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Abstract 

The photogeneration of singlet oxygen (1O2) during short irradiation times of graphene oxide (GO) 

is assessed under visible light with soft irradiation conditions either directly monitoring the 

phosphorescence emission of 1O2 at ca. 1275 nm, or indirectly by means of the fluorescent probe 

9,10-anthracenediyl-bis(methylene)dimalonic acid (ABDA). Results obtained using both 

methodologies lead to the conclusion that 1O2 generation is negligible under our experimental 

conditions. In the case of using ABDA very small emission changes were recorded, which could 

be attributed to other side reactions. Special care should be taken when using this spectroscopic 

probe to assess the generation of 1O2, since ABDA and related probes based on the reactivity of 

the anthracene fluorophore can also detect electron transfer processes. This kind of approaches 

have been less explored in the field of Materials Science at the nanoscale, and we believe 

that the knowledge on the lack of generation of 1O2 by irradiated GO is informative and 

useful, especially for the assessment of the environmental and biological toxicity of 

nanomaterials based on GO. 
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1. Introduction 

Carbon based nanomaterials are gaining increasing attention taking into account 

their outstanding physical properties. Numerous applications have been found in the fields 

of electronics, energy storage and biomedical areas, to mention only a few. The interest in 

this family of materials is expected to grow exponentially in the coming years [1-15]. 

Despite the efforts devoted to understand the chemistry of graphene and its derivatives still 

important questions remain to be answered. Some of those questions are concerns about 

their potential environmental toxicity [16-25], and to the in vivo toxicity of graphene, GO 

and derived hybrid nanocomposites used for biological imaging and therapy [15, 26, 27, 

28, 29]. In this last realm, the use of shot exposure times to light (minutes) is frequent, in 

contrast to environmental studies (hours). Reactive oxygen species (ROS) such as singlet 

oxygen (1O2), superoxide radical anion (O2
-.) and hydroxyl radical (·OH) have been 

detected upon irradiation of fullerenes [30], carbon nanotubes [31, 32], and graphene 

quantum dots [33]. However, the investigation of ROS production by GO and reduced 

graphene oxide (rGO) is much recent. Krishnamoorthy et al. reported on the behaviour of 

GO as a photoreductant but not informed about the generation of ROS [34]. More recently 

the group of Jafvert detected O2
-. but not 1O2 or ·OH after irradiation of GO in water [35]. 

Later, the group of Sarkar reported that rGO was responsible for the production of ROS in 

aged samples of GO (suggesting the involvement of 1O2, although not directly detected) 

[36]. More recently, Li, Keller et al. have studied the photochemistry GO and rGO, finding 

that O2
-. was the most abundant ROS generated upon irradiation during long irradiation 

times (>24h) and using high-power light sources (800 W Xe lamp) [37, 38]. In this case, 

the concentration of 1O2 was found <3·10-14 M.  
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The most frequently used probe for determining de 1O2 production is FFA [39]. But 

the use of this molecule requires a centrifugation step and HPLC analysis for monitoring 

the reaction. In the last years, very sensitive spectroscopic probes based on fluorescence 

are gaining acceptance since they allow an in situ measurement of the reaction progress, 

especially for short irradiation times. In the course of our research on graphene composites 

[40], we were interested in the analysis of ROS produced by GO, and we hypothesized that 

highly-sensitive spectroscopic methods to detect 1O2 could be used as a complement to 

chromatographic ones. Hence we turned our attention to fluorescent probes based on 

anthracene as 1O2 indicators. Additionally, we combined this approach with the direct 

measurement of 1O2 phosphorescence at ca. 1275 nm. Our investigation confirms that 1O2 

production upon irradiation of GO is minimal, as reported with the traditional FFA method 

[35, 37]. This finding is applicable specifically to the sample of GO prepared by us; samples 

with a different degree of oxidation or aging after preparation could have a different 

behaviour. This fact highlights the utility of having a variety of detection methods to assess 

the production of ROS in graphene derived materials. The need of a toolbox of probes for 

ROS is strongly recommended in research on GO, especially to evaluate the interaction of 

GO based nanomaterials with biological media [41, 42]. 

2. Materials and Methods 

2.1. Chemicals 

Graphite (powder <20 m, synthetic), potassium permanganate, sulfuric acid, phosphoric 

acid, ABDA,  9,10-dimethylanthracene (DMA), Rose Bengal (RB), sodium azide, and 

fullerene-C60 have been obtained from commercial resources, and used as received.   
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2.2. Instrumentation 

Combustion chemical analysis of the samples were carried out using a Fisons EA 1108-

CHNS-O analyzer. Fourier-transform infrared spectroscopy (FT-IR) spectra were measured on 

KBr pellets with a Nicolet 8700 Thermo spectrometer. The Raman spectra were obtained from 

solid samples previously deposited onto aluminium or quartz wafers, indistinctively, using a 

“Reflex” Renishaw spectrometer, equipped with an Olympus microscope. The exciting 

wavelength was 514 nm of an Ar+ ion laser. The laser power on the sample was ~10-25 mW and 

a total of 20 acquisitions were taken for each spectra. UV-Vis spectra were recorded in solution 

on JASCO V-630 spectrophotometer. Fluorescence measurements were recorded using a JASCO 

FP-8300 apparatus. Solid-state 13C magic angle spinning nuclear magnetic resonance (MAS-

NMR) spectra were recorded at RT by using a Bruker AV400WB spectrometer. The samples were 

spinning at the magic angle at 10 kHz, choosing /2 pulses of 5 s and a recycle delay of 5 s. 

Powder X-ray diffraction (XRD) patterns were obtained by using a Philips X′Pert diffractometer 

and copper radiation (CuKα = 1.541178 Å). X-ray photoelectron (XPS) spectra were collected 

using a SPECS spectrometer with a 150MCD-9 detector and using a non monochromatic AlKα 

(1486.6 eV) X-Ray source. Spectra were recorded using analyzer pass energy of 30 eV, an X-ray 

power of 50W and under an operating pressure of 10-9 mbar. During data processing of the XPS 

spectra, BE values were referenced to C1s peak (284.5 eV). Spectra treatment has been performed 

using the CASA software.  Atomic force microscopy (AFM) images were recorded by using a 

Multimode Nanoscope 3A instrument operating in tapping mode and with a Si wafer as the 

substrate. Samples for high resolution electron microscopy (HR-TEM) were ultrasonically 

dispersed in Milli-Q water and transferred into carbon coated copper grids. HR-TEM images were 

recorded by using a JEOL JEM2100F microscope operating at 200 kV.   
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2.3. Synthesis and characterization of GO 

GO has been prepared by following the improved Hummer’s synthetic method, and by 

optimization of a previous reported procedure [43, 44]. A mixture of concentrated H2SO4/H3PO4 

(360:40 mL) was added to a mixture of graphite (3 g) and KMnO4 (18 g) to produce an exothermic 

reaction to 35-40 ºC. The reaction was then heated to 50 ºC and stirred for 13 h, then cooled to 

room temperature and poured onto 400 mL of ice with 30% H2O2 (3 mL). After air cooling, the 

suspension was filtered and washed first with an aqueous HCl (1:10, 37%) solution, and finally 

with water until pH 7. The resulting solid was suspended in water (400 mL) and sonicated for 30 

min; then the suspension was centrifuged at 4000 rpm for 4 h and the solid was removed. The 

liquid suspension was newly centrifuged at 15000 rpm for 1 h, and the resulting solid was dried at 

60 ºC to afford ca. 1 g of a dark brown material identified as GO. This material has been 

characterized by FT-IR, Raman, XRD, XPS, solid-state 13C MAS-NMR, AFM, HR-TEM, and 

combustion chemical analyses (C 40.07%, H 2.19%, N 0.0%). 

2.4. Chemical trapping of 1O2 

Photo-oxidation reactions reactions were performed under air inside 3 mL 

fluorescence quartz cuvettes (1 cm light path) containing aerated aqueous solutions of the 

singlet oxygen trap ABDA (3 mL, 50 µM) and RB (4 µM) or hetereogeneous GO (0.05 

mg/mL) photosensitizers. Prior to irradiation, GO was dispersed in distilled water 

(1mg/mL), sonicated for 60 min, and 150 L of the resulting dispersion was diluted to 3 

mL and sonicated again for 1 min. Irradiations were carried out, with continuous stirring, 

using a cylindrical reactor (equipped with LED lamps, 400-700 nm emission output, 15.6 

mW/m2) placed 12 cm away from the cuvette. The evolution of the photoreactions was 



 7 

monitored over time (maximum 16 min.) by means of fluorescence spectroscopy (decrease 

of fluorescence emission at λem = 430 nm, λexc = 375 nm). The initial points of the kinetic 

traces were fitted to a pseudo-first order model (ln C/C0 = - kobs · t, where C is the 

concentration of ABDA at a certain time t and C0 is the initial concentration of ABDA (for 

low concentrations is can be assumed that fluorescence intensity is proportional to 

concentration). The same methodology was followed by using fullerene-C60 (0.05 mg/mL) 

as photosensitizer and DMA (3 mL, 50 µM) as a probe. Control experiments were 

performed by using ABDA in the absence of the photosensitizer, in the dark or under N2 

atmosphere, using GO as photosensitizer. Quenching experiments were done in the 

presence of NaN3 (10 mM). 

2.5. Direct singlet oxygen detection  

The singlet oxygen phosphorescence decay traces after the laser pulse were 

registered at ca. 1275 nm employing a Peltier-cooled (-62.8 ºC) A pulsed Nd:YAG L52137 

V LOTIS TII was used at the excitation wavelength of 355 nm. The single pulses were ca. 

10 ns duration, and the energy was lower than 5 mJ per pulse. The system consisted of a 

pulsed laser, a 77250 Oriel monochromator coupled to a Hamamatsu NIR detector and an 

oscilloscope connected to the computer. The output signal was transferred from the 

oscilloscope to a personal computer. All measurements were made at room temperature, 

under air atmosphere, and using the chosen solvent (MilliQ water for previously 

ultrasonically dispersed GO, and toluene for fullerene-C60) in 10 × 10 mm2 quartz cells 

with a capacity of 4 mL. The absorbance of the freshly prepared samples was adjusted to 

0.28 for the singlet oxygen measurements at the laser excitation wavelength.  
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3. Results and Discussion 

GO was synthesized by an optimization of the improved Hummers method [43, 44]. 

The characterization of the material was done using spectroscopic, X-ray, morphological, 

and combustion chemical analyses. [13] The identification of hydroxyl, epoxy and carboxylic 

groups in the GO structure has been confirmed by infrared, solid-state 13C MAS-NMR and 

XPS analyses (Fig. 1, A-C). [45, 46] The Raman spectrum of GO (Fig 1D) shows the 

characteristic D (1346 cm-1) and G bands (1605 cm-1), where the G band is associated to 

the carbon-carbon vibrations of the aromatic rings, and the D band to the presence of defects 

and to the grade of disorder introduced by the oxygen functionalities. [47-50] The XRD 

pattern of GO nanosheets (Fig. 1E) reveals the most prominent (001) diffraction peak 

centered at 2 11.5º, which corresponds to an interlamellar spacing (7.64º) associated to 

the grade of oxidation of the graphene sheets, and a turbostratic stacking arrangement of 

the structure. [51, 52] The presence of single and 2-4 layers of GO have been confirmed by 

HR-TEM and AFM techniques (Fig. 2). [53, 54] 
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Fig. 1. (A) FT-IR absorption spectrum of GO (ar = aromatic; ph = phenolic; al = alcoholic); (B) 

solid-state 13C MAS-NMR spectrum of GO; (C) C1s XPS spectrum; (D) Raman spectrum of GO 

measured at 514 nm; (E) XRD pattern of GO. 
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Fig. 2. (A) AFM image of GO; (B) the height profile of the AFM image; (C) HR-TEM image of 

GO. 

 

In order to assess the production of 1O2, the probe ABDA (Fig. 3) was used since it 

is widely employed as a trap for this species in the biomedical realm and can be monitored 

easily by UV-vis absorption or fluorescence spectroscopies [55, 56]. The underlying 

operational principle for ABDA involves the disappearance of its main absorption centred 

at 375 nm (and hence its fluorescence emission at λ = 430 nm) after reaction with 1O2 

(ABDA·O2 endoperoxide depicted in Fig. 3 is formed). In Fig. 3 it is shown a representative 

series of fluorescence spectra, specifically monitoring the reaction of ABDA with 1O2 

generated by the well-known photosensitizer Rose Bengal (RB).  
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Fig. 3. Representative irradiation of the well-known photosensitizer RB in D2O and monitoring 

of the generation of 1O2 by means of ABDA (see details in entry 14 in Table 1).  

 

An aqueous suspension of GO (0.05 mg/mL) was prepared, in the presence of ABDA 

(50 M), and irradiated with a photo-reactor containing white light emitting diodes (LED 

400-700 nm). The fluorescence emission of ABDA was recorded and the intensity plotted 

against the irradiation time (Fig. 4). The data were fitted to a pseudo-first order model, and 

kobs are compiled in Table 1. The reaction was repeated in deuterated water since it is 

reported that the rates of singlet oxygen mediated reactions are enhanced in this medium 

(about ten-fold) due to the longer lifetime of 1O2 as compared to water (67.9 s vs 3.45 s 

in D2O and H2O, respectively) [57]. The isotopic effect can be expressed as the rate of the 

constants in water and D2O (kD/kH) resulting a value of ca. 3. Finally the use of a specific 

quencher of singlet oxygen, like NaN3, was assayed [58]. The azide quencher did not cause 

any relevant decrease in the rate, resulting a value for this effect of kH/kH(N3
-) = 1.1. A 

well-known photosensitizer like RB was tested as a control. In this case the isotopic effect 

was found according to the expected value (kD/kH is ca. 7) and more importantly the azide 

effect was as pronounced as described in the literature (kD/kD(N3
-) = 47.6). See all the 

kinetic traces in Fig. 4 and a compilation of the values in Table 1. Overall, considering the 

weak isotopic effect and absence of quenching by azide, in the case of GO, it must be 

concluded that the drop in the emission of ABDA would not be attributable to 1O2 but to 

another side reaction. 
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Fig. 4. Selected irradiations conducted in this study, using the quenching of ABDA 

fluorescence as spectroscopic test: a) GO in D2O with N3
-
 as quencher; b) GO in D2O; c) 

RB in D2O with N3
-
 as quencher; d) Fullerene-C60 in toluene; e) RB in D2O. All 

heterogeneous photooxidations were performed at 0.05 mg GO/ml; [RB] = 4 µM; [ABDA] 

= 50 µM; [N3
-] = 10 mM. 

 

 

Table 1. Kinetic determinations using ABDA for different irradiations  

Entry Material Probe Solvent Atmosphere Quencher Light 

source 

kobs  

(min-1)  

1 GO (run 1) ABDA H2O air - LED 0.0110 

2 GO (run 2) ABDA H2O air - LED 0.0118 

3 GO (run 3) ABDA H2O air - LED 0.0103 

4 GO (run 1) ABDA D2O air - LED 0.0328 

5 GO (run 2) ABDA D2O air - LED 0.0373 

6 GO (run 3) ABDA D2O air - LED 0.0368 

7 GO (run 1) ABDA D2O air N3
- LED 0.0335 
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 Although it was not possible to set samples with comparable absorptions due to the 

dispersion of GO, it seems clear, although only qualitatively, that the kinetics of RB is 

notably faster than the rate measured for GO. As a matter of fact, RB depletes the emission 

of ABDA in seconds (Fig. 3), whereas the photoirradiation of GO leads to minor detectable 

changes in ABDA fluorescence only after minutes. This supports the view that the amount 

of generated 1O2 by GO must be minimal. Just for qualitative assessment another well-

known photosensitizer, fullerene-C60, was used to certify that GO generates very low 

amounts of 1O2. The purpose of this assay was to use an excellent photosensitizer (= 

0.96) with a comparable absorption to GO [59]. Hence, a sample of 0.05 mg/mL of 

fullerene-C60 was irradiated in toluene, since this photosensitizer generates highly 

efficiently 1O2 in organic apolar medium (but not in water). In this case another anthracene 

derivative was employed (dimethylanthracene, DMA) since ABDA is not soluble in 

toluene. The measured reaction rate was 0.6920 min-1. Considering that the lifetime of 

singlet oxygen in toluene (30.3 µs) is about half of the value in D2O [57], this result supports 

the idea of minimal amount of 1O2 generated by GO upon irradiation. 

8 GO (run 2) ABDA D2O air N3
- LED 0.0331 

9 GO (run 3) ABDA D2O air N3
- LED 0.0342 

10 - (control) ABDA H2O air - LED  <0.001 

11 GO ABDA H2O N2 (control) - LED <0.001 

12 GO ABDA H2O air  - - (control) <0.001 

13 RB ABDA H2O air - LED 0.3834 

14 RB ABDA D2O air - LED 2.576 

15 RB ABDA D2O air N3
- LED 0.0533 

16 Fullerene-C60 DMA toluene air - LED 0.6920 



 14 

A question that can be raised is whether the slight decrease of the ABDA fluorescence 

could be attributed to other species different from 1O2. It is described that anthracene and 

its derivatives (An) are very prone to oxidation leading to the corresponding radical cation 

(An+.). This species react with superoxide to give an adduct (AnO2) identical to the one 

obtained by reaction with singlet oxygen. This reaction has been described many times for 

anthracene and electron transfer photosensitizers [60]. As a matter of fact, the specificity 

of anthracenic probes for the detection of 1O2 has been studied in detail recently: the 

genetically encodable fluorescent tag miniSOG has been reported to produce 1O2 with a 

notable quantum yield (0.47) using the probe ADPA [61]. However, Nonell and Flors have 

measured a significantly smaller value (0.03) [62]. This discrepancy was attributed to the 

ability of miniSOG to photooxidize the probe and hence lead to reaction with superoxide. 

Hence, ADPA would be actually measuring both ROS produced by type I (electron 

transfer) and type II (energy transfer) mechanisms. In another example, the endoperoxide 

of DMA was formed upon irradiation of alkyloxo(methoxo) tetraphenylporphyrinato-

antimony via photoinduced electron transfer mechanism involving DMA+. and O2
-. 

exclusively [63]. Accordingly, the mechanism involving O2
-. described in eqs.1-4 can be 

proposed to account for the minimal bleaching of ABDA upon irradiation of GO. In this 

case, apart from 1O2, the superoxide anion would be involved in the reaction with ABDA. 

Unfortunately the slopes of the kinetics recorded in this study are too close to the control 

irradiations to allow any conclusion on this regard. What it can be affirmed, however, is 

that 1O2 production by irradiated GO (under visible light with soft irradiation conditions and 

short times) is close to the detection capability of the technique, and hence disregard any 

reasonable toxicity associated to the production of this specific ROS by our material. 
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GO + h  GO*      (1) 

GO* + ABDA  GO-. + ABDA+.      (2) 

    GO-. + O2  O2
-.  + GO                  (3) 

ABDA+. + O2
-.  ABDA/O2    (4) 

It is not ruled out that ageing of the GO samples would led to the formation of byproducts 

similar to rGO and low molecular-weight species, as recently demonstrated by other 

groups[37, 38, 64]. If this is the case, the origin of O2
-. would be this phototransformed 

fraction of the sample since it has been demonstrated the reducing capacity of rGO.  

However this possibility is very unlikely in our case since photoreduction of GO to rGO 

has been described using high energetic UV light during several hours, whereas we are 

using a source of visible light and very short irradiation periods (minutes), precisely to 

avoid photoageing of our GO. The ageing of GO upon irradiation is a matter of debate that 

falls out of the scope of this research, which is focused on the use of sensitive spectroscopic 

probes to study GO, as a complementary tool to FFA and chromatography.  

Finally, a direct measurement of the phosphorescence of 1O2 at ca. 1275 nm was also 

attempted [57], since this is an irrefutable probe of the existence of this ROS. Hence, GO 

dispersed in water and irradiated at 355 nm yielded only a noisy signal (red line, Fig. 5), in 

contrast with the strong intensity showed by irradiated fullerene-C60 in toluene (black line, 

Fig. 5) used as a positive control. This experiment also confirms the negligible generation 

of 1O2 when our GO is irradiated, at least up to the limit of detection of the employed 

methodologies. 
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Fig. 5. Time profiles of the 1O2 phosphorescence signal produced by fullerene-C60 (black 

line) and GO (red line) in water and toluene, respectively. Inset: singlet oxygen emission 

spectra for fullerene-C60 and GO acquired at ca. 10 s after the laser pulse. The samples were 

adjusted to the same absorbance at the excitation wavelength (355 nm) and the 

phosphorescence of 1O2 was recorded at ca. 1275 nm. 

 

4. Conclusions 

We have found that generation of singlet oxygen upon short periods of visible light 

irradiation of samples of freshly prepared GO is almost negligible, using a high sensitivity 

spectroscopic fluorescent probe like ABDA. Exact quantification of this species remained 

elusive due to the dispersion of GO in water (light scattering), however there is enough 

qualitative evidence to suggest that the irradiation of GO with visible light during short 

periods of time gives rise to negligible amounts of this ROS. These results confirm recent 
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measurements reported by other groups using FFA and chromatographic analyses as tools. 

We hope, firstly, that this study will contribute to answer some questions regarding the 

potential toxicity of nanomaterials derived from graphene and, secondly, that it will add 

ABDA, or other fluorescence probes, along with direct detection via phosphorescence 

emission, to the toolbox that environmental scientist use in their researches. 
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