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Abstract 

The study of selective toxicity of carbon nanotubes (CNTs) on mitochondria (CNT-mitotoxicity) is of major 

interest for future biomedical applications. In the current work, the mitochondrial oxygen consumption (E3) 

is measured under three experimental conditions by exposure to pristine and oxidized CNTs (hydroxylated 

and carboxylated). Respiratory functional assays showed that the information on the CNT Raman 

spectroscopy could be useful to predict structural parameters of mitotoxicity induced by CNTs. The in vitro 

functional assays show that the mitochondrial oxidative phosphorylation by ATP-synthase (or state V3 of 

respiration) was not perturbed in isolated rat-liver mitochondria. For the first time a star graph (SG) transform 

of the CNT Raman spectra is proposed in order to obtain the raw information for a nano-QSPR model. Box–

Jenkins and perturbation theory operators are used for the SG Shannon entropies. A modified RRegrs 

methodology is employed to test four regression methods such as multiple linear regression (LM), partial 

least squares regression (PLS), neural networks regression (NN), and random forest (RF). RF provides the 

best models to predict the mitochondrial oxygen consumption in the presence of specific CNTs with R2 of 

0.998–0.999 and RMSE of 0.0068–0.0133 (training and test subsets). This work is aimed at demonstrating 

that the SG transform of Raman spectra is useful to encode CNT information, similarly to the SG transform 

of the blood proteome spectra in cancer or electroencephalograms in epilepsy and also as a prospective 

chemoinformatics tool for nanorisk assessment.  
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INTRODUCTION 

The boom in research on carbon nanotube (CNT) shaped nanoparticles has led to the 

development of more powerful designs and synthesis methods.
1
 Currently, several scientific 

reports highlight a major impact of adverse/toxic effects induced by carbon nanomaterials on 

critical subcellular components, mainly mitochondria, which are responsible for the maintenance 

of the bioenergetic balance of ADP/ATP, redox, and cellular homeostasis in all eukaryotic 

organisms.
2,3

 

 

In this regard, carbon nanotubes have attracted attention for their high ability to accumulate in 

the mitochondrial matrix from several tissues and cells based on a peculiar mitotropic behavior. 

The important role of mitochondria to regulate intracellular ROS-levels based on the complete 

reduction of molecular oxygen by the respiratory complexes, has been extensively characterized 

and associated with several chronic pathological processes, such as neurodegenerative diseases 

(Alzheimer, Parkinson, Epilepsy), cardiovascular conditions, and cancer, which currently have 

high levels of morbidity and mortality, and where mitochondrial dysfunction mechanisms have 

been directly involved.
2,3

 

 

Mitochondrial events such as the dissipation of the membrane potential, the generation of 

reactive oxygen species and the release of caspase-activating proteins are closely linked to the 

mechanisms of cell death by apoptosis and necrosis. Lipophilic compounds such as carbon 

nanomaterials (single- and multiwalled CNTs (SWCNTs, MWCNTs)), with high lipid–water 

partition coefficients and enough access to the mitochondrial membranes could induce cell death 

mediated by mitochondrial mechanisms. The presence of carbon nanotubes near the respiratory 

chain can disrupt the normal flow of electrons along the respiratory complexes by decreasing the 

proton gradient and ATP synthesis. It is well-known that the mitochondria are essential elements 

in controlling the death or survival of the cell and they are, therefore, an important 

pharmacological and toxicological target that can be considered in the planning and evaluation of 

new carbon nanomaterials as potentially cytoprotective or cytotoxic based on their mitochondrial 

effects.
2,3

 Consequently, a certain concern was raised about the toxicity/safety rates of these new 

materials with emphasis on the respiratory system.
4
 

 

In this context, our hypothesis is that new structural information (CNT nanodescriptors) 

obtained from Raman spectra, based on the criteria of rational drug design and mitochondrial 

medicine, could improve efficient therapeutic strategies against the aforementioned diseases, 

considering the chemical/pharmacological modulation of mitochondrial respiratory mechanisms. 
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Following this idea, it is well-known that Raman spectroscopy is one of the most important 

experimental techniques for the characterization, detection, biological interactions, and/or toxicity 

of CNTs. This is due to the fact that the D band feature in the CNT Raman spectra, with a peak at 

approximately 1350 cm
–1

, is commonly associated with the presence of topological defects and 

type of functionalization (chemical oxidation) in the carbon lattice, which is known to be able to 

influence the interaction properties between the CNTs and the protein complexes of the 

mitochondrial electron transport chain, depending on the physical–chemical characteristics of 

carbon nanotubes.
5
 

 

On the other hand, polarographic mechanistic assays provide a quick and reproducible means 

of measuring the rate of oxygen consumption by mitochondria isolated from different tissues.
6
 

However, there are no precedents of this methodology applied to the evaluation of potential 

toxicity of CNTs. Some in vitro studies have demonstrated that CNTs exert cytotoxicity after their 

accumulation in the mitochondrial matrix and/or by affecting the function of mitochondrial 

proteins of the inner membrane.
7
 Previous in vitro research on drugs and environmental pollutants 

using submitochondrial particles (respiratory chain complexes I, II, III, IV; ADP/ATP translocator, 

ATP synthase/ATPase) to predict the toxic impact of 92 different xenobiotics showed a strong 

correlation with toxicity in humans and pointed out that the mitochondrial area was a relevant 

model for studying the relative toxicity of many xenobiotics.
8
 Recent efforts have been made to 

create a unified ontology for the annotation of data about nanomaterial safety entitled 

eNanoMapper.
9
 

 

The combination of different methods proved to be a powerful tool in designing nanoscale 

systems such as CNTs, iron nanoparticles or micelle nanoparticles.
10

 Thus, quantitative structure–

property/activity relationship (QSPR/QSAR) methods have been used as complementary tools for 

experiments by providing theoretical nano-QSPR prediction models.
11-28

 Since not all similar 

molecules have similar properties, the purpose is to define the small structural changes of 

molecules. In order to describe these differences, a PT-QSPR method has been proposed:
29

 it 

combines QSPR/QSAR with perturbation theory (PT). Thus, the PT-QSPR models have been 

applied to complex molecular systems using a variation of multiple experimental boundary 

conditions: chemical reactivity, drug metabolism, vaccine peptide epitopes, metabolic networks, 

micelle nanoparticles,
29-32

 cytotoxicity of nanoparticles,
33

 ecotoxicity and cytotoxicity of uncoated 

and coated nanoparticles,
28,29

 and antibacterial profiles of nanoparticles.
34

 The classic 

QSPR/QSAR approach could be used with the Raman spectra descriptors and the observable 

output, but it limits the model information to the CNT Raman spectral data, without taking into the 

account the experimental conditions and time. Thus, the current study includes the information 

referring to the moving averages of the descriptors in specific experimental conditions, such as 

perturbation to the expected values of the observable output. 

 

The design and development of novel carbon nanomaterials are currently expensive and 

complex processes. Thus, the new quantitative structure–activity relationship paradigm (or 

QSAR/QSPR tools) has become an important methodology for the prioritization/optimization of 

nanomaterials, as an alternative with less impact on health and environment in the nanoscience 

context (nanotoxicology).
35

 Herein, a crucial step in QSPR is to express structural properties in a 

quantitative way, which is not always straightforward.
35,36

 Therefore, QSPR model can be seen as 

a mathematical function that predicts the structure of a single or complex system using 

physicochemical parameters which numerically describe its essential properties. To this end, 

Gonzalez-Díaz et al.
29

 proposed a general purpose PT-QSPR method combining a QSPR 

chemoinformatics approach and PT. PT-QSPR approaches are very useful for the study of 

complex molecular biosystems with simultaneous multiple experimental boundary conditions. 
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González-Díaz et al.
29

 applied the PT-QSPR analysis linked to chemical reactivity studies, drug 

metabolism (ADME–pharmacokinetic parameters), immunotoxicity tests, metabolic networks, 

metal, and CNT nanoparticles. Toropova et al.
37

 published a nano-QSPR model on pristine 

MWCNTs to study the genotoxicity under multiple experimental conditions. Recently, González-

Durruthy et al.,
38

 using a PT-nano-QSPR approach, have been able to predict the mitochondrial 

swelling inhibition (mitochondrial permeability transition pore mitoprotective activity) induced by 

oxidized CNT in multiple experimental conditions. The authors concluded that oxidized CNT 

could modulate the mitochondrial ROS-production involved in mitochondrial dysfunction.
38

 

 

The main assumption of QSAR/QSPR approaches in general is that similar molecules have 

similar properties. Consequently, small structural changes (“perturbations”) should correlate 

linearly with small changes on the values of their properties (biological activities). The QSPR 

perturbation model is able to find out the exact solution of a problem (physicochemical and/or 

biological property) and continues adding small corrections to predict a solution for a related 

problem, without knowing an exact solution.
39,40

 In this context, currently there are no precedents 

for the application of this chemoinformatics methodology combining experimental and 

biochemical assays in isolated rat-liver mitochondria, including mechanistic explanations, to 

predict the potential effects of CNT on mitochondrial respiration toward biomedical applications 

based on Raman spectroscopy structural information. 

 

The current study proposes the use of CNT Raman spectra as the main molecular information. 

Raman spectroscopy is a technique that provides the chemical fingerprint of molecules as 

vibrational, rotational, and other low-frequency modes. Thus, it is used for the study of 

biomolecular systems and nanoscale structure such as DNA,
41

 proteins,
42

 antibodies,
43

 and carbon 

nanotubes (CNTs).
44

 The Raman spectra can be transformed into Shannon entropies of the star 

graph, similar to a Fourier spectra transform. The use of star graphs as a graphical method to 

encode molecular/signal information has been proven for protein prediction
45-47

 and nucleic acid
48

 

function, as well as cancer prediction using blood protein mass spectra
49

 and epileptic seizure 

prediction using electroencephalogram (EEG) signals.
50

 The end point (mitochondrial respiration 

or E3) used in the QSPR/QSAR analyses is a predictive function of the mitochondrial oxygen 

consumption (E3pred), which is the mitochondrial respiration under carbon nanotubes exposure 

obtained from the experimental data set as a function of Raman spectra transformed into star graph 

Shannon entropies indices (Shk) of CNT individual members of the tested CNT family. The 

expected values of the mitochondrial oxygen consumption (E3exp) are the moving averages of the 

Raman spectra transformed into Shk indices under different experimental conditions and times of 

exposure. Points have been used as features (CNT nanodescriptors) to find the best PT-QSPR 

regression model that can predict the carbon nanotube effects on mitochondrial oxygen 

consumption in the presence of specific CNTs. 

MATERIALS AND METHODS 

General Workflow 

The main aims of this paper are (a) development of a new transform of Raman spectra into 

Shannon entropy information indices (Shk), (b) measurement of the Raman spectra of a set of 

CNTs, (c) measurement of biological activity of these CNTs, and (d) use of the Shk values to 

predict the biological activity (mitochondria oxygen consumption or E3). In order to accomplish 

these objectives, a general workflow was proposed. The following list describes the steps of this 

workflow (Figure 1): 
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Figure 1. Methodology flowchart for nano-PT-QSPR models for mitochondrial oxygen consumption in the presence of 

CNTs. 

(1) Experimental measurements of the mitochondrial oxygen consumption under different 

experimental conditions with different types of CNTs 

(2) Transformation of CNT Raman spectra into star graph Shannon entropies 

(3) Use of nano-PT-QSPR methodology to calculate the expected values of the mitochondrial 

oxygen consumption and the moving averages of the Shannon entropies under different 

experimental conditions 

(4) Search of regression nano-PT-QSPR models using batchRRegrs (an R tool for regressions) 

 

Even if the RAMAN spectra need to be measured or predicted so that new CNTs could be used 

in the model, there is no need to measure the biological activity (E3) of CNTs in mitochondria, 

which is a difficult assay. In addition, it should be pointed out that the CNTs from the current 

study are commercial samples of CNTs. It means that the CNT samples do not contain single-

molecule structures. On the contrary, each sample has many different molecules of CNTs with the 

same function type (H, OH, COOH) and the same percentage of this function, but in many 

different positions. 

 

Therefore, the calculation of merely theoretical descriptors is not applicable for the current 

study because it does not involve a unique CNT molecule, but a mixture of many CNT molecules 

with similar, but different structures. In this sense, the Raman spectra are a good solution because 

they capture all the variations in the structural patterns of the CNTs into a sample. 

  



EXPERIMENTAL SECTION 

Raman Spectra 

Raman spectra were measured using a Renishaw Micro-Raman Spectroscopy System 

(Renishaw plc, Wotton-under-Edge, UK) at room temperature at a laser excitation wavelength of 

514 nm (2.33 eV). All reactions were quenched to room temperature before Raman spectra were 

recorded in order to identify the characteristic peaks in the position of 1580 cm
–1

 (G band of 

graphite) and the peak in the 1350 cm
–1

 (D band of defects) approximately associated with the 

presence of disorder and/or vacancy defects in the CNT structure produced by chemical oxidation 

in the graphite structure (oxidized CNT with OH and COOH functional groups), as shown in 

Figure 2. 

 
 

 
Figure 2. Raman spectra of carbon nanotubes used in this study. (A) Pristine MWCMT (CNT1), (B) SW/DWCNT–OH 
(CNT2), (C) MWCNT–OH (CNT3), (D) MWCNT–OH (CNT4), (E) MWCNT–OH (CNT5), (F) MWCNT–COOH 

(CNT6), (G) MWCNT–COOH (CNT7), (H) SWCNT–COOH (CNT8), (I) MWCNT–COOH (CNT9) (see Materials and 

Methods section). 
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Reagents and Solutions 

Sucrose, ethylene glycol-bis(β-aminoethyl)-N,N,N′,N′-tetraacetic acid (EGTA), KCL, 

potassium succinate (plus 2 μM rotenone), K2HPO4, piperazine-N′-2-ethanesulfonic acid (hepes-

KOH). All the other reagents were commercial products of the highest purity grade available. For 

mitochondrial functional respiratory assays, pristine and functionalized carbon nanotubes 

(MWCNT, [SWCNT + DWCNT]–OH, MWCNT–OH, MWCNT–COOH, SWCNT–COOH) were 

dissolved in dimethyl sulfoxide (DMSO) and Milli-Q water in individual stock solutions, prepared 

at 1 mg/mL. The CNT family was provided by Cheaptubes Company 

(http://cheaptubes.com/shortohcnts.htm; see Table 1). 

Table 1. Physical–Chemical Parameters of the CNT Family 

CNT propertiesa  Wi (%)  Di (nm)  
   

n type function  min max  min max  Li(μm) Pi (%) Ci (S/cm) 

             

1 MWCNT      8 8  0.5–2 >95 <1.5 

2 mixed SW/DWCNT OH  0 3.96  1 4  0.5–2 >95 <1.5 

3 MWCNT OH  0 3.86  1 8  0.5–2 >95 <1.5 

4 MWCNT OH  3 4  10 20  0.5–2 >95 <1.5 

5 MWCNT OH  1 1.06  30 50  0.5–2 >95 <1.5 

6 MWCNT COOH  0 0.73  30 50  0.5–2 >95 <1.5 

7 MWCNT COOH  3 4  10 20  0.5–2 >95 <1.5 

8 SWCNT COOH  0 2.73  1 4  0.5–2 >95 <1.5 

9 MWCNT COOH  0 3.86  1 8  0.5–2 >95 <1.5 

             

 
a Wi (%) = functional groups (OH, COOH)/carbon atoms ratio (%). The properties of the ith CNT are Di = outer diameter, 

Li = length, Pi = purity, Ci = electric conductivity. 

Animal Welfare 

Male Wistar rats (4 months old; approximately 150 g) received food and water ad libitum. 

They were kept in plastic cages with wire tops in a light-controlled room (12:12 h light–dark 

cycle) at 22 ± 3 °C before starting the study in accordance with the animal care and experimental 

procedures based on the Directive 2010/63/EU of the European Parliament and of the Council on 

the protection of animals used for scientific purposes; these procedures were also approved by the 

Institutional Animal Care and Use Committee of the School of Pharmaceutical Sciences of 

Ribeirão Preto (CEUA-FCFRP) (license and registration number: 01.0263.2014). 

Isolation of Rat Liver Mitochondria (RLM) 

Mitochondria were isolated by standard differential centrifugation.(51) Male Wistar rats 

weighing approximately 200 g were euthanized by decapitation; livers (10–15 g) were 

immediately removed, sliced in a medium (50 mL) consisting of 250 mM sucrose, 1 mM ethylene 

glycol-bis(β-aminoethyl)-N,N,N′,N′-tetraacetic acid (EGTA), and 10 mM HEPES-KOH, pH 7.2, 

and homogenized three times for 15 s at 1 min intervals using a Potter–Elvehjem homogenizer. 

Homogenates were centrifuged (2500 rpm, 5 min), and the resulting supernatant was further 

centrifuged (10 500 rpm, 10 min). Pellets were then suspended in a medium (10 mL) consisting of 
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250 mM sucrose, 0.3 mM EGTA, and 10 mM HEPES-KOH, pH 7.2, and centrifuged (6000 rpm, 

15 min). The final mitochondrial pellet was suspended in a medium (1 mL) consisting of 250 mM 

sucrose and 10 mM HEPES-KOH, pH 7.2, and used within 3 h. Mitochondrial protein contents 

were determined by the Biuret reaction. 

Standard Incubation Procedure 

The isolated mitochondria were energized with 5 mM potassium succinate (plus 2.5 μM 

rotenone) in a standard incubation medium consisting of 125 mM sucrose, 65 mM KCl, 2 mM 

inorganic phosphate (K2HPO4), and 10 mM HEPES-KOH pH 7.4 at 30 °C. 

Continuous-Monitoring Mitochondrial Respiration Assays 

The oxygen consumption in mitochondrial suspensions was polarographically determined with 

a Clark-type electrode. Clark electrodes have platinum cathodes and silver chloride anodes, which 

are connected by a salt bridge and covered by an oxygen-permeable membrane. As oxygen 

diffuses across the membrane, it is reduced by a fixed voltage between the cathode and anode that 

generates current in proportion to the concentration of oxygen in solution. By calibrating the 

voltage with known oxygen concentrations, it is possible to measure the rate of oxygen 

consumption in a medium containing actively respiring mitochondria. Since reduction of oxygen is 

a critical step in the process of mitochondrial electron transport and ATP synthesis, the 

measurement of mitochondrial oxygen consumption provides a convenient way to assess 

mitochondrial function. 

 

To this end, two different set of tools were used: (1) Oxygraph System (Hansatech Instruments 

Ltd., Norfolk, UK) and (2) Oroboros Instruments (Oxygraph-2k). Both methodologies were 

applied in a 2 mL glass chamber equipped with a magnetic stirrer. Rat liver isolated mitochondria 

(1 mg protein/mL) were energized with 5 mM potassium succinate (plus 2.5 μM rotenone) in a 

standard incubation medium consisting of 125 mM sucrose, 65 mM KCl, 2 mM inorganic 

phosphate (K2HPO4), and 10 mM HEPES-KOH pH 7.4 at 20 °C in a standard respiration medium. 

The experimental approach was calibrated using the oxygen content of an air-saturated medium.
51

 

Theoretical Section 

Raman Spectra Transform with Markov–Shannon Entropy Invariants 

The current work proposes a new type of Raman spectra transform, similar to the Fourier 

transformation. This transform converts the Raman spectra values to character sequences and the 

corresponding star graphs (SGs) are constructed using S2SNet tool.
52

 A star graph is a special type 

of tree with N vertices, where one has N – 1 degrees of freedom and the remaining N – 1 vertices 

have a single degree of freedom.
53

 In the case of protein sequences, the graph is built by adding all 

the amino acids into 23 possible branches (“rays” corresponding to the types of amino acids). The 

star center is a dummy node.
54

 

 

Thus, the Raman spectra were divided into intervals of 100 units, from 0 to 1800. As a result, 

the maximum number of star graph branches is 18 and corresponds to characters “a” to “r”. The 

star graph connectivity of the transformed Raman spectra provides the information needed to 

calculate the Shannon entropies (Shk, k = 0–5) for nonembedded and embedded SG (Sh and She). 

The transformation of the Raman spectra of CNT1 into Shannon entropies is shown in Figure 3. 
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Figure 3. Transformation of the Raman spectra for Pristine MWCMT (CNT1) into SG Shannon entropies invariants using 

the S2SNet tool. 

  



The calculation of Sh invariants is based on matrices and vectors of the SG. To calculate Sh, 

the starting point is the SG connectivity matrix M (dimension of n = number of nodes; Mij = 1 if 

the nodes i–j are connected; 0 = if nodes i–j are not connected). In the case of nonembedded SG, 

the connectivity is generated by the SG rule (each node is placed into a specific branch). In the 

case of embedded SG, in addition to the nonembedded connectivity, the sequence connectivity is 

added. S2SNet has been used to calculate nonembedded and embedded Sh for each CNT Raman 

spectrum with the following parameters: no weights for the nodes, Markov normalization, k = 0–5. 

The formula of Sh invariants is described in eq 1, and the details about the SG Shannon entropy 

formulation are presented in ref 52. 

 

 

Sh𝑘 = − ∑  𝑘𝑝𝑖 log( 𝑘𝑝𝑖)

𝑛

𝑖=0

 (1) 

 

 
k
pi = elements of the p vector obtained by multiplying the k powered Markov normalized 

matrix (n × n) and a vector (n × 1) with elements of 1/n. The calculated values for all the CNTs are 

in the Figshare file “ds3.info.xlsx”, sheet “RAMAN entropies”.
55

 

Theoretical Details of the Nano-PT-QSPR Models 

The general-purpose PT model for multiple boundaries has been proposed for 

chemoinformatics problems.
29

 This study extends this theory to PT-QSPR models that will be able 

to study the effect of different CNTs on the mitochondrial respiration (oxygen consumption) under 

different experimental conditions. The general equation of the nano-PT-QSPR model is presented 

in eq 2. 

 

 

E3𝑝𝑟𝑒𝑑 = 𝑒0 + 𝑎0E3𝑒𝑥𝑝 + 𝑔0 𝑡 + ∑ 𝑎𝑘  dSh𝑘 + ∑ 𝑏𝑘  dDhe𝑘

5

𝑘=0

5

𝑘=0

 (2) 

 

 

E3pred represents the predicted mitochondrial oxygen consumption. E3exp is the expected 

value of E3 in the set of three simultaneous experimental conditions (SEC). dShk and dShek are the 

moving averages of nonembedded and embedded Shannon entropies of the CNT Raman SG 

transform (differences between Shk or Shek and their averages obtained under different 

experimental conditions). The coefficients e0, g0, a0, ak, and bk are the equation optimal 

coefficients. 

Model Data Set 

The experimental data for the mitochondrial oxygen consumption (E3) in the presence of 

CNTs are available as a Figshare repository
55

 and contain 16 335 cases (E3 measurements) with 

the following variables (data columns): E3, CNT label (CNT1–9), CNT type (CNT_type), type of 

CNT chemical modification (Function_type), type of the solvent (Solvent), and time (t). Thus, E3 

was measured under three types of experimental conditions (c): CNT_type, Function_type 

(chemical modification of CNT), and Solvent. The codes used for CNTtypes are MWCNT, 

SW+DWCNT, and SWCNT. CNT type was set as 0 when the assay is a control assay with a blank 

solution with CNT concentration equal to 0. The values of Solvent condition are 0 and DMSO. 

The CNT Function types are 0 (none), COOH and OH. All the average values of the Shannon 

entropies under these experimental conditions are presented step by step in Figshare repository.
55

 

The final data set used to find the best prediction model is made up of 16 335 cases and 35 input 

features. The number of cases (N) is the result of NoCNTs × TimePeriods + Replicates + 

CART.Blanks, where NoCNTs = 9 (different nanotubes) and TimePeriods = 1485 (min). Thus, 

NoCNTs× TimePeriods is 9 × 1485 = 13 365. CART.Blanks = 1485 (experiments with 
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carboxyatractyloside (or CART as classical inhibitor of state V3 of respiration-ADP dependent at 

1485 periods) were added. The remaining number of cases are replicates or blanks with H2O as 

solvent (see ds3.info.xlsx, sheet “Experimental Data”
55

). 

 

The following steps were used to generate the final data set (see Figure 4 and Figshare files
55

):  

 

(1) Calculation of 11 nonembedded and embedded SG Shannon entropies for each CNT 

using S2SNet (Shk and Shek): Sh0, Sh1, Sh2, Sh3, Sh4, Sh5, She1, She2, She3, She4, She5 

(the zero-value descriptors have been excluded, CNT = 9 different CNTs) 

(2) Calculation of mean values for each Sh under an experimental conditions such as 

CNT_type = type of CNT, Solvent = type of solvent, Function_type = type of CNT 

chemical modification 11 CNTtypeShk/CNTtypeShek, 11 FuncTypeShk/FuncTypeShek, 

11 SolventShk/SolventShek; see “Experimental condition Means” in ds3.info.xlsx
55

) 

(3) Calculation of 33 moving averages (MAs) between the original Raman spectra SG 

entropies (from step 1) and their averages obtained under the experimental conditions 

(from step 2) and time (for each type of CNT); the resulting values have the following 

notation in the Figshare files: 11 MA.FuncType.Shk/MA.CNTtype.Shek, 11 

MA.CN.FuncType.Shk/MA.FuncType.Shek, 11 MA.Solvent.Shk/MA.Solvent.Shek 

(4) Calculation of the expected values of E3 (
SEC

E3exp) in a set of three experimental 

conditions (CNT type, solvent type, and CNT chemical function type; see Experimental 

condition Means in ds3.info.xlsx
55

) 

(5) The final data set of 35 features was only made up of the experimental values (E3), the 

expected value of E3 in a set of experimental conditions from step 4 (E3exp), time (t) and 

the 33 moving averages of Sh/She under all the experimental conditions from step 3 

(MA.CNTtype.Shk/MA.CNTtype.Shek, MA.CN.FuncType.Shk/MA.FuncType.Shek, 

MA.Solvent.Shk/MA.Solvent.Shek) 

 
 

 
Figure 4. Methodology flowchart for nano-PT-QSPR models for mitochondrial oxygen consumption in the presence of 

CNTs. 
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Therefore, the entire flow could be summarize in few ideas: 

 

 The study is searching for the best regression model that can predict values mitochondrial 

oxygen consumption (E3) measured in specific experimental conditions when different 

CNTs are present. 

 The initial data to generate this model is composed on experimental E3 values 

(output/predicted variable), time of the E3 measurement, three types of experimental 

conditions (CNT type, solvent type. and chemical function type of the CNTs), and the 

Raman spectra of the CNTs. 

 The current model is based on the perturbation theory, and it considers that E3 measured 

in three simultaneous experimental conditions is the sum of the expected value of E3 

(E3exp) in these conditions and some perturbations around this value (E3 = E3exp + 

perturbations). 

 Therefore, E3exp are obtained as mean values of E3 for three simultaneous experimental 

conditions (SEC). There are possible only six combinations of the three types of 

experimental conditions (CNT type and solvent type and chemical function type of the 

CNTs]. Thus, E3exp values are constant features for the model. 

 The perturbations of E3 around E3exp consists in a series of moving averages (MAs) of 

the SG Shannon entropies for the transformed Raman spectra for each CNT type and for 

one type of experimental condition (CNT type/solvent type/chemical function type of the 

CNTs). Therefore, the perturbations of E3 are MAs (Box–Jenkins operators) of SG 

Shannon entropies for specific experimental conditions (MA = difference of the entropy 

with the mean entropies in specific experimental condition). 

 Because the values of E3 are measured at different times (time series), the time variable 

was added to the model (E3 is not constant in time). 

 In conclusion, the prediction of E3 is made using SG Shannon entropy MAs as 

perturbations around the E3exp (expected values of E3) and time as a time series of data. 

 

The advantages of the PT-QSAR technique over the conventional QSAR are the following: 

 

 The PT method uses the perturbations of the classic QSAR features around the average 

values of the same features in different experimental conditions (moving averages). 

Therefore, the PT methodology is able to compare relative values of the model features, 

which are much smaller compared to the absolute values of these features. PT-QSAR is 

based on the perturbations of the features and not on the feature values, offering 

information more detailed than the traditional QSAR. In the latter, if the feature values 

are high, the small differences between them may be undetectable by the statistical or 

machine learning techniques. 

 The PT method averages feature values using experimental conditions (CNT type, solvent 

type, and CNT chemical function type). Thus, not only is molecular information included 

in the QSAR model but also the information about specific experimental conditions for 

the observed model output. The experimental conditions affect the observed variables, 

and therefore, including this dependent information in the future QSAR model is a big 

advantage. 

 The introduction of the expected value of the output variable (E3exp) is additional 

information added to the QSAR model. E3exp is the average value of the output E3 

measured in a combination of experimental conditions (not only one experimental 

condition). This average value adds information about the measurement experiments. 

Thus, the predicted output E3pred is calculated similarly to a perturbation around the E3exp 

values for specific experimental conditions (see eq 2). The perturbations are represented 

by the MA of the CNT descriptors in different experimental conditions. MAs are 

calculated using an experimental condition, and E3exp was obtained using the combination 

of three experimental conditions (CNT type, solvent type, and CNT chemical function 

type). 
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The use of the best regression model for the prediction of E3 values (mitochondrial oxygen 

consumption) in the presence of a new CNT (with a new Raman spectra) consists in providing the 

input features for the final model such as E3exp, time, and MAs of CNT’s Shannon entropies for 

transformed Raman spectra: E3pred = f(
SEC

E3exp, t, MAs), where SEC = simultaneous experimental 

conditions and MAs are calculated for all types of CNTs. Thus, it is very important to specify 

specific experimental condition and time for the prediction of E3 values. 

 

Let us consider the prediction of the mitochondrial oxygen consumption (E3pred) for specific 

values of the experimental conditions (CNT type and solvent type and chemical function type of 

the CNTs) and at a specific time moment after a new CNTx was added. Thus, the prediction is 

made for specific experimental conditions and, therefore, a specific value of 
SEC

E3exp will be used 

(from the six values calculated for building the regression model). It is not necessary to calculate 

any other value of 
SEC

E3exp because the model will evaluate the E3pred value based on the E3exp 

values obtained with the model data set. The second input feature is the time of the CNT presence 

in mitochondria. 

 

After picking the time and E3exp is known for specific experimental conditions, only the MAs 

should be calculated for the new prediction. First of all, the Raman spectra of the new CNT will be 

transformed into SG Shannon entropies (Sh). From the model building, the averages values of the 

CNTs in specific experimental conditions are knows, and, therefore, the MAs of the new CNTx 

will be calculated as a difference between the new Sh values and the model’s averages of Sh of all 

the data set CNTs. Thus, the model is providing the E3exp values and Sh means for specific 

experimental conditions, but the user will choose what values to use depending on experimental 

conditions for the new E3 prediction. 

Regression Predictors 

The raw data set was normalized and the training and test subsets were obtained using 10 

splits: 75% training set (train) and 25% test set (test). The raw and normalized data sets are 

available online with the R script for normalization and data splitting.
55

 The batchRRegrs tool was 

used to find the best regression nano-PT-QSPR model. The models were selected using the Rts
2
 

values (R-squared) and the RMSEts (root-mean-square error) corresponding values for test subset. 

 

RRegrs is an R integrated framework that provides ten linear and nonlinear regression 

models.
45,46

 Due to the computational limitations, only four RRegrs methods were used: multiple 

linear (LM), partial least squares (PLS)
56

 and neural networks (NN) regressions
57

 and random 

forest (RF).
58

 Generally, default values of parameters were used. In the case of NN and RF, the 

variation of the method parameters was studied. The RRegrs call is not prepared for big data sets 

and for some parameter variations. Thus, a modified version of RRegrs (batchRRegrs: 

https://github.com/cafernandezlo/batchRRegrs) was used on the BioCAI HPC platform from 

University of A Coruna (Spain). This version of RRegrs saves the R model objects and it leaves 

the door open for any type of extra calculations or graphical plots for the regression model. As an 

adaptation for large data sets, several features are missing in batchRRegrs: there is only one split 

(the user runs create each split), there is no Y-randomization, there are no output figures as PDFs 

and there is no automatic selection of the best model. Therefore, the current methodology is an 

incomplete RRegrs flow, due to the mission of the Y-randomization. The criteria to find the best 

model are the same as for RRegrs: maximum Rts
2
 and minimum RMSEts. The plots for the current 

work were obtained with R scripts. The best regression model which predicts mitochondrial 

oxygen consumption in the presence of CNTs is available online
55

 and it can be used for future 

predictions. 
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RESULTS AND DISCUSSION 

In principle, several biochemical in vitro assays may be used with different respiratory 

substrates, cofactors, and inhibitors in the polarographic evaluation of the effect of CNT family on 

the mitochondrial oxygen consumption. The rate of oxygen consumption can be measured directly 

using a Clark-type electrode, which consists of a probe with an exposed platinum cathode and a 

silver anode. When the anode and cathode are polarized, the current produced is directly 

proportional to the partial pressure of oxygen. The respiratory biochemical reactions are connected 

via an electrolyte solution, such as KCl. The cathode is typically covered by an oxygen-permeable 

membrane, such as a polypropylene membrane, to exclude contaminating species, ions, or samples 

that might interfere with the reaction.
59

 

 

In this work, two different polarographic experiments were performed to evaluate the effects of 

the CNT family on the mitochondrial respiration by exposure conditions of 5 μg/mL. 

 

In general terms, the results showed that the entire CNT family tested does not inhibit (or 

affect) the profiles of oxygen consumption increment after ADP addition (state V3 of ADP-

dependent respiration) compared to the untreated mitochondrial control (black line), no significant 

differences being detected (p > 0.05) in this case. However, for CNT-1 (pristine MWCNT) a 

moderate ability to inhibit the state V3 of mitochondrial ADP-dependent respiration (orange line), 

compared to their similar oxidized CNT (hydroxylated-CNTs CNT2–CNT5 and carboxylated-

CNTs CNT6–CNT9) was observed. The mitochondrial V3 respiratory inhibition by CNT-1 is not 

significant (ns: p > 0.05) when compared to the untreated mitochondrial control (black line) under 

the evaluated experimental conditions. It does not affect the oxidative phosphorylation by ATP 

synthase, which depends on the ADP transport by the ADP/ATP mitochondrial carrier between 

cytosol and the mitochondrial matrix under physiological normoxic conditions, the in vitro results 

suggesting lower inhibition response for isolated rat liver mitochondria based on mitochondrial V3 

respiratory inhibition. Generally, a low inhibition for each member of the CNT family was 

observed, represented by colored lines, related to untreated mitochondrial control (black line) after 

the addition of CCCP 1 μM (uncoupling agent of the mitochondrial oxidative phosphorylation) in 

the state V4 of respiration and Vcccp (both ADP independent) shown in Figure 5. Intriguingly, it 

was observed that the mitochondrial respiration rate versus time of V4 (or Vcccp) stages (ADP 

independent) for CNT-1 (pristine MWCNT) (orange line) had the smallest decline, with 

significant statistical differences (**p < 0.05) compared to their similarly oxidized CNTs (CNT2–

CNT9) (the remaining colored lines) and also to the untreated mitochondrial control (black line), 

despite the presence of protonophore CCCP, a classic mitochondrial uncoupling agent, which 

represents the maximum rate of mitochondrial oxygen consumption used as control at the end of 

all the measurements (t = 500 s). 
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Figure 5. Profiles of mitochondrial oxygen consumption of isolated rat-liver mitochondria show the different states of 
mitochondrial respiration on the mitochondrial respiratory chain: V2 state (basal respiration), V3 state (ADP-dependent 

respiration), V4 and Vcccp states (both ADP-independent respiration) in untreated-rat liver mitochondria or untreated-RLM 

(black line) and after the CNT exposure at 5 μg/mL (remaining colors). These results are representative of three 
experiments by using the two polarographic assessments of mitochondrial respiration performed with the Oxygraph System 

Hansatech Instruments and Oroboros Instruments (Oxygraph-2k). **p < 0.05 is used to represent the statistical differences 

between CNT-1 (pristine MWCNT) (orange line) and untreated RLM (black line). 

A physiological explanation is feasible due to the fact that carbon nanotubes can pass through 

phospholipid bilayers that make up the mitochondrial inner membrane. More specifically, they are 

accumulated similarly too many cationic amphiphilic drugs or in some cases when degraded by the 

oxido-reduction mechanisms that occur in the mitochondrial matrix. The effects can be observed 

in the interruption of the flow of electrons, decreasing the proton gradient associated with low 

oxygen consumption rate, uncoupling of oxidative phosphorylation and reduction of ATP 

synthesis, depending on the physical–chemical nature of the mitotoxic agent involved. According 

to this idea, it is well-known that the presence of defects such as pentagons, heptagons, vacancies, 

or metallic dopant are found to modify drastically the electronic properties of these nanosystems 

(carbon nanotubes) and, in the same vein, their properties of interaction with the biological 

systems, which can be expressed through biocompatibility and/or toxicity responses. In this sense, 

the intensity of the D band of CNT tested regarding the Raman spectra with peak at approximately 

1350 cm
–1

 is commonly associated with the presence of the aforementioned topological 

modifications in the carbon lattice of CNTs. 

 

Thus, the presence of the CNT’s oxidized groups (−OH, −COOH) with a peak at 1350 cm
–1

 

can prevent inhibition of the V3 state (ADP dependent) or uncoupling effects on mitochondrial 

respiration state (V4), maybe associated with the oxidized CNT ability as free oxygen-radical 

scavenging. Since these oxygen free radicals were spontaneously formed in the mitochondrial 

complex I and III, perturbation can be induced in the oxidative phosphorylation of the ADP and Pi 

by the mitochondrial complex V wrapping. In most cases inhibition and/or uncoupling effects on 

mitochondrial respiration, similar to the effects observed due to the addition of CCCP or V4 

(Vcccp) in all previous states of mitochondrial respiration (V2, V3) were not observed in the present 

study. Raman spectroscopy D band characterized the level of the CNT oxidation, and it has been 

recognized that CNT-covalent functionalization can generate different Stones–Wales defects 

formed by rotating a C–C bond by 90° in the sidewalls of the CNT structure with loss of sp
2
-

carbon hybridization or rehybridization (ability of the carbon atom to hybridize between sp
2
 and 

sp
3
). According to the theoretical results obtained by Galano et al. using semiempirical methods 



such as density functional theory (DFT), moderate, or high oxidation on the carbon lattice of CNT 

increases their oxygen free-radical scavenging activity and has no impact on mitochondrial 

respiration states by capturing the oxygen radical species formed in the mitochondrial complex I 

and III. These biochemical effects, which may involve C atoms with dangling bonds, cause a 

larger increase of CNT reactivity toward free radicals than the Stones–Wales and vacancy defects 

without C atoms with dangling bonds.
60-64

 Interestingly, it was demonstrated that pristine CNT 

(MWCNT-1) in aqueous suspension does not generate oxygen-free radicals. 

 

On the contrary, it was observed that MWCNTs exhibit a remarkable free radical scavenging 

ability, when in contact with an external source of oxygen-free radicals (hydroxyl or superoxide 

radicals), suggesting that the multiwalls of MWCNTs can act as oxygen-free radical sponges, and 

therefore, they do not affect the mitochondrial respiration by removing potential oxygen radicals 

from the carbon lattice. Recent studies have shown that pristine SWCNT are more reactive to 

induce mitochondrial damage than their oxidized forms SWCNT-COOH. Our hypothesis is that 

OH and COOH groups from CNT family could interact with the metallic centers of Fe
3+

 and Cu
2+

 

present in the respiratory complexes preventing redox change to form Fe
2+

 and Cu
1+

, respectively. 

These compounds present less ability to reduce oxygen to water and promote abnormalities in 

mitochondrial bioenergetic processes. However, it should be emphasized the good relationship 

between the biocompatibility and toxicity for the oxidized-CNTs, compared to their similar 

pristine-CNTs (CNT-1), whose mitotoxicicity potential is greater. 

 

In this regard, recent experiments using pristine and oxidized-CNT porin have shown the high 

potential as synthetic analogues of biological membrane channels with high efficiency and 

selectivity for transporting ions and molecules
53,54

 like natural substrates (ADP, ATP). According 

to this idea, the tested CNT family can spontaneously insert lipid bilayers into the cellular and 

mitochondrial membrane to form CNT channels that exhibit a unitary conductance of 70–100 pS 

under physiological conditions.
65

 At the same time, the attenuation of the negative charge of 

(COO
–
) moieties of carboxylated CNT to form COOH moieties by the H

+
 protons present in the 

intermembrane mitochondrial space, may allow the electrostatic ADP
3–

anions passage without 

inducing uncoupling effects on the mitochondrial respiratory function. In addition, Tunuguntla
66

 

showed through molecular dynamics simulations that carbon nanotube-porins can favor the 

ultrafast proton transport in sub-1 nm diameter and that the transport rates in these narrow 

nanotube pores can also exceed those of biological channels (as respiratory complexes that form 

the mitochondrial electron transport chain) due to confinement in hydrophobic nanochannels. In 

this sense, it could be hypothesized that CNTs with diameter >1 nm, such as those used in the 

present study, could have lower transport rates for the H
+
 influx, preventing possible mitochondrial 

uncoupling effects. 

 

The structural determinants of mitochondrial mechanisms of pristine and functionalized 

(oxidized) CNTs remain poorly understood at present. Our suggestion is that CNT–COOH and 

CNT–OH should be more biocompatible compared to the pristine MWCNTs based on the 

influence on the respiratory mechanism under the experimental conditions tested and according to 

the time of exposure to the CNT assayed. 

 

In addition, the variation in time (t) of the mitochondrial oxygen consumption in the presence 

of specific CNTs was modeled using nano-PT-QSPR methodology. For each type of nanotube, the 

corresponding star graph Shannon entropies of the Raman spectra (Sh0–5/She0–5; e = embedded 

SG) were calculated. For each set of experimental conditions, the corresponding expected values 

for the E (Eexp) and the moving averages of the SG descriptors (MA.[experimental conditions].Sh0–

5, MA.[experimental conditions].She0–5) were calculated. The final data set has 35 features: E3exp, 

t, MA.CNTType.Sh0–5, MA.FuncType.Sh0–5, MA.Solvent.Sh0–5, MA.CNTType.She0–5, 

MA.FuncType.She0–5, and MA.Solvent.She0–5. The output variable is E3, and there are 16 335 

cases. A modified version of the RRegrs tool was used on an HPC cluster in order to test four 

types of regression methods. The purpose was to find the best prediction model for mitochondrial 

oxygen consumption in the presence of specific CNTs. Thus, linear and nonlinear methods were 
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used for the feature pool: LM, PLS, NN, and RF (10 different splits and repeated cross-validation 

parameter). All the results are based on 35 features (pool). Table 2 shows the minimum, 

maximum, and mean values for the Rtr
2
/RMSEtr and Rts

2
/RMSEts. The small differences between 

the training and test statistics demonstrated that the models are not overfitted. The statistics for 10 

splits for each method could be found in the Figshare project (ds3.models.xlsx).
55 

The distribution 

of R
2
 and RMSE (tr and ts) are presented in the same file as graphics. 

Table 2. Training and Test R2 and RMSE (Mean, Minimum, and Maximum Values for 10 Splits) Using RRegrs Regression 
Methods to Predict Mitochondrial Respiration Modifications Due to CNTs 

method R2 mean min max RMSE mean min max 

         

LM Rtr
2 0.865 0.864 0.866 RMSEtr 0.0915 0.0910 0.0922 

  Rts
2 0.864 0.861 0.868 RMSEts 0.0913 0.0891 0.0929 

PLS Rtr
2 0.864 0.863 0.865 RMSEtr 0.0917 0.0912 0.0925 

  Rts
2 0.864 0.860 0.867 RMSEts 0.0916 0.0893 0.0931 

NN Rtr
2 0.987 0.986 0.987 RMSEtr 0.0286 0.0283 0.0292 

  Rts
2 0.988 0.987 0.990 RMSEts 0.0271 0.0249 0.0284 

RF Rtr
2 0.998 0.998 0.998 RMSEtr 0.0109 0.0102 0.0118 

  Rts
2 0.998 0.997 0.999 RMSEts 0.0108 0.0068 0.0133 

         

 

The results show the possibility to predict the effect of nanotubes on the mitochondrial 

respiration using a 35-feature linear model (LM) with a mean Rts
2
 value of 0.864 and a mean 

RMSEts value of 0.0913. The MAs of the star graph Shannon entropies under different 

experimental conditions provide enough information for this linear regression predictor. PLS 

obtain results similar to those of LN, without removing any feature from the final model. Two 

attempts of feature selection were performed using Lasso (14 features, Rts
2
 = 0.865, RMSEts = 

0.0921) and elastic net (23 features, Rts
2
 = 0.864, RMSEts = 0.0926) regression methods from 

RRegrs, but without improvements when compared to LM/PLS. The selected features included 

Eexp, t, and feature moving averages. The significant increase in the regression performance is 

observed when nonlinear regression methods such as NN and RF have been used. Thus, NN 

provides a mean Rts
2
 of 0.988 and a mean RMSEts value of 0.0271. Thus, NN has an RMSEts value 

over three times smaller than LM. Figure 6 shows the study of the optimal NN parameters for the 

final model: number of hidden neurons = [1, 5, 10, 15, 20, 50] and weight decay = [0, 0.00001, 

0.005, 0.001, 0.1]. The best NN model (split 5)
55

 is characterized by a single hidden layer with 10 

neurons, a structure of 35–10–1 (35 inputs, 10 neurons in one hidden layer, 1 output), a weight 

decay of 0.001, and Rts
2
 of 0.990 and RMSEts of 0.0249. 
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Figure 7. Parameter study for RF regression models. 

  



 
 

 
Figure 8. RRegrs pairwise model comparisons of Rts

2. 

  



 
 

 
Figure 9. RRegrs pairwise model comparisons of RMSEts. 

Any of these models could be used for prediction due to the similar statistics. In order to help 

the users, one model has been exported as an R object (“RF.details.5.csv.split.1.rf.model.RData” 

from the Figshare repository
55

) in order to be directly used for predictions of E3 values for a new 

CNT (without the necessity of recalculate the RF model). In addition, this model can be 

implemented in other computational tools. All the models can be obtained with the Figshare data 

set, batchRRegrs and the seed as the split number. The prediction of a new E3 values consists in 

the following steps: (1) measurement or achievement of the Raman spectra of the new CNT; (2) 

calculation of the SG Shannon entropies for the Raman spectra (Shk/Shek); (3) calculation of the 

new moving averages of Sh for each type of experimental condition, such as the differences 

between the new descriptors and the mean of Sh under different conditions from the model; (4) use 

of expected values from the model for a specific combination of experimental conditions (limited 

to the combinations in the model); (5) setting time (t) values; (6) use of the model to predict the 

mitochondrial oxygen consumption (E3pred) in the presence of the new CNT, for a specific 

experimental condition and in a specific time scale. 
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CONCLUSIONS 

The respiratory functional assays showed that CNT Raman spectroscopy structural 

nanodescriptors could be useful to evaluate toxicity criteria on mitochondrial respiration for state 

V3 of respiration and oxidative phosphorylation. Experimental biochemical results pointed out that 

encrypted information in the Raman spectra of CNT structure could be associated with canonical 

cellular bioenergetic mechanism to be employed for making regulatory decisions in 

nanotoxicology and increasing the potential biomedical application of new carbon nanomaterials. 

It is the first time when a star graph transform of the CNT Raman spectra is proposed in order to 

obtain the raw information for a nano-PT-QSPR model. Thus, Box–Jenkins and PT operators of 

star graph Shannon entropies under different experimental conditions and time scales were used to 

find the best regression predictor. A modified version of the RRegrs tool was used to test four 

linear and nonlinear methods such as LN, PLS, NN, and RF. The RF method provided the best 

models to predict the toxicity of CNTs in mitochondrial respiration with R
2
 of 0.998–0.999 and 

RMSE of 0.0068–0.0133 for the training and test subset. As a result, this work demonstrated the 

SG transform power when encoding Raman spectra information, similar to the SG transform of the 

blood proteome spectra in cancer or electroencephalogram in epilepsy and their applicability as 

prospective chemoinformatics tool in nanorisk assessment. 
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ABBREVIATIONS 

CNT, carbon nanotube; SWCNT, single-walled carbon nanotube; MWCNT, multiwalled 

carbon nanotube; SG, star graph; LM, multiple linear regression; PLS, partial least squares 

regression; NN, neural networks regression; RF; random forest regression; RMSE, root-mean-

square error; ATP, adenosine triphosphate; ADP, adenosine diphosphate; CCCP, carbonyl cyanide 

m-chlorophenyl hydrazine; CART, carboxyatractyloside; QSPR/QSAR, quantitative structure–

property/activity relationships; PT, perturbation theory; DFT, density functional theory; EEG, 

electroencephalogram; RLM, rat liver mitochondria; S2SNet, sequence to star network (software); 

SEC, simultaneous experimental conditions; Mas, moving averages; Sh, Shannon entropy 
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