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1.2.4 Índice de refracción equivalente . . . . . . . . . . . . . . 8
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1.6 Preguntas abiertas acerca del gradiente de ı́ndice de refracción . 22
1.7 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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viii Índice

2.2.3 Validación del algoritmo de trazado de rayos . . . . . . . 32
2.2.4 Estudio del paso en el algoritmo de Sharma . . . . . . . . 33

2.3 Algoritmo de optimización . . . . . . . . . . . . . . . . . . . . . 33
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4.2.2 Función de mérito . . . . . . . . . . . . . . . . . . . . . . 61
4.2.3 Simulaciones . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.4 Medidas experimentales . . . . . . . . . . . . . . . . . . . 63
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5.3.2 Índice de refracción promedio . . . . . . . . . . . . . . . . 77
5.3.3 Distribución de ı́ndice de refracción . . . . . . . . . . . . 78

5.4 Discusión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Conclusión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Capı́tulo 6. Distorsión de la superficie posterior en imagenes de To-
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Chapter 1
Introduction

The crystalline of the eye is the biconvex lens suspended behind the iris that
contributes to around one third of the total power of the optical system of
the eye. The crystalline lens can change its external shape to accommodate
allowing the eye to focus to far and near objects in young subjects. The lens
looses with age its ability to accommodate, and becomes opaque upon the
development of cataract later in life.

The optical properties of the crystalline lens depend not only on the geom-
etry of the external shape, but also on its refractive index. In many species,
the refractive index shows a non-homogeneous distribution, with higher in-
dex values in the nucleus than in the surface. The precise knowledge of the
optics of the crystalline lens and its changes with accommodation and aging
are currently limited by the challenges of estimating the gradient refractive
index distribution.

Understanding of the role of the gradient index distribution of the crys-
talline lens on the crystalline lens optics will allow not only to gain deeper
insights into the optical properties of the lens, and their variation with accom-
modation and aging, but also to improve the imaging of the lens with optical
techniques in which the posterior lens surface appears distorted by refraction
from preceding ocular surfaces and GRIN.

In this thesis we proposed and developed a novel method for reconstruction
of the gradient refractive index distribution of non-spherical crystalline lenses
and applied it experimentally in porcine and human lenses. We also studied
the effects of GRIN on the visualization of the posterior lens surface with
Optical Coherence Tomography and its correction.

In this chapter we present the background and state of the art on crystalline
lens optical properties, and the measurement and contribution of GRIN in par-
ticular. The geometrical structure of the crystalline lens have been studied in
vivo and in vitro, although there are many conflicting reports in the literature,
arising from the inherent differences of the lens shape in vivo and in vitro, and
the lack of refraction correction in many imaging systems in vivo. There have
also been many attempts to measure the gradient index distribution of the
lens, although not many studies addressed non-spherical lenses, and the most
successful data in human lenses were obtained from non-optical techniques.

1
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In this chapter, the most relevant methods described in the literature, used to
measure the non-spherical gradient refractive index, both destructive and non
destructive, are revised, studying its benefits and drawbacks.
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1.1 Motivation

This thesis addresses the study of the optics of the eye, in particular the struc-
ture of the crystalline lens, developing methods to estimate the gradient re-
fractive index (GRIN) distribution of the crystalline lens. Although there is
a long tradition on modeling the refractive properties of the eye, the optics
of the crystalline lens or the specific values of refractive index and its distri-
bution are still debated. The precise knowledge of the gradient index of the
crystalline lens will allow a better understanding of the optical properties of
the crystalline lens and its contribution to the optical quality of the eye.

The crystalline lens allows to change the refractive state of the eye to ac-
commodate to image objects at different distances. The study of lens accom-
modative changes has been limited until very recently to the measurement of
the surface shape changes. In addition, the lens grows continuously with age
and this may affect the refractive index distribution. To describe precisely the
optics of the eye, more detailed knowledge of the internal optics of the lens is
needed.

The research in this thesis addresses the reconstruction of the crystalline
lens gradient refractive index with optimization methods. Following an ap-
propriate modeling of the crystalline lens GRIN, the best fitting parameters to
experimental data (and therefore the GRIN distribution) can be retrieved with
an optimization algorithm.

The first studies on the refractive index of the crystalline lens used destruc-
tive methods, i.e., small sections of the lens were cut and analyzed to measure
the index of refraction or the whole eye was frozen and sectioned to analyze a
thin layer. There are several more recent studies that propose methods to ex-
tract the GRIN structure using experimental data from the whole isolated lens.
One of those studies, using Magnetic Resonance Imaging, was also applied in
vivo in a single study.

However there are still open questions, since all the methods have its
drawbacks. The published values of the refractive index of the center or the
edge of the lens reported in literature appear to be very scattered and it is still
unknown whether this arises from imprecisions of the measurements or from
a real variation across population. In addition, the distribution of indices, i.e.
the way in which the index changes from nucleus to surface is under debate
in the scientific community. The challenges of the GRIN measurement have
prevented until now from a clear understanding of the role of GRIN on the
crystalline lens optics.

1.2 Crystalline lens optics and structure

1.2.1 Crystalline lens anatomy

The eye refracts the light with two optical elements, the cornea and the crys-
talline lens. An image is formed on the retina where a mosaic of cones and
rods samples the light distribution. The diameter of the incoming beam of
light is controlled by the iris, which contracts and dilates when needed.
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Figure 1.1: Schema of the human eye adapted from an image of
the National Eye Institute Catalog (number NEA09). The cornea
and the crystalline lens refract the light to form an image on the
retina.

The cornea contributes to around two thirds of the power (around 40
diopters) of the relaxed eye. Although the anterior corneal surface is not
a smooth surface due to its cellular structure, an optically smooth surface
is achieved with a very thin tear film which covers the cornea. The average
shape of this surface is not spherical but flattens in the periphery. The posterior
surface of the cornea has a smaller importance in optical terms and subtracts
around 6 diopters to the power of the cornea due to the lower refractive index
in the aqueous humor.

The crystalline lens is a biconvex lens with aspheric surfaces. The lens
is contained in the capsule which is a transparent membrane attached to the
ciliary body by the zonules. In the crystalline lens, there is a layer of epithelial
cells that extend from the anterior pole to the equator. This lens epithelium
is responsible for the continuous growth of the lens throughout life with new
epithelial cells forming at the equator. These cells elongate as fibers which
under the capsule and epithelium, meet at the sutures of the lens originating
its characteristic onion-like layered structure. The different concentration of a
type of proteins produces changes in the refractive index across layers. This
inhomogeneity is noticeable, and even the first efforts to measure the refractive
index of the lens reported that the lens was not composed of a homogeneous
material but by a “humor that grows sensibly less and less compact, as you
recede from the center” 1. In fact its refractive index is higher in the center

1Complete sentence from Wintringham [1740]: Hence also appears the reason, why the crystalline
humor is not an uniform density and consistence thro’ all its parts, but grows sensibly less and less
compact, as you recede from the centre towards the circumference, insomuch that as the anatomist
Morgagani has assured us, and indeed any one from his own observation of the crystallines of men and
other animals may be convinced, the substance immediately under its Tunic is of so liquid as a nature, as
to flow out upon making the least incision into it.



1.2. Crystalline lens optics and structure 5

than in the edge.
The young eye is capable to focus near targets by the action of the ciliary

muscle which contracts decreasing the tension of the zonules. This lets the
crystalline lens to thicken and curve its surfaces, and therefore increase the focal
power allowing the eye to focus at different distances, i.e. allowing the eye to
accommodate. It is well known that the crystalline lens looses this ability with
age in a condition known as presbyopia. The loss of accommodation affects
the whole population beyond 45 years but there is no satisfactory solution for
its correction. Improved solutions of presbyopia, for example in the form of
accommodative intraocular lenses, require a profound understanding of the
natural crystalline lens properties and their contribution to accommodation

1.2.2 Crystalline lens shape in vitro

Probably the first reports on the shape of the crystalline lens were presented
by Helmholtz [1924] using Helmholtz ophtalmometer in 1855. He studied the
magnification of the reflected images on the lens surfaces.

In the seventies, some studies [Parker, 1972; Howcroft and Parker, 1977]
used eye samples frozen before lens extraction to avoid deformation and cut
a thin section to study its shape. Today, digitalization of images of the sagit-
tal and meridional plane of the excised lens are the usual technique to study
the shape, central thickness and diameter of the in vitro crystalline lens [Pier-
scionek and Augusteyn, 1991; Glasser and Campbell, 1999; Manns et al., 2004;
Rosen et al., 2006; Borja et al., 2008]. In most of these works, the variation
of thickness and radii with age exhibited a change of tendency on the onset
of presbyopia (40-60 years). Below this age, the radii of curvatures of the
crystalline lens increased and then decreased slightly after the appearance of
presbyopia. It has been argued [Borja et al., 2008] that these changes are as-
sociated to the age-related loss of accommodation. This finding is consistent
with the fact that the lens in vitro appears maximally accommodated.

Data of the asphericity of the in vitro surfaces of the lens were first reported
in the studies on frozen crystalline lenses [Parker, 1972; Howcroft and Parker,
1977]. These works found that the anterior lens surface was hyperbolic while
the posterior surface was parabolic. However, the tissue handling and freezing
of the lens may have affected the measurements [Manns et al., 2004]. Recent
experimental results with topographers or digital photographs of sagital sec-
tions [Manns et al., 2004; Rosen et al., 2006] found a high variablilty between
eyes although on average the anterior lens surface steepened towards perifery.
The asphericity values for posterior surface found were positive and negative.

The power of the in vitro lens was measured in different studies [Sivak
and Kreuzer, 1983; Glasser and Campbell, 1998, 1999; Borja et al., 2008] and
in some of them [Borja et al., 2008] the accommodation was simulated by
stretching the lens from the ciliary body. Since not only the shape but also
the power measured with these techniques are in a good agreement with in
vivo measurements it can be assumed that removing zonular tension does
not increase the power of the lens significantly compared with the maximum
accommodated state in the in vivo eye [Borja et al., 2008].
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Figure 1.2: In vitro crystalline lens radii of curvature as a func-
tion of age measured with Shadowphotography. Reproduction
from Borja et al. [2008] (Investigative Ophthalmology & Visual
Science).

1.2.3 Crystalline lens shape in vivo. Changes with age and accom-
modation

The first systematic studies of the shape of the in vivo crystalline lens were
done with phakometry. The third and fourth Purkinje images are formed by
reflection in the anterior and posterior crystalline lens surfaces and their mag-
nification can be used to estimate the crystalline lens radii of curvature. Several
algorithms [Smith and Garner, 1996; Garner, 1997] have been proposed to es-
timate, using these reflections, not only the radii of curvature of the anterior
and posterior surfaces but also the power of the lens or its tilt and decentration
with respect to the optical axis of the eye. Different works [Wulfeck, 1955;
Sorsby et al., 1961; Veen and Goss, 1988; Phillips et al., 1988; Mutti et al., 1992;
Rosales and Marcos, 2006; Tabernero et al., 2006; Rosales et al., 2008; Atchison
et al., 2008] have studied the shape, power, and tilt and decentration of the
crystalline lens using Purkinje images.

A Scheimpflug camera can record images of the anterior segment of the eye
but since its magnification is not constant and each surface is seen trough the
previous refractive surfaces, these suffer geometrical and optical distortion.
Correction of the images with the approximation of a constant refractive index
in the lens allowed the study of the shape of the crystalline lens and its changes
with age and accommodation [Brown, 1973a, 1974; Koretz et al., 1984, 2001;
Dubbelman et al., 2003, 2005b; Rosales et al., 2006; Rosales and Marcos, 2009].

Ultrasound-based techniques are commonly used in clinical applications
to measure the intra ocular distances. With its extension to three dimensions
(ultrasound biomicroscopy) images of the anterior segment of the eye have
been possible [Silverman, 2009]. Its precision in the measurement of distances
allowed the study of the change of thickness of the lens with age and accom-
modation [Beers and van der Heijde, 1996] but, to our knowledge, there are
not reports of quantitative data on the shape of the crystalline lens with this
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Figure 1.3: In vivo crystalline lens radii of curvature as a func-
tion of age measured with Phakometry and MRI. Scheimpflug
fittings are shown for comparison purposes. Reproduction from
Atchison et al. [2008] (Journal of Vision).

instrument.
Optical Coherence Tomography (OCT) has been extensively explored to

study the retina and in the last decade, this technique has been increasingly
used to image the anterior segment [Goldsmith et al., 2005; Grulkowski et al.,
2009]. Again, the images are distorted since each surface is seen through the
previous ones but correction algorithms [Westphal et al., 2002; Podoleanu et al.,
2004; Ortiz et al., 2010] can be applied to extract the topography of the anterior
crystalline lens surface, and an homogeneous index can be approximated to
correct the distortion in the posterior surface of the lens.

Magnetic resonance imaging is capable of producing undistorted images of
the whole eye in vivo and was used to study the shape of the anterior segment
of the eye [Koretz et al., 2004]. However, a disadvantage of this method is
its low resolution. Radii of curvature of anterior and posterior surfaces were
reported although the resolution was not enough to study the conic constant
of the surfaces.

In vivo measurements of the radii of curvature of the crystalline lens sur-
faces in unaccommodated lenses have been shown to decrease constantly in
anterior and posterior surfaces of the crystalline lens with age. This decrease
appears more significant in the anterior surface (radii values from around
12 mm at 20 year old subjects to 9 mm at 70) than in the posterior (between
6.5 mm at 20 and 5.5 mm at 70 year old subjects). The thickness increases with
age from around 3.5 mm in young subjects to more than 4.5 mm in old subjects.
If the index of the lens was homogeneous this would result in an increase of
power of the lens, yet there is not a tendency for myopia (so called lens para-
dox [Brown, 1974]), the changes in the GRIN distribution with age may be the
reason behind the effect [Moffat et al., 2002b].

Studies in vivo on the change of the lens surfaces with accommodation
[Koretz et al., 1984; Dubbelman et al., 2003, 2005a; Rosales et al., 2006, 2008]
showed average changes in anterior and posterior radii, from around 12 and
6.5 mm (relaxed accommodation) to 7.5 and 5 mm (fully accommodated lens)
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respectively, and changes in lens thickness of around 0.5 mm over a 6 D ac-
commodative range

The measurement of the asphericity of the lens surfaces in vivo is still a
challenge since the image of the crystalline lens is limited by the diameter of the
iris. Phakometry is generally limited to radii of curvature measurements only.
Scheimpflug imaging has additional pupillary limitations to the visualization
of the lens posterior surface. In addition, posterior asphericity estimates are
limited by the assumption of constant refractive index in the lens. As men-
tioned above, the resolution of MRI is poor to attempt conic fittings of the lens
surfaces. Anterior chamber OCT may be the best technology to quantify the
lens shape [Grulkowski et al., 2009; Gambra et al., 2010] but application to
the crystalline lens is recent, and the number of tested subjects is still limited.
Brown [1973a, 1974] published data obtained from Scheimpflug images and
reported that the curvature of the anterior lens surface decreased towards the
periphery, while the posterior surface steepened toward periphery. In a more
recent work Koretz et al. [1984] found a good fit of the surfaces using parabolas.
Dubbelman and van der Heijde [2001] found that both anterior and posterior
surface were hyperbolic, i.e. lens surface steepened towards periphery.

1.2.4 Equivalent refractive index

In some of the studies, the contribution of the GRIN to the total lens power
was quantified with an homogeneous index known as the equivalent refractive
index. This is defined as the refractive index of a homogeneous lens with the
same shape and dioptric power of the crystalline lens.

While Glasser and Campbell [1998] found no age dependence of the in vitro
lens equivalent refractive index, Borja et al. [2008] measured the focal length
using a commercial lens meter and a custom developed optical system based
on the Scheiner principle and, despite significant variability, found a decrease
in the equivalent refractive index, more clearly in younger lenses. The change
of this parameter indicates that the change of the crystalline lens optics with
age is not only due to the change of its shape but also to the GRIN distribution.
The relative surface refractive contribution is still under discussion too. Borja
et al. [2008] found that surfaces contribute only with a 40% to total lens power.
This percentage was found to be nearly constant for the different age groups.

The in vivo equivalent refractive index was studied in unaccommodated
crystalline lenses with Scheimpflug [Dubbelman et al., 2003, 2005b] and Purk-
inje images [Garner and Smith, 1997; Atchison et al., 2008]. These studies also
found a decrease in the equivalent refractive index with age, as reported in
vitro.

The change of this equivalent refractive index with accommodation was
studied with Phakometry and Scheimpflug imaging. Garner and Smith [1997]
found a constant equivalent refractive index with accommodation using Phakom-
etry. Dubbelman’s works using Scheimpflug imaging [Dubbelman et al.,
2005a] observed a significant increase in the equivalent refractive index with
accommodation. However, Hermans et al. [2008] incorporated the accom-
modative lag to the calculations and reported an almost constant equivalent
refractive index consistent with that of Garner. Hermans also studied the
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shape of the nucleus of the lens and concluded that the GRIN could be ap-
proximated with a two-compartment model with an homogeneous refractive
index in the nucleus and in the cortex, which would not change significantly
with accommodation.

1.2.5 Spherical aberration of the crystalline lens

The spherical aberration of the crystalline lens was studied in excised lenses
by Sivak and Kreuzer [1983] who found both positive and negative spherical
aberration in the human lens of different subjects. Glasser and Campbell [1998,
1999] found that the spherical aberration was negative in young lenses and
positive in old crystalline lenses. Animal models such as porcine or macaque
were studied in vitro too. Sivak and Kreuzer [1983] reported that porcine
lenses were almost free of spherical aberration, Vilupuru and Glasser [2001]
studied 20 porcine lenses and found positive and negatives values of spherical
aberration unrelated to any other measured variables, but Roorda and Glasser
[2004] measured a negative spherical aberration in one single porcine lens
and Acosta et al. [2010] measured the aberrations of a dozen of porcine lenses
with a point-diffraction interferometer finding a negative spherical aberration
in all of them. Wong et al. [2007] studied the aberration before and after
refilling the lens with a silicon oil and found a change in the sign of spherical
aberration, from negative in the natural lens to positive in the refilled one. A
change toward negative spherical aberration with simulated accommodation
was found in macaque lenses [Roorda and Glasser, 2004].

The studies of the spherical aberration of the lens in vivo have involved
different types of measurements. Some studies measured the aberrations of
the whole eye while neutralizing the aberrations of the cornea [Young, 1801;
Millodot and Sivak, 1979]. Most studies have measured the aberrations of
the internal optics by subtracting corneal aberrations (generally estimated
from corneal topography) from total aberrations. Jenkins [1963] measurements
suggested that the spherical aberration of the lens was approximately zero, El-
Hage and Berny [1973] found a negative spherical aberration in a single subject
study and Millodot and Sivak [1979] reported an average positive spherical
aberration similar to the one of the cornea. Tomlinson et al. [1993] found
negative spherical aberration in the crystalline lens in the 20 subjects of their
study and Smith et al. [2001] found also negative values in the 26 subjects
studied. Smith and Atchison [2001] speculated that a decrease in the power
of the crystalline lens due to changes in its gradient refractive index would
increase the spherical aberration. Artal et al. [2002] found that in most of the
younger subjects that total ocular spherical aberration was lower than corneal
spherical aberration suggesting a compensatory mechanism that would fail in
elder subjects. This behavior was also reported by Barbero et al. [2002].

1.2.6 Gradient refractive index

Many theoretical studies have modeled the optics of the eye. The most rel-
evant eye models including a GRIN distribution to simulate the lens optical
performance are presented in section 1.2.7. Some of these GRIN models will
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be evaluated in this thesis to address the precision of the reconstruction and to
find the best gradient index which fits the experimental data obtained from in
vitro crystalline lenses.

The different techniques used over time to measure the refractive indices
and to reconstruct the GRIN distribution of the crystalline lens are described
in section 1.3 and 1.4. The methods have been divided following the natural
classification of destructive and non-destructive. First of all, because although
destructive methods contribute with valuable information, any manipulation
of the crystalline lens can affect the hydration of the tissue and therefore the
refractive index can be altered, and second, since only the non-destructive
methods could be envisioned in vivo.

1.2.7 Gradient index models

There are numerous proposals of theoretical eye models in the literature. These
are built with the purpose, among others, of better understanding the role and
relative importance of the optical elements or to make predictions on the
optical and image quality upon changes, for example, refractive surgery or
implantation of an intraocular lens.

The first eye model was built in the 17th century (Huygens’ simplified eye
in 1653). However, the incorporation of a GRIN distribution in the crystalline
lens of model eyes is relatively recent. Gullstrand [Helmholtz, 1924] built an
eye model with a GRIN in the lens taking as reference the values reported by
Freytag (1907) among others. Using this model, Blaker [1980] simulated accom-
modation with linear changes of the GRIN parameters and used a parabolic
function to describe the GRIN. Pomerantzeff et al. [1971] simulated the GRIN
distribution as a large number of shells with different curvature, thickness and
refractive index each and build a wide angle optical eye model. The input data
to build this model were the mean focal length and spherical aberration of the
eye.

Smith et al. [1991] proposed the modeling of the crystalline lens with el-
liptical or bi-elliptical models fitting experimental data from Pierscionek and
Chan [1989] to power functions or polynomial distributions up to sixth or-
der. Atchison and Smith [1995] studied this model and described a method
to transform a gradient index distribution into a shell model with different
refractive indices. Although this was used as a method to study the paraxial
behavior of the lens, they noticed that these shell models were not appropriate
to study the aberrations associated with the GRIN distributions.

Al-Ahdali and El-Messiery [1995] proposed a lens GRIN model with 300
layers, and used an exponential function to describe the change in the refractive
index through the layers. The proposed model had three free parameters to
simulate the increase in thickness, curvature and refractive index of each layer.
Popiolek-Masajada [1999] studied the influence of the shell stucture in the
refractive state and spherical aberration of this model.

Pérez et al. [2003] modeled the refractive index distribution in the parax-
ial region and calculated theoretically its paraxial power, cardinal points, the
dependency of paraxial properties on changes of the shape of the axial pro-
file [Pérez et al., 2005] and its magnification, transmitance and point spread
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function [Rama et al., 2005; Flores-Arias et al., 2006]. Flores-Arias et al. [2009]
introduced the studied crystallline lens in a model eye to evaluate the parax-
ial properties of the GRIN model of the human eye and compare them to an
homogeneous indices model.

Liou and Brennan [1997] fitted the data by Pierscionek and Chan [1989]
assuming different weights in the fitting from nucleus to surface because of
the increasing uncertainty of the measurement at greater distances from the
lens center, and proposed a parabolic profile to model the GRIN distribution.

Navarro et al. [2007a] proposed a parametric model where anterior and
posterior hemispheres did not intersect at the equator but on a conicoid sur-
face. The GRIN was modeled with the power equation proposed by Smith
et al. [1992]. The four free parameters of the model (refractive index of surface,
refractive index of the center of the lens, thickness of the anterior hemisphere
and exponential value of the power equation) were fitted to data from Jones
et al. [2005] for different ages, and found that the exponent of the power equa-
tion changed with age following a fourth-order power law. In a companion
study, Navarro et al. [2007b] used Scheimpflug’s data [Dubbelman et al., 2001,
2005a] to incorporate in the model changes in surface and GRIN distribution
with age and accommodation.

Goncharov et al. [2007] proposed a GRIN model described with a fourth-
order equation in axial and meridional axis (only pair power terms in merid-
ional axis). They presented three models with increasing complexity (2, 3 and
4 free variables) for ages of 20 to 40 years and fitted free parameters to match
the spherical aberration of the Indiana eye model [Thibos et al., 1997] or Liou
and Brennan [1997] eye model. Wavefront root mean square off-axis were in
good agreement with the predictions of Navarro’s homogeneous media eye
model [Escudero-Sanz and Navarro, 1999].

Dı́az et al. [2008, 2011], studied the possibility of using sinusoidal functions
to model the GRIN on axis, with a parabolic decrease in the meridional plane.
An eye model with such a profile fitted chromatic difference of focus, on-axis
MTF data and accounted for the chromatic aberration and the age related
changes in spherical aberration.

Recently, Campbell [2010] discussed the advantage of a shell model to
account realistically for the anatomy of the crystalline lens. The model was
based on cell layers, with constant index and thickness, added progressively
to an embryonic lens model. As the lens ages it is assumed that the innermost
layers dehydrate and their indices of refraction approach that of the nucleus
so that the gradient index of refraction moves toward the lens surface as the
lens ages.

Manns et al. [2010] built in 2010 a simple model where the center of the lens
was placed at a distance from the anterior surface vertex equal to 0.41 times
the lens thickness [Rosen et al., 2006]. The GRIN distribution was modeled
with a power equation, similar to Smith et al. [1992] previous reports, in all
directions from the center of the lens to the surfaces, described by conics:

n(x,y, z) = nN − ∆n ·
(
ρ(x,y, z)
ρS(x,y, z)

)p

, (1.1)

where nN is the nucleus refractive index, ∆n is the difference between nucleus
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and surface refractive index, ρ(x,y, z) is the distance from a point to the center
of the lens and ρS(x,y, z) is the distance from the center to the surface in that
direction. The model had constant index in the surfaces, and the variables were
the shape and thickness of the lens, the values of refractive index in nucleus
and surface and the exponential decay constant that can vary from optical to
meridional axis (Manns personal communication).

1.2.8 Chromatic dispersion

The crystalline lens medium has a significant impact on the chromatic aberra-
tion of the eye. Knowledge of the chromatic dispersion of the lens is also of
practical interest, as usually the experimental data combine results gathered
from instruments that work at different wavelengths. However, there are very
few reports in the literature on the dispersion in crystalline media. Palmer
and Sivak [1981] measured the index of the peripheral and central material
of lenses of different species with a Pulfrich refractometer at wavelengths be-
tween 410 and 680 nm, although the study only included one human lens. In a
later study, Sivak and Mandelman [1982] presented additional data using Pul-
frich and Abbe refractometers and six human lenses, although the standard
deviation of the values were very high. Pierscionek et al. [2005] reconstructed
the GRIN of the meridional plane of porcine lenses with 532 and 633 nm, using
a ray tracing method and found, as expected, small differences.

For the purpose of building a chromatic eye model, Le-Grand [1964] took in-
termediate values between the power measurements reported by Knust (1895)
and Polack [1923], and Navarro et al. [1985] used data from Polack [1923].

Atchison and Smith [2005] reviewed recently the chromatic dispersion of
the ocular media in human eyes. They proposed a variation of the index of
refraction of the crystalline lens fitting the data reported by Le-Grand [1964]
and Navarro et al. [1985] to the Cauchy equation:

n(λ) = A + B/λ2 + C/λ4 + D/λ6 + . . . . (1.2)

The reference refractive indices used were those of surface and core of
Gullstrand model at 555 nm. However they observed that if the refractive
index of reference was changed, the ratio of the higher to lower index values
was almost constant. Therefore if the index is calculated at a wavelength λ1,
n̄(λ1), they proposed to use a constant scaling formula to calculate the index
at a wavelength λ2, n̄(λ2)

n̄(λ2) = n̄(λ1) ∗ n(λ2)
n(λ1)

, (1.3)

where n(λ1) and n(λ2) are the index calculated with the Cauchy equation
proposed.

The values of the constants were calculated for high and low crystalline
lens refractive indices:

A B C D
High 1.389248 6.521218 103 -6.110661 108 5.908191 1013

Low 1.369486 6.428455 103 -6.023738 108 5.824149 1013
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For the purposes of this thesis, following Uhlhorn et al. [2008] calculations,
we will use the Cauchy equation to transform from group refractive index to
phase refractive index using the relation Saleh and Teich [1991]:

ng(λ0) = n(λ0) − λ0
dn
dλ

(λ0), (1.4)

where ng(λ0) is the group refractive index at the measurement wavelength,
n(λ0) is the phase refractive index and dn

dλ is the slope of the dispersion curve
calculated from the Cauchy equation. The phase refractive index at the mea-
surement wavelength can be converted to a desired wavelength using the
linear relation suggested by Atchison and Smith (equation 1.3).

1.3 Destructive measurements of the gradient refractive
index

1.3.1 First measurements, before Abbe refractometer

The literature of the last decades2 usually refers as first measurements those
with Abbe refractometers. However, there is a significant body of research
before the patent of Abbe in 1874. These first measurements were always
destructive and many of the refractive indices values are far from reason-
able with actual knowledge of the lens. However, it is remarkable that the
first publications reporting experimental GRIN data (in the ox) go back three
centuries.

History texts [Wade, 1998] explain that prior to Kepler, the lens was consid-
ered to be the organ of light-perception of the eye. Celsus describe in the year
29 a ”drop of humor” in the center of the eye that, according to the theories of
vision at the time had to be the organ from which proceed the faculty of vision.
Platter (1583) and later Kepler (1604) stated that the lens was transparent and
that an image was formed on the concave surface retina. In 1619, Scheiner
estimated the index of the lens to be equal to that of glass while fluids had the
same refractive power as water.

It seems that the first estimates of the refractive index of the lens derives
from Hauksbee [1710]. He obtained a value of 1.464 by placing “lens sub-
stance” in a cavity in a prism and measuring the deviation of a ray passing
through. He pointed out the difficulty of determining the exact value due to
the increasing optical density of the lens towards the center. This was observed
also by Leeuwenhoek, Petit and Porterfield in the same century. Porterfield
reported a value of 1.3645 for the lens refractive index. Other estimations were
made in first half of XVIII century by Pemberton, Jurin, Helsham, Wintring-
ham, Steno and Petit. Wintringham [1740] reported an index of 1.4026.

Wollaston [Chossat, 1818], used in 1802 total reflection to achieve more
accurate estimations of the index of the lens. He measured the intensity of the
reflection ray and searched for the angle in which this intensity was maximum,

2Many of the reference of this first measurements were extracted from pages 41 and 42 of
Huggert’s book [Huggert, 1948]. Since many of them were unaccessible, they will not be listed
in the references of this thesis but can be consulted in the text by Huggert.
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this is, the critical angle. The values obtained by Wollaston in a cattle lens were
1.447 in the core and 1.38 in the surface. Young [1801] applied in 1801 the same
method to investigate in human crystalline and obtained a core index of 1.4026.
Young was probably the first author to stress the importance of the structure
of the refractive index with regard to refraction of the crystalline lens.

Chossat [1818] reported values of 1.338, 1.395 and 1.42 for superficial,
intermediate and nucleus layer of human crystalline lens respectively. He
used a method developed by Brewster, where the examined medium was
placed between a convex lens and a plane glass-plate. This system was used
as an objective in a microscope and the refractive power of the system was
estimated. Senff reported 1.374 and 1.453 for surface and nucleus layers and
1.539 for total index with the same method. Engel examined 22 human lenses,
but the data showed high intersubject variability (total index varying between
1.2734 and 1.547). Freytag critized that lenses in that study had been exposed
to different treatments and times after death.

Krause improved Brewster’s method by measuring the size of the images
instead of the focal distances. He reported main values of 1.40, 1.42 and
1.45 for outer, intermediate layer and core respectively, although again, the
data showed high dispersion (refractive index between 1.3431 and 1.4541).
Helmholtz used a similar system, and estimated a value of 1.4189 for the outer
layer of the lens. Further attempts were made by Woinow, Mauthner and
Becker, among others, before Abbe designed his refractometer in 1874.

1.3.2 Refractometry

Abbe’s refractometer is, like Wollaston’s method, based on the measurement
of the critical angle of refraction between glass and the medium under test.
However, instead or measuring the maximum intensity of the reflected ray,
Abbe measured the minimum intensity of the refracted ray. The measurement
error was calculated to be around 0.0002 (Mathiessen, Valentin, Moennich,
Freytag). Almost all the authors suggested that estimating the refractive index
using the Abbe refractometer was difficult, since often, no sharp border-line
was obtained but a more or less broad band.

Perhaps, the first measurements of refractive index of human lenses with
the Abbe refractometer were performed by Aubert, who measured the two
crystalline lenses of a 50-year old man. Results were 1.3953 and 1.3967 for the
outer layer, 1.4087 and 1.4067 for the intermediate layer and 1.4119 and 1.4093
for the core of the lens. During the years 1876 to 1891 Mathiessen carried out
measurements on different animals and human cadaver lenses, and obtained
values of 1.3880, 1.4060 and 1.4107 for surface, intermediate layer and nucleus
respectively in the human. He found that the refractive index from the surface
to the center of the lens increased following a parabolic curve. He showed the
same phenomenon in dried gelatin balls which were left to swell in water.

Heine examined human lenses and found that the anterior and posterior
lens poles had equal refractive indices and that the index of the lens surface
was not equal in all parts but higher at the poles than at the equator.

Freytag published an extensive study with measurements on animal mod-
els and human lenses in 1907. The main conclusions of his work were (1)
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the refractive indices of the surface increase from the lens equator toward the
poles, (2) the surface values do not change with age, (3) nucleus refractive
index increases considerably with age but this tendency is least pronounced in
man, (4) a smaller number of ’steps’ occur in the index curves of young lenses
than in older ones (5) the maximum refractive index is more often observed
slightly closer to the anterior lens pole than to the posterior one.

Huggert [1948] discussed two different views on the refractive index of the
lens surface. According to one, the refractive index should be uniform in the
whole lens surface. According to the other, the refractive index should decrease
continuously from the poles towards the equator. Using Abbe refractometer,
Freytag reported large changes (1.385 for the pole, 1.375 for the equator),
which was opposite to Matthiessen and Moennich’s conclusions. Changes
in surface refractive index were also found by Zehender (1877), Bertin-Sans
(1893), Heine (1898), Speciale-Cirincione (1913) and Tagawa (1928). However,
Huggert did not found any significant difference across the surface reporting
values between 1.382 and 1.392 for the center of the lens surface, and around
1.373 and 1.383 out of the central zone. He also noted that Freytag’s values of
refractive index varied greatly (1.375-1.398 in polar and 1.368-1.391 in equator).
Sixty years later this discussion is still not closed and the scientific community
has not a uniform opinion on this subject.

1.3.3 Measurements over a section of the lens

Schlieren interferometry

Nakao measured rabbit [Nakao et al., 1968] and human [Nakao et al., 1969]
crystalline lenses with a technique based on Schlieren interferometry previ-
ously developed by Shinoda et al. [1964]. The lenses were frozen and a layer
(between 0.5 and 1 mm thickness) was cut off with a micro-tome. Fraunhofer
diffraction pattern was studied when introducing the lens section in a simple
optical system. This allowed to show the areas with the same gradient of re-
fractive index. Abbe refractometry was used to determine the refractive index
in the center of the lens.

Densitometry

Densitometry techniques are based on the fact that in a solution the refractive
index and the concentration of the solute can be related in many cases linearly.
Philipson [1969] determined the concentration of proteins in frozen slices of
rat crystalline lenses using a quantitative microradiographical technique, and
reported values of gradient index in the rat lens at different ages. He showed
that the results were in good agreement with refractometric measurements
in isolated parts of the lens and concluded that in normal transparent lenses
(non cataractous lenses), the changes in refractive index were always regular
and continuous, except for the intracellular variations. He found a constant
surface refractive index with age, 1.39, and an increasing refractive index of
the nucleus of the lens, from around 1.40 to 1.50 in the older rats (around 800
days).
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Fagerholm et al. [1981] applied in 1981 the method to 21 human lenses of
different ages along the lens axis. The lenses were frozen in liquid nitrogen
to about −140 ◦C and sectioned to a thickness of about 20µm. In terms of
protein concentration no significant change with age was found either at the
center of the lens or in anterior sub-capsular cortex but a statistically significant
increase was found in posterior sub-capsular cortex. The measurements were
consistent with a clear lens nucleus at all ages, but the study did not report
refractive index values.

Pulfrich refractometry

Jagger [1990] presented in 1990 a work where refractive index distributions of
isolated cat lenses were measured with a modification of Pulfrich refractometer.
The lenses were frozen and cut, and the refractive index was measured in the
surface of the sample. A prism was placed on the frozen cut lens surface, and
the lens was then defrozen and illuminated. As surface was observed through
the vertical prism face, the critical angle for internal reflection at the lens-prism
marked the areas of the lens which were visible or not. Moving the camera,
the different iso-indicial surfaces could be observed.

1.3.4 Reflectometry

Pierscionek [1993] used a fiber optic sensor to estimate the refractive index on
the surface of the crystalline lens. The amount of light reflected in the interface
between two media depends on the refractive index difference between them.
The technique was applied to one sheep lens and three rabbit lenses. Pier-
scionek found differences between species: while in the sheep an increase in
refractive index with distance to the pole and no differences between anterior
and posterior surface refractive index value were found, in the rabbit the index
was constant over the surface and there was a difference between anterior and
posterior surface refractive index of more than 0.02.

In 1994 Pierscionek presented results using the same methodology in
bovine [Pierscionek, 1994a] and human [Pierscionek, 1994b] lenses and con-
cluded that surface refractive index was constant with age in both bovine and
human (age range 27-84 year-old lenses) lenses. For the human lenses, the
study reported a higher value of refractive index in anterior surface (between
1.346 and 1.379) than in posterior surface (between 1.345 and 1.364).

In a subsequent study on human lenses [Pierscionek, 1997] the index of
refraction along the equatorial and sagittal planes were measured in 14 crys-
talline lenses. In young and in one older lens, the equatorial refractive index
profile was found to be different than the sagittal in a normalized scale, i.e.
the concentric, iso-indicial contours model was found not to be accurate, at
least for young lenses. The equator index increased with age, but not the poles
refractive index (a small correlation was found for anterior pole refractive in-
dex). The indices of anterior and posterior poles were found to be in the same
range (between 1.385 and 1.410).
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1.4 Non destructive measurements of the gradient re-
fractive index

1.4.1 Integral inversion methods

For a spherically symmetric gradient index lens, in which the refractive index
distribution depends only on the distance from the lens center, the angle of
deflection of an incident ray can be expressed as a function of the refractive
index distribution. The inverse problem was solved by Chu [1977] by relating
the exit angles of beams and the refractive index distribution into the form of
an Abel inversion integral.

The method could be generalized [Barrell and Pask, 1978] to sightly ellipti-
cal GRIN distributions. Campbell [1984] reported data on a rat lens, although
the method required matching the external media and the surface refractive
indices, as well as using iso-indicial concentrical surfaces GRIN model.

Chan et al. [1988] expanded the method to apply it to non-spherical crys-
talline lenses by measuring the refraction of the rays in the equatorial plane of
the lens, where the isoindicial contours of the lens were modeled as a family
of concentric ellipses. The result was projected to the rest of the lens assuming
constant index in the lens boundary. A ray tracing was performed along the
equatorial plane to asses the accuracy of the result. The method is limited
by the matching needed between surface and media refractive index but, with
some approximations, it was proved [Chan et al., 1988] that, if differences were
small, the result was accurate. Pierscionek et al. [1988] measured a set of 11
human lenses with ages ranging from 16 to 84 using this method and found an
index of around 1.34 in the surface and between 1.40 and 1.41 in the center of
the lens. The results showed a steeper GRIN in humans than in animal lenses
with an almost constant index in the central two thirds of the lens. No changes
were found with age. The authors noted that the comparison between exper-
imental and theoretical ray tracing through extended GRIN in the equatorial
plane was not satisfying for the human lenses measured, suggesting that the
assumption of a coincident distribution in both equatorial and sagittal planes
may not be valid for human lenses. This was later studied by the authors
[Pierscionek, 1997] using a reflectometric fiber optic sensor as described in
section 1.3.4. More recently Pierscionek et al. [2005] used the method to recon-
struct the GRIN in the meridional plane of porcine lenses finding a parabolic
distribution ranging from around 1.35 to 1.40 in the center.

Beliakov and Chan [1998] proposed the use of the trajectory of the rays
inside the lens and not the deflections of the rays as input data. The method is
complex, since the trajectories are seen through the lens with unknown GRIN.
An iterative algorithm retrieved the real paths from the images so that they
could be used to calculate the refractive index distribution. This method was
never applied but in simulations.

Acosta et al. [2005] and Vazquez et al. [2006] presented a new algorithm
that used as input data the ray deflection after (but not inside) the lens. This
method allowed the reconstruction of mono or bi-polynomical GRIN profiles
of spherical and non-spherical crystalline lenses. The algorithm involved ex-
perimental ray tracing across the lens at several angles (tomographic method)
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Figure 1.4: Model of the human eye proposed by Pomerantzeff.
The change of the refractive index, thickness and curvature be-
tween layers followed a third polynomial function. (Reproduc-
tion from [Pomerantzeff et al., 1972]: Pomerantzeff et al. Journal
of Modern Optics 1972)

and was applied to porcine lenses. They related mathematically the angle of
the rays deflected by the lens with the value of the eikonal and this last with the
optical path. Since the gradient index of the lens was described with a poly-
nomial function the optical path difference could be calculated analytically by
summation of line integrals over the trajectory of the ray. The coefficients of the
polynomial were obtained with a least squares fitting and the trajectory was
approximated iteratively. Simulations with mono and bi-polynomial models
(9 and 14 variables respectively), showed that with a Gaussian error added
to the optical path with a standard deviation equal to the wavelength used
(λ= 633 nm) and projections up to 75◦ (500 rays per projection), the differ-
ence between nominal and retrieved GRIN was in terms of root mean square
around 10−4 if the GRIN was described with one polynomial and 10−3 if a
bi-polynomial distribution was used. Results of the method on porcine lenses
were 1.444 and 1.366 for nucleus and surface refractive index using a mono-
polynomial model and 1.449 and 1.361 for nucleus and surface refractive index
using a bi-polynomial model.

1.4.2 Optimization methods

Some authors studied the use of optimization methods to obtain the GRIN
using as input data the external properties of the whole eye. Pomerantzeff
et al. [1972] proposed the reconstruction of the GRIN distribution using focal
length and spherical aberration of the eye. These authors built a shell model
composed of a large number of layers where the radii of curvature, thicknesses
and refractive index changed between layers following a third order polyno-
mial function (figure 1.4). The constants of these polynomials were searched
with a minimization algorithm. The high number of unknown variables made
the optimization problem ill-defined as multiple solutions were possible.

Some studies have used Phakometry to study the GRIN distribution using
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Figure 1.5: Model used by Hemenger et al. to study the change
with age of the GRIN of the crystalline lens with a simple model
(1 variable). The minimization algorithm used the position of the
Purkinje image in posterior surface of the lens. (Reproduction
from [Hemenger et al., 1995]: (Investigative Ophthalmology and
Vision Science)

much more simple models (only 1 variable). Garner and Smith [1997] and
Garner et al. [1998] assumed a bi-elliptical model with a parabolic profile and
fixed the nucleus refractive index at 1.406. Since the shape was fixed, the
only variable was the surface refractive index. They found an increase of this
variable with age from 1.386 at 22, to 1.394 at 54 year old group subjects. The
study of the change of the GRIN with accommodation was similar finding a
constant surface refractive index with accommodation, therefore, no change
in the profile shape. Hemenger et al. [1995] used a similar approach assuming
a nucleus refractive index of 1.406 and a surface refractive index of 1.386 and
modeled the lens GRIN with a polynomial equation where the only variable β
determined the decrease of the refractive index from nucleus to surface. Two
age groups were studied, the younger group ranged in age from 19 to 31 and
the older group from 49 to 61 years. The size of the fourth Purkinje image and
the measurement of refractive error were used to find the value of β and results
showed statistical differences between the age groups implying a steeper index
gradient, on average, for the older group (figure 1.5).

With data from deflections of the rays passing through the lens, Axelrod
et al. [1988] reconstructed in 1988 the spherical GRIN of a fish lens using a
simple model (parabolic GRIN profile with two variables). In a posterior work
Garner et al. [2001] implemented a conjugate gradient method to reconstruct a
more complicated (4 variables), although still spherical GRIN, and compared
the result with other techniques. Barbero et al. [2004], [Barbero, 2004], proposed
the use of global search algorithms to reconstruct non-spherical GRIN using
data of the direction cosine of the rays deflected by the lens.

Optical Coherence Tomography images of spherical fish lens were used by
Verma et al. [2007] to reconstruct the in vivo GRIN distribution of an spherical
fish lens. Since the fish crystalline lens is spherical, with a corrected OCT
image the shape of the entire lens can be known. In addition, OCT provides
the optical path difference (OPD) of each ray passing through the lens. Due
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Figure 1.6: Gradient index distribution of in vitro human crys-
talline lenses of different ages extracted using Magnetic Reso-
nance Imaging. (Reproduced from [Jones et al., 2005] (Vision
Research).

to the symmetry of the problem, a local optimizer can find the best 4 variable
GRIN that fits the OPDs recorded across the lens. In a previous work Ortiz
et al. [2004] studied with simulations the possibility of estimating the GRIN
from the intensity of the reflections in the layers of the crystalline lens in an
OCT image.

In this thesis, optimization techniques applied to non-spherical GRIN
lenses have been studied. If the shape of the lens is known, an optimiza-
tion algorithm can search the set of variables that define a GRIN distribution
that fits with the experimental measurements. First, we will compare the op-
timization using different possible experimental data (direction cosines of the
rays deflected by the lens, impacts of the rays in a plane after the lens and op-
tical path of the rays). Then results in porcine and human lenses are presented
using Optical Coherence Tomography to extract data of the optical path of the
rays through the lens.

1.4.3 Magnetic resonance imaging

Moffat and Pope [2002b] proposed to use the correlation between the transverse
spin-spin relaxation time, measured in Magnetic resonance imaging (MRI)
and the refractive index. Since the refractive index is linearly related to the
concentration of protein [Pierscionek et al., 1987], and the relaxation time
measured in MRI can be also related linearly with protein concentration, the
technique was used to extract two-dimensional maps of the gradient refractive
index of the crystalline lens. The nucleus refractive index was also found to
statistically significantly change linearly with age

In an earlier study [Moffat and Pope, 2002a], 18 human lenses between
14 and 82 years old were measured. The results showed slight differences in
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the refractive index distribution in equatorial and axial direction and between
anterior and posterior halves of the lens. The surface refractive index was
found to be constant with age (between 1.35 and 1.37) and the nucleus refractive
index was found to change statistically significantly with age linearly (from
1.44 to 1.41 at 15 and 80 year old lenses respectively). A later study [Jones
et al., 2005], with 20 lenses, found also a clear flattening of the refractive index
with increasing age, but nucleus and surface refractive index were noisy and
the trends were not statistically significant.

The careful calibrations required by the technique have been contested in
the literature [Pope et al., 2008]. Age related changes have been studied with
this technique [Moffat et al., 2002a; Jones et al., 2005; Augusteyn et al., 2008]
and some values have been reported even in vivo [Kasthurirangan et al., 2008].

1.5 Imaging the crystalline lens: optical distortion cor-
rection

The study of the crystalline lens in vivo requires consideration of the distortion
produced by the refracting surfaces of the eye. The anterior surface shape of
the lens is distorted by the refraction of the rays at the cornea, and the posterior
surface shape by the refraction at the cornea and at the lens itself. This effect is
inherent to optical techniques aiming at direct imaging of the crystalline lens
(i.e. Scheimpflug camera or Optical Coherence Tomography) or at the indirect
estimation of the crystalline lens radii of curvature (i.e. Purkinje imaging).

Purkinje imaging has been extensively used for phakometry of the lens in
vivo, as well as to measure tilt and decentration of crystalline and intraocular
lenses. Typically, the algorithms used to estimate the radii of curvature from
the magnification of a projected light source on the anterior segment of the eye
consider the refraction at the anterior cornea, and iteratively that of the anterior
lens. Some studies have actually used Purkinje images to explore the influence
of GRIN on the changes of the crystalline lens optics with aging [Hemenger
et al., 1990; Garner et al., 1998] or accommodation [Garner and Smith, 1997].
However, most algorithms used to estimate the posterior lens radius of curva-
ture from Purkinje imaging [Smith and Garner, 1996; Garner, 1997], consider
a homogeneous refractive index in the lens, typically the equivalent refractive
index.

The first Scheimpflug imaging system used for studying the crystalline lens
was developed by Brown [1973b]. In this study, the correction of the geomet-
rical distortion is mentioned, but the results seem to indicate that the optical
distortion was not fully corrected. Cook and Koretz [1998] corrected the op-
tical distortion with a method based on a Hough transform. Dubbelman and
van der Heijde [2001] developed correction algorithms based on ray tracing
over the refracting surfaces, and validated the measurements in Topcon SL-45
(Topcon Medical Systems Inc, Oakland, USA) and Nidek EAS-1000 (NIDEK
Co. Ltd., Gamagori, Japan) systems. Rosales and Marcos [2009] applied a
similar algorithm to correct the raw images provided by Pentacam (OCULUS
Optikgeräte GmbH, Wetzlar, Germany). It was reported [Dubbelman and
van der Heijde, 2001], that the study of the uncorrected images would pro-
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duce an over estimation of the anterior and posterior radii of curvature and
a decrease in the thickness of the lens. An increasing anterior chamber depth
would increase the error in the measurement. In all cases, the proposed optical
distoriton correction algorithms assume a homogeneous refractive index in the
lens.

Optical Coherence Tomography images show the optical path of each ray
(A-scan), i.e., the distance traveled by the ray multiplied by the refractive
index of the media. In addition to the distortion due to the media refractive
index, a non linear scan geometry can distort the image too. The easiest
method to reconstruct the shape and position of the surfaces involves simply
a division of the recorded optical paths by the value of refractive index of
the media [Wang et al., 2002; Kim et al., 2009, 2011]. This method does not
take into account the refraction of the rays at the optical surfaces. To correct
the refraction distortion present in the images of the anterior chamber, an
algorithm based on Fermat’s principle [Westphal et al., 2002], and others using
Snell’s law [Podoleanu et al., 2004; Ortiz et al., 2010] have been proposed. Ortiz
et al. [2010] studied the simplest correction (division by the refractive index
neglecting the refraction at the surfaces) and reported an overestimation of the
radius of curvature of anterior and posterior surface of the lens used in the
study by 8.9 and 59.7% respectively. He proposed the use of 3-D Delaunay
decomposition to refract the rays and corrected the distortion due to the non
linear scan geometry, and achieved relative errors in the measurements of the
radii of curvatures below 1% (with respect to non-contact profilometry). The
correction algorithms are used to extract information of the crystalline lens but
an homogeneous index must be assumed to trace the rays through the lens
and reconstruct its posterior surface. To accurately estimate the posterior lens
surface, the algorithms should incorporate the inhomogeneous nature of the
refractive index.

1.6 Open questions on the gradient refractive index

Refractive index values. There is not yet a clear consensus on the value of
the refractive index of nucleus and surface of the crystalline lens. The values
reported in the few studies of the literature (typically with a relatively low
number of human crystalline lens samples), are very scattered. Whether this
variability is associated with the error of the techniques or represents real
dispersion in the population is still under question.

Refractive index profile. It is clear that the refractive index peaks at approx-
imately the center of the lens. However, there is no consensus on the GRIN
model best representing the refractive index distribution. The identification of
the most suitable model has been somewhat tampered by the lack of experi-
mental data.

Change of GRIN shape with age. Although Magnetic Resonance Imaging
suggests that the crystalline lens index of refraction varies smoothly from the
center to the surface in the young eye, and a central plateau is formed with
aging Jones et al. [2005], there is still no consensus how the gradient index
is displaced towards the surface. The limitations of the techniques, and the
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relatively high noise in the data available have created controversy on this
question.

Optics of the crystalline lens: power and spherical aberration. The exact con-
tribution of the gradient refractive index to the power of the crystalline lens
remains unknown. In vitro studies [Borja et al., 2008] show that a lens with the
same shape and a homogeneous index equal to the surface has around 40%
of the total power of the crystalline lens. However, a similar analysis for the
spherical aberration does not exist. Except for fish lenses (which exhibit an
almost zero spherical aberration) little is known on the relative contribution of
the surface shape and GRIN to the spherical aberration of mammal lenses.

GRIN contribution to accommodation. The change of the refractive index dis-
tribution when the lens accommodates is not clear. A change in the equivalent
refractive index should be associated with a change in the contribution of the
GRIN to the change of power. However, although some theoretical studies
support this change [Garner and Smith, 1997], and the first reports of GRIN
[Kasthurirangan et al., 2008] and its effects [Maceo et al., 2011] at different levels
of accommodation have been recently presented, the answer to the question
is still debated. The study of the changes of GRIN with accommodation is
beyond the scope of this thesis. Current developments in the laboratory using
methodology developed in this thesis address that goal.

Presbyopia. The change in elasticity of the crystalline lens with aging leads
to presbyopia, this change of elasticity likely encompass a change in the GRIN
distribution. However, the relation has not yet been explored in detail. Inter-
estingly, the elasticity of the lens, as measured recently with Brillouin scattering
microscopy [Reiß et al., 2011; Scarcelli and Yun, 2012], and its changes with
age, shows a very similar profile to those reported for the GRIN in this thesis.

Cataract surgery: intra ocular lenses modeling. The opaque crystalline lens
is replaced by an intraocular lens in a cataract procedure. There have been
proposals in scientific studies [Siedlecki et al., 2004; Beadie et al., 2008] and
patents [Hamblen, 1992; Roffman et al., 2004; Baer et al., 2006] of monofo-
cal intraocular lens designs with a gradient structure. The first attempts for
restoration of accommodation thought accommodative intraocular lenses (A-
IOL) are still rather crude (the only FDA approved design is expected to change
the power of the eye by moving axially). However, if GRIN plays a role in the
accommodative-related power changes in the eye, one could envision sophis-
ticated A-IOLs with GRIN properties.

1.7 Goals of this thesis

This thesis addresses the development of a new method for the reconstruc-
tion of the GRIN distribution of the crystalline lens, demonstration on the
porcine lens, measurements on human crystalline lenses, and implications for
quantitative imaging of the crystalline lens. The specific goals of the thesis are:

• To develop new optimization methods for the reconstruction of the GRIN
of the crystalline lens, overcoming drawbacks of the previous methods:
to use an anatomical model with sufficient variables to express the possi-
ble different distributions of GRIN, to calibrate the method, and to use a
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global search algorithms to avoid the solution to fall in a local minimum
in the optimization process.

• To explore the advantages of the newly proposed technique, as well as
the expected performance of the method on simulations, considering real
error estimates.

• To measure the GRIN distribution of the lens three dimensionally in
vitro.

• To explore the relative contribution of the surface shape and GRIN dis-
tribution on astigmatism and spherical aberration of the crystalline lens.

• To measure the possible change of the GRIN profile with age in human
lenses.

• To quantify the effect of GRIN on the visualization and shape measure-
ments of the posterior lens surface from OCT measurements.

• To develop optical distortion correction methods in OCT imaging to
improve the quantitative measurements of posterior lens shape.

1.8 Hypothesis

• It is possible, through the use of novel optimization methods, to recon-
struct the gradient refractive index (GRIN) of the crystalline lens (porcine
and human), using data of the optical path accumulated by the rays when
passing trough the lens, or ray tracing data as the cosines of the deflected
rays or the impacts in a posterior plane. We will test the proposed method
and the accuracy of the reconstruction using computer simulations with
experimental estimates of the input data error.

• The GRIN plays a significant role in the optical properties of the lens.
We will test this hypothesis by measurements in a porcine lens, and
estimations of the lens aberrations with a homogeneous index and the
reconstructed GRIN.

• The human GRIN profile may change with age. We will test this hy-
pothesis with measurements of the GRIN distribution in human lenses
of different ages.

• The correction of the images of the anterior segment of the eye acquired
with Optical Coherence Tomography (OCT), would benefit from the
consideration of the GRIN of the crystalline lens. The effect of the GRIN
on the reconstruction of the posterior lens shape will be tested on lenses
in vitro (i.e. with accessible posterior lens shape). Optical distortion
correction algorithms through the GRIN structure will be developed.
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1.9 Structure of this thesis

The thesis has been organized by chapters which roughly correspond to the
articles published on the topic of the thesis. The current introductory chapter
presents an extensive background, state of the art, and motivation of the thesis.
The methods implemented in the thesis are also compiled and presented in
detail in a single chapter (Chapter 2).

Chapter 2 presents the developed method for GRIN reconstruction, which
uses ray tracing or optical coherence tomography data as input data, as well
as the experimental systems used to obtain experimental data from crystalline
lenses.

Chapter 3 presents the accuracy of the technique though computational
simulations of the different experimental approaches using experimental esti-
mates of data input errors.

Chapter 4 presents the reconstruction of the gradient refractive index of a
porcine crystalline lens three dimensionally using data obtained from a spectral
OCT system in our laboratory. The relative contribution of the surface shape
and GRIN on astigmatism and spherical aberration of these lenses is presented.

Chapter 5 presents the reconstruction of the GRIN profile (in two dimen-
sions) in a set of lenses of various ages. The variation of the values of surface
and nucleus refractive indices, and in particular the shape of the GRIN profile,
are discussed.

Chapter 6 explores the optical distortion produced by the GRIN on the
posterior surface shape of a young crystalline lens imaged by OCT. The impact
of the assumption of a simple correction method on the geometrical parameters
of the crystalline lens are discussed.

Chapter 7 proposes a new optical distortion correction method considering
the presence of GRIN in OCT images of the crystalline lens, which is applied
on a set of human lenses in vitro.
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Chapter 2
Methods

This chapter describes the algorithms developed to trace rays through ho-
mogeneous and gradient index (GRIN) media, the global and local search
algorithms and the Laser Ray Tracing and the Optical Coherence Tomography
systems used in the thesis.

The ray tracing algorithm is used to simulate the experimental measured
data for a certain GRIN distribution. The algorithm was implemented in Mat-
Lab and was validated comparing the results with a well-known commercial
software. The global search algorithm is used to search the best GRIN (i.e. the
best parameters defining the GRIN distribution) that fits the measured data.
It was implemented and designed in MatLab using the Genetic Algorithm
Toolbox as a model. The Laser Ray Tracing and Optical Coherence Tomogra-
phy system were used in a first step to calibrate the method and estimate the
expected experimental error (chapter 3) and later to image porcine and human
lenses (chapters 4 and 5).

The author of this thesis implemented and tested the algorithms and de-
signed and constructed the experimental Ray Tracing System in collaboration
with Sergio Barbero, Sergio Ortiz, Susana Marcos and the rest of the members
of the Visual Optics and Biophotonics Laboratory.
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2.1 Introduction

In this chapter we will describe the algorithms and experimental set-ups imple-
mented to evaluate the potential for optical measurements of the lens gradient
index (GRIN) with optimization methods. The goal of these methods is the
measurement of physical properties of the lens and the reconstruction of the
GRIN distribution that best matches the experimental data. The methods
involved the development of: (1) algorithm to simulate the experimental mea-
surements, (2) a search method to find the optimal GRIN and (3) experimental
set-ups to obtain the input data to the algorithms.

The algorithm to simulate the experimental data from the crystalline lens
consists of a ray tracing program through both homogeneous and GRIN re-
fractive index media. Systems with axial symmetry and conical surfaces, this
is centered crystalline lenses, were considered. Ray tracing through homo-
geneous media was solved by finding the intersections between rectilinear
rays and surfaces, and applying Snell’s law in the intersections, this was pro-
grammed in MatLab (MathWorks, Natic, MA) using the formulas derived by
Stavroudis [1972]. To trace rays through graded-index media, the ray equa-
tion has to be solved. Although an analytical solution can be found in some
situations, generally the ray equation requires a numerical solution. Some
methods have been developed for ray tracing though a GRIN media [Hewak
and Lit, 1985]. However Sharma et al. [1982] algorithm appears to be the most
widespread in the field. For the purposes of this thesis, the Sharma algorithm
was implemented, and the Stone and Forbes [1990] algorithm was used to find
the intersection between rays inside the GRIN and surfaces.

An optimization algorithm was developed to search the GRIN distribution
that matches the measurement. This algorithm involved the definition of a
merit function to calculate the separation between the results of a model with
a certain GRIN and the experimental data and a minimization algorithm. From
the different possible optimization techniques that could have been used, we
opted for a genetic algorithm [Holland, 1975] which does not need differenti-
ation of the merit function and avoid solutions stuck in local minima. These
algorithms are increasingly being used in different areas including optical de-
sign [Vasiljević, 2002].

Several experimental techniques to measure physical properties of the crys-
talline lens were used in this thesis and are described in the last section of this
chapter. These include custom-instruments for 2-D time domain Optical Co-
herence Tomography (OCT), 3-D spectral domain OCT and Laser Ray Tracing.
OCT systems were used to image the lens and to extract the optical path dif-
ference between anterior and posterior surface. The Laser Ray Tracing system
was built to measure the deflection of the rays when passing through the
lens and to estimate the position of the rays in a plane after the lens. Those
values represent potential input data that could be used as input data in an
optimization algorithm to calculate the GRIN that best fits the measurements.
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2.2 Ray tracing algorithm

2.2.1 Homogeneous refractive index media

For ray tracing through homogeneous media two simple operations are in-
volved: transfer and refraction. While the first one finds the point of intersec-
tion of a ray with a surface, the seconds implements Snell’s law to calculate
the refraction in the inter-phase.

Transfer

A ray is defined with a point W and a direction vector N, therefore the equation
of any point Wλ on the ray is given by Wλ = W + λN.

For convenience, the equation for any refracting surface is given with
reference to a coordinate system in which the z axis coincides with the axis of
the optical system. The x and y axes lie on a plane perpendicular to the z axis,
and are tangent to the refracting surface at the point where the axis and the
surface intersect, i.e. the apex. Then, if t is the distance between the system
origin where W is defined and the surface apex, and we define the unit vector
in the direction of the axis of the optical system A = (0, 0, 1), the vectorial
equation of the ray can be expressed by:

Wλ = W − tA + λN. (2.1)

As mentioned above, we considered a rotationally symmetric optical sys-
tem where the refracting surfaces are surfaces of revolution, and the shape of
the surfaces is going to be expressed by conics. The equation of a centered
conic of revolution can be written as

φ = ckz2 + c(x2 + y2) − 2z = 0

φ = cR̄2 − c(1 − k2)(R̄ ·A)2 − 2(R̄ ·A) = 0 (2.2)

where A is the unit vector in the direction of the z axis and R̄ is a point of the
conic surface. The intersecion point between the ray defined by 2.1 and the
conic defined by 2.2, R̄, can be calculated by substitution and the normal to
the surface at that point, N̄, that will be used to apply Snell’s law later, can
be calculated with the operator nabbla. The formulas derived by Stavroudis
[1972] to calculate the point of intersection and normal to the surface are:

R̄ =W − tA + λ̄N,

N̄ =
−cR̄ + A + c(1 − k)(A · R̄)A

[1 − c2(1 − k)(R̄ ·A)2]1/2
, (2.3)

where

λ̄ =(1/V)c(W − tA)2 − 2A · (W − tA) − c(1 − k)[A · (W − rA]2,

V =(A ·N)(1 + ct) − c(N ·W) + R + c(1 − k)[A · (W − tA)(A ·N),

R2 =[1 − (1 − k)(N ·A)2]1 − [A ×N(1 + ct) + c(N ×W]2

+(1 − k)1 −A ×N · [(A ×N)(1 + ct) + c(N ×W)]2.
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Refraction

The inputs to apply refraction function (Snell’s law) are: (1) the direction of the
normal to the surface; (2) the refractive index before and after the refractive
surface and (3) the direction of the incident ray. The vectorial form of Snell’s
law can be expressed as:

N∗ × N̄ = µ(N × N̄), (2.4)

where N∗ is the direction vector of the refracted ray, N̄ is the direction vector
for the incident ray, N is the normal to the refracting surface and µ the ratio
between refractive indices on opposite sides of the refracting surface (if n is
the index of refraction on the incident-ray side of the refracting surface and n∗
is the index on the refracted-ray side, then µ = n/n∗.

The refracted ray direction vector can be calculated as:

N∗ = µN + γN̄,

where γ = −µ(N · N̄) +

√
1 − µ2[1 − (N · N̄)2]. (2.5)

2.2.2 Gradient refractive index media

As in a homogeneous media, the ray tracing algorithm in an inhomogeneous
medium involves two steps: (1) ray tracing through the GRIN medium and
(2) calculation of the intersection of the ray with the surface (in our case, the
posterior surface of the crystalline lens) limiting the GRIN medium.

Sharma’s algorithm

The Sharma et al. [1982] method to trace rays through gradient index media
essentially transforms the ray equation

d
ds

[
n(r)

dr
ds

]
= ∇n(r), (2.6)

into a convenient form, and uses Runge-Kutta method to solve numerically
the resulting differential equation. If the following vectors are defined

R = (x,y, z),

T =
dR
dt

= (n
dx
ds
,n

dy
ds
,n

dz
ds

) = (nα,nβ,nγ)

D = n(
∂n
∂x
,
∂n
∂y
,
∂n
∂z

)

where α, β and γ are the components of the unitary vector that define the
direction of the ray, this is, the direction cosines of the ray, the equation 2.6 can
be expressed in the following way.

d2R
dt2 = D(R) (2.7)
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The equation 2.7 has to be resolved with the initial conditions R = R0 and
T = T0. The next points of the solution will be generated by the Runge-Kutta
method:

Rn+1 = Rn + ∆t [Tn + (A + 2B)/6] ,
Tn+1 = Tn + (A + 4B + C)/6, (2.8)

where the vectors A, B and C are defined as:

A = ∆t D(Rn),

B = ∆t D
(
Rn +

∆t
2

Tn +
1
8

∆tA
)
, (2.9)

C = ∆t D (Rn + ∆tTn + 1/2∆tB) ,

and ∆t is the extrapolation distance, also known as Sharma’s step. The value
of ∆t sets the desired accuracy, i.e. the smaller the value, the better the accuracy
but also greater computation time.

Stone and Forbes’ algorithm

The truncation error in position and direction for a single iteration of the
Sharma’s method is, in general, proportional to ∆t5. Since the number of steps
needed is inversely proportional to ∆t, the global error of the algorithm is
proportional to ∆t4. This is the error at the Runge-Kutta points, but in certain
cases, the trajectory is needed between those points, as it occurs for finding the
point of intersection of a ray with a given surface. The Runge-Kutta method
does not provide a method to find the trajectory that connects the Runge-Kutta
points, and therefore one must be constructed. Sharma and Ghatak [1986] pro-
posed the parametrization of the ray equation within an accuracy of ∆t4 using
a third order polynomial. The coefficients of this polynomial can be calculated
with the ray positions and ray slopes at Runge-Kutta points using Hermite
interpolation. Stone and Forbes [1990] showed that using this method, the
error introduced in the location of the ray-surface intersection could dominate
the error accumulated in transferring across the inhomogeneous region.

The method that Stone and Forbes [1990] proposed aims at finding an
optimal step size tint to transfer from the last Runge-Kutta point to the surface,
by applying the numerical ray equation with the a term dependent on t4 to the
ray equation:

Rn+1 = Rn + tTn +
1
2

t2 A
∆t

+
1
6

t3 4B − C − 3A
∆t2 +

1
24

t4 4(A − 2B + C)
∆t3 (2.10)

The surface after the inhomogeneous media should be described with an
implicit formula, F(x,y, z) = 0, and the value of tint that ensures that Rn+1(tint)
belong to the surface is found evaluating F and dF at the Runge-Kutta points
previous to the surface. This method has been shown to use approximately the
same amount of computation time as the one proposed by Sharma and Ghatak.
One advantage of this method is that it does not require the evaluation of the
gradient index in the point out of the inhomogeneous region, unlike Sharma
and Ghatak’s.
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Optical path

The computation of optical path length (OPL) in homogeneous media is
straightforward, since it can be calculated as the multiplication of the geomet-
ric length of the path through the media by the index of refraction. However,
if the refractive index varies through the path of the ray, the OPL must be
calculated with the integral:

OPL =

∫
n(s)ds (2.11)

The path of the rays between the anterior and the posterior surface of the
crystalline lens can be calculated using Sharma et al.’s and Stone and Forbes’
algorithms but, as mentioned above, the Runge-Kutta method to solve the ray
equation does not provide the trajectory between the Runge-Kutta points.

The simplest approach would be to assume linear trajectories between the
Runge-Kutta points. However we approximated the path of the ray in each
interval with the third order polynomial defined by the Runge-Kutta points
and the director vector at those points, i.e. the Hermite polynomial. Regardless
of the path selected for the ray between the Runge-Kutta points, in this thesis,
we calculated the integral using Newton-Cotes formulas evaluating the GRIN
in eleven points along the trajectory [Ueberhuber, 1997].

2.2.3 Validation of the ray tracing algorithm

To validate the implemented ray tracing method, we have compared the results
of the algorithm written in MatLab with those from a well known commercial
ray tracing program (ZEMAX, Zemax Development Corporation, Bellevue,
Washington). Ray tracing through homogeneous and inhomogeneous lenses
was studied. For this purpose we used the 20S GRIN model by Goncharov
and Dainty [2007], described by a polynomial equation in axial and meridional
direction:

n(z, r) = n0 + n1r2 + n2r4 + n3z + n4z2 + n5z3 + n6z4 (2.12)

This GRIN model can be easily implemented in ZEMAX with a built-in
surface type (Gradient 5). The same lens shape with an homogeneous index
was used to validate the ray tracing through homogeneous media.

Forty rays parallel to the optical axis in a 6-mm pupil were traced with both
routines. Five types of ray tracing data were studied: (1) direction cosines of
the rays deflected by the lens, (2) heights of the point where the ray impacts
posterior surface of the lens, (3) impacts in a plane perpendicular to the optical
axis after the lens, and (4) optical path differences accumulated up to the
posterior surface of the lens and up to the plane where impacts were calculated.

Differences between algorithms for homogeneous lenses were machine
precision. For ray tracing in a GRIN medium, the differences depended on the
Sharma’s algorithm step. For a 10µm step, the differences were below 10−4 µm
for ray intersections and optical path calculated at the posterior surface of the
lens and at a plane after the lens, and below 10−13 for cosine of the rays deflected
by the lens. These differences are probably due to differences in the ray tracing
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Figure 2.1: (a) Estimated error in simulated data (lateral devia-
tions, impacts of OPD) as a function of the step size in the Sharma
algorithm. (b) Computational time to ray trace and estimate the
OPD as a function of the step size. The OPD was calculated either
using straight segments or a Hermite polynomial interpolation
between the Runge-Kutta points. Simulations were performed
with Goncharov crystalline lens model 20S. (Reproduced from
de Castro et al. [2011a], Optics Express).

algorithm (although a more detailed comparison is not possible, as the ZEMAX
algorithms are proprietary).

2.2.4 Effect of Sharma’s step size

The step size sets the trade-off between the precision in the computation of the
ray trajectories inside the GRIN and the computation time. Figure 2.1 shows
the differences in the estimation of the ray tracing data for different step sizes
compared to a smaller one ( 10−4 µm ). We found that a 10µm step size was a
good trade-off, as the estimated errors were less than 10−9 µm for intersection,
10−14 for cosine of the deflected ray, and less than 10−6 µm for OPD, with a
computation time of less than 0.2 seconds on an Intel Xeon process at 3 GHz.

2.3 Optimization algorithm

In optical system design, the goal of optimization is to find a system that ful-
fills some quality criteria with, usually, some boundary conditions [Vasiljević,
2002]. The reconstruction of the GRIN structure is based on an optimization
method where the variables to optimize are the parameters that define the lens
GRIN distribution. A merit function (MF) was constructed to quantify the
agreement between the experimental data and the simulated data for a given
set of parameters. The MF was defined as the root mean square (RMS) of this
difference. An optimization algorithm is needed to minimize this MF.
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We implemented two sequential optimization algorithms. First, a global
search algorithm was used to find the global minimum area and avoid local
minimum trapping. Second, starting from the best solution found by the
global search algorithm, a local search algorithm was used to descend to the
minimum.

2.3.1 Genetic optimization

The genetic algorithm (GA) is an optimization and search technique based
on the principles of genetics and natural selection. A population composed of
many individuals evolve under certain selection rules to a state that minimizes
the MF. The method was developed by Holland [1975]. Some of the advantages
of GA are:

1. Optimizes with continuous or discrete variables,
2. does not require derivative information,
3. simultaneously searches a wide sample of solutions,
4. deals with a large number of variables,
5. optimizes merit functions with complex surfaces (the GA can jump out

of a local minimum).

Although in some cases GA have produced satisfactory results where tradi-
tional optimization approaches had failed, GA are not adapted to solve every
problem. Traditional methods have been adjusted to find rapidly the solution
of a well-behaved convex analytical function of only a few variables. On the
other hand, the large population of potential solutions used by the GA are a
powerful tool, but generally, the computation time required to reach a solution
is much higher than in conventional algorithms.

The algorithm starts with a population of solutions (generation) randomly
selected within the expected range of solutions. The following generations are
created combining Darwinian survival-of-the-best philosophy with a random
but structured information exchange among the population. Each solution (in-
dividual) is determined by its variables (chromosomes) and the merit function
of the problem evaluate whether each individual is adapted to the problem or
not.

Since GA is a search technique, it must be limited to exploring a reason-
able region of the variable space. Sometimes this is not necessary because the
algorithm converges rapidly from the initial population, but in certain situa-
tions constrains must be set, particularly with noisy data. There are different
alternatives to add constrains [Vasiljević, 2002]. For the purposes of this thesis
we have added penalty terms to the MF if the constrains were violated.

A schematic diagram of the rules of the algorithm is shown in figure 2.2
and implies three basic steps: selection, crossover and mutation.

Selection

The selection of the individuals with which the next generation will be created
can be done in many different ways. We implemented a roulette selection that
essentially sorts the individuals of the generation as a function of their score
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Generation i

Generation i+1
Elite
Recombination
Mutation
Unmodified

Figure 2.2: Schematic diagram of a genetic algorithm iteration.
A percentage (85%) of the population is created by crossover and
mutation. Some of the solutions (5%) are directly copied to the
next generations (elite) and the rest of the population is randomly
selected from previous generation.

and designs an expectation to be chosen for each one of them. This expectation
is calculated with a function that can be constant (i.e. all the individuals have
the same possibility to be chosen) or decreasing as a function of its score (MF
value) or its range in the population. In our case the algorithm calculates the
expectation following a decreasing function, 1/x2, which assigns the most fitted
individuals higher probability to be chosen than the rest of the population.

Once the expectation is calculated, a roulette is created with all the indi-
viduals. In the roulette, the individuals with higher expectation take up more
room than the ones with lower expectation. The roulette is spanned to select
two individuals, and generate from those one individual of the next population
with crossover.

Other selection rules are possible. To ensure the selection of the best indi-
viduals, a percentage of the solutions can be automatically selected and copied
to the next generation. In our implementation, a 5% of the population is se-
lected as elite. These individuals are the ones with the best score and, not only
are copied to the next generation, but also participate in the selection process
as the rest do.

Crossover

In the selection process, two parents are chosen, the offspring will be a combi-
nation of these two parents. Many different approaches have been proposed.
In our case the variables of the child will be selected randomly between those
of the parents that contribute. This method is called uniform crossover. One
child is created from each couple. As can be seen in figure 2.2, 80% of the
population is created with this method.

Mutation

To explore the entire solution space, mutation is added to the solutions. This
avoids partly the problem of overly fast convergence. There are many methods
to add mutation and many possibilities to chose the individuals that will be
mutated. In our implementation we chose to mutate some of the children
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created with the crossover function, and the mutation was simulated with
Gaussian noise added to all the variables. The amount of mutated children
was kept constant during all the calculations, 60%, as is illustrated in figure
2.2. The amplitude of mutation (amount of noise added to each solution) was
decreased in subsequent generations to allow the algorithm to focus on smaller
areas each generation.

The implementation of a Genetic Algorithm can be highly diverse. Se-
lection can be done in different ways, for example considering not only the
position in the ranking of solution,but also its merit function value. In our
particular implementation, crossover was achieved by mixing the variables
of the solutions, but another possibility is to create the children closer to the
parent with best MF. Mutation adds random noise to the variables but, the
algorithm could vary not all the variables but only some of them, even the
amplitude of the mutation could be related with the MF value. The scheme
of the GA could be varied too: part of the next generation could be created
by mutating only the elite, crossover could be done mixing individuals with
low and high MF values to try to use more extensively the elite; in some im-
plementations, a generation can benefit from the distribution of solutions of a
previous generation, and some solutions could migrate. For this work, a sim-
ple GA allowed convergence, and the parameters (crossover, mutation ratio
and amplitude of mutation, etc...) were adapted to the problem. Other varia-
tions could be studied to improve the performance and speed of convergence
of the algorithm.

2.3.2 Hybridation with local search algorithms

A hybrid GA combines the power of the GA with the speed of a local optimizer.
GAs are fast at showing the direction of the global minimum, but a local
search algorithm is faster to descend to the minimum. Hybrid GAs can be
implemented in different ways. For example, the local optimizer can be started
after the GA, it can seed the GA population with local minima found starting
the local search algorithm at random points in the population, or it can be
applied every certain number of generations starting from the best solution
found by the GA.

We implemented the first option and used a Simplex [Nelder and Mead,
1965] algorithm to descend to the expected global minimum. The algorithm
starts from a simplex (a set of n + 1 points if n is the number of variables) and
modify this simplex to find the minimum. Although the default implemen-
tation of the algorithm in MatLab calculates the starting simplex increasing
each one of the variables of the starting point by 5%, we have used a smaller
simplex to avoid loosing the local minimum. Each iteration of the simplex is
composed of the following steps.

1. Sort. The n + 1 solutions are ordered to satisfy f(x1) ≤ f(x2) ≤ . . . f(xn+1)

2. Calculate the center of gravity, x̄ of all the points except xn+1,

3. Reflect. The point xn+1 is reflected with respect to the center calculated
before: xr = x̄ + ρ(x̄ − xn+1),
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We implemented the first option and used a Simplex [Nelder and Mead,
1965] algorithm to descend to the expected global minimum. The algorithm
starts from a simplex (a set of n + 1 points if n is the number of variables) and
modify this simplex to find the minimum. Although the default implemen-
tation of the algorithm in MatLab calculates the starting simplex increasing
each one of the variables of the starting point by 5%, we have used a smaller
simplex to avoid loosing the local minimum. Each iteration of the simplex
is composed of the following steps.

1. Sort. The n + 1 solutions are ordered to satisfy f(x1) ≤ f(x2) ≤ . . . f(xn+1)

2. Calculate the center of gravity, x̄ of all the points except xn+1,

3. Reflect. The point xn+1 is reflected with respect to the center calculated
before: xr = x̄ + ρ(x̄ − xn+1),

4. Expand. If the function in the reflected point is lower than f(x1) the
expansion point is calculated: x̄e = x̄ + χ(xr − x̄) to try to improve
the reflected point. If there is not improvement, this is f(xe) ≥ f(xr),
the expansion point is discarded and a contraction (see step 5) is
performed, if the function is lower the point replace xn+1 in the simplex
and the iteration is finished.

5. Contract. If the value of the function in the reflected point is higher
than the rest of the points of the simplex, then a contraction is per-
formed between x̄ and the best of xn+1 and xr.

- Outside. If f(xn) ≤ f(xr) < f(xn+1) calculate xc = x̄ + γ(xr − x̄). If
the contracted point is lower than the reflected, the point is ac-
cepted and the iteration is finished, otherwise, the simplex is
shrinked (see step 6).

- Inside. If f(xr) ≥ f(xn+1) calculate xcc = x̄ − γ(x̄ − xn+1). If the
contracted point is lower than the original one, f(xcc) < f(xn+1),
the point is accepted and the iteration is finished, otherwise, a
shrink was performed.

6. Shrink. The simplex for the next iteration keeps the first point x1 and
the rest is calculated as vi = x1 + σ(xi − x1), i = 2, . . . ,n + 1.

The coefficients ρ, χ, γ and σ are usually known as reflection, expansion,
contraction and shrinkage coefficients. Standard values [Lagarias et al.,
1998] were used: ρ=1, χ=2, γ=1/2 and σ=1/2.
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the expansion point is discarded and a contraction (see step 5) is
performed, if the function is lower the point replace xn+1 in the simplex
and the iteration is finished.

5. Contract. If the value of the function in the reflected point is higher
than the rest of the points of the simplex, then a contraction is per-
formed between x̄ and the best of xn+1 and xr.

- Outside. If f(xn) ≤ f(xr) < f(xn+1) calculate xc = x̄ + γ(xr − x̄). If
the contracted point is lower than the reflected, the point is ac-
cepted and the iteration is finished, otherwise, the simplex is
shrinked (see step 6).

- Inside. If f(xr) ≥ f(xn+1) calculate xcc = x̄ − γ(x̄ − xn+1). If the
contracted point is lower than the original one, f(xcc) < f(xn+1),
the point is accepted and the iteration is finished, otherwise, a
shrink was performed.

6. Shrink. The simplex for the next iteration keeps the first point x1 and
the rest is calculated as vi = x1 + σ(xi − x1), i = 2, . . . ,n + 1.

The coefficients ρ, χ, γ and σ are usually known as reflection, expansion,
contraction and shrinkage coefficients. Standard values [Lagarias et al.,
1998] were used: ρ=1, χ=2, γ=1/2 and σ=1/2.
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We implemented the first option and used a Simplex [Nelder and Mead,
1965] algorithm to descend to the expected global minimum. The algorithm
starts from a simplex (a set of n + 1 points if n is the number of variables) and
modify this simplex to find the minimum. Although the default implemen-
tation of the algorithm in MatLab calculates the starting simplex increasing
each one of the variables of the starting point by 5%, we have used a smaller
simplex to avoid loosing the local minimum. Each iteration of the simplex
is composed of the following steps.

1. Sort. The n + 1 solutions are ordered to satisfy f(x1) ≤ f(x2) ≤ . . .
f(xn+1)x3

2. Calculate the center of gravity, x̄ of all the points except xn+1,

3. Reflect. The point xn+1 is reflected with respect to the center calculated
before: xr = x̄ + ρ(x̄ − xn+1),

4. Expand. If the function in the reflected point is lower than f(x1) the
expansion point is calculated: xe = x̄ + χ(xr − x̄) to try to improve
the reflected point. If there is not improvement, this is f(xe) ≥ f(xr),
the expansion point is discarded and a contraction (see step 5) is
performed, if the function is lower the point replace xn+1 in the simplex
and the iteration is finished.

5. Contract. If the value of the function in the reflected point is higher
than the rest of the points of the simplex, then a contraction is per-
formed between x̄ and the best of xn+1 and xr.

- Outside. If f(xn) ≤ f(xr) < f(xn+1) calculate xc = x̄ + γ(xr − x̄). If
the contracted point is lower than the reflected, the point is ac-
cepted and the iteration is finished, otherwise, the simplex is
shrinked (see step 6).

- Inside. If f(xr) ≥ f(xn+1) calculate xcc = x̄ − γ(x̄ − xn+1). If the
contracted point is lower than the original one, f(xcc) < f(xn+1),
the point is accepted and the iteration is finished, otherwise, a
shrink was performed.

6. Shrink. The simplex for the next iteration keeps the first point x1 and
the rest is calculated as vi = x1 + σ(xi − x1), i = 2, . . . ,n + 1.

The coefficients ρ, χ, γ and σ are usually known as reflection, expansion,
contraction and shrinkage coefficients. Standard values [Lagarias et al.,
1998] were used: ρ=1, χ=2, γ=1/2 and σ=1/2.

(a) (b) (c) (d) (e)

Figure 2.3: Nelder-Mead simplex possible steps: (a) reflection, (b)
expansion, (c) outside contraction, (d) inside constraction and (e)
shrink. (Reproducted from Lagarias et al. [1998], SIAM Journal
on Optimization).

4. Expand. If the function in the reflected point is lower than f(x1) the
expansion point is calculated: xe = x̄ + χ(xr − x̄) to try to improve the
reflected point. If there is not improvement, i.e. f(xe) ≥ f(xr), the expan-
sion point is discarded and a contraction (see step 5) is performed. If the
value of the function in xe is lower, the point replace xn+1 in the simplex
and the iteration is finished.

5. Contract. If the value of the function in the reflected point is higher
than the rest of the points of the simplex, then a contraction is performed
between x̄ and the best of xn+1 and xr.

- Outside. If f(xn) ≤ f(xr) < f(xn+1) the contracted point is calculated
as xc = x̄ + γ(xr − x̄). If the value of the function in the contracted
point is lower than the value in the reflected, the point is accepted
and the iteration is finished, otherwise, the simplex is shrinked (see
step 6).

- Inside. If f(xr) ≥ f(xn+1), an inside contraction is performed as
xcc = x̄ − γ(x̄ − xn+1). If the value of the function in the contracted
point is lower than the value in the original one, f(xcc) < f(xn+1), the
point is accepted and the iteration is finished, otherwise, a shrink
was performed.

6. Shrink. The simplex for the next iteration keeps the first point x1 and
the rest are calculated as vi = x1 + σ(xi − x1), i = 2, . . . ,n + 1.

The coefficients ρ, χ, γ and σ are usually known as reflection, expansion,
contraction and shrinkage coefficients. Standard values [Lagarias et al., 1998]
were used: ρ= 1, χ= 2, γ= 1/2 and σ= 1/2.

2.4 Experimental measurements systems

2.4.1 Ray Tracing

A Laser Ray Tracing system that allows collection of the rays deflections (on
a lateral viewing camera) as well as rays impacts behind the lens (on a sec-
ond transverse viewing camera) was developed. Figure 2.5 and 2.6 show a
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Figure 2.4: Snapshot of the Visual Basic program developed to
control the scanner and the CCD cameras. One of the cameras
took images of the lateral view of the ray tracing (one of them is
shown in the image) and another imaged the ray directly.

schematic view of the system and examples of collected images and a pho-
tograph of the system respectively. A He-Ne laser (633 nm) was used for
illumination, and an x-y galvanometer scanner (Cambridge Technology) de-
flected the laser to scan the pupil at different locations. The ray beams were
delivered sequentially, sampling the lens (in 100µm steps) two dimensionally
across an 8-mm pupil. Measurement was automatized with a Visual Basic
program, the measurement time was around 2 minutes per scan.

In the first mode (lateral viewing, Figure 2.5a), the lens was placed in a
chamber and this was filled in with distilled water. A CCD camera (Toshiba
Teli, 640x480 pixels, 7.4µm pixel size) focused at the meridional plane of the
lens, recorded images of the refracted rays (Figure 2.5b). In the second mode
(transverse viewing, Figure 2.5c) the lens was placed in air and the impacts of
the outgoing rays with a plane perpendicular to the optical axis of the set-up
were captured directly onto a bare CCD (Qimaging Retiga 1300, 6.7µm pixel
size, Figure 2.5d).

2.4.2 Optical Coherence Tomography systems

Two custom-developed anterior segment Optical Coherence Tomography (OCT)
systems were used to collect the experimental OCT images in this thesis. One
system was developed at the Laboratory of Jean Marie Parel and Fabrice Manns
[Uhlhorn et al., 2008], at the Bascom Palmer Eye Institute (University of Mi-
ami), where it is combined with a stretcher device to simulate accommodation
(not for the data presented here). The system is used in combination with a
optical comparator system to measure the shape of crystalline lenses in vitro
[Rosen et al., 2006]. A second system was developed at the Visual Optics and
Biophotonics Laboratory, at the Instituto de Óptica (CSIC), in collaboration
with Copernicus University [Grulkowski et al., 2009]. The instrument is nor-
mally used in in vivo and in vitro measurements of the cornea and crystalline
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Figure 2.4: (a) Experimental setup for lateral ray tracing system
(b) Corresponding ray images (integrated image of five rays) (c)
Single-pass ray tracing configuration to measure the spot diagram
in a plane after the lens. (d). Corresponding spot images for five
rays.

Figure 2.5: Experimental setup for lateral and single pass ray
tracing. LA FOTO ES DEL SISTEMA PERODOBLE PASO DEL
OJO ARTIFICIAL, SE DEBERÍA DECIR ALGO... This system was
also used for other projects. In the image, double-pass images are
being recorded using an artificial cornea.
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Single-pass ray tracing configuration to measure the spot diagram
in a plane after the lens. (d). Corresponding spot images for five
rays.
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Figure 2.4: (a) Experimental setup for lateral ray tracing system
(b) Corresponding ray images (integrated image of five rays) (c)
Single-pass ray tracing configuration to measure the spot diagram
in a plane after the lens. (d). Corresponding spot images for five
rays.

Figure 2.5: Experimental setup for lateral and single pass ray
tracing. LA FOTO ES DEL SISTEMA PERODOBLE PASO DEL
OJO ARTIFICIAL, SE DEBERÍA DECIR ALGO... This system was
also used for other projects. In the image, double-pass images are
being recorded using an artificial cornea.
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Figure 2.5: (a) Experimental setup for lateral ray tracing system
(b) Corresponding ray images (integrated image of five rays) (c)
Single-pass ray tracing configuration to measure the spot diagram
in a plane after the lens. (d). Corresponding spot images for five
rays. (Reproduced from de Castro et al. [2011a], Optics Express)

Figure 2.6: Experimental setup for lateral and single pass ray
tracing. This system was also used for other projects. In the
image, double-pass images are being recorded using an artificial
cornea.
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Figure 2.7: Time domain OCT of the Bascom Palmer Eye Institute
used to image in vitro crystalline lenses.

lens in parallel experiments in our laboratory. This system was provided
with algorithms developed in our laboratory for segmentation of the surfaces
and correction of the distortion produced by the scanning architecture (fan
distortion) [Ortiz et al., 2009].

Time-domain 2-D Optical Coherence Tomography system

The time domain OCT system was custom-built in the Ophthalmic Biophysics
Center (Bascom Palmer, Miami) [Uhlhorn et al., 2008] to acquire cross-sectional
images of the whole in vitro crystalline lens. The light source is a superlumi-
nescent diode with a Gaussian emission centered in 825 nm and a bandwidth
of 25 nm, and an output power of 6 mW (SLD-38-HP, Superlum, Cork, Ire-
land). Sensitivity is 85 dB. The system has 12µm axial resolution and imaged
a maximum lateral length of 20 mm with a scan length in tissue of around
7.5 mm.

The beam delivery system uses a telecentric scanner to produce a flat
scan field. The depth of focus of the delivery system was chosen to nearly
match the axial scanlength of the OCT system (around 10 mm) and the beam
diameters is 60µm. The delivery system was aligned so that the midpoint of
the interferometer scan depth coincides with the beam waist of the focused
beam. Images were recorded with 5000 points in each A-Scan at a rate of 20
A-lines/s.

Spectral-domain 3-D Optical Coherence Tomography system

Fourier domain OCT using spectrometers or frequency swept lasers can dra-
matically improve the detection sensitivity and allow higher scan speeds than
standard time domain OCT. In the OCT system used, a spectral fringe pattern
(chanelled spectrum) is recorded by a spectrometer with a line-scan camera.
A tomogram line is calculated by unevenly sampled Fourier transformation
of the recorded fringe pattern. Since this method does not require mechanical
depth scanning, it can perform imaging much faster.
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Axial resolution of the SOCT instrument governed solely by the spectral width of the light 
source is measured to be 6.9 !m in tissue. Transverse resolution depends on focal length of 
the object lens L4 and is calculated to be 27 !m, which corresponds well to the value 
measured using a beam analyzer (28 ± 3 !m). The depth of focus is 3.6 mm, and 
experimentally determined axial imaging range is 5.2 mm in tissue. The sensitivity roll-off 
over the entire axial imaging range is 19.5 dB. 

 

Fig. 2. Experimental SOCT set-up: SLD – superluminescent diode, OI – optical isolator, FC– 
80:20 fiber coupler, PC – polarization controller, NDF – neutral density filter, DC – dispersion 
compensator, L1-L8 – lenses, M – silver mirror, PZT – piezotranslator, SC – galvanometric 
scanners, DM – dichroic mirror, T – target, HDG – holographic volume diffraction grating, 
CMOS – linescan camera, COMP – computer. 

The sensitivity performance and axial resolution of the instrument is summarized in 
Table 1. Reduction of the number of active CMOS camera pixels with unchanged 
configuration of the optical elements in the spectrometer results in truncation of the spectrum 
(Fig. 3). As a consequence the axial resolution and sensitivity decrease together with 
reduction of the pixel number from 4096, through 2048 to 1024. The resolution decreases 
from 6.9 !m to 15.4 !m and the sensitivity drops by 4 dB (if calculated for a given constant 

exposure time Texp = 40 !s). The last column in the Table 1 shows effective sensitivity values 
taking into account both effects: the shortening of the signal integration time and the 
truncation of the spectrum. 

Table 1. SOCT system parameters for different number of active pixels of the CMOS camera 

Number of 
pixels 

Axial 
resolution 

[!m] 

Sensitivity at 
Texp= 40 us [dB] 

Minimum repetition 
time Trep 

(min) [!s] 

Sensitivity at 
Trep 

(min) [dB] 

4096 6.9 102 14.2 97.5 

2048 8.7 101 7.8 94 

1024 15.4 98 4.7 89 

#106214 - $15.00 USD Received 12 Jan 2009; revised 6 Mar 2009; accepted 8 Mar 2009; published 12 Mar 2009
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Figure 2.6: Layout of the spectral-domain OCT setup: SLD –
superluminescent diode, OI – optical isolator, FC – 80:20 fiber
coupler, PC – polarization controller, NDF – neutral density filter,
DC – dispersion compensator, L1-L8 – lenses, M – silver mir-
ror, PZT – piezotranslator, SC – galvanometric scanners, DM –
dichroic mirror, T – target, HDG – holographic volume diffraction
grating, CMOS – linescan camera, COMP – computer. (Repro-
duced from Grulkowski et al. [2009] (Optics Express).

segment of the human eye two and three-dimensionally. A schema of the
system can be seen in Figure 2.6. The set-up is based on a fiber-optic
Michelson interferometer and uses a superluminescent diode with a nearly
Gaussian emission centered in 840 nm and a bandwidth of 50 nm (Super-
lum, Ireland) as light source and a spectrometer consisting of a volume
diffraction grating and a 12-bit line-scan CMOS camera with 4096 pixels as
detector. The signal to noise rate (SNR) of the instrument was estimated to
be 97 dB. Acquisition speed was 25000 A-Scans/s resulting in an integration
time of 40 nm. An unfoding mode used a piezoelectric motor to extend the
axial range of the system up to 10 mm in air. A single 2-D image consisted
of 1668 A-scans and 70 B-scans in a lateral range of 12x12 mm with a reso-
lution of 170x7µm. The axial resolution of the images was 3.42µm, and the
acquisition time of a full 3-D image was 4.5 seconds.

If needed, to ensure optimal signal from both lens surfaces, two 3-D
images were obtained per condition at two different focal planes. The
images were merged using the cuvette as a reference to produce a full 3-D
image of the crystalline lens. The merging algorithm was developed in
MatLab. Figure 2.8 shows a full 3-D view of the crystalline lens.

2.4.3 OCT data analysis

OCT images were corrected for fan distortion, which arises from the scan-
ning architecture. If the fan of principal rays is not perfectly flat with respect
to the optical axis of the system, the surfaces are not well reproduced and
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Figure 2.8: Layout of the spectral-domain OCT setup: SLD –
superluminescent diode, OI – optical isolator, FC – 80:20 fiber
coupler, PC – polarization controller, NDF – neutral density filter,
DC – dispersion compensator, L1-L8 – lenses, M – silver mir-
ror, PZT – piezotranslator, SC – galvanometric scanners, DM –
dichroic mirror, T – target, HDG – holographic volume diffraction
grating, CMOS – linescan camera, COMP – computer. (Repro-
duced from Grulkowski et al. [2009], Optics Express).

The system was developed in collaboration with Nicolaus Copernicus Uni-
versity (Toruń, Poland) [Grulkowski et al., 2009] to image the anterior segment
of the human eye two and three-dimensionally. A schematic diagram of the
system can be seen in Figure 2.8. The set-up is based on a fiber-optic Michel-
son interferometer and uses a super luminescent diode with a nearly Gaussian
emission centered in 840 nm and a bandwidth of 50 nm (Superlum, Ireland) as
light source and a spectrometer consisting of a volume diffraction grating and a
12-bit line-scan CMOS camera with 4096 pixels as detector. The signal to noise
rate (SNR) of the instrument was estimated to be 97 dB. Acquisition speed
was 25000 A-Scans/s resulting in an integration time of 40 nm. An unfolding
mode used a piezoelectric motor to extend the axial range of the system up to
10 mm in air. A single 3-D image consisted of 1668 A-scans and 70 B-scans in
a lateral range of 12x12 mm with a resolution of 170x7µm. The axial range of
the instrument is 7 mm, resulting in a theoretical pixel resolution of 3.42µm
and the axial resolution predicted by the bandwidth of the super luminescent
diode is 6.9µm. The acquisition time of a full 3-D image was 4.5 seconds.

If needed, to ensure optimal signal from both lens surfaces, two 3-D images
were obtained per condition at two different focal planes. The images were
merged using the cuvette as a reference to produce a full 3-D image of the
crystalline lens. The merging algorithm was developed in MatLab. Figure
2.10 shows a full 3-D view of the crystalline lens.

2.4.3 Optical Coherence Tomography data analysis

OCT images were corrected for fan distortion, which arises from the scanning
architecture. If the fan of principal rays is not perfectly flat with respect to the
optical axis of the system, the surfaces are not well reproduced and even the
image of a flat surface becomes curved on the image. This effect can be char-
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Figure 2.9: The spectral domain OCT imaging a crystalline lens.

x
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z

Figure 2.10: Five of the sixty B-scans of the crystalline lens ob-
tained with the OCT.
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Figure 2.11: A-Scan extracted form OCT (left) and anterior and
posterior surface detected (right)

acterized and minimized numerically by application of correction algorithms
based on ray propagation and Snell’s law. To correct the distortion in the im-
ages used in this thesis we have used an algorithm developed previously in
our laboratory [Ortiz et al., 2009].

The improvement achieved when using the fan distortion correction al-
gorithm was studied in a posterior work by Ortiz et al. [2011]. We imaged
three-dimensionally spherical and aspheric lenses as well as 10 human corneas
in vivo. The results of sOCT were compared with non-contact profilometry on
the spherical lenses and state of the art commercial corneal topography instru-
ments on aspheric lenses and subjects. We found that the mean discrepancy
in the estimated radius of curvature from nominal values in artificial corneas
decreased from 4.6% (without fan distortion correction) to 1.6% (after fan dis-
tortion correction), and the difference in the asphericity decreased from 130%
to 5%.

According to the differences in reflectivity, we developed two different
strategies for the detection of the surfaces of the crystalline lens and the cuvette
used in the in vitro measurements. For the anterior surface, the segmentation
algorithm searched the maximum of intensity in each A-scan, and for the
posterior surface the segmentation algorithm is based on edge detection of the
thresholded image. The surface of the distorted cuvette was segmented using
the first method. The detection algorithms were implemented in MatLab.
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Chapter 3
Accuracy of the reconstruction
with optimization methods from
Ray Tracing and Optical
Coherence Tomography data

This chapter is based on the article by de Castro et al. [2011a]: “Accuracy
of the reconstruction of the crystalline lens gradient index with optimization
methods from Ray Tracing and Optical Coherence Tomography data,” Optics
Express 19(20), 19265–79, 2011.

The contribution of the author of this thesis to this study was the perfor-
mance of experimental measurements, programming of the simulations, analy-
sis of both experimental and simulations results and writing of the manuscript.

The coauthors of the study are Sergio Barbero, Sergio Ortiz and Susana
Marcos.

45



46 Chapter 3. Accuracy of the reconstruction with optimization methods

3.1 Introduction

In this thesis we developed a new optimization method to retrieve the gradi-
ent index of refraction (GRIN) of the crystalline lens from experimental data
obtained with Optical Coherence Tomography (OCT) and Laser Ray Tracing.
Optimization methods are based on finding the optical parameters of a spe-
cific lens model to fit certain experimental data. Pomerantzeff et al. [1971]
used as experimental data the focal length and the spherical aberration of the
eye, and a shell model lens composed of a large number of layers. Each layer
thickness, radius of curvature and refractive index was changed according to a
third degree polynomial. The minimization algorithm searched the variables
of the polynomial to fit focal length and spherical aberration of the eye. The
high number of unknown variables made the optimization problem ill-defined
since, as Campbell and Hughes [1981] noted, multiple solution were possible.

Axelrod et al. [1988] and Garner et al. [2001] reconstructed a spherical GRIN
using as input data those extracted from lateral view of the ray tracing through
a fish lens. Barbero et al. [2004] studied the possibilities of using this direction
cosine data and global search optimization for finding the optimal parameters
in non-spherical lenses.

The potential of using OCT to extract information of the GRIN was studied
by Ortiz et al. [2004], and the first data on a simple spherical fish lens using
optical path differences (OPD) from OCT were provided by Verma et al. [2007].

Local search algorithms were sufficient in several of the cases above, due
to simplicity and symmetric properties of the GRIN models used. In this chap-
ter, we compared the accuracy and robustness of the optimization methods
to reconstruct the GRIN using different input experimental data. Three real-
izations of the Goncharov model, with increasing number of variables were
tested. The evaluation was performed based on computer simulations, and the
noise expected in each input data estimated from experimental data collected
on artificial lenses with the ray tracing setup and the OCT imaging system
described in section 2.4. The effect of measurement error and experimental
limitation of each technique are addressed.

3.2 Methods

Experimental measurements on artificial lenses provided real error data of the
input information to the reconstruction algorithms. The experimental data
acquisition was then simulated computationally on human crystalline lenses,
assuming the Goncharov lens models. Ray tracing data (direction cosine of the
deflected ray, intercept of the outgoing ray with the posterior lens surface and
impact on a plane after the lens) and OCT imaging data (OPD) of the lenses
were simulated. The merit function and optimization tools were applied on
the simulated data (using the errors obtained experimentally) to reconstruct
the GRIN. To quantify the accuracy of the reconstruction, the root mean square
(RMS) error of the difference between the reconstructed GRIN and the nominal
GRIN was used (GRIN RMS difference). For the computation of GRIN RMS
difference the refractive index was evaluated for both the reconstructed and
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nominal GRIN on a grid of points (10µm separation) over a 6 mm pupil.
The metric is dimensionless and increases with increasing discrepancy of the
reconstructed GRIN with respect to the nominal GRIN.

3.2.1 Estimation of experimental errors

Ray tracing measurements on artificial lenses

With the ray tracing system described in section 2.4.1, we collected data of di-
rection cosines of the rays deflected by the lens and impacts in a plane after the
lens of a homogeneous index lens (KPX088, Newport, f = 71 mm, D = 25.4 mm)
and a gradient index lens (GPX-30-60, LightPath, f = 75 mm, D = 30 mm) to
estimate the error in the measurement. The GRIN lens had a continuous ax-
ial decreasing variation of refractive index from 1.74 (anterior surface) to 1.67
(posterior surface), and a central thickness of 6 mm. The nominal GRIN profile
was described by a 7th order polynomial function. Data from 80 equally spaced
rays sampling an 8 mm pupil were analyzed in five repeated measurements.

Optical Coherence Tomography measurements on artificial lenses

With the spectral-domain OCT described in section 2.4.2 we imaged two homo-
geneous lenses (EO 45-447 and EO 45-705, Edmund Optics, f = 60 and 72 mm
respectively, D = 12.5 mm). Data of OPD of the rays between anterior and
posterior surface were extracted three-dimensionally to estimate the error of
the measurement in all directions. The OPD was calculated in an 8 mm pupil
range in five repeated measurements of each lens.

3.2.2 Studied gradient refractive index models

The crystalline lens was described using three different GRIN models, pro-
posed by Goncharov and Dainty [2007]. One of the models was personalized
for an individual eye in a later work [Goncharov et al., 2008]. The first and
second GRIN models are defined by two 4th order polynomials in radial and
axial direction describing the GRIN distribution in anterior and posterior re-
gions of the lens respectively. In the first model (unbalanced model, G20U), the
refractive index is constant over the lens surfaces and the GRIN distribution is
determined only by two variables: surface and nucleus refractive indices. In
the second model (balanced model, G20B), the last posterior iso-indicial surface
may not be coincident with the posterior lens surface and GRIN distribution is
described by three variables: surface and nucleus refractive indices and radius
of curvature of the posterior iso-indicial surface. The third model (symmetrical
model, G20S) assumes a GRIN distribution with one polynomial described by
four variables: surface and nucleus refractive indices, center position and a
parameter setting the decay of the refractive index along the radial coordinate
—this parameter could be related to the refractive index 3 mm off the optical
axis, at the meridional plane. In this model, the marginal iso-indicial surfaces
are more curved than the external surfaces.

As we observed that the merit function of the 2-variable model can be
optimally minimized simply using the local search algorithm, we did not use
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Figure 3.1: Gradient refractive index proposed by Goncharov and
Dainty [2007] for a 20 year old crystalline lens. G20U variables are
the nucleus and surface refractive index, B20B has one additional
variable, the radii of the last posterior isoindicial surface and B20S
variables are nucleus and surface refractive index, center position
on axis and decay in meridional axis.

the global search algorithm in this model. For the 3-variable and 4-variable
models, the genetic algorithm was composed of 5 generations containing 200
individuals each, and 20 generations of 600 individuals respectively. Con-
straints —needed in presence of large experimental errors— were applied to
the range of refractive indices in the nucleus and surface as well as the nucleus
lens position, according to biologically plausible descriptions of the GRIN dis-
tribution. These constraints were included in the merit function using penalty
terms [Vasiljević, 2002]. For all the models, the refractive index was con-
strained to have a value between 1.355 and 1.44, which fits most of refractive
index values in human crystalline lenses found in the literature. For the 4-
variable model, the position of the lens nucleus was constrained to a range
from 1.1 to 1.8 mm. This constraint is justified by the observation that values
outside of this range can generate two refractive GRIN maxima. Finally, the
refractive index at 3 mm off the optical axis (radial coordinate) was constrained
between 1.35 and the nucleus refractive index value. This constraint forces a
decrease of the GRIN profile along the radial direction, which is in accordance
to the morphology of the crystalline lens.

3.2.3 Simulations

In all the simulations we assumed that the experimental data are limited to
rays parallel to the optical axis, and within a 6 mm pupil diameter. Unless
otherwise noted, 120 rays were traced, i.e. one ray each 50µm across the 6 mm
pupil.

The reconstruction algorithm was tested assuming simulated input data
for five different configurations (three from laser ray tracing, and the other
two from OCT):

1. Deflections of rays outgoing the lens, as used in previous studies to
reconstruct GRIN distributions [Campbell, 1984; Garner et al., 2001].
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2. Deflections of outgoing rays and intercepts of these with the posterior
lens surface, as was used in the tomographic method proposed by Acosta
et al. [2005] and Vazquez et al. [2006].

3. Ray impacts on a CCD placed after the lens, as shown in Figure 2.5.

4. OPD of each ray intercepting the posterior lens surface, as used in some
OCT-based reconstruction methods [Verma et al., 2007; de Castro et al.,
2011b].

5. OPD of each ray that intercepts the posterior lens surface as well as the
cuvette surface holding the lens (which can be imaged with the OCT in
in vitro measurements [Uhlhorn et al., 2008], as used in our publication
[de Castro et al., 2010] that will be described in chapter 4.

If a broad band source is used, as it is the case in configurations 4 and 5, the
experimental data are associated to the group refractive index. However, as
the ray tracing algorithm implicitly uses a phase refractive index, we assume
that the refractive index reconstructed with the algorithm is equivalent to
the group refractive index. The relation between group and phase refractive
index is studied in the introduction (section 1.2.8). For clarity purposes, in
the simulations of this study we used the same refractive index for the five
configurations.

To explore the limits of the search algorithm in each configuration, we have
reconstructed the GRIN distribution assuming no error in the experimental
data, and low noise level (range of Gaussian errors ranging from 10−6 to 10−3 )
added to the data. The aim of this simulation was to evaluate the reconstruction
accuracy of the algorithm itself.

The reconstruction algorithm was then studied when expected experimen-
tal noise level was applied to the input data (direction cosines, impacts of
OPDs). Noise was simulated introducing Gaussian error with a standard
deviation calculated with the experimental ray tracing and OCT imaging de-
scribed in methods chapter.

As the lens geometry represents additional input information for the GRIN
reconstruction algorithms, we also studied the influence of the experimental
errors of the lens shape measurements. The simulation of the ray tracing data
was performed on lens surfaces where Gaussian noise (standard deviation
given by the error measurement estimated with glass lenses) was added to
surfaces radii of curvature. As before, the experimental error was also intro-
duced in the input data (direction cosines, intercepts of the outgoing rays with
posterior surface, impacts or OPDs). The GRIN reconstruction was evaluated
using the nominal lens surface radii.

Finally, we studied the influence of the number of rays (ranging from 6 to
1200) in the reconstruction.
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Figure 3.2: Difference between nominal and reconstructed GRIN
(GRIN RMS difference) as a function of the experimental error
of the input data. Data are the mean across 50 repetitions, and
the error bars represent standard deviations. (Reproduced from
de Castro et al. [2011a], Optics Express).

3.3 Results

3.3.1 Limits of the reconstruction algorithm based on laser ray trac-
ing and Optical Coherence Tomography input data

Figure 3.2 shows the RMS of the difference between the nominal and recon-
structed GRIN (GRIN RMS difference) for the three GRIN models studied and
for the five proposed experimental configurations. The simulations were con-
ducted assuming no input error and with added Gaussian errors (10−6 to 10−3 )
to the input data (for all conditions). In absence of experimental errors, the
GRIN was reconstructed with high accuracy (GRIN RMS difference< 10−8 )
indicating that the global minimum can be theoretically retrieved for all the
GRIN models and all conditions under study. As expected, the presence of
experimental errors increases the reconstruction error. Also, the reconstruc-
tion accuracy decreases with the complexity (number of variables) of the lens
model.

3.3.2 Estimation of the experimental errors

The experimental set-ups described before (LASER ray tracing system and
spectral domain OCT) were used with artificial lenses to obtain estimates of
the experimental errors of the input data.

Figure 3.3 shows the differences, for all rays, between the experimental and
the simulated direction cosines of the rays deflected by the lens (a), impacts on
a plane after the lens (b) and OPD (c) data for the artificial lenses under study.
The standard deviation of the differences in each case was: 1.08± 0.49 · 10-3

for the homogeneous lens and 0.92± 0.14 · 10-3 for the GRIN lens (direction
cosines); 6.0± 2.2µm for the homogeneous and 6.9± 0.3µm for the GRIN lens
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Figure 3.3: Difference between experimental and simulated data:
mean and standard deviation for five repeated measurements.
(a) Direction cosine of the outgoing rays, (b) Impacts on a plane
after the lens and (c) OPD through the lens. (Reproduced from
de Castro et al. [2011a], Optics Express).

(ray impacts); and 2.40± 0.17 and 2.74± 0.18µm (OPDs) for the two lenses
under test.

3.3.3 Influence of experimental errors on the gradient refractive in-
dex reconstruction

The reconstruction algorithm was evaluated for different sets of simulated
input data representing the 5 proposed experimental configurations (direction
cosines of deflected rays, direction cosines and intercept of the outgoing rays
with the posterior lens surface, impacts on a plane after the lens, optical path
up to the posterior surface of the lens, and optical path up to the posterior
surface of the lens and to a plane after the lens) with three different levels of
experimental error and for the three Goncharov models.

For illustration purposes, we defined three different error levels: errors
within the expected order of magnitude of the experimental measurements
(error level R), lower (error level L) and higher (error level H) than the expected
experimental error.

The simulated errors of the ray direction cosines were 0.5, 1 and 2 · 10-3 for
the error levels L, R and H respectively; the simulated errors of the intersection
points (intercept of the outgoing ray with posterior lens surface and impact
on a plane after the lens) were 3, 6 and 12µm; and the simulated errors of the
OPD 1.5, 3 and 6µm for the error levels L, R and H respectively.

Figure 3.4 shows the mean value and the standard deviation of the GRIN
RMS difference of the nominal and the reconstructed GRIN for 50 realizations
of the reconstruction algorithm.

We found that, for many conditions, the reconstruction error increases with
GRIN model complexity. For the three GRIN models, the best reconstructions
were achieved using the input OPD data from OCT (with the lowest error oc-
curring for the condition that used OPD data of both the posterior lens surface
and cuvette). Increasing the error of the input data (L, R and H) increases the
reconstruction error. Whereas all configurations induced low reconstruction
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Figure 3.4: Axial (a) and meridional (b) deviation from the nom-
inal GRIN profile for the proposed experimental configurations,
for realistic input data error levels (R) and the 4-variable Gon-
charov model. Data represent the mean value and the error bars
the standard deviation of 50 repetitions of the reconstruction algo-
rithm. (Reproduced from de Castro et al. [2011a], Optics Express).

errors (GRIN RMS difference< 0.005) for the two-variable Goncharov model,
for three and four-variable Goncharov models the errors were higher when
using the cosine and impact as input data.

Figure 3.5 shows the spatial distribution of the reconstruction error in the
different conditions, across the axial and meridional axes for the 4-variable
GRIN model and the error level R.

The error of the reconstructed refractive index is of the same order of mag-
nitude in both the axial and meridional planes, although the error is slightly
higher along the axial coordinate. Also, the error tends to increase towards the
surface for most configurations.

3.3.4 Influence of the surface shape measurement error on the gra-
dient refractive index reconstruction

We found discrepancies in the measured radius of curvature of 1.02± 1.16%
and 1.05± 0.54% for the two measured lenses. These results are in good agree-
ment with previous studies of the group [Ortiz et al., 2010, 2011], where the
error was found to be around 1%.

We estimated the relative contribution to the GRIN reconstruction induced
by the surface shape measurement error (estimated in 1%) and the experimen-
tal input data errors (level R). Comparisons were made between the results of
the simulations with and without errors in the surface shape measurement.
Figure 3.6 shows the GRIN RMS difference for a 4-variable GRIN model with
error in both the surface and input data, relative to the reconstructed GRIN
with only input data errors. We found that the relative contributions of the
surface errors in the reconstructed GRIN were significant (p< 0.01) in the con-
figurations using direction cosines and intercept of the outgoing rays with
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Figure 3.5: Axial (a) and meridional (b) deviation from the nom-
inal GRIN profile for the proposed experimental configurations,
for realistic input data error levels (R) and the 4-variable Gon-
charov model. Data represent the mean value and the error bars
the standard deviation of 50 repetitions of the reconstruction algo-
rithm. (Reproduced from de Castro et al. [2011a], Optics Express).
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nominal GRIN data, with realistic error level (R) in the input
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of 50 repetitions of the reconstruction algorithm. (Reproduced
from de Castro et al. [2011a], Optics Express).

posterior lens surface points (35%), OPD up to the posterior surface of the lens
(20%) and OPD up to the posterior surface of the lens and cuvette (40%).

3.3.5 Influence of the ray sampling density on the reconstruction of
the gradient refractive index

We studied the effects of changing the number of input data in the reconstruc-
tion algorithm, or equivalently, increasing the corresponding number of rays
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Figure 3.7: GRIN RMS difference of the reconstruction for the
5 proposed experimental configurations and with realistic error
level R, versus number of rays. Pupil radius was set to 6 mm
pupil. Data represents mean value, and the error bars, the stan-
dard deviation of 50 repetitions of the reconstruction algorithm.
(Reproduced from de Castro et al. [2011a], Optics Express).

in the laser ray tracing sampling pattern or increasing the number of A-scans
in a cross-section of the OCT images.

While the pupil diameter was kept constant (6 mm), 7 different ray sam-
pling densities were studied ranging from 6 to 1200 total rays, i.e. ray sep-
aration distance between 1 mm and 5µm respectively. All simulations were
performed for an error level R, and for the 4-variable Goncharov model, for
the 5 proposed experimental configurations.

Figure 3.7 shows the GRIN RMS difference as a function of number of rays
traced. The reconstruction improves as the number of rays increases, although
beyond 100 rays the changes are minor. The impact of the number of rays on
the accuracy of the reconstruction is lower for the OCT-based input data than
for the laser ray tracing-based input data.

3.4 Discussion

The reconstruction method based on optimization techniques was applied in
this chapter to laser ray tracing (ray direction cosines and impacts) and optical
coherence tomography input data. We have studied the GRIN reconstruction
accuracy and the influence of the experimental errors of the different input
data.

In the absence of experimental errors the algorithm has been proved to
be sufficiently robust to reconstruct GRIN data for different GRIN models.
In the presence of the estimated experimental errors, obtained using custom-
developed laser ray tracing and OCT experimental devices, OCT-based data
allowed highly accurate reconstructions (GRIN RMS difference< 0.005) of the
GRIN. Also, the use of OCT-based input data appears less susceptible to er-
rors in the surface radii of curvature, and also on the number of rays. This
indicates that OPD is a suitable method for retrieving the GRIN of the crys-
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talline lens. The superiority of the optimization when using OPD data over the
rest proposed in this study (direction cosines, intercept of the outgoing rays
with posterior lens surface or impacts in a plane after the lens) might result
from the more direct information on the GRIN that the OPD accumulates at
the end of the ray trace. The accuracy of the reconstruction increased when
incorporating additional information –at least for the levels of error studied–
to the input data: adding the intercept of the outgoing ray with the posterior
lens surface in addition to the direction cosines in the ray tracing procedure
(configuration 2 versus 1), and adding cuvette OPD in addition to the lens
OPD in OCT (configuration 5 versus 4).

To test the flexibility of the reconstruction algorithm, we used three GRIN
models [Goncharov and Dainty, 2007] with increasing number of variables.
The accuracy of the reconstruction decreased slightly when increasing the
complexity of the model. The reconstruction algorithm can be used with other
GRIN models. In chapter 4 the precision is studied in the reconstruction of
an exponential 4-variable GRIN model and a similar accuracy is found (GRIN
RMS difference of 4 · 10-3) using OCT-based input data (posterior lens and
cuvette distortions), as in configuration 5 and an estimated error of 5µm in the
OPD.

A common problem to all optimization techniques is local minimum trap-
ping, and the possible existence of multiple solutions. Since the merit function
used is not described analytically, the absence of local minima or the existence
of multiple solutions cannot be proved mathematically. However, the use of
a global instead of a local search algorithm prevents local minimum trapping
and the large set of multiple experimental input data and relatively low num-
ber of unknown variables reduces the possibility for several solution with the
same merit function value.

The reconstruction algorithm and the error analysis for the various exper-
imental approaches presented can be compared to those of previous studies.
Vazquez et al. [2006] proposed a reconstruction algorithm based on laser ray
tracing at different orientations to reconstruct a non-spherical GRIN. They sim-
ulated a Gaussian error of less than 1µm. With data from orientations up to
80◦, the RMS of the GRIN reconstructed was below 10-4 for a GRIN described
by a 9-variable single polynomial and around 10-3 for a GRIN described by
two polynomial expressions (strong GRIN). The RMS reconstruction error, if
only orientations up to 10◦ were available, was > 10-3 in both cases. In compar-
ison, our reconstruction method, when using the same simulated input error,
achieved a reconstruction error < 5 · 10-3 for the 4-variable GRIN model, which
is comparable to the results by Vázquez et al. (with input data up to 10◦). It
is worth noting that our reconstruction algorithm could be extended for laser
ray tracing data at different orientations. Although this was not studied in this
thesis it is likely that the accuracy would increase further by incorporating in-
put data obtained at different orientations. Verma et al. [2007] used OCT-based
input data and an optimization algorithm (nonlinear least squares fitting) to
reconstruct a spherical GRIN lens. Simulating a Gaussian noise of 11µm they
obtained a maximum error of around 0.013. We reproduced their simulations
with our local search algorithm finding similar results (maximum error 0.010
and GRIN RMS difference of 5 · 10-3).
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There are other possible sources of experimental error, not addressed here,
such as decentration or tilt of the lens, or inaccurate positioning of the ray
entrance, which would affect the outcomes. However, several of these errors
can be minimized when obtaining three-dimensional input data (particularly
in the OCT based technique, where the surfaces of the lens are visualized
directly). As it was mentioned in section 2.3, the refractive index retrieved
from the reconstruction algorithm in configurations 4 & 5 is assumed to be
equivalent to the group refractive index. The resulting index can be converted
from the group to the phase refractive index at the central wavelength of the
OCT light source and subsequently to a different wavelength using available
data of the chromatic dispersion of the crystalline lens [Uhlhorn et al., 2008;
Atchison and Smith, 2005].

The techniques described here are designed for estimations of the GRIN of
the crystalline lens in vitro. However, the estimation of the GRIN distribution
of the lens in vivo would be of major interest to understand the contributions
of GRIN to the optical properties of the eye, and its influence in the opti-
cal changes with accommodation and aging, particularly considering that the
shape of the isolated crystalline lens differs from its unaccommodated state
in vivo. To date, all the laser ray tracing GRIN reconstruction methods have
proposed imaging lateral ray deflections which are unavailable in vivo. In con-
trast, we have demonstrated that relatively good reconstruction performances
(GRIN RMS difference < 0.01) can be obtained when using transverse imaging
of the impacts after the lens. These impacts can actually be available in vivo
(with additional contributions of the cornea) in a double-pass configuration as
routinely shown in laser ray tracing (LRT) measurements of the wave aberra-
tions in the eye [Moreno-Barriuso and Navarro, 2000; Moreno-Barriuso et al.,
2001] although the algorithm also requires knowledge of the posterior shape
of the crystalline lens. Nevertheless, while the OCT-imaging-based technique
described here works with in vitro samples, it is likely that this technique, in
combination with an in vivo LRT-based technique, operating at wide angles if
possible, would provide sufficient information for attempting a reconstruction
of the GRIN in vivo through optimization techniques.

3.5 Conclusions

The use of optimization methods to extract information of the gradient index of
the crystalline lens using different experimental data was studied. In absence
of experimental error the algorithms converged to the nominal GRIN and the
accuracy of the reconstruction using different experimental data and different
level of errors was proved to be in the same order of magnitude compared to
that achieved with other methods. This implies that the use of optimization
methods with low number of variables GRIN models is possible.

For the goals of this thesis, the results of the studies presented in this chapter
indicate that the best experimental strategy for the reconstruction of the GRIN
is based on Optical Coherence Tomography. Not only the accuracy studies
results suggest that the GRIN is less sensitive to errors in OPD, but also, OCT
systems are becoming increasingly used for anterior segment imaging and fast.
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In the next chapters, we will use OCT images to study the gradient index on
porcine and human crystalline lenses.
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Chapter 4
Three-dimensional reconstruction
of the crystalline lens gradient
index distribution from Optical
Coherence Tomography imaging

This chapter is based on the paper by de Castro et al. [2010]: “Three-dimensio-
nal reconstruction of the crystalline lens gradient index distribution from OCT
imaging,” Optics Express 18(21), 21905–17, 2010.

The author of this thesis took part in the experimental measurements (to-
gether with other coauthors), designed and programmed the simulations to
validate the reconstruction with the GRIN model used, developed the algo-
rithms to segment the surfaces in the OCT images, applied the reconstruction
method described in previous chapters and analyzed the results.

The coauthors of this study were Sergio Ortiz, Enrique Gambra, Damian
Siedlecki and Susana Marcos.

59



60 Chapter 4. Three-dimensional reconstruction using OCT imaging

4.1 Introduction

In the previous chapter we analyzed the potential of using optical path differ-
ences (OPD) in the reconstructions and found that the use of this experimental
data allowed higher accuracy in the estimation of the lens gradient index
(GRIN) with optimization methods. To our knowledge, only one study has
attempted to use optical coherence tomography (OCT) to reconstruct experi-
mentally the GRIN of a fish lens [Verma et al., 2007]. The application of an
optimization method in the fish lens to reconstruct the GRIN from OCT images
is relatively simple, as the simplicity of the GRIN model (due to the spherical
symmetry of the problem) avoids local minimum problems in the optimization
process.

The distortion produced by the isolated crystalline lens on the visualization
of a plane surface (the base of the cuvette holding the lens) imaged with OCT
technique has been previously used to estimate the physical thickness of the
lens as well as the central average refractive index of human lenses of different
ages [Uhlhorn et al., 2008]. The fact that the GRIN produces a significant
distortion in the posterior lens surface and in the cuvette holding the lens can
be actually used to attempt the reconstruction of the GRIN, provided that the
lens can be measured in two orientations, as occurs in vitro.

In this chapter, we present the reconstruction method applied to a porcine
crystalline lens with non-spherical geometry and a GRIN structure similar to
that expected to be found in the human crystalline lens. The input data are the
optical path accumulated by the rays passing through the lens measured with
OCT, and the shape of the anterior and posterior crystalline lens surfaces (with
the posterior directly measured in vitro by flipping the lens over), also obtained
from OCT. The anatomical GRIN model used is a 4-variable model proposed
by Manns et al. [2010]. The reconstruction using this model is demonstrated
computationally. Three-dimensional OCT measurements allowed a full 3-D
reconstruction of the GRIN structure in the porcine crystalline lens, showing
asymmetries in the GRIN distribution and avoiding potential artifacts arising
from measuring GRIN in a single meridian. Knowledge of both the surface
geometry and GRIN allowed estimating the relative contribution of each to
key optical aberrations as astigmatism and spherical aberration.
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4.2 Methods

4.2.1 Gradient refractive index model

The model used to describe the crystalline lens GRIN structure was presented
by Manns et al. [2010] and described in the introduction of this thesis (section
1.2.7). It brief, the anterior and posterior surfaces of the lens are described
by conics, the GRIN follows the surface shapes with an exponential variation
in the refractive index from the nucleus to the surface in both the axial and
meridional directions. The center of the GRIN lies in the intersection of the
optical axis and the equatorial plane. We implemented this model, setting the
equatorial plane at a distance from the anterior surface vertex equal to 0.41
times the lens thickness [Rosen et al., 2006]. The GRIN can be expressed in
polar coordinates as

n(ρ, θ) = nN − ∆n
(
ρ

ρS

)p(θ)

, (4.1)

where ρS is the distance from the center of the lens to the surface at angle θ;
p(θ) is a monotonic function which expresses the change of the exponential
decay value from the axial direction in θ = 0, p1, to the meridional direction,
θ = π/2, p2. This function was chosen to depend on the fifth power of θ for
this work; nN is the refractive index in the nucleus of the lens, and ∆n the
difference between surface and nucleus refractive index.

4.2.2 Merit function

The merit function defined to search for the best GRIN fitting the optical path
difference measured was defined as

MF(GRINcoeffs) =

RMS(OPDcalc(Surf2,GRINcoeffs),OPDexp(Surf2))+

RMS(OPDcalc(Surf3,GRINcoeffs),OPDexp(Surf3)), (4.2)

where MF stands for the merit function as a function of the 4 variables of
the GRIN (GRINcoeffs), the RMS refers to the root mean square, OPDcalc is
the estimated optical path difference for the posterior surface (Surf2) and the
cuvette surface (Surf3), and OPDexp the optical path difference measured by
the OCT system. The merit function is therefore defined by the sum of the RMS
of the differences between the estimated and measured optical path differences
for the posterior surface of the crystalline lens and the cuvette.

The search algorithm was described in section 2.3, it starts with a popu-
lation of solutions randomly selected within the expected range of solutions.
The starting population ranged from 1.36 to 1.39 for the surface refractive in-
dex (nS), 1.38 to 1.42 for the nucleus refractive index (nN) and 2 to 9 for the
optical and meridional exponential decay (p1 and p2). The algorithms were set
without constrains, i.e., there were not limits in the search of variable values.
A schematic diagram of the rules of the algorithm was presented in figure 2.2.
In brief, the merit function is evaluated in each solution and then a second
population is created by selecting some of the solutions stochastically (taking
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into account the merit function value) and recombining (85%) two solutions
(i.e. combining their variables) and mutating them (75% of recombined chil-
dren) by adding Gaussian noise. Some of the best solutions of a previous
iterations (5%) are directly copied to the next iteration and a few (10%) are
chosen randomly. In the simulations presented here the population for each
iteration was formed by 400 solutions and the process was repeated 10 times.
A local search algorithm [Nelder and Mead, 1965] was then applied starting
with the genetic optimization solution. The computation time was less than
45 minutes for each complete optimization using a 10µm step in the Sharma
algorithm. We tested that using different Sharma’s algorithm steps below that
value did not produce significant changes in the ray tracing algorithm or in
the optimization results.

4.2.3 Simulations

The performance of the GRIN reconstruction method was studied simulat-
ing three human crystalline lenses (20, 40 and 60 years old) with realistic
geometry and a GRIN distribution consistent with previous literature. The
anterior and posterior lens surface shapes and lens thickness were obtained
from Scheimpflug studies [Dubbelman et al., 2001; Dubbelman and van der
Heijde, 2001] and the parameters for the GRIN model were obtained from MRI
studies [Jones et al., 2005]. The nominal refractive indices were assumed to be
1.378 (surface index) and 1.410 (nucleus index). The axial exponential decay
(p1) were chosen to be 3 (young lens), 4 (middle age lens) and 6 (old lens); and
the meridional exponential decay (p2), 2 (young lens), 4 (middle age lens) and
8 (old lens). These values represent the commonly assumed GRIN profiles of a
young human lens (distributed GRIN from the nucleus to the surface), and an
old human lens (a large plateau and rapid index change toward the surface)
[Jones et al., 2005]. Figure 4.1 presents assumed GRIN distributions for young
(A), middle age (B) and old (C) human lenses used in simulations.

The optical path difference of each ray was obtained by simulating the
distortion of the posterior surface of the lens and the cuvette produced by
refraction and was calculated using the ray tracing algorithm (see section 2.2)
over a 6 mm pupil. Gaussian noise was added to simulate inaccuracies in the
detection of the surfaces from OCT in absence of other sources of experimental
error. The standard deviations of the noise used in the simulations ranged
from 0.1 (well below the expected experimental values) to 20µm (much higher
than the OCT resolution), with intermediate values of, 0.1, 1, 5, and 10µm.
Simulations of the GRIN reconstruction using the global search algorithm
described above were performed, with 100 repetitions in each condition. The
goodness of the reconstruction was assessed by comparison of the nominal
and reconstructed GRIN parameters, and in terms of root mean square (RMS)
of the differences between nominal and recovered GRIN in a grid of points
over the lens.
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Figure 4.1: Crystalline lens GRIN tested in the simulations for a
young human lens (a), a middle age lens (b) and an old human
lens (c). The index of refraction ranged from 1.410 in the nucleus
to 1.378 in the surface. The black line represents the undistorted
cuvette, the red line represents the distorted posterior surface, and
the blue line the distorted cuvette, for a 6 mm pupil diameter.
These curves are the input data to the optimization algorithm.
(Reproduced from de Castro et al. [2010], Optics Express).

4.2.4 Experimental measurements

Experimental measurements were performed on an isolated porcine lens. Enu-
cleated porcine eyes were obtained in a local slaughterhouse, and used within
4 hours post-mortem. The lens was extracted from the cadaver eye and placed
on a ring holder in a PMMA chamber filled with preservation medium (BSS
plus, Alcon, Fort Worth TX, n = 1.345). The lens was aligned with the OCT
system and 3-D OCT images were collected of the anterior and posterior lens
surfaces, and the base of the cuvette. The lens was first imaged with the ante-
rior surface up, and then flipped over and imaged with the posterior surface
up. Also, the cuvette was imaged through the crystalline lens and through
the preservation medium without passing through the lens in both cases. The
whole procedure of the measurement took less than one hour, during which,
the crystalline lens was continuously immersed in the preservation medium.

4.2.5 Optical Coherence Tomography system parameters

The unfolding mode of the spectral domain OCT [Grulkowski et al., 2009]
was used to expand the axial range and to ensure optimal signal from both
lens surfaces, two 3-D images were obtained per condition at two different
focal planes and then merged using the cuvette as a reference, to produce a
full 3D image of the crystalline lens. The merging algorithm was specifically
developed in MatLab for this study. A single 3-D image consisted of 1668
A-scans and 70 B-scans in a lateral range of 12 x 12 mm with a resolution of
170 x 7µm. The axial resolution of the images was 3.42µm, and the acquisition
time of a full 3-D image was 4.5 s. Figure 4.2 shows a full 3-D view of the
crystalline lens acquired as described in the text.
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2.5. OCT system 

The OCT images were obtained using a custom-developed high resolution spectral domain 
wich uses a SLD diode of 840 nm as central wavelength and a FWHM of 50 nm, the SNR of 
the instrument was estimated on 97 dB, the adquisition speed was 25,000 A-Scans/sec 
resulting in an integration time of 40 μm. More details can be found in previous works 
[24,35]. The system was adapted to the measurement of horizontally resting crystalline lens 
by inserting a mirror at 45 deg in front of the last lens of the instrument and on top of the 
cuvette holding the crystalline lens. An unfolding mode [35] was used to expand the axial 
range of the system up to 10 mm in air. In addition, to ensure optimal signal from both lens 
surfaces, two 3-D images were obtained per condition at two different focal planes, and then 
merged using the cuvette as a reference, to produce a full 3-D image of the crystalline lens. 
The merging algorithm was specifically developed in Matlab for this study. A single 3-D 
image consisted of 1668 A-scans and 70 B-scans in a lateral range of 12x12 mm with a 
resolution of 170x7 μm. The axial resolution of the images was 3.42 μm, and the acquisition 
time of a full 3-D image was 4.5 seconds. Figure 3 shows a full 3-D view of the crystalline 
lens acquired as described in the text. 

 

Fig. 3. (Media 1) Three dimensional image of the in-vitro posterior-up crystalline lens 
measured with OCT. 

2.6. OCT image processing 

OCT images were corrected for fan distortion, which arises from the scanning architecture, 
using algorithms developed in a previous study [36]. The fan distortion correction and 
posterior image analysis requires segmentation of the anterior and posterior crystalline lens 
surface, as well as the base of the cuvette.  
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Figure 4.2: Three-dimensional image of the in vitro posterior-up
crystalline lens measured with OCT. (Reproduced from de Castro
et al. [2010], Optics Express).

4.2.6 Optical Coherence Tomography images processing

OCT images were corrected for fan distortion, which arises from the scanning
architecture [Ortiz et al., 2009]. The fan distortion correction and posterior
image analysis requires segmentation of the anterior and posterior crystalline
lens surface, as well as the base of the cuvette. The detection of anterior and
posterior surfaces of the crystalline lens was performed using two different
strategies, according to the differences in the reflectivity of the surfaces as
described in section 2.4.3.

The pair of 3-D full crystalline lens images obtained in two orientations
(anterior surface and posterior surface up) was registered, to ensure that com-
parisons were made for the lens in an identical position. The axis of astigma-
tism of the entire lens (which should be the same in the two orientations of
the lens) was used as a reference for alignment. The axis of astigmatism of
each lens surface was computed from the Zernike fits (up to the 6th order in
a 6 mm diameter pupil) to each surface elevation map. The astigmatism axis
of the lens was calculated from the astigmatic distortion of the image of the
base of the cuvette. Using astigmatism as a signature for rotation leaves an
uncertainty of 180 degrees, which is easily solved by carefully monitoring the
lens handling while the lens was flipped, and by inspection of irregularities in
the image that serve as landmarks. Figure 4.3 shows the data obtained from
three dimensional OCT measurements of the crystalline lens placed with the
anterior surface up (A) and the posterior surface up (B).
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Figure 4.3: Three dimensional OCT data from images of the crys-
talline lens placed with the anterior surface up (left) and the pos-
terior up (right). The blue and red points correspond to the seg-
mented anterior and posterior surfaces of the lens, respectively.
The green points correspond to the segmented cuvette surface
imaged through the crystalline lens and the black points to the
segmented cuvette surface seen through the preservation media
without the crystalline lens. All data are fan distortion corrected,
and the surfaces are also distorted due to the presence of preser-
vation media. (Reproduced from de Castro et al. [2010], Optics
Express).

4.2.7 Crystalline lens surfaces shape and thickness

The crystalline lens shape was obtained from the direct OCT images of the
crystalline lens (anterior lens up and posterior lens up), i.e. not subject to opti-
cal distortion, and corrected from fan distortion. The 3-D elevation maps were
fitted by Zernike polynomials up to 6th order. However, as the GRIN model
used is defined assuming conic surfaces, only symmetric Zernike coefficients
and astigmatism were used to implement the lens surfaces in the algorithm.
The crystalline lens thickness was calculated from the distortion induced on
the cuvette, following Uhlhorn et al. [2008] method.

4.2.8 Three-dimensional gradient refractive index reconstruction al-
gorithm

As the crystalline lens surfaces lacks from rotational symmetry, it was nec-
essary to generalize the GRIN model of Eq. 4.1 to three dimensions. The
generalization was made by selecting 18 meridians (from 0◦ to 170◦ in steps of
10◦), and applying the optimization algorithm described before to a combined
merit function for all meridians. The GRIN profile of all meridians had the
same values for three of the variables (surface index, nucleus index and the
exponential decay in the optical axis, p1. The exponential decay in the merid-
ional axis, p2, was left free, to account for the differences of the GRIN across
meridians.
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Figure 4.4: Simulations results. Deviation of the parameters re-
sulting from optimization with different amounts of error in the
detection of distorted surfaces (left) and RMS difference between
reconstructed and nominal GRIN distribution (right). (Repro-
duced from de Castro et al. [2010], Optics Express).

4.2.9 Analysis of the influence of the gradient refractive index in the
optics of the lens

In order to study the influence of the GRIN distribution in the optics of the
crystalline lens, aberrations of the entire lens were calculated with the experi-
mental GRIN and with the homogeneous equivalent index. The geometry of
the lens was described by the Zernike fits to the raw data, as explained before.
A standard computational ray tracing analysis was followed to estimate the
lens aberrations. The plane of best focus was calculated searching the plane
where the deviations of ray impacts (RMS) from the optical axis reached a
minimum. The aberrations were calculated by fitting the optical path differ-
ences of rays (at best focus) with respect to central ray to a 6th order Zernike
polynomial. Calculations were done for a 6 mm pupil and 200 rays in each
meridian.

4.3 Results

4.3.1 Simulations: Predicted performance of the gradient refractive
index reconstruction algorithm

Figure 4.4 shows the goodness of the GRIN reconstruction in simulated crys-
talline lenses as a function of the amount of simulated noise in the lens surface
detection. Without errors, the exact nominal parameters of the GRIN were
obtained. The increase in surface detection noise increased the error in the
reconstructed GRIN, as well as the standard deviation of the retrieved param-
eters.

The mean values and standard deviation for all the ages for a 5µm error
in the data are 0.010± 0.004 for the surface index, 0.003± 0.001 for the nucleus
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Figure 4.5: Radius of curvature of the anterior (red) and posterior
(green) lens surface, in mm and meridional exponential decay pa-
rameter p2 (black) as a function of meridional angle. (Reproduced
from de Castro et al. [2010], Optics Express).

index and 1.4± 0.5 and 2.2± 0.5 for the exponential decay in optical and merid-
ional axis values. As shown in Figure 5, no large differences were found in
the quality of the reconstruction of the simulated lenses across ages, although
for small errors, the reconstruction is worst for the surface index and best for
the nucleus index in older lenses. This is possibly due to the larger role of
the nucleus in the description of the lens GRIN in old lenses in comparison to
young lenses. The error in the global description of the GRIN in terms RMS of
is 0.004± 0.001, and practically constant across ages.

4.3.2 Experimental results: Reconstruction of the gradient refractive
index of a porcine crystalline lens in 3-D

The GRIN structure in the porcine lens was obtained by applying the glo-
bal search algorithm, as described in section 4.2.8. The optimization search
algorithm was run 5 times for the same set of data.

As said before, we assume that the results from the optimization are equiva-
lent to the group refractive index at the central wavelength of the OCT, 840 nm,
these are 1.443 in the nucleus, nN, and 1.362 in the surface, nS. The axial expo-
nential decay, p1, was 2.62, and the meridional exponential decay, p2, varied
from 3.56 to 5.18 depending on the meridian angle.

The standard deviation of these parameters across repetitions was 0.0007
and 0.003 for the nucleus and surface index respectively, 0.09 for p1, and 0.30
for p2 (averaged across meridians).

The change in the meridional exponential decay p2 is shown in figure 4.5,
in comparison with the radius of curvature of the anterior and posterior lens
surface, as a function of the meridional angle. Changes in these parameters
across angle are indicative of astigmatism. The anterior surface of the lens
appears more astigmatic than the posterior surface in this eye, with the steepest
meridian at about 50 deg. Interestingly, p2 peaks at this angle, making the
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Figure 4.6: Change of the GRIN of the lens with meridian angle.
Results for 4 of the 18 meridians considered.

crystalline lens less convergent in this meridian, and therefore, producing a
compensation of the surface astigmatism. In fact, in this particular lens, the
GRIN overcompensates the astigmatism induced by the surfaces. The actual
values of astigmatism are reported in section 4.3.3. Gradient index structure
for different meridians is shown in figure 4.6.

4.3.3 Contribution of the estimated gradient refractive index to the
aberrations of the crystalline lens

Figure 4.7 shows the simulated ray tracing on the measured porcine lens, for
one meridian (0 deg), with the estimated GRIN (A) and with a homogeneous
equivalent refractive index (B). The presence of GRIN increases the effective
astigmatism of the crystalline lens, from 1.03 D (homogeneous index) to 4.76 D
(GRIN). It also shifts the axis of astigmatism from -34 deg (homogeneous
index) to 61 deg (GRIN) The presence of GRIN has also a large influence
on spherical aberration, shifting the 4th order spherical aberration term from
positive values (2.87µm, homogeneous index) to lower, and negative values
(−0.97µm, GRIN).

4.4 Discussion

We have used the method proposed in chapter 2 to reconstruct the GRIN of
the crystalline lens in vitro, using OCT imaging as input data to the global
search algorithm. The method is based on the search of the best GRIN profile
fitting the optical distortions produced on the posterior surface of the lens
by the anterior surface and the GRIN. There are works in the literature that
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Figure 4.7: Ray tracing in one meridian for the crystalline lens
with the reconstructed gradient index (A) and with the equiva-
lent refractive index (B). Main differences between them are an
increase in astigmatism of the lens (not visible here) and a shift of
spherical aberration toward negative values. (Reproduced from
de Castro et al. [2010], Optics Express).

propose methods for compensation of the optical distortion in OCT [Zawadzki
et al., 2003; Ortiz et al., 2010] assuming an homogeneous refractive index in
the crystalline lens. Here, we take advantage of this distortion to reconstruct
the GRIN.

Computer simulations show that, provided that the lens surfaces are known
within certain accuracy, it is possible to retrieve the GRIN from the optical path
difference of each ray, which is the information provided in OCT. For the de-
tection errors and resolution of state-of-the-art OCT, we predict an accuracy
in the GRIN reconstruction of 0.004 in terms of RMS of the differences. The
algorithm is easily implemented in 3-D, and we have achieved, for the first
time to the best of our knowledge, a 3-D reconstruction of the gradient index
distribution in a porcine lens.

A critical aspect of the GRIN reconstruction is the model used to describe
the index structure within the lens. We used a 4-variable GRIN model, which
is sufficiently simple to allow an appropriate convergence of the optimization
algorithm, while at the same time it is sufficiently flexible to accommodate dif-
ferences in the variation of the refractive index from the nucleus to the surface
(expected to vary strongly with age in humans) and across meridians (impor-
tant in non-rotationally symmetric lenses such as the porcine lens studied).
The GRIN model used is defined for a lens with biconic surfaces shapes, and
therefore cannot capture all the potential complexity of surface irregularities
and refractive index inhomogeneities suggested by direct measurements of the
high order aberrations in porcine crystalline lenses [Roorda and Glasser, 2004].
However, our estimates of spherical aberration of the porcine lens (from the
geometrical and GRIN data) show negative values in agreement with aberrom-
etry measurements. A 3-variable model such as Goncharov’s balanced model
[Goncharov and Dainty, 2007] was reconstructed with similar performance in
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simulations, but the lack of rotational symmetry in the crystalline lens required
an additional parameter. The optimization method was not successful with
polynomial GRIN models such as the Gullstrand’s model, where coupling
between coefficients and the high number of variables did not allow an easy
relation between changes in the polynomial variables and changes in GRIN
profile. To compare with previous reconstructions of GRIN on porcine crys-
talline lenses, the values of group refractive index at 840 nm must be converted
to phase refractive index and then to the wavelength desired as was described
in section 1.2.8. Despite the difference in the GRIN model and procedure, we
retrieved similar values for the surface and nucleus refractive indices as those
previously reported in porcine crystalline lenses by Vazquez et al. [2006] using
a tomographic ray tracing algorithm in a 2-D GRIN reconstruction with a Ne-
Ne at 633 nm: 1.366 and 1.444 using a mono-polynomial model and 1.361 and
1.449 for by-polynomial model, and 1.353 and 1.434 using our OCT method
and genetic algorithm in a 3-D GRIN reconstruction using a 4-variable GRIN
model (values converted form group refractive index at 840 nm, 1.362 and
1.443 for surface and nucleus respectively, to phase refractive index at 633 nm).

The presence of the GRIN structure in the lens has a strong impact on its
optical quality. Numerous studies in the literature both in vivo and in vitro
have shown that the spherical aberration in the young human and primate
lens tends to be negative, compensating at least in part the positive spherical
aberration of the cornea [El-Hage and Berny, 1973; Sivak and Kreuzer, 1983;
Glasser and Campbell, 1998, 1999; Vilupuru and Glasser, 2001; Artal et al., 2002;
Barbero et al., 2002; Roorda and Glasser, 2004; Acosta et al., 2010]. We found
that the spherical aberration of the isolated lens would be positive if it had
a homogeneous refractive index, while the measured GRIN structure makes
the spherical aberration to be negative. This result agree with the study on
refilling of porcine crystalline lenses by Wong et al. [2007] and were suggested
by Vazquez [2007]. The estimated spherical aberration in the presence of
GRIN (−0.97µm) is in reasonable good agreement with reported [Roorda and
Glasser, 2004] measurements on an isolated porcine lenses using ray tracing
(−0.7µm). By measuring the lens shape and GRIN we have been able then
to identify the relative contribution of the surface shape and GRIN in the
spherical aberration. As previous studies in other animals such as fish [Jagger,
1992] and rat [Campbell and Hughes, 1981], we have shown a compensatory
effect of GRIN also in a more complex lens structure such as the porcine lens.

The measurement of the GRIN structure in 3-D has allowed us to eval-
uate the influence of GRIN in other, non-rotationally symmetric terms, such
as astigmatism. In the lens studied, the presence of GRIN increase the im-
pact of the magnitude of lens astigmatism, as it would be predicted with a
homogeneous index, and also plays a role in the axis of the overall lenticular
astigmatism axis.

As the method proposed requires knowledge of the posterior lens shape
(as well as its distortion as it is imaged through the lens), it is suited for in
vitro studies, but cannot be directly applied in vivo. However, while different
optimization strategies will be needed to extract the gradient index from OCT
images of the crystalline lens in vivo, knowledge of the GRIN structure in vitro
have allowed to identify an anatomically plausible GRIN model and can help



4.5. Conclusions 71

to limit the search of the solution space in vivo.

4.5 Conclusions

In this chapter we have tested experimentally the reconstruction method and
successfully retrieved the gradient refractive index of a porcine crystalline lens
three-dimensionally. Simulations with the model proposed by Manns et al.
[2010] show similar accuracies as those presented in chapter 3 using the models
described in Goncharov and Dainty [2007]. This validates the reconstruction
method with another model and its use to estimate the refractive index of the
crystalline lenses.

The three-dimensional reconstruction of the GRIN distribution show that
the astigmatism of the lens, usually neglected in the studies of crystalline lens
gradient index or surfaces shape, may play an important role in the optics of
the eye. The understanding of the GRIN distribution, its contribution to the
crystalline lens optics and potential changes with age are particularly relevant
in humans. In the following chapter we will apply the developed techniques
to human lenses
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Chapter 5
Age-dependent variation of the
gradient refractive index profile
in human crystalline lenses

This chapter is based on the paper by de Castro et al. [2011b]: “Age-dependent
variation of the Gradient Index profile in human crystalline lenses,” Journal of
Modern Optics 58(19-20), 1781-7, 2010.

The contribution of the author of this thesis to the study was part of the
processing of experimental data, application of the search algorithms to recon-
struct the GRIN and analysis of the results.

The coauthors of this study are Damian Siedlecki, David Borja, Stephen
Uhlhorn, Jean Marie Parel, Fabrice Manns and Susana Marcos.
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5.1 Introduction

There has been a great interest in understanding of the optical properties of the
human crystalline lens over the last few decades. The primary interest of those
studies address at gaining knowledge on the contribution of the crystalline lens
to the overall retinal image quality [Smith et al., 2001; Artal et al., 2002], the
mechanism of accommodation, and its failure in presbyopia.

One particularity of the lens is that it continuously grows throughout life.
During aging, the crystalline lens undergoes several changes in several physi-
cal and biochemical properties, including geometry (thickness and curvatures),
mass, volume, stiffness, elasticity and its gradient refractive index [Rosen et al.,
2006; Augusteyn et al., 2008]. Age-dependent changes in the refractive index
distribution were postulated by several authors based on the observations that
ocular refraction remained practically constant with age, even though the lens
shape experienced very significant changes [Koretz and Handelman, 1986;
Pierscionek, 1990; Smith et al., 1992; Hemenger et al., 1995; Garner et al., 1998].
The lens paradox, as this effect was named, hypothesized that the equivalent
refractive index should decrease with age in order to compensate for the de-
crease of the radii of curvature (and therefore increased surface power) of the
relaxed crystalline lens with age [Koretz et al., 1997].

Experimental measurements of the gradient index distribution inside the
lens and its age dependence have been challenging, and mostly restricted to
measurements in vitro. For example, Pierscionek [1997] measured the local
refractive indices directly using a fiber-optic sensor, and reported no significant
variation of the surface index in the anterior and posterior poles with age,
although she found that the index at the equator seemed to be lower in younger
lenses. Using Purkinje images positions and a very simple GRIN model,
Hemenger et al. [1995] reported a significantly flatter refractive index near
the lens center in older than in younger lenses. Glasser and Campbell [1999]
measured lens geometry in vitro, and used a laser ray tracing technique to
measure the focal length from which they estimated the equivalent refractive
index of the lens. They found no age-dependency of the equivalent refractive
index with age. In contrast, Borja et al. [2008] reported a biphasic decline
of the equivalent refractive index with age. Uhlhorn et al. [2008] used, for
the first time, optical coherence tomography (OCT) for estimations of the
refractive index of human crystalline lenses and reported a decrease in the
average (not to be mistaken with equivalent) axial refractive index with age.
Magnetic resonance imaging (MRI) has been used as a non-destructive method
to measure the GRIN distribution of the human crystalline lens, and results
have been reported as a function of the age of the donor lenses [Moffat et al.,
2002a; Jones et al., 2005]. These MRI results suggest that the surface and nucleus
refractive index are constant with age, but that there is a flattening of the GRIN
profile with age [Jones et al., 2005]. More studies using alternative methods
are needed to verify the variability of the nucleus and surface refractive index
values, and to confirm the changes in the shape of the profile with age.

In chapter 4 we presented the reconstruction of the GRIN distribution of a
crystalline lens in vitro, based on OCT. The method was demonstrated in an
isolated porcine lens, and provided for the first time three-dimensional (3D)



5.2. Methods 75

reconstructions of a complex crystalline lens GRIN distribution. The method
is based on the acquisition of OCT images of the lens (pairs of images with the
anterior surface up and down), and an optimization routine based on a genetic
algorithm. In the present study we apply the GRIN reconstruction method to
the two-dimensional reconstruction of the GRIN from OCT images of human
cadaver lenses of different ages.

5.2 Methods

5.2.1 Human lens samples

Human eyes were obtained from the Florida Lions Eye Bank and used in
compliance with the guidelines of the Declaration of Helsinki for research
involving the use of human tissue. Experiments were performed on nine
lenses from nine different donor eyes within 1 to 4 days post-mortem. The
donor age ranged from 6 to 72 years (average 44± 20 years). The donor globes
arrived in sealed vials, wrapped in gauze soaked with BSS. Upon receipt, the
vials were stored in a fridge at 4 ◦C. Before the experiment, the vials were
removed from the fridge and the lens was carefully extracted and immersed
in preservation medium (DMEM/F-12, D8437, Sigma, St. Louis, MO) at 25 ◦C,
using a protocol that has been published previously [Augusteyn et al., 2006].
During measurements, the lens rested at the bottom of a cuvette on a soft rubber
o-ring (Buna-N, Small Parts Inc, Miami, FL), which prevents any contact of the
lens surface with the chamber wall [Uhlhorn et al., 2008]. All measurements
were performed within an hour after the lens was extracted from the eye.
Lenses that were swollen or damaged, as determined from the OCT image
and the methods described in Augusteyn et al. [2006], were excluded from the
study.

5.2.2 Optical Coherence Tomography imaging

Lenses were imaged the custom-built time domain OCT system described in
section 2.4.2 in two positions, with the anterior surface of the lens facing the
OCT beam, and then in the reversed orientation (posterior surface lens up).
The lens was carefully flipped and re-aligned with a surgical spoon and special
care was taken to ensure that the OCT cross-sectional images were obtained on
the same meridians for the two orientations of the lens, first visually and then
by using features in preliminary OCT images as a guide. In practice, however,
small differences in the alignment, which increase the variability of the results,
are always expected.

5.2.3 Image processing

An edge-detection routine developed in MatLab was used to detect the position
of the intensity peaks corresponding to the anterior and posterior surfaces of
the lens on each A-scan of the uncorrected OCT image. Any residual tilt was
corrected using a procedure that was described before [Urs et al., 2009, 2010].
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The optical path difference (OPD) for each ray was calculated as the ver-
tical distances between anterior and posterior lens surfaces in an uncorrected
(distorted) OCT image. The actual shape of the lens was obtained from the
undistorted images of the anterior and posterior surfaces. The segmented
surfaces were fitted by conics. The true physical thickness of each lens was
calculated from the distortion of the cuvette holding the lens during the mea-
surements [Uhlhorn et al., 2008]. The average refractive index along the central
axis was calculated dividing the optical thickness by the geometrical thickness
of the lens. This calculation produces the average group refractive index for the
OCT wavelength (825± 25 nm). The group refractive index was converted to
a phase refractive index for monochromatic light at 825 nm. The phase refrac-
tive index at 589 nm was then calculated using lens dispersion data from the
literature [Atchison and Smith, 2005] in a similar way as reported by Uhlhorn
et al. [2008].

5.2.4 Gradient refractive index reconstruction algorithm

The GRIN profile of the lenses was estimated using the optimization method
presented in chapter 2, and demonstrated in a porcine crystalline lens in chap-
ter 4. In the previous study the method was applied on 3D OCT images of
a porcine lens, while here it is applied to two-dimensional OCT images of
human lenses. A merit function was built based on the difference between the
experimental OPD data and the estimated OPD of each ray through a GRIN
model and a genetic/Nelder–Mead algorithm searched for the best GRIN that
matched the experimental optical path differences, i.e. the minimum of the
merit function. The variables in the minimization procedure were those of the
GRIN model.

Although the reconstruction was performed for several pupil diameters,
the best results (lower values in the merit function) were found for 4 mm pupil
diameters, and the reconstructed GRIN parameters are given for this pupil
size.

5.2.5 Gradient refractive index model

A three-variable GRIN model was used in the reconstruction [Manns et al.,
2010]. As in the case of the porcine lens study, the center of the lens was set in
the meridional plane, at 0.41 times the thickness of the lens [Rosen et al., 2006].
The GRIN was described by means of a power coefficient from the nucleus
(with a refractive index nN) to the surface (with refractive index nS):

n(r, θ) = nN − ∆n ·
(
ρ

ρS

)p

, (5.1)

where ∆n is the difference between nucleus and surface refractive indices, ρ is
the distance from the center of the lens to the surface at angle θ, and p is the
power coefficient of the GRIN.

A similar model (with additional variables to account for meridional vari-
ations in the refractive index) had been successfully used to reconstruct the
GRIN 3D distribution in the porcine lens. The power coefficient allows the
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Figure 5.1: (a) Radii of curvature of the anterior and posterior
surfaces of the lenses used in this study. (b) Thickness calculated
from the OCT images. (Reproduced from de Castro et al. [2011b],
Journal of Modern Optics).

description of highly distributed refractive index (low exponents) as expected
in young lenses, as well as a constant plateau and rapid decline of the refractive
index toward the surface (high exponents) as expected in old lenses. The only
constraint used in the search algorithm was a penalty if the surface refractive
index was higher than the nucleus index.

5.3 Results

5.3.1 Lens surface shape and thickness

Anterior and posterior lens surfaces were fitted by conics over a 6 mm area.
Fitting errors were in all cases in the order of the OCT resolution. Figure 5.1
shows the values of anterior and posterior radii of curvature and thickness as
a function of age. Lenses steepened with age until at least 50 years.

5.3.2 Average refractive index

The average refractive index is the mean value of the GRIN profile along the
optical axis of the lens. Figure 5.2 shows the average phase refractive index as
a function of age at 589 nm. As reported previously in the literature [Uhlhorn
et al., 2008], there is no clear age-related trend, and there is a wide range of
average index values (1.392 to 1.425) for the 9 lenses measured in this study.
The two extreme values for the adult eyes (at 31 and 49 years) could be caused
by variability in the measurement due to positioning errors.
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Figure 5.2: Average phase refractive index at 589 nm as a function
of age. (Reproduced from de Castro et al. [2011b], Journal of
Modern Optics).

Table 5.1: Values of average refractive index and GRIN parame-
ters: surface and nucleus refractive index and power coefficient
for the set of lenses imaged in this study. An asterisk in the
age column indicates that a secondary minimum was taken as
solution. All refractive index values correspond to the phase
refractive index calculated at 589 nm.

Age Average GRIN results
(years) (phase 598 nm) Surface Nucleus Exp decay

6 1.423 1.386 1.434 3.2
*31 1.392 1.362 1.399 2.6
*33 1.409 1.388 1.414 7.6
*41 1.411 1.387 1.418 4.4
48 1.411 1.351 1.412 11.9
48 1.415 1.356 1.418 13.6

*49 1.425 1.382 1.432 6.5
67 1.413 1.365 1.412 17.7
72 1.411 1.376 1.413 16.7

5.3.3 Gradient refractive index

Table 5.1 shows the GRIN model parameters obtained in the reconstruction,
and Figure 5.3 the age-dependence of the three parameters: nucleus and sur-
face indices (Figure 5.3a) and power coefficient (Figure 5.3b).

The only systematic variation with age was found for the power coefficient.
The goodness of the reconstruction (comparison of the experimental distorted
posterior lens surface and the simulated from the reconstructed GRIN) was
less than 15µm in all cases.

In four lenses (ages 31, 33, 41 and 49) the lowest RMS was found with
a homogeneous index (similar nucleus and surface indices). A study of the
space of solutions revealed another pair of values that represented the exper-
imental OPDs with high accuracy (RMS = 6± 5µm). For these lenses, another
realization of the local search algorithm produced a local minimum, which
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Figure 5.3: Nucleus and surface refractive indices (a) and power
coefficient (b). The refractive index values correspond to the
phase refractive index at 589 nm. (Reproduced from de Castro
et al. [2011b], Journal of Modern Optics).
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Figure 5.4: Two-dimensional OCT image (upper row) and re-
constructed GRIN distribution (lower row) of the nine lenses of
different ages the study. Data of the central 4 mm pupil were
used, the vertical black bar indicates the area reconstructed. (Re-
produced from de Castro et al. [2011b], Journal of Modern Optics).

was taken as the solution of the optimization problem.

There was no statistically significant change with age in the refractive
index of surface and nucleus (p = 0.37 and 0.39, respectively). Average refrac-
tive index values in surface and nucleus was found to be 1.373± 0.014 and
1.417± 0.011. The power coefficient increased steadily with age and signifi-
cantly (p = 0.039), with a rate given by 0.24± 0.05 (r = 0.847) per year. All values
correspond to the phase index at 589 nm.

Figure 5.4 shows raw OCT images and the 2-D representations of the re-
constructed GRIN in the nine lenses of the study.
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5.4 Discussion

We have shown that OCT imaging allows high-resolution imaging of the crys-
talline lens surfaces as well as reconstruction of the GRIN distribution of the
isolated human lens. In a small group of eyes, we found age-dependent vari-
ation of the lens shape, and changes in the shape of the GRIN profile.

We found similar changes in the radii of curvature to those reported by
Borja et al. [2008] in isolated lenses using shadowphotography. The changes
are more prominent in the anterior surface, as previously reported to occur in
vivo as a function of age and as a function of accommodation [Koretz et al.,
2002; Dubbelman et al., 2005a; Rosales et al., 2008]. A remarkable feature is the
biphasic pattern of the variation of the lens radii with age [Borja et al., 2008].

We found that the surface and nuclear refractive indices were constant with
age. However, the values suffered from a relatively large scatter. A larger num-
ber of samples may confirm with statistical certainty if these indices change
with age. The lack of systematic variation of the surface and nucleus indices
with age had been previously reported using destructive methods [Pierscionek,
1997] and with the MRI approach [Jones et al., 2005] on a larger population. The
shape of the GRIN profile varied significantly with age, with a more distributed
index in the young lens, and an increase of the central plateau with increasing
age, confirming results obtained from a Purkinje method [Hemenger et al.,
1995] and MRI [Moffat et al., 2002a; Jones et al., 2005]. The average refrac-
tive index agrees with previously published results [Uhlhorn et al., 2008], the
range of refractive indices (1.392 to 1.425) is similar to previous reports (1.316
to 1.416), and the scattering of the data is large in all studies. The reconstructed
surface and nucleus indices of refraction also show a large inter-subject vari-
ability. The variability of the surface and nucleus indices is probably not the
reflection of the true biological variability, but caused by measurement uncer-
tainties. A precision of ± 0.01 in the refractive index correspond to a relative
error of less than 1%. In general, the lens refractive index is derived indirectly
from several independent measurements, each with its own sources of error.
Small measurement errors can produce significant variations of the refractive
index. In this study, the refractive index is calculated from two separate images
of the crystalline lens. The extreme values of two of the adult lenses could be
due to small positioning errors between the two measurements (see below).
Overall, our reconstructed indices (1.351 to 1.388 for the surface refractive in-
dex and 1.399 to 1.434 for the nucleus refractive index) are in agreement with
those from Jones et al. [2005] using MRI (1.36 and 1.38 for the surface refractive
index and 1.395 to 1.430 for the nucleus refractive index).

The only parameter that is found to change systematically with age is the
power coefficient of the GRIN model. Some studies in the literature describe
the progressive development of a central refractive index plateau area in the
lens with aging [Hemenger et al., 1995; Jones et al., 2005]. The three-variable
model can account for a gradual variation of the profile (low power coefficients)
or the presence of a plateau (high power coefficients), without requiring a
highly complex GRIN model definition. We found that the power coefficient
increases steadily with age. This is consistent with a monotonic variation of
the profiles in young lenses, and a relatively flat profile, with a steep decrease
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of the index near the surface in old lenses. These results are in accordance
with previous literature using MRI of the change of the GRIN structure in
crystalline lenses with age [Jones et al., 2005].

The use of OCT imaging to reconstruct GRIN in the human lens is novel.
We had theoretically suggested that optical path differences from OCT con-
tained information of the GRIN distribution [Ortiz et al., 2004]. The first
experimental application of OCT to retrieve GRIN was performed in the fish
lens (using a simple spherical lens and spherical GRIN model) by Verma et al.
[2007]. The difference between the distorted and undistorted lens shape is a
key factor in the reconstruction. The OCT technique provides high resolution
in surface shape measurements (in comparison with shadow photography,
Scheimpflug of MRI) and GRIN estimates. The precision of the GRIN recon-
struction technique is mainly limited by experimental errors. Lens surface
elevation is limited by the resolution of the OCT system (around 10µm in
our system) and the centering of the lens. Tilt is corrected in the images but
residual tilt, and particularly a decentration of the lens (i.e. A-scan not passing
through the apex of the lens) will result in an underestimation of the thick-
nesses and overestimation of the radii of curvature. Also, although special
care was taken to ensure that, when flipping the lens over, the meridian under
measurement remained unchanged, errors may arise due to decentration or
rotation. If rotated, astigmatism in the surfaces or possible asymmetries in
the GRIN distribution will introduce an error in the measurements. While
we believe that these effects are not significantly affecting the overall findings,
they increase the variability. In particular, potential trends for variations in
the surface and nucleus index can be confirmed by increasing the sample size.
Also, some of the errors can be minimized by extending the method to 3-D
images of the lens. Future 3-D reconstruction will also make it possible to
take into account the possible astigmatism of the lens surfaces and meridional
variations in the GRIN profile.

5.5 Conclusion

The reconstruction of the GRIN of in vitro human lenses using optimization
techniques is novel. Particularly we have shown that the OCT images contain
enough information to study the GRIN of the crystalline lenses. The method
and technique proposed in this thesis was first demonstrated in a porcine lens
and now proved also robust in human lenses of different ages.

The variation of the profile is consistent with MRI measurements and the
formation of a refractive index plateau. This is addressed in our study, using
optical techniques and relatively simple experimental equipment compared
with MRI studies.

The distortion introduced in the posterior surface by the GRIN distribution
of the crystalline lens was used as input data to reconstruct the refractive index
of the lens. Conversely, the GRIN distorts the image of the posterior lens
surface in OCT imaging. The effect of GRIN on the estimation of the posterior
lens shape parameters and the correction of this distortions will be addressed
in chapters 6 and 7.
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Chapter 6
Distortions of the posterior
surface in optical coherence
tomography images of the
isolated crystalline lens: effect of
the lens gradient refractive index

This chapter is based in the paper by Borja et al. [2010]: “Distortion of the poste-
rior surface in optical coherence tomography images of the isolated crystalline
lens: effect of the lens index gradient,” Biomedical Optics Express 1(5):1331-40,
2010.

The contribution of the author of this thesis was the programming of the
algorithms to simulate the distortions produced when the lens is imaged with
an Optical Coherence Tomography system, the comparison between the dis-
torted and the measured surfaces, and the correction of the distorted surfaces
supposing an homogeneous or a graded index media in the lens.

The coauthors of this study are Damian Siedlecki, Stephen Uhlhorn, Sergio
Ortiz, Esdras Arrieta, Jean Marie Parel, Susana Marcos and Fabrice Manns.

83



84 Chapter 6. Distortion of the posterior surface in OCT images

6.1 Introduction

Since the gradient index (GRIN) contributes significantly to both paraxial and
optical properties and higher-order aberrations of the lens [Sands, 1970; Smith
et al., 2008], it affects the distortion of the images of the crystalline lens acquired
in vivo or in vitro using Scheipflug imaging [Dubbelman and van der Heijde,
2001; Rosales et al., 2006; Rosales and Marcos, 2009], or Optical Coherence To-
mography (OCT) [Verma et al., 2007; Uhlhorn et al., 2008]. In images acquired
in vivo, the shape of the anterior lens surface is distorted due to refraction at
the cornea [Rosales et al., 2006; Dunne et al., 2007]. Additionally, in images
acquired in vivo or in vitro, the shapes of the posterior lens surface and inter-
nal boundaries are distorted due to refraction at the anterior lens surface and
internally through the refractive gradient index.

Several correction algorithms, generally relying on a ray trace through the
ocular surface and media, have been developed to correct for refractive distor-
tions of the cornea or lens in Scheimpflug imaging [Dubbelman and van der
Heijde, 2001], and OCT [Westphal et al., 2002; Podoleanu et al., 2004]. Three-
dimensional correction algorithms have been developed only very recently
[Ortiz et al., 2010]. One of the limitations of these correction algorithms is that
they rely on ray traces in homogeneous media. Correction algorithms for the
crystalline lens assume that the lens is homogeneous, with a fixed refractive
index equal to the equivalent index [Dubbelman and van der Heijde, 2001;
Ortiz et al., 2010]. Differences in the ray path between the real crystalline lens
with its gradient refractive index and the uniform equivalent refractive index,
introduce uncertainties in the shape of the internal boundaries and posterior
surface produced by the correction algorithms.

The purpose of this chapter is to quantify the measurement error introduced
in the posterior lens surface of OCT images of the in vitro lens due to refraction
at the anterior lens surface and through the GRIN of the lens. Implications for
the correction of OCT images of the crystalline lens are discussed.

6.2 Material and methods

6.2.1 General description

Cross-sectional OCT images of isolated human crystalline lenses were acquired
with the time domain OCT system described in section 2.4.2. The lens was
first imaged with the OCT scanning beam incident on the anterior lens surface
(“anterior up” image) and then flipped over and imaged with the OCT scan-
ning beam incident on the posterior lens surface (“posterior up” image). As
said before, in the “anterior up” images the posterior lens surface is distorted
due to refraction at the anterior lens surface and due to the index gradient.
The “posterior up” image provides the undistorted shape of the posterior lens
surface. The effect of the GRIN on the posterior shape of the lens is quantified
by comparing the radius of curvature and asphericity of the posterior lens sur-
face obtained from the “anterior up” and “posterior up” images. The results
were also compared with the predictions from an optical model of the lens
with refractive index gradient.
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6.2.2 Donor tissue preparation

All human eyes were obtained and used in compliance with the guidelines
of the Declaration of Helsinki for research involving the use of human tissue.
Experiments were performed on 12 lenses from 12 different donor eyes within
1 to 4 days post-mortem (average: 57± 25 hours). The donor age ranged from
6 to 90 years (average 47± 22 years). The lenses were isolated from the eye and
immediately immersed in a small chamber filled with preservation medium
[Augusteyn et al., 2006]. The lens rests at the bottom of the chamber on a soft
rubber o-ring which prevents any contact of the lens surface with the chamber
wall [Uhlhorn et al., 2008].

6.2.3 Image acquisition

The time-domain OCT system described in section 2.4.2 [Uhlhorn et al., 2008],
was used to acquire cross-sectional images of the whole crystalline lens. The
axial and lateral position of the lens was first adjusted using a continuous
real-time display of the central A-scan as a guide, until the lens was centered
(maximum signal strength and maximum separation between the lens anterior
and posterior signal peaks). Tilt and tip were then adjusted using real-time
B-scan images for guidance.

Once the lens was centered and aligned, a cross-sectional OCT image was
acquired first with the lens resting on its posterior surface and with the anterior
surface facing the OCT beam, “anterior up”. The lens was then carefully
flipped with a surgical spoon, re-aligned, and a cross-sectional OCT image is
acquired with the lens resting on its anterior surface and with the posterior
surface facing the OCT beam, “posterior up”. Each cross-sectional OCT image
consists of 500 A-lines acquired over a 10 mm lateral scan length with 5000
points per A-line.

6.2.4 Optical Coherence Tomography image analysis

An edge-detection program developed in MatLab was used to detect the posi-
tion of the intensity peaks corresponding to the anterior and posterior surfaces
of the lens on each A-line of the uncorrected OCT image. Any residual tilt was
then corrected using a procedure described by Urs et al. [2010]. Along each A-
line of the processed image, the position of the intensity peaks is determined
by the optical path length traveled between the boundaries of interest by a
ray entering the measurement chamber in a direction parallel to the optical
axis. With the coordinate system and notation of figure 6.1, the uncorrected
positions of the first and second surfaces are therefore calculated using:

z1(x) =
d1(x)

nDMEM
z2(x) = z1(x) +

d2(x) − d1(x)
nL(x)

(6.1)

In Eq. 6.1, nDMEM = 1.345 is the group refractive index of DMEM and nL(x)
is the average value of the group refractive index of the lens along the ray
path, both measured at the central wavelength of the OCT beam (λ= 825 nm).
The average group refractive index of the lens was measured directly using
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In Eq. (1), nDMEM = 1.345 at 825nm is the group refractive index of DMEM and <nL(x)> is 
the average value of the group refractive index of the lens along the ray path, both measured 
at the central wavelength of the OCT beam (  = 825nm). The average group refractive index 
of the lens was measured directly using a method described previously [10]. The lengths d1(x) 
and d2(x) correspond to the optical distances and the lengths z1(x) and z2(x) correspond to the 
actual distances along the ray. The curve z1(x) is the corrected shape of the first lens surface. 
The curve z2(x) is the shape of the second lens surface corrected for the refractive index but 
not for refraction at the first lens surface or within the lens. In the “anterior-up” images, the 
first surface is the anterior lens surface. In the “posterior-up” images, the first surface is the 
posterior lens surface. The cross-sectional profiles, z1(x) and z2(x), were fit with conic 
functions over the central 6mm zone to calculate the radius of curvatures (R) and asphericity 
(Q) of both lens surfaces [19,20]. 

To evaluate the measurement repeatability, one lens (age = 6 years) was imaged three 
times in the anterior up position. The standard deviation was 0.07mm (+/ 3.5% of the mean) 
for the anterior radius of curvature and 0.48mm (+/ 13% of the mean) for the posterior 
surface. A separate analysis shows that this measurement variability is due almost entirely to 
variability in the lens position between successive measurements, not to the processing 
algorithm. 

 
Fig. 1. Optical and geometric location of the lens surfaces in OCT images. Left: Raw image. 
Right: Image corrected for the refractive index using Eq. (1). 

2.5. Simulations 

2.5.1. Effect of the GRIN on distortions 

In a first set of simulations, the posterior surface distortions predicted using an exact ray-trace 
through a homogeneous and GRIN model of the lens were compared with the experimental 
results. The measured posterior lens surface radius and asphericity obtained from anterior-up 
images were compared with values obtained from conic fits of the simulated posterior surface. 
For the homogenous model, simulations were run with two different values of the index: the 
“average” index and the “best” index. The average refractive index defined in Eq. (1) was 
obtained by dividing the optical path length in the center of the lens by the actual central lens 
thickness obtained from shadowphotography images of the same lens [20,21]. The best index 
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Figure 6.1: Optical and geometric location of the lens surfaces in
OCT images. Left: Raw image. Right: Image corrected for the
refractive index using Eq. 6.1.

lens were compared with the experimental results. The measured posterior
lens surface radius and asphericity obtained from anterior-up images were
compared with values obtained from conic fits of the simulated posterior
surface. For the homogenous model, simulations were run with two dif-
ferent values of the index: the “average” index and the “best” index. The
average refractive index define above was obtained by dividing the optical
path length in the center of the lens by the actual central lens thickness
obtained from shadow photography images of the same lens [Rosen et al.,
2006; Borja et al., 2008]. The best index is the homogeneous index that min-
imizes the RMS error between the measured and simulated posterior lens
surface as imaged through the anterior surface. For the GRIN model, we
assumed a gradient index distribution based on the three-variable model
proposed by Goncharov and Dainty [2007]. This model starts with a poly-
nomial expansion of the refractive index function in a meridional plane.
Expressions for the coefficients are derived by making assumptions on the
shape of the iso-indicial surfaces. The model assumes fixed values for the
index of refraction in the core (nN) and the surface (nS) of the lens, and
a radius for the posterior isoindicial surface profile (rpp) which does not
coincide with the radius of the posterior surface.

Simulations were performed for a lens from a 6 year old donor using the
undistorted lens surface parameters obtained from the anterior and poste-
rior surface up measurements as the nominal values. The measured average
index was 1.419. The gradient index parameters were obtained using the
reconstruction methods described before with optical path differences as
input data. This produced the following values: nN = 1.443; nS = 1.374;
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Figure 6.1: Optical and geometric location of the lens surfaces
in OCT images. Left: Raw image. Right: Image corrected for
the refractive index using Eq. 6.1. (Reproduced from Borja et al.
[2010], Biomedical Optics Express).

Uhlhorn’s method [Uhlhorn et al., 2008]. The lengths d1(x) and d2(x) corre-
spond to the optical distances and the lengths z1(x) and z2(x) correspond to
the actual distances along the ray. The curve z1(x) is the corrected shape of
the first lens surface. The curve z2(x) is the shape of the second lens surface
corrected for the refractive index but not for refraction at the first lens surface
or within the lens. In the “anterior up” images, the first surface is the anterior
lens surface. In the “posterior up” images, the first surface is the posterior lens
surface. The cross-sectional profiles, z1(x) and z2(x), were fitted with conic
functions over the central 6 mm zone to calculate the radius of curvatures (R)
and asphericity (Q) of both lens surfaces [Manns et al., 2004; Rosen et al., 2006].

To evaluate the measurement repeatability, one lens (age = 6 years) was
imaged three times in the anterior up position. The standard deviation was
0.07 mm (± 3.5% of the mean) for the anterior radius of curvature and 0.48 mm
(± 13% of the mean) for the posterior surface. A separate analysis shows that
this measurement variability is due almost entirely to variability in the lens
position between successive measurements, not to the processing algorithm.

6.2.5 Simulations

Effect of the GRIN on distortions

In a first set of simulations, the posterior surface distortions predicted using
an exact ray-trace through a homogeneous and GRIN model of the lens were
compared with the experimental results. The measured posterior lens surface
radius and asphericity obtained from anterior-up images were compared with
values obtained from conic fits of the simulated posterior surface. For the
homogenous model, simulations were run with two different values of the
index: the “average” index and the “best” index. The average refractive
index define above was obtained by dividing the optical path length in the
center of the lens by the actual central lens thickness obtained from shadow
photography images of the same lens [Rosen et al., 2006; Borja et al., 2008]. The
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is the homogeneous index that minimizes the RMS error between the measured and simulated 
posterior lens surface as imaged through the anterior surface. For the GRIN model, we 
assumed a gradient index distribution based on the three-variable model proposed by 
Goncharov and Dainty [22]. This model starts with a polynomial expansion of the refractive 
index function in a meridional plane. Expressions for the coefficients are derived by making 
assumptions on the shape of the iso-indicial surfaces. The model assumes fixed values for the 
index of refraction in the core (nc) and the surface (ns) of the lens, and a radius for the 
posterior isoindicial surface profile (rpp) which does not coincide with the radius of the 
posterior surface. 

 
Fig. 2. Schematic diagram of the methods used in the simulations. In Simulation 1 (upper 
panel) the posterior surface of the lens obtained with OCT is simulated and compared to the 
measured distorted posterior lens surface, assuming knowledge of the anterior surface 
(obtained from OCT) and either the measured average refractive index, the best homogeneous 
index (producing best match with experimental data) and a GRIN distribution in the lens. The 
figure on the upper right shows the actual lens shape in blue and an example of the simulated 
distorted shape in red. In simulation 2 (lower panel) distortion correction algorithms are applied 
to reconstruct the posterior lens shape. The reconstructed shape is compared to the actual 
geometry obtained by OCT imaging of the flipped-over lens. The algorithm is applied for a 
homogeneous refractive index and GRIN. The figure in the lower right panel shows the actual 
lens shape in blue, the distorted lens shape in red, and the reconstructed posterior lens shape in 
green. 

Simulations were performed for a lens from a 6 year old donor using the undistorted lens 
surface parameters obtained from the anterior and posterior surface up measurements as the 
nominal values. The measured average index was 1.4191. The gradient index parameters were 
obtained using a reconstruction method based on optimization of optical path differences, 
described in detail elsewhere [23], which produced the following values: nc = 1.44319; ns = 
1.37351; rpp = 3.52546 mm. Given the potential interactions between radius of curvature and 
asphericity [24], the differences between the nominal (measured) and simulated surfaces are 
given in terms of the RMS difference of their elevation. A summary of this simulation is 
illustrated in the top panel of Fig. 2 (Simulation 1). 

2.5.2. Effect of the GRIN on distortion correction 

A second set of simulations was designed to provide an estimate of the relative contribution of 
surface refraction and gradient index to the optical distortion Fig. 2 (Simulation 2). In these 
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Figure 6.2: Schematic diagram of the methods used in the simu-

lations. In Simulation 1 (upper panel) the posterior surface of the

lens obtained with OCT is simulated and compared to the mea-

sured distorted posterior lens surface, assuming knowledge of the

anterior surface (obtained from OCT) and either the measured av-

erage refractive index, the best homogeneous index (producing

best match with experimental data) and a GRIN distribution in

the lens. The figure on the upper right shows the actual lens

shape in blue and an example of the simulated distorted shape

in red. In simulation 2 (lower panel) distortion correction algo-

rithms are applied to reconstruct the posterior lens shape. The

reconstructed shape is compared to the actual geometry obtained

by OCT imaging of the flipped-over lens. The algorithm is ap-

plied for a homogeneous refractive index and GRIN. The figure

in the lower right panel shows the actual lens shape in blue, the

distorted lens shape in red, and the reconstructed posterior lens
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Figure 6.2: Schematic diagram of the methods used in the simu-
lations. In Simulation 1 (upper panel) the posterior surface of the
lens obtained with OCT is simulated and compared to the mea-
sured distorted posterior lens surface, assuming knowledge of the
anterior surface (obtained from OCT) and either the measured av-
erage refractive index, the best homogeneous index (producing
best match with experimental data) and a GRIN distribution in
the lens. The figure on the upper right shows the actual lens shape
in red, the measured surface in blue and an example of the simu-
lated distorted posterior surface in green. In simulation 2 (lower
panel) distortion correction algorithms are applied to reconstruct
the posterior lens shape. The reconstructed shape is compared
to the actual geometry obtained by OCT imaging of the flipped-
over lens. The algorithm is applied for a homogeneous refractive
index and GRIN. The figure in the lower right panel shows the
actual lens shape in red, the distorted lens shape in blue, and the
reconstructed posterior lens shape in green. (Reproduced from
Borja et al. [2010], Biomedical Optics Express).

best index is the homogeneous index that minimizes the RMS error between the
measured and simulated posterior lens surface as imaged through the anterior
surface. For the GRIN model, we assumed a gradient index distribution based
on the three-variable model proposed by Goncharov and Dainty [2007]. This
model was used in the simulations of chapter 3. The model assumes fixed
values for the index of refraction in the core (nN) and the surface (nS) of the
lens, and a radius for the posterior isoindicial surface profile (rpp) which does
not coincide with the radius of the posterior surface.

We performed calculations for a lens from a 6 year old donor using the
undistorted lens surface parameters obtained from the anterior and posterior
surface up measurements as the nominal values. The measured average index
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was 1.419. The gradient index parameters were obtained using the recon-
struction methods described before with optical path differences as input data.
This produced the following values: nS = 1.374; nN = 1.443; rpp =−3.526 mm.
Given the potential interactions between radius of curvature and asphericity
[Pérez-Escudero et al., 2010], the differences between the nominal (measured)
and simulated surfaces are given in terms of the RMS difference of their eleva-
tion. A summary of this simulation is illustrated in the top panel of figure 6.2
(Simulation 1).

Effect of the GRIN on distortion correction

A second set of simulations was designed to provide an estimate of the relative
contribution of surface refraction and gradient index to the optical distortion,
figure 6.2 (Simulation 2). In these simulations, the shape of the undistorted
measured posterior lens surface obtained directly from posterior-up images
was compared with the shape obtained from anterior-up images after correc-
tion using two different methods. In the first method, the distortion is corrected
by division by a constant homogeneous index of refraction, as in Eq. 6.1. In the
second method, the distortion is corrected using an exact ray-trace assuming
both homogeneous and GRIN models, using the same parameters as above.
Optical distortion correction in OCT has been described in detail previously for
the cornea and lens, and validated using artificial eye models, but the methods
were presented only for homogeneous indices of refraction [Westphal et al.,
2002; Ortiz et al., 2010]. For the posterior surface reconstruction from OCT in
the presence of GRIN we have developed here an iterative procedure, which
assumes knowledge of the anterior surface shape and the general GRIN distri-
bution, and the posterior surface shape obtained by the simple division by the
refractive index method as a starting estimate. The method applies Sharma’s
algorithm for ray tracing in the GRIN structure [Sharma et al., 1982], and cal-
culates the points that match the optical path measured directly from OCT
images, in order to estimate the posterior lens surface in the next iteration. The
surface parameters and thickness produce a change in the GRIN distribution
in each iteration. The algorithm convergence criterion is established at a differ-
ence less than 0.1µm between the fitting radii of curvature in two successive
iterations. The procedure converges rapidly, within in a few iterations. The
method will be described and studied in detail in the next chapter of this thesis.

6.3 Results

6.3.1 Experimental results

The imaging experiments were successful in all 9 eyes. In 2 eyes, the average
group refractive index could not be measured directly. In these two eyes, the
index was estimated by using the regression equation as a function of age
provided by Uhlhorn et al [Uhlhorn et al., 2008]. Illustrative examples of raw
and corrected anterior-up OCT and posterior-up OCT of the same lens are
shown in figure 6.3. Conic section fits provided an accurate description of
the central lens profile in all lenses. A Bland-Altman analysis comparing the
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Fig. 3. Raw (top) and rescaled (bottom) OCT images of a 49 year old human crystalline. Left: 
Anterior-up OCT image; Right: Posterior-up OCT image. Tilt errors are corrected during post-
processing before calculating the radius of curvature and asphericity. 

 
Fig. 4. Bland-Altman analysis of the distorted versus undistorted anterior surface. Top graphs: 
Radius of curvature; Bottom graphs: Asphericity. The graphs on the left show the distorted 
parameter (vertical axis) versus the undistorted parameter (horizontal axis). The diagonal is the 
1:1 line (perfect correlation). The graphs on the right show for each lens the difference between 
the distorted and undistorted parameters for each eye versus the average of the two values 
(mean difference plots). The central horizontal line corresponds to the mean difference. The top 
and bottom lines correspond to the 95% confidence intervals (+/−2SD from the mean). 
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Figure 6.3: Raw (top) and rescaled (bottom) OCT images of a
49 year old human crystalline. Left: Anterior-up OCT image;
Right: Posterior-up OCT image. Tilt errors are corrected during
post-processing before calculating the radius of curvature and
asphericity. (Reproduced from Borja et al. [2010], Biomedical
Optics Express).

anterior-up (undistorted) and posterior-up (distorted) measurements of the
anterior surface shows that the mean difference (± 95% confidence interval)
between the distorted and undistorted shape is 0.20± 0.93 mm for the radius of
curvature and 0.642± 6.153 for the asphericity (figure 6.4). A similar analysis
for the posterior radius produces values of 0.12± 0.73 mm for the radius of
curvature and -0.182± 1.940 for the asphericity (figure 6.5). Overall the analysis
shows that the distorted surface overestimates the true radius of curvature and
asphericity. With an error that is within the reproducibility of the measurement.

6.3.2 Simulation of the distortion of the Optical Coherence Tomog-
raphy images

We found a substantially good correspondence between the experimental and
the simulated OCT images, with the difference between the simulated and mea-
sured distorted posterior surfaces being much lower when refraction from the
anterior surface and GRIN is considered. Table 6.1 shows the fitted parameters
(radius of curvature and asphericity) of the measured and simulated distorted
posterior surface when imaged through the lens, and the RMS difference be-
tween the nominal and simulated surfaces, with the three different models to
distort the image (average refractive index (1.419); best result for a homoge-
neous index (1.417); and GRIN model (nN = 1.443, nS = 1.374, rpp =−3.526 mm)).
The best prediction of the distorted surface is obtained when using the GRIN



90 Chapter 6. Distortion of the posterior surface in OCT images

6

4

2

0

-2

-4

D
if

fe
re

n
ce

 p
o

st
 u

p
 -

 A
n

t 
u

p

-15 -10 -5 0
Average anterior asphericity

 
(d)

mean=0.642

mean+2SD=6.795

mean-2SD=-5.511-15

-10

-5

0

A
n

te
ri

o
r 

as
p

h
er

ic
it

y
 p

o
st

er
io

r 
u

p

-15 -10 -5 0
Anterior asphericity anterior up

 
(c)

1.0

0.5

0.0

-0.5

D
if

fe
re

n
ce

 P
o

st
 u

p
 -

 A
n

t 
u

p
 (

m
m

)
10864

Average anterior radius (mm)

 
(b)

mean=0.20mm

mean-2SD=-0.73mm

mean+2SD=1.13mm10

9

8

7

6

5

4

A
n

te
ri

o
r 

ra
d

iu
s 

p
o

st
er

io
r-

u
p

 (
m

m
)

10864
Anterior radius anterior-up (mm)

 
(a)

Anterior radius of curvature

Anterior asphericity

Figure 6.4: Bland-Altman analysis of the distorted versus undis-
torted anterior surface. Top graphs: Radius of curvature; Bottom
graphs: Asphericity. The graphs on the left show the distorted
parameter (vertical axis) versus the undistorted parameter (hori-
zontal axis). The diagonal is the 1:1 line (perfect correlation). The
graphs on the right show for each lens the difference between
the distorted and undistorted parameters for each eye versus the
average of the two values (mean difference plots). The central
horizontal line corresponds to the mean difference. The top and
bottom lines correspond to the 95% confidence intervals (± 2SD
from the mean). (Reproduced from Borja et al. [2010], Biomedical
Optics Express).
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Figure 6.5: Bland-Altman analysis of the distorted versus undis-
torted posterior surface. Top graphs: Radius of curvature; Bottom
graphs: Asphericity. The graphs on the left show the distorted
parameter (vertical axis) versus the undistorted parameter (hori-
zontal axis). The diagonal is the 1:1 line (perfect correlation). The
graphs on the right show for each lens the difference between
the distorted and undistorted parameters for each eye versus the
average of the two values (mean difference plots). The central
horizontal line corresponds to the mean difference. The top and
bottom lines correspond to the 95% confidence intervals (± 2SD
from the mean). (Reproduced from Borja et al. [2010], Biomedical
Optics Express).
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Figure 6.6: Simulations result for a lens from a 6 year old donor.
(a) Comparison of the actual measured distorted posterior lens
contour (experimental shape, in green) with the posterior contour
simulated using the three different refractive index models. (b)
Difference between experimental and simulated distorted poste-
rior surfaces. Average and best homogeneous refractive index
are hardly distinguishable. The best agreement with the exper-
imental shape is found for the GRIN model. (Reproduced from
Borja et al. [2010], Biomedical Optics Express).

Table 6.1: Measured and simulated distorted posterior surface
parameters.

homogeneous index

measured average best GRIN
Posterior lens
radius (mm) 2.792 2.858 2.858 2.852

Posterior lens
asphericity 0.289 0.063 0.060 0.219

RMS surface
difference (mm) n.a. 0.026 0.024 0.006

structure. The difference is particularly important in the asphericity of the sur-
face. Figure 6.6 shows the comparison of the shapes of the simulated distorted
surfaces.

6.3.3 Optical Coherence Tomography distortion correction analysis

In the previous simulations, we estimated how the posterior lens would ap-
pear through the lens in an OCT image, and demonstrated that the best predic-
tion of the distorted surface (in comparison with the real distorted surface) is
obtained when a GRIN structure is assumed. Different optical distortion cor-
rection methods for retrieval of the posterior lens surface through the anterior
lens in OCT were investigated as well and retrieved surface parameters were
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Table 6.2: Nominal and reconstructed posterior surface parame-
ters. Assuming a refractive index of 1.373 for the lens surface and
1.336 for aqueous, the posterior surface powers are 10.1 D (nom-
inal), 9.0 D (average index), 10.1 D (homogeneous index), 10.3 D
(GRIN).

optical distortion correction

nominal
division by

average
index

homogeneous
index

GRIN

Posterior lens
radius (mm) 3.662 4.120 3.672 3.586

Posterior lens
asphericity -0.135 0.652 0.362 0.034

RMS surface
difference (mm) n.a. 0.023 0.018 0.006

compared to their nominal values. The different OCT processing methods
include: (1) simple division of OCT optical paths by an homogeneous index
of refraction; (2) refraction by anterior lens surface, assuming a homogeneous
index of refraction model for the lens; and (3) refraction by anterior lens sur-
face and gradient refractive index distribution of the lens, assuming the GRIN
model described above. The corrective iterative method using GRIN provided
the most accurate results (Table 6.2).

The simple division by the value of the average refractive index produced
a discrepancy of 0.46 mm (12.5%) in the radius of curvature and 0.79 in the
asphericity. The incorporation of optical distortion correction methods (refrac-
tion by the anterior surface) assuming a homogeneous lens with the average
refractive index produced a discrepancy of 0.010 mm (0.27%) in the radius of
curvature and 0.49 in the asphericity. The correction of refraction from the an-
terior lens surface assuming a GRIN distribution produced the smallest overall
discrepancy: 0.08 mm (2.1%), in the radius of curvature, 0.17 in the asphericity
and 0.006 mm in the RMS surface difference.

6.4 Discussion

Our experimental results show that the distortion due to refraction at the
anterior surface and within the gradient produces an error in the posterior
radius of curvature that is within the experimental variability of the system.
This finding suggests that accurate values of the in vitro posterior radius can be
obtained by simply rescaling the distances using Eq. 6.1 with the appropriate
value of the index. Experimentally, the average error in the posterior radius
of curvature was found to 0.12 mm with a 95% confidence interval of 0.73 mm,
which is very close to the error found with the simulations. The results of
the simulations (Table 6.1 and Table 6.2) show that most of the error can
be corrected by using a ray-tracing procedure assuming a uniform refractive
index equal to the average group refractive index of the lens. Interestingly,
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the optimal refractive index for the correction is closer to the average index
than the equivalent index. The majority of previous studies have used the
equivalent index for correction.

The effect of the distortions on asphericity was more variable. For the
posterior surface, the distortion produces a mean difference of -0.182, with a
95% confidence interval of ± 1.9. The experimental results suggest that reliable
measurements of asphericity of the distorted surface cannot be obtained with
the simple correction of equation 6.1. The result of the simulations (Table 6.2)
suggest that a correction algorithm taking into account the GRIN is required
to produce accurate values of the asphericity.

Overall, the simulations show that the GRIN makes a significant contri-
bution to the distortion of the posterior surface, particularly in its estimated
asphericity. When the GRIN is considered, the simulated posterior surface
radius and asphericity are in very good agreement with the measurements
obtained through the anterior surface (Table 6.1). Also, the best reconstruction
of the posterior lens surface from OCT images in comparison to the nominal
surface (obtained by direct imaging of the posterior surface in “posterior up”
position) is obtained when the optical distortion correction algorithm consid-
ers the GRIN (Table 6.2). Interestingly, the results of Table 6.2 suggest that
correction of the optical refraction by the anterior surface using a GRIN model
produces a relatively small improvement for the radius of curvature over a
model that assumes a homogeneous index of refraction. The presence of
GRIN has a larger impact in the reconstruction of the peripheral areas of the
lens, as the largest improvements occur for the asphericity estimates.

In the current study, we used the Goncharov 3-variable model to describe
the GRIN. While it is not the only possible GRIN lens model (we have obtained
similar results with a different 3-variable model), choosing an adequate GRIN
model that is representative of the actual lens gradient is critical. Simpler mod-
els, such as Goncharov’s 2-variable models, failed to reproduce the distortion
of the posterior surface.

In summary, we show that the GRIN produces significant distortions of the
posterior shape of the lens, particularly in the lens periphery. However, when
imaging in vitro lenses, accurate values of the central radius of curvature can
be obtained using a simple correction that does not take into account refraction.
The distortions can be predicted and corrected using a ray-tracing algorithm
that incorporates an adequate model of the GRIN of the lens. Correction
algorithms that assume a homogeneous index provide accurate values of the
radius of curvature, but not of the asphericity. It is important to remember
that these findings are applicable to in vitro studies. When imaging the lens in
vivo, refraction by the cornea may induce significant additional distortions in
both the radius and the asphericity.

6.5 Conclusion

The study reveals that the gradient index of refraction distorts the posterior
surface of the lens when this is seen through the lens itself as is the case in all the
in vivo methods to image the lens such as Scheimpflug or Optical Coherence
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Tomography.
The comparison between simulations using the ray tracing algorithm de-

scribed in 2.2, and detected surfaces of different lenses using the OCT imaging
system described in 2.4.2 shows that, in in vitro lenses, this influence is more
notorious in the periphery of the lens.

While dividing the distorted surface heights by an homogeneous refractive
index, or correcting the distortion assuming an homogeneous refractive index
for the lens, provides good estimates for the radius of curvature of the posterior
surface of the lens, the asphericity values retrieved are only accurate if the
gradient index distribution of the crystalline lens is taken into account.

The description of the proposed method will be detailed in the next chapter
and the correction will be applied to a set of lenses to study its performance
with different gradient refractive index distributions.
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Chapter 7
Distortion correction of Optical
Coherence Tomography images
of the crystalline lens: a gradient
refractive index approach

This chapter is based on the paper by Siedlecki et al. [2012] “Distortion correc-
tion of OCT images of the crystalline lens: GRIN approach,” Optometry and
Vision Science 89(5), 709-18, 2012.

The contribution of the author of this thesis to the study was the design
and implementation of the correction algorithm in MatLab and support in the
discussion of the results and the writing of the paper.

The coauthors of this study were Damian Siedlecki, Enrique Gambra, Ser-
gio Ortiz, David Borja, Stephen Uhlhorn, Fabrice Manns, Jean Marie Parel and
Susana Marcos.
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7.1 Introduction

In the previous chapters, we have shown that the optical distortion produced
when imaging the crystalline lens with Optical Coherence Tomography (OCT)
systems can be successfully used for gathering additional information on the
sample. In fact, the presence of optical distortion in the images of the posterior
surface of the crystalline lens (viewed through the anterior surface and the
crystalline lens gradient refractive index (GRIN), has been used to reconstruct
the GRIN distribution in simple spherical fish lenses [Verma et al., 2007], and
the GRIN distribution of the crystalline lens in porcine (chapter 4) and human
lenses (chapter 5).

The standard processing of OCT anterior segment images involves simple
division of the optical path length signals by the tissue group index of re-
fraction. A further sophistication of the method involves ray tracing through
the tissue, and correction for the distortion produced by refraction, consider-
ing the deflection of the rays at the optical surfaces, but assuming a constant
refractive index in the cornea, in the lens and in the aqueous humor. Fan
and optical distortion correction algorithms have made possible to estimate
the true shapes of all the ocular surfaces from the anterior segment in vivo,
although the posterior surface of the crystalline lens is affected by the GRIN
distribution in the lens.

We have previously reported on the impact of the GRIN on the visualization
and quantification of the posterior shape of crystalline lenses in vitro from
OCT images (chapter 6). Comparisons with the actual lens posterior shape
were possible, since the crystalline lenses were also imaged with the posterior
surface up. Those comparisons suggested that, although the presence of GRIN
seemed to have a minor influence on the estimated radius of curvature, the
peripheral shape of the lens is misestimated if the actual GRIN distribution is
not taken into account in the correction.

In this chapter we present the method to correct the distortion due to
the lens optics and study the results in several human crystalline lenses in
vitro. With an appropriate model of the GRIN distribution, the new algorithm
would enable the in vivo estimation of the shape of the entire crystalline lens,
and to assess its changes during aging or accommodation, providing a better
understanding of these processes.

7.2 Methods

We propose a method for correction of optical distortion through the crystalline
lens, applicable to estimate the undistorted posterior shape of the crystalline
lens and lens thickness in vivo. The method was applied to a set of nine
human lenses in vitro, as this allowed us a direct comparison of the recon-
structed posterior lens surface and the actual posterior lens surface (also im-
aged with the posterior lens up), and the lens thickness. Images were obtained
2-dimensionally with the time-domain OCT system described in section 2.4.2,
and the algorithm was based on the ray tracing algorithm through GRIN media
described in methods chapter.
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Figure 7.1: Block diagram illustrating the main steps of the GRIN
distortion correction algorithm. Ra: anterior radius; ka: anterior
conic constant; Rp: posterior radius of curvature; kp: posterior
conic constant, t: thickness.

constructed posterior lens surface and the actual posterior lens surface (also
imaged with the posterior lens up), and the lens thickness. Images were
obtained 2-dimensionally with the time-domain OCT system described in
section 2.4.2, and the algorithm was based on the thru-GRIN ray tracing
algorithm described in section 2.2.

Fig. 7.1 depicts a schematic diagram of the whole GRIN optical distortion
procedure.

7.2.1 Human lens samples

The lenses used in this study are the set of lenses previously used in the
study of the change of the GRIN with age in chapter 5. The mean age of the
donor was 45± 20 years (ranged from 6 to 72 years), and eyes were received
within 48 hours post-mortem, with measurements performed within an
hour of lens extraction from the globe. The lenses were imaged with the
OCT described in section 2.4.2. The surfaces of the lens were segmented and
its thicknesses were calculated from the distortion produced in the cuvette
holding the lens and the preservation medium [?].
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Figure 7.1: Block diagram illustrating the main steps of the GRIN
distortion correction algorithm. Ra: anterior radius; ka: anterior
conic constant; Rp: posterior radius of curvature; kp: posterior
conic constant, t: thickness. (Reproduced from Siedlecki et al.
[2012], Optometry and Vision Science).

Figure 7.1 depicts a schematic diagram of the whole GRIN optical distortion
procedure.

7.2.1 Human lens samples

The lenses used in this study are the set of lenses previously used in the study
of the change of the GRIN with age in chapter 5. The mean age of the donor
was 45± 20 years (ranged from 6 to 72 years). Eyes were received within 48
hours post-mortem, with measurements performed within an hour of lens
extraction from the globe. The lenses were imaged with the OCT described
in section 2.4.2. The surfaces of the lens were segmented and its thicknesses
were calculated from the distortion produced in the cuvette holding the lens
and the preservation medium [Uhlhorn et al., 2008].

7.2.2 Gradient refractive index model

For the purposes of this study we used the GRIN model introduced by Manns
et al. [2010] used in chapters 4 and 5, where the gradient index is described
by means of power coefficient p from the nucleus (with refractive index nN) to
the surface (with refractive index nS) in all directions (equation 1.1).

The actual GRIN parameters for each lens were obtained from the previous
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Figure 7.2: Exponential fit curve to the power coefficient data
as a function of age. (Reproduced from Siedlecki et al. [2012],
Optometry and Vision Science).

study (chapter 5), where the same OCT data were used to estimate the GRIN
distribution from the shape of the distorted posterior surface. In our calcula-
tions, we used both exact parameters of GRIN distribution estimated for each
eye (those reported in chapter 5), as well as age-related fits to the experimental
data. The surface and refractive indices at the nucleus, nN, and at the surface,
nS, were obtained by linear fits to the data. A statistical analysis revealed that
this was approach was not statistically significantly different than the mean
(nN = 1.425 and nS = 1.381). The power coefficient, p, was fitted exponentially
as a function of age (see figure 7.2).

7.2.3 Gradient refractive index distortion correction algorithm

In the natural orientation (anterior up position), the posterior surface of the
lens is distorted by the deflection of the rays in the anterior surface and by
the presence of a GRIN distribution in the lens. In order to retrieve the infor-
mation on its shape, we developed an iterative algorithm based on Sharma’s
ray tracing algorithm in GRIN medium, where the parameters responsible
for posterior lens shape, and in consequence, for the GRIN distribution, are
changed between iterations.

An anatomically plausible model of the GRIN distribution is assumed.
Usually, the GRIN distribution is described by parameters that are independent
from the lens shape (central and peripheral refractive indices and GRIN profile
factor) and dependent of the lens shape (radius Ra and conic constant ka of
the lens anterior surface, radius Rp and conic constant kp of the posterior lens
surface, and thickness t).

1. An initial posterior lens surface defined by Rp, kp and t is assumed.
For the purpose of this calculation, the initial posterior lens surface was
computed applying optical distortion correction algorithms assuming a
constant refractive index

2. Rays are traced through the GRIN model using Sharma’s algorithm until
the OPD accumulated conincides with that measured with the OCT at
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every location. The intercepts between the ray and the posterior surface
are not calculated. If the surface is posterior to the measured optical path
distance (OPD), then the ray tracing is stopped before the ray reaches the
surface. Otherwise, the model is extended so that the OPDs coincides.

3. The estimated locations in step 2 are fitted to a conic (Rfit
p , kfit

p and tfit) and
the values of Rp, kp and t parameters are substituted by the values of the
new ones. The algorithm returns to step 2.

4. The iterations are stopped when the surface resulting from two consec-
utive iterations are comparable (i.e. less than 0.1µm difference in terms
of RMS metric).

As the Sharma algorithm is based on the Runge-Kutta method, it does not
provide an exact match of the optical path length within the lens. However,
we verified that this effect was negligible for sufficiently small discrete step
sizes. A total of 400 rays, within a 4 mm pupil were used in the ray tracing.
Unless otherwise noted, the Sharma step was set to 1µm .

7.2.4 Data analysis

The accuracy of the lens posterior surface shape and lens thickness obtained
from the application of the developed refraction and GRIN distortion correc-
tion algorithm on OCT images, was compared to those obtained from two
other approaches for posterior lens shape and lens thickness estimations: (a)
Division of heights of the points of distorted surface by an homogeneous in-
dex. This approach does not take into account refraction in the anterior lens
surface nor the presence of a GRIN distribution in the lens and is followed
widely in OCT imaging. (b) Application of optical (refraction) correction al-
gorithms, considering the refraction at the anterior lens surface, but assuming
a homogeneous refractive index. The algorithm works by calculating the re-
fraction at every point of the anterior surface, and estimating the locations
where the estimated OPD coincides with the measured one. For (a) and (b),
the homogeneous average refractive indices were obtained from the study of
Uhlhorn et al. [2008], were the group (not phase) refractive index was obtained
at 825 nm, and an age-dependent expression is provided.

The accuracy of the posterior shape and lens thickness correction methods
(the standard methods ((a) and (b) above) as well as the new method –using in-
dividual or fitted parameters in the GRIN model– was given as the differences
with respect to the actual posterior lens shape and lens thickness, obtained
from the crystalline lens.

A one-way ANOVA was used to test for significance of differences between
the correction results.
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7.3 Results

7.3.1 Accuracy in the reconstruction of the posterior lens shape

Figure 7.3 shows the shifts in the reconstructed lens surface radii of curvature
(upper panels) and conic constant (lower panels), for individual subjects (a, c)
and averaged across subjects (b, d), for the different reconstruction methods.
Data are given relative to the actual parameters on the posterior lens shape (ob-
tained from posterior-up measurements). Although there are great differences
across subjects, the largest shift in radius of curvature, on average, occurs for
the simple division method, while the refraction distortion correction (with
a homogeneous index) and GRIN distortion correction (for both fitted and
measured data) provide similar estimates of radius and conic constant in the
posterior surface. The conic constant tends to be similarly retrieved with all
methods.

While an independent analysis of radius of curvature and conic constant
did not reveal significant differences across reconstruction methods (F(3,32) = 0.056,
p-value = 0.982 for radius of curvature and F(3,32) = 0.998, p-value = 0.960
for conic constant), a comparison of the overall surface shape showed dif-
ferences across methods. Figure 7.4 shows an example of difference maps
(reconstructed-actual) for the four different reconstruction methods, for a 41
year old lens. When differences are expressed in terms of RMS and peak to val-
ley differences, the GRIN distortion correction method (particularly with the
actual GRIN parameters) showed significantly higher accuracy (F(3,32) = 3.260,
p-value = 0.034 and F(3,32) = 3.212, p-value = 0.036 for RMS and peak to valley
analysis, respectively), with the lowest accuracy found for the simple division
by refractive index method (Figure 7.5).

7.3.2 Accuracy in the estimates of lens thickness

In particular, the GRIN distortion correction method produced significantly
better estimates of the crystalline lens thickness (F (3,32) = 3.983, p-value =
0.032), compared to the other methods (Figure 7.6). The simple division and
refraction (with homogeneous refractive index) provided, as expected, identi-
cal thickness estimates.

7.3.3 Influence of Sharma step size

Decreasing the step of the Sharma ray tracing algorithm, increased the accu-
racy of the reconstruction (at the expense of increasing computational time).
Figure 7.7 shows the average difference between the reconstructed and actual
posterior surface (in terms of RMS or peak to valley) as a function of the ray
tracing step, for both implementations of the GRIN distortion correction algo-
rithm. Although in all cases the accuracy is very high (< 30µm), reducing the
iteration step increased accuracy.
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Figure 7.3: Differences between the shapes of the surface cor-
rected for distortion relative to the actual shape, in terms of radius
of curvature and asphericity. a) differences in radii of curvature
obtained with the different methods for all the lenses from the
study; b) mean values of the absolute difference between the cor-
rected and actual radii of curvature. Error bars stand for standard
deviation of the mean; c) differences in asphericity obtained with
the different methods for all the lenses from the study; d) mean
values of the absolute difference between the corrected and actual
conic constants. Error bars stand for standard deviation of the
mean. “s.d.” stands for simple division method, “r.c.” for refrac-
tion correction method; “GRIN-f” for GRIN distortion correction
method with fitted shape independent parameters; “GRIN-m”
for GRIN distortion correction method with optimal shape inde-
pendent parameters. (Reproduced from Siedlecki et al. [2012],
Optometry and Vision Science).
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Figure 7.4: Differences between the real shapes of the posterior
part of the 41 y.o. crystalline lens and the reconstructed ones with
use of simple division correction (s.d), refraction correction (r.c),
GRIN correction with approximated parameters of GRIN (GRIN
f.), and GRIN correction with optimal parameters (GRIN m.).

7.3.4 Convergence

The reconstruction algorithm is characterized by a very good convergence.
For all the processed lenses, no more than 10 iterations were needed to reach
the final parameters in the GRIN distortion correction procedure. In isolated
cases (6, 31 and 48 year old lenses), the reconstruction algorithm provided two
slightly different local minima, resulting in two slightly different sets of values
of radius of curvature and conic constant but the same value of lens thickness.
Although for these minima, the differences of RMS error were small (up to 1%),
the results described above referred to data from the solution which provides
smaller RMS error between the actual and reconstructed shapes.

7.4 Discussion

In the present study we proposed an iterative method of optical distortion
correction in OCT images of the crystalline lens incorporating the GRIN distri-
bution inside the crystalline lens medium. A comparison with other existing
methods of posterior lens shape reconstruction shows slight improvements in
the shape reconstruction for averaged input parameters of the GRIN model
distribution and a significant improvement when optimal parameters for the
GRIN (i.e., those corresponding to the same lens) were used. Very interestingly,
the method has proved to reconstruct with high accuracy lens thickness, with
knowledge of the anterior surface shape and distorted posterior lens shape
only (and a model for GRIN distribution). The accuracy of the reconstruction
(6µm in the optimized GRIN reconstruction method) is similar to the reported
accuracy of shadowphotography (12µm), broadly used for biometric measure-
ments of the crystalline lenses in vitro [Rosen et al., 2006]. Our findings show
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Figure 7.5: Differences between the shapes of the surface cor-
rected for distortion relative to the actual shape, in terms of the
calculated RMS error and peak to valley, from different recon-
struction methods. a) RMS calculated for all the lenses from the
study; b) mean RMS. Error bars stand for standard deviations
of the mean; c) peak to valley differences for all the lenses from
the study; d) mean values of peak to valley. Error bars stand for
standard deviations of the mean. “s.d.” stands for simple divi-
sion method, “r.c.” for refraction correction method; “GRIN-f” for
GRIN distortion correction method with fitted shape independent
parameters; “GRIN-m” for GRIN distortion correction method
with optimal shape independent parameters. (Reproduced from
Siedlecki et al. [2012], Optometry and Vision Science).

that, with an appropriate GRIN model, the use of GRIN distortion correction
algorithms could reach similar accuracies in vivo. In fact, such accuracy is
similar to the repeatability of in vivo lens thickness measurement by means
of commercial OCT (8µm) [Lehman et al., 2009]. It needs to be noted that
according to the results presented in the previous section, the thickness esti-
mation has significant contribution to the RMS errors between the actual and
reconstructed surfaces.

No significant differences were found across methods in the retrieved ra-
dius of curvature and conic constant, although the surface shape is generally
best retrieved with the new reconstruction algorithm. This may be in part due
to inaccuracies of the surface fitting. Urs et al. [2009] studied different meth-
ods for fitting the contours of isolated lens images, and found RMS errors in
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Figure 7.6: Differences between the thicknesses of the crystalline
lens obtained for different methods of correction, relative to the
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Science).
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the fits, ranging from 11 to 70µm, when using 10th order polynomial one lens
curve fitting in the posterior lens surface. These fitting errors are of the order of
magnitude of the RMS errors of our reconstruction. The use of conic surfaces,
with less fitting parameters, is likely prone to higher inaccuracies. In fact, we
have shown that comparisons of surfaces using a separate analysis of radius
and asphericity may estimate incorrectly the statistical significance in the dif-
ferences between surfaces, as various combinations of radius and asphericity
may describe with similar accuracy the same noisy surface [Pérez-Escudero
et al., 2010]. For example, the ranges of (correlated) radius and asphericity
which described similarly Scheimpflug posterior corneal elevation data, were
close to 0.2 mm and 0.6, respectively, only slightly lower than the accuracy
found for those parameters in this study.

Our reconstruction algorithm is suited for in vivo OCT images of the crys-
talline lens. The access to the posterior lens surface and cuvette available only
in vitro of the current study has only been used for comparison purposes.
However, a limitation of the study is the general lack of GRIN distribution
parametric data. Furthermore, as the OCT technique uses a low coherent light
source, which is characterized by broadband wavelengths in the near infrared,
taking into account the chromatic dispersion of the lens medium we assumed
that the reconstructed GRIN was coincident with the group refractive index
of the crystalline lens. In this study, we used GRIN data that came from
our previous work [de Castro et al., 2011b], which included the set of lenses
evaluated in the current study. As a result, it is not surprising that the best
reconstruction was achieved with the optimal shape parameters of the GRIN
in the individual lenses. As more data of GRIN distribution in larger sample
become available, it is likely that the GRIN parameters obtained from fitting
represent more robustly the population data. It should be noted that the GRIN
distribution of isolated lenses will represent more closely the GRIN profile in a
maximally accommodated lens, which should be considered when extrapolat-
ing GRIN models to perform reconstructions from OCT in vivo measurements
[Kasthurirangan et al., 2008]. GRIN distribution estimates in lenses in vitro
under simulated accommodation (i.e. with an artificial stretching system)
[Manns et al., 2007], may allow a more direct application of GRIN models to
measurements in vivo.

In the current study we have described a possible implementation of the
algorithm, but its core is quite flexible. Basically, instead of Sharma’s, other nu-
merical ray tracing and optical path estimation procedures, could be adapted
to different GRIN models. The only condition for the GRIN model is that it is
anatomically plausible, with the isoindicial surfaces functionally related to the
external shape of the lens.

We have described an implementation of the algorithm in 2-D, but it could
be easily extended three-dimensionally. In a previous work we demonstrated
computationally a significantly higher accuracy in the reconstruction of the
posterior surface when optical distortion correction algorithms were applied
in 3-D [Ortiz et al., 2010]. For example, in a computer eye model with ho-
mogeneous index of refraction (and simulated conic surfaces), there was not a
significant difference in the reconstruction of the posterior lens asphericity by
applying a simple division by the refractive index or 2-D refraction distortion
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correction (with discrepancies of about 50% from the nominal value). How-
ever, 3-D refraction distortion correction allowed retrieval of the asphericity
within 0.3% error.

The algorithm for optical distortion correction through gradient index pro-
posed in the current study will therefore show full potential on 3-D images of
the crystalline lens in vivo [Gambra et al., 2010], particularly as GRIN models
of the crystalline lens based on larger populations than current data become
available.

7.5 Conclusions

The study confirmed that the distortion of the optical surfaces observed in
OCT images can be corrected taking into account the gradient refractive index
of the crystalline lens. If the GRIN is known, this correction would improve
the simple division or refraction correction method using an homogeneous
refractive index.

The improvement is not apparent in this study when radius of curvature
or asphericity are treated independently. However, the differences between
methods are statistically significant when comparing both surfaces directly. A
larger pupil size would allow to study the periphery of the lens where the
differences between GRIN and homogeneous index would be more notorious
as shown in chapter 6.

The method can be applied if the gradient refractive index of the crystalline
lens is known. In this study we corrected the distortion observed in a set of
lenses whose GRIN was previously calculated. However, as larger data sets
of GRIN profiles in human lenses are gathered, average data (in different age
groups) could be used in the reconstruction of the posterior surface.



Chapter 8
Conclusions

This thesis addresses the reconstruction of the gradient index of refraction
(GRIN) of the non-spherical crystalline lens using an optimization to estimate
the best parameters of a GRIN model that fits the experimental data. We have
validated the method with computational simulations, studied the influence
of the GRIN in the optics of the crystalline lens and shown the benefits of
correcting the Optical Coherence Tomography (OCT) images considering the
refractive index distribution of the lens.

109
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In this thesis, we have accomplished the following achievements:

• A novel reconstruction method of the GRIN distribution in non-spher-
ical lenses, using for the first time in the literature a genetic algorithm
approach.

• Experimentally estimated errors of the input data for the GRIN recon-
struction algorithms, from Laser Ray Tracing and Optical Coherence
Tomography

• State of the art accuracy in the reconstruction of GRIN.

• First reconstruction of GRIN distributions in a porcine lens using OCT
images.

• First three dimensional measurements of the GRIN distribution, includ-
ing the first report of meridional changes in the GRIN distribution.

• First direct estimate of the role of the surface shape and GRIN on the
spherical aberration and astigmatism.

• First report on the variation of the GRIN with age of human crystalline
lenses, based on optical methods.

• First study of the effect of GRIN on OCT imaging of the posterior lens
surface.

• First proposal for optical distortion correction of OCT images of the
crystalline lens involving ray tracing through GRIN.
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The development of the reconstruction method and the experimental re-
sults allow us to conclude that:

1 It is possible to reconstruct the GRIN of the non-spherical crystalline
lens with optimization methods when the external geometry of the
lens is known. We have shown, with computational simulations, that

different experimental data from Laser Ray Tracing of Optical Coherence To-
mography can be used to reconstruct the GRIN and that the best accuracy is
achieved if optical path extracted from OCT images is used (RMS difference
below 0.005).

2 The GRIN of the porcine crystalline lenses can be reconstructed with
the method proposed in this thesis using a 3-D exponential model. The
surface and nucleus phase refractive index at 633 nm were estimated

to be 1.354 and 1.434 respectively, and the exponential decay factor was 2.6 in
axis and changed from 3.5 and 5.1 in the meridional axis.

3 The presence of the GRIN impacts the optics of the crystalline lens. In
particular, the presence of GRIN shifts the spherical aberration of the
lens from positive values (considering the same surface and a homoge-

neous refractive index) towards negative values. The presence of GRIN also
influences the astigmatism of the lens.

4 The human crystalline lens GRIN distribution changes with age. In
younger subjects the GRIN have a smooth distribution while in older
there is an abrupt refractive index increase near the surface. The results

show that although surface and nucleus refractive indices do not change with
age, there is a statistically significant change of the exponential decay factor
that describes the profile shape, at a rate of 0.24± 0.05 per year. Average values
of the surface and nucleus phase refractive indices at 589 nm were 1.373± 0.014
and 1.417± 0.011.

5 The effect of the GRIN in the distortion of the posterior surface observed
through the anterior lens in OCT, is relevant mainly in the periphery
of the lens. The correction of the distortion assuming a GRIN model

improves the methods previously proposed in the literature, which currently
assume a homogeneous index. The quantification of the OCT images to extract
the biometry of the posterior surface of the lens benefits if the GRIN of the lens
is considered.
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Future work

A direct follow-up of the studies presented here includes the 3-D reconstruction
of a larger number of human crystalline lenses, of various ages. The results
will support and provide a deeper understanding of the GRIN distribution in
human lenses. The author of this thesis is currently involved in this part of the
work.

Other options in the optimization methods must be studied. In particular,
the incorporation of additional input data, such as the focal length of the
crystalline lens or the optical path at different orientations, will allow a more
robust search, and a more accurate reconstruction of the crystalline lens GRIN.
Current improvements of the method in our lab incorporate the measurement
of the back focal length of the crystalline lenses for two pupil diameters. 12
human crystalline lens data have been already measured three-dimensionally
with the additional input data.

In vitro studies allow the possibility of studying the crystalline lens under
different levels of simulated accommodation. The change of the distribution
of refractive index when the external shape is modified and its influence in the
accommodative process, will provide extremely valuable information for the
understanding of the physical changes occurring in the lens with accommo-
dation. Measurements in Cynomolgus monkey lenses have been performed
in collaboration with the Bascom Palmer Eye Institute, and the data analysis
is in progress.

Ultimately, a major application of the developed methods for GRIN distri-
bution estimation is the reconstruction of the GRIN in vivo. The performance
of the method with additional input data will allow us to test their potential
viability for in vivo reconstruction. A major challenge to the in vivo recon-
struction of GRIN from OCT data, is that posterior surface shape is dependent
on the GRIN and therefore the shape of the refractive index profile and the
shape of the posterior surface are strongly coupled. However, a deeper knowl-
edge of the GRIN distribution, as measured in vitro, will allow to narrow the
solution space sufficiently to be able to extract a measurement of the GRIN in
in vivo eyes with optical methods.
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Spanish

Esta tesis estudia la óptica del sistema visual y en particular la estructura
del cristalino, desarrollando métodos para estimar el gradiente de ı́ndice de
refracción (GRIN) del mismo. A pesar de que hay una larga tradición en
modelar las propiedades refractivas del ojo, todavı́a se discuten la óptica del
cristalino y los valores especı́ficos de ı́ndice de refracción. El conocimiento
preciso del gradiente de ı́ndice de refracción permitirá comprender mejor las
propiedades ópticas del cristalino y la contribución del mismo a la calidad
óptica del ojo.

El cristalino permite cambiar el estado refractivo del ojo, acomodar, para
hacer imagen de objetos a distintas distancias. El estudio de la acomodación del
cristalino ha estado limitado, hasta no hace mucho, a la medida de los cambios
en la forma de las superficies. Además, el cristalino crece continuamente con
la edad y esto podrı́a afectar a la distribución de ı́ndices de refracción. Para
describir con precisión la óptica del ojo, se necesita un conocimiento más
detallado de la óptica del cristalino.

La investigación llevada a cabo en esta tesis se centra en la reconstrucción
del gradiente de ı́ndice de refracción del cristalino con métodos de optimiza-
ción. Utilizando un modelo apropiado del GRIN del cristalino, los parámetros
que mejor ajustan los datos experimentales (y por tanto la distribución GRIN)
pueden ser encontrados con un algoritmo de optimización.

Los primeros estudios relativos al ı́ndice de refracción del cristalino usaron
métodos destructivos, por ejemplo, seccionando el cristalino en láminas del-
gadas para medir el ı́ndice de refracción estudiando la reflexión o la refracción
de un rayo al pasar por ellas. Estudios más recientes, proponen extraer datos
de la estructura de gradiente de ı́ndice usando datos experimentales en lentes
aisladas, in vitro. Uno de estos métodos, el uso de imágenes de resonancia
magnética, ha sido aplicado por primera vez in vivo en una publicación. Sin
embargo, hay muchas preguntas abiertas dado que todos los métodos tienen
desventajas. En los valores publicados de ı́ndice de refracción en el centro o el
borde del cristalino reportados en la literatura, se observa mucha dispersión
y todavı́a se desconoce si esto es debido al error experimental de la medida o
realmente, dicha dispersión se encuentra en la población. Además, la distribu-
ción de ı́ndices de refracción, es decir, el modo en que el ı́ndice de refracción
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cambia desde el núcleo hasta la superficie, no es un consenso en la comunidad
cientı́fica. La dificultad en las medidas oculta una explicación clara sobre la
influencia de la estructura de gradiente de ı́ndice en la óptica del ojo.
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Capı́tulo 1: Introducción

En la introducción de esta tesis se realiza una revisión de los conocimientos
sobre la óptica del cristalino humano. El cristalino es una lente biconvexa con
una distribución de gradiente de ı́ndice de refracción que alcanza su máximo
cerca del centro del cristalino y decae hacia la superficie.

Los métodos de medida de la forma de las superficies del cristalino son
revisados. En medidas in vitro la forma exterior del cristalino es accesible pero
en medidas in vivo el cristalino es observado a través de la córnea, lo cual
distorsiona la imagen. Es posible obtener la forma de la superficie anterior
del cristalino conociendo la forma de la córnea y el ı́ndice de refracción de
los medios precedentes. Sin embargo, el estudio de la superficie posterior del
cristalino, al igual que su posición dentro del ojo, ha estado siempre limitado
por el desconocimiento del gradiente de ı́ndice del mismo. Normalmente se
asume un ı́ndice equivalente (aquel con el que una lente con la misma forma
externa tiene igual potencia que el cristalino), pero los errores cometidos al
realizar esta aproximación no han sido cuidadosamente estudiados.

Desde hace ya más de un siglo, se construyen modelos de gradiente de
ı́ndice para simular el comportamiento del cristalino y estudiar las propiedades
del mismo. Los modelos más relevantes del cristalino humano son descritos y
el origen y diferencias entre ellos discutidos.

No hay muchos estudios sobre la dispersión cromática del cristalino. Dado
que en la literatura, las medidas se realizan con fuentes de luz de diferentes
longitudes de onda, esto es algo a tener en cuenta en nuestro estudio sobre el
gradiente de ı́ndice de refracción del cristalino.

Por último se hace una revisión de los métodos de medida del gradiente
de ı́ndice de refracción. Hace ya tres siglos de los primeros estudios sobre
el ı́ndice de refracción del cristalino. La llegada del refractómetro de Abbe
permitió un instrumento preciso para medir ı́ndices de refracción pero no
solucionó el problema definitivamente dado que es una técnica destructiva y
el tejido puede alterarse al ser extraı́do para su medida.

Desde hace poco más de 30 años se ha avanzado en distintos métodos de
medida o estimación del gradiente de ı́ndice de refracción en cristalinos in
vitro, es decir, sin destruir el mismo para la medida de su gradiente de ı́ndice.

Asumiendo ciertas condiciones se puede relacionar, por medio de una
integral, el gradiente de ı́ndice del cristalino con la desviación que sufren los
rayos al pasar por el mismo. De la inversión de esa integral resulta un método
de medida que ha sido muy utilizado en las úlitmas décadas en cristalinos in
vitro.

Hay varios trabajos en la literatura que intentan obtener datos del gradiente
de ı́ndice con optimizaciones, es decir, minimizando una función de mérito. Se
trata de buscar los parámetros de un modelo que mejor representan los datos
experimentales. Es en este apartado donde se encuadra el método propuesto
en esta tesis doctoral. Hasta el momento los estudios en esta dirección o bien
tenı́an pocos datos del cristalino o bien utilizaban un modelo simple debido
a las dificultades de la optimización. En el trabajo realizado en esta tesis doc-
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toral hemos utilizado algoritmos genéticos como algoritmo de optimización y
hemos estudiado qué datos experimentales son necesarios para reconstruir el
gradiente de ı́ndice de refracción del cristalino con una precisión aceptable.

Por último, muy recientemente, se han aportado datos de medida de gra-
diente de ı́ndice de refracción utilizando imágenes de resonancia magnética.
Este método ha sido el primero, y por ahora el único, en utilizarse in vivo
y gracias a él, se han publicado estudios sobre el cambio en la distribución
de gradiente de ı́ndice no solo con la edad sino también con la acomodación
en cristalinos in vivo. Sin embargo, la precisión del método depende de una
cuidadosa calibración que es discutida y la baja precisión del mismo y el coste
en la obtención de las imágenes, parecen ralentizar su desarrollo.
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Capı́tulo 2: Métodos

Este capı́tulo describe los algoritmos y los métodos experimentales utiliza-
dos en el trabajo de tesis doctoral.

Se ha programado un algoritmo de trazado de rayos sobre medios ho-
mogéneos y sobre medios de gradiente de ı́ndice de refracción en MatLab para
simular los datos observados experimentalmente. Este algoritmo es descrito y
validado con un programa de diseño óptico.

El trazado de rayos sobre medios de gradiente de ı́ndice se hace por medio
del método de Runge-Kutta, que es una solución numérica de la ecuación
diferencial paso a paso. El tamaño de dicho paso es un compromiso entre
velocidad (pasos grandes) y precisión (pasos pequeños). El paso más adecuado
para la forma y magnitud del gradiente de ı́ndice fue calculado observando
distintos datos de trazado de rayos a través del cristalino con distintos tamaños
de paso.

Se describen los algoritmos genéticos y las distintas posibilidades de los
mismos ası́ como la implementación final en MatLab. El algoritmo de búsqueda
propuesto para reconstruir el gradiente de ı́ndice de refracción del cristalino
realiza una búsqueda global para evitar caer en mı́nimos locales, seguida
de una búsqueda local una vez que el área donde se encuentra el mı́nimo
está localizado.

Por último los sistemas experimentales de medida utilizados son descritos.
Se implementó un sistema experimental para estudiar los datos accesibles con
una vista lateral del trazado de rayos o los impactos en una retina artificial
y se realizaron medidas en lentes de vidrio para obtener una medida del
error experimental en este tipo de medidas. Se utilizaron también dos sistemas
de Tomografı́a de Coherencia Óptica (OCT). Uno de ellos hace imagen en
el dominio del tiempo. Fue desarrollado e implementado en el Ophthalmic
Biophysics Center del Bascom Palmer Eye Institute de Miami, Estados Unidos,
y se utilizó para obtener imágenes bidimensiones del cristalinos humanos. Otro
sistema, que utiliza el dominio de la frecuencia para extraer imágenes y que
fue desarrollado e implementado en el Instituto de Óptica en colaboración con
la Copernicus University en Toruń, Polonia, permite la obtención de imágenes
tridimensionales. En esta tesis fue utilizado para hacer imagen de un cristalino
porcino y para reconstruir tridimensionalmente su ı́ndice de refracción.
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Capı́tulo 3: Precisión en la reconstrucción del
gradiente de ı́ndice con métodos de reconstruc-
ción basados en datos de trazado de rayos o to-
mografı́a de coherencia óptica

En este capı́tulo estudiamos la precisión de la reconstrucción del gradiente
de ı́ndice (GRIN) usando métodos de optimización cuando se utilizan distintos
datos experimentales. El capı́tulo está basado en el artı́culo [de Castro et al.,
2011a], publicado en la revista Optics Express.

Algunos métodos, previamente propuestos en la literatura, de reconstruc-
ción del GRIN usan las desviaciones de los rayos que pasan por el cristalino
como data de entrada para los algoritmos de optimización [Axelrod et al., 1988;
Garner et al., 2001] y otros, relacionan estos datos con el GRIN obteniendo éste
último por medio de la inversión de una integral [Campbell, 1984; Chan et al.,
1988; Pierscionek et al., 1988] o, por medio de un proceso iterativo [Acosta
et al., 2005; Vazquez et al., 2006]. Las desviaciones de los rayos, debido al pa-
so a través del cristalino, pueden medirse si se sitúa una cámara enfocando el
plano meridional. Estos datos se han usado para obtener el GRIN de cristalinos
esféricos y no esféricos extraidos de ojos de peces y cerdos respectivamente.

Sin embargo, el diagrama de impactos puede ser obtenido si la cámara
se sitúa después del cristalino. Este tipo de configuración se ha usado en
validaciones de técnicas aberrométricas basadas en trazado de rayos. En contra
de las técnicas basadas en imágenes laterales de los rayos, una configuración
basada en la grabación del diagrama de impactos, podrı́a ser implementada in
vivo por medio de una configuración de doble paso.

En una imagen de Tomografı́a de Coherencia Óptica (OCT) las distncias
verticales entre superficies son una medida del camino óptico acumulado
por cada rayo a su paso a través del cristalino. El uso de las diferencias de
camino óptico ha sido utilizado para reconstruir el gradiente de ı́ndice en
lentes esféricas de ojos de pez in vivo por Verma et al. [2007].

En este capı́tulo comparamos la precisión de la reconstrucción en cristali-
nos no esféricos utilizando cinco tipos de datos experimentales accesibles con
los sistemas descritos en el capı́tulo anterior: (1) la deflexión de los rayos al
pasar por el cristalino, (2) la deflexión de los rayos a su paso por el cristalino
y el punto de salida del mismo, (3) los impactos en un plano posterior al cris-
talino, (4) el camino óptico acumulado por los rayos al atravesar el cristalino,
i.e. entre la cara anterior y la cara posterior del cristalino y (5) el camino óptico
acumulado hasta la superficie posterior del cristalino y hasta un plano poste-
rior. Asumiremos en todos los casos que la forma del cristalino y su espesor
es conocido y comprobaremos las reconstrucciones bajo diferentes niveles de
error en los datos experimentales.

Para estimar el error experimental, hemos realizado medidas experimenta-
les en lentes de vidrio cuyos valores nominales pueden ser calculados con un
trazado de rayos teórico con los datos de las especificaciones. También hemos
estudiado la influencia del error en la estimación de la forma de la superfi-
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cie y su efecto en la reconstrucción del GRIN. Finalmente hemos estudiado
la dependencia de la reconstrucción con la cantidad de datos experimentales
simulando la reconstrucción con un número creciente de rayos.

La desviación de la reconstrucción del gradiente de ı́ndice de la distribu-
ción nominal se incrementa cuando lo hace el error en los datos de entrada. Sin
embargo, para niveles de error del orden de los medidos experimentalmente
en el sistema de trazado de rayos y OCT, el gradiente de ı́ndice es reconstruido
con una precisión de 0.005 de media en todo el cristalino. Se demuestra además
que, para la misma cantidad de error experimental, las mejores reconstruccio-
nes se obtienen con datos de diferencia de camino óptico de los rayos entre la
superficie anterior y posterior del cristalino (configuración 4) y diferencia de
camino óptico hasta la superficie posterior y hasta un plano posterior al cris-
talino (configuración 5). Esto significa que los datos de diferencia de camino
óptico son los más adecuados como datos de entrada para la reconstrucción
del gradiente de ı́ndice con métodos de optimización y, por ello, serán los datos
utilizados en los próximos capı́tulos.
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Capı́tulo 4: Reconstrucción tridimensional del
gradiente de ı́ndice de refracción del cristalino con
imágenes de tomografı́a de coherencia óptica

En este capı́tulo presentamos una aplicación directa de los métodos de
optimización antes descritos. En concreto se utilizan imágenes de Tomografı́a
de Coherencia Óptica (OCT) para recuperar el gradiente de ı́ndice de refracción
(GRIN) de un cristalino porcino. El capı́tulo está basado en el artı́culo [de Castro
et al., 2010], publicado en la revista Optics Express.

Se tomaron imágenes tridimensionales de un cristalino in vitro con el OCT
en dos orientaciones (con la superficie anterior hacia arriba y con la superficie
posterior hacia arriba), lo que permitió calcular la geometrı́a del cristalino.
El espesor se calculó observando la deformación de la cuveta utilizada en las
medidas in vitro al ser observada a través del cristalino [Uhlhorn et al., 2008]. El
método de reconstrucción buscó los parámetros de un modelo de gradiente de
ı́ndice de refracción de 4 variables que mejor ajustaban la distorsión observada
en la cara posterior del cristalino, esto es, el GRIN que mejor simulaba los
datos de camino óptico acumulado por los rayos a su paso por el cristalino
medidos en las imágenes de OCT. En el modelo [Manns et al., 2010], el ı́ndice
de refracción varı́a siguiendo una ecuación exponencial entre el núcleo y la
superficie, que mantiene un ı́ndice constante.

Se realizaron simulaciones para estudiar la precisión de la reconstrucción
en presencia de ruido en la detección de las superficies con el modelo de 4
variables utilizado en este estudio. Las simulaciones muestran que suponiendo
un ruido de 5µm en el cálculo de las diferencias de camino óptico, los ı́ndices
en la superficie y en el núcleo del cristalino pueden ser calculados con una
precisión de 0.010 y 0.003 respectivamente.

Experimentalmente hemos encontrado en un cristalino porcino un ı́ndice
de refracción variable entre 1.353, en la superficie, y 1.434, en el núcleo. El factor
de decaimiento exponencial que mejor ajustaba los datos experimentales fue
2.62, en el eje óptico, y variable entre 3.56 y 5.18, meridionalmente.

Se estudió el efecto del GRIN en las aberraciones trazando rayos en un mo-
delo con las superficies medidas y, o bien el ı́ndice equivalente o bien el GRIN
calculado. La aberración esférica estimada del cristalino fue 2.87µm asumien-
do el ı́ndice homogéneo. La presencia del GRIN desplazó la aberración esférica
hacia valores negativos, −0.97µm, para una pupila de 6 mm de diámetro. El
gradiente de ı́ndice del cristalino recuperado, debido a su asimetrı́a, cambia
además el signo del astigmatismo.

En éste capı́tulo se valida el método antes propuesto y se reconstruye el
GRIN de un cristalino porcino, estudiado ya en la literatura con otras técnicas.
Además de aportar datos, por primera vez en la literatura, que implican que
el astigmatismo del cristalino no es solo debido a la forma de sus superficies
sino también, a la distinta distribución de GRIN en distintos meridianos.
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Capı́tulo 5: Cambio del gradiente de ı́ndice de
refracción del cristalino humano con la edad

Se aplicaron las técnicas de optimización basadas en el estudio de las imáge-
nes de Tomografı́a de Coherencia Óptica (OCT) para reconstruir la distribución
del gradiente de ı́ndice de refracción (GRIN) presente en el cristalino humano.
Se estudió la dependencia con la edad de las variaciones de esta distribución.
Este capı́tulo está basado en el artı́culo [de Castro et al., 2011b], publicado en
la revista Journal of Modern Optics.

Se estudiaron imágenes de nueve cristalinos humanos con edades entre 6
y 7 años (tiempo post mortem entre 1 y 4 dı́as) con un sistema de OCT. Los
cristalinos se extrajeron de ojos cadaver y se midieron en una cámara rellena
de lı́quido de preservación (DMEM). Se hizo imagen de los cristalinos con la
superficie anterior hacia arriba y luego se les dio la vuelta para hacer de nuevo
imagen con la cara posterior hacia arriba. De esta forma se obtuvo la superficie
anterior y posterior de los mismos sin distorsión, y distorsionada debido a la
refracción a través de la otra superficie y el GRIN del cristalino. El espesor del
cristalino se calculó estudiando la deformación de la cuveta en las imágenes.

La distribución de GRIN se describió con tres variables por medio de
una ecuación exponencial. Las variables fueron el ı́ndice del núcleo, el ı́ndice
de la superficie y el coeficiente exponencial que describe la caı́da de ı́ndice de
refracción entre el núcleo y la superficie. Utilizamos el método de optimización
para buscar el valor de las tres variables que mejor ajustaba la distorsión
producida en las imágenes de OCT. Dicha distorsión fue simulada con una
precisión similar a la resolución del sistema de medida (por debajo de 15µm).

Los valores de ı́ndice de refracción de superficie y núcleo para las distintas
lentes fueron entre 1.356 y 1.388, y entre 1.396 y 1.434 respectivamente. No se
observó un cambio significativo de estos parámetros con la edad. Sin embargo
se puede ver en los resultados que el coeficiente exponencial se incrementa
significativamente con la edad a un ritmo de 0.24 cada año. Este coeficiente
tomo valores entre 3 y 18.

Se concluye ası́ que el método propuesto en esta tesis permite medidas no
invasivas del perfil de gradiente de ı́ndice del cristalino humano ex vivo. La
variación con la edad del GRIN resultado de este estudio es consistente con
datos previos utilizando técnicas de resonancia magnética, y con la formación
progresiva de un plateau de ı́ndice de refracción constante en el centro del
cristalino.
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Capı́tulo 6: Distorsiones en la superficie poste-
rior del cristalino en imagenes de tomografı́a de
coherencia óptica en cristalinos in vitro: efecto del
gradiente de ı́ndice

En este capı́tulo se cuantifica al influencia del gradiente de ı́ndice de re-
fracción (GRIN) en la distorsión observada en las imágenes de Tomografı́a de
Coherencia Óptica (OCT) de cristalinos aislados. Está basado en el artı́culo
Borja et al. [2010], publicado en la revista Biomedical Optics Express.

Se utilizaron 12 cristalinos de 12 donantes distintos con edades entre 6 y
90 años. Se tomaron imágenes de OCT en las dos posiciones descritas en el
capı́tulo anterior (superficie anterior arriba y superficie posterior arriba) para
cuantificar la forma de la superficie con y sin distorsión.

Se comparó la superficie distorsionada (la posterior en las imágenes con la
superficie anterior arriba o la anterior en las imágenes con la superficie poste-
rior arriba) con predicciones de un trazado de rayos suponiendo un modelo
de cristalino descrito por un ı́ndice de refracción homogéneo, ya sea el ı́ndice
equivalente o el ı́ndice promedio, y con un modelo de gradiente de ı́ndice.
También se estudió la posible corrección de la distorsión observada usando
tres estrategias distintas (1) sin tener en cuenta la refracción en la primera
superficie del cristalino ni el efecto del gradiente de ı́ndice, (2) simulando la
refracción en la primera superficie asumiendo un modelo homogéneo de ı́ndi-
ce de refracción y (3) simulando la refracción tanto en la superficie como en el
gradiente de ı́ndice y modelando este último con un modelo dependiente de
3 variables propuesto por Goncharov and Dainty [2007].

Los resultados muestran que el error, al simular la distorsión utilizando
modelos con y sin gradiente de ı́ndice, en el radio de curvatura, está en el
orden de reproducibilidad de las medidas. De forma similar, la corrección
asumiendo que el cristalino se puede describir con un ı́ndice homogéneo dio
buenos resultados en términos de radio de curvatura. Ası́, la distorsión puede
ser simulada y corregida asumiendo un ı́ndice de refracción homogéneo, y
obtener valores correctos de radio de curvatura. A pesar de que la mayorı́a de
estudios que corrigen las imágenes de OCT y asumen un ı́ndice homogéneo
utilizan el ı́ndice de refracción equivalente, definido estudiando la potencia del
cristalino, se observó que el ı́ndice homogéneo que resultaba más conveniente
para obtener la forma de la superficie posterior era el ı́ndice promedio, que se
define a través de la diferencia de camino óptico en el centro del cristalino.

Sin embargo, para simular correctamente la asfericidad de la superficie
distorsionada, es necesario tener en cuenta el gradiente de ı́ndice de refracción.
De igual manera, la corrección de la distorsión produce buenos resultados
en términos de asfericidad solo cuando el gradiente de ı́ndice de la lente es
introducido en el algoritmo de corrección.

En resumen, hemos encontrado que el GRIN produce una distorsión sig-
nificativa en la superficie posterior del cristalino cuando se hace imagen del
mismo con un sistema OCT y que esta distorsión es notoria en la periferia
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del cristalino. No obstante, en medidas in vitro, se pueden obtener radios de
curvatura de forma precisa utilizando una corrección sencilla que no tenga en
cuenta la refracción en la primera superficie. La distorsión puede ser predicha
y corregida con un algoritmo que incorpore trazado de rayos y un modelo
adecuado de gradiente de ı́ndice. Estos resultados son aplicables en estudios
in vitro ya que, en imágenes del cristalino in vivo, la refracción en la córnea
puede introducir otras distorsiones en el radio de curvatura y la asfericidad
de las superficies distorsionadas.
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Capı́tulo 7: Corrección de la distorsion en imá-
genes de tomografı́a de coherencia óptica tenien-
do en cuenta el gradiente de ı́ndice del mismo

En este capı́tulo se propone un método para corregir la distorsión de las
imágenes de Tomografı́a de Coherencia Óptica (OCT) de la superficie poste-
rior del cristalino humano teniendo en cuenta su distribución de gradiente de
ı́ndice de refracción (GRIN) y se compara dicha reconstrucción con los méto-
dos utilizados en la literatura. El capı́tulo está basado en el artı́culo Siedlecki
et al. [2012], aceptado para su publicación en la revista Optometry and Vision
Science.

Las medidas con OCT sobre el set de cristalinos que se utilizó en el capı́tulo
5 y el modelo y la distribución GRIN calculada en dicho estudio, se utilizan
ahora para validar el método. Los resultados de la corrección fueron evaluados
comparando con la forma nominal de la superficie (accesible en estas medidas
in vitro en la imagen con la superficie posterior arriba). Además se compara el
resultado del nuevo método con otros dos existentes: (1) división del camino
óptico por un ı́ndice homogéneo, esto es, sin tener en cuenta ni la refracción
de los rayos en la superficie anterior ni el gradiente de ı́ndice y (2) corrección
de la refracción suponiendo un ı́ndice constante. Se compararon los radios de
curvatura de las superficies, la constante cónica y la raı́z cuadrática media y el
valor máximo de la diferencia entre la superficie corregida y la nominal.

No se encontraron diferencias estadı́sticamente significativas en el radio
y la constante cónica recuperadas con los distintos métodos. Sin embargo
la corrección teniendo en cuenta el GRIN produjo resultados más precisos en
términos de raı́z cuadrática media y valores máximos de la diferencia con erro-
res de menos de 6µm y 13µm de media respectivamente. Se encontró también
que el espesor es calculado con más precisión con el nuevo método, con una
diferencia promedia de 8µm

De los resultados se concluye que la superficie posterior del cristalino y el
espesor del mismo pueden ser reconstruidos de forma muy precisa desde las
imágenes de OCT y que la precisión mejora si se tiene un modelo acertado de
la distribución de ı́ndice de refracción del cristalino. El algoritmo propuesto
puede ser utilizado para mejorar el conocimiento del cristalino en imágenes
de OCT in vivo. Aunque las mejoras sobre otros métodos son modestas en dos
dimensiones y con pupilas de 4 mm de diámetro, es de esperar que estudios
con un mayor tamaño de pupila se beneficiarán en mayor medida de la técnica
propuesta. El método también se beneficiarı́a de un mayor número de datos
experimentales de la distribución de gradiente de ı́ndice del cristalino.
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Translation of conclusions to
Spanish

Esta tesis estudia la reconstrucción del gradiente de ı́ndice de refracción (GRIN)
del cristalino no esférico utilizando una optimización para buscar los paráme-
tros de un modelo de GRIN que reproducen con más precisión los datos expe-
rimentales. Hemos validado el método con simulaciones y hemos reconstruido
el gradiente de ı́ndice de un cristalino porcino tridimensionalmente y de un
set de cristalinos humanos para estudiar la influencia del GRIN en la óptica
del cristalino, su cambio con la edad. Además hemos estudiado los beneficios
en la corrección de la distorsión en las imágenes de Tomografı́a de Coherencia
Óptica (OCT) cuando se considera la distribución de ı́ndice de refracción del
cristalino.
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En esta tesis, reportamos los siguientes logros:

• Un método nuevo de reconstrucción del GRIN en cristalinos no esféricos
que utiliza, por primera vez en la literatura, un algoritmo global basado
en algoritmos genéticos.

• Los errores de los datos de entrada al algoritmo (datos de trazado de
rayos y Tomografı́a de Coherencia Optica) han sido estimados experi-
mentalmente en lentes de vidrio.

• El método alcanza la precisión reportada por otros métodos, en la re-
construcción del GRIN.

• Primera reconstrucción de la distribución GRIN en un cristalino porcino
utilizando imágenes de OCT.

• Primera medida tridimensional del GRIN, primer reporte de cambios
meridionales de la distribución de GRIN.

• Primera estimación directa del papel de la forma de las superficies y del
GRIN en la aberración esférica del cristalino y su astigmatismo.

• Primer estudio basado en métodos ópticos de la variación del GRIN con
la edad en cristalinos humanos.

• Primera propuesta de un método de corrección de imágenes de OCT del
cristalino que involucra un trazado de rayos a través del GRIN
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El desarrollo del método de reconstrucción presentado en esta tesis y los
resultados experimentales nos permiten concluir que:

1 Es posible reconstruir el GRIN de un cristalino no esférico con métodos
de optimización cuando la geometrı́a externa del mismo es conocida.
Hemos mostrado, por medio de simulaciones, que diferentes datos

experimentales obtenidos con un trazado de rayos o una imagen Tomografı́a
de Coherencia Óptica pueden ser usados para reconstruir el GRIN y que la
mejor reconstrucción es obtenida si se utilizan los datos de camino óptico
obtenidos de imágenes de OCT (raiz cuadrática media de la diferencia menor
que 0.005).

2 El GRIN de un cristalino porcine puede ser reconstruido con el método
propuesto en esta tesis utilizando un modelo tridimensional. Los ı́ndi-
ces de refracción de fase de la superficie y el núcleo para una longitud

de onda de 633 nm estimados, fueron 1.354 y 1.434 respectivamente, y el factor
de decaimiento exponencial fue 2.6 en eje y variable entre 3.5 y 5.1 en el eje
meridional.

3 La presencia de GRIN tiene un impacto en la óptica del cristalino. En
particular, el GRIN desplaza la aberración esférica del cristalino de valo-
res positivos (que se obtendrı́an considerando las mismas superficies y

un ı́ndice homogéneo) hacia valores negativos. La presencia del GRIN también
tiene una influencia en el astigmatismo del cristalino.

4 El GRIN del cristalino humano cambia con la edad. En lentes jóvenes
el cambio entre superficie y núcleo es suave mientras en cristalinos
mayores este cambio está concentrado en la superficie. Los resultados

muestran que, aunque los ı́ndices de refracción de la superficie y el núcleo
no cambian con la edad, el factor de decaimiento exponencial que describe la
forma del perfil aumenta significativamente 0.24 cada año. Los valores pro-
medio de ı́ndice de refracción para una longitud de onda de 589 nm fueron
1.373± 0.014 y 1.417± 0.011.

5 El efecto del GRIN en la distorsión de la superficie posterior observada a
través de la anterior en las imágenes de OCT, es relevante principalmen-
te en la periferia del cristalino. La corrección de la distorsión asumiendo

un modelo de GRIN mejora los métodos propuestos anteriormente en la lite-
ratura, que asumen un ı́ndice homogéneo. La precisión en la obtención de la
biometrı́a de la superficie posterior del cristalino con imágenes de OCT mejora
si el GRIN del cristalino es tenido en cuenta.
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Pérez, M. V., Bao, C., Flores-Arias, M. T., Rama, M. A., and Gómez-Reino, C. (2005).
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