UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS E ENGENHARIAS PROGRAMA DE PÓS-GRADUAÇÃO EM PRODUÇÃO VEGETAL

PÂMELLA FIGUEIREDO ANDOLFI

BIOCARVÃO DE PALHA DE CAFÉ COMO CONDICIONADOR DE SOLO SOB CULTIVO DE CAFEEIRO CONILON

ALEGRE

PÂMELLA FIGUEIREDO ANDOLFI

BIOCARVÃO DE PALHA DE CAFÉ COMO CONDICIONADOR DE SOLO SOB CULTIVO DE CAFEEIRO CONILON

Dissertação apresentada ao Programa de Pós-Graduação em Produção Vegetal do Centro de Ciências Agrárias e Engenharias da Universidade Federal do Espírito Santo, como requisito parcial para a obtenção do título de Mestre em Produção Vegetal, na área de Solos e Nutrição de Plantas.

Orientador: Prof. Dr. Renato Ribeiro Passos

ALEGRE

Ficha catalográfica disponibilizada pelo Sistema Integrado de Bibliotecas - SIBI/UFES e elaborada pelo autor

ANDOLFI, PÂMELLA, 1993-

A543b BIOCARVÃO DE PALHA DE CAFÉ COMO CONDICIONADOR DE SOLO SOB CULTIVO DE CAFEEIRO CONILON / PÂMELLA ANDOLFI. - 2019. 66 f. : il.

Orientador: RENATO PASSOS.

Coorientadores: OTACÍLIO RANGEL, FELIPE ANDRADE. Dissertação (Mestrado em Produção Vegetal) - Universidade Federal do Espírito Santo, Centro de Ciências Agrárias e Engenharias.

CDU: 63

I. PASSOS, RENATO. II. RANGEL, OTACÍLIO. III. ANDRADE, FELIPE. IV. Universidade Federal do Espírito Santo. Centro de Ciências Agrárias e Engenharias. V. Título.

PÂMELLA FIGUEIREDO ANDOLFI

BIOCARVÃO DE PALHA DE CAFÉ COMO CONDICIONADOR DE SOLO SOB CULTIVO DE CAFEEIRO CONILON

Dissertação apresentada ao programa de Pós-Graduação em Produção Vegetal do Centro de Ciências Agrárias e Engenharias da Universidade Federal do Espírito Santo, como requisito parcial para a obtenção do título de Mestre em Produção Vegetal na área de Solos e Nutrição de Plantas.

Aprovada em 28 de março de 2019

COMISSÃO EXAMINADORA

Prof. Dr. Renato Ribeiro Passos Universidade Federal do Espírito Santo – Orientador

Prof. Dr. Otacílio José Passos Rangel

Instituto Federal do Espírito Santo – Coorientador

Prof. Dr. Diego Lang Burak

Universidade Federal do Espírito Santo – Membro interno ao PPGPV

Dr. Ramires Ventura Machado Examinador externo ao PPGPV

AGRADECIMENTOS

A Deus, por me conduzir e permitir a conclusão desse desafio.

Aos meus pais, Edmar e Silvania, por todo amor, ajuda e compreensão.

Ao meu noivo Guilherme, pelo companheirismo e apoio nos momentos difíceis.

Aos professores Renato, Felipe e Otacílio, por toda ajuda, confiança e paciência.

Aos bons amigos, Aline, Danilo, Lenita, Eduardo, Fabiano, Welber, Anarelly, Ronaldo e Alex, pelo auxílio na execução desta pesquisa.

A banca, pela dedicação na leitura deste trabalho.

Ao Ifes - Campus Alegre pela seção e manutenção da área experimental

A UFES, pelas oportunidades e condições fornecidas.

À CAPES - Coordenadoria de Aperfeiçoamento de Pessoal de Ensino Superior, pela concessão de bolsa de auxílio aos estudos e à FAPES, pelo financiamento do projeto de pesquisa.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

RESUMO

O biocarvão é um material oriundo do processo de pirólise, que carboniza a biomassa em ambiente com pouco ou nenhum oxigênio, sob temperaturas de até 700 °C. Quando aplicado no solo, o biocarvão potencializa o armazenamento de C por um longo tempo. Diante disso, o objetivo do estudo foi avaliar os efeitos do biocarvão de palha de café como condicionador dos atributos do solo e no desenvolvimento e nutrição do cafeeiro conilon, variedade EMCAPER 8151 Robusta Tropical. O estudo foi conduzido a campo, no período de maio a novembro de 2018. O delineamento experimental foi em blocos casualizados, com três repetições, disposto em esquema fatorial 2x5, sendo: duas temperaturas de carbonização (350 e 600 °C) utilizadas na produção de biocarvão de palha de café conilon; e cinco doses de biocarvão de palha de café (0, 3, 6, 9, 12 t ha⁻¹). O aumento da temperatura de pirólise favoreceu a redução da acidez ativa do solo, tanto em superfície como em subsuperfície, e da acidez potencial e Al na profundidade de 0-10 cm. A aplicação de doses crescentes de biocarvão promoveu melhoria da fertilidade do solo, pelo aumento dos valores de pH, Mg, K, Cu, carbono orgânico total e carbono da biomassa microbiana na profundidade de 0-10 cm e aumento dos valores de pH, Mg, K, COT e CBM na profundidade de 10-20 cm. Dentre os teores foliares dos nutrientes, apenas Zn, Cu e Fe tiveram suas concentrações afetadas pela utilização de biocarvões produzidos a diferentes temperaturas de pirólise, com superioridade para os biocarvões produzidos a 600 °C. Não houve efeito de doses de biocarvão sobre os teores dos nutrientes foliares no cafeeiro. Biocarvões produzidos a 350 °C apresentaram maior emissão de CO₂, sendo, portanto mais lábeis que os biocarvões produzidos a 600 °C. Os parâmetros vegetativos do cafeeiro não foram influenciados pela aplicação dos biocarvões ao solo.

Palavras-chave: atributos biológicos – biochar – cafeicultura – resíduo orgânico

ABSTRACT

Biochar is a pyrolysis material that carbonizes the biomass in an environment with little or no oxygen at temperatures up to 700 °C. When applied to the soil, the biochar potentiates the storage of C for a long time. Therefore, the objective of the study was to evaluate the effects of coffee straw biochar as a conditioner of the soil attributes and in the development and nutrition of coffee conilon, variety EMCAPER 8151 Robusta Tropical. The study was conducted in the field from May to November, 2018. The experimental design was a randomized complete block design with three replications, arranged in a 2x5 factorial scheme: two carbonization temperatures (350 and 600 ° C) used in the production of conilon coffee straw biochar; and five doses biochar of coffee straw (0, 3, 6, 9, 12 t ha⁻¹). The increase of the pyrolysis temperature favored the reduction of the active acidity of the soil, both in surface and subsurface, and of the potential acidity and Al in the depth of 0-10 cm. The application of increasing doses of biochar improved soil fertility by raising pH, Mg, K, Cu, COT and CBM in the depth of 0-10 cm and increasing pH, Mg, K, COT and CBM in the depth of 10-20 cm. Among the nutrient foliar contents, only Zn, Cu and Fe had their concentrations affected by the use of biochar produced at different pyrolysis temperatures, with superiority for the biochars produced at 600 °C. There was no effect of biochar doses on leaf nutrient contents in the coffee tree. Biochars produced at 350 °C showed higher CO₂ emissions, being therefore more labile than the biochars produced at 600 °C. The vegetative parameters of the coffee tree were not influenced by the application of the biochar to the soil.

Keywords: biological attributes - biochar - coffee cultivation - organic waste

LISTA DE FIGURAS

Figura 1 - Temperatura média e precipitação mensal durante o período de estudo no município
de Alegre/ES. Começando o experimento em maio e finalizando em novembro de 2018
(FONTE: Sistema de Informações Meteorológicas do INMET)
Figura 2 - Teores de potássio na profundidade de 0-10 cm do solo na 2ª avaliação para as duas
temperaturas de pirólise (350 e 600 °C), em função das doses de biocarvão (*significativo a 5
% pelo teste de t)
Figura 3 – Média dos teores de Cu (A) e COT (B) na 1ª avaliação na profundidade de 0-10 cm
em função das doses de biocarvão (*significativo a 5% pelo teste de t)
Figura 4 - Médias dos valores de pH (A), K (B), H+Al (C), Al (D) e COT (E) na 2ª avaliação
na profundidade de 0-10 cm em função das doses de biocarvão (*significativo a 5% pelo teste
de t)
Figura 5 – Alterações do pH do solo na profundidade de 10-20 cm na 2ª avaliação para as duas
temperaturas de pirólise (350 e 600 °C), em função das doses de biocarvão (*significativo a 5%
pelo teste de t)
Figura 6 – Teores de zinco na profundidade de 10-20 cm do solo na 2ª avaliação para as duas
temperaturas de pirólise (350 e 600 °C), em função das doses de biocarvão (*significativo a 5%
pelo teste de t)
Figura 7 – Média dos teores de COT na 1ª avaliação na profundidade de 10-20 cm em função
das doses de biocarvão (*significativo a 5% pelo teste de t)
Figura 8 - Médias dos valores de pH (A) e K (B) na 2ª avaliação na profundidade de 10-20 cm
em função das doses de biocarvão (*significativo a 5% pelo teste de t)
Figura 9 - Emissão de CO2 acumulado em tratamentos com aplicação de biocarvão produzidos
a 350 °C (A) e 600 °C (B)
Figura 10 – Esquema gráfico da curva de evolução de CO ₂ , da equação exponencial (PASSOS,
2000)

LISTA DE TABELAS

Tabela 1 – Caracterização química e física do solo da área experimental com profundidade de
0-20 cm
Tabela 2 – Cronograma de realização de atividades do experimento de campo 18
Tabela 3 - Proporção de biocarvão retido em peneiras após a padronização19
Tabela 4 - Teores elementares C, H, N e O e relações C/N, H/C e O/C dos biocarvões de palha
de café produzidos sob diferentes temperaturas de pirólise (350 e 600 °C)
Tabela 5 - Características químicas e atributos da palha de café (PC) in natura e dos biocarvões
produzidos a 350 e 600 °C
Tabela 6 – Significância para a interação dos fatores temperatura de pirólise e doses de
biocarvão pelo teste de F para os atributos químicos do solo e relacionados à matéria orgânica
na profundidade de 0-10 cm, em duas avaliações
Tabela 7 — Valores médios dos atributos químicos do solo e relacionados à matéria orgânica na
profundidade de 0-10 cm, produzidos em duas temperaturas de pirólise (350 e 600 °C), em duas
avaliações25
Tabela 8 - Significância para o fator doses de aplicação de biocarvões, pelo teste de F, para os
atributos químicos do solo e relacionados à matéria orgânica na profundidade de 0-10 cm, em
duas avaliações
Tabela 9 - Significância para a interação dos fatores temperatura de pirólise e doses de
biocarvão pelo teste de F para os atributos químicos do solo e relacionados à matéria orgânica
na profundidade de 10-20 cm, em duas avaliações
Tabela 10 – Valores médios dos atributos químicos do solo e relacionados à matéria orgânica
na profundidade de 10-20 cm, obtidas pela comparação do efeito das temperaturas de pirólise
(350 e 600 °C), em duas avaliações
Tabela 11 - Significância para o fator doses de aplicação de biocarvões, pelo teste de F, para os
atributos químicos do solo e relacionados à matéria orgânica na profundidade de 10-20 cm, em
duas avaliações
Tabela 12 - Coeficientes da equação e tempo necessário para atingir a metade da produção
máxima de CO ₂ por unidade de massa de solo (t½= -b/c) em condições de campo
Tabela 13 - Significância para a interação dos fatores temperatura de pirólise e doses de
biocarvão pelo teste de F para as variáveis químicas foliares em três avaliações

Tabela 14 - Médias das variáveis químicas foliares obtidas pela comparação do efeito da
aplicação de biocarvões produzidos em duas temperaturas de pirólise (350 e 600 °C), em três
avaliações
Tabela 15 - Médias das variáveis químicas foliares obtidas pela comparação do efeito das doses
de aplicação de biocarvões em três avaliações
Tabela 16 - Significância para a interação dos fatores temperatura de pirólise e doses de
biocarvão pelo teste de F para os parâmetros vegetativos do cafeeiro em três avaliações 41
Tabela 17 - Médias dos parâmetros vegetativos do cafeeiro obtidas pela comparação do efeito
da aplicação de biocarvões produzidos em duas temperaturas de pirólise (350 e 600 °C), em
três avaliações
Tabela 18 - Médias dos parâmetros vegetativos do cafeeiro obtidas pela comparação do efeito
das doses de aplicação de biocarvões em três avaliações

SUMÁRIO

1. INTRODUÇÃO	11
2. REVISÃO BIBLIOGRÁFICA	12
2.1 O BIOCARVÃO E SUAS PROPRIEDADES	12
2.2 EFEITO DA TEMPERATURA NA PRODUÇÃO DO BIOCAVÃO	14
2.3 EMISSÃO DE CO ₂	14
2.4 NUTRIÇÃO DO CAFEEIRO CONILON	15
3. MATERIAL E MÉTODOS	15
3.1 LOCALIZAÇÃO E CARACTERIZAÇÃO DO EXPERIMENTO	16
3.2 HISTÓRICO DA ÁREA	17
3.3 DELINEAMENTO EXPERIMENTAL	18
3.4 PRODUÇÃO E CARACTERIZAÇÃO DOS BIOCARVÕES	18
3.5 AVALIAÇÕES	20
3.5.1. Atributos químicos do solo e relacionados à matéria orgânica	20
3.5.2. Emissão de C-CO2 do solo	21
3.5.3. Parâmetros vegetativos e estado nutricional do cafeeiro	21
3.6 ANÁLISES ESTATÍSTICAS	
4 RESULTADOS E DISCUSSÃO	22
4.1 ATRIBUTOS QUÍMICOS DO SOLO E RELACIONADOS À MATÉRIA ORGÂ PROFUNDIDADE 0-10 CM	
4.1.1 Interação entre temperatura de pirólise e doses de biocarvão	22
4.1.2 Efeito simples das temperaturas de pirólise	24
4.1.3 Efeito simples das doses de biocarvão	26
4.2 ATRIBUTOS QUÍMICOS DO SOLO E RELACIONADOS À MATÉRIA ORGÂI	NICA -
PROFUNDIDADE DE 10-20 CM	29
4.2.1 Interação entre temperatura de pirólise e doses de biocarvão	29
4.2.2 Efeito simples das temperaturas de pirólise	32
4.2.3 Efeito simples das doses de biocarvão	33
4.3 EMISSÃO DE CO ₂ DO SOLO	36
4.4 ESTADO NUTRICIONAL DO CAFEEIRO	38
4.4.1 Interação entre temperatura de pirólise e doses de biocarvão	38
4.4.2 Efeito simples das temperaturas de pirólise	38
4.4.3 Efeito simples das doses de biochar	40

4.5 PARÂMETROS VEGETATIVOS DO CAFEEIRO	41
4.5.1 Interação entre temperatura de pirólise e doses de biocarvão	41
4.5.2 Efeito Simples das temperaturas de pirólise	41
4.5.3 Efeito simples das doses de biocarvão	42
5 CONCLUSÕES	43
REFERÊNCIAS	44
ANEXOS	51

1. INTRODUÇÃO

Atividades antropogênicas para produzir alimentos têm levado à degradação ambiental, provocando problemas produtivos e ambientais, que são atribuídos à reduzida produtividade de solos agrícolas devido à baixa fertilidade e práticas de manejo inadequadas (MACHADO, 2005).

A busca por práticas e melhorias na qualidade do solo que reflitam na produtividade, sugerem o uso do biocarvão como um método de grande potencial ambiental e agronômico (LIMA, 2016).

O biocarvão, termo traduzido do inglês "biochar", é um material sólido, produzido para fins agrícolas, oriundo do processo de pirólise, que carboniza a biomassa em ambiente com pouco ou nenhum oxigênio, sob temperaturas de até 700 °C (LEHMANN; JOSEPH, 2009; NOVOTNY, 2009).

Os benefícios do uso do biocarvão no solo são devido às mudanças que ocorrem na estrutura química do material durante a pirólise. Sabe-se que durante o processo ocorre desidratação, descarboxilação e condensação das estruturas orgânicas, dando origem aos gases não condensáveis (*syngas*), ao líquido condensável (bio-óleo) e à parte sólida (biocarvão) (BREWER et al.., 2011; STEWART et al.., 2013). As características dos produtos formados dependem de vários fatores, sendo os principais a temperatura de pirólise e as características da matéria prima (BASU, 2013).

A temperatura de pirólise influencia a presença de componentes alifáticos. Com a elevação da temperatura, os mesmos serão gradualmente oxidados e transformados em compostos aromáticos, garantindo diferentes propriedades físicas e químicas se comparado à matéria prima original (DAI et al.., 2017).

O biocarvão pode ser produzido a partir de qualquer material orgânico disponível, resíduos animais, domésticos, industriais ou urbanos em diferentes temperaturas (ZHAO et al.., 2013). Uma vez que alguns resíduos podem acarretar problemas ambientais, o uso da pirólise para o aproveitamento da biomassa promove grandes benefícios, como o manejo de resíduos e a mitigação da poluição ambiental (LEHMANN; JOSEPH, 2009).

Quando o biocarvão é incorporado ao solo, atua sobre a porosidade do solo, densidade, capacidade de troca de cátions, capacidade de retenção de água, atividade biológica, entre outros (LEHMANN et al.., 2011; AL-WABEL et al.., 2013). O biocarvão eleva o pH, CTC e a disponibilidade de nutrientes para as plantas (EL-NAGGAR et al.., 2015; FIDEL et al.., 2017), aumenta a atividade biológica do solo (LEHMANN et al.., 2011), melhora a retenção de água

e a condutividade hidráulica do solo (MÉNDEZ et al.., 2013; LIM et al.., 2016). Devido à essas características, o biocarvão vem sendo utilizado como condicionador de solo, pois melhora as propriedades físicas, físico-químicas e a atividade biológica do solo (BRASIL, 2006).

Neste sentido, o aproveitamento de resíduos como forma de aumentar os estoques de matéria orgânica do solo e suprir, em parte, os nutrientes exigidos pelas plantas (DAS et al.., 2016), torna-se uma ferramenta interessante, associada à carbonização da palha. A obtenção do biocarvão pode solucionar os entraves legais da utilização da palha de café, pois reduz o volume do material, tornando o custo de transporte menor, e permite que a matéria orgânica esteja numa forma mais estável, garantindo sua permanência prolongada no solo.

Tendo como hipóteses que as diferentes temperaturas de pirólise promovem alteração química e física do material pirolisado e que doses crescentes de biocarvão de palha de café promovem melhorias nos atributos do solo e no desenvolvimento vegetativo e nutricional do cafeeiro, este trabalho objetivou avaliar o efeito da aplicação de doses crescentes de biocarvão de palha de café como condicionador de atributos do solo e no desenvolvimento e nutrição do cafeeiro conilon.

2. REVISÃO BIBLIOGRÁFICA

2.1 O BIOCARVÃO E SUAS PROPRIEDADES

O biocarvão é o produto oriundo do processo de pirólise, sob temperaturas de até 700 °C, realizada com pouco ou nenhum oxigênio (LEHMANN; JOSEPH, 2009). A pirólise tem por objetivo converter a biomassa utilizada como matéria-prima em um material altamente resistente a oxidação térmica, química e foto-oxidativa (SKJEMSTAD et al.., 1996). O bio-óleo e o bio-gás também gerados na pirólise, podem ser destinados à produção de energia elétrica e biocombustíveis.

O biocarvão pode ser produzido a partir de uma grande diversidade de resíduos, sendo eles vegetais, animais e urbanos (ATKINSON et al.., 2010), e suas características dependem do tipo de forno utilizado no processo, temperatura e resíduo utilizado (SOHI et al.., 2010).

Baixas temperaturas e tempo de residência de pirólise formam um biocarvão altamente funcional, devido à degradação incompleta e a condensação incompleta do alcatrão que preserva uma parcela da estrutura original do material e assim garantem um elevado conteúdo de grupos carboxila e hidroxila, características valiosas quando o objetivo do uso do biocarvão é aumentar a CTC do solo (NOVOTNY et al.., 2015).

De acordo com a Instrução Normativa nº 35, de 4 de julho de 2006, Art. 1º, § IV, condicionador do solo tem por definição: "produto que promove a melhoria das propriedades físicas, físico-químicas ou atividade biológica do solo, podendo recuperar solos degradados ou desequilibrados nutricionalmente" (BRASIL, 2006).

O biocarvão vem sendo utilizado como condicionador de solo pois ao ser aplicado tende a reduzir a acidez e a disponibilidade de Al, aumentar o pH e a concentração de nutrientes como Ca, Mg e K, reter água e abrigar microrganismos, melhorando as propriedades químicas, físicas e biológicas (DEENIK et al.., 2011; DEAL et al.., 2012; GRAY et al.., 2014), além de reter carbono no solo e retardar o seu retorno à atmosfera sob a forma de CO₂ (TORRES et al.., 2005).

Devido a sua estrutura policíclica aromática com alto grau de condensação, o biocarvão se torna muito resistente à degradação biológica (BENITES et al.., 2009). Essa propriedade é extremamente relevante para a agricultura, uma vez que possibilita a permanência do carbono por mais tempo em solos de regiões tropicais, onde a taxa de mineralização da matéria orgânica do solo (MOS) atinge altos níveis devido às altas temperaturas, umidade e a atividade microbiana (TORRES et al.., 2005).

Além disso, esta alta capacidade de armazenar C no solo do biocarvão por um longo tempo diminui a emissão de gases do efeito estufa (GEE) do solo para a atmosfera (SOHI et al.., 2010; AGEGNEHU et al.., 2016).

A primeira estimativa da safra cafeeira para 2019 indica uma produção de 52,48 milhões de sacas de café. Deste total, aproximadamente 13,6 milhões de sacas serão produzidas no Espírito Santo, sendo 3,23 milhões de sacas de café arábica e 10,37 milhões de sacas de café conilon (CONAB, 2019). A atividade de pilagem, que consiste na retirada da casca e do pergaminho do grão, gera o que é popularmente conhecido como palha de café. Para cada saca de café beneficiada são gerados de 50 a 60 kg de palha (SANTINATO et al.., 2012). Esse resíduo pode ser aplicado nas lavouras para suprir parte da necessidade nutricional das plantas, como fonte de material orgânico e como cobertura do solo para controle de plantas espontâneas (DAS et al.., 2015). Porém, uma pequena parte desse montante é realmente aplicada no solo, o restante se torna um passivo ambiental.

Devido à proliferação da mosca-dos-estábulos (*Stomoxys calcitrans*), a Portaria Nº 23-R, de 2 de dezembro de 2003 (IDAF, 2003) proíbe a aplicação da palha de café *in natura* nas lavouras. Assim, dar um destino adequado a esse resíduo se tornou um grande desafio para a cafeicultura.

2.2 EFEITO DA TEMPERATURA NA PRODUÇÃO DO BIOCAVÃO

Durante o processo de pirólise, ocorre conversão termoquímica da biomassa que se encontra em baixa concentração de oxigênio, sob temperaturas controladas (350 a 600 °C), permitindo a produção de um produto sólido (combustível sólido), um líquido (combustível líquido) e gases não condensáveis (CO, CO₂, H₂, CH₄ e outros hidrocarbonetos) (LEHMANN; JOSEPH, 2009).

Durante o tempo de permanência do material no reator de pirólise, as moléculas de hidrocarbonetos complexos degradam-se em moléculas menores que são mais aromáticas que as estruturas presentes na biomassa *in natura* (LEHMANN; JOSEPH, 2009). Esses processos de degradação térmica são regidos pelo tempo de permanência no reato, temperatura e velocidade de aquecimento do reator (SOHI et al.., 2010).

Algumas propriedades do biocarvão, como a porosidade, superfície específica, capacidade de reter íons e a sua resistência física e química estão relacionadas à temperatura em que ocorre a pirólise (BASU, 2013).

2.3 EMISSÃO DE CO₂

Processos físicos, químicos e biológicos regulam o transporte e a produção de CO₂ no solo, o qual está diretamente ligado à porosidade do solo, que permite o fluxo de gases. A produção de CO₂ por sua vez é regulada pela atividade dos microrganismos, que decompõem a matéria orgânica do solo, e à respiração das raízes das plantas (SÁ et al.., 2001).

É de extrema importância o entendimento da reatividade do biocarvão. Ele é composto principalmente de C. A maior parte deste C é recalcitrante (também conhecido como C pirogênico), e uma parte menor é lábil, que está ligada à relação C/N do material, composta por resíduos de celulose (NOVOTNY et al.., 2015). Quando aplicado no solo, o biocarvão sofre poucas alterações estruturais, favorecendo a redução da emissão de CO₂ para a atmosfera (SOHI et al.., 2010). Entretanto, com o passar do tempo a biomassa carbonizada sofre processos de decomposição, porém em uma escala bem menor se comparada ao material não pirolisado (PETTER; MADARI, 2012).

Segundo Mangrich et al.. (2011), o biocarvão apresenta um mecanismo que o permite atuar no processo de sequestro de carbono. Devido a sua alta estabilidade química e à estrutura periférica com presença de grupos químicos, tem a capacidade de se ligar a substancias orgânicas e a nutrientes.

2.4 NUTRIÇÃO DO CAFEEIRO CONILON

No estado do Espírito Santo, o cafeeiro conilon é cultivado principalmente em solos de baixa fertilidade, de modo que para o desenvolvimento satisfatório da planta é necessário um acompanhamento constante para garantir sua nutrição mineral, uma vez que essa prática está ligada diretamente à produtividade do cafeeiro (FONSECA et al.., 2015).

A quantidade de nutrientes requeridos pelo cafeeiro conilon varia de acordo com o genótipo, idade, estádio de desenvolvimento, localização geográfica e estação do ano. À medida que a planta se desenvolve aumenta a demanda nutricional, principalmente a partir da primeira colheita (FERRÃO et al.., 2017). Bragança (2005) e Bragança et al.. (2007; 2008) relataram em suas pesquisas que a sequência de acumulo de nutrientes pelo cafeeiro conilon foi N >Ca>K>Mg>S>P>Fe>Mn>Zn>Cu.

Dentre os macronutrientes mais acumulados no tecido vegetal do cafeeiro Conilon está o nitrogênio (N), pois faz parte da constituição de muitos componentes da célula vegetal, como proteínas, enzimas, aminoácidos e ácidos nucleicos, além de ser integrante da molécula de clorofila (TAIZ; ZAIGER, 2013). A deficiência manifesta-se nas áreas entre as nervuras das folhas mais velhas, tornando-se verde claras e com manchas irregulares. Com o avanço da deficiência, as folham tornam-se amarelas (FERRÃO et al.., 2007).

O segundo nutriente mais exigido pelo cafeeiro Conilon é o cálcio (Ca), que atua nos estímulos externos à planta como mensageiro secundário, além de atuar na permeabilidade da membrana plasmática e na divisão celular (TAIZ; ZEIGER, 2009; MARSCHNER, 2012). Por ser um nutriente pouco móvel na planta, os sintomas da sua deficiência aparecem nas folhas novas, como clorose marginal e internerval associada à diminuição do crescimento dos meristemas apicais (FERRÃO et al.., 2017).

Após o N e o Ca, o potássio (K) é o nutriente mais acumulado pelo cafeeiro Conilon, cuja função específica está associada à abertura e fechamento dos estômatos, atua na fotossíntese e na respiração, ativando enzimas envolvidas nesses processos, regula o potencial osmótico das células além de atuar no enchimento dos grãos (TAIZ; ZEIGER, 2009; MARSCHNER, 2012). Os sintomas de deficiência aparecem nas folhas mais velhas como escurecimento e necrose das bordas.

3. MATERIAL E MÉTODOS

3.1 LOCALIZAÇÃO E CARACTERIZAÇÃO DO EXPERIMENTO

O estudo foi realizado na área experimental do Instituto Federal do Espírito Santo (Ifes) – Campus de Alegre, localizada em Rive, distrito de Alegre, Estado do Espírito Santo, com altitude de 130 m, no período de maio a novembro de 2018.

O clima da região é classificado como "Cwa" (tropical quente úmido) com inverno frio e seco segundo a classificação internacional de Köppen, precipitação de 900 mm e temperatura média de 23,6°C durante a condução dos experimentos (INMET, 2018).

As médias mensais de temperatura e precipitação durante o período estudado são apresentadas na Figura 1.

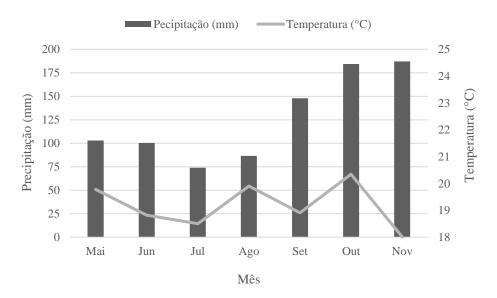


Figura 1 - Temperatura média e precipitação mensal durante o período de estudo no município de Alegre/ES. Começando o experimento em maio e finalizando em novembro de 2018 (FONTE: Sistema de Informações Meteorológicas do INMET)

Foi coletada uma amostra composta do solo para a caracterização química e física da área experimental antes da realização do plantio das mudas (Tabela 1).

Tabela 1 – Caracterização química e física do solo da área experimental com profundidade de 0-20 cm

Atributos Químicos									
pН	Ca^{2+}	${\bf Mg^{2+}}$	Na	K	P	Fe	Cu	Zn	SB
H_2O	H ₂ O cmol _c dm ⁻³ cmol _c dm ⁻³ cmol _c dm ⁻³							cmol _c dm ⁻³	
5,7	2,79	1,09	18	123	2,42	82,11	0,91	1,01	4,27
		Atributos	Químicos				Atr	ibutos Fís	sicos
H+Al	Al	t	T	V]	m	Areia	Silte	Argila
cmol _c dm ⁻³ %									
2,89	0	4,27	7,16	59,66	0	,00	47	8	45

3.2 HISTÓRICO DA ÁREA

Antes da implantação do experimento, a área era composta por capim-braquiária. O plantio da lavoura de cafeeiro conilon EMCAPER 8151 Robusta Tropical foi realizado em maio de 2016, no espaçamento de 3x1 m. Cada cova com dimensões de 0,4x0,4x0,4 m, recebeu 5 dm³ de esterco bovino, com densidade de 0,41 kg dm³, 290 g de superfosfato simples e 20 g de FTE Br12. Em seguida, foram aplicadas as doses de biocarvão nas covas de acordo com os tratamentos, que corresponderam a: 0, 12, 24, 36 e 48 t ha¹. O biocarvão foi aplicado na cova sem qualquer tipo de tratamento ou peneiramento. O solo da área experimental foi classificado como Latossolo Vermelho-Amarelo textura argilosa, de acordo com o Sistema Brasileiro de Classificação de Solos (Embrapa, 2017).

Aos 30, 60, 90, 150, 180 e 210 dias após o planto foi realizada a adubação de cobertura com 325 g planta⁻¹ do formulado 20 00 15 (N, P₂O₅ e K₂O, respectivamente). Foi realizada uma adubação foliar com o produto Complex 151 aos 120 dias, aplicando 150 g em 20 litros de água.

O calcário foi aplicado na projeção da copa com dosagem de 90 g planta⁻¹ em novembro de 2017. Em dezembro de 2017, janeiro e março de 2018 foram realizadas adubações com 20g de N, 12g de P₂O₅ e 40g de K₂O planta⁻¹.

Todas as adubações foram realizadas com base na análise química do solo e recomendações de Prezotti et al.. (2007).

Um cronograma detalhando as principais atividades realizadas no experimento foi criado para facilitar o entendimento da dinâmica experimental (Tabela 2).

Tabela 2 – Cronograma de realização de atividades do experimento de campo

Data	Atividade					
Maio/2016	Plantio e aplicação do biocarvão na cova					
Maio/2018	1ª avaliação do solo, do estado nutricional e dos parâmetros vegetativos do cafeeiro (estação: outono)					
Julho/2018	Aplicação do biocarvão em superfície					
Setembro/2018	2ª avaliação do estado nutricional e dos parâmetros vegetativos do cafeeiro (estação: inverno)					
Novembro/2018	2ª avaliação do solo, 3ª avaliação do estado nutricional e 3ª avaliação dos parâmetros vegetativos do cafeeiro (estação: primavera)					

3.3 DELINEAMENTO EXPERIMENTAL

O delineamento experimental utilizado foi em blocos casualizados com três repetições, disposto em esquema fatorial 2x5, sendo duas temperaturas de carbonização (350 e 600 °C) utilizadas na produção de biocarvão de palha de café conilon e cinco doses de cada biocarvão de palha de café: 0, 3, 6, 9, 12 t ha⁻¹ que correspondem a 0; 0,9; 1,8; 2,7; 3,6 kg cova⁻¹. Cada tratamento era constituído por 8 plantas, das quais 6 plantas úteis e 2 plantas na bordadura.

Em julho de 2018 foi realizada a segunda aplicação de biocarvão na área experimental, porém, ao contrário da primeira (realizada em 2016, na implantação do experimento) essa aplicação foi feita em superfície, com uma leve escarificação no solo, utilizando ancinho de jardinagem para acomodação do material até 5 cm de profundidade e um molde circular com diâmetro de 80 cm para padronização da área de aplicação. As doses foram baseadas em 25% da dose de biocarvão usado no momento do plantio da lavoura.

3.4 PRODUÇÃO E CARACTERIZAÇÃO DOS BIOCARVÕES

A palha de café conilon (*Coffea canephora*) utilizada na pirólise foi proveniente do Ifes-Campus de Alegre, onde recebeu secagem em terreiro de cimento. O material era composto por casca, polpa, pergaminho e grãos perdidos no beneficiamento.

A pirólise foi conduzida em reator metálico hermeticamente fechado, modelo SPPT-V60, que tem taxa de aquecimento de 6 °C min⁻¹.

Os biocarvões foram produzidos isotermicamente por pirólise lenta em duas temperaturas: 350 e 600 °C, com tempo de permanência nessas temperaturas de 30 min. Após o processo de pirólise, o material permaneceu no reator até atingir a temperatura ambiente.

As quantidades de biocarvão e bio-óleo produzidas foram mensuradas e acondicionadas em sacos plásticos e garrafas de politereftalato de etileno (PET), respectivamente, para posterior cálculo de rendimento de produção. A quantidade de gases produzidos foi determinada subtraindo da massa de matéria prima a massa de biocarvão e bio-óleo produzidos no processo.

O rendimento de produção dos biocarvões, obtido pela razão entre a massa de palha de café e a massa de biocarvão, foi de 43,8 % para os biocarvões produzidos na temperatura de 350 °C e 34,3 % para os biocarvões produzidos a 600 °C.

As amostras de biocarvão produzidas nas várias fornadas, referentes a cada temperatura, foram agrupadas, homogeneizadas e padronizadas, utilizando peneira com malha de 2 mm.

O teste de peneiras foi realizado para quantificação e determinação das características do material aplicado no solo (Tabela 3).

T 1 1 2 D ~	1 1 ' ~	. 1	•	_	1 • ~
Tabela 3 - Proporção	de hiocarvao	refide em	neneirae a	100 g 1	nadronizacao
	uc blocal vao	icuao cin	penenasa	ipos a	pauromzação

	Proporção (%)					
Malha (mm)	350 °C	600 °C				
1,00	44,78	48,46				
0,50	31,90	31,48				
0,25	13,25	13,62				
0,21	0,83	1,29				
<0,21	9,24	5,15				

Foram coletadas amostras dos biocarvões para análise elementar realizada em Analisador Perkin Elmer Serie II 2400 (Tabela 4). A caracterização química apresentada na Tabela 5 foi realizada por digestão nitroperclórica, utilizando metodologia recomendada por Embrapa (2017). Para o teor de cinzas foi utilizada a metodologia proposta por Barbosa (2016). O pH em água foi quantificado segundo o método proposto por Rajkovich et al.. (2011). A CTC foi determinada pelo método oficial do Ministério da Agricultura, Pecuária e Abastecimento (MAPA) para condicionadores de solo (BRASIL, 2007).

Cabe ressaltar que as amostras foram aplicadas no experimento conforme obtidas após a pirólise, sem lavagem com água ou adição de qualquer reagente. Ademais, as amostras de palha de café *in natura* foram analisadas com o objetivo de inferir sobre as mudanças provenientes do processo de pirólise, como pode ser observado na Tabela 5.

Tabela 4 - Teores elementares C, H, N e O e relações C/N, H/C e O/C dos biocarvões de palha de café produzidos sob diferentes temperaturas de pirólise (350 e 600 °C)

Diagona 2		Teor elem	nentar (%)		C/N	II/C	0/C
Biocarvão -	С	C H N O	C/N	H/C	O/C		
350 °C	59,87	4,57	2,54	33,02	23,57	0,08	0,55
600 °C	76,66	2,17	2,44	18,73	31,42	0,03	0,24

Fonte: adaptado de Fonseca (2018).

Tabela 5 - Características químicas e atributos da palha de café (PC) *in natura* e dos biocarvões produzidos a 350 e 600 °C

-	P	K	Ca	Mg	Cu	Fe	Zn	Cz	pН	CTC
Biocarvão		dag k	g-1			- mg kg ⁻¹		%		cmol _c kg ⁻¹
PC	0,17	1,64	0,29	0,26	17,75	95,30	5,55	-	-	-
350 °C	0,26	1,66	0,61	0,38	27,80	299,60	8,80	14,4	8,4	283,3
600 °C	0,30	1,66	1,10	0,50	32,35	713,85	14,30	22,8	9,7	43,8

Cz= teor de cinzas; CTC= capacidade de troca de cátions; PC= palha de café.

3.5 AVALIAÇÕES

3.5.1. Atributos químicos do solo e relacionados à matéria orgânica

As coletas de solo foram feitas em maio e novembro de 2018, nas profundidades de 0-10 e 10-20 cm. Para avaliação dos atributos químicos do solo, foram realizadas as seguintes análises embasadas em metodologias preconizadas por Embrapa (2017), sendo: pH em H₂O (relação 1:2,5, v/v de solo:solução); sódio (Na) e potássio (K) disponíveis, extraídos com Mehlich⁻¹ e determinados por fotometria de chama; cálcio (Ca) e magnésio (Mg) trocáveis extraídos com cloreto de potássio e determinados em absorção atômica; alumínio (Al) trocável extraído com KCl e determinado por titulação; acidez potencial (H+Al) extraída com acetato de cálcio e determinada por titulação; fósforo (P) disponível, extraído com Mehlich⁻¹ e determinado por colorimetria; ferro (Fe), cobre (Cu) e zinco (Zn) disponíveis, extraídos com Mehlich⁻¹ e determinados com absorção atômica. Com os resultados, foram calculados a soma de bases (SB), a capacidade de troca de cátions (CTC) a pH 7,0 e a saturação por bases (V) do solo.

A avaliação dos atributos relacionados à matéria orgânica consistiu na determinação dos teores de carbono orgânico total (C orgânico total) pela oxidação da matéria orgânica em meio

ácido com adição de uma fonte de calor (MENDONÇA E MATOS, 2005) e nitrogênio total (N total), com digestão sulfúrica seguida de destilação (MENDONÇA E MATOS, 2005). Os teores de carbono da biomassa microbiana (CBM) e nitrogênio da biomassa microbiana (NBM) foram determinados pelo método irradiação-extração (ISLAM & WEIL, 1998 e BROOKES et al.. 1982, adaptado por MENDONÇA & MATOS, 2005). O conteúdo de C extraído com a solução extratora 0,5 mol L⁻¹ de K₂SO₄ (pH calibrado em 6,5-6,8) das amostras não irradiadas foi utilizado como estimativa do carbono solúvel (Csol).

3.5.2. Emissão de C-CO₂ do solo

A emissão de C-CO₂ do solo foi medida diretamente no campo com analisador portátil modelo LI-8100 (Li-Cor, USA) acoplada a uma câmara dinâmica (LI-8100-102), chamada de câmara de pesquisa, que utiliza anéis PVC (10 cm de diâmetro) instalados no solo (5 cm de profundidade), no dia anterior à primeira avaliação e que permaneceram até o fim do experimento (120 dias). Cada tratamento era composto por 3 anéis de PVC instalados a 10 cm de distância do caule das plantas. Foram feitas onze avaliações, aos 3, 6, 8, 19, 33, 47, 61, 75, 89, 103 e 120 dias após a aplicação dos tratamentos.

3.5.3. Parâmetros vegetativos e estado nutricional do cafeeiro

Os parâmetros vegetativos avaliados foram a altura e o diâmetro do caule do cafeeiro. Para avaliação do estado nutricional do cafeeiro, os tecidos foliares foram retirados do 4º par de folhas no terço médio das seis plantas úteis que compunham cada tratamento. Esse material foi lavado com água deionizada, seco em estufa e moído em moinho de facas tipo Willey. Em seguida foi realizada a digestão nitroperclórica (EMBRAPA, 2017). A diagnose nutricional foi composta pela determinação de N, P, K, Ca, Mg, Zn, Cu e Fe.

A avaliação da altura e diâmetro do caule da planta e de folhas para análise nutricional foi feita a cada 3 meses, em três momentos, de acordo com os estádios fenológicos do cafeeiro: maio de 2018 na maturação; agosto de 2018 no repouso e senescência dos ramos; e novembro de 2018 no estádio chumbinho dos grãos (FERRÃO et al.., 2007). É importante ressaltar que a avaliação de maio de 2018 não abrangeu o efeito da aplicação superficial do biocarvão no solo, uma vez que o mesmo foi aplicado após essa avaliação (julho de 2018).

3.6 ANÁLISES ESTATÍSTICAS

Os resultados foram submetidos a análise de variância com posterior aplicação do teste de F com significância de 10% ($p \le 0,10$). Quando os efeitos de interação foram significativos, ajustes de modelos de regressão foram testados para o fator dose dos biocarvões.

Quando o efeito da interação não foi significativo, o estudo das variáveis foi realizado observando o efeito simples dos fatores aplicados.

Os modelos de regressão foram escolhidos com base no aspecto gráfico apresentado pela plotagem dos dados em gráficos de dispersão, pelo coeficiente de determinação (R²) e pela significância dos coeficientes da regressão.

Para a emissão de C-CO₂, as médias foram ajustadas à equação exponencial

$$Y = \frac{a}{1 + e^{(b+cx)}}$$
 Equação 1

Para todos os procedimentos estatísticos foi utilizado o programa R (R Core Team, 2018).

4 RESULTADOS E DISCUSSÃO

4.1 ATRIBUTOS QUÍMICOS DO SOLO E RELACIONADOS À MATÉRIA ORGÂNICA - PROFUNDIDADE 0-10 CM

4.1.1 Interação entre temperatura de pirólise e doses de biocarvão

A análise de variância dos dados mostrou que apenas o potássio na profundidade de 0-10 cm do solo foi significativo ao nível de 10 % de probabilidade pelo teste F na segunda avaliação, como pode ser observado na Tabela 6. Neste caso, obteve-se ajuste das equações de regressão para avaliar o efeito das doses de biocarvão com as duas temperaturas de pirólise, apresentado na Figura 2.

Tabela 6 – Significância para a interação dos fatores temperatura de pirólise e doses de biocarvão pelo teste de F para os atributos químicos do solo e relacionados à matéria orgânica na profundidade de 0-10 cm, em duas avaliações

Voniárial	1ª Avaliação	2ª Avaliação
Variável —	P Inte	eração
pН	0,344	0,780
Ca	0,763	0,995
Mg	0,181	0,926
Na	0,876	0,387
K	0,793	0,084
P	0,545	0,423
Fe	0,695	0,627
Zn	0,736	0,337
Cu	0,367	0,437
H+A1	0,741	0,669
Al	0,831	0,511
SB	0,829	0,980
CTC	0,543	0,973
V	0,919	0,869
COT	0,184	0,644
NT	0,489	0,650
CBM	0,944	0,577
NBM	0,986	0,952
Csol	0,639	0,993

P Interação= significância da interação

A Figura 2 mostra um ajuste quadrático nas equações de regressão para a disponibilidade de K no solo em relação às doses de biocarvão aplicadas nas duas temperaturas de pirólise. Os maiores valores de K foram obtidos com a utilização de 9 t ha⁻¹ de biocarvão, o qual teve um acréscimo de 214% e 142,3% em relação à testemunha para as temperaturas de 350 e 600 °C respectivamente (Figura 4).

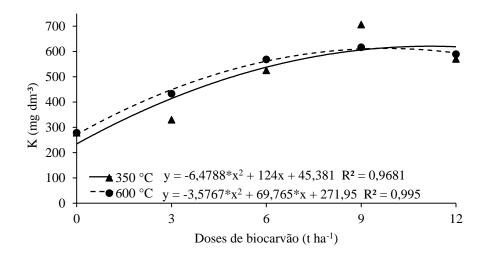


Figura 2 - Teores de potássio na profundidade de 0-10 cm do solo na 2ª avaliação para as duas temperaturas de pirólise (350 e 600 °C), em função das doses de biocarvão (*significativo a 5 % pelo teste de t)

4.1.2 Efeito das temperaturas de pirólise

Como pode ser observado na Tabela 7, como o efeito da interação não foi significativo, exceto para K, o efeito do fator temperatura de pirólise foi estudado para todas as variáveis e mostrou-se significativo na profundidade 0-10 cm para pH, Mg, H+Al, Al e CBM na segunda avaliação.

Tabela 7 – Valores médios dos atributos químicos do solo e relacionados à matéria orgânica na profundidade de 0-10 cm, produzidos em duas temperaturas de pirólise (350 e 600 °C), em duas avaliações

		Temperatura de pirólise			Temperatura de pirólise		
				Ditaman			
Variável	Unidade -	350 °C	600 °C	P temp	350 °C	600 °C	P temp
		1ª Avaliação			2ª Avaliação		
pН	-	5,57 a	5,49 a	0,365	5,87 b	6,12 a	0,010
Ca	cmol _c dm ⁻³	4,49 a	4,44 a	0,908	3,94 a	4,21 a	0,653
Mg	cmol _c dm ⁻³	0,73 a	0,64 a	0,150	0,82 a	0,71 b	0,080
Na	mg dm ⁻³	7,67 a	7,25 a	0,496	12,25 a	12,58 a	0,685
K	mg dm ⁻³	345,67 a	318,08 a	0,298	533,17 a	552,08 a	0,452
P	mg dm ⁻³	134,23 a	117,37 a	0,204	152,56 a	129,28 a	0,272
Fe	mg dm ⁻³	95,84 a	96,49 a	0,901	88,29 a	94,14 a	0,414
Zn	mg dm ⁻³	54,67 a	60,49 a	0,411	34,33 a	36,48 a	0,788
Cu	mg dm ⁻³	4,56 a	4,67 a	0,788	3,77 a	3,65 a	0,873
H+Al	cmol _c dm ⁻³	4,99 a	4,68 a	0,245	4,83 a	4,07 b	0,005
Al	cmol _c dm ⁻³	0,74 a	0,52 a	0,230	0,54 a	0,25 b	0,026
SB	cmol _c dm ⁻³	6,14 a	5,97 a	0,691	6,18 a	6,39 a	0,742
CTC	cmol _c dm ⁻³	11,14 a	10,61 a	0,284	11,01 a	10,46 a	0,404
V	%	55,13 a	55,35 a	0,924	56,36 a	60,32 a	0,156
COT	$g kg^{-1}$	21,08 a	20,56 a	0,389	22,09 a	22,32 a	0,804
NT	g kg ⁻¹	1,73 a	1,72 a	0,841	1,62 a	1,54 a	0,104
CBM	mg kg ⁻¹	183,51 a	180,77 a	0,945	312,52 b	464,54 a	0,083
NBM	mg kg ⁻¹	4,03 a	$4,89^{a}$	0,440	16,65 a	14,02 a	0,439
Csol	mg kg ⁻¹	183,51 a	180,77 a	0,519	207,17 a	186,94 a	0,403

Médias seguidas por uma mesma letra na linha não diferem entre si a 10% de probabilidade pelo teste de F. P temp= significância da temperatura

Na temperatura de pirólise de 600 °C, o pH do solo apresentou média mais elevada comparado a 350 °C, ou seja, o pH aumentou com a elevação da temperatura de pirólise e, consequentemente, o teor de Al reduziu no solo. Esse resultado tem sido frequentemente observado em outros estudos, que reportam o aumento da alcalinidade com o aumento da temperatura de pirólise (YUAN et al.., 2011; TAG et al.., 2016; DAI et al.., 2017). A elevação da temperatura proporciona a volatilização dos elementos orgânicos presentes no material e conserva a porção mineral, composta por metais alcalinos, responsáveis pela elevação do pH do meio que retira da solução os íons H⁺ (ENDERS et al.., 2012; CONZ, 2015).

Vários autores estudando a aplicação de biocarvões no solo demonstraram que existe uma tendência de redução da acidez potencial e do Al trocável do solo, após a aplicação do biocarvão no solo (CHAN et al.., 2007; YUAN; XU, 2010; WANG et al.., 2012).

Com uma comparação simples, pode-se constatar que após a aplicação do biocarvão no solo houve um aumento no pH, redução do Al e do H+Al, comparativamente a antes da aplicação. Assim, a avaliação da acidez do solo com base no pH que era classificado por Prezotti et al.. (2007) como de acidez média, passou para a classe de acidez fraca após a aplicação do material pirolisado a 600 °C. E o teor de Al que era classificado como médio, passou a ser baixo. No entanto, o H+Al permaneceu na classificação de acidez média.

4.1.3 Efeito das doses de biocarvão

Após estudar o efeito do fator dose de biocarvão, pode-se observar a partir do resultados apresentados na Tabela 8 que as variáveis Cu e COT mostraram-se significativas na primeira avaliação, apesentando um efeito residual da aplicação de biocarvão feita em maio de 2016 na cova de plantio do cafeeiro. Já na avaliação realizada após a aplicação em cobertura, pH, H+Al e Al, K e COT apresentaram médias significativas ao teste de F a 10 % de probabilidade.

Tabela 8 - Significância para o fator doses de aplicação de biocarvões, pelo teste de F, para os atributos químicos do solo e relacionados à matéria orgânica na profundidade de 0-10 cm, em duas avaliações

Vaniárval	1ª Avaliação	2ª Avaliação
Variável -	F	dose
pН	0,853	0,002
Ca	0,224	0,596
Mg	0,824	0,536
Na	0,876	0,136
K	0,630	0,001
P	0,178	0,659
Fe	0,932	0,878
Zn	0,459	0,878
Cu	0,050	0,167
H+A1	0,993	0,001
Al	0,831	0,005
SB	0,242	0,688
CTC	0,336	0,128
V	0,376	0,122
COT	0,005	0,006
NT	0,489	0,506
CBM	0,467	0,602
NBM	0,350	0,716
Csol	0,366	0,679

P dose= significância da dose de biocarvão

O aumento das doses de biocarvão provocou acréscimos, com ajuste linear, nos teores de Cu e COT na primeira avaliação, feita antes da aplicação do biocarvão em superfície. Esse efeito pode estar relacionado à aplicação de biocarvão realizada na cova, no momento do plantio do cafeeiro. Apesar de ter sido realizada adubação com Cu no momento do plantio, o mesmo foi aplicado na mesma proporção para todos os tratamentos, o que sugere que o ganho linear apresentado na Figura 3 é resultado da aplicação do biocarvão. Sendo assim, quanto maior a dose de biocarvão aplicada, maior é o teor de Cu no solo. Apesar do teor de Cu na dose zero já se encontrar em faixa considerada adequada, o ganho obtido em relação ao aumento da dose deve ser observado para que não cause toxidez, uma vez que houve incremento de 72,4% na maior dose.

Efeito semelhante foi observado para COT, mostrando que a aplicação do biocarvão pode ter efeito prolongado, aumentando o teor de carbono no solo. Nesse estudo houve incremento de 71,2% no teor de COT na maior dose de biocarvão.

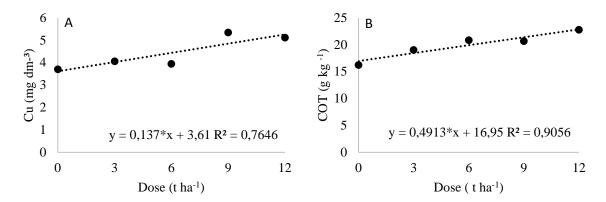
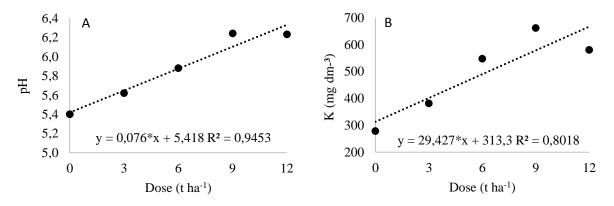



Figura 3 – Média dos teores de Cu (A) e COT (B) na 1ª avaliação na profundidade de 0-10 cm em função das doses de biocarvão (*significativo a 5% pelo teste de t)

Na segunda avaliação, cujos resultados são apresentados na Figura 4, os atributos pH, K, H+Al e Al apresentaram ajuste linear para o efeito das doses de biocarvão. No entanto, o COT respondeu com um ajuste quadrático em relação às doses. Os maiores valores de COT foram obtidos com a utilização de 9 t ha⁻¹ de biocarvão, o qual teve um acréscimo de 59,8% em relação à testemunha.

Pode-se observar o efeito significativo do nutriente K na segunda avaliação para dose de biocarvão que deve-se ao fato da palha de café *in natura* ter elevada concentração de K como mostrado na Tabela 5. O K tem função enzimática, permanecendo livre no citosol das células e assim ao passar pelo processo de pirólise concentra-se nas cinzas dos biocarvões (BARBOSA, 2016). O fornecimento de K ao solo é então obtido com a aplicação deste material no solo, sendo de grande importância agronômica.

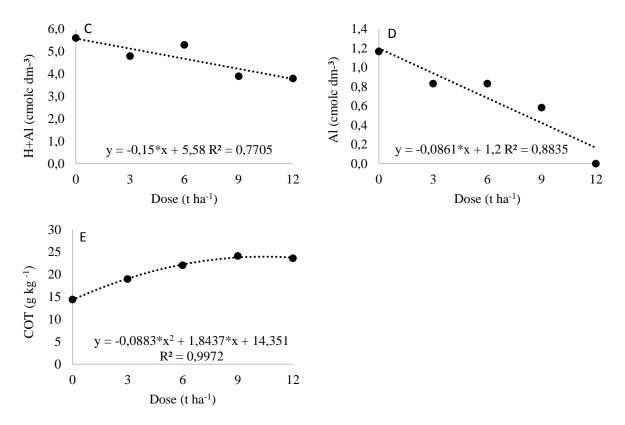


Figura 4 - Médias dos valores de pH (A), K (B), H+Al (C), Al (D) e COT (E) na 2ª avaliação na profundidade de 0-10 cm em função das doses de biocarvão (*significativo a 5% pelo teste de t)

4.2 ATRIBUTOS QUÍMICOS DO SOLO E RELACIONADOS À MATÉRIA ORGÂNICA - PROFUNDIDADE DE 10-20 CM

4.2.1 Interação entre temperatura de pirólise e doses de biocarvão

Na profundidade de 10-20 cm, os resultados apresentados na Tabela 9 indicam que o pH e Zn na 2ª avaliação apresentaram efeito de interação entre os fatores estudados ao nível de 10 % de probabilidade, segundo o teste F. Neste caso, obteve-se ajuste das equações de regressão para avaliar o efeito das doses de biocarvão para as duas temperaturas de pirólise, apresentado nas Figuras 5 e 6.

Tabela 9 - Significância para a interação dos fatores temperatura de pirólise e doses de biocarvão pelo teste de F para os atributos químicos do solo e relacionados à matéria orgânica na profundidade de 10-20 cm, em duas avaliações

	_			
Variável —	1ª Avaliação	2ª Avaliação		
v arraver	P Interação			
pН	0,581	0,062		
Ca	0,142	0,906		
Mg	0,330	0,688		
Na	0,946	0,178		
K	0,920	0,552		
P	0,862	0,750		
Fe	0,735	0,752		
Zn	0,140	0,033		
Cu	0,354	0,390		
H+A1	0,903	0,496		
Al	0,813	0,878		
SB	0,262	0,973		
CTC	0,458	0,732		
V	0,958	0,755		
COT	0,358	0,965		
NT	0,302	0,961		
CBM	0,326	0,495		
NBM	0,220	0,453		
Csol	0,842	0,617		

P Interação= significância da interação

Em relação ao pH do solo, os resultados apresentados na Figura 5 indicam ajuste linear, com efeito significativo para as duas temperatura de pirólise, aumentando a alcalinidade com o aumento das doses de biocarvão (Figura 5).

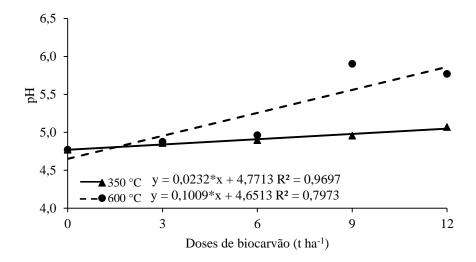


Figura 5 – Alterações do pH do solo na profundidade de 10-20 cm na 2ª avaliação para as duas temperaturas de pirólise (350 e 600 °C), em função das doses de biocarvão (*significativo a 5% pelo teste de t)

Os resultados apresentados na Figura 6 indicam que o teor de zinco disponível no solo apresentou efeito linear significativo para a temperatura de pirólise de 350 °C, decaindo com o aumento da dose de biocarvão. Novak et al.. (2009), estudando a adição de biocarvão produzido a partir da casca do fruto de nogueira-pecã para a fertilidade do solo, observaram que o biocarvão aumentou o pH do solo e diminuiu a disponibilidade de Zn no solo, devido à alta capacidade de sorção de nutrientes pelos sítios de troca do biocarvão, principalmente Ca, P, Zn e Mn.

Apesar da redução da concentração de Zn disponível no solo com a maior dose de biocarvão, a concentração ainda manteve-se alta, como classificada por Prezotti et al.. (2007).

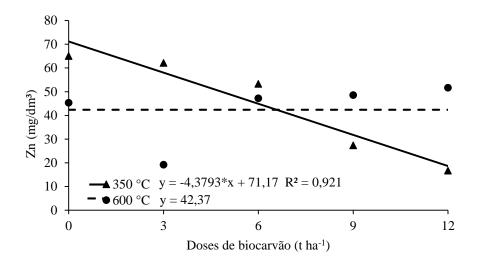


Figura 6 – Teores de zinco na profundidade de 10-20 cm do solo na 2ª avaliação para as duas temperaturas de pirólise (350 e 600 °C), em função das doses de biocarvão (*significativo a 5% pelo teste de t)

4.2.2 Efeito das temperaturas de pirólise

O resultado para o efeito da temperatura de pirólise apresentados na Tabela 10, na profundidade de 10-20 cm, foi significativo para Mg e CBM na primeira avaliação e apenas para pH na segunda avaliação.

Tabela 10 – Valores médios dos atributos químicos do solo e relacionados à matéria orgânica na profundidade de 10-20 cm, obtidas pela comparação do efeito das temperaturas de pirólise (350 e 600 °C), em duas avaliações

		Temperatur	ra de pirólise		Temperatu	ra de pirólise	
Vorióval	Variável Unidade	350 °C	600 °C	P Temp	350 °C	600 °C	P Temp
v arraver		1ª Avaliação		2ª Avaliação			
pН	-	5,34 a	5,35 a	0,888	4,95 b	5,38 a	0,005
Ca	cmol _c dm ⁻³	4,32 a	4,08 a	0,375	3,90 a	3,08 a	0,217
Mg	cmol _c dm ⁻³	0,65 a	0,60 b	0,077	0,51 a	0,46 a	0,400
Na	mg dm ⁻³	7,33 a	7,58 a	0,594	8,83 a	9,17 a	0,668
K	mg dm ⁻³	312,75 a	274,83 a	0,242	328,08 a	353,83 a	0,386
P	mg dm ⁻³	122,91 a	150,24 a	0,112	126,01 a	111,55 a	0,609
Fe	mg dm ⁻³	90,13 a	90,41 a	0,947	88,35 a	84,04 a	0,596
Zn	mg dm ⁻³	94,31 a	101,26 a	0,194	39,87 a	41,65 a	0,842
Cu	mg dm ⁻³	7,15 a	6,75 a	0,640	5,59 a	4,54 a	0,408
H+A1	cmol _c dm ⁻³	5,51 a	5,18 a	0,240	5,68 a	5,04 a	0,159
Al	cmol _c dm ⁻³	0,89 a	0,74 a	0,190	0,67 a	0,67 a	0,990
SB	cmol _c dm ⁻³	5,81 a	5,47 a	0,264	5,30 a	4,49 a	0,262
CTC	cmol _c dm ⁻³	11,32 a	10,65 a	0,182	10,98 a	9,53 a	0,110
V	%	50,79 a	51,04 a	0,836	47,10 a	46,98 a	0,972
COT	g kg ⁻¹	20,71 a	20,54 a	0,831	20,08 a	18,87 a	0,351
NT	g kg ⁻¹	1,77 a	1,70 a	0,215	1,48 a	1,42 a	0,406
CBM	mg kg ⁻¹	113,35 b	181,21 a	0,085	255,87 a	381,38 a	0,192
NBM	mg kg ⁻¹	4,30 a	3,26 a	0,366	15,27 a	16,89 a	0,653
Csol	mg kg ⁻¹	113,35 a	181,21 a	0,234	175,87 a	170,77 a	0,873

Médias seguidas por uma mesma letra na linha não diferem entre si a 10 % de probabilidade pelo teste de F. P temp= significância da temperatura

O efeito significativo para Mg e CBM na primeira avaliação pode estar relacionado à aplicação de biocarvão realizada na cova no momento do plantio do cafeeiro, uma vez que houve a inserção de material até a profundidade de 40 cm.

Houve interação significativa em subsuperfície para o pH, após a aplicação de biocarvão. A aplicação de biocarvão produzido a 600 °C apresentou média de pH superior, um resultado esperado devido ao aumento da temperatura de pirólise tornar o biocarvão mais alcalino. Este aumento da alcalinidade está diretamente relacionado ao elevado teor de cinzas do material. Metais alcalinos remanescentes do material após a pirólise contribuem para o elevado pH determinado nos biocarvões produzidos a 600 °C (TAG et al.., 2016).

4.2.3 Efeito das doses de biocarvão

Como pode ser observado na Tabela 11, o efeito simples das doses de aplicação de biocarvão no solo foi significativo na 1ª avaliação apenas para COT e na 2ª avaliação para pH e K.

Tabela 11 - Significância para o fator doses de aplicação de biocarvões, pelo teste de F, para os atributos químicos do solo e relacionados à matéria orgânica na profundidade de 10-20 cm, em duas avaliações

Vaniárval	1ª Avaliação	2ª Avaliação		
Variável —	P dose			
pН	0,234	0,012		
Ca	0,821	0,521		
Mg	0,265	0,835		
Na	0,297	0,291		
K	0,268	0,005		
P	0,584	0,659		
Fe	0,613	0,645		
Zn	0,136	0,617		
Cu	0,139	0,422		
H+Al	0,650	0,336		
Al	0,813	0,157		
SB	0,805	0,724		
CTC	0,884	0,438		
V	0,201	0,834		
COT	0,003	0,518		
NT	0,324	0,413		
CBM	0,182	0,394		
NBM	0,143	0,509		
Csol	0,705	0,306		

P dose= significância da dose de biocarvão

A Figura 7 apresenta o efeito da aplicação de biocarvão, o qual foi linear para a primeira avaliação. Esse resultado mostra o efeito prolongado da aplicação de biocarvão na cova, realizado no momento do plantio, uma vez que nenhum outro trato cultural ou adubação foi realizada em subsuperfície desde maio de 2016.

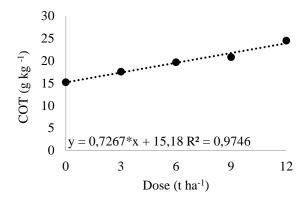


Figura 7 – Média dos teores de COT na 1ª avaliação na profundidade de 10-20 cm em função das doses de biocarvão (*significativo a 5% pelo teste de t)

Na segunda avaliação, cujo comportamento é apresentado na Figura 8, indica que o pH e o teor de K apresentaram efeito significativo da aplicação de doses de biocarvão, de modo que com o aumento da dose, houve uma redução da acidez ativa e aumento da disponibilidade de K no solo em subsuperfície. Deste modo, mesmo que a aplicação de biocarvão tenha sido feita em superfície, com incorporação máxima do material a 5 cm de profundidade, ocorreu efeito significativo de pH e K, mostrando que o biocarvão tem capacidade de reduzir a acidez ativa em subsuperfície, bem como fornecer K para as raízes que se encontram nessa profundidade. Levando-se em consideração o recomendado por Prezotti et al.. (2007), o pH saiu de 4,7 (acidez alta) na dose zero, para 5,4 (acidez média) na dose 12 t ha-1.

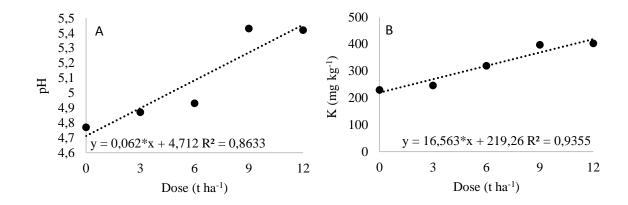


Figura 8 - Médias dos valores de pH (A) e K (B) na 2ª avaliação na profundidade de 10-20 cm em função das doses de biocarvão (*significativo a 5% pelo teste de t)

4.3 EMISSÃO DE CO₂ DO SOLO

A emissão de CO₂ do solo é oriunda de processos biológicos e físicos que alteram a produção e o transporte de CO₂ que sai do solo e vai para a atmosfera. A produção de CO₂ está ligada à ação dos microrganismos que decompõem a matéria orgânica do solo e à respiração das raízes das plantas. Já o transporte está relacionado com a estruturação física do solo, sobretudo a porosidade que condiciona aeração e permite o fluxo de gases no solo (SÁ et al.., 2001).

A Figura 9 apresenta os dados de CO₂ acumulado nos 120 dias, emitido pelos tratamentos com emprego de biocarvão produzidos a 350 °C foi maior se comparado com o produzido a 600 °C pois materiais carbonizados sob menor temperatura tornam-se mais lábeis quando aplicados no solo. Com a elevação da temperatura de pirólise, ocorre uma perda de H dos grupos funcionais, formando um biocarvão com natureza aromática, o que aumenta a recalcitrância do material, reduzindo a mineralização e emissão de C (ZHAO et al.., 2013).

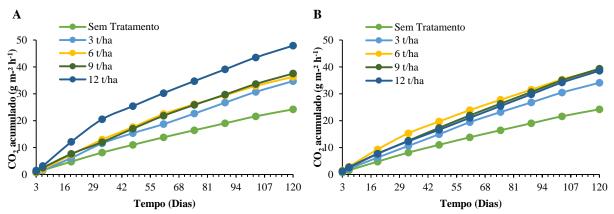


Figura 9 - Emissão de CO₂ acumulado em tratamentos com aplicação de biocarvão produzidos a 350 °C (A) e 600 °C (B)

Os valores de emissão de CO₂ obtidos em campo com o analisador portátil Licor, foram ajustados segundo a Equação 1 e seus coeficientes têm os seguintes significados: "a" indica à máxima evolução de CO₂ e está associada à quantidade de carbono que mineraliza com maior facilidade; "b" é um parâmetro que indica o tempo máximo necessário para atingir a saturação e desloca a curva horizontalmente; e o "c" está relacionado a capacidade lábil do carbono da matéria orgânica (PASSOS, 2000).

A Figura 10 ilustrado como se obtém o tempo necessário para atingir metade da produção máxima de CO₂ (t½), calculado por meio dos coeficientes gerados.

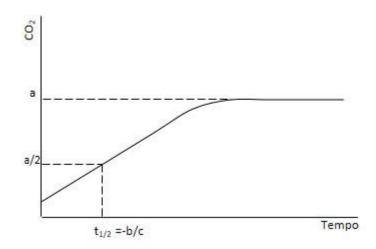


Figura 10 – Esquema gráfico da curva de evolução de CO₂, da equação exponencial (PASSOS, 2000)

Na tabela 12 são apresentados os valores dos coeficientes da equação exponencial ("a", "b" e "c"), os coeficientes de determinação (R²) e os valores de t½ para cada tratamento estudado, os quais possibilitam apontar o momento em que ocorre a inflexão da curva, o que permite inferir sobre a mineralização da matéria orgânica do solo (PASSOS, 2000).

Tabela 12 - Coeficientes da equação e tempo necessário para atingir a metade da produção máxima de CO₂ por unidade de massa de solo (t½= -b/c) em condições de campo

Dose	Temp.	A	b	c	R ²	t _{1/2}
t ha ⁻¹	°C	$g m^{-2} h^{-1}$		dias-1		dias
0		12,508	-2,036	0,044	0,9824	46,273
3	350	16,908	-2,876	0,060	0,9791	47,933
6	350	17,556	-3,500	0,068	0,9836	51,471
9	350	19,644	-2,516	0,048	0,9845	52,417
12	350	26,556	-2,012	0,036	0,9732	55,889
3	600	17,628	-2,420	0,048	0,9859	50,417
6	600	20,004	-2,612	0,052	0,9778	50,231
9	600	20,144	-2,300	0,044	0,9835	52,587
12	600	20,292	-2,468	0,044	0,9827	56,091

A aplicação de biocarvões produzidos a 350 °C apresentou t_{1/2} inferior se comparado aos biocarvões produzidos a 600 °C, dentro de cada dose. Esse resultado era esperado, uma vez que o material pirolisado sob menores temperaturas (250 a 400 °C), apresenta maior labilidade

devido a sua estrutura, que apresenta menor estabilidade química, permitindo a oxidação pelos microrganismos do solo e, consequentemente, permanece no solo por menos tempo, com menores valores de t_{1/2} (FARREAL et al.., 2013).

Os biocarvões produzidos sob elevadas temperaturas por sua vez, apresentam maior recalcitrância, devido a uma estrutura aromática, que dificulta a oxidação pelos microrganismos do solo, permanecendo assim por mais tempo no solo, e garantindo maiores valores de t_½ (FARREAL et al.., 2013). Outro fator determinante para a obtenção desses resultados é a relação C/N. O biocarvão de 350 °C tem relação C/N de 23,57. Já o biocarvão de 600 °C tem relação C/N de 31,42.

Esses resultados corroboram com Zimmerman et al.. (2011), ao afirmar que biocarvões produzidos sob baixa temperatura promovem maior liberação de CO₂ pelo solo, causando efeito *priming* positivo e biocarvões produzidos sob alta temperatura emitem menos CO₂ promovendo efeito *priming* negativo.

4.4 ESTADO NUTRICIONAL DO CAFEEIRO

4.4.1 Interação entre temperatura de pirólise e doses de biocarvão

A análise de variância apresentada na Tabela 13 mostrou que nenhuma variável apresentou efeito de interação significativa entre os fatores estudados ao nível de 10 %, pelo teste F.

Tabela 13 - Significância para a interação dos fatores temperatura de pirólise e doses de biocarvão pelo teste de F para as variáveis químicas foliares em três avaliações

Variável -	1ª Avaliação	2ª Avaliação	3ª Avaliação
v arraver		P Interação	
Ca	0,888	0,994	0,431
Mg	0,911	0,595	0,969
K	0,248	0,961	0,986
P	0,867	0,310	0,727
Fe	0,778	0,731	0,310
Zn	0,817	0,577	0,710
Cu	0,237	0,667	0,902
N	0,510	0,690	0,569

P Interação= significância da interação

4.4.2 Efeito das temperaturas de pirólise

De acordo com Prezotti et al.. (2007), a época ideal para ser realizada a amostragem de tecidos vegetais para análise química é primavera-verão. Entretanto, a primeira avaliação foi realizada em maio, no outono, e a segunda avaliação foi feita em julho, no inverno, ambas em épocas não recomendadas. Já a terceira avaliação, feita em novembro, foi realizada na estação adequada (primavera).

Tabela 14 - Médias das variáveis químicas foliares obtidas pela comparação do efeito da aplicação de biocarvões produzidos em duas temperaturas de pirólise (350 e 600 °C), em três avaliações

Vaniárial	Variável Unidade		de pirólise	D.Tomm	Foire edegrade	Toor suficients
v ariavei	Unidade	350 °C	600 °C	P Temp	Faixa adequada	Teor suficiente
			1ª Ava	aliação		
Ca	dag kg ⁻¹	0,54 a	0,56 a	0,4863	1,0-1,3	Não
Mg	dag kg ⁻¹	0,21 a	0,22 a	0,6477	0,31 - 0,45	Não
K	dag kg ⁻¹	1,45 a	1,41 a	0,3331	1,8-2,2	Não
P	dag kg ⁻¹	0,09 a	0,09 a	0,7656	0,12-0,16	Não
Fe	mg kg ⁻¹	116,79 a	110,29 a	0,4428	70 - 180	Sim
Zn	mg kg ⁻¹	18,61 b	20,29 a	0,0924	10 - 20	Sim
Cu	mg kg ⁻¹	4,16 b	5,40 a	0,0005	8 - 16	Não
N	dag kg ⁻¹	5,11 a	5,35 a	0,8348	2,9-3,2	Sim
			2ª Ava	aliação		
Ca	dag kg ⁻¹	0,83 a	0,89 a	0,4925	1,0 – 1,3	Não
Mg	dag kg ⁻¹	0,27 a	0,24 a	0,1208	0,31 - 0,45	Não
K	dag kg ⁻¹	1,26 a	1,23 a	0,7464	1,8-2,2	Não
P	dag kg ⁻¹	0,09 a	0,09 a	0,7737	0,12-0,16	Não
Fe	mg kg ⁻¹	150,69 a	145,46 a	0,6380	70 - 180	Sim
Zn	mg kg ⁻¹	18,82 a	18,74 a	0,9220	10 - 20	Sim
Cu	mg kg ⁻¹	3,25 b	3,87 a	0,0958	8 - 16	Não
N	dag kg ⁻¹	5,01 a	5,04 a	0,5597	2,9-3,2	Sim
			3ª Ava	aliação		
Ca	dag kg ⁻¹	1,20 a	1,26 a	0,6021	1,0 – 1,3	Sim
Mg	dag kg ⁻¹	0,48 a	0,50 a	0,5690	0,31 - 0,45	Sim
K	dag kg ⁻¹	1,53 a	1,52 a	0,8620	1,8-2,2	Não
P	dag kg ⁻¹	0,06 a	0,07 a	0,1176	0,12-0,16	Não
Fe	mg kg ⁻¹	101,73 b	161,11 a	0,0019	70 - 180	Sim
Zn	mg kg ⁻¹	9,21 b	10,69 a	0,0957	10 - 20	Sim
Cu	mg kg ⁻¹	6,45 a	7,03 a	0,3582	8 - 16	Não
N	dag kg ⁻¹	2,04 a	2,11 a	0,1703	2,9-3,2	Não

Médias seguidas por uma mesma letra na linha não diferem entre si a 10 % de probabilidade pelo teste de F. Faixas de teores foliares de nutrientes considerados adequados para o cafeeiro segundo Prezotti et al.. (2007). P temp= significância da temperatura

A primeira avaliação apresentou efeito de temperatura de pirólise para o teor de Cu e Zn foliar, com superioridade para o biocarvão produzido a 600 °C. Esse resultado pode ser justificado pelo maior teor de Cu e Zn obtidos no biocarvão produzido a 600°C, conforme apresentado na Tabela 5.

Na Tabela 14 são apresentadas as faixas de teores foliares dos nutrientes considerados adequados para o cafeeiro, segundo Prezotti et al.. (2007). Na terceira avaliação nutricional do cafeeiro, os macronutrientes Ca e Mg e os micronutrientes Fe e Zn apresentaram teores considerados suficientes para o desenvolvimento adequado da planta. Esses quatro nutrientes apresentaram um acréscimo de absorção se comparados ao teor apresentado na primeira avaliação, que foi realizada antes da aplicação de biocarvão na superfície do solo.

Apesar do aumento da concentração de Mg foliar não ter sido considerado estatisticamente, o teor desse nutriente foi suficiente na terceira avaliação, o que está relacionado à aplicação de biocarvão na área experimental. Como nenhum efeito de interação e nem efeito isolado de dose ou temperatura foi constatado para Ca, o aumento nos teores desse elemento pode estar relacionado à aplicação de calcário na área e ao aumento da disponibilidade destes nutrientes para o cafeeiro. Entretanto, o aumento do teor de Fe encontrado nas folhas, pode estar relacionado ao efeito da temperatura de pirólise, uma vez que o biocarvão produzido a 600°C apresentou maior teor de Fe em sua composição, conforme apresentado na Tabela 5.

O teor insuficiente de K apresentado na 3ª avaliação não era esperado, uma vez que o biocarvão forneceu K ao solo, como mostrado na Figura 2, alcançando teores disponíveis no solo considerados altos por Prezzoti et al.., (2007). Porém, segundo Faquin (2005), nem sempre os teores de um elemento no solo podem ser relacionados com o teor do mesmo no tecido foliar, devido a vários outros fatores que podem prejudicar a absorção desse nutriente, como: disponibilidade de água, interação de íons presentes na solução do solo, temperatura e sistema radicular da planta. Nesse caso, o fator preponderante foi o intenso período de estiagem, mesmo a área apresentando sistema de irrigação, o mesmo não era eficiente.

4.4.3 Efeito das doses de biocarvão

As variáveis químicas foliares estudadas não apresentaram efeito relacionado ao fator dose de aplicação de biocarvão no solo, como pode ser observado na Tabela 15.

Tabela 15 - Médias das variáveis químicas foliares obtidas pela comparação do efeito das doses de aplicação de biocarvões em três avaliações

Variável	1ª Avaliação	2ª Avaliação	3ª Avaliação
v arraver		P dose	
Ca	0,867	0,789	0,556
Mg	0,456	0,232	0,568
K	0,143	0,436	0,389
P	0,453	0,370	0,465
Fe	0,933	0,622	0,839
Zn	0,808	0,715	0,570
Cu	0,113	0,474	0,408
N	0,835	0,257	0,168

P dose= significância da dose de biocarvão

4.5 PARÂMETROS VEGETATIVOS DO CAFEEIRO

4.5.1 Interação entre temperatura de pirólise e doses de biocarvão

A Tabel 10 apresenta o efeito da interação entre fatores, o qual foi testado para as variáveis biométricas: altura de planta e diâmetro do caule, porém não apresentou efeito significativo a 10% de probabilidade pelo teste de F.

Tabela 16 - Significância para a interação dos fatores temperatura de pirólise e doses de biocarvão pelo teste de F para os parâmetros vegetativos do cafeeiro em três avaliações

Variável -	1ª Avaliação 2ª Avaliação		3ª Avaliação
v arraver –		P Interação	
Altura	0,728	0,396	0,971
Diâmetro do Caule	0,723	0,795	0,922

P Interação= significância da interação

4.5.2 Efeito das temperaturas de pirólise

O efeito simples das temperaturas de pirólise sobre as médias das parâmetros vegetativos apresentados na Tabela 17 revelam a ausência de efeito significativo.

Tabela 17 - Médias dos parâmetros vegetativos do cafeeiro obtidas pela comparação do efeito da aplicação de biocarvões produzidos em duas temperaturas de pirólise (350 e 600 °C), em três avaliações

Variável	Unidade	e Temperatura de pirólise 350 °C 600 °C		P Temp		
valiavei	Unidade			i remp		
1ª Avaliação						
Altura	cm	116,84 a	117,85 a	0,777		
Diâmetro do Caule	mm	26,29 a	24,93 a	0,252		
	2ª	Avaliação				
Altura	cm	128,99 a	131,99 a	0,372		
Diâmetro do Caule	mm	30,58 a	29,98 a	0,652		
3ª Avaliação						
Altura	cm	140,98 a	146,77 a	0,920		
Diâmetro do Caule	mm	34,30 a	35,47 a	0,182		

Médias seguidas por uma mesma letra na linha não diferem entre si a 10 % de probabilidade pelo teste de F. P temp= significância da temperatura

4.5.3 Efeito das doses de biocarvão

A Tabela 18 apresenta parâmetros vegetativos do cafeeiro, os quais não foram influenciados pelas doses aplicadas dos biocarvões no solo, nas três avaliações realizadas (Tabela 18).

Tabela 18 - Médias dos parâmetros vegetativos do cafeeiro obtidas pela comparação do efeito das doses de aplicação de biocarvões em três avaliações

Variável	1ª Avaliação 2ª Avaliação		3ª Avaliação
v arraver		P dose	
Altura	0,571	0,767	0,797
Diâmetro do Caule	0,340	0,384	0,393

P dose= significância da dose de biocarvão

A ausência de resultados significativos dos parâmetros vegetativos do cafeeiro, tanto para o efeito da interação, quanto para os efeitos isolados pode ser atribuído à variabilidade das plantas, uma vez que foram obtidas por sementes, prejudicando as variáveis que necessitam de uma alta homogeneidade da área para mostrar seus resultados.

Os resultados apresentados na literatura com aplicação de biocarvão relacionados aos experimentos de campo são escassos, principalmente para estudo feito a longo prazo e com aplicação em cova seguida de aplicação em superfície. Logo, é imprescindível que estudos mais aprofundados que visem respostas a longo prazo para a cultura do cafeeiro sejam realizados.

5 CONCLUSÕES

- O aumento da temperatura de pirólise favoreceu a redução da acidez ativa do solo, tanto em superfície como em subsuperfície, e da acidez potencial e Al na profundidade de 0-10 cm.
- A aplicação de doses crescentes de biocarvão promoveu melhoria da fertilidade do solo, pelo aumento dos valores de pH, Mg, K, Cu, carbono orgânico total e carbono da biomassa microbiana na profundidade de 0-10 cm e aumento dos valores de pH, Mg, K, carbono orgânico total e carbono da biomassa microbiana na profundidade de 10-20 cm.
- Dentre os nutrientes foliares, apenas Zn, Cu e Fe tiveram suas concentrações alteradas pela temperatura de pirólise, com superioridade para os biocarvões produzidos a 600 °C.
- Não houve efeito de doses de biocarvão sobre os teores dos nutrientes foliares no cafeeiro.
- A aplicação das doses dos biocarvões produzidos a 350 °C apresentaram maior emissão de CO₂, sendo portanto mais lábeis, que os biocarvões produzidos a 600 °C, mais recalcitrantes.
- Os parâmetros vegetativos do cafeeiro não foram influenciados pela aplicação de biocarvão no solo.

REFERÊNCIAS

AGEGNEHU, G.; BASS, A. M.; NELSON, P. N.; BIRD, M. I. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. **Science of the Total Environment**, v. 543, p. 295-306, 2016.

AL-WABEL, M. I.; AL-OMRAN, A.; EL-NAGGAR, A. H.; NADEEM, M.; USMAN, A. R. A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. **Bioresource Technology**, v. 131, p. 374-379, 2013.

ATKINSON, C. J.; FITZGERALD, J. D.; HIPPS, N. A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. **Plant Soil**, v. 337, p. 1–18, 2010.

BARBOSA, C. F. Caracterização de biocarvões de palha de café e casca de eucalipto produzidos a 350 e 600 °C. 2016. 76 f. Dissertação (Mestrado em Produção Vegetal) - Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Espírito Santo, Alegre, 2016.

BASU, P. **Biomass Gasification, Pyrolysis and Torrefaction**: Practical Design and Theory Pyrolysis. 2.ed. London: Elsevier Inc. 2013.

BENITES, V.M.; TEIXEIRA, W.G.; REZENDE, M.E.; PIMENTA, A.S. Utilização de carvão e subprodutos da carbonização vegetal na agricultura: aprendendo com as Terras Pretas de Índio. In: TEIXEIRA, W.G.; KERN, D.C.; MADARI, B.E.; LIMA, H.N.; WOODS, W.I. (Eds.). As Terras Pretas de Índio da Amazônia: sua caracterização e uso deste conhecimento na criação de novas áreas. Manaus: Embrapa Amazônia Ocidental, p.285-296, 2009.

BRAGANÇA, S. M. Crescimento e acúmulo de nutrientes pelo cafeeiro Conilon (Coffea canephora Pierre). 2005. 99 f. Tese (Doutorado em Fitotecnia) - Universidade Federal de Viçosa, Viçosa, 2005.

BRAGANÇA, S. M.; MARTINEZ, H. H. P.; LEITE, H. G.; SANTOS, L. P.; SEDIYAMA, C. S.; VENEGAS, V. H. A.; LANI, J. A. Acúmulo de B, Cu, Fe, Mn e Zn pelo cafeeiro conilon. **Revista Ceres**, v. 54, p. 398-404, 2007.

BRAGANÇA, S. M.; MARTINEZ, H. H. P.; LEITE, H. G.; SANTOS, L. P.; SEDIYAMA, C. S.; VENEGAS, V. H. A.; LANI, J. A. Accumulation of macronutrients for the Conilon Coffee Tree. **Journal of Plant Nutrition**, v. 31, p. 103-120, 2008.

BRASIL. Instrução Normativa n. 17, de 21 de maio de 2007. Métodos para análise de substratos para plantas e condicionadores de solos. **Diário Oficial [da] República Federativa do Brasil**, Brasília, 21 mai. 2007. Disponível em: . Acesso em: 05 mar. 2019.

BRASIL. Instrução Normativa nº 35, de 4 de julho de 2006. Normas sobre especificações e garantias, tolerâncias, registro, embalagem e rotulagem dos corretivos de acidez, de alcalinidade, de sodicidade e dos condicionadores de solo, destinados à agricultura. **Diário Oficial [da] República Federativa do Brasil**, Secretaria de Defesa Agropecuária, Brasília, DF, 12 jul. 2006.

BREWER, C. E.; UNGER, R.; SCHMIDIT-ROHR, K.; BROWN; R. C. Criteria to Select Biochars for Field Studies based on Biochar Chemical Properties. **Bio Energy Research**, v. 4, p. 312–323, 2011.

CONAB. COMPANHIA NACIONAL DO ABASTECIMENTO. Acompanhamento da safra brasileira de café – 1º levantamento – Janeiro/2019. Disponível em: https://www.conab.gov.br/info-agro/safras/cafe >. Acesso em: 20 mar. 2019.

CONZ, R. F. Caracterização de matérias-primas e biochars para aplicação na agricultura. 2015. 132 f. Dissertação (Mestrado em Ciências) - Programa de Pós-Graduação em Ciências do Solo, Universidade de São Paulo, Piracicaba, 2015.

DAI, Z.; ZHANG, X.; TANG, C.; MUHAMMAD, N.; WU, J.; BROOKES, P. C.; XU, J. Potential role of biochars in decreasing soil acidification - A critical review. **Science of the Total Environment**, v. 581-582. p. 601-611, 2017.

DAS, O.; SARMAH, A. K.; BHATTACHARYYA, D. Biocomposites from waste derived biochars: Mechanical, thermal, chemical, and morphological properties. **Waste Management**, v. 49, p. 560-570, 2016.

DEAL, C.; BREWER, C. E.; BROWN, R. C.; OKURE, M. A. E.; AMODING, A. Comparison of kiln-derived and gasifier-derived biochars as soil amendment in the humid tropics. **Biomass Bioenergy**, v. 37, p.161-168, 2012.

DEENIK, J. L.; DIARRA, A.; UEHARA, G.; CAMPBELL, S.; SUMIYOSHI, Y.; ANTAL, M. J. Charcoal ash and volatile matter effects on soil properties and plant growth in an acid Ultisol. **Soil Science**, v. 176, p. 336-345, 2011.

EL-NAGGAR, A. H.; USMAN, A. R. A.; AL-OMRAN, A; OK, Y. S.; AHMAD, M.; AL WABEL, M. I. Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar. **Chemosphere**, v. 138, p. 67-73, 2015.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. **Manual de métodos de análises de solo**. 3.ed. Brasília-DF, 2017. 573p.

ENDERS, A.; HANLEY, K.; WHITMAN, T.; JOSEPH, S.; LEHMANN, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. **Bioresource Technology**, v. 114, p. 644-653, 2012.

FAQUIN, V. **Nutrição mineral de plantas**, Universidade Federal de Lavras, Lavras: UFLA/FAEPE, 2005. 183p.

FARRELL, M.; KUHN, T.K.; MACDONALD, L.M.; MADDERN, T. M.; MURPHY, D.V.; HALL, P.A.; SINGH, B. P.; BAUMANN, K.; KRULL, E. S.; BALDOCK, J. A. Microbial utilisation of biochar-derived carbon. **Science of The Total Environment**, v.465, p.288-297, 2013.

FERRÃO, Romário Gava (Ed.). **Café conilon**. 2.ed. atual e ampl. Vitória, ES: INCAPER, 2017. 784 p. ISBN 9788589274128 (enc.).

FIDEL, R. B.; LAIRD, D. A.; THOMPSON, M. L.; LAWRINENKO, M. Characterization and quantification of biochar alkalinity. **Chemosphere**, v. 167, p. 367-373, 2017.

FONSECA, A. A. da. **Biochars no desenvolvimento inicial e na nutrição mineral de Brachiaria brizantha.** 2018. 72 f. Dissertação (Mestrado em Produção Vegetal) - Universidade Federal do Espírito Santo, Centro de Ciências Agrárias e Engenharias, Alegre, 2018.

GRAY, M.; JOHNSON, M. G.; DRAGILA, M. I.; KLEBER, M. Water uptake in biochars: The roles of porosity and hydrophobicity. **Biomass Bioenergy**, v. 61, p. 196-205, 2014.

IDAF – Instituto de Defesa Agropecuária e Florestal do Espírito Santo. Portaria nº 23-R, de 2 de dezembro de 2003. Disponível em: http://www.idaf.es.gov.br/download/legislacao/drnre/portaria%20n%c2%ba%2023r%20de%202%20de%20de%20de%202003.pdf Acesso em: 15 de ago. de 2018.

JOSEPH, S.; PEACOCKE, C. LEHMANN, J. MUNROE, P. **Developing biochar classification and test methods.** In: LEHMANN, J.; JOSEPH, S. (Ed.) Biochar for environmental management science and technology. New York: Earthscan, 2009. p. 107-126.

LEHMANN, J.; JOSEPH, S. **Biochar for environmental management: An introduction**. In: LEHMANN, J.; SOSEPH, S. (Eds). Biochar for environmental management: Science and Technology. 1.ed. Londres: Earthscan, p.4-18, 2009.

LEHMANN, J.; RILLIG, M.; THIES, J.; MASIELLO, C.; HOCKADAY, W.C.; CROWLEY, D. Biochar effects on soil biota: a review. **Soil Biology & Biochemistry**, v. 43, n. 9, p. 1812-1836, 2011.

LIM, T. J.; SPOKAS, K. A.; FEYEREISEN, G.; NOVAK, J. M. Predicting the impact of biochar additions on soil hydraulic properties. **Chemosphere**, v. 142, p. 136-144, 2016.

LIMA, I. da S. Parâmetros físico-hídricos do solo, lixiviação de nutrientes e desenvolvimento do girassol (helianthus annuus l) em argissolo amarelo tratado com biocarvão. 2016. 79f. Dissertação (Mestrado em Recursos Hídricos) — Universidade Federal de Sergipe, Sergipe, 2016.

MACHADO, P. L. O. de A. Carbono do solo e a mitigação da mudança climática global. **Química Nova**, v. 28, p. 329-334, 2005.

MANGRICH, A. S; MAIA, C. M. B. F; NOVOTNY, E. H. Biocarvão - As terras pretas de índios e o sequestro de carbono. **Ciência Hoje**, v. 47, p. 48–52. 2011.

MARSCHNER, H. **Mineral nutrition of higher plants**. 3.ed San Diego: Academic Press, 2012. 651p.

MÉNDEZ, A.; TERRADILLOS, M.; GASCÓ, G. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. **Journal of Analytical and Applied Pyrolysis**, v. 102, p. 124-130, 2013.

NOVAK, J. M.; BUSSCHER, W. J.; LAIRD, D. L.; AHMEDNA, M.; WATTS, D. W.; NIANDOU, M. A. S. Impact of biochar amendment on fertility of a southeastern coastal plain soil. **Soil Science**, v. 174, p. 105-112, 2009.

NOVOTNY, E. H.; HAYES, M. H. B.; MADARI, B. E.; BONAGAMBA, T. J.; DE AZEVEDO, E. R.; DE SOUZA, A. A.; SONG, G.; NOGUEIRA, C. M.; MANGRICH, A. S. Lessons from the Terra Preta de Índios of the Amazon Region for the utilization of charcoal for soil amendment. **Journal of Brazilian Chemical Society**, v. 20, p. 1003-1010, 2009.

NOVOTNY, E. H.; MAIA, C. M. B. F.; CARVALHO, M. T. M.; MADARI, B. E. Biochar: carbono pirogênico para uso agrícola - uma revisão crítica. **Revista Brasileira de Ciência do Solo**, v. 39, n. 2, p. 321-344, 2015.

PASSOS, R. R. Formas de carbono orgânico e nitrogênio em agregados de um Latossolo Vermelho sob duas coberturas vegetais. Viçosa: UFV, 2000. 86f. Tese (Doutorado em Solos e Nutrição de Plantas) – Universidade Federal de Viçosa, Viçosa, 2000.

PETTER, F. A.; MADARI, B. E.; CARNEIRO, M. A. C.; MARIMON JUNIOR, B. H.; CARVALHO, M. T. M.; PACHECO, L. P. Soil fertility and agronomic response of rice to biochar application in the Brazilian savannah. **Pesquisa Agropecuária Brasileira**, Brasília, v. 47, n. 3, p. 699-706, 2012.

PREZOTTI, L. C.; GOMES, J. A.; DADALTO, G. G.; OLIVEIRA, J. A. (Eds.). **Manual de recomendação de calagem e adubação para o Estado do Espírito Santo** – 5ª Aproximação. Vitória, ES. SEEA/INAPER/CEDAGRO, 2007. 305 p.

RAJKOVICH, S.; ENDERS, A.; HANLEY, K.; HYLAND, C.; ZIMMERMAN, A.R.; LEHMANN, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. **Biology and Fertility of Soils**, v. 48, p. 271-284, 2011.

SÁ, J. C. M.; CERRI, C. C.; DICK, W. A.; LAL, R.; VENZKE FILHO, S. P.; PICCOLO, M. C.; FEIGL, B. J. Organic mater dynamics and carbon sequestration rates for a tillage chronosequence in a Brazilian Oxisol. **Soil Science Society of America**, v. 65, p. 1486-1499, 2001.

SANTINATO, R.; TICLE, R.; TAVARES, T. O.; SANTINATO, F. Adubação orgânica na formação e produção do cafeeiro cultivado em solo de cerrado latossolo vermelho distroférrico com doses crescentes de palha de café associadas à adubação mineral reduzida proporcionalmente aos nutrientes NPKS contidos na palha. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 38., 2012, Caxambu. **Anais**... Brasília: Embrapa Café, 2012, 2p.

SKJEMSTAD, J. O.; CLARKE, P.; TAYLOR, J. A.; OADES, J. M.; MCCLURE, S. G. The chemistry and nature of protected carbon in soil. **Australian Journal of Soil Research**, v. 34, p. 251-271. 1996.

SOHI, S. P.; KRULL, E.; LOPEZ-CAPEL, E.; BOL, R. A review of biochar and its use and function in soil. **Advances in Agronomy**, v. 105, p. 47-82, 2010.

STEWART, C. E.; ZHENG J.; BOTTE, J.; COTRUFO, M. F. Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. **Global Change Biology Bioenergy**, v. 5, n. 2, p. 153–164, 2013.

TAG, A. T.; TAGHIZADEH-TOOSI, A.; CLOUGH, T. J.; SHERLOCK, R. R.; CONDRON, L. M. Effects of Feedstock Type and Pyrolysis Temperature on Potential Applications of Biochar. **Journal of Analytical and Applied Pyrolysis**, v. 120, p. 200-206, 2016.

TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 4. ed Porto Alegre: Artmed. 2009. 719 p.

TAIZ, L.; ZEIGER, E. Fisiologia Vegetal. 5. ed. Porto Alegre: Artmed, 2013, 918p.

TORRES, J. L. R.; PEREIRA, M. G.; ANDRIOLI, I.; POLIDORO, J. C.; FABIAN, A. J. Decomposição e liberação de nitrogênio de resíduos culturais de plantas de cobertura em um solo de cerrado. **Revista Brasileira de Ciência do Solo**, v. 29, p. 609-618, 2005.

YUAN, J. H.; XU, R. K.; ZHANG, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. **Bioresource Technology**, v. 102, n. 3, p. 3488–3497, 2011.

ZHAO, L.; CAO, X.; MASEK, O.; ZIMMERMAN, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. **Journal of Hazardous Materials**, v. 256-257, p. 1-9, 2013.

ZIMMERMAN, A. R.; GAO, B.; AHN, M. Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. **Soil Biology and Biochemistry**, v. 43, p. 1169-1179, 2011.

ANEXOS

Tabela 19 - Quadrado médio dos fatores estudados na análise de variância e significância para
a interação dos fatores temperatura de pirólise e doses de biocarvão (P Interação) pelo teste de
F no solo com profundidade de 0-10 cm na 1ª avaliação
Tabela 20 - Quadrado médio dos fatores estudados na análise de variância e significância para
a interação dos fatores temperatura de pirólise e doses de biocarvão (P Interação) pelo teste de
F no solo com profundidade de 0-10 cm na 2ª avaliação
Tabela 21 - Quadrado médio dos fatores estudados na análise de variância e significância para
a interação dos fatores temperatura de pirólise e doses de biocarvão (P Interação) pelo teste de
F no solo com profundidade de 10-20 cm na 1ª avaliação
Tabela 22 - Quadrado médio dos fatores estudados na análise de variância e significância para
a interação dos fatores temperatura de pirólise e doses de biocarvão (P Interação) pelo teste de
F no solo com profundidade de 10-20 cm na 2ª avaliação
Tabela 23 - Quadrado médio dos fatores estudados na análise de variância e significância para
a interação dos fatores temperatura de pirólise e doses de biocarvão (P Interação) pelo teste de
F no solo em três avaliações foliares
Tabela 24 - Quadrado médio dos fatores estudados na análise de variância e significância para
a interação dos fatores temperatura de pirólise e doses de biocarvão (P Interação) pelo teste de
F no solo em três avaliações de parâmetros vegetativos
Tabela 25 – Médias das variáveis obtidas na 1ª avaliação na profundidade de 0-10 cm e seus
respectivos coeficientes de variação (CV)
Tabela 26 – Médias das variáveis obtidas na 1ª avaliação na profundidade de 10-20 cm e seus
respectivos coeficientes de variação (CV)
Tabela 27 – Médias das variáveis obtidas na 2ª avaliação na profundidade de 0-10 cm e seus
respectivos coeficientes de variação (CV)
Tabela 28 – Médias das variáveis obtidas na 2ª avaliação na profundidade de 10-20 cm e seus
respectivos coeficientes de variação (CV)
Tabela 29 - Médias das variáveis obtidas na 1ª avaliação foliar e seus respectivos coeficientes
de variação (CV)

Tabela 30 - Médias das variáveis obtidas na 2ª avaliação foliar e seus	respectivos coeficientes
de variação (CV)	63
Tabela 31 - Médias das variáveis obtidas na 3ª avaliação foliar e seus	respectivos coeficientes
de variação (CV)	64
Tabela 32 - Médias das variáveis obtidas nas três avaliações dos parân	netros vegetativos e seus
respectivos coeficientes de variação (CV)	64

Tabela 19 - Quadrado médio dos fatores estudados na análise de variância e significância para a interação dos fatores temperatura de pirólise e doses de biocarvão (P Interação) pelo teste de F no solo com profundidade de 0-10 cm na 1ª avaliação

-			-		
Variável		1ª Av	aliação 0-10	cm	
variavei	Temperatura	Dose	Interação	Resíduo	P Interação
pН	0,043	0,013	0,060	0,049	0,344
Ca	0,018	2,080	0,491	1,263	0,763
Mg	0,045	0,002	0,011	0,006	0,181
Na	1,042	0,486	0,486	2,137	0,876
K	4565	2321	1349	3914	0,793
P	10968	34160	6415	18078	0,786
Fe	2,542	22,869	77,738	158,546	0,695
Zn	203,420	259,070	121,240	283,030	0,736
Cu	0,069	3,081	1,047	0,918	0,367
H+Al	0,626	0,012	0,179	0,425	0,741
Al	0,299	0,055	0,055	0,190	0,831
SB	0,189	1,797	0,338	1,148	0,829
CTC total	1,728	1,710	1,036	1,393	0,543
V	0,272	32,325	4,758	28,983	0,919
Ct	1,662	13,949	3,887	2,100	0,184
Nt	0,001	0,017	0,017	0,020	0,489
CBM	45,100	8286,700	1148,700	9242,600	0,944
NBM	4,427	8,303	0,325	6,994	0,986
Csol	507,400	1328,100	670,700	1161,400	0,639

Tabela 20 - Quadrado médio dos fatores estudados na análise de variância e significância para a interação dos fatores temperatura de pirólise e doses de biocarvão (P Interação) pelo teste de F no solo com profundidade de 0-10 cm na 2ª avaliação

-	28 A 1' ~ 0.10					
Variável		2" Av	aliação 0-10	cm		
	Temperatura	Dose	Interação	Resíduo	P Interação	
pН	0,360	0,532	0,015	0,041	0,780	
Ca	0,435	1,337	0,047	2,056	0,995	
Mg	0,076	0,016	0,003	0,021	0,926	
Na	0,667	20,167	4,222	3,887	0,387	
K	2147	82938	9748	3587	0,084	
P	5832	20413	3389	37394	0,964	
Fe	205002	64569	172702	288740	0,627	
Zn	27,700	645,340	451,130	367,810	0,337	
Cu	0,089	6,550	3,229	3,348	0,437	
H+Al	3,432	2,984	0,165	0,311	0,669	
Al	0,510	0,538	0,066	0,082	0,511	
SB	0,256	1,140	0,138	2,281	0,980	
CTC total	1,812	5,495	0,179	2,447	0,973	
v	94,104	96,096	9,932	41,842	0,869	
Ct	0,321	32,142	2,858	5,012	0,644	
Nt	0,041	0,011	0,008	0,014	0,650	
CBM	138665	25511	27221	39852	0,577	
NBM	41,449	29,901	7,295	65,399	0,952	
Csol	2453,900	1696,500	99,000	3301,400	0,993	

Tabela 21 - Quadrado médio dos fatores estudados na análise de variância e significância para a interação dos fatores temperatura de pirólise e doses de biocarvão (P Interação) pelo teste de F no solo com profundidade de 10-20 cm na 1ª avaliação

				_	
Variável		1ª Av	aliação 10-20) cm	
v arra v er	Temperatura	Dose	Interação	Resíduo	P Interação
pН	0,0003	0,021	0,009	0,013	0,581
Ca	0,367	0,134	0,935	0,439	0,142
Mg	0,014	0,006	0,005	0,004	0,330
Na	0,375	1,708	0,152	1,261	0,946
K	8626,000	8424,500	940,200	5775,300	0,919
P	69409,000	16191,000	5955,000	24141,000	0,862
Fe	0,459	62,266	43,175	100,339	0,734
Zn	289,290	339,620	333,760	155,680	0,140
Cu	0,980	9,251	5,064	4,299	0,353
H+Al	0,653	0,243	0,081	0,434	0,902
Al	0,132	0,022	0,022	0,070	0,813
SB	0,679	0,165	0,743	0,501	0,262
CTC total	2,720	0,296	1,264	1,379	0,458
v	0,369	14,496	0,840	8,241	0,957
Ct	0,192	50,506	4,730	4,060	0,358
Nt	0,254	0,191	0,202	0,151	0,301
CBM	27627,300	14987,300	31265,100	8027,900	0,326
NBM	6,435	2,537	1,989	1,194	0,219
Csol	3728,200	1143,400	664,100	2408,000	0,841

Tabela 22 - Quadrado médio dos fatores estudados na análise de variância e significância para a interação dos fatores temperatura de pirólise e doses de biocarvão (P Interação) pelo teste de F no solo com profundidade de 10-20 cm na 2ª avaliação

Variável		2ª Av	aliação 10-20	0 cm	
v arraver	Temperatura	Dose	Interação	Resíduo	P Interação
pН	1,122	0,557	0,321	0,104	0,062
Ca	4,091	1,925	0,4481	2,448	0,906
Mg	0,01	0,006	0,010	0,020	0,687
Na	0,666	47778,000	65556,000	34702,000	0,178
K	3978	32848	3614	4965	0,552
P	5832	20413	3389	37394	0,963
Fe	111	215	153	377	0,751
Zn	19,030	281,860	1768,580	458,870	0,033
Cu	6,548	8,979	9,682	8,985	0,390
H+Al	2,400	1,334	0,909	1,086	0,495
Al	0,001	0,250	0,028	0,124	0,877
SB	3,920	1,279	0,212	2,864	0,973
CTC total	12,456	4,125	1,859	4,286	0,732
v	0,095	22,022	30,782	76,790	0,754
Ct	8,785	7,466	0,841	9,426	0,964
Nt	0,027	0,038	0,004	0,037	0,960
CBM	94509	53692	42123	50262	0,495
NBM	15,700	60,150	68,970	74,240	0,453
Csol	156,400	7863,700	3641,600	5935,700	0,617

Tabela 23 - Quadrado médio dos fatores estudados na análise de variância e significância para a interação dos fatores temperatura de pirólise e doses de biocarvão (P Interação) pelo teste de F no solo em três avaliações foliares

Vaniána!			1ª Avaliação		
Variável	Temperatura	Dose	Interação	Resíduo	P Interação
Ca	0,0028	0,0013	0,0011	0,0054	0,8879
Mg	0,0002	0,0008	0,0002	0,0009	0,9111
K	0,0079	0,0166	0,0121	0,0078	0,2481
P	0,0587	0,5900	0,1528	0,6355	0,8666
Fe	253,8600	57,9600	149,1600	406,8900	0,7782
Zn	16,9176	1,6821	1,6135	5,1833	0,8169
Cu	9,1823	1,0550	3,5781	0,4432	0,2370
N	0,3332	0,0074	0,0208	0,0257	0,5105
		,	2ª Avaliação		
Ca	0,0245	0,0173	0,0013	0,0493	0,9940
Mg	0,0035	0,0021	0,0008	0,0013	0,5955
K	0,0059	0,0520	0,0052	0,0538	0,9610
P	0,0000	0,0004	0,0002	0,0001	0,3099
Fe	164,0700	430,0500	308,8100	709,4400	0,7312
Zn	0,0380	11,1748	2,6109	3,8213	0,5769
Cu	2,2509	5,1346	0,3758	0,7059	0,6674
N	0,0074	0,0310	0,0102	0,0206	0,6905
		,	3ª Avaliação		
Ca	0,0222	0,0561	0,0762	0,0780	0,4312
Mg	0,0037	0,0076	0,0009	0,0108	0,9693
K	0,0014	0,0492	0,0021	0,0455	0,9858
P	0,0007	0,0002	0,0001	0,0003	0,7269
Fe	21151,1000	410,2000	1926,5000	1468,4000	0,3098
Zn	13,0169	2,8391	1,9044	4,0794	0,7101
Cu	1,9866	2,2730	0,4153	2,2011	0,9023
N	0,0327	0,0305	0,0109	0,0157	0,5689

Tabela 24 - Quadrado médio dos fatores estudados na análise de variância e significância para a interação dos fatores temperatura de pirólise e doses de biocarvão (P Interação) pelo teste de F no solo em três avaliações de parâmetros vegetativos

	1ª Avaliação							
Variável	Temperatura	Dose	Interação	Resíduo	P Interação			
Altura	6,170	51,450	32,650	74,240	0,728			
D. Caule	11,060	9,452	3,481	7,769	0,722			
	2ª Avaliação							
Altura	54,126	24,399	67,697	63,686	0,396			
D. Caule	2,128	10,983	3,440	10,029	0,794			
		,	3ª Avaliação					
Altura	200,670	20,861	4,746	61,397	0,971			
D. Caule	8,173	4,450	0,664	4,151	0,921			

Tabela 25 – Médias das variáveis obtidas na 1ª avaliação na profundidade de 0-10 cm e seus respectivos coeficientes de variação (CV)

		1ª Avaliaçã	ío 0-10 cm			
Dose		3	6	9	12	CV (%)
рН	350°C	5,617	5,673	5,613	5,390	4,02
p11	600°C	5,380	5,447	5,547	5,580	4,02
Ca (cmol _c dm ⁻³)	350°C	4,760	4,914	4,097	4,213	25,14
Ca (cmoic din)	600°C	5,260	4,904	4,241	3,363	23,14
Mg (cmol _c dm ⁻³)	350°C	0,733	0,745	0,744	0,688	11,28
wig (chioic diff)	600°C	0,609	0,605	0,619	0,730	11,20
Na (mg dm ⁻³)	350°C	7,333	7,667	7,667	8,000	19,6
Na (Ilig ulli °)	600°C	7,000	8,000	7,000	7,000	19,0
K (mg dm ⁻³)	350°C	372,000	310,000	326,667	374,000	18,85
K (mg um)	600°C	321,333	325,000	298,333	327,667	10,03
P (mg dm ⁻³)	350°C	116,236	148,386	136,021	112,279	24,64
r (mg um -)	600°C	126,870	138,246	121,751	82,602	24,04
Fe (mg dm ⁻³)	350°C	99,389	96,724	99,395	87,836	13,09
Te (mg dm²)	600°C	94,719	95,614	96,552	99,063	13,09
Zn (mg dm ⁻³)	350°C	42,614	55,150	52,708	68,193	29,22
Zii (ilig tiiii -)	600°C	55,876	58,810	65,072	62,198	29,22
Cu (ma dm-3)	350°C	3,862	3,685	5,019	5,679	20,77
Cu (mg dm ⁻³)	600°C	4,253	4,206	5,673	4,544	20,77
II - A1 (ama1 dm-3)	350°C	4,785	4,895	5,033	5,280	13,47
H+Al (cmol _c dm ⁻³)	600°C	4,785	4,785	4,620	4,510	
A1 (amal dm-3)	350°C	0,893	0,744	0,595	0,744	68,89
Al (cmol _c dm ⁻³)	600°C	0,595	0,595	0,595	0,298	08,89
CD (amal dur-3)	350°C	6,479	6,487	5,712	5,895	17.60
SB (cmol _c dm ⁻³)	600°C	6,723	6,377	5,722	5,042	17,69
CTC (amal. dm ⁻³)	350°C	11,264	11,382	10,745	11,175	10.05
CTC (cmol _c dm ⁻³)	600°C	11,508	11,162	10,275	9,474	10,85
V (0/)	350°C	57,445	57,031	53,177	52,884	0.75
V (%)	600°C	57,452	56,312	55,953	51,670	9,75
Ct (~ 1-~-1)	350°C	19,704	21,893	20,757	21,978	6.06
$Ct (g kg^{-1})$	600°C	18,357	19,746	20,588	23,535	6,96
NI4 (~ 11)	350°C	1,727	1,703	1,750	1,727	0.10
$Nt (g kg^{-1})$	600°C	1,633	1,680	1,680	1,867	8,12
CDM (1 -1)	350°C	162,639	136,437	194,998	239,972	50.50
CBM (mg kg ⁻¹)	600°C	140,659	174,592	184,602	223,223	52,78
NDM (1 1)	350°C	4,478	4,731	2,336	4,574	50.2
NBM (mg kg ⁻¹)		5,662	4,981	3,080	5,833	59,3
1,21,1 (11,81,8)	000°C	2,002				
Csol (mg kg ⁻¹)	600°C 350°C	163,396	153,590	122,209	157,663	23,57

Tabela 26 – Médias das variáveis obtidas na 1ª avaliação na profundidade de 10-20 cm e seus respectivos coeficientes de variação (CV)

		1ª Avaliaçã	o 10-20 cm			
Dose		3	6	9	12	CV (%)
рН	350 °C	5,300	5,350	5,337	5,367	2,14
pm	600 °C	5,220	5,323	5,433	5,403	2,14
Ca (cmol _c dm ⁻³)	350 °C	4,024	4,209	4,417	4,644	15,78
Ca (Cilioic ulli ')	600 °C	4,452	4,497	4,010	3,346	13,76
Mg (cmol _c dm ⁻³)	350 °C	0,664	0,645	0,676	0,628	10,12
wig (chioic din ')	600 °C	0,666	0,531	0,592	0,625	10,12
No (ma dm-3)	350 °C	6,667	7,000	7,667	8,000	15,06
Na (mg dm ⁻³)	600 °C	7,333	7,000	8,000	8,000	13,00
K (mg dm ⁻³)	350 °C	323,333	355,333	268,000	304,333	25,87
K (ing uiii*)	600 °C	260,000	316,333	222,333	300,667	25,67
P (mg dm ⁻³)	350 °C	104,365	108,569	140,719	137,999	28,91
r (mg um)	600 °C	139,236	152,838	163,719	145,171	20,91
Fo (ma dm ⁻³)	350 °C	85,948	87,180	97,815	89,570	11 1
Fe (mg dm ⁻³)	600 °C	89,484	87,813	90,407	93,914	11,1
7n (ma dm-3)	350 °C	81,708	103,514	100,621	91,410	12.76
Zn (mg dm ⁻³)	600 °C	94,384	88,979	110,469	111,195	12,76
Cu (ma dm-3)	350 °C	5,807	6,779	7,085	8,940	29,83
Cu (mg dm ⁻³)	600 °C	6,726	4,351	8,452	7,466	
II + A1 (am a1 dm-3)	350 °C	5,610	5,335	5,390	5,720	12,32
H+Al (cmol _c dm ⁻³)	600 °C	5,555	5,115	4,895	5,170	
A1 (amal dm-3)	350 °C	0,893	0,893	0,893	0,893	22.22
Al (cmol _c dm ⁻³)	600 °C	0,893	0,744	0,744	0,595	32,32
CD (amal dm-3)	350 °C	5,546	5,796	5,814	6,087	12.55
SB (cmol _c dm ⁻³)	600 °C	5,816	5,870	5,435	4,776	12,55
CTC (amol dm-3)	350 °C	11,156	11,131	11,204	11,807	10.60
CTC (cmol _c dm ⁻³)	600 °C	11,371	10,985	10,302	9,946	10,69
VI (0/)	350 °C	50,240	52,011	51,801	49,116	5.64
V (%)	600 °C	51,078	52,955	51,502	48,624	5,64
Ct (- 11)	350 °C	18,104	20,630	20,714	23,409	0.77
$Ct (g kg^{-1})$	600 °C	17,009	18,694	20,883	25,556	9,77
N/4 (~ 11)	350 °C	1,680	1,680	1,843	1,890	22.20
$Nt (g kg^{-1})$	600 °C	1,610	1,657	1,633	1,913	23,29
CDM (1 -1)	350 °C	170,011	83,467	103,416	96,507	60.04
CBM (mg kg ⁻¹)	600 °C	91,876	244,432	72,917	315,603	60,84
NDM (1 1)	350 °C	4,393	4,089	4,252	4,461	20.01
NBM (mg kg ⁻¹)	600 °C	2,339	3,052	2,625	5,035	28,91
	350 °C	231,265	183,304	179,568	186,830	•
Csol (mg kg ⁻¹)	600 °C	175,607	166,602	171,498	167,552	26,85
	000 C	175,007	100,002	171,770	107,332	

Tabela 27 – Médias das variáveis obtidas na 2ª avaliação na profundidade de 0-10 cm e seus respectivos coeficientes de variação (CV)

		Oa A1:2	′- 0 10			
Dage		2ª Avaliaçã		0	12	CV (0/
Dose	250.00	5.510	5 602	9	12	CV (%
pН	350 °C	5,510	5,693	6,117	6,160	3,36
	600 °C	5,733	6,070	6,360	6,297	
Ca (cmolc dm ⁻³)	350 °C	4,248	4,338	4,016	3,148	35,21
	600 °C	4,344	4,624	4,203	3,656	
Mg (cmol _c dm ⁻³)	350 °C	0,815	0,733	0,881	0,867	19,02
	600 °C	0,711	0,663	0,702	0,771	
Na (mg dm ⁻³)	350 °C	9,667	11,000	15,000	13,333	15,88
-	600 °C	10,333	13,000	13,000	14,000	
$K (mg dm^{-3})$	350 °C	330,000	525,667	706,333	570,667	11,04
	600 °C	433,333	568,667	616,667	589,667	
$P (mg dm^{-3})$	350 °C	98,602	199,585	167,145	144,907	35,40
	600 °C	133,658	172,115	123,194	88,137	,
Fe (mg dm ⁻³)	350 °C	88,375	84,001	94,641	86,156	18,63
1 0 (mg cm)	600 °C	93,561	91,018	87,125	104,849	
Zn (mg dm ⁻³)	350 °C	15,664	57,757	33,557	30,327	54,18
Zii (iiig tiii)	600 °C	39,362	41,067	40,649	24,823	5 1,10
Cu (mg dm ⁻³)	350 °C	2,178	6,178	3,445	3,275	49,34
Cu (mg um)	600 °C	3,751	4,251	3,780	2,809	47,5
H+Al (cmol _c dm ⁻³)	350 °C	4,950	5,775	4,235	4,345	12,53
11+A1 (CHOIc unit)	600 °C	4,620	4,785	3,575	3,300	
Al (cmol _c dm ⁻³)	350 °C	0,833	0,833	0,500	0,000	72,27
Ai (cilioic dili')	600 °C	0,500	0,333	0,167	0,000	12,2
CD (amal dm-3)	350 °C	5,952	6,467	6,774	5,536	24.0
SB (cmol _c dm ⁻³)	600 °C	6,211	6,801	6,543	5,999	24,03
CTC (1 -13)	350 °C	10,902	12,242	11,009	9,881	145
CTC (cmol _c dm ⁻³)	600 °C	10,831	11,586	10,118	9,299	14,57
¥1 (0/)	350 °C	53,354	54,186	61,866	56,033	11.00
V (%)	600 °C	55,956	56,865	64,607	63,853	11,09
G: (1 1)	350 °C	19,346	22,642	23,584	22,780	10.00
$Ct (g kg^{-1})$	600 °C	18,638	21,484	24,668	24,487	10,08
NY : (1 1)	350 °C	1,595	1,630	1,667	1,605	7.00
$Nt (g kg^{-1})$	600 °C	1,456	1,518	1,565	1,626	7,38
CDM (1 1)	350 °C	270,579	436,724	355,615	187,163	
CBM (mg kg ⁻¹)	600 °C	353,538	476,208	497,160	531,268	51,38
	350 °C	17,107	18,023	16,946	14,519	
NBM (mg kg ⁻¹)	600 °C	17,383	14,291	14,703	9,701	52,74
	350 °C	217,092	225,502	203,949	182,142	
Csol (mg kg ⁻¹)	600 °C	185,775	204,377	190,783	166,849	29,16
	000 C	105,775	207,377	170,703	100,049	

Tabela 28 – Médias das variáveis obtidas na 2ª avaliação na profundidade de 10-20 cm e seus respectivos coeficientes de variação (CV)

		2ª Avaliação	o 10-20 cm			
Dose		3	6	9	12	CV (%)
pН	350 °C	4,860	4,897	4,957	5,070	6,26
P	600 °C	4,877	4,963	5,903	5,770	
Ca (cmol _c dm ⁻³)	350 °C	3,882	4,261	4,288	3,183	44,83
	600 °C	3,607	3,734	2,771	2,199	11,05
Mg (cmol _c dm ⁻³)	350 °C	0,513	0,513	0,498	0,532	28,86
wig (emoie din)	600 °C	0,476	0,397	0,558	0,425	20,00
Na (mg dm ⁻³)	350 °C	10,333	8,000	8,000	9,000	20,7
Na (mg dm ⁹)	600 °C	8,000	7,667	10,000	11,000	20,7
K (mg dm ⁻³)	350 °C	256,667	324,667	361,000	370,000	20,67
K (mg um)	600 °C	234,667	313,667	432,667	434,333	20,07
P (mg dm ⁻³)	350 °C	93,893	157,727	147,262	105,142	57,06
1 (mg um*)	600 °C	126,856	140,198	94,939	84,213	37,00
Fo (ma dm ⁻³)	350 °C	81,769	81,180	104,575	85,886	22,54
Fe (mg dm ⁻³)	600 °C	83,112	84,231	85,538	83,295	22,34
7n (ma dm-3)	350 °C	62,135	53,269	27,375	16,691	52,56
Zn (mg dm ⁻³)	600 °C	19,210	47,186	48,558	51,641	32,30
Cv (max dun-3)	350 °C	6,325	8,131	4,879	3,016	5917
Cu (mg dm ⁻³)	600 °C	2,763	5,546	4,764	5,100	
II - A1 (am a1 dm-3)	350 °C	5,775	5,885	5,830	5,225	19,43
H+Al (cmol _c dm ⁻³)	600 °C	5,500	5,885	4,070	4,730	
A1 (amal dm-3)	350 °C	0,833	0,833	0,667	0,333	52,72
Al (cmol _c dm ⁻³)	600 °C	0,833	0,833	0,500	0,500	32,72
CD (am al. dun-3)	350 °C	5,098	5,641	5,747	4,703	24.50
SB (cmol _c dm ⁻³)	600 °C	4,720	4,968	4,482	3,786	34,58
CTC (amol dm-3)	350 °C	10,873	11,526	11,577	9,928	20.10
CTC (cmol _c dm ⁻³)	600 °C	10,220	10,853	8,552	8,516	20,19
VI (0/)	350 °C	47,002	49,533	45,849	46,029	10.62
V (%)	600 °C	44,213	46,776	52,465	44,453	18,63
C((1 -1)	350 °C	18,841	20,648	20,573	20,262	15.76
$Ct (g kg^{-1})$	600 °C	16,827	18,970	20,056	19,631	15,76
NT (/ 1 -1)	350 °C	1,340	1,546	1,496	1,555	12.25
$Nt (g kg^{-1})$	600 °C	1,325	1,449	1,458	1,436	13,25
CDM (1 1)	350 °C	217,241	311,012	211,971	283,271	5 0.0.
CBM (mg kg ⁻¹)	600 °C	383,639	591,459	379,900	170,516	70,36
15 15	350 °C	15,126	17,945	14,145	13,872	
NBM (mg kg ⁻¹)	600 °C	23,344	14,322	9,337	20,554	53,58
	350 °C	193,603	160,556	175,218	174,113	
Csol (mg kg ⁻¹)	600 °C	232,167	100,930	141,295	208,676	44,45
	000 C	232,107	100,730	171,4/3	200,070	

Tabela 29 - Médias das variáveis obtidas na 1ª avaliação foliar e seus respectivos coeficientes de variação (CV)

		1ª Av	aliação			
Nutriente	Temp.			- CV (%)		
	Temp.	3	6	9	12	C V (70)
Ca (dag kg ⁻¹)	350 °C	0,51	0,57	0,54	0,55	13,30
Ca (dag kg)	600 °C	0,57	0,57	0,57	0,55	13,30
Mg (dag kg ⁻¹)	350 °C	0,21	0,22	0,20	0,20	14,45
wig (dag kg)	600 °C	0,20	0,24	0,21	0,20	14,43
K (dag kg ⁻¹)	350 °C	1,47	1,43	1,46	1,45	6,19
K (dag kg)	600 °C	1,42	1,31	1,39	1,54	0,17
P (dag kg ⁻¹)	350 °C	0,09	0,09	0,09	0,09	8,74
1 (dag kg)	600 °C	0,10	0,09	0,09	0,09	0,74
Fe (mg kg ⁻¹)	350 °C	119,15	122,85	115,09	110,09	17,77
re (mg kg)	600 °C	112,17	108,26	102,97	117,76	17,77
Zn (mg kg ⁻¹)	350 °C	17,78	18,36	18,46	19,85	11,70
Zn (mg kg)	600 °C	20,86	20,16	19,55	20,59	11,70
Cu (mg kg-1)	350 °C	5,09	3,04	4,51	4,03	13,92
Cu (mg kg ⁻¹)	600 °C	5,58	6,27	4,16	5,59	13,92

Tabela 30 - Médias das variáveis obtidas na 2ª avaliação foliar e seus respectivos coeficientes de variação (CV)

		2ª Av	aliação					
Nutriente	Temp.		Dose					
	remp.	3	6	9	12	- CV (%)		
Ca (dag kg ⁻¹)	350 °C	0,76	0,82	0,84	0,89	25,89		
Ca (dag kg)	600 °C	0,83	0,92	0,86	0,95	23,67		
Mg (dag kg ⁻¹)	350 °C	0,28	0,28	0,27	0,24	14,04		
Wig (dag kg)	600 °C	0,28	0,24	0,22	0,23	14,04		
K (dag kg ⁻¹)	350 °C	1,34	1,18	1,21	1,30	18,65		
K (dag kg)	600 °C	1,32	1,07	1,23	1,31	10,03		
P (dag kg ⁻¹)	350 °C	0,08	0,09	0,09	0,10	11,92		
1 (dag kg)	600 °C	0,09	0,08	0,09	0,11	11,92		
Fe (mg kg ⁻¹)	350 °C	145,21	152,87	146,86	157,81	17,99		
Te (mg kg)	600 °C	148,08	126,40	145,52	161,84	17,99		
Zn (mg kg ⁻¹)	350 °C	19,75	18,27	17,40	19,86	10,41		
Zii (iiig kg)	600 °C	19,71	16,34	18,51	20,40	10,41		
Cu (mg kg ⁻¹)	350 °C	3,18	2,57	2,98	4,29	23,59		
Cu (mg kg)	600 °C	3,24	3,18	3,49	5,56	25,59		

Tabela 31 - Médias das variáveis obtidas na 3ª avaliação foliar e seus respectivos coeficientes de variação (CV)

		3ª Av	aliação			
Nutriente	Temp.			- CV (%)		
	Temp.	3	6	9	12	C V (70)
Ca (dag kg ⁻¹)	350 °C	1,04	1,20	1,38	1,19	22,70
Ca (dag kg)	600 °C	1,29	1,46	1,22	1,08	22,70
Mg (dag kg ⁻¹)	350 °C	0,48	0,51	0,49	0,43	21,15
Wig (dag kg)	600 °C	0,50	0,56	0,48	0,47	21,13
K (dag kg ⁻¹)	350 °C	1,41	1,50	1,55	1,67	13,98
K (dag kg)	600 °C	1,43	1,50	1,54	1,60	13,96
P (dag kg ⁻¹)	350 °C	0,06	0,06	0,05	0,06	25,80
1 (dag kg)	600 °C	0,06	0,07	0,07	0,08	23,80
Fe (mg kg ⁻¹)	350 °C	78,38	90,57	103,71	134,26	29,16
Te (mg kg)	600 °C	160,42	175,96	165,93	142,11	29,10
Zn (mg kg ⁻¹)	350 °C	9,63	9,32	7,98	9,94	20,30
Zii (iiig kg)	600 °C	11,22	9,37	10,78	11,38	20,30
Cu (mg kg ⁻¹)	350 °C	7,13	6,28	5,92	6,47	22,02
Cu (ilig kg)	600 °C	8,11	7,11	6,60	6,28	22,02

Tabela 32 - Médias das variáveis obtidas nas três avaliações dos parâmetros vegetativos e seus respectivos coeficientes de variação (CV)

		1ª Avalia	ıção			
Parâmetro	Temp.		Do	ose		- CV (%)
	remp.	3	6	9	12	CV (70)
Altura (cm)	350 °C	113,40	115,33	120,17	118,47	27,84
Aitura (ciii)	600 °C	113,57	120,20	114,92	122,73	27,04
Diâmetro Caule (mm)	350 °C	24,33	25,26	28,70	26,87	23,58
Diametro Caule (IIIII)	600 °C	23,79	25,15	25,17	25,62	23,36
		2ª Avalia	ıção			
Altura (cm)	350 °C	125,98	126,63	132,33	131,02	24,62
Altura (CIII)	600 °C	130,62	136,80	126,32	134,23	24,02
Diâmetro Caule (mm)	350 °C	29,42	28,88	32,26	31,74	29,46
Diametro Caule (IIIII)	600 °C	31,01	27,89	30,36	30,65	29,40
		1ª Avalia	ıção			
Altura (cm)	350 °C	138,73	138,92	142,41	143,88	10,67
Aitura (CIII)	600 °C	145,78	146,37	146,10	148,82	10,07
Diâmetro Caule (mm)	350 °C	33,93	33,41	34,92	34,96	9,75
Diameno Caule (IIIII)	600 °C	35,03	34,51	36,96	35,38	7,13