple point with dimensional type three there are three curves of
the singular locus containing q′ and that C is a nodal component. Note that in the
case B.2’ we obtain that q′ /∈ C. Since ρs(q

′) = q, we obtain the same results for
the point q in the stage Ms.

Assume ht(q) ≥ 1. Let b > s be the first index such that q ∈ πs(b−1)(Yb−1). Let
q′ ∈ Yb−1 be the point such that πs(b−1)(q

′) = q. Hence we may “push” all the hy-
pothesis on q to the point q′. Note that since C is valid for every point with height
≤ h − 1 it follows that πb is nondicritical. Moreover, in view of the hypothesis,
Yb−1 = {q′}. We recall we denote π−1

b (Yb−1) = Db
b.

C (see Figure 27) Suppose q belongs to a dicritical component Ds
j ⊂ Es

dic; hence

q′ ∈ Db−1
j ⊂ Eb−1

dic . Call Γ ⊂ Cb−1 the irreducible component of Cb−1 which contains
q′ (that is to say, Γ is the transform by πs(b−1) of the irreducible component of Cs
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Figure 27: Case C.

which contains q). We perform the blow-up πb. Let Γ′ denote the transform by πb
of Γ and let Q = Γ′ ∩ (Db

b ∩ Db
i ). If Q ∈ Db

j , by applying the induction hypoth-
esis to Q we come to an absurd. If Q /∈ Db

j , we apply B or A of Proposition 32
to q′ (depending on whether Γ′ is a trace curve or corner curve). Either way, we
will find a point Q′ ∈ Cb such that Q ∈ Db

j , which is an absurd and the result follows.

B We will still denote by Γi ⊂ Sing Fb−1 the transform by πs(b−1) of Γi ⊂ Sing Fs.
We perform the nondicritical blow-up πb centered at q′. First let’s consider cases
B.1 - B.2’ (see Figures 28 - 31). We will use the following notation:

Q1 = Db
i ∩Db

k ∩Db
b ,

Q2 = Γ′i ∩ (Db
i ∩Db

b) ,

where Γ′i ⊂ Sing Fb is the transform by πb of Γi ⊂ Sing Fb−1. We apply Lemma
32 to the point Q1 in order to see which of the curves (if any) Db

i ∩ Db
b, D

b
k ∩ Db

b

are irreducible components of Cs. Then, we apply the induction hypothesis to the
point Q2: if Q2 = Q1, we apply one of the cases B.3 - B.5’ and the result will
follow immediately; if Q2 6= Q1, we apply one of the cases B.1 - B.2’ to the point
Q2. In this case, we will find a trace curve Γb ⊂ Db

b (which may be an irreducible
component of Cs or not, depending on the case) such that Q2 ∈ Γb. Finally, we
apply the induction hypothesis to the point Q3 = Γb∩ (Db

k∩Db
b) and we find a trace

curve Γ̃k ⊂ Db
k, Q3 ∈ Γ̃k (again, we will apply cases B.3 - B.5’ if Q3 = Q1, and

cases B.1 - B.2’ otherwise). We take Γk = πsb(Γ̃k) and the result follows .
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Figure 28: Case B.1. We recall we denote the hypothesis data with an arrow
pointing towards inside the curve, and the conclusion data with an arrow point
towards outside the curve.
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For example, let’s see in detail case B.1 (see Figure 28). We apply A of Lemma
32 to the point Q1: since Db

i ∩Db
k ⊂ Cb, we have that either Db

k∩Db
b ⊂ Cb (and in this

case Db
i ∩Db

b 6⊂ Cb) or Db
i ∩Db

b 6⊂ Cb (in which case Db
k ∩Db

b 6⊂ Cb). Suppose we have
the first option. Now consider the point Q2. If Q2 = Q1, we apply B.4’ to Q2 and
the result follows directly: we find a curve Γ̃k ⊂ Db

k, Γ̃k ⊂ Cb; now put Γk = πsb(Γ̃k).
If Q2 6= Q1, we apply B.2’ to Q2 and obtain a curve Γb ⊂ Db

b, Γb 6⊂ Cb. Now we look
at the point Q3. If Q3 = Q1, we apply B.4’ to Q3 and as before, the result follows.
If Q3 6= Q1, we apply B.1 to Q3 and find the curve Γ̃k ⊂ Ds

k and the result follows.
Now suppose we have Db

i ∩ Db
b ⊂ Cb (hence Db

k ∩ Db
b 6⊂ Cb). If Q2 = Q1, we apply

B.5’ to Q2 and find the curve Γ̃k ⊂ Db
k, Γ̃k ⊂ Cb directly. If Q2 6= Q1, we apply B.1

to Q2 and obtain a curve Γb ⊂ Db
b such that Γb ⊂ Cb. Finally, we look to the point

Q3: if Q3 = Q1 we apply B.4 to Q3; and if Q3 6= Q1, we apply B.2 to Q3. Either
way, we find the curve Γ̃k ⊂ Db

k, Γ̃k ⊂ Cb and we are done.
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Figure 29: Case B.1’
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Figure 30: Case B.2
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Figure 31: Case B.2’
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Now we move on to cases B.3 - B.5’ (see Figures 32 - 37). We will use the
following notation:

Q1 = Db
i ∩Db

k ∩Db
b ,

Q2 = Db
k ∩Db

l ∩Db
b ,

Q3 = Db
i ∩Db

l ∩Db
b ,

Q4 = Γi ∩ (Db
i ∩Db

b) ,

where Γ′i ⊂ Sing Fb once again denotes the transform by πb of Γi ⊂ Sing Fb−1. We
apply Lemma 32 to the points Q1, Q2, Q3 in order to see which of the curves Db

i∩Db
b,

Db
k∩Db

b, D
b
l∩Db

b are irreducible components of Cb. We apply the induction hypothesis
to the point Q4 in order to find a trace curve Γb ⊂ Db

b, Q4 ∈ Γb. Depending on the
case, Γb belongs to Cs or not. Note that we may have Q4 = Q1 or Q4 = Q3; in these
cases we will be applying cases B.3 - B.5’ to the point Q4. Otherwise, we will be
applying cases B.1 - B.2’ to Q4. Now let

Qk = Γb ∩ (Db
k ∩Db

b) ,

Ql = Γb ∩ (Db
l ∩Db

b) .

These points exist because Db
b ' P2 and Γb, D

b
k ∩Db

b, D
b
l ∩Db

b are projective lines in
Db
b. We apply the induction hypothesis to the points Qk, Ql and find trace curves

Γ̃k ⊂ Db
k, Γ̃l ⊂ Db

l , Qk ∈ Γ̃k, Ql ∈ Γ̃l. We take Γk = πs,b(Γ̃k), Γl = πsb(Γ̃l) and
the result follows. Notice that we may have Qk = Q1 or Q2, and Ql = Q2 or Q3;
in these cases, we will apply cases B.3 - B.5’ to the points Qk, Ql. Otherwise, we
apply cases B.1 - B.2’.

�
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Figure 32: Case B.3. We recall we denote the hypothesis data with an arrow
pointing towards inside the curve, and the conclusion data with an arrow point
towards outside the curve.
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Figure 33: Case B.3’.
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Figure 34: Case B.4.
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Figure 35: Case B.4’
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Figure 36: Case B.5.
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Figure 37: Case B.5’.
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Figure 38: Remark 22.

Remark 22 Case B.2 is true in the case that Db−1
i and Db−1

k are noncompact
invariant components of Eb−1 and Yb−1 = Db−1

i ∩Db−1
k . We have that Γi = σ−1

b−1(0)∩
Db−1
i and we obtain that Γk = σ−1

b−1(0) ∩ Db−1
k (see Figure 38). Let us prove this.

Firstly suppose ht(q) = 0. Then q is a simple point and there exists only one point
q′ ∈ MN such that ρs(q

′) = q. Hence q′ is a simple point with dimensional type
three and since C ⊂ Sing FN is not of good type, it follows directly that

Γ̃k = π−1(0) ∩DN
k

is an irreducible component of C. Hence Γk = ρs(Γ̃k) = σ−1
s (0)∩Ds

k is an irreducible
component of Cs and the result follows. Now suppose that ht(q) ≥ 1. Let b > s
be the first index such that q ∈ πs(b−1)(Yb−1). Let q′ ∈ Yb−1 be the point such that
πs(b−1)(q

′) = q. Note that due to C we have that πb is a nondicritical blow-up. We
will use the same notation as before.

We apply the induction hypothesis to the point Q1 = Γ′i ∩Db
b. Since C is not of

good type, we have that Db
i ∩Db

b 6⊂ Cb. Hence

Γb = σ−1
b (0) ∩Db

b ⊂ Cb .

Applying the induction hypothesis to the point Q2 = Γb ∩Db
k we obtain that

Γ̃k = σ−1
b (0) ∩Db

k ⊂ Cb .

Hence Γk = πsb(Γ̃k) ⊂ Cs and we are done.
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4.4 Structural results: incompatibility of trace curves

In this section we continue with the proof of Proposition 31. The following result is
another property that the nodal component C ⊂ Sing FN we have fixed satisfies at
intermediate steps of the reduction of singularities S.

Lemma 34 [Incompatibility] Let q ∈ σ−1
s (0) be a point of Cs such that there is one

irreducible component Γs of Cs containing q which is generically contained in only
one component Ds

i ⊂ Es
inv. Then there does not exist a curve Υs ⊂ Sing Fs such

that

1. Ds
i is the only invariant component of Es

inv which contains Υs.

2. Υs 6⊂ Cs.

3. q ∈ Υs.

Proof: Suppose, by absurd, that there exists a curve Υs ⊂ SingFs which satisfies
1-3. As before, we will use induction on the height of q. If ht(q) = 0, we have that q
is a simple point. Hence there cannot exist two trace curves contained in the same
invariant component intersecting at q, and the result follows.

Assume that ht(q) ≥ 1. Let b > s be the first index such that q ∈ πs(b−1)(Yb−1).
Let q′ ∈ Yb−1 be the point such that πs(b−1)(q

′) = q. From Lemma 33 it follows that
πb is nondicritical. We recall we denote π−1

b (Yb−1) = Db
b. We will call Γb−1, Υb−1 the

transforms by πs,(b−1) of Γs, Υs. The transforms of Γb−1, Υb−1, by πb will be denoted
Γb, Υb. Call

Q1 = Γb ∩ (Db
i ∩Db

b) ,

Q2 = Υb ∩ (Db
i ∩Db

b) .

There are several cases to consider.

First case: Yb−1 = {q′} (see Figure 39). We perform the blow-up πb. If Q1 = Q2,
by the induction hypothesis we are done. If Q1 6= Q2, by Lemma 33 there exist two
trace curves Γ̃, Υ̃ ⊂ Db

b such that one of them is an irreducible component of Cb and
the other is not. Since Db

b ' P2, the projective lines Γ̃, Υ̃ must intersect. We apply
the induction hypothesis to the point Q3 = Γ̃ ∩ Υ̃.
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Figure 39: These are the cases Yb−1 = {q′}. The image at the top shows the case
eq′(E

b−1
inv ) = 1, the image in the middle shows the case eq′(E

b−1
inv ) = 2 and the image

at the bottom shows the case eq′(E
b−1
inv ) = 3.
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Figure 40: This figure exhibits the cases when Yb−1 is a germ of curve. The image
at the top shows the second case and the image at the bottom shows the third case.

Second case: Yb−1 is a germ of curve transversal to Db−1
i (see Figure 40). Let Q1, Q2

be as above. If Q1 = Q2, by the induction hypothesis the result follows. If Q1 6= Q2,
by Lemma 33 we find an irreducible component of Cb which is contained in the
noncompact component Db

b. This is an absurd since C is not of good type.

Third case: Yb−1 is the curve Υb−1 (see Figure 40). In this case we have that Ds
i

is not compact and therefore Γb−1 = σ−1
b−1(0) ∩ Db−1

i . Let Q1 be as before. Since
C is not of good type, we have that Db

i ∩ Db
b is not an irreducible component of

Cb. By Lemma 33, the curve Γ̃ = σ−1
b (0) ∩ Db

b is an irreducible component of Cs;
moreover, Db

b is the only invariant component of Eb which generically contains Γ̃.
By Lemma ?? there exists a trace curve Υ̃ ⊂ Sing Fb, Υ̃ ⊂ Db

b. We apply the
induction hypothesis to the point Q2 = Υ̃ ∩ Γ̃ and the result follows.

�

4.5 The goodness of nodal components

In this section we finish the proof of Proposition 31. The nodal component C ⊂ Sing
FN we have fixed satisfies Lemmas 30, 32, 33 and 34. We want to show that such a
C cannot exist.
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We will descend to the stage Ms of the reduction of singularities S where it
appears, for the first time, an irreducible component of C. In other words: let
πs : Ms → Ms−1 be the blow-up centered at Ys−1 ⊂ Ms−1. So in Ms−1 there are no
irreducible components of C, that is to say, Cs−1 = ∅; and in Ms we see, for the first
time, an irreducible component of C: Cs 6= ∅. Note that, due to Lemmas 32 and 33,
πs is not dicritical.

First case: s = 1 (see Figure 41). The nondicritical blow-up π1 : M1 →M0 = (C3, 0)
is centered at Y0 ⊂ M0 and E1 = D1

1 = π−1
1 (Y0) ⊂ M1. Suppose Y0 = {0}: so

D1
1 ' P2 is compact and invariant (since π1 is not dicritical). So C1 ⊂ D1

1 is a trace
curve. Let ∆ ⊂M0 be a plane section which is generically transversal to F and let
∆′ be its transform by π1. We may assume that the section ∆ satisfies the following
properties:

1. 0 ∈ ∆ is a singularity in dimension two of the induced foliation F|∆.

2. Every point in ∆′ is a singularity in dimension two.

In ∆′ we have the following situation: D1
1 ∩∆′ ' P1 is an invariant divisor and

the point p = C1 ∩ ∆′ is a nodal singularity in dimension two; due to Remark 5
there exists a point q ∈ D1

1 ∩∆′ such that q is a trace singularity which is not nodal.
Since q is a simple singularity of dimensional type two of F1, there exists a trace
curve Γ ⊂ Sing F1, Γ ⊂ D1

1, such that q ∈ Γ and Γ 6⊂ C1. However, Γ and the
irreducible component of C1 through p are two projective lines in D1

1; therefore they
must intersect. This is an absurd due to Lemma 34.

Now suppose Y0 is a germ of curve contained in Sing F . Thus E1 = D1
1 = π−1

1 (Y0)
is not compact and since C is not of good type it follows that C1 = π−1

1 (0). Due
to Remark 20 there exists a trace curve γ ⊂ Sing F1 such that π1(γ) = Y0. Thus
γ ∩ C1 6= ∅, which is an absurd due to Lemma 34.
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Figure 41: Case s = 1.
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Second case: s ≥ 2. The nondicritical blow-up πs : Ms → Ms−1 is centered at
Ys−1 ⊂Ms−1. So π−1

s (Ys−1) = Ds
s and Fs is the transform of F . First suppose Ys−1

is a point {q}. Since C is not of good type, q /∈ Es−1
dic and eq(E

s−1
inv ) ≥ 1. Assume first

that eq(E
s−1
inv ) = 1. So q ∈ Ds−1

i ⊂ Es−1
inv . The component Ds

s = π−1
s (q) is compact,

invariant and Cs ⊂ Ds
s. Let Γs be an irreducible component of Cs. Since Γs, Ds

i ∩Ds
s

are projective lines in Ds
s, they must intersect. At the point of intersection of Γs

and Ds
i ∩ Ds

s we apply Lemma 33: so either Ds
i ∩ Ds

s ⊂ Cs or there exists a trace
curve Γi ⊂ Sing Fs, Γi ⊂ Ds

i such that Γi ⊂ Cs. However, the second case would
imply that πs(Γi) is a curve of the singular locus Sing Fs−1 such that πs(Γi) ⊂ Ds−1

i ,
πs(Γi) ⊂ Cs−1 and hence Cs−1 6= ∅, which is an absurd.

Therefore we have Ds
i ∩ Ds

s ⊂ Cs (see Figure 42). We take a plane section
∆ ⊂ Ms−1 generically transversal to Fs−1 and which satisfies conditions 1. and 2.
above. In ∆′ there are two invariant divisors, Ds

s ∩∆′ ' P1 and Ds
i ∩∆′. The corner

point p = ∆′∩ (Ds
i ∩Ds

s) is a nodal singularity in dimension two. Due to Remark 5,
there exists a point q′ ∈ Ds

s∩∆′, q′ 6= p, that is a trace singularity which is not nodal.
Since q′ is a singularity of dimensional type two of Fs, there exists a curve Γ ⊂ Sing
Fs, Γ ⊂ Ds

s, such that Γ 6⊂ Cs and q′ ∈ Γ. At the point Q = Γ∩ (Ds
i ∩Ds

s) we apply
Lemma 33 and we find a trace curve Γi ⊂ Sing Fs, Γi ⊂ Ds

i such that Γi ⊂ Cs.
However as we have seen this implies that πs(Γi) ⊂ Cs−1 and hence Cs−1 6= ∅, which
is an absurd and the result follows.

For the case eq(E
s−1
inv ) = 2, we have that q ∈ Ds−1

i ∩ Ds−1
k . We conclude that

both Ds
i ∩ Ds

s and Ds
k ∩ Ds

s must be irreducible components of Cs and repeat the
argument above. And for eq(E

s−1
inv ) = 3, we have that q ∈ Ds−1

i ∩Ds−1
k ∩Ds−1

l , and
all curves Ds

i ∩ Ds
s, D

s
k ∩ Ds

s and Ds
l ∩ Ds

s are irreducible components of Cs. Once
again, we repeat the argument above (see Figures 43 and 44).
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Figure 42: Case s ≥ 2, πs is a nondicritical blow-up centered at q and eq(E
s−1
inv ) = 1.
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Figure 43: Case s ≥ 2, πs is a nondicritical blow-up centered at q and eq(E
s−1
inv ) = 2.
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Figure 44: Case s ≥ 2, πs is a nondicritical blow-up centered at q and eq(E
s−1
inv ) = 3.
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Figure 45: Case s ≥ 2, πs is a nondicritical blow-up centered at Y and eY (Es−1
inv ) = 0.

Finally, suppose Ys−1 is a germ of curve contained in Sing Fs−1. Firstly assume
that eY (Es−1

inv ) = 0 (that is to say, Y is not contained in any invariant divisor).
There exists a point q ∈ Y such that q ∈ Ds−1

i where Ds−1
i is a compact compo-

nent of Es−1
inv (see Figure 45). The component Ds

s = π−1
s (Ys−1) is not compact and

Cs = π−1
s (q) ⊂ Ds

s. Due to Lemma 28 there exists an invariant curve γ ⊂ Sing Fs,
γ ⊂ Ds

s such that πs(γ) = Y (in particular, γ is a trace curve). Since C is of not
of good type, γ 6⊂ Cs. We apply Lemma 33 to the point q′ = γ ∩ Cs and obtain a
trace curve Γi ⊂ Sing Fs, Γi ⊂ Ds

i such that q′ ∈ Γi ⊂ Cs. Hence, as in the previous
cases, we obtain that Cs−1 6= ∅, which is an absurd.

Now assume that eY (Es−1
inv ) ≥ 1: Y is contained in an invariant component

Ds−1
i ⊂ Es−1

inv (we remark that the following argument is the same in the case γ =
Ds−1
i ∩Ds−1

k with Ds−1
i , Ds−1

k ⊂ Es−1
inv ). So Cs is the compact curve σ−1

s (0)∩Ds
s (see

Figures 46 and 47). Since Ds
i ∩ Ds

s is a noncompact curve, it is not an irreducible
component of Cs. Due to Remark 22 we obtain that the curve σ−1

s (0) ∩ Ds
i is an

irreducible component of Cs; however, this implies that Cs−1 6= ∅, which is an absurd.
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Figure 46: Case s ≥ 2, πs is a nondicritical blow-up centered at Y and eY (Es−1
inv ) = 1.
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Figure 47: Case s ≥ 2, πs is a nondicritical blow-up centered at Y and eY (Es−1
inv ) = 2.
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4.6 Brunella’s local alternative with nodal components

Now we prove Theorem 7 in the general case. If there are no nodal components in
Sing FN , we are done (Theorem 8). If there exists a nodal component C ⊂ Sing FN ,
by Proposition 31 we have that C is of good type. We have two possibilities:

a) All the nodal components intersect at least one compact dicritical irreducible
component of the exceptional divisor. In this case, we extend the arguments
of the case without nodal components and we find a neighborhood W of the
origin such that for each leaf L ⊂ W of F there is an analytic curve γ ⊂ L
with 0 ∈ γ.

b) There is a nodal component C ⊂ Sing FN which does not intersect any compact
dicritical irreducible component of the divisor. Since C is of good type, either
it intersects a noncompact dicritical component of the divisor or it contains a
noncompact irreducible curve. Thus we find an analytic curve Γ ⊂ (C3, 0) in
the singular locus Sing F such that F is generically dicritical or generically
nodal along Γ.
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5 Epilogue: Semitranscendental leaves

In some sense the global alternative of Brunella may be interpreted as a property
concerning the “concentration-diffusion”of the non-transcendency of the leaves of
a foliation: either we concentrate the non-transcendency in an algebraic leaf or all
the leaves are not completely transcendental in the sense that they are foliated by
algebraic curves. In our local situation we have an analogous of this phenomenon
based on the concept of an end of leaf. We state this result as follows:

Theorem 10 Let F be a RICH foliation in (C3, 0) that has no germ of invariant
analytic surface. Then there is a neighborhood U of the origin 0 ∈ C3 such that each
leaf L ⊂ U of F is U has at least one end bL which is semi-transcendental.

The definition of the set B0(F) of ends of leaves is given by an inductive limit
by means of any fundamental system of neighborhoods {Ui}i∈I of the origin 0 ∈ C3,
where we assume that F is defined in an open set U with Ui ⊂ U for all i ∈ I.
Denote by Qi(F) the space of leaves of the restriction of F to Ui. An end of leaf
b ∈ B0(F) is an element

b = (Li)i∈I ∈
∏
i∈I

Qi(F)

such that Li ⊂ Lj if Ui ⊂ Uj. Given a leaf L ⊂ U , we say that b is an end of L if
Li ⊂ L for all i ∈ I. We say that b contains a germ of analytic curve γ if γ \ {0} is
contained in the germ at the origin of Li for all i ∈ I.

An end of leaf b ∈ B0(F) is called semitranscendental if it contains a germ of
analytic curve or there exists a reduction of singularities

(C3, 0) = M0
π1←−M1

π2←− · · · πN←−MN

for F such that the lifted end b̃ accumulates only at the singular locus of FN .

Let us give an idea of the proof of Theorem 10. Take a nodal component C
corresponding to the fixed reduction of singularities of the RICH foliation F . We
have that

C ⊂ Sing F
is a union of generically nodal curves such that all the points are in fact nodal points.
We have two possibilities:

a) There are “secondary holonomies” inside C that modify the transversal set of
leaves in a component of C that approach the leaves to the divisors.
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b) Such secondary holonomies do not exist and the leaves C are at a “fixed” distance
of the divisor.

In the first case, the nodal component is not a “barrier” from the propagation of
the leaves and we can proceed as in the case without nodal components. In the
second case, the leaves around C correspond to semitranscendental ends of leaves
accumulating at C. Since the only “barrier” we found are of this type, Theorem 10
follows.

Note of course that the fact that the nodal components are always of good type,
the semitranscendental ends of leaves that we found either contain a germ of analytic
curve or they accumulate (in a very precise way) at a curve Γ in the initial singu-
lar locus Sing F , where F is either generically dicritical or generically nodal along Γ.

In the future we will undertake a more accurate study of semitranscendental ends
in order to precise the ideas above. We acknowledge J. F. Mattei for the helpful and
stimulating discussions about the behavior of semitranscendental ends.
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[11] D. Cerveau, Déploiments non dicritiques des formes différentielles holomor-
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letages holomorphes singuliers, (2006).
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