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Abstract

In single-pixel imaging, a series of illumination patterns are projected onto an object and the reflected or transmitted light
from the object is integrated by a photodetector (the single-pixel detector). Then, from the set of received photodetector
signals, the image of the object can ultimately be reconstructed. However, this reconstruction is not only computationally
expensive, but also unnecessary for purposes such as image classification tasks. This work proposes a reconstruction-
free multi-class image classification framework that, unlike most of the existing approaches, exploits the sequential
nature of the problem. Indeed, by accumulating evidence of the sequence of scalar values, a decision is made after each
measurement on whether already classifying the object being imaged, or waiting for more measurements. This online
decision relies on a mechanism to achieve a recognition-delay trade-off that induces behaviours within the conservative-to-
aggressive spectrum, which suit distinct requirements in different applications. Additionally, the presentation order of the
illumination patterns makes a difference in terms of the reconstruction quality (if required) and classification performance
when a limited number of patterns is used. Nevertheless, in many cases simple data- and task-agnostic orders, such as
random or frequency-based orders, are commonly used. To address this, a novel sparse-representation-based strategy is
presented that sorts the patterns according to their general and discriminability utilities. Both, the online classification
framework including the recognition-delay trade-off mechanism, and the data- and task-aware pattern ordering proposed,
are experimentally assessed, with encouraging results, on the MNIST digits and CalTech 101 Silhouettes datasets.
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1. Introduction

Single-pixel imaging (SPI) [1, 2] is a relatively recent im-
age acquisition technique that offers several advantages in
relation to conventional matrix-like camera devices. Prob-
ably, the most important ones relate to cost efficiency re-
garding the development of matrix sensors for some elec-
tromagnetic spectral ranges. However, these advantages
come naturally with some drawbacks (e.g. acquisition time
increases) and new challenges (e.g. generation of high-
dimensional modalities such as multi-spectral imaging).

Although acquiring a (good enough quality) 2D conven-
tional image from single-pixel measurements has been the
mainstream concern and procedure [3], in many practical
visual tasks the purpose is not obtaining the image itself
but making some prediction, such as classifying the im-
age into one among a given set of predefined classes. It
is therefore desirable to perform these tasks directly from
the photodiode measurements, with no image reconstruc-
tion at all. Despite its theoretical interest and practical
relevance, this reconstruction-free problem has been com-
paratively much less addressed, and therefore motivates
this work. Successful classification in the compressed do-
main (i.e. the set of photodetector readings) as opposed
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to the original (image) domain, has been reported [4], and
theoretical bounds on the number of measurements to be
made for reliable classification have been given for classi-
fication [5] and reconstruction [6].

Since measurements in single-pixel scenarios are per-
formed sequentially, it is particularly interesting to explore
mechanisms that might allow for online deciding after
which measurement the classification of a given new target
object can be performed reliably enough. Certainly, image
reconstruction could be done incrementally and classifica-
tion be performed in the image domain (or in the domain of
features computed from images). Nevertheless, given that
our goal is not image formation, it would be ideal to for-
mulate a solution that bypasses image reconstruction, and
performs classification in the measurement domain. Fur-
thermore, not reconstructing the image is computationally
advantageous not only because the reconstruction itself is
not performed, but also because the classification can be
performed in a (much) lower dimensional space.

1.1. Related work and contributions

From the design goals suggested above, our specific con-
tributions are as follows:

• A novel framework for online decision and a mech-
anism for a delay-performance trade-off. The recog-
nition strategy builds on multivariate Gaussians [7],
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and the decision itself partially relies on the sequen-
tial hypothesis ratio [8], but other formalisms could
be used with minor changes on the proposed frame-
work. The proposed online decision method considers
a delay-recognition trade-off through time-pressure
parameters. Although similar trade-off mechanisms
have been considered elsewhere, they have been ad-
dressed for different problems and applications, such
as action recognition [9], and with standard imaging
devices rather than single-pixel devices.

• A reconstruction-free decision framework. Some ap-
proaches for single-pixel image classification require
image reconstruction [1], but others skip this step
and try to perform the classification directly from the
measurements of the single-pixel photodetector [7, 5],
or by convolving the photodetector signal with the
so-called smashed filters, which are matched filters
in the compressive-sensing scope [10, 1]. In essence,
smashed filtering aims at classifying a signal by cor-
relating it with the signal that characterises the class,
directly in the low dimensional projection (compres-
sive) space. The limitations of this linear filtering can
be addressed with convolutional neural networks [11].
Recently, a naive Bayes classifier is applied on SPI
using Fourier-based sinusoidal patterns and 1D Gaus-
sian distributions [12] instead of the multidimensional
Gaussians considered before [7]. In the context of
both reconstruction and classification in the compres-
sive domain, the use of side information is shown to
improve performance [13].

• Exploration of task-specific measurements. We study
how the order of the measurements (patterns) can
be tailored for the specific classification tasks, based
on available training data. To this end, we con-
sider the single-pixel image reconstruction process as
one of expressing the images as a sparse represen-
tation of the atoms in a dictionary. This relates
to approaches which optimise either the presenta-
tion order of the illumination patterns [14] or the
patterns themselves [15], or may adapt the projec-
tion space given past measurements [7]. It has been
shown that data-agnostic random projects are outper-
formed by supervised data-dependent projections [16],
which uses a concept resembling the dissimilarity
space [17]. Recent deep-learning approaches [18] out-
perform smashed filters.

To summarise, and generally speaking, despite recent
progress in compressed learning, many works either do im-
age reconstruction, or just focus on the projected signal,
but disregard the sequential nature of this signal, or do not
consider alternative illumination patterns or their order.
In contrast, our work addresses both the reconstruction-
free and online classification, and explores alternative mea-
surement orders as well.

Figure 1: Schematic diagram of a single-pixel camera set-up. See
text for an explanation. Although typically the reconstruction is re-
quired, we address the problem of recognizing the image class with-
out its reconstruction and sequentially, i.e. by simply processing the
photodiode readings for each projection pattern

The present paper is organised as follows. To make
the presentation more self-contained, a succinct review of
single-pixel imaging is first given (Sect. 2). Then, the pro-
posed online classification techniques and strategies pro-
posed for SPI are presented (Sect. 3) and carefully evalu-
ated and compared (Sect. 4). Finally, conclusions (Sect. 5)
are drawn.

2. Single-pixel imaging fundamentals

Single-pixel imaging techniques are based on illuminat-
ing the scene with a sequence of light structured patterns
while the light reflected or transmitted by the objects is
recorded by a single photodetector such as a photodiode
or a photomultiplier tube [1]. In a typical configuration
(Fig. 1), a digital micromirror device (DMD) is illuminated
with the light produced by a white-light source, conve-
niently expanded, homogenised and filtered. Afterwards,
the micro-structured light patterns codified on the DMD
display are projected onto the object using a 4-f optical
system formed by two lenses. A circular diaphragm at the
focal plane filters unwanted diffracted orders. Then, the
light transmitted by the object is collected and focused
by a lens onto the photodetector. The correlation level
between each light pattern and the object directly deter-
mines the photodiode electrical signal.

In particular, let us consider a structured light pattern
formed by 2D functions Hk pertaining to the orthonor-
mal Walsh-Hadamard (WH) basis: Hk are binary matri-
ces whose elements are equal to +1 or −1. By represent-
ing the elements of these WH matrices as Hk(m,n),m ∈
{1, . . . ,M}, n ∈ {1, . . . , N}, k ∈ {1, . . . ,M ·N}, the mea-
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surement given by the photodiode can be modelled by

rk =

M∑
m=1

N∑
n=1

Hk(m,n) ·O(m,n), (1)

where O(m,n) refers to the content of the object (O) at
position (m,n), and rk represents the intensity measured
by the photodetector for the k-th WH pattern. Due to
the properties of these matrices, the image corresponding
to the object scene, up to the k-th WH pattern, can be
reconstructed as follows:

Õ(m,n) =

K∑
k=1

rk ·Hk(m,n), (2)

where Õ(m,n) would be the reconstructed approximation
of O(m,n) when using K < M ·N patterns.

Fig. 2 shows an example of the reconstruction of an im-
age formed by an instance of the digit 7. The first two
rows show the reconstructed images using varying number
k of patterns, for two different presentation orders, zig-zag
(the WH patterns are presented in order of increasing fre-
quencies) and random order, respectively. The third row
in Fig. 2 shows the value, rk, that would be given by the
photodetector, for each one of the k patterns. Notice that
it is this sequence of values {rk}k for a given object, not
its reconstructed images, that is used to classify the object
—and decide when to. In can also be observed that the
presentation order of the illumination patterns has an im-
pact on the quality of the reconstructed image for a given
number of patterns K and, arguably, on the confidence
of early classification based on rk. For this reason, be-
sides the conventional frequency-based (zig-zag) ordering,
an alternative ordering is proposed (Sect. 3.2).

3. Methodology

From a theoretical point of view, the central idea that
allows for detection or recognition problems to be solved
directly in the low-dimensional projective space is the
Johnson-Lindenstrauss (JL) lemma and its application in
smashed filtering [5, 19]. Specifically, the JL lemma states
that the correlation between any two signals is nearly pre-
served even when the data is compressed to a much lower-
dimensional space.

Our approach for the reconstruction-free online classi-
fication relies on estimating the classification confidence
from the past optical measurements. In essence, the more
measurements are made, the higher the classification con-
fidence. To that end, we follow [7], but instead of using
as many patterns as necessary to classify a novel instance
with a classification error below a given threshold, we pro-
pose a framework for online classification where decisions
are made as measurements are being received sequentially
following a recognition-delay trade-off policy. The estima-
tion of the classification confidence assumes a multivariate

Gaussian distribution in the projected space of the original
observations (measured patterns).

Taking into account (1), we can define hk ∈ RK×1 as
the lexicographically ordered version of Hk and H(k) =
[h1, . . . ,hk] and rrrk = [r1, . . . , rk]. Considering o ∈ RK×1

as the lexicographically-ordered version of O, the object
probability density function is given by

P (O|Ci) =
exp

(
− (o−µµµi)

TΣΣΣ−1
i (o−µµµi)

2

)
(2π)

N
2 |ΣΣΣi|

1
2

, (3)

with Ci being the hypothesised class i. The mean µµµi and
covariance matrix ΣΣΣi, for each class i ∈ {1, . . . , Q}, are

computed from the corresponding training subset {Si}Q1 ,
each of size Si,

µµµi =
1

Si

Si∑
j=1

oij ; ΣΣΣi =
1

Si

Si∑
j=1

[
oij −µµµi)(oij −µµµi)T

]
,

(4)
with oij being the object in j-th training instance in the
set Si, j ∈ {1, . . . , Si}.

Taking (4) and (3) into account, the a-posteriori proba-
bility distribution is given by

P (rrrk|Ci) =
exp

(
− (rrrk−µµµk

i )T [ΣΣΣk
i ]−1(rrrk−µµµk

i )
2

)
(2π)

kL
2 |ΣΣΣki |

1
2

, (5)

where ΣΣΣki = (H(k))TΣΣΣiH
(k) + 2σ2[I] and µµµki = (H(k))Tµµµi,

with I being the identity matrix.
Rather than simply classifying when a likelihood of

probabilities is higher than a given threshold, as in [7],
a richer decision function is used in our work since the
proposed approach includes a recognition-delay trade-
off (Sect. 3.1).

It is illustrative to observe the evolution of (5) with in-
creasing number of patterns received k. When evaluated
on the instances in a particular class in the test set for
two image datasets (Fig. 3), the general trend is that this
probability grows rapidly with k for the true class, while
remains constant and lower for the rest of the classes.
Not surprisingly, this result depends on the class and the
dataset, and some class overlaps may also happen. The
purpose of the proposed recognition-delay trade-off is pre-
cisely to capture, formalise, and exploit the observation
that just after very few measurements, the true class may
usually be predicted with reasonable confidence.

3.1. Online decision with delay-recognition trade-off

Given the above observations, the problem can be stated
as follows: after having performed the k-th measurement
for a particular (test) instance, decide whether we already
have enough confidence to classify this instance, or it is
preferable to wait and perform some more measurements
before. Furthermore, depending on the target application,
one can take higher or lower risk in an early classification.
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Figure 2: Reconstruction of the image of a digit 7 from the MNIST dataset and the corresponding photodetector signal rk for k ∈
{5, 10, 20, 50, 100, 200} Walsh-Hadamard (WH) patterns. Two different presentation orders for the patterns have been used: zig-zag and
random. Notice that reconstruction is shown only for comparing the underlying pattern order, since the proposed online strategies do not
perform reconstruction

Figure 3: Mean and standard deviation of the a posteriori class-conditioned probabilities, Eq. (5), as a function of the received patterns for
one class (Class 0) of the MNIST and CalTech datasets (Fig. 5). The frequency-based order is used in this case
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To formalise these notions, we define an evidence func-
tion f that consists of two terms: r, which models the
classification (recognition) confidence, and d, which repre-
sents the relative time passed (delay),

f(t) = (1− λ) · r(t) + λ · d(t), (6)

with λ ∈ [0, 1] being a time-penalization factor to empha-
sise the relative importance given to early classification
(higher λ) or to more confident classification (lower λ).

The recognition r and delay d functions are defined as
follows:

r(t) = 1− exp
(
−κ · P1

P2

)
,

d(t) = 1− ξ · exp
(
−σ · T−tT

)
.

(7)

where P1 and P2 represent, respectively, the largest
and second-largest probabilities in (5) among all possible
classes, considered at time t; t is a measure of the relative
time (here, t = k, i.e. the number of measurements per-
formed so far); and T = K, the total number of patterns.

While λ plays a bigger role for the recognition-delay
trade-off, κ also has an influence: the lower the value for
κ the lower r(t) and, in turn, the lower f(t). This implies
that, even for the same λ, classification may also be de-
layed with lower κ. Thus, λ and κ govern the problem-
dependent decision strategy so that more aggressive or
conservative policies can be defined. Together, both pa-
rameters model what we refer to as the time pressure. As
for the other free parameters in (7), they were empirically
set to ξ = 0.3 and σ = 9.

The decision made after each pattern k is measured con-
sists of either classifying the image as class

ĉ = arg maxCi∈{1,...,Q}P (rrrk|Ci),

with probability f , or postponing the classification and
therefore performing yet another new measurement with
probability 1 − f . However, to make this decision more
robust, the actual classification for a particular instance
is made only after an accumulated minimum number n of
times the classification has been chosen for that instance.
In this work, n = 3 was used.

3.2. On the pattern order: can we do better?

One very simple order of presenting the WH patterns is
the so-called random order (RO), where the patterns are
selected uniformly at random. Another approach consists
of scanning the 2D frequency space of the WH space in a
so-called zig-zag order (from the lowest to the highest fre-
quencies). We will also refer to this order as the frequency-
based order (FO) from now on. Although the frequency-
based order is in many cases considered a default reason-
able choice, at least for image reconstruction purposes,
alternative orders might be more adequate for other prob-
lems such as classification. In particular, here we explore
an strategy based on finding sparse representations of the

images by defining a dictionary of all the possible illumi-
nation patterns. Given the dictionary D of K atoms (the
WH patterns), the coefficientsααα are chosen to sparsely rep-
resent each training image Oi in terms of the dictionary
atoms so that oi, the lexicographically-ordered version of
Oi, would be oi ≈ Dαααi, with oi ∈ RK×1, D ∈ RK×K and
αααi ∈ RK×1, i ∈ {1, . . . , S}.

Thus, the sparse coefficients for the S images
X = [o1, . . . ,oS ] ∈ RK×S in the training set are found by
minimizing the reconstruction error subject to a maximum
number τττ of non-zero coefficients, i.e.

min
A
‖X−D ·A‖22 s.t. ‖αααi‖0 ≤ τττ , (8)

with A = [ααα1, . . . ,αααS ] ∈ RK×S . This optimization prob-
lem is solved by Orthogonal Matching Pursuit (OMP) [20].
In particular, the OMP-Box v10 implementation [21]
based on [22] was used here. A value of τττ = 100 was
considered in all cases.

Now, we decide on the utility of the WH patterns based
on the corresponding coefficients. Intuitively, the larger
the absolute values of the sparse coefficients associated to
a given pattern, the more useful this pattern generally is
because the reconstruction quality of the images rely more
on this pattern than on others with lower sparse coeffi-
cients. On the other hand, for classification purposes, this
general utility may not be very relevant and we might pre-
fer those patterns that induce higher class separability. To
account for both objectives, the utility Uj of pattern j is
assessed by the composition of a general utility G and a
discriminability D terms,

Uj = Gj + wdDj , (9)

with wd ≥ 0 providing a relative emphasis of discriminabil-
ity over the general utility. We analysed the minimum
and maximum values that both terms (Gj and Dj) could
reach, and found that the maximum values of Dj could be
an order of magnitude bigger than that of Gj . We there-
fore tested the performance of Uj for different values of
wd ∈ [0, 1] and found that the best results were obtained
with wd = 1, which was thus used for the reported exper-
iments.

Although there are several possible definitions for G, it
was found the following one to perform reasonably well:

Gj = mediani{|αij |}, i ∈ {1, . . . , S}, j ∈ {1, . . . , Q},
(10)

with αij being the sparse coefficient of the training in-

stance i corresponding to pattern j, and S =
∑Q
i=1 Si is

the total number of training instances used in OMP. The
median was observed to perform better than the mean.

As for D, it can be modelled as the sum of pair-wise
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class discriminability,

Dj =
∑

{a, b} ∈ {Ci}Qi=1,
a 6= b

Dj(a, b), j ∈ {1, . . . , Q}. (11)

By denoting Gcj as Gj computed marginally for a par-
ticular class c (i.e. using instances only in the set Sc), then
the discriminability between two particular classes a and
b, Dj(a, b), can in turn be expressed in terms of Gcj as

Dj(a, b) = |Gaj −Gbj |, j ∈ {1, . . . , Q}. (12)

Following this approach, the presentation order of the
patterns is given by decreasing values of their utilities
Uj , i.e. {j1, j2, . . . jK}, Ujr ≤ Ujs , r < s, r, s ∈ {1, . . . , Q}.

We refer to the order induced by this utility as the
sparse-based utility order (SUO), and will be compared
against the conventional frequency-based order (FO).

As an illustrative example of the potential usefulness of
SUO over alternative orders, the reconstruction for an im-
age of the digit 2 (Fig. 4) from the MNIST dataset with
random, FO, and SUO orders, with increasing number k
of Hadamard patterns, suggests that the RO is the worst
among the three, and the reconstructed image has higher
quality earlier with SUO than with FO: with k = 20 pat-
terns the digits is already quite recognisable under SUO,
but not yet with FO. Actually, with 10 or even 5 patterns,
the reconstructed images capture better the main traits
of the digit with SUO than with FO. This suggests that
the corresponding photodetector measurements might also
help discriminate images of different classes quicker.

4. Experiments

As an experimental testbed before testing the proposed
framework on an actual hardware setup in the future, the
single-pixel imaging reconstruction is simulated. This is
done by considering the object O as a digital image and
applying (2) for the desired number K of patterns.

After describing the datasets (Sect. 4.1) and the base-
lines (Sect. 4.2), the proposed approaches regarding
recognition-delay performance (Sect. 4.3), and the pattern
presentation order (Sect. 4.4) are evaluated.

4.1. Datasets

Two datasets were chosen for experimentation: MNIST
and CalTech, described below. In both cases, the images
sizes considered and the complexity of their contents are
similar to those typically considered in experiments in op-
tically implemented set-ups of single-pixel imaging.

The MNIST dataset of handwritten digits [23, 24]
(MNIST from now on) has a training set of 60, 000 ex-
amples, and a test set of 10, 000 examples. It is a sub-
set of a larger set available from the National Institute of

Figure 5: One instance per class from MNIST (above) and CalTech
(below)

Standards and Technology (NIST). The digits have a fixed
size of (28 × 28) pixels and its corresponding pixel values
range in [0, 1]. This dataset contains images of the dig-
its from 0 to 9 in different orientations and appearances.
These images were re-scaled to 32 × 32 pixels and there-
fore the maximum number of Hadamard patterns to use is
K = 322 = 1024.

The CalTech 101 28 × 28 Silhouettes [25, 26]
(CalTech from now on) contains a series of binary im-
ages with the silhouettes of 101 different classes. We ran-
domly selected 10 of these classes, without any a priori
knowledge about their shapes or characteristics, and re-
sized their images to 32 × 32 pixels each. The number
of classes for CalTech was essentially decided to match
that of MNIST. The resulting dataset had 885 images for
training and 1, 249 for testing. Looking at examples of
images of the chosen datasets (Fig. 5), it can be argued
that the considered classes in CalTech look more alike,
and possibly harder to distinguish for a human observer
than the different digits in MNIST. For instance, using
the numbers of the digits to refer also to the classes in
CalTech, silhouettes of classes 0 and 1 on the one hand,
and those of classes 5 and 6 on the other hand, resem-
ble significantly one another. Not surprisingly, this results
in higher class overlap in CalTech than in MNIST as
illustrated in the class likelihoods (Fig. 3). In any case,
MNIST images are more stroke-like whereas CalTech
images are more blob-like. This different nature of these
datasets is interesting in order to explore our strategies in
single-pixel scenarios under different conditions.

4.2. Baselines and sanity checks

Since the proposed methodology includes
reconstruction-free classification and alternative pat-
terns and/or ordering, the natural baselines to compare
the proposed approaches with are reconstruction-based
classification and the conventional orders of WH patterns
(namely, random and frequency-based).

For the reconstruction-based classification, a Support
Vector Machine (SVM) with a Radial-Basis Function
(RBF) kernel was used, and the raw pixel values were cho-
sen as features, previously normalised to zero-mean, unit-
variance. We evaluate SVM on the test set by reconstruct-
ing the image after each of the first k patterns. Regard-
ing the training data, one choice is to use the full-quality
images (original, fully-reconstructed images), and we will
refer simply as SVM to the SVM classifier trained like
this. However, since partially reconstructed images look
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Figure 4: Reconstruction of an image of the digit number 2 of the MNIST dataset with the random, frequency-based (FO) and sparse-based
utility (SUO) orders, for k ∈ {5, 10, 20, 30, 40, 50, 100} number of Hadamard patterns.

like (very) differently to the fully reconstructed images,
we wondered how SVMs specifically trained with data of
a given reconstruction quality (i.e. after a given number
of measures k), SVMk, would perform when tested with
the corresponding data. Although this idea was proposed
in the framework of online stream data classification [27],
it is the first time it is applied in single-pixel imaging, to
the best of our knowledge.

We therefore trained separate SVMktr for
ktr ∈ {10, 20, 50, 100, 500, 1, 000} patterns. A test
instance reconstructed with the first k patterns is classi-
fied with SVMktr with the smallest ktr such as k ≤ ktr.
Although this multi-SVM choice is computationally
heavier due to multiple training procedures required, and
its practical appeal is questionable, it is theoretically
interesting.

SVM and SVMk were trained using a 3-fold cross-
validation strategy, considering all the elements in the cor-
responding training datasets. The selection of the best
parameters for the SVM and SVMk models was found ap-
plying a grid sampling strategy in the space of the classifier
hyperparameters parameters (the common regularisation
parameter and the scale parameter of the Gaussian of the
RBF kernel).

Results (Fig. 6) indicate that, as expected, the more
measures are performed, the higher the recognition perfor-
mance, which agrees with the correspondingly increasing
reconstruction quality (Fig. 2). Second, frequency-based
order leads to faster convergence than random order, both
in SVM and multi-SVM approaches. Finally, and very
interestingly, the multi-SVM approach significantly out-
performs the single SVM one. This means that training
and testing on similar-quality images is more discrimina-
tive than training on full-quality images and testing on
lower-quality (partially reconstructed) images.

4.3. Effect of the delay-recognition trade-off

To illustrate the effectiveness of the proposed mecha-
nism for modulating the delay-recognition trade-off, for
several time pressures (λ, κ), the number of both, cor-
rect classifications and misclassifications, were computed
as the number of photodetector measurements were ob-
tained. The results (Fig. 7) clearly illustrate that when
the time pressure is small (λ = 0, κ = 0.01) the system
behaves conservatively and the number of classifications
made increases more slowly with time, which also leads to
a smaller number of wrong classifications (i.e. high recog-
nition with significant delay). Analogously, as the pressure
is increased, the system behaves more aggressively : more
classifications are made earlier, which increases both the
number of correct and wrong classifications. It can be
seen that unless the time pressure is extreme, the num-
ber of misclassifications is kept moderately low. Which
time pressure is adequate for a given problem is largely an
application-dependent decision, and might be chosen by
cross-validation in a validation dataset. It can also be ob-
served (Fig. 7) that, as explained above (Sect. 3.1), even
for the same λ, classification may also be delayed with
lower κ.

To give a quantitative account of these curves (Fig. 7),
the accuracy after k = 130 WH patterns for this same set
of time pressures (Table 1) clearly illustrates the impact
on the final recognition rate of the time pressures. At
least for the values considered, the effect of increasing λ
is higher than the effect of increasing κ. The effect of a
larger variety of time pressures will be considered below
when evaluating the pattern orders (Sect. 4.4).

4.4. On the presentation order for the patterns

To get a better understanding of the performance of the
presentation orders (FO vs SUO), the recognition rates (R)
and average delays (D) are studied for varying time pres-
sures (λ, κ). The resulting R-D plots (Fig. 8) reveal that,
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(a) MNIST (b) CalTech

Figure 6: Classification accuracy for the random and frequency-based (FO) orders for the (a) MNIST and (b) CalTech datasets, with SVM
trained either on the original images (SVM) or on the reconstructed images for a specific number of patterns, k (SVMk). Notice the delay
(horizontal) axis is in logarithmic scale to better appreciate the different behaviours for the very first patterns. To facilitate the analysis of
the plot, SVM (SVMk) is represented with solid (dashed) lines, and FO (random) order with circles (diamonds)

Table 1: Accuracy (%) for different time pressures

(a) MNIST
κ

λ 0.01 0.1
0.0 92.5 82.6
0.5 66.3 63.7

(b) CalTech
κ

λ 0.01 0.1
0.0 79.1 78.7
0.5 73.3 72.4

as expected, the recognition rate is poor when early deci-
sions are demanded through strong time pressures (with
higher λ or κ or both). For softer time pressures, the
recognition rate increases at the expense of longer delays.
Reasonably, the variance in the delay (depicted here with
the dot size) also increases with softer time pressures be-
cause different instances are classified at more different
time steps, depending on the confidence in their classifica-
tion.

When comparing FO and SUO for the same time pres-
sure, different behaviours emerge in different datasets: in
MNIST, SUO performs more aggressively than FO, i.e.
SUO induces lower delay but also lower recognition; in
CalTech, lower delays and often higher recognition rates
are obtained with SUO than with FO. The better perfor-
mance of SUO in CalTech than in MNIST might be
partially attributable to the different nature of the im-
ages (blobs vs strokes), as observed before (Fig. 5). This
indicates that although SUO does not systematically out-
perform FO, it is an option to consider in some cases (e.g.
some datasets), and that there might be better choices
than the commonly known and widely used frequency-
based order.

By looking at these R-D plots, it can also be observed
that the higher-performance region (upper-left corner, cor-
responding to lower delays and higher recognition rates),

can be reached by either FO and SUO for different time
pressures. This means that the performance space can be
better sampled not only with different time pressures, but
also with different pattern order.

An interesting ramification of these observations is that,
since FO and SUO induce distinct, complementary be-
haviours, a better strategy might be designed by combin-
ing both and getting the best of each.

4.4.1. Performance under noise

We also analysed how the proposed online classifica-
tion strategy deals with noisy test images. When Gaus-
sian noise is added, the pixel values are renormalised to
their original [0,1] range. In the case of the CalTech
dataset, the images after noise injection are not binary
anymore. Results for different levels of Gaussian noise
(Fig. 9) show that, logically, the higher the noise, the lower
the recognition rate and the higher the delay. It is partic-
ularly interesting the situation for the lower time pressure
(λ = 0, κ = 0.001) and MNIST for both FO and SUO: R is
minimally affected because the system implicitly discovers
the higher difficulty in the images (higher class overlap)
and postpones the classification decision more and more
with increasing noise levels. This nicely illustrates the
adaptive behaviour emerging from the proposed strategies.
As with the noise-free case, for many cases of time pressure
and noise level considered, SUO outperforms FO in terms
of R in the CalTech dataset. Interestingly, in the case
of MNIST, although FO performs better than SUO when
compared under the same noise level, the noise tends to
affect R less when using the SUO than with FO, which is
particularly noticeable for the higher time pressures.

4.4.2. Comparison in reconstruction-based classification

Since SUO is not specific to the online scenario, it was
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Figure 7: Evolution of the number of correctly and wrongly classified instances with increasing delay for (a) MNIST and (b) CalTech, for
different time pressures (λ, κ). For convenience, only one every 10 points are drawn
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(a) MNIST

(b) CalTech

Figure 8: Recognition rate R and delay D (in log scale) for FO and SUO by varying the time pressures (λ, κ) for (a) MNIST and (b) CalTech.
The dot sizes are proportional to the delay variance for each (λ, κ) pair. (Figure better seen in color)
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(a) MNIST (b) CalTech

Figure 9: Recognition rate R (above) and delay D (below) with clean and noisy test images for different time pressures (λ, κ) for
(a) MNIST (left) and (b) CalTech (right). For the noisy versions, Gaussian noise was added with different standard deviation values
σ ∈ {0.005, 0.01}; the clean case is denoted with σ = 0. For convenience, FO (SUO) is represented with circles (diamonds), whereas solid,
dashed, and dotted lines represent increasing noise levels. Please, note that the jump in R and D from λ = 0.0 to λ = 0.5 can be better
understood if the lines are considered unrelated (disconnected) at that point

(a) MNIST (b) CalTech

Figure 10: SVM accuracy on the MNIST and CalTech datasets for the FO and SUO orders of the WH patterns, for the reconstruction-based
case

11



also evaluated under the reconstruction-based classifica-
tion, where it can be observed (Fig. 10) that SUO works
better than FO when a small number of Hadamard pat-
terns are to be chosen, both in MNIST and CalTech.
When this number increases, the FO strategy outperforms
SUO. This again calls for a proper synergetic usage of these
different orders: as a very simple possibility, one may start
with SUO and switch to FO after a suitable number of pat-
terns.

5. Conclusions

Strategies for the online classification of objects imaged
with the single-pixel formalism have been proposed which
leverage the sequential nature of the problem. Experi-
ments reveal that reconstruction-free classification, based
only on the sequence of photodetector measurements, is
possible, and that the proposed recognition-delay trade-off
is effective. Additionally, the potential of a novel presen-
tation order of the illumination patterns based on utility
functions defined on their sparse representations, has been
experimentally tested, and benefits observed in both, the
reconstruction-based and the reconstruction-free cases.
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