
Received June 1, 2018, accepted June 29, 2018, date of publication July 11, 2018, date of current version August 7, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2855064

Towards Automatic Parallelization of
Stream Processing Applications
MANUEL F. DOLZ , DAVID DEL RIO ASTORGA , JAVIER FERNÁNDEZ ,
J. DANIEL GARCÍA , AND JESÚS CARRETERO
Department of Computer Science, Universidad Carlos III de Madrid, 28911 Leganés, Spain

Corresponding author: Manuel F. Dolz (mdolz@inf.uc3m.es)

This work was supported in part by the Spanish Ministerio de Economía y Competitividad through the Project Toward Unification of HPC
and Big Data Paradigms under Grant TIN2016-79637-P and in part by the EU Project RePhrase: REfactoring Parallel Heterogeneous
Resource-Aware Applications under Grant ICT 644235.

ABSTRACT Parallelizing and optimizing codes for recent multi-/many-core processors have been
recognized to be a complex task. For this reason, strategies to automatically transform sequential codes into
parallel and discover optimization opportunities are crucial to relieve the burden to developers. In this paper,
we present a compile-time framework to (semi) automatically find parallel patterns (Pipeline and Farm) and
transform sequential streaming applications into parallel using GrPPI, a generic parallel pattern interface.
This framework uses a novel pipeline stage-balancing technique which provides the code generator module
with the necessary information to produce balanced pipelines. The evaluation, using a synthetic video
benchmark and a real-world computer vision application, demonstrates that the presented framework is
capable of producing parallel and optimized versions of the application. A comparison study under several
thread-core oversubscribed conditions reveals that the framework can bring comparable performance results
with respect to the Intel TBB programming framework.

INDEX TERMS Refactoring framework, automatic parallelization, load-balanced pipeline, parallel patterns.

I. INTRODUCTION
Whereas over the years high performance computing (HPC)
facilities have enjoyed considerable enhancements —mostly
due to the increases in the processors frequency—, the end
of Moore’s law in the middle of the past decade marked a
milestone that shifted the microprocessor designs towards the
multi-/many-core era [1]. This fact led scientific applications
to cease their continuous improvements, being necessary to
rewrite them in parallel in order to leverage resources pro-
vided by modern multi-/many-core processors and acceler-
ators [2]. Since then, however, there remains a significant
portion of legacy codes, coming from a broad range of sci-
entific areas, running in sequential on parallel platforms.
Although these applications are gradually parallelized, adapt-
ing and tuning them to operate on modern architectures is not
straightforward.

For several years, the HPC community is making tremen-
dous efforts in the design of frameworks and parallel pro-
gramming models to relieve the burden on parallelizing
applications. Numerous examples of programming mod-
els for multi-core architectures, such as OpenMP [3],
OmpSs [4] or OpenACC [5], permit to exploit parallel

hardware resources by merely annotating the code.
Nevertheless, finding out which portions of the program are
suitable to be parallelized is not elemental: programmers
require additional expertise for writing applications in par-
allel, apart from the knowledge necessary in the application
domain. As a result, applications are often rewritten using a
daunting number of low-level concurrency primitives, such as
specific threading management and communication mecha-
nisms. This fact may prevent applications from scaling well
and lead to communication overheads, load imbalance, poor
data locality, deadlocks, data races, etc. Additionally, main-
taining and porting applications to other parallel platforms
can be an error-prone task which may require enormous
efforts from a domain expert.

Among several approaches to address the parallel pro-
gramming problem, we encounter automatic parallelization
techniques and high-level parallel abstractions. On the one
hand, automatic parallelization is the process of automatically
converting a sequential program to a version that can directly
run on parallel architectures. Indeed, parallel refactoring
mechanisms have been widely explored since the rise of
multi-core processors [6]. Unfortunately, tools found are still

39944
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-9466-3398
https://orcid.org/0000-0003-0611-3332
https://orcid.org/0000-0001-8539-5491
https://orcid.org/0000-0002-1873-9706
https://orcid.org/0000-0002-1413-4793

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

premature and have not yet been fully adopted by developers.
On the other hand, parallel patterns offer high-level APIs
which abstract programmers from such complex concur-
rency mechanisms by providing standard interfaces to some
recurrent parallel constructions encountered in data-intensive
(e.g., MapReduce, Stencil) and stream processing
(e.g., Pipeline, Farm) applications. Even though patterns
alleviate the burden of parallel programming, develop-
ers still have to select and tune the most appropriate
skeletons to provide efficient parallel versions of a given
algorithm [7].

To mitigate these issues, in this paper we propose a com-
plete framework which takes advantage of both approaches
mentioned above to deal with the parallel programming chal-
lenge in the context of stream processing applications. This
framework proceeds in the following phases: i) detection
of stream pattern candidates in sequential codes; ii) rewrite
found instances using a generic parallel pattern interface;
and iii) optimization of Pipeline constructions to improve
the throughput using a profile-guided approach. Concretely,
in this paper we contribute with the following:
• We present a parallel pattern refactoring framework
able to detect the Pipeline and Farm stream patterns
in sequential C++ codes and rewrite candidates using
GrPPI, a generic parallel pattern interface.

• We develop Pipeline balancing algorithms that cal-
culate an optimal arrangement of Pipeline instances.
These algorithms use an off-line profile-guided
approach to optimize the architecture resource usage.

• We investigate the benefits of oversubscribed scenarios,
i.e., increasing the number of threads above the available
platform cores, to develop a novel strategy able to find
the optimal concurrency degree.

• We analyze the presented Pipeline balancing algorithms
and compare their time-to-solution and Pipelines exe-
cution time using the proposed framework.

• We evaluate the refactoring framework and the different
strategies to find the optimal concurrency with vary-
ing configurations of the PiBa algorithms and GrPPI
back ends. This evaluation is carried out using two
stream processing applications, a synthetic video bench-
mark and a computer vision use case for detecting lane
lines.

The rest of this document is organized as follows. Section II
revisits some related works in the area. Section III defines
the two major components used by the framework: the par-
allel pattern analyzer tool and the parallel pattern interface.
Section IV describes the parallel pattern refactoring
framework, as for the main contribution of this paper.
Sections V and VI present the variants of the Pipeline
balancing algorithms and strategy for finding an optimal con-
currency degree. In Section VII, we evaluate the refactorings
and the balancing algorithms under several configurations.
Finally, Section VIII closes this paper with some concluding
remarks and future works.

II. RELATED WORK
In the literature we find numerous efforts addressing both
parallel pattern refactorization and optimization processes.
We classify these efforts in the following categories: i) detec-
tion of parallel patterns; ii) refactorization tools for rewriting
codes; iii) optimization of pattern-based parallel applications.

Detecting parallel patterns has been widely recognized to
be a complex task [8]. This situation occurs because there
exist no standard references to validate the patterns found
in source codes. Also due to the wide variety of detec-
tion strategies that can be used at both compile- and run-
time. For instance, Sean Rul et al. [9] instrument loops at
LLVM-IR level and perform a run-time profiling analysis
to decide whether a loop is a pipeline or not. Similarly,
the tool by Li et al. [10] leverages dependency graphs to
detect parallel patterns at run-time using an instrumented
version of the codes. Other contributions, such as the work
by Molitorisz et al. [11], detect potential parallel patterns at
compile-time but require subsequent executions to find out
data races and dependencies in the resulting codes. Alterna-
tively, the tool FreshBreeze [12] uses static loop detection
techniques to analyze dependencies and transform paralleliz-
able loops using a task tree-structured model. In general,
we observe that approaches based on static analysis are not as
extended as those using dynamic strategies, basically because
data dependency analyses are more complex to perform at
compile-time than at run-time.

On the other hand, refactoring of applications has also
been a large field of research in the last decades [13].
However many of the refactoring techniques for parallel
programming presented in the literature are to some extent
limited [14]. In a first inspection, we notice that many of these
approaches are focused to specific structural rearrangements
of the code (e.g., loop optimizations), which have been lately
included in recent compiler optimizer modules using poly-
hedral or unimodular transformations [15], [16]. However,
transformations applying parallel design patterns or algo-
rithmic skeletons, have not been yet widely explored.
In this line, we encounter works proposing pattern rewriting
rules [7], commercial frameworks to introduce parallelism
using structural refactoring steps [17], [18] and projects
that aim to develop advanced refactoring frameworks [19].
Other works combine the refactoring and optimization tech-
niques. For instance, Aldinucci and Danelutto [20] propose a
method to minimize the service time of stream parallel pat-
tern compositions by applying systematic rewritings. Also,
some of the rewriting and tuning techniques in the litera-
ture have been embedded into skeleton-based programming
frameworks [21].

As previously observed, while refactoring techniques
already leverage optimization techniques at code rewriting,
we also encounter efforts dealing exclusively with opti-
mization of parallel skeletons [22]. Particularly, we find a
considerable number of studies focused on load balancing
techniques for pipeline constructions. For instance, the work

VOLUME 6, 2018 39945

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

by Moreno et al. [23], [24] use mathematical models to
replicate the slowest and collapse the fastest pipeline stages.
However, it assumes that all of them are pure functions.
Research on pipeline optimizations comparing task-
parallelism and work-stealing with both stage replication/
merging techniques can also be found in the state-of-the-
art [25]. On the other hand, Kamruzzaman et al. [26] map
all pipeline stages to a single thread and distribute loop
iterations among worker threads, handling sequential stages
using token-based synchronization. In contrast, Li et al. [27]
present a collection of algorithms that can replicate pipeline
stages to achieve optimal or near-optimal throughput but do
not consider communication overheads.

In a nutshell, the contributions in this paper extend the
current literature with a framework able to detect thePipeline
and Farm patterns and generate parallel codes which are
optimized through a series of profiling steps. In our case,
the parallelism is exploited by GrPPI, which offers a uni-
fied pattern interface to some programming frameworks
(C++ threads, OpenMP or Intel TBB), while the pipeline
balancing optimizations are performed using an off-line
profile-guided approach.

III. PARALLELIZATION MECHANISMS
In this section, we overview the two major components
used for building up the refactoring framework presented in
this paper: the Parallel Pattern Analyzer Tool (PPAT) and
the Generic and reusable Parallel Pattern Interface (GrPPI).
Finally, we describe the parallel patterns supported by the
proposed framework.

A. PARALLEL PATTERN ANALYZER TOOL
We leverage the Parallel Pattern Analyzer Tool (PPAT),
a tool that allows analyzing, detecting and annotating parallel
patterns on sequential C/C++ codes using static analysis
techniques [28]. This tool analyzes the Abstract Syntax
Tree (AST) to collect relevant information and identify poten-
tial parallel patterns in C/C++ sequential codes. The parallel
patterns encountered by the tool are annotated in the output
source codes. Figure 1 depicts the general workflow of PPAT.

FIGURE 1. Parallel pattern analyzer tool workflow.

The significant advantages of PPAT are the following:
i) it is entirely independent of the refactoring tool used;
ii) it performs a static analysis of the code, avoiding profil-
ing overheads; and iii) it guarantees that patterns detected
comply with a series of requirements that ensure the cor-
rectness of the resulting parallel code. However, PPAT has
some limitations when detecting Pipeline constructions at

compile-time: it does not split their stages equally according
to their computational load. Instead, it divides the Pipeline
into the maximum number of stages, which may potentially
lead to unbalanced stages. For this reason, in this paper,
we propose a refactoring framework that leverages PPAT
and is capable of generating more balanced and optimized
Pipeline codes.

B. GENERIC AND REUSABLE PARALLEL
PATTERN INTERFACE
As for the parallel pattern interface for our refactoring frame-
work, we take advantage of GrPPI, a generic and reusable
parallel pattern interface for C++ applications [29]. Specif-
ically, GrPPI takes full advantage of modern C++ features,
metaprogramming concepts, and generic programming to act
as a unified interface between the OpenMP, C++ threads and
Intel TBB parallel programming models. Its design allows
users to leverage the aforementioned execution frameworks
in a single and compact interface, hiding away the com-
plexity behind the use of concurrency mechanisms. Further-
more, the modularity of GrPPI permits to easily integrate
new patterns, while combine them to arrange more complex
constructions. Thanks to this property, GrPPI can be used
to implement a wide range of existing stream-processing
and data-intensive applications with relatively small efforts,
having as a result portable codes that can be executed on
multiple platforms.

C. PIPELINE AND FARM PARALLEL PATTERNS
As an initial version of the refactoring framework, we con-
sider only two stream-based parallel patterns: Pipeline and
Farm [30]–[32]. The definitions for these two patterns are
the following:
• Pipeline: This pattern processes the items appearing on
the input stream in a linear sequence of stages. Each
stage of this pattern processes data produced by the
previous stage in the pipe and delivers results to the next
one. Provided that the i-th stage in a n-staged Pipeline
computes the function fi : α → β, the Pipeline
delivers the item xi to the output stream applying the
function fn(fn−1(. . . f1(xi) . . .)). Assuming that the items
appearing on the input stream are . . . , xi+1, xi, xi−1, . . .
the computation of stage fj over the partial result relative
to xi can occur in parallel to the computation of fj+k over
the partial result relative to xi−k .
Figure 2a shows the Pipeline diagram and its GrPPI-
related interface. This GrPPI interface receives the
execution policy (exec_policy) and the func-
tions (stages) related to the Pipeline stages by uni-
versal reference (&&). As can be seen, the C++ interface
uses templates, making it more flexible and reusable for
any data type. Note the use of C++11 variadic tem-
plates (...), allowing a Pipeline to have an arbitrary
number of stages by receiving a collection of functions
passed as arguments. It is important to remark that the
C++ threads back end creates a thread per Pipeline

39946 VOLUME 6, 2018

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

FIGURE 2. Pipeline and Farm patterns diagrams with its GRPPI interface.
(a) Pipeline pattern. (b) Farm pattern.

stage, while the Intel TBB back end leverages a task-
parallelism paradigm with a pool of worker threads that
continuously poll for work from a queue of ready tasks.

• Farm: This pattern computes in parallel the function f :
α→ β over all the items appearing in the input stream.
Thus, for each item xi on the input stream the Farm pat-
tern delivers an item to the output stream as f (xi). This
pattern assumes that the function f is stateless, and can
be applied to different stream items in parallel. In other
words, the computation of f (xi) and f (xj) ∀i, j : i 6= j
may be computed in parallel by the different concurrent
entities (replicas).
Figure 2b depicts the Farm diagram alongwith its GrPPI
interface. This interface receives the number of repli-
cas (num_replicas) and the Farm function (func)
that processes individual items coming from the input
stream. It is important to highlight that the C++ threads
back end creates a thread per Farm replica. Conversely,
the Intel TBB back end creates a new task for processing
each incoming itemwith the Farm function, executed by
any of the worker threads in the pool.

In general, these patterns can be composed among them to
produce more complex constructions. In this paper, the com-
positions supported between the Pipeline and Farm patterns
are those in which the Pipeline stages can be parallelized
individually using the Farm pattern, also known as parallel
stages [31]. Thus, if a Pipeline stage corresponds with a pure
function, this can be computed in parallel following a Farm
construction. Throughout this paper, we denote the sequential
stages of a Pipeline with ‘‘s’’, the Farm stages with ‘‘f’’
and the communication between two stages with the symbol
‘‘|’’. For instance, a Pipeline comprised of 4 stages, where
the second and the third are Farm stages, is represented by
‘‘(s|f|f|s)’’.

IV. THE REFACTORING FRAMEWORK
In this section, we describe the Parallel Pattern Refactoring
Framework, namely PPRF, as the main contribution of this
paper. Figure 3 shows the general workflow of the frame-
work. This workflow detects Pipeline and Farm candidates
in sequential C++ codes using PPAT, balances and optimizes
the pipelines found and generates parallel code using the
GrPPI pattern interface. We describe next the three principal
steps of PPRF to carry out these transformations.
Pattern detection and instrumentation. During the first

stage, the Parallel Pattern Analyzer Tool (PPAT) receives
the sequential C++ code to be analyzed. Internally,
PPAT detects code constructions that match with any of
the supported patterns (Pipeline and Farm). Afterward,
the new refactoring module introduces the GrPPI pattern
interfaces accordingly on those constructions. Addition-
ally, it instruments the Pipeline stages for measuring
their execution time.

Pipeline balancing and optimization. In this phase,
the application is run to collect average execution times
of the Pipeline stages. Using this execution time data,
we feed our Pipeline Balancing Algorithm (PiBa) for
generating its optimal configuration. This algorithm
merges and replicates the Pipeline stages according
to the available CPU cores. Additionally, PiBa is able
to determine the optimal concurrency degree by refin-
ing the Pipeline arrangement iteratively until finding
the configuration that delivers an optimal performance.
Note that this framework uses profiling techniques
to measure Pipeline stage execution time; therefore,
the input data used during the profiling phase should be
representative enough to perform the optimizations.

Parallel code generation. Finally, the refactoring module
receives the Pipeline configuration and generates
the parallel code version using the GrPPI interface.
Specifically, the refactoring module is rerun to gen-
erate the final Pipeline arrangement according to
the configuration determined by PiBa in the previous
step.

Listing 1 depicts a worked example of the aforementioned
PPRF steps. Listing 1a shows an excerpt of sequential code
containing potential parallel patterns. Once PPAT has been
executed, and parallel patterns have been found, the original
code is transformed using the GrPPI interface and instru-
mented for measuring the execution time of the detected
Pipeline stages (see Listing 1b). Note that this instrumen-
tation is provided internally by the GrPPI execution model.
With the Pipeline profile data, PiBa is able to determine an
optimal configuration, merging the first and second Pipeline
stages and using two threads for executing the third stage
using a Farm construction. Finally, Listing 1c illustrates the
transformed code taking into account the Pipeline arrange-
ment stated by PiBa in the previous step. Thanks to this
framework, sequential codes matching with Pipeline con-
structions can be automatically transformed into parallel and
optimized for the target platform.

VOLUME 6, 2018 39947

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

FIGURE 3. Workflow of the Parallel Pattern Refactoring Framework.

Listing 1. Example of PPRF code transformation. (a) Sequential code. (b) Instrumented code. (c) Optimized parallel code.

V. THE PIPELINE STAGE BALANCING ALGORITHM
In this section, we describe in detail the Pipeline Balancing
Algorithm, namely PiBa, as part of the PPRF framework. Par-
ticularly, this algorithm tries to compute the optimal, or near
optimal, arrangement of the Pipeline stages to optimize the
use of all the available resources, i.e., CPU cores, for the
target application.

We make first the following assumptions about the
Pipeline construction. Consider a Pipeline P as the follow-
ing list of stages

P = (λ1, λ2, . . . , λn),

where the i-th stage λi is the tuple (γi, ti, ri), being γi the
function kind (pure or impure), ti the execution time, and
ri the number of replicas or worker entities that execute the
stage. Note that if the function related to a stage λi is pure,
it can be executed in parallel by multiple replicas using a
Farm pattern. Otherwise, if the function is impure, it can only
be executed in series by one replica.

We next define the stage service time as the division of
its execution time between the number of its assigned repli-
cas (see Equation 1). We also define the pipeline service time
as the maximum service time of its stages (see Equation 2).
Note that the service time is the inverse of the throughput,
i.e., units of time per processed item.

STλi =
ti
ri

(1)

STP = max(STλ1 , STλ2 , . . . , STλn) (2)

Therefore, the goal of the PiBa algorithm is to find the
Pipeline equivalent to the original one with the minimum
service time using all the available CPU cores for the target
application. For that, PiBa receives two input parameters: the
Pipeline profile containing the execution time related to its
stages, and the number of available CPU cores. Next, it lever-
ages the following two techniques to find the optimal, or near
optimal, Pipeline stage arrangement:
• Stage Replication: this technique increases the paral-
lelism degree of those stages that follow the Farm pat-
tern. Given the definition of this pattern, the degree of
a Farm stage can be increased by introducing a new
concurrent entity, i.e., ri = ri + 1. With this, the stage
throughput is improved.

• Stage Merging: to reduce the total number of Pipeline
stages, this technique combines two consecutive stages
in single one, whose execution time is the sum of both
original stages. It is important to remark that if the
original stages are pure functions, the new merged stage
is also pure and can be executed in parallel. In any other
case, the resulting stage is impure. This technique is
described in detail in Algorithm 1.

Using these techniques, we present in the following sec-
tions the three different alternatives implementing the PiBa
algorithm using i) brute-force search; ii) heuristic search; and
iii) an hybrid solution combining i and ii.

A. THE BRUTE-FORCE SEARCH
Regarding the first alternative, we present the naive version
of the PiBa algorithm based on brute-force search. As can be

39948 VOLUME 6, 2018

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

Algorithm 1 Stage Merging Technique
Function mergeStages(stageA, stageB, mergedStage)

if stageA.kind = Pure & stageB.kind = Pure then
mergedStage.kind ← Pure
mergedStage.time← stageA.time+ stageB.time
mergedStage.replicas←

stageA.replicas+ stageB.replicas− 1
else

mergedStage.kind ← Impure
mergedStage.time← stageA.time+ stageB.time
mergedStage.replicas← 1

end

Algorithm 2 PiBa Brute-Force
Function PiBaBruteForce(

pipeline[], // Stages of the pipeline
numCores) // Number of cores

for i← 2 to min(numCores,pipeline[].numStages) do
// Generate all the possible
combinations with i stages
pipeMerged[]← genMerges(pipeline[], i)
for j← 0 to numCores− i do

// Generate all the possible
pipelines with j replicas
pipeCombs[]← genReplicas(pipeMerged[], j)

end
end
pipeline[]← minServiceTimePipeline(pipeCombs[])

seen in Algorithm 2, this procedure uses the aforementioned
stage merging technique (genMerges function) in order
to compute all possible merging combinations for different
number of stages, i.e., from 2 to the minimum between the
number of cores and the number of stages. Then, for each
of these combinations, the function genReplicas lever-
ages the stage replication technique to calculate all feasible
replications of the Farm stages. It is important to remark
that these replications are made until the number of replicas
equals the cores. Finally, the algorithm returns the Pipeline
configuration with the minimum service time.

However, generating all possible merging combinations of
stages and replicas has a non-negligible computational cost
of�(n3) and O(cn) for the best and worst cases, respectively.
In this case, n stands for the combination of the number of
stages and threads, while c represents a constant. Precisely,
the best case corresponds with a full sequential Pipeline,
as the function generateReplicas is not used. On the
contrary, the worst case is related to a Pipeline whose stages
are all Farm constructions.

B. THE HEURISTIC APPROACH
As noted in the previous section, the computational cost
of the brute-force search is prohibitive, therefore it is nec-
essary to design an heuristic so as to provide a solution
within a reasonable time frame. Algorithm 3 presents the
heuristic search of PiBa. This is implemented as an itera-
tive procedure, where the pipeline service time is improved
in each step. First, the heuristic calculates: i) the slowest

Algorithm 3 PiBa Heuristic
Function pibaHeuristic(

pipeline[], // Stages of the pipeline
numThreads) // Number of threads

Function getServiceTime(stage)
return getTime(stage)/getReplicas(stage)

while true do
maxFarm← getMaxFarmStage(pipeline[])
maxSeq← getMaxSeqStage(pipeline[])
sumPipe[]←
mergeConsecutiveStages(pipeline[])
minMerge← getMinStage(sumPipe[])
if countFarms(pipeline[]) > 0 &
countReplicas(pipeline[]) < numThreads then

maxFarm.replicas← maxFarm.replicas+ 1
else if countReplicas(pipeline[]) > numThreads
then

applyMerging(pipeline[],minMerge)
else if countFarms(pipeline[]) > 0

& getServiceTime(maxFarm) >
getServiceTime(maxSeq)

& getServiceTime(maxFarm) >
getServiceTime(minMerge) then

maxFarm.replicas← maxFarm.replicas+ 1
applyMerging(pipeline[],minMerge)

else
break

end
end

sequential and Farm stages (getMaxSeqStage and
getMaxFarmStage, respectively); and ii) the merged
stage of two consecutive stages with the minimum ser-
vice time (mergeConsecutiveStages1 and getMin-
Stage), using the stage merging technique. Afterwards,
depending on the current Pipeline state, the heuristic
performs iteratively one of the subsequent actions in the
following order:

A1 If there are Farm stages and the total number of current
replicas is less than the number of cores, the Farm
stage with the maximum service time is granted with an
additional replica.2

A2 If the total number of replicas is greater than the number
of cores, the merge of two consecutive stages with the
minimum service time is incorporated in the resulting
Pipeline.

A3 If the slowest stage is a Farm and it is slower than
the merge of two consecutive stages with the minimum
service time, the algorithm adds a replica to the slowest
Farm stage and incorporates the merged stage in the
resulting Pipeline.

A4 If none of the previous conditions are met, the procedure
finishes, as it cannot reduce the Pipelineservice time
anymore.

1Note that the function mergeConsecutiveStages considers all
possible mergings among consecutive Pipeline stages on a given iteration.

2The purpose of this action is to use all available CPU cores for the target
application, though in extreme cases the Pipeline throughput improvement
might be marginal.

VOLUME 6, 2018 39949

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

TABLE 1. PIBA working example.

To illustrate the workings of the PiBa heuristic, Table 1
shows an example of Pipeline that is steadily improved using
this procedure. We start from a Pipeline comprised of three
sequential and three Farm stages which are intended to run
on four cores. Note that si(ti, ri) stands for sequential stages
and fi(ti, ri) for Farm stages, executed by ri replicas. In the
first iteration, the PiBa heuristic performs the actionA2, since
the total number of replicas is greater than the number of
cores. Hence, f5 and s6 are merged into the single stage s5,6.
In the second iteration, actionA2 is taken again so as to merge
s4 and s5,6 in s4,5,6. In the third iteration, actionsA1 andA2
are discarded, given that the number of replicas is equal
to the number of cores. Therefore, since the slowest stage
corresponds to a Farm and its service time is greater (t3 = 7)
than the fastest merged stage (t2,3 = 12

2 = 6), action A3
merges f2 and f3. Finally, as the Pipelineservice time cannot
be reduced anymore and the Pipeline replicas equal to the
number of cores, the procedure finishes its execution. The
computational complexity of the heuristic PiBa algorithm is
2(n2) for all cases.

C. THE HYBRID APPROACH
The hybrid approach combines the benefits from both brute-
force and heuristic search approaches. This variant leverages
the heuristic search presented in Algorithm 3, reducing the
number of replicas until reaching the total number of avail-
able cores. From that point on, it continues improving the
Pipeline service time using the brute-force search, as pre-
sented in Algorithm 2. Thereby, it reduces the computational
best-case cost of the brute-force algorithm to �(n2), provid-
ing more accurate service time optimizations than the single
heuristic search approach. However, the worst-case cost is
still O(cn), as the brute-force search.

VI. FINDING THE OPTIMAL CONCURRENCY DEGREE
According to the previous section, the PiBa algorithm trans-
forms the Pipeline stages arrangement to have the same
number of replicas as CPU cores used by the target appli-
cation. This algorithm also balances, as much as possible,
the stages workload. However, in real scenarios, the result-
ing Pipelines cannot be perfectly balanced in most of the
cases. These situations cause bottlenecks due to imbalanced
stages, which leads to underused resources (cores). A way
to improve the resource usage, and thus the Pipeline per-
formance, is to increase the number of replicas (threads)
above the total number of cores. Hence, the additional threads
can leverage the partially idle resources, overlapping threads
contention with useful computation. In this context, we refer

to oversubscription when an application uses more threads
than available CPU cores and relies on the OS scheduler to
keep them all busy.

To motivate this issue, we have implemented a syn-
thetic benchmark consisting of two Pipeline collections,
using CPU- andmemory-intensive stages, respectively. These
collections were comprised of 1,500 randomly-generated
Pipelines constituted by a number of stages ranging from
4 to 12 and the percentage of Farm stages varying between
30% and 90%. Afterward, these Pipelines were pro-
cessed using the PiBa algorithm to adjust the number of
stages/replicas in the range of 4 to 24 threads. Next, we exe-
cuted these Pipelines on an 8-core platform to find out
their optimal concurrency degree. Figure 4 shows the perfor-
mance attained by six representative CPU-/memory-intensive
Pipelines for different number of threads.3 Note that the lines
extending vertically from the points represent the confidence
intervals as a variability metric over 10 Pipeline runs. As can
be observed, all Pipelines (P1–P6) improve their speedup up
to the number of cores. Nevertheless, while some of them
stop improving after this point, others continue boosting their
performance beyond that. These results confirm our previous
impressions where a concurrency degree higher than the total
number of cores may improve the Pipeline performance in
some cases.

A. ITERATIVE SEARCH
A naive search approach to obtain the optimal concurrency
degree is to execute multiple times the PiBa algorithm for a
different number of final replicas (instead of using the number
of cores) and check which Pipeline arrangement delivers
the best performance. However, this method is very time-
consuming as the framework has to execute each time all
feasible Pipeline combinations.

To optimize this naive search approach, we rely on the
benchmark results that show, in many cases, strictly increas-
ing speedup curves followed by monotonic decreasing ones.
Note that this occurs in more than 90% of the synthetic
Pipelines. With this assertion, we can refine the previous
approach with an iterative variant that applies PiBa to opti-
mize the Pipeline configurations using a different number
of threads, starting from the number of cores until the per-
formance stops improving. Note that, to deal with the inher-
ent variability of oversubscribed scenarios, we execute each

3Note that the CPU-intensive stages were mimicked by means of per-
forming an arbitrary number of floating-point operations, while the memory-
intensive compute was emulated accessing consecutively to 2 million ele-
ments in a floating-point array.

39950 VOLUME 6, 2018

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

FIGURE 4. Analysis of the maximum concurrency degree using representative pipelines.

configuration multiple times to calculate averaged reliable
values. With the averaged speedups in hand, this iterative
search algorithm checks, in each iteration, if the speedup
of a configuration B using n + 1 threads is higher than A
using only n threads. If this is true, it checks for the next
configuration using one more thread. This search stops when
the configurationB using n+1 threads delivers worse or equal
performance than A using n threads.
To illustrate the workings of this iterative search, Figure 5a

depicts the case of the Pipeline P2 using CPU-intensive
stages from Figure 4. In this scenario, the approach starts
iterating from 8 cores on until the 4th iteration, given that
in each step the configuration using n + 1 threads delivers
higher speedups than using n threads. On the 5th iteration,
i.e., with 12 threads, the performance stops improving. Then,
the algorithm determines 11 threads as for the optimal con-
currency degree. As a result, the Pipeline is oversubscribed
with 3 threads, which overlap contention of the first 8 with
useful computations.

B. GREEDY ITERATIVE SEARCH
The iterative search approach reduces the Pipeline configu-
rations that have to be tested using a trial and error method.
However, this variant can be very slow when the optimal
concurrency degree is far ahead of the number of cores.
To improve this algorithm, we propose a technique to obtain
an estimation of the ideal degree. We start from the fact that
the Pipelines are not perfectly balanced, and therefore, avail-
able resources are underused due to their inherent congestion.
With this assertion, we estimate the Pipeline resource usage
rate with

usage_rate =
eff _usage
real_usage

=
n_items ·

∑n_stages
i=0 ti

n_cores · exec_time
, (3)

where eff _usage and real_usage are estimations of the effec-
tive and real usage of the platform resources, respectively.
In the equation, the effective usage is computed as the sequen-
tial execution time of the Pipeline stages multiplied by the
number of items processed in a given test. Alternatively,

the real usage is calculated as the execution time of
the previous test multiplied by the total computational
resources (cores). Using this technique, we propose a heuris-
tic that pursues a greedy iterative approach and estimates
in advance the ideal concurrency degree, instead of testing
all configurations. This procedure, shown in Algorithm 4,
iteratively applies the PiBa heuristic of Algorithm 3 with
a number of threads that depends on the usage rate. This
number is calculated on-the-fly dividing the current threads
by the usage rate obtained with Equation 3 and rounding the
result up. The procedure stops iterating when the usage rate
using additional threads does not improve any more.

Algorithm 4 PiBa Heuristic With Oversubscription
Function pibaOversubs(

pipeline[], // Stages of the pipeline
numCores, // Number of cores
numItems) // Number of items

pibaPipeline[]← pipeline[]
pibaHeuristic(pibaPipeline[], numCores)
execTimeCur[]← exec(pipeline[], numItems)
numThreads← numCores
repeat

usageRate← usageRate(pipeline[], numItems,
numCores, execTimeCur[])
execTimeOld[]← execTimeCur[]
numThreads← ceil(numThreads / usageRate)
pibaHeuristic(pibaPipeline[], numThreads)
execTimeCur[]← exec(pipeline[], numItems)

until stopCondition(execTimeOld[], execTimeCur[])

To demonstrate the benefits of this algorithm over the
iterative version, Figure 5b shows the steps taken for the same
Pipeline P2. As can be seen, three steps are required to find
an optimal concurrency degree. In the first iteration (using
8 threads), the resource usage rate is roughly 69%; thus the
algorithm determines that 3 additional threads are required.
With it, during the second iteration (using 11 threads),
the usage rate increases to 82.5%.Hence, the algorithm deter-
mines that 13 threads are needed to exploit idle resources.
After the execution with 13 threads, the procedure stops, as it

VOLUME 6, 2018 39951

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

FIGURE 5. Automatic approaches for finding the optimal concurrency
degree of PIBA Pipelines. (a) Iterative search. (b) Greedy iterative search.

detects that the usage rate does not improve. In this case,
the optimal concurrency degree determined by the greedy
iterative search is 11, i.e., coming to the same conclusion as
the iterative algorithm but with fewer iterations.

VII. EVALUATION
In this section, we perform an experimental evaluation of the
main components of the PPRF framework proposed in this
paper: the Pipeline stage balancing algorithm and the strat-
egy for finding the optimal concurrency degree. To carry out
this evaluation, we use the following hardware and software
components:

• Target platform: The evaluation has been carried out on a
server platform equipped with 2× Intel Xeon Ivy Bridge
E5-2630 v3 with a total of 16 cores running at 2.40GHz,
20MB of L3 cache and 256GB of DDR3 RAM. The OS
is a Linux Ubuntu 14.04.5 LTS with kernel 3.13.0-85.

• Software: To evaluate the performance of PPRF frame-
work, we leveraged the C++ threads, and Intel TBB
GrPPI back ends. We used the Clang compiler from
the LLVM compiler infrastructure v3.7.0 for finding
and refactoring the code within the PPAT tool. Finally,
the C++ compiler used to assemble the refactored
GrPPI codes is GNU GCC v5.0.

• Benchmarks: To analyze the proposed balancing PiBa
algorithms, we used the following three benchmarks:
PIPE-BENCH: A benchmark collection of 1,500
randomly-generated Pipelines, as described in
Section VI, with a number of stages ranging between
4 and 12. These Pipelines were combined with both

sequential and parallel stages, where the degree of the
parallel (Farm) stages varied between 30% and 90%.
To generate the Pipelines source codes we used a
Python script to emit the Pipeline and Farm GrPPI
patterns leveraging the C++ back end. It is important
to remark that the workload type for the stages were
CPU-bound computations by means of performing
double-precision operations.

VIDEO-APP: A sequential video stream-processing syn-
thetic benchmark composed of two types of fil-
ters (Gaussian Blur and Sobel operators) in order
to detect edges appearing in the video frames.4

Specifically, the application core works in a Pipeline
fashion, in which the first and last stages read and
write the video frames, respectively. Consequently,
the intermediate stages apply the aforementioned fil-
ters in different ways. Regarding the workload type,
the Gaussian Blur filter only performs arithmetic
operations, while the Sobel operator also executes
square root operations, both using double-precision
numbers.

LANE-DETECTION: A real-world computer vision appli-
cation for detecting road lane lines in autonomous
driving systems. This application is composed of a
Pipeline in charge of processing individual video
frames using a series of filter algorithms, such as the
Canny edge detector and the Hough transform [33].
This application is vital to steer vehicles, as lanes
represent a constant reference to the road. Indeed,
identifying lane lines on the road is one of the most
fundamental vision tasks required by autonomous
cruise controls, lane change assist, lane centering, etc.

The evaluation methodology of this section consists of
the following parts. First, we analyze the presented Pipeline
balancing algorithms and compare their time-to-solution and
the execution time of the Pipelines in Pipe-Bench using the
PPRF framework. Next, we evaluate the different strategies
to find the optimal concurrency degree in terms of speedup
gains, number of steps taken and accuracy. Afterward, we test
PPRF with Video-App, in order to transform the sequential
code into parallel and evaluate different configurations of the
PiBa algorithm and GrPPI back ends. Additionally, we com-
plement the study using Video-App with a fine-grained anal-
ysis of different Pipeline configurations via execution traces.
Finally, we employ Lane-Detection to demonstrate the bene-
fits of PPRF in a real-world application.

A. ANALYSIS OF THE PIPELINE STAGE
BALANCING ALGORITHM
To evaluate the different versions of the PiBa algorithm,
we leveraged the collection of 1,500 synthetic Pipelines of
Pipe-Bench. Afterward, we balanced its Pipelines using the
three variants of PiBa, i.e., brute-force, heuristic and hybrid

4This benchmark has been inspired by anOpenCV edge detection example
from http://docs.opencv.org/3.1.0/d3/d63/edge_8cpp-example.html.

39952 VOLUME 6, 2018

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

FIGURE 6. Time-to-solution of the basic PIBA algorithms.

FIGURE 7. Speedup of the of Pipelines in PIPE-BENCH balanced with the basic PIBA algorithm variants.

searches, and configured them to run on platforms having
from 2 to 16 cores. Figure 6 depicts the averaged time-to-
solution of the three PiBa variants for the different number
of Pipeline stages and cores. As can be seen, the execution
time of PiBa algorithms increases in general with the number
of stages and cores. However, the growth rate of the brute-
force is larger than for the heuristic version, which confirms
the exponential algorithm complexity stated in Section V-A.
A final observation is that the time-to-solution of the hybrid
version is equal to the brute-force search for a number of
stages lower or equal than the total cores.

Our next study analyzes the execution times of the same
collection of Pipelines after balancing them using the three
different PiBa versions. To emulate platforms with a different
number of cores, we leveraged the Linux utility taskset
for restricting the cores that can be used by the Pipeline
threads.5 As can be observed in Figure 7, the Pipelines
processed using the heuristic and hybrid PiBa variants attain
a similar performance in all cases. On the contrary, the brute-
force search provides better speedup only when the number
of cores is much lower than the stage count. Note that the
observed speedup slowdown of the Pipelines balanced with
PiBa is caused by the fact that the presented algorithms use as
many threads as available cores. In contrast, the unbalanced
Pipelines, always use at least as many threads as stages,

5The taskset utility is used to set or retrieve the CPU affinity of a run-
ning process in Linux. http://linuxcommand.org/man_pages/taskset1.html

leading to oversubscribed scenarios and, in some cases,
to higher speedups with respect to the balanced Pipelines.
All in all, it can be concluded that the PiBa heuristic

variant can provide acceptable well-balanced Pipelines in
reasonable time frames, while the brute-force and hybrid
searches are able to provide slightly better stage arrangements
at the expense of prolonged time-to-solutions in the worst
cases. Therefore, in the subsequent experiments of this paper,
we select the heuristic variant as the default balancing PiBa
algorithm.

B. ANALYSIS OF THE OPTIMAL CONCURRENCY
DEGREE SEARCH ALGORITHMS
In this section, we analyze the extended PiBa algorithms
proposed for finding the optimal concurrency degree with
the basic PiBa variant. First, we compare the basic procedure
with the two new strategies, the iterative and greedy iterative
searches, able to obtain the ideal number of threads above the
total number of cores. Next, we examine the performance of
the Pipelines in Pipe-Bench on oversubscribed scenarios.

Figure 8 compares these algorithms regarding i) speedup,
with respect to the sequential execution of the Pipeline;
ii) the number of iterations needed until finding the optimal
concurrency degree; and iii) the accuracy rate with regard to
the best solution obtainedwith the brute-force approach. Note
that these metrics were averaged over the 1,500 Pipelines
comprised by the tested benchmark and using only eight
cores. Focusing on the speedup results, it can be clearly seen

VOLUME 6, 2018 39953

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

FIGURE 8. Comparative of the speedup, number of iterations and accuracy of the basic PIBA w.r.t the extended versions for finding the optimal
concurrency degree.

FIGURE 9. Speedup of the of Pipelines in PIPE-BENCH balanced with the extended PIBA algorithms for oversubscribed scenarios.

that the extended PiBa algorithms for oversubscription are
able to deliver better performance figures than using only
the basic PiBa variant. This is mainly because the inherent
threads contention is overlapped with useful computations of
the exceeding threads. A detailed inspection of the executions
revealed that this contention was caused by the threads sus-
pended on an internal blocking queue when no items could
be (de)queued.

Looking at the number of iterations taken by both
PiBa algorithms including the oversubscription strategies,
we observe that the iterative search requires more iterations
with respect to the greedy approach. It is remarkable that
this difference increases with the number of Pipeline stages
since these Pipelines usually deliver better performance
when employing oversubscribed threads. Finally, focusing on
the accuracy, we notice that Pipelines comprising several
stages attain lower accuracy than using only the basic PiBa
algorithm. This is given by the fact the PiBa heuristic working
alone does not always lead to optimal Pipeline arrangements
when they contain many stages. For instance, from 10 stages
on, the known error might be higher than 5%. In contrast,
with the extended PiBa algorithms, the accuracy is sustained
regardless of the number of Pipeline stages. This demon-
strates that the inherent flaws of the PiBa heuristic algorithm
can be bypassed by increasing the concurrency degree using
the extended PiBa algorithms.

In the light of the results, while both extended PiBa ver-
sions deliver similar performance figures, the iterative search

requires more iterations than the greedy approach. Therefore,
the experiments carried out hereafter are only performed
using the greedy iterative search for finding the optimal con-
currency degree.

As a complementary study, Figure 9 analyzes the speedups
attained by the Pipelines in Pipe-Bench with a different
number of cores when i) PiBa is not applied; ii) the basic
PiBa algorithm is used; and iii) the extended PiBa algo-
rithm along with the iterative greedy search are leveraged.
As observed, when the number of stages is higher than the
total cores, the fact of not balancing the Pipelines leads to
oversubscribed scenarios, providing better performance than
if the basic PiBa algorithm shortens the Pipelines. On the
other hand, if the available cores are greater than the number
of Pipeline stages, the balanced versions exploit better the
resources. Looking at the results of the extended PiBa algo-
rithm, the speedups are always higher or equal to the best
case. The reason is that the oversubscribed threads in these
Pipelines can effectively overlap the potential bottlenecks
generated by the basic PiBa algorithm.

C. EVALUATION OF VIDEO-APP
To evaluate the PPRF framework along with the Pipeline
balancing algorithms, we leveraged Video-App, a synthetic
video stream-processing application able to detect edges
appearing on the incoming frames. First, we fed the PPAT
module with the sequential code to obtain an annotated ver-
sion of the code with the potential parallel patterns detected.

39954 VOLUME 6, 2018

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

Listing 2. Example of annotated Pipeline from VIDEO-APP. (a) Sequential code. (b) Instrumented parallel code. (c) Optimized parallel code.

FIGURE 10. Frames per second obtained by the different Pipeline variants of VIDEO-APP using C++ threads and Intel TBB GRPPI back ends and the
basic and extended PIBA algorithms.

It is important to remark that the main parallel pattern
detected is a Pipeline where the image filtering stages cor-
respond to Farms constructions. (Note that in this paper we
do not explicitly evaluate the quality of the pattern detection
performed by PPAT, as this was already analyzed in [28].)
Next, we used the PPRF refactoring module to generate the
parallel version of the code using the C++ threads, and the
Intel TBB GrPPI back ends. Finally, we leveraged the basic
and extended PiBa algorithms to improve the performance of
Video-App.

Given that both filters Gaussian Blur and Sobel are pure
functions by nature, we have slightly modified Video-App in
order to include impure versions of these filters. This way,
the Pipeline stages can be detected as sequential or potential
Farms, depending on the filter version encountered. Thus,
for the subsequent experiments, we have developed three
different versions of the Video-App Pipeline, composed by
10 intermediate filtering operations, using both pure and
impure versions. The Pipeline stages of these three Video-
App variants have been arranged in the followingway: i) fully

sequential (s|s|s|s|s|s|s|s|s|s|s|s); ii) com-
bined (s|f|f|s|f|f|f|s|f|f|s|s); and iii) fully
parallel (s|f|f|f|f|f|f|f|f|f|f|s). As a mere
example of the steps taken by PPRF, Listing 2a shows the
combined Pipeline variant of the Video-App original code.
Next, Listing 2b shows the result after executing PPAT and
generating the instrumented code. Finally, Listing 2c shows
an optimized version of the Video-App parallel code accord-
ing to the arrangement proposed by PiBa using the profile
execution data.

1) PERFORMANCE EVALUATION
Given the foregoing, in this section, we assess the proposed
basic and extended PiBa algorithms using the three variants
of the Video-App Pipeline. These experiments have been run
on 6, 12 and 24 cores using the C++ threads and Intel TBB
GrPPI back ends. Figure 10 depicts the frames per second
delivered by each of the Video-App versions. Focusing on
the fully sequential Pipeline (left-hand side plot), we observe
that the fact that all stages are sequential prevents PiBa from

VOLUME 6, 2018 39955

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

replicating stages, and thus, the impact of the potential bottle-
necks cannot be reduced. Therefore, the performance either
using any of the PiBa algorithms or not is limited by the
slowest stage.

Looking at the Pipeline comprised of sequential and par-
allel Farm stages (center and right-hand side plots), we notice
a completely different behavior. Our first observation is
that using the basic PiBa algorithm and C++ threads back
end, the application can benefit from the stage merging
and replication techniques. Basically, when two stages exe-
cuted by individual threads are merged, a resource (core)
becomes available and can be exploited by an additional
replica (thread) in the slowest Farm stage. The PiBa ben-
efits are more pronounced when increasing the number of
cores compared with the non-balanced Pipelines. On the
other hand, the results with the extended PiBa algorithm
even outperform the throughput delivered by those processed
with the basic PiBa version. Note that the percentages above
the bars indicate the oversubscription degrees calculated
by the greedy search approach. These improvements are
achieved by using more threads than available cores. There-
fore additional replicas can accelerate Pipeline bottlenecks
by overlapping contention of the fastest stages with useful
computations.

On the contrary, setting TBB as the GrPPI back end,
the use of the basic PiBa algorithm negatively affects the
performance, as TBB does not allow to establish the number
of replicas in Pipeline stages. Indeed, TBB uses an entirely
different approach for executing stages: it leverages task-
parallelism with a pool of worker threads that continuously
poll for work from a ready task queue [25]. Therefore, for
each item in the Pipeline, a new task is created and picked
by a worker thread as soon as its dependencies have been
resolved. In this sense, the fact that PiBa uses stage merg-
ing leads to longer but fewer Pipeline stages and results
in larger congestion. In some cases, we observe that using
24 cores, extended PiBa with the C++ threads GrPPI back
end attains better performance results than using TBB. All in
all, we can conclude that the extended PiBa algorithm is the
recommended option when using the C++ threads GrPPI
back end, while for TBB the recommended solution is not
to balance the Pipelines.

2) FINE-GRAINED ANALYSIS
In this section, we complement the study with a fine-grained
inspection of different Pipeline configurations to analyze
their internal behavior. This study has been carried out using
the C++ threads GrPPI back end instrumented with the
Extrae library [34] to obtain execution traces. Afterward,
the traces are visualized using the Paraver tool [35]. We only
focus on the combined Pipeline comprising both sequential
and parallel stages and using 12 cores. Figure 11 depicts a
task trace and the number of simultaneously active threads
during the execution of Video-App without having used any
of the PiBa algorithms. Similarly, the left-hand side plot
in Figure 14 represents the time percentage spent by the

threads for the different states. Note that the colors in the trace
and plot represent three different states: i) in-stage stands
for the effective computation of the stages; and ii) enqueue
and dequeue represent blocking states due to communications
between stages via queues. As can be seen, the stages 1,
5 and 8 correspond to the slowest stages (bottlenecks), which
dictate the total execution time. Also, the number of simulta-
neously active threads is always lower than 6, i.e., half of the
available cores. Correspondingly, only half of the threads are
simultaneously performing useful computations during the
execution.

With the previous results, it can be observed that if
the Pipeline were balanced, the resources could be bet-
ter exploited, and thus, the execution time could also be
improved. Given that, we make use of the basic PiBa
algorithm to provide a better-balanced stage arrangement.
As shown in Figure 12, the Video-App Pipeline processed
by the basic PiBa algorithm generates a trace where the
stages (threads) show much lower contention times. This is
by the fact that the workload among stages is better bal-
anced than if PiBa is not applied. Focusing on the right-hand
side plot in Figure 14, we observe that PiBa has assigned
additional replicas to those bottlenecks detected in the pre-
vious experiment (stages 1, 5 and 8). We also observe that
the simultaneous active threads are, in the beginning, close
to 12. As the execution progresses, and as soon as the stages
complete processing the items, the number of active threads
slightly decays until the end. In this case, thanks to the basic
PiBa algorithm the execution time has been reduced by a
factor of 30%.

Focusing again on the trace in Figure 12, it can be seen
that some of the resources are underused. This reveals an
opportunity to further improve theVideo-App execution time.
In consequence, we leverage the extended PiBa algorithm
to exploit better available resources. Figure 13 depicts the
execution task trace where the ideal concurrency degree was
253%, i.e., 31 threads running on 12 cores, according to
the results in Figure 10. A first inspection of the resulting
trace reveals a higher contention ratio due to queue com-
munications. However, as the contention is shared among
the fastest stages, it allows exceeding threads to exploit
resources freed by such contentions (see Figure 15). On the
other hand, the active threads are mostly sustained above
12 during the entire execution. Note that having more active
threads than available cores results in suspended threads
waiting for CPU time. In the end, the extended PiBa algo-
rithm leads to better performance than using only the basic
variant. In this concrete case, the execution time has been
reduced by a factor of 60% with respect to the non-balanced
Pipeline.

D. EVALUATION OF LANE-DETECTION
In this section, we evaluate the proposed PPRF framework
using a sequential real-world computer vision application
able to detect road lane lines in autonomous driving sys-
tems. This stream-processing application processes individ-

39956 VOLUME 6, 2018

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

FIGURE 11. Task trace and number of active threads during the execution of the application without PIBA.

FIGURE 12. Task trace and number of active threads during the execution of the application with the basic PIBA algorithm.

FIGURE 13. Task trace and number of active threads during the execution of the application with the extended PIBA algorithm.

VOLUME 6, 2018 39957

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

FIGURE 14. In-state time percentage per thread/stage of the VIDEO-APP Pipeline w/o and w/ the basic PIBA algorithm.

FIGURE 15. In-state time percentage per thread/stage of the VIDEO-APP Pipeline using the extended PIBA algorithm.

FIGURE 16. LANE-DETECTION application workflow.

ual video frames using a series of filter algorithms, such
as the Canny edge detector and the Hough transform [33].
Figure 16 depicts the application workflow through an
11-staged Pipeline, where the first and last stages are pro-
cessed in series, and the intermediate ones can be executed in
parallel using the Farm pattern.

In a first step, we use PPRF to introduce parallel pat-
terns in the application source code. In this case, the PPAT
module detects a Pipeline with the following structure
(s|f|f|f|f|f|f|f|f|f|s), i.e., where all intermedi-
ate stages can process individual video frames in parallel.
Afterward, we employ the refactoring module along with
both basic and extended PiBa algorithms to evaluate the
application performance using the C++ threads, and the
Intel TBB GrPPI back ends. Figure 17 shows the speedup
obtained by Lane-Detection when using both back ends and
PiBa versions running on 6, 12 and 24 cores. As can be

seen for the C++ back end, the efficiency obtained when
no PiBa algorithm is on average is 22%, while for TBB
is roughly 80%. These contrasting results are given due to
the different nature of both GrPPI back ends: C++ threads
back end maps Pipeline stages onto threads, while TBB
handles the processing of a stage on a given item as a task
which is executed by one of the worker threads in its internal
scheduler pool. On the other hand, when the basic PiBa
algorithm is leveraged to balance the application Pipeline,
the speedup obtained by the C++ threads back end is much
closer to that delivered by TBB. Although the PiBa helped
in balancing the Pipeline, there remain bottleneck stages
which cause congestions in the faster ones. This fact leads
the C++ threads back end to slightly reduced speedups
compared to TBB. Finally, although the extended PiBa algo-
rithm does not avoid these bottlenecks, the exceeding threads
help in overlapping the contention with useful computations.

39958 VOLUME 6, 2018

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

FIGURE 17. Speedup obtained by LANE-DETECTION using C++ threads and
Intel TBB GRPPI back ends and the basic and extended PIBA algorithms.

Specifically, the C++ threads back end achieves comparable
performance figures with respect to the TBB back end. Fur-
ther, in some cases (e.g., 24 cores), the oversubscription used
by the extended PiBa algorithm can even outperform the TBB
performance.

In general, throughout this study, we conclude that the
extended PiBa algorithm a more suitable option for balancing
Pipelines, as it takes advantage of the inherent contention
that this pattern may cause. The benefits of this algorithm can
be summarized as follows. Firstly, the extended PiBa includes
by design the basic variant, and thus, when the optimal
Pipeline arrangement requires less or equal replicas than the
number of cores, both approaches arrive at the same solution.
Secondly, in some cases, a concurrency degree higher than
the total cores might be the preferred option.

VIII. CONCLUSIONS
In this work, we have presented PPRF, a refactoring frame-
work which proceeds in the following steps. First, it detects
stream parallel patterns (Pipeline and Farm) in sequential
codes thanks to PPAT tool [28]. Next, it rewrites the code
related to the patterns found using GrPPI, a generic parallel
pattern interface [29]. In the last step, it optimizes Pipeline
patterns composed with Farm stages using PiBa, a novel
profile-guided approach to improve their throughput. Finally,
we extended the PiBa algorithm to improve the Pipeline
resource usage by increasing the number of replicas above
the total cores (oversubscription).

Throughout the analysis of the PiBa algorithm variants,
we have concluded that heuristic version can provide rea-
sonably well-balanced Pipelines in a reasonable time frame,
while the brute-force and hybrid searches are able to pro-
vide slightly better stage arrangements at the expense of
protracted time-to-solutions. We also have validated that both
PiBa algorithms for oversubscribed scenarios deliver similar
performance, although the iterative variant requires more
iterations than the greedy approach.

Regarding the evaluation of the framework using the
Video-App and Lane-Detection applications, we have

demonstrated that PPRF is able to parallelize codes through
parallel patterns automatically. During these experiments,
we have proved that the extended PiBa algorithms can be
good choices for the C++ threads GrPPI back end, while for
TBB is better to leave the Pipeline as is. Using performance
analysis tools, we have confirmed our initial hypothesis
where a concurrency degree higher than the total cores
might deliver better performance. In general, oversubscribed
threads in these scenarios can overlap the potential bottle-
necks with useful computations. However, the presented PiBa
algorithms leverage profiling techniques; therefore, the input
data used during the profiling phase should be representative
enough to perform the optimizations. Also, if the application
has an irregular input workload, the PiBa algorithms may not
find the optimal Pipeline arrangement.

As future work, we plan to extend the tool for refac-
toring other parallel patterns in PPRF, such as Stencil or
MapReduce. Furthermore, we plan to supply the framework
with a decision system to select the most suitable GrPPI
back end for the target architecture and to apply, when
necessary, the extended PiBa algorithm for oversubscribed
scenarios. An ultimate goal is to complement the balancing
algorithms to target heterogeneous and distributed platforms,
where the Pipeline stages can be executed in distinct physical
processors.

REFERENCES
[1] G. E. Moore, ‘‘Cramming more components onto integrated circuits,’’

IEEE Solid-State Circuits Soc. Newslett., vol. 11, no. 3, pp. 33–35,
Sep. 2006, doi: 10.1109/N-SSC.2006.4785860.

[2] V. G. Vaidya, P. Agrawal, A. Athavale, A. Sane, S. Sah, and P. Ranadive,
‘‘Increasing parallelism on multicore processors using induced paral-
lelism,’’ in Proc. 2nd Int. Conf. Softw. Technol. Eng. (ICSTE), vol. 1,
Oct. 2010, pp. V1-5–V1-8, doi: 10.1109/ICSTE.2010.5608971.

[3] B. Chapman, G. Jost, and R. van der Pas,Using OpenMP: Portable Shared
Memory Parallel Programming (Scientific and Engineering Computation).
Cambridge, MA, USA: MIT Press, 2007.

[4] A. Duran et al., ‘‘OmpSs: A proposal for programming heteroge-
neous multi-core architectures,’’ Parallel Process. Lett., vol. 21, no. 2,
pp. 173–193, 2011, doi: 10.1142/S0129626411000151.

[5] S. Wienke, P. Springer, C. Terboven, and D. an Mey, ‘‘OpenACC—
First experiences with real-world applications,’’ in Proc. 18th Int. Conf.
Parallel Process. (Euro-Par), Berlin, Germany: Springer-Verlag, 2012,
pp. 859–870, doi: 10.1007/978-3-642-32820-6_85.

[6] S. P. Midkiff, Automatic Parallelization: An Overview of Fundamen-
tal Compiler Techniques (Synthesis Lectures on Computer Architec-
ture). San Rafael, CA, USA: Morgan & Claypool, 2012, doi: 10.2200/
S00340ED1V01Y201201CAC019.

[7] V. Janjic et al., ‘‘RPL: A domain-specific language for designing and
implementing parallel C++ applications,’’ in Proc. 24th Euromicro
Int. Conf. Parallel, Distrib., Netw.-Based Process. (PDP), Feb. 2016,
pp. 288–295.

[8] M. G. Al-Obeidallah, M. Petridis, and S. Kapetanakis, ‘‘A survey
on design pattern detection approaches,’’ Int. J. Softw. Eng., vol. 7,
no. 3, pp. 73–90, Dec. 2016. [Online]. Available: http://www.cscjournals.
org/library/manuscriptinfo.php?mc=IJSE-163

[9] S. Rul, H. Vandierendonck, and K. De Bosschere, ‘‘A profile-based tool
for finding pipeline parallelism in sequential programs,’’ Parallel Comput.,
vol. 36, no. 9, pp. 531–551, 2010, doi: 10.1016/j.parco.2010.05.006.

[10] Z. Li, A. Jannesari, and F. Wolf, ‘‘Discovery of potential parallelism in
sequential programs,’’ inProc. 42nd Int. Conf. Parallel Process., Oct. 2013,
pp. 1004–1013, doi: 10.1109/ICPP.2013.119.

[11] K. Molitorisz, T. Müller, and W. F. Tichy, ‘‘Patty: A pattern-based paral-
lelization tool for the multicore age,’’ in Proc. 6th Int. Workshop Program.
Models Appl. Multicores Manycores (PMAM), New York, NY, USA, 2015,
pp. 153–163, doi: 10.1145/2712386.2712392.

VOLUME 6, 2018 39959

http://dx.doi.org/10.1109/N-SSC.2006.4785860
http://dx.doi.org/10.1109/ICSTE.2010.5608971
http://dx.doi.org/10.1142/S0129626411000151
http://dx.doi.org/10.1007/978-3-642-32820-6_85
http://dx.doi.org/10.2200/{\penalty -\@M }S00340ED1V01Y201201CAC019
http://dx.doi.org/10.2200/{\penalty -\@M }S00340ED1V01Y201201CAC019
http://dx.doi.org/10.1016/j.parco.2010.05.006
http://dx.doi.org/10.1109/ICPP.2013.119
http://dx.doi.org/10.1145/2712386.2712392

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

[12] X. Li et al., ‘‘FreshBreeze: A data flow approach for meeting DDDAS
challenges,’’ Procedia Comput. Sci., vol. 51, pp. 2573–2582, Jun. 2015,
doi: 10.1016/j.procs.2015.05.365.

[13] T. Sharma, G. Suryanarayana, and G. Samarthyam, ‘‘Challenges to and
solutions for refactoring adoption: An industrial perspective,’’ IEEE Softw.,
vol. 32, no. 6, pp. 44–51, Nov./Dec. 2015, doi: 10.1109/MS.2015.105.

[14] C. Brown, K. Hammond, M. Danelutto, P. Kilpatrick, H. Schöner, and
T. Breddin, ‘‘Paraphrasing: Generating parallel programs using refactor-
ing,’’ in Formal Methods for Components and Objects. Berlin, Germany:
Springer, 2013, pp. 237–256.

[15] T. Grosser, A. Groesslinger, and C. Lengauer, ‘‘POLLY—Performing
polyhedral optimizations on a low-level intermediate representation,’’
Parallel Process. Lett., vol. 22, no. 4, p. 1250010, 2012, doi: 10.1142/
S0129626412500107.

[16] T. Grosser, S. Verdoolaege, and A. Cohen, ‘‘Polyhedral AST generation is
more than scanning polyhedra,’’ ACMTrans. Program. Lang. Syst., vol. 37,
no. 4, Jul. 2015, Art. no. 12, doi: 10.1145/2743016.

[17] C. Brown,H. Li, and S. Thompson, ‘‘An expression processor: A case study
in refactoring Haskell programs,’’ in Trends in Functional Programming.
Berlin, Germany: Springer, 2011, pp. 31–49, doi: 10.1007/978-3-642-
22941-1_3.

[18] University St Andrews. (May 2017). ParaFormance Technologies
Advanced Tools for Supporting Multicore Software Development.
[Online]. Available: https://www.paraformance.com/

[19] K. Hammond et al., ‘‘The ParaPhrase project: Parallel patterns for adaptive
heterogeneous multicore systems,’’ in Proc. Int. Symp. Formal Methods
Compon. Objects, Torino, Italy, in Lecture Notes in Computer Science),
vol. 7542, B. Beckert, F. Damiani, F. S. de Boer, and M. M. Bonsangue,
Eds. Berlin, Germany: Springer, 2013, pp. 218–236. [Online]. Available:
http://calvados.di.unipi.it/storage/paper_files/2013_fmco11_paraphrase.
pdf, doi: 10.1007/978-3-642-35887-6_12.

[20] M. Aldinucci and M. Danelutto, ‘‘Stream parallel skeleton optimiza-
tion,’’ in Proc. 11th IASTED Int. Conf. Parallel Distrib. Comput. Syst.
(IASTED/ACTA), Cambridge, MA, USA: MIT Press, 1999, pp. 955–
962. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.40.9607

[21] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu, ‘‘A library of construc-
tive skeletons for sequential style of parallel programming,’’ in Proc. 1st
Int. Conf. Scalable Inf. Syst. (InfoScale), New York, NY, USA, 2006,
Art. no. 13, doi: 10.1145/1146847.1146860.

[22] K. J. Brown et al., ‘‘Have abstraction and eat performance, too: Optimized
heterogeneous computing with parallel patterns,’’ in Proc. IEEE/ACM
Int. Symp. Code Gener. Optim. (CGO), New York, NY, USA, 2016,
pp. 194–205, doi: 10.1145/2854038.2854042.

[23] A. Moreno, E. Cesar, A. Guevara, J. Sorribes, and T. Margalef,
‘‘Load balancing in homogeneous pipeline based applications,’’ Paral-
lel Comput., vol. 38, no. 3, pp. 125–139, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819111001566

[24] A. Moreno, A. Sikora, E. César, J. Sorribes, and T. Margalef, ‘‘HeDPM:
Load balancing of linear pipeline applications on heterogeneous sys-
tems,’’ J. Supercomput., vol. 73, no. 9, pp. 3738–3760, Sep. 2017,
doi: 10.1007/s11227-017-1971-4.

[25] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval, ‘‘Analytical modeling of
pipeline parallelism,’’ in Proc. 18th Int. Conf. Parallel Archit. Compilation
Techn., Sep. 2009, pp. 281–290.

[26] M. Kamruzzaman, S. Swanson, and D. M. Tullsen, ‘‘Load-balanced
pipeline parallelism,’’ in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal. (SC), New York, NY, USA, 2013, Art. no. 14, doi: 10.1145/
2503210.2503295.

[27] P. Li, K. Agrawal, J. Buhler, and R. D. Chamberlain, ‘‘Adding data
parallelism to streaming pipelines for throughput optimization,’’ in Proc.
20th Annu. Int. Conf. High Perform. Comput. (HiPC), Bangalore, India,
Dec. 2013, pp. 20–29, doi: 10.1109/HiPC.2013.6799119.

[28] D. del Rio Astorga et al., ‘‘Finding parallel patterns through static analysis
in C++ applications,’’ Int. J. High Perform. Comput. Appl., to be pub-
lished, doi: 10.1177/1094342017695639.

[29] D. del Rio Astorga, M. F. Dolz, J. Fernández, and J. D. García, ‘‘A generic
parallel pattern interface for stream and data processing,’’ Concurrency
Comput., Pract. Exper., vol. 29, no. 24, p. e4175, 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4175

[30] T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel Program-
ming, 1st ed. Reading, MA, USA: Addison-Wesley, 2004.

[31] M. McCool, J. Reinders, and A. Robison, Structured Parallel Program-
ming: Patterns for Efficient Computation, 1st ed. San Francisco, CA, USA:
Morgan Kaufmann, 2012.

[32] S. Pelagatti, ‘‘Task and data parallelism in P3L,’’ in Patterns and Skeletons
for Parallel and Distributed Computing, F. A. Rabhi and S. Gorlatch, Eds.
Berlin, Germany: Springer-Verlag, 2003, pp. 155–186. [Online]. Available:
http://dl.acm.org/citation.cfm?id=778641.778657

[33] S. Yenikaya, G. Yenikaya, and E. Düven, ‘‘Keeping the vehicle on the road:
A survey on on-road lane detection systems,’’ ACMComput. Surv., vol. 46,
no. 1, Jul. 2013, Art. no. 2, doi: 10.1145/2522968.2522970.

[34] H. Servat, G. Llort, J. Giménez, and J. Labarta, ‘‘Detailed performance
analysis using coarse grain sampling,’’ in Euro-Par—Parallel Processing
Workshops. Berlin, Germany: Springer, 2010, pp. 185–198, doi: 10.1007/
978-3-642-14122-5_23.

[35] V. Pillet, J. Labarta, T. Cortes, and S. Girona, ‘‘PARAVER: A tool to
visualize and analyze parallel code,’’ in Proc. 187th World Occam Trans-
puter User Group Tech. Meeting Transputer Occam Develop. (WoTUG), P.
Nixon, Ed. Manchester, U.K.: IOS Press, Apr. 1995, pp. 17–33.

MANUEL F. DOLZ received the B.Sc. degree in
computer science from the Universitat Jaume I
de Castelló, Spain, in 2008, the M.Sc. degree in
parallel and distributed computing from the Poly-
technic University of Valencia, Spain, in 2010,
and the Ph.D. degree from the Universitat Jaume
I de Castelló in 2014. From 2013 to 2015, he
was a Post-Doctoral Research Assistant with the
Scientific Computing Group, University of Ham-
burg, Germany, responsible for the Exa2Green

EU-Project. He is currently a Post-Doctoral Research Assistant with the
Computer Architectures, Communications and Systems Research Group,
Universidad Carlos III de Madrid, Spain, responsible for the RePhrase
EU-Project. His main research interests are energy efficiency and program-
ming models in the high performance computing domain.

DAVID DEL RIO ASTORGA received the B.Sc.
degree in computer science and the M.Sc. degree
in informatics engineering from the Universidad
Carlos III de Madrid, Spain, in 2013 and 2015,
respectively. He is currently pursuing the Ph.D.
degree with the Department of Computer Science,
Universidad Carlos III de Madrid. His current
research interests are programming models in the
high-performance computing domain.

JAVIER FERNÁNDEZ received the Ph.D. degree
in computer science from the Universidad Car-
los III de Madrid, Spain, in 2004, with a the-
sis focused on O.S. support for multimedia QoS.
He has been a Visiting Researcher with the
EPCC Supercomputing Center, Edinburgh, U.K.,
in 2009, and with HLRS supercomputing center,
Stuttgart, Germany, in 2011. He is currently an
Associate Professor at the Computer Science and
Engineering Department, Universidad Carlos III

de Madrid. He has participated in five publicly funded European research
projects, 18 publicly funded national and regional research projects, and
14 technology transfer contracts, several with major companies in the
aerospace field such as EADS and GMV or in the railways field such as
RENFE or ADIF. He has published 22 papers on journals with impact factor
and over 40 papers on international conferences and workshops. His main
research topics are related to high-performance computing but other topics of
interest included developing, simulating, and maintaining industrial systems
focusing on real time and embedded systems.

39960 VOLUME 6, 2018

http://dx.doi.org/10.1109/MS.2015.105
http://dx.doi.org/10.1142/{\penalty -\@M }S0129626412500107
http://dx.doi.org/10.1142/{\penalty -\@M }S0129626412500107
http://dx.doi.org/10.1145/2743016
http://dx.doi.org/10.1007/978-3-642-22941-1_3
http://dx.doi.org/10.1007/978-3-642-22941-1_3
http://dx.doi.org/10.1007/978-3-642-35887-6_12
http://dx.doi.org/10.1145/1146847.1146860
http://dx.doi.org/10.1145/2854038.2854042
http://dx.doi.org/10.1145/{\penalty -\@M }2503210.2503295
http://dx.doi.org/10.1145/{\penalty -\@M }2503210.2503295
http://dx.doi.org/10.1109/HiPC.2013.6799119
http://dx.doi.org/10.1177/1094342017695639
http://dx.doi.org/10.1145/2522968.2522970
http://dx.doi.org/10.1007/{\penalty -\@M }978-3-642-14122-5_23
http://dx.doi.org/10.1007/{\penalty -\@M }978-3-642-14122-5_23

M. F. Dolz et al.: Toward Automatic Parallelization of Stream Processing Applications

J. DANIEL GARCÍA has worked in industry for
major companies in Spain and Germany, includ-
ing Telefonica, British Telecom, ING Bank, and
SIEMENS, having the opportunity to participate
in large-scale international projects. He has been
a Visiting Researcher with the University of Mod-
ena, Italy, and a Visiting Faculty with Texas A&M
University. Since 2008, he has been the Spanish
Head of delegation in the ISO C++ Standards
Committee where he actively participated in the

development of the C++11, C++14, and C++17 standards. He is cur-
rently an Associate Professor with the Computer Science and Engineering
Department, Universidad Carlos III de Madrid, Spain. He has participated
in 14 technology transfer contracts and 20 publicly funded research projects,
as well as many others before joining academia. He has published over
25 international journals and 45 conference papers and has edited several
journal special issues. His current research interests focus on programming
models for applications improvement. In particular, his aim is improving
both the performance of applications (faster applications) and maintainabil-
ity (easier to modify).

JESÚS CARRETERO has been a Full Profes-
sor of computer architecture and technology with
the Universidad Carlos III de Madrid, Spain,
since 2000. He is currently an Action Chair
of the IC1305 COST Action Network for Sus-
tainable Ultrascale Computing Systems, and he
is also currently involved in the EU project
ICT RePhrase: Refactoring Parallel Heteroge-
neous Resource Aware Applications. His research
activity is centered on high-performance comput-

ing systems, large-scale distributed systems, and real-time systems. He is a
member of the ACM and a Senior Member of the IEEE Computer Society.

VOLUME 6, 2018 39961

	INTRODUCTION
	RELATED WORK
	PARALLELIZATION MECHANISMS
	PARALLEL PATTERN ANALYZER TOOL
	GENERIC AND REUSABLE PARALLEL PATTERN INTERFACE
	PIPELINE AND FARM PARALLEL PATTERNS

	THE REFACTORING FRAMEWORK
	THE PIPELINE STAGE BALANCING ALGORITHM
	THE BRUTE-FORCE SEARCH
	THE HEURISTIC APPROACH
	THE HYBRID APPROACH

	FINDING THE OPTIMAL CONCURRENCY DEGREE
	ITERATIVE SEARCH
	GREEDY ITERATIVE SEARCH

	EVALUATION
	ANALYSIS OF THE PIPELINE STAGE BALANCING ALGORITHM
	ANALYSIS OF THE OPTIMAL CONCURRENCY DEGREE SEARCH ALGORITHMS
	EVALUATION OF VIDEO-APP
	PERFORMANCE EVALUATION
	FINE-GRAINED ANALYSIS

	EVALUATION OF LANE-DETECTION

	CONCLUSIONS
	REFERENCES
	Biographies
	MANUEL F. DOLZ
	DAVID DEL RIO ASTORGA
	JAVIER FERNÁNDEZ
	J. DANIEL GARCÍA
	JESÚS CARRETERO

