©

DESENVOLVIMENTO DE UM VEÍCULO INOVADOR PARA ARMAZÉNS AUTOMÁTICOS

JOÃO AUGUSTO DA SILVA FERNANDES
dezembro de 2018

DEVELOPMENT OF AN INNOVATIVE SHUTTLE VEHICLE FOR AUTOMATED STORAGE AND RETRIEVAL SYSTEMS

João Augusto da Silva Fernandes

2018

ISEP - School of Engineering, Polytechnic of Porto
Department of Mechanical Engineering

DEVELOPMENT OF AN INNOVATIVE SHUTTLE VEHICLE FOR AUTOMATED STORAGE AND RETRIEVAL SYSTEMS

João Augusto da Silva Fernandes

1120435

Dissertation presented to ISEP - School of Engineering, to fulfill the requirements necessary to obtain a Master's degree in Mechanical Engineering, carried out under the guidance of Dr. Francisco José Gomes da Silva, Adjunct Professor, Department of Mechanical Engineering, ISEP.

2018

ISEP - School of Engineering, Polytechnic of Porto
Department of Mechanical Engineering

JURY

President

Luís Carlos Ramos Nunes Pinto Ferreira, PhD
Adjunct Professor, ISEP - School of Engineering, Polytechnic of Porto

Supervisor

Francisco José Gomes da Silva, PhD
Adjunct Professor, ISEP - School of Engineering, Polytechnic of Porto
Examiner
Abílio Manuel Pinho de Jesus, PhD
Auxiliar Professor, FEUP - Faculty of Engineering, University of Porto

ACKNOWLEDGEMENTS

The execution of this work would not be possible without the contribution of several people for whom I will be eternally grateful.

To Professor Francisco Silva, for having accepted to be the supervisor of this thesis, for having always believed in me and for helping me to overcome all difficulties.

To Professor Abílio de Jesus, for having accepted to be the examiner of this thesis and for having been patient with the delivery of the work.

To Engineer Luís Alexandre, for having allowed this work to be carried out at Consoveyo.
To Engineer Jorge Amaral, for giving me time when I needed the most.
To all my Consoveyo colleagues who have been directly or indirectly involved in the accomplishment of this work, for having been a decisive support for its conclusion.

To all my colleagues and friends of ISEP, for having made this academic journey together.
To the Clube Académico de Sangemil, for always having the door open.
To my family, for encouraging me to move on and for being an essential pillar throughout my academic life.

To my friends, for all the moments of happiness shared.
To Sara Ferreira, for being my companion and for walking side by side with me from day one.

To all those who were not mentioned previously, but who were essential in this step.
To all, thank you very much.

KEYWORDS

Automated Storage and Retrieval System, Shuttle Vehicle, Boxes

ABSTRACT

Intralogistics is increasingly a matter of research and development as a form of optimization, automation, integration and management of the flow of materials and information that circulate within a business unit. With a strong connection to material handling equipment and automation solutions, intralogistics has proved to be one of the main factors responsible for something that is already happening: a fourth industrial revolution where it is possible to convert warehouses and manufacturing units into intelligent environments where the entire process can be controlled and supervised through a single system.

It became necessary to develop more and more innovative and efficient solutions to the constant diversity of challenges proposed by the market. In this sense, it was proposed to develop something innovative within the area of Automated Storage and Retrieval Systems (AS/RS), a technology increasingly sought after by today's manufacturing plants. As such, the goal was to improve the most emergent AS/RS in recent years: the Pallet/Box Shuttle AS/RS.

In order to achieve the proposed objective, it was necessary to analyze all the existing solutions in the market and, principally, to find the main points to be improved and the direction to follow in order to innovate an already advanced solution.

The results show a robotized solution where it was possible to increase the automation of the operations in the storage systems and improve the responsiveness of the system, taking this solution to a new level.

PALAVRAS CHAVE
Armazéns Automáticos, Veículo Satélite, Caixas

RESUMO

A intralogística é cada vez mais uma área de investigação e desenvolvimento como uma forma de otimização, automação, integração e gestão do fluxo de materiais e informações que circulam dentro de uma unidade de negócios. Com uma forte ligação com equipamentos de manipulação de materiais e soluções de automação, a intralogística provou ser um dos principais fatores responsáveis por algo que já está a acontecer: uma quarta revolução industrial, onde é possível converter armazéns e unidades fabris em ambientes inteligentes, onde todo o processo pode ser controlado e supervisionado através de um único sistema.

Tornou-se necessário desenvolver soluções cada vez mais inovadoras e eficientes para a constante diversidade de desafios propostos pelo mercado. Nesse sentido, propôs-se desenvolver algo inovador dentro da área dos Armazéns Automáticos, uma solução cada vez mais procurada pelas unidades fabris de hoje. Como tal, estabeleceu-se o objetivo de melhorar o tipo de Armazém Automático mais emergente dos últimos anos: o Armazém Automático com Veículos Satélite para Caixas ou Paletes.

Para alcançar o objetivo proposto, foi necessário analisar todas as soluções existentes no mercado e, principalmente, encontrar os principais pontos a serem aprimorados e definir a direção a seguir para se inovar uma solução já avançada.

Os resultados obtidos apresentam uma solução robotizada onde foi possível aumentar a automatização das operações dos sistemas de armazenamento e melhorar a capacidade de resposta do sistema, levando esta solução para um novo patamar.

LIST OF SYMBOLS AND ABBREVIATIONS

2D	Two Dimensions
3D	Three Dimensions
AC	Alternating Current
AGV	Automated Guided Vehicle
AS/RS	Automated Storage and Retrieval System
CAD	Computer-Aided Design
CAE	Computer-Aided Engineering
CE	Conformité Européene
DC	Direct Current
DCS	Distributed Control Systems
DIN	Deutsches Institut für Normung
EN	European
EU	European Union
FEA	Finite Element Analysis
FEM	Fédération Européene de la Manutention
FEUP	Faculdade de Engenharia da Universidade do Porto
ICS	Industrial Control Systems
IEC	International Electrotechnical Commission
I/O	Input/Output
ISEP	Instituto Superior de Engenharia do Porto
ISO	International Organization for Standardization
LED	Light Emitting Diode
N/A	Not Applicable
OEM	Original Equipment Manufacturer
OMV	Overhead Monorail Vehicle
PLC	Programmable Logic Controllers
PU	Polyurethane
PVC	Polyvinyl Chloride
RGV	Rail Guided Vehicle
RSS	Rack-Supported Structure
SCADA	Supervisory Control and Data Acquisition
S/R	Storage and Retrieval
SWOT	Strengths, Weaknesses, Opportunities and Threats
VDI	Verein Deutscher Ingenieure
US	United States
WBS	Work Breakdown Structure
WMS	Warehouse Management System

List of Units

bar	Unit of Pressure
${ }^{\circ} \mathrm{C}$	Degree Celsius
GPa	Giga Pascal
h	Hour
kg	Kilogram
kgf	Kilograms Force
kN	Kilonewton
kW	Kilowatt
MPa	Mega Pascal
m	Meter
mm	Milimeter
N	Newton
rad	Radian
rpm	Rotations Per Minute
s	Second
un	Unit
V	Volt
W	Watt

List of Symbols

$\%$	Percentage
α	Angular Acceleration
$\Delta \varphi_{\text {total }}$	Total Stroke of the Retractable Finger
$\Delta \varphi_{2}$	Stroke of the Retractable Finger in Section 2
$\eta_{\text {chain }}$	Chain Efficiency
$\eta_{\text {load }}$	Load Efficiency
$\eta_{\text {total }}$	Total Efficiency
μ_{L}	Coefficient of Friction of Bearings
$\mu_{\text {stat }}$	Static Coefficient of Friction
ν	Stability Factor
$\omega_{\text {max }}$	Maximum Angular Speed
$\sigma_{\text {Von Mises, max }}$	Maximum Von Mises Stress
$\sigma_{\text {Yield }}$	Yield Strength
abrake	Brake Acceleration
at1	Linear Acceleration in Section 1
$a_{\text {t3 }}$	Linear Acceleration in Section 3
atravelling	Vehicle Acceleration
B	Hub Width
C	Tollok Application Type Factor
C_{1}	Brauer ${ }^{\circledR}$ Factor for the Continuous Running Condition

C_{2}	Brauer ${ }^{\circledR}$ Factor for the Surface Speed 10-16 km/h Condition
C_{3}	Brauer ${ }^{\circledR}$ Factor for the Driving Wheels Condition
$\mathrm{d}_{\text {axle }}$	Diameter of the Wheels Axle
dg	Fixing Bolts Diameter
DM	Hub Diameter
Dp	Pitch Diameter
$\mathrm{d}_{\text {TLK }}$	Locking Assembly Internal Diameter
DTLK	Locking Assembly External Diameter
$\mathrm{D}_{\text {wheel }}$	Diameter of the Wheels
e	Retractable Finger Eccentric Distance
E	Young's Modulus
f5	Iwis Lubrication Factor
f	Lever Arm of Rolling Friction
$F_{\text {drive }}$	Driving Force
$\mathrm{F}_{\text {friction }}$	Friction Force
$F_{\text {friction total }}$	Total Friction Force
Fguiding wheel	Force on the Guiding Wheel
Finertia	Vehicle Inertia Force
f_{B}	Service Factor
f_{M}	Mass Acceleration Factor
Frolling	Rolling Resistance to Motion Force
$F_{\text {tang }}$	Chain Tangential Pulling Force
$\mathrm{F}_{\text {trav wheel }}$	Force on the Travelling Wheel
F_{y}	Y-axis Forces
G	Gravitational Acceleration
Irobot	Inertia of the Robot
i_{v}	Gear Ration between Sprockets
İgear unit	Gear Unit Ratio (calculated)
Ivehicle	Inertia of the Vehicle
$J_{\text {Mot }}$	Mass Moment of Inertia of the Motor
J_{X}	External Mass Moment of Inertia
K	Tollok Coefficient K
1	Fixing Bolts Center Distance
L1	Locking Assembly Thickness
Ma	Gearmotor Rated Output Torque
$\mathrm{Ma}_{\mathrm{a} \text { max }}$	Gearmotor Maximum Output Torque
$\mathrm{M}_{\mathrm{A} \text {, stat }}$	Moments on Point A
M ${ }_{\text {Brake }}$	Brake Rated Torque
M ${ }_{\text {dynamic }}$	Dynamic Driving Torque
$\mathrm{m}_{\text {finger }}$	Retractable Finger Mass
M_{H}	Acceleration Torque

M_{L}	Load Torque
$\mathrm{m}_{\text {load }}$	Boxes Mass
M_{N}	Motor Rated Torque
M ${ }_{\text {RMS }}$	Root Mean Square Torque
$\mathrm{m}_{\text {robot }}$	Robot Mass
$\mathrm{M}_{\text {stat }}$	Static Driving Torque
$\mathrm{M}_{\text {stat+dyn }}$	Maximum Gearmotor Output Torque during operation
$\mathrm{M}_{\mathrm{t} 1}$	Torsional Torque in Section 1
$\mathrm{M}_{\mathrm{t} 2}$	Torsional Torque in Section 2
$\mathrm{M}_{\mathrm{t} 3}$	Torsional Torque in Section 3
$\mathrm{M}_{\mathrm{t} \text { _sprocket }}$	Maximum Torsional Torque per Driving Sprockets
Mt ${ }_{\text {tLk }}$	Transmissible Torque by One Locking Assembly
Mt ${ }_{2 \text { TLK }}$	Transmissible Torque by Two Locking Assembly
$m_{\text {total }}$	Vehicle Total Mass
$\mathrm{m}_{\text {vehcle }}$	Vehicle Mass
N	Normal Force
n_{a}	Gearmotor Output Speed
$\mathrm{n}_{\text {max }}$	Maximum Rotation Speed
n_{N}	Rated Motor Speed
Pa	Fixing Bolts Total Tightening Force
$P_{\text {dynamic }}$	Dynamic Power
$P_{\text {max }}$	Maximum Load Supported by the Wheel
$\mathrm{P}_{\text {max corr }}$	Maximum Load Supported by the Wheel (corrected)
pn	Locking Assembly Surface Pressure on Hub
P_{N}	Motor Rated Power
Probot	Weight of the Robot
$\mathrm{P}_{\text {static }}$	Static Power
Pt	Locking Assembly Pre-Load Force
Pv	Fixing Bolts Tightening Force
Pvehicle	Weight of the Vehicle
R1	Reaction in the First Support
R2	Reaction in the Second Support
r	Distance between the Two Support Points
$\mathrm{R}_{\mathrm{A}, \mathrm{dyn}}$	Dynamic Reaction Force on Point A
$\mathrm{R}_{\mathrm{A}, \text { stat }}$	Static Reaction Force on Point A
$\mathrm{R}_{\mathrm{B}, \mathrm{dyn}}$	Dynamic Reaction Force on Point B
$\mathrm{R}_{\mathrm{B}, \text { stat }}$	Static Reaction Force on Point B
Rm	Tensile Strength
$\mathrm{R}_{\text {stat }}$	Static Reaction Force of the Vehicle
$\mathrm{R}_{\text {stat, min }}$	Minimum Static Reaction Force between the Two Support Points
Sf	Flange Thickness

SF	Safety Factor
$t_{\text {ptotal }}$	Time for Total Stroke of the Retractable Finger
t_{1}	Cycle Time in Section 1
t_{2}	Cycle Time in Section 2
t_{3}	Cycle Time in Section 3
t_{a}	Acceleration Time
t_{a},brake	Brake Deceleration Time
$t_{\text {cycle }}$	Total Cycle Time
$t_{\text {stopped }}$	Stopped Time in each Cycle
$V_{\text {travelling }}$	Vehicle Speed
Y	lwis Shock Factor

FIGURES INDEX

FIGURE 1 - COMPANY LOGO CONSOVEYO, S.A [1] 6
FIGURE 2 - THE IDEA OF A NETWORK OF SUPPLIERS AND CUSTOMERS IN A SUPPLY CHAIN [3] 9
FIGURE 3 - SUPPLY CHAIN MANAGEMENT IS MORE ENCOMPASSING THAN LOGISTICS [4]. 10
FIGURE 4 - COMPANY'S AREAS MANAGED BY LOGISTICS [4]. 10
FIGURE 5 - EXAMPLE OF AN INTRALOGISTICS SYSTEM [8] 11
FIGURE 6 - PHYSICAL PROCESSES THAT CONSTITUTE THE MATERIAL FLOW IN A WAREHOUSE [9] 12
FIGURE 7 - ROBOTS AND HUMANS ARE NOW WORKING TOGETHER IN WAREHOUSES AND DISTRIBUTION CENTERS [11]. 14
FIGURE 8 - SYSTEM INTEGRATORS CAN INTEGRATE SEVERAL EQUIPMENT FOR A SINGLE MATERIALS FLOW IN A LOGISTIC SYSTEM [14]. 15
FIGURE 9 - V MODEL FOR DEVELOPMENT OF MECHATRONIC SYSTEMS INTEGRATED. ADAPTED FROM [15] 16
FIGURE 10 - REPRESENTATION OF AN AS/RS [5]. 20
FIGURE 11 - CLASSIFICATION OF RACKS [22] 21
FIGURE 12 - SINGLE DEEP RACK (A) AND MULTIPLE DEEP RACK (B). ADAPTED FROM [17] 21
FIGURE 13 - MOBILE RACK (A) AND ROTATING RACK (B). ADAPTED FROM [17] 22
FIGURE 14 - TYPES OF AS/RS AND THEIR S/R MACHINES [17],[23] 22
FIGURE 15 - UNIT LOAD AS/RS [24]. 23
FIGURE 16 - UNIT LOAD STACKER CRANE [25] 24
FIGURE 17 - PIVOTING WHEELS TO TRANSFER THE STACKER CRANE BETWEEN AISLES [26]. 25
FIGURE 18 - MINI LOAD AS/RS [27]. 25
FIGURE 19 - MINI LOAD STACKER CRANE [27] 26
FIGURE 20 - DEEP-LANE AS/RS [17]. 26
FIGURE 21 - STACKER CRANE WITH SATELLITE CAR [29]. 27
FIGURE 22 - SATELLITE CAR THAT MOVES UNDER THE PALLETIZED UNIT LOADS ALONG TWO RAILS [28]. 27
FIGURE 23 - PALLET SHUTTLE AS/RS [28] 28
FIGURE 24 - BOX SHUTTLE AS/RS [31]. 28
FIGURE 25 - SHUTTLE VEHICLE FOR STORING/RETRIEVING OF PALLETS (A) AND BOXES (B). ADAPTED FROM [28],[32]. 29
FIGURE 26 - CAROUSEL AS/RS [35]. 29
FIGURE 27 - LIFTING SYSTEM FOR THE CAROUSEL AS/RS. ADAPTED FROM [34] 30
FIGURE 28 - VERTICAL CAROUSEL (A) AND VERTICAL LIFTING MODULE (B). ADAPTED FROM [36],[37]. 30
FIGURE 29 - FLOW-THROUGH CONFIGURATION: RECEIVING AND SHIPPING LOCATED AT OPPOSITE SIDES OF THE RACK STRUCTURE [9] 31
FIGURE 30 - U-FLOW CONFIGURATION: RECEIVING AND SHIPPING LOCATED AT THE SAME SIDE OF THE RACK STRUCTURE [9]. 31
FIGURE 31 - TYPES OF PERIPHERAL EQUIPMENT FOR AS/RS [17]. 32
FIGURE 32 - TASKS AND FUNCTIONS OF LOGISTICS ROBOTS. ADAPTED FROM [66],[67] 42
FIGURE 33 - EXAMPLE OF A PLC AND ITS FUNCTIONING PRINCIPLE. ADAPTED FROM [65],[73]. 45
FIGURE 34 - MAIN CATEGORIES OF SENSORS USED IN INTRALOGISTICS EQUIPMENT [74],[75]. 45
FIGURE 35 - EXAMPLES OF READERS FOR PRODUCT IDENTIFICATION BY: BAR CODE (A), DATA MATRIX (B) OR RADIO FREQUENCY (C). ADAPTED FROM [75],[80],[81],[82] 48
FIGURE 36 - TYPES OF ACTUATORS USED IN MATERIAL HANDLING EQUIPMENT [84],[85]. 50
FIGURE 37 - EXAMPLE OF A HYDRAULIC PUMP [86] 51
FIGURE 38 - EXAMPLE OF APPLICATION OF PASCAL'S LAW [85]. 51
FIGURE 39 - EXAMPLE OF A HYDRAULIC DIRECTIONAL CONTROL VALVE (A) AND A HYDRAULIC CYLINDER
(B). ADAPTED FROM [87],[88] 52
FIGURE 40 - EXAMPLE OF AN AIR COMPRESSOR [89] 52
FIGURE 41 - EXAMPLE OF A PNEUMATIC DIRECTIONAL CONTROL VALVE (A) AND A PNEUMATIC CYLINDER (B). ADAPTED FROM [65],[90]. 53
FIGURE 42 - EXAMPLES OF ELECTRICAL CABLES (A), CONDUCTOR BAR (B) AND RECHARGEABLE BATTERIE (C). ADAPTED FROM [91],[92],[93]. 54
FIGURE 43 - EXAMPLE OF AN ELECTRIC DC MOTOR (A) AND AN ELECTRIC AC MOTOR (B). ADAPTED FROM [94],[95]. 54
FIGURE 44 - EXAMPLE OF AN ELECTRIC DC GEARMOTOR (A) AND AN ELECTRIC AC GEARMOTOR (B). ADAPTED FROM [96],[97]. 55
FIGURE 45 - THE PHASES OF THE DESIGN PROCESS [98] 56
FIGURE 46 - CREATION OF A MESH WITH ELEMENTS OF SIMPLE GEOMETRY [99]. 58
FIGURE 47 - MESH CREATION AND BOUNDARY CONDITIONS IN FEA [100]. 58
FIGURE 48 - ANIMATION WITH COLOR SCALE OF STRESSES AND DISPLACEMENTS IN FEA [101] 59
FIGURE 49 - EXAMPLES OF PART DRAWING (A) AND ASSEMBLY DRAWING (B). ADAPTED FROM [103]... 60FIGURE 50 - HIERARCHY OF EUROPEAN STANDARDS [107].62
FIGURE 51 - FLOW DIAGRAM OF RISK ASSESSMENT [108]. 63
FIGURE 52 - DIFFERENT TYPES OF RISKS AND PROTECTIVE DEVICES [104]. 63
FIGURE 53 - CE MARKING [104] 64
FIGURE 54 - MAINTENANCE OF THE GEARMOTOR OF A STACKER CRANE [110]. 65
FIGURE 55 - FEM LOGO [105] 65
FIGURE 56 - TYPES OF EQUIPMENT COVERED BY FEM STANDARDS [111]. 66
FIGURE 57 - EXAMPLE OF A SHUTTLE VEHICLE FOR CARTONS, TOTES OR TRAYS [68]. 69
FIGURE 58 - DEMATIC MULTISHUTTLE ${ }^{\circledR}$ EQUIPPED WITH A TELESCOPIC LOAD EXTRACTOR [30]. 70
FIGURE 59 - DEMATIC MULTISHUTTLE®: EXPANSION AND CONTRACTION OF THE CARRYING AREA [30]. 70
FIGURE 60 - SWOT ANALYSIS FOR THE DEMATIC MULTISHUTTLE®. 71
FIGURE 61 - YLOG-SHUTTLE-SYSTEM (FROM KNAPP AG) WITH AN EXTRACTOR PLATE THAT MOVES OVER A BELT CONVEYOR [112] 71
FIGURE 62 - YLOG-SHUTTLE-SYSTEM (FROM KNAPP AG): PIVOTING WHEELS THAT ALLOWS THE VEHICLE TO MOVE TRANSVERSELY AND LONGITUDINALLY [112]. 72
FIGURE 63 - SWOT ANALYSIS FOR THE YLOG-SHUTTLE-SYSTEM (FROM KNAPP AG). 72
FIGURE 64 - ADAPTO FROM VANDERLANDE WITH A BELT CONVEYOR TO EXTRACT THE PACKAGES FROM THE RACKING SYSTEM [113] 73
FIGURE 65 - SWOT ANALYSIS FOR THE ADAPTO FROM VANDERLANDE 73
FIGURE 66 - PERFECT PICK ${ }^{\circledR}$ SOLUTION FROM OPEX CORPORATION [114]. 74
FIGURE 67 - PERFECT PICK ${ }^{\circledR}$ SOLUTION FROM OPEX CORPORATION: THE IBOT ${ }^{\circledR}$ SHUTTLE VEHICLE [114].74
FIGURE 68 - SWOT ANALYSIS FOR THE PERFECT PICK® SOLUTION FROM OPEX CORPORATION 75
FIGURE 69 - TRANSFERRING SHUTTLE FROM THE U.S. PATENT NO. 2011/0008138 A1 [115]. 76
FIGURE 70 - SHUTTLE FROM THE U.S. PATENT NO. 2012/0099953 A1 [116] 76
FIGURE 71 - PICK-IT-EASY ROBOT FROM KNAPP AG [117] 77
FIGURE 72 - CONSUMER GOODS WITH SMALL DIMENSIONS AND WELL-DEFINED GEOMETRIES, STORED IN BOXES [118] 78
FIGURE 73 - WBS OF THE SHUTTLE VEHICLE. 84
FIGURE 74 - FINAL VERSION OF THE SHUTTLE VEHICLE WITH IDENTIFICATION OF THE MAIN SYSTEMS AND COMPONENTS 84
FIGURE 75 - RIGHT, FRONT AND TOP VIEWS OF THE SHUTTLE VEHICLE. 85
FIGURE 76 - SHUTTLE VEHICLE IN OPERATION 86
FIGURE 77 - PLASTIC BOXES ($600 \mathrm{MM} \times 400 \mathrm{MM} \times 200 \mathrm{MM}$) WITH TREE DIFFERENT PRODUCTS: BLUE, GREEN AND RED BOTTLES 87
FIGURE 78 - THE SHUTTLE VEHICLE TRAVELS ALONG THE RACKING STRUCTURE RAILS THROUGH THE TRAVELLING SYSTEM. 87
FIGURE 79 - THE SHUTTLE VEHICLE EXTRACTS/SORES THE BOXES ON THE RACK THROUGH THE EXTRACTION SYSTEM 88
FIGURE 80 - THE SHUTTLE VEHICLE PERFORMS THE PICKING OPERATIONS DIRECTLY IN THE RACK. 89
FIGURE 81 - HANDMADE SKETCH 90
FIGURE 82 - SKETCH MADE USING SOFTWARE WITH ABILITY TO DRAW 2D (AUTODESK® AUTOCAD®). 91
FIGURE 83 - SHUTTLE VEHICLE FREE-BODY DIAGRAMS WHEN THE VEHICLE IS STATIONARY (A) AND WHEN THE VEHICLE IS STARTING THE MOVEMENT (B) 93
FIGURE 84 - SEW HELICAL GEARMOTOR (TYPE R) [120]. 97
FIGURE 85 - FRICTION FORCE APPLIED ON THE TRAVELLING WHEELS. 103
FIGURE 86 - SHUTTLE VEHICLE FREE-BODY DIAGRAM WITH THE FORCES ON THE GUIDING WHEEL WHEN
THE VEHICLE IS ACCELERATING. 106
FIGURE 87 - FORCE ON THE TRAVELLING WHEELS 108
FIGURE 88 - SKETCHES OF THE MAIN STRUCTURE 109
FIGURE 89 - FIRST AND LAST VERSION OF THE MAIN STRUCTURE, 110
FIGURE 90 - SOME DETAILS OF THE MAIN STRUCTURE, 110
FIGURE 91 - TRAVELLING SYSTEM FOR THE SHUTTLE VEHICLE 111
FIGURE 92 - WBS OF THE TRAVELLING SYSTEM. 112
FIGURE 93 - DRIVING WHEELS ASSEMBLY FOR THE TRAVELLING SYSTEM 112
FIGURE 94 - DRIVEN WHEELS ASSEMBLY FOR THE TRAVELLING SYSTEM. 115
FIGURE 95 - GUIDING WHEELS FOR THE TRAVELLING SYSTEM. 116
FIGURE 96 - RAIL BRUSH FOR THE TRAVELLING SYSTEM. 117
FIGURE 97 - SHOCK ABSORBERS FOR THE TRAVELLING SYSTEM. 118
FIGURE 98 - EXTRACTION SYSTEM FOR THE SHUTTLE VEHICLE. 119
FIGURE 99 - WBS OF THE EXTRACTION SYSTEM 120
FIGURE 100 - DRIVE ASSEMBLY FOR THE EXTRACTION SYSTEM. 121
FIGURE 101 - SUPPORT STRUCTURES FOR THE EXTRACTION SYSTEM 124
FIGURE 102 - FIXED EXTRACTION ARM FOR THE EXTRACTION SYSTEM 125
FIGURE 103 - MOVABLE EXTRACTION ARM FOR THE EXTRACTION SYSTEM. 127
FIGURE 104 - PICKING SYSTEM FOR THE SHUTTLE VEHICLE 130
FIGURE 105 - WBS OF THE PICKING SYSTEM 131
FIGURE 106 - ROBOT FOR THE PICKING SYSTEM. 132
FIGURE 107 - GRIPPER FOR THE PICKING SYSTEM 133
FIGURE 108 - ROBOT RESTING ROD FOR THE EXTRACTION SYSTEM 134
FIGURE 109 - BOXES SUPPORT PLATES. 143
FIGURE 110 - PASSAGE OF THE BOXES BETWEEN THE SHUTTLE VEHICLE AND THE RACK. 144
FIGURE 111 - FOUR LIFTING EYE BOLTS ON TOP OF THE MAIN STRUCTURE. 144
FIGURE 112 - TYPES OF LOADS ON LIFTING EYES. 145
FIGURE 113 - COVER ASSEMBLY ON THE TRAVELLING GEARMOTOR SIDE. 145
FIGURE 114 - COVER ASSEMBLY ON THE EXTRACTION GEARMOTOR SIDE. 146
FIGURE 115 - SHUTTLE VEHICLE FREE-BODY DIAGRAMS WHEN THE VEHICLE IS STATIONARY (A) AND WHEN THE VEHICLE IS STARTING THE MOVEMENT (B) 148
FIGURE 116 - SEW WORKBENCH - CALCULATION OF THE TRAVELLING GEARMOTOR - SELECTION OF THE TYPE OF APPLICATION. 151
FIGURE 117 - SEW WORKBENCH - CALCULATION OF THE TRAVELLING GEARMOTOR - INTRODUCTION OF THE PARAMETERS TO CALCULATE THE ROLLING FRICTION. 151
FIGURE 118 - SEW WORKBENCH - CALCULATION OF THE TRAVELLING GEARMOTOR - INTRODUCTION OF THE PARAMETERS THAT CHARACTERIZE THE TRANSMISSION BY CHAIN AND SPROCKETS 152
FIGURE 119 - SEW WORKBENCH - CALCULATION OF THE TRAVELLING GEARMOTOR - DEFINITION OF THE TRAVEL DIAGRAM. 152
FIGURE 120 - SEW WORKBENCH - CALCULATION OF THE TRAVELLING GEARMOTOR - SELECTION OF THE GEARMOTOR 153
FIGURE 121 - LOADS ON THE DRIVING SHAFT FROM THE TRAVELLING SYSTEM. 157
FIGURE 122 - MITCALC - CALCULATION OF THE DRIVING SHAFT FROM THE TRAVELLING SYSTEM - GEOMETRY AND DIMENSIONS OF THE SHAFT. 158
FIGURE 123 - MITCALC - CALCULATION OF THE DRIVING SHAFT FROM THE TRAVELLING SYSTEM - LOADS ON THE SHAFT. 159
FIGURE 124 - MITCALC - CALCULATION OF THE DRIVING SHAFT FROM THE TRAVELLING SYSTEM - MATERIAL AND TYPE OF LOADING. 159
FIGURE 125 - MITCALC - CALCULATION OF THE DRIVING SHAFT FROM THE TRAVELLING SYSTEM - FINAL RESULTS 160
FIGURE 126 - SCHAEFFLER WEBSITE - CALCULATION OF THE HOUSING UNITS - CALCULATION OF THE RECOMMENDED LUBRICANT. 162
FIGURE 127 - SCHAEFFLER WEBSITE - CALCULATION OF THE HOUSING UNITS - LOADS ON THE HOUSING UNIT. 162
FIGURE 128 - SCHAEFFLER WEBSITE - CALCULATION OF THE HOUSING UNITS - RATING LIFE AND SAFETY FACTORS FOR THE HOUSING UNIT 162
FIGURE 129 - TORQUE TRANSMITTED BETWEEN THE DRIVING SPROCKET AND THE DRIVEN SPROCKET THROUGH THE CHAIN TO DRIVE THE TRAVELLING SYSTEM. 163
FIGURE 130 - IWIS CHAIN ENGINEERING - CALCULATION OF THE DRIVING CHAIN FOR THE TRAVELLINGSYSTEM - CHARACTERIZATION OF THE CHAIN LOOP AND INDICATION OF THE OPERATING
CONDITIONS.. 164164
FIGURE 131 - IWIS CHAIN ENGINEERING - CALCULATION OF THE DRIVING CHAIN FOR THE TRAVELLING SYSTEM - GRAPHICAL REPRESENTATION OF THE CHAIN LOOP. 165
FIGURE 132 - IWIS CHAIN ENGINEERING - CALCULATION OF THE DRIVING CHAIN FOR THE TRAVELLING SYSTEM - RATING LIFE AND SAFETY FACTORS FOR THE DRIVING CHAIN 165
FIGURE 133 - LOCKING ASSEMBLY FOR THE DRIVEN SPROCKET. 166
FIGURE 134 - LOCKING ASSEMBLY FOR THE DRIVING WHEELS 169
FIGURE 135 - TAPER LOCK BUSHING FOR THE DRIVING SPROCKET. 171
FIGURE 136 - LOADS ON THE GUIDING WHEEL AXLE 171
FIGURE 137 - MITCALC - CALCULATION OF THE GUIDING WHEEL AXLE - LOADING AND BASIC PARAMETERS OF THE COUPLING 172
FIGURE 138 - MITCALC - CALCULATION OF THE GUIDING WHEEL AXLE - DESIGN OF COUPLING DIMENSIONS 173
FIGURE 139 - MITCALC - CALCULATION OF THE GUIDING WHEEL AXLE - DESIGN OF COUPLING DIMENSIONS. 173
FIGURE 140 - WEFORMA WEBSITE - CALCULATION OF THE POLYURETHANE BUFFERS - INDICATION OF THE TYPE OF APPLICATION 174
FIGURE 141 - WEFORMA WEBSITE - CALCULATION OF THE POLYURETHANE BUFFERS - INDICATION OF THE APPLICATION PARAMETERS. 175
FIGURE 142 - WEFORMA WEBSITE - CALCULATION OF THE POLYURETHANE BUFFERS - SELECTION OF THE POLYURETHANE BUFFER. 175
FIGURE 143 - FEA SIMULATION - CALCULATION OF THE FORK FOR THE GUIDING WHEEL - DEFINITION OF THE BOUNDARY CONDITIONS 177
FIGURE 144 - FEA SIMULATION - CALCULATION OF THE FORK FOR THE GUIDING WHEEL - DEFINITION OF THE APPLIED LOADS. 177
FIGURE 145 - FEA SIMULATION - CALCULATION OF THE FORK FOR THE GUIDING WHEEL - MESH CREATION 177
FIGURE 146 - FEA SIMULATION - CALCULATION OF THE FORK FOR THE GUIDING WHEEL - DISTRIBUTION OF THE VON MISES STRESSES. 178
FIGURE 147 - FEA SIMULATION - CALCULATION OF THE FORK FOR THE GUIDING WHEEL - DISPLACEMENTS ON THE PART. 178
FIGURE 148 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE TRAVELLING SYSTEM IS OPERATING - DEFINITION OF THE BOUNDARY CONDITIONS 180
FIGURE 149 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE TRAVELLING SYSTEM IS OPERATING - DEFINITION OF THE APPLIED LOADS. 181
FIGURE 150 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE TRAVELLING SYSTEM IS OPERATING - MESH CREATION. 181
FIGURE 151 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE TRAVELLING SYSTEM IS OPERATING - DISTRIBUTION OF THE VON MISES STRESSES. 182
FIGURE 152 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE TRAVELLING SYSTEM IS OPERATING - DISPLACEMENTS ON THE PART. 182
FIGURE 153 - SERVO GEARMOTOR USED TO PRODUCE A DRIVING FORCE FOR MOVING THE MOVABLE EXTRACTION ARMS AND THE BOX. 184
FIGURE 154 - SEW WORKBENCH - CALCULATION OF THE SERVO GEARMOTOR - SELECTION OF THE TYPE OF APPLICATION 185
FIGURE 155 - SEW WORKBENCH - CALCULATION OF THE SERVO GEARMOTOR - INTRODUCTION OF THE PARAMETERS THAT CHARACTERIZE THE DRIVING SPROCKET. 185
FIGURE 156 - SEW WORKBENCH - CALCULATION OF THE SERVO GEARMOTOR - DEFINITION OF THE TRAVEL DIAGRAM 186
FIGURE 157 - SEW WORKBENCH - CALCULATION OF THE SERVO GEARMOTOR - SELECTION OF THE SERVO GEARMOTOR. 186
FIGURE 158 - LOADS ON THE DRIVING SHAFT FROM THE EXTRACTION SYSTEM. 187
FIGURE 159 - MITCALC - CALCULATION OF THE DRIVING SHAFT FROM THE EXTRACTION SYSTEM - GEOMETRY AND DIMENSIONS OF THE SHAFT. 188
FIGURE 160 - MITCALC - CALCULATION OF THE DRIVING SHAFT FROM THE EXTRACTION SYSTEM - LOADS ON THE SHAFT. 189
FIGURE 161 - MITCALC - CALCULATION OF THE DRIVING SHAFT FROM THE EXTRACTION SYSTEM - MATERIAL AND TYPE OF LOADING. 189
FIGURE 162 - MITCALC - CALCULATION OF THE DRIVING SHAFT FROM THE EXTRACTION SYSTEM - FINAL RESULTS 190
FIGURE 163 - SCHAEFFLER WEBSITE - CALCULATION OF THE DRIVING SHAFT BEARINGS FROM THE EXTRACTION SYSTEM - CALCULATION OF THE RECOMMENDED LUBRICANT 191
FIGURE 164 - SCHAEFFLER WEBSITE - CALCULATION OF THE DRIVING SHAFT BEARINGS FROM THE EXTRACTION SYSTEM - LOADS ON THE BEARING. 192
FIGURE 165 - SCHAEFFLER WEBSITE - CALCULATION OF THE DRIVING SHAFT BEARINGS FROM THE EXTRACTION SYSTEM - RATING LIFE AND SAFETY FACTORS FOR THE BEARING. 192
FIGURE 166 - TORQUE FROM THE DRIVING SPROCKET CONVERTED IN A LINEAR DRIVE FORCE TO MOVE THE RACK AND DRIVE THE EXTRACTION SYSTEM (OPPOSITE DIRECTIONS TO VISUALIZE THE CREATION OF THE TANGENTIAL PULLING FORCE IN THE CHAIN). 193
FIGURE 167 - IWIS CHAIN ENGINEERING - CALCULATION OF THE DRIVING CHAIN FOR THE EXTRACTION SYSTEM - CHARACTERIZATION OF THE CHAIN LOOP AND INDICATION OF THE OPERATING CONDITIONS 194
FIGURE 168 - IWIS CHAIN ENGINEERING - CALCULATION OF THE DRIVING CHAIN FOR THE EXTRACTION SYSTEM - GRAPHICAL REPRESENTATION OF THE CHAIN LOOP. 195
FIGURE 169 - IWIS CHAIN ENGINEERING - CALCULATION OF THE DRIVING CHAIN FOR THE EXTRACTION SYSTEM - RATING LIFE AND SAFETY FACTORS FOR THE DRIVING CHAIN. 195
FIGURE 170 - LOCKING ASSEMBLY FOR THE DRIVING SPROCKETS. 196
FIGURE 171 - REPRESENTATION OF THE RETRACTABLE FINGER DRIVE AS THE ACTUATION OF AN ECCENTRIC. 198
FIGURE 172 - POSITIONING OF THE CENTER OF MASS OF THE RETRACTABLE FINGER WITH RESPECT TO ITS AXIS OF ROTATION. 199
FIGURE 173 - GRAPHICAL REPRESENTATION OF THE OPERATING CYCLE OF THE DC DRIVE 199
FIGURE 174 - MAXON SELECTION PROGRAM - CALCULATION OF THE DC DRIVE - INDICATION OF THE MAIN PARAMETERS OF THE APPLICATION. 202
FIGURE 175 - MAXON SELECTION PROGRAM - CALCULATION OF THE DC DRIVE - SELECTION OF THE DC DRIVE. 202
FIGURE 176 - REACTION FORCES ON THE RETRACTABLE FINGERS. 203
FIGURE 177 - FEA SIMULATION - CALCULATION OF THE RETRACTABLE FINGER - DEFINITION OF THE BOUNDARY CONDITIONS 204
FIGURE 178 - FEA SIMULATION - CALCULATION OF THE RETRACTABLE FINGER - DEFINITION OF THE APPLIED LOADS 204
FIGURE 179 - FEA SIMULATION - CALCULATION OF THE RETRACTABLE FINGER - MESH CREATION 204
FIGURE 180 - FEA SIMULATION - CALCULATION OF THE RETRACTABLE FINGER - DISTRIBUTION OF THE VON MISES STRESSES 205
FIGURE 181 - FEA SIMULATION - CALCULATION OF THE RETRACTABLE FINGER - DISPLACEMENTS ON THE PART 205
FIGURE 182 - ACTUATING FORCE ON THE DC DRIVE FIXING PLATE. 206
FIGURE 183 - FEA SIMULATION - CALCULATION OF THE DC DRIVE FIXING PLATE - DEFINITION OF THE BOUNDARY CONDITIONS 207
FIGURE 184 - FEA SIMULATION - CALCULATION OF THE DC DRIVE FIXING PLATE - DEFINITION OF THE APPLIED LOADS 207
FIGURE 185 - FEA SIMULATION - CALCULATION OF THE DC DRIVE FIXING PLATE - MESH CREATION. 207
FIGURE 186 - FEA SIMULATION - CALCULATION OF THE DC DRIVE FIXING PLATE - DISTRIBUTION OF THE VON MISES STRESSES 208
FIGURE 187 - FEA SIMULATION - CALCULATION OF THE DC DRIVE FIXING PLATE - DISPLACEMENTS ON THE PART. 208
FIGURE 188 - ACTUATING FORCES ON THE MOVABLE STRINGER 209
FIGURE 189 - FEA SIMULATION - CALCULATION OF THE STRINGERS - DEFINITION OF THE BOUNDARY CONDITIONS 210
FIGURE 190 - FEA SIMULATION - CALCULATION OF THE STRINGERS - DEFINITION OF THE APPLIED LOADS 211
FIGURE 191 - FEA SIMULATION - CALCULATION OF THE STRINGERS - MESH CREATION. 211
FIGURE 192 - FEA SIMULATION - CALCULATION OF THE STRINGERS - DISTRIBUTION OF THE VON MISES STRESSES. 212
FIGURE 193 - FEA SIMULATION - CALCULATION OF THE STRINGERS - DISPLACEMENTS ON THE PART. 212FIGURE 194 - FEA SIMULATION - CALCULATION OF THE FLANGE FOR THE SERVO GEARMOTOR -DEFINITION OF THE BOUNDARY CONDITIONS.214
FIGURE 195 - FEA SIMULATION - CALCULATION OF THE FLANGE FOR THE SERVO GEARMOTOR - DEFINITION OF THE APPLIED LOADS 214
FIGURE 196 - FEA SIMULATION - CALCULATION OF THE FLANGE FOR THE SERVO GEARMOTOR - MESH CREATION 215
FIGURE 197 - FEA SIMULATION - CALCULATION OF THE FLANGE FOR THE SERVO GEARMOTOR - DISTRIBUTION OF THE VON MISES STRESSES 215
FIGURE 198 - FEA SIMULATION - CALCULATION OF THE FLANGE FOR THE SERVO GEARMOTOR - DISPLACEMENTS ON THE PART. 216
FIGURE 199 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE EXTRACTION SYSTEM IS OPERATING - DEFINITION OF THE BOUNDARY CONDITIONS. 217
FIGURE 200 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE EXTRACTION SYSTEM IS OPERATING - DEFINITION OF THE APPLIED LOADS 218
FIGURE 201 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE EXTRACTION SYSTEM IS OPERATING - MESH CREATION. 218
FIGURE 202 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE EXTRACTION SYSTEM IS OPERATING - DISTRIBUTION OF THE VON MISES STRESSES. 219
FIGURE 203 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE EXTRACTION SYSTEM IS OPERATING - DISPLACEMENTS ON THE PART 219
FIGURE 204 - CONFIGURATION OF THE ROBOLINK-TYPE D FROM IGUS [136]. 221
FIGURE 205 - LIST OF COMPONENTS THAT MAKE UP THE CONFIGURED ROBOLINK-TYPE D. 221
FIGURE 206 - SELECTED GRIPPER FROM SCHUNK AND THE MAIN TECHNICAL DATA. ADAPTED FROM [137] 222
FIGURE 207 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE PICKING SYSTEMIS OPERATING - DEFINITION OF THE BOUNDARY CONDITIONS.223
FIGURE 208 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE PICKING SYSTEM IS OPERATING - DEFINITION OF THE APPLIED LOADS 224
FIGURE 209 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE PICKING SYSTEM IS OPERATING - MESH CREATION 224
FIGURE 210 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE PICKING SYSTEM IS OPERATING - DISTRIBUTION OF THE VON MISES STRESSES 225
FIGURE 211 - FEA SIMULATION - CALCULATION OF THE MAIN STRUCTURE WHEN THE PICKING SYSTEM IS OPERATING - DISPLACEMENTS ON THE PART. 225
FIGURE 212 - MAIN ASSEMBLY DRAWING OF THE SHUTTLE VEHICLE (SHEET 1/2) 229
FIGURE 213 - MAIN ASSEMBLY DRAWING OF THE SHUTTLE VEHICLE (SHEET 2/2). 230

TABLES INDEX

TABLE 1 - TYPES OF STRUCTURES USED TO FORM UNIT LOADS [17],[18],[19],[20],[21]. 18
TABLE 2 - TYPES OF CONVEYORS USED AS PERIPHERAL EQUIPMENT FOR AS/RS
[17],[38],[39],[40],[41],[42],[43],[44] 33
TABLE 3 - TYPES OF CRANES USED AS PERIPHERAL EQUIPMENT FOR AS/RS [17],[45],[46],[47] 35
TABLE 4 - TYPES OF LIFT TRUCKS EXISTING IN THE MARKET [17],[48],[49],[50],[51],[52],[53],[54] 36
TABLE 5 - TYPES OF PERIPHERAL TRANSPORT VEHICLES FOR AS/RS [55],[57],[58],[59]. 39
TABLE 6 - TYPES OF POSITIONING TABLES USED AS PERIPHERAL EQUIPMENT FOR AS/RS [60],[61],[62],[63] 40
TABLE 7 - "GOODS-TO-PERSON" PICKING STATIONS FOR AS/RS [69],[70] 43
TABLE 8 - SENSORS USED FOR MACHINE POSITIONING [75],[76],[77],[78] 46
TABLE 9 - SENSORS USED FOR MACHINE SAFETY [83],[75]. 49
TABLE 10 - MAIN REQUIREMENTS FOR THE SHUTTLE VEHICLE AND RESPECTIVE DEGREES OF IMPORTANCE (FROM 1 (LITTLE IMPORTANT) TO 5 (VERY IMPORTANT)) 78
TABLE 11 - FOUND SOLUTION FOR EACH MAIN REQUIREMENT OF THE SHUTTLE VEHICLE 79
TABLE 12 - PRELIMINARY TECHNICAL SPECIFICATIONS FOR THE SHUTTLE VEHICLE 82
TABLE 13 - PARAMETERS CONSIDERED TO CALCULATE THE REACTIONS OF THE VEHICLE 92
table 14 - RESULTS OF THE REACTION FORCES OF THE VEHICLE 95
TABLE 15 - RESULTS OF THE STABILITY FACTOR. 96
TABLE 16 - PARAMETERS CONSIDERED TO CALCULATE THE TRAVELLING GEARMOTOR. 96
TABLE 17 - RESULTS FOR THE SELECTED MOTOR. 100
TABLE 18 - RESULTS FOR THE SELECTED GEAR UNIT. 102
TABLE 19 - RESULTS FOR THE MAXIMUM PERMISSIBLE ACCELERATION ON EACH WHEEL PAIR. 104
TABLE 20 - RESULTS FOR THE EMERGENCY DECELERATION 105
TABLE 21 - PARAMETERS CONSIDERED TO CALCULATE THE LOADS ON THE WHEELS. 105
TABLE 22 - RESULTS OF THE GUIDING WHEELS. 107
TABLE 23 - RESULTS OF THE TRAVELLING WHEELS. 108
TABLE 24 - SELECTION OF ELECTRICAL EQUIPMENT TO BE APPLIED TO THE SHUTTLE VEHICLE. 136
TABLE 25 - MASSES OF EACH OF THE SHUTTLE VEHICLE SYSTEMS. 146
TABLE 26 - MECHANICAL PROPERTIES OF THE MATERIALS OF THE PARTS STUDIED [123],[124],[125],[126]. 147
TABLE 27 - PARAMETERS CONSIDERED TO CALCULATE THE REACTIONS OF THE VEHICLE. 148
TABLE 28 - RESULTS OF THE REACTION FORCES OF THE VEHICLE 149
TABLE 29 - RESULTS OF THE STABILITY FACTOR. 149
TABLE 30 - PARAMETERS USED FOR THE FINAL CALCULATION OF THE TRAVELLING GEARMOTOR. 150
TABLE 31 - PARAMETERS OF THE SELECTED TRAVELLING GEARMOTOR. 153
TABLE 32 - PARAMETERS NEEDED TO CALCULATE THE LOADS ON THE WHEELS. 154
TABLE 33 - RESULTS OF THE GUIDING WHEELS. 155
TABLE 34 - RESULTS OF THE TRAVELLING WHEELS. 156
TABLE 35 - PARAMETERS USED TO CALCULATE THE DRIVING SHAFT. 157
TABLE 36 - RESULTS OF THE CALCULATION OF THE DRIVING SHAFT 160
TABLE 37 - PARAMETERS USED TO CALCULATE THE HOUSING UNITS 161
table 38 - RESULTS OF THE CALCULATION OF THE HOUSING UNIT. 163
TABLE 39 - PARAMETERS USED TO CALCULATE THE DRIVING CHAIN FROM THE TRAVELLING SYSTEM. 16TABLE 40 - RESULTS OF THE CALCULATION OF THE DRIVING CHAIN165
TABLE 41 - PARAMETERS USED TO CALCULATE THE LOCKING ASSEMBLY FOR THE DRIVEN SPROCKET. 166TABLE 42 - RESULTS OF THE CALCULATION OF THE LOCKING ASSEMBLY FOR THE DRIVEN SPROCKET. . 168
TABLE 43 - PARAMETERS USED TO CALCULATE THE LOCKING ASSEMBLY FOR THE DRIVING WHEELS. . 169
TABLE 44 - RESULTS OF THE CALCULATION OF THE LOCKING ASSEMBLY FOR THE DRIVING WHEELS. 170
TABLE 45 - PARAMETERS USED TO CALCULATE THE GUIDING WHEELS AXLE. 171
TABLE 46 - RESULTS OF THE SAFETY FACTORS FROM THE CALCULATION OF THE GUIDING WHEEL AXLE. 173
TABLE 47 - PARAMETERS USED TO CALCULATE THE POLYURETHANE BUFFERS, 174
TABLE 48 - SELECTED POLYURETHANE BUFFER. 175
TABLE 49 - PARAMETERS USED TO CALCULATE THE FORK FOR THE GUIDING WHEEL. 176
TABLE 50 - RESULTS OF THE FEA SIMULATION OF THE FORK FOR THE GUIDING WHEEL 179
tABLE 51 - PARAMETERS USED TO CALCULATE THE MAIN STRUCTURE WHEN THE TRAVELLING SYSTEM IS OPERATING. 179
TABLE 52 - RESULTS OF THE FEA SIMULATION OF THE MAIN STRUCTURE WHEN THE TRAVELLING SYSTEM IS OPERATING 182
TABLE 53 - PARAMETERS USED TO CALCULATE THE SERVO GEARMOTOR. 184
TABLE 54 - PARAMETERS OF THE SELECTED SERVO GEARMOTOR. 187
TABLE 55 - PARAMETERS USED TO CALCULATE THE DRIVING SHAFT FROM THE EXTRACTION SYSTEM. 188
TABLE 56 - RESULTS OF THE CALCULATION OF THE DRIVING SHAFT FROM THE EXTRACTION SYSTEM.. 190
TABLE 57 - PARAMETERS USED TO CALCULATE THE HOUSING UNITS 191
TABLE 58 - RESULTS OF THE CALCULATION OF THE HOUSING UNIT. 192
TABLE 59 - PARAMETERS USED TO CALCULATE THE DRIVING CHAIN FROM THE EXTRACTION SYSTEM. 193
TABLE 60 - RESULTS OF THE CALCULATION OF THE DRIVING CHAIN FROM THE EXTRACTION SYSTEM.. 195
TABLE 61 - PARAMETERS USED TO CALCULATE THE LOCKING ASSEMBLY FOR THE DRIVING SPROCKETSFROM THE EXTRACTION SYSTEM.196
TABLE 62 - RESULTS OF THE CALCULATION OF THE LOCKING ASSEMBLY FOR THE DRIVING SPROCKETS FROM THE EXTRACTION SYSTEM. 197
TABLE 63 - PARAMETERS USED TO CALCULATE THE LOADS ON THE DC DRIVE FOR THE RETRACTABLE FINGER. 198
table 64 - RESULTS OF THE CALCULATION OF THE DC DRIVE LOADS FOR SELECTION OF THE MODEL TO USE. 201
TABLE 65 - SELECTED DC DRIVE. 203
TABLE 66 - PARAMETERS USED TO CALCULATE THE RETRACTABLE FINGER. 203
TABLE 67 - RESULTS OF THE FEA SIMULATION OF THE RETRACTABLE FINGER. 205
TABLE 68 - PARAMETERS USED TO CALCULATE THE DC DRIVE FIXING PLATE. 206
TABLE 69 - RESULTS OF THE FEA SIMULATION OF THE DC DRIVE FIXING PLATE. 208
TABLE 70 - PARAMETERS USED TO CALCULATE THE STRINGERS 209
TABLE 71 - RESULTS OF THE FEA SIMULATION OF THE STRINGERS. 212
TABLE 72 - PARAMETERS USED TO CALCULATE THE FLANGE FOR THE SERVO GEARMOTOR 213
TABLE 73 - RESULTS OF THE FEA SIMULATION OF THE FLANGE FOR THE SERVO GEARMOTOR. 216
TABLE 74 - PARAMETERS USED TO CALCULATE THE MAIN STRUCTURE WHEN THE EXTRACTION SYSTEM IS OPERATING. 217
TABLE 75 - RESULTS OF THE FEA SIMULATION OF THE MAIN STRUCTURE WHEN THE EXTRACTION SYSTEM IS OPERATING.G 219
TABLE 76 - PARAMETERS USED TO CONFIGURE THE ROBOT. 220
TABLE 77 - PARAMETERS USED TO SELECT THE GRIPPER. 222
TABLE 78 - PARAMETERS USED TO CALCULATE THE MAIN STRUCTURE WHEN THE PICKING SYSTEM IS OPERATING 223
TABLE 79 - RESULTS OF THE FEA SIMULATION OF THE MAIN STRUCTURE WHEN THE PICKING SYSTEM IS OPERATING 225
TABLE 80 - FINAL TECHNICAL SPECIFICATIONS FOR THE SHUTTLE VEHICLE. 226

INDEX

1 INTRODUCTION 3
1.1 OVERVIEW 3
1.2 MAIN GOALS 3
1.3 METHODOLOGY 4
1.4 THESIS' STRUCTURE5
1.5 TUTORING COMPANY 5
2 BACKGROUND 9
2.1 LOGISTICS IN SUPPLY CHAIN MANAGEMENT 9
2.1.1 INTRALOGISTICS AND WAREHOUSE OPERATIONS 11
2.1.2 SYSTEMS INTEGRATORS 14
2.2 AUTOMATED STORAGE AND RETRIEVAL SYSTEMS 17
2.2.1 RACK STRUCTURES 20
2.2.2 STORAGE/RETRIEVAL MACHINES 22
2.2.3 INPUT/OUTPUT POINTS 31
2.2.4 PERIPHERAL EQUIPMENT SOLUTIONS FOR AUTOMATED STORAGES AND RETRIEVAL SYSTEMS 32
2.2.5 AS/RS CONTROL SYSTEMS 44
2.3 MECHANICAL ENGINEERING DESIGN PROCESS OF A MACHINE 55
2.3.1 THE DESIGN PROCESS 55
2.3.2 STRESS AND STRENGTH CALCULATIONS 57
2.3.3 DETAIL DRAWINGS 59
2.3.4 TECHNICAL DOCUMENTATION 60
2.4 MECHANICAL EQUIPMENT STANDARDS 61
2.4.1 MACHINERY DIRECTIVE 61
2.4.2 USE OF WORK EQUIPMENT DIRECTIVE 64
2.4.3 FEM STANDARDS 65
3 THESIS DEVELOPMENT 69
3.1 DESCRIBING THE PROBLEM 69
3.2 BENCHMARKING 70
3.2.1 ANALYSIS OF EXISTING SOLUTIONS IN THE MARKET 70
3.2.2 ANALYSIS OF EXISTING PATENTS 75
3.2.3 PROBLEMS ENCOUNTERED AND HOW TO IMPROVE 77
3.3 PRODUCT DEFINITION 78
3.3.1 MAIN REQUIREMENTS 78
3.3.2 SELECTION OF SOLUTIONS FOUND FOR THE MAIN REQUIREMENTS 79
3.3.3 PRELIMINARY TECHNICAL SPECIFICATIONS 81
3.4 MECHANICAL DESIGN 83
3.4.1 INITIAL SKETCHES 90
3.4.2 PRELIMINARY CALCULATIONS 91
3.4.3 DESIGN OF THE MAIN STRUCTURE 109
3.4.4 DESIGN OF THE TRAVELLING SYSTEM 110
3.4.5 DESIGN OF THE EXTRACTION SYSTEM 119
3.4.6 DESIGN OF THE PICKING SYSTEM 130
3.4.7 SELECTION OF ELECTRICAL EQUIPMENT 134
3.4.8 INTERFACES, COVERS AND TRANSPORTATION POINTS 143
3.4.9 FINAL CALCULATIONS 146
3.4.10 FINAL TECHNICAL SPECIFICATIONS 226
3.4.11 DETAIL DRAWINGS 227
4 CONCLUSIONS AND PROPOSALS OF FUTURE WORKS 233
4.1 CONCLUSIONS 233
4.2 PROPOSALS OF FUTURE WORKS 234
5 REFERENCES AND OTHER SOURCES OF INFORMATION 237
6 ANNEXES 249

INTRODUCTION

1.1 OVERVIEW
1.2 MAIN GOALS
1.3 METHODOLOGY
1.4 THESIS' STRUCTURE
1.5 TUTORING COMPANY

1 INTRODUCTION

1.1 OVERVIEW

Today, intralogistics has played an increasingly important role in the industrial world as a vehicle for optimizing processes, automating operations, and facilitating the flow of information and materials within business units. It is a process that seeks to design specific and highly complex technological solutions for the integration and management of the flow of information and material from warehouses, manufacturing units or distribution centers.

Covering diverse areas of knowledge, such as project management, mechanical engineering, electrical engineering or software engineering, intralogistics enables to increase resource productivity and reduce operational costs by properly controlling and processing the flow of information, and efficiently move materials and warehouse products through sophisticated material handling equipment.

Through material handling equipment, intralogistics serves the warehouses in diverse operations from the receiving of the product until it is properly ready to be delivered to the customer. However, it is in the storage operation that intralogistics produces a special impact on warehouses through Automated Storage and Retrieval Systems (AS/RS), a solution increasingly developed in warehouses around the world.
$\mathrm{AS} / \mathrm{RS}$ are storage systems that perform the storage and retrieval operations of the products, usually pallets or boxes in rack structures, automatically through machines specifically developed for this purpose. These machines are called Storage/Retrieval machines and can be stacker cranes, mini loads or satellite vehicles, depending on the type of AS/RS.

The Pallet/Box Shuttle AS/RS is one of the newly developed AS/RS types, and the most emergent in the past few years. An innovative solution that has as principle of operation the storage of boxes or pallets through several vehicles that move inside the rack structure, carrying out the whole operation automatically.

The present work was based on the principle of operation of the Box Shuttle AS/RS, in other words, its Storage/Retrieval Machine: the Shuttle Vehicle.

1.2 MAIN GOALS

The main objective of this work was to innovate the shuttle vehicle for the Box Shuttle $\mathrm{AS} / \mathrm{RS}$, in other words, take an existing solution and develop something different to what already exists on the market, taking this type of AS/RS to a new level.

In addition to the main objective, the following objectives were established:

1) Develop a shuttle vehicle capable of handling boxes with mass and defined dimensions;
2) Mechanically design a travelling system incorporated in the shuttle vehicle capable of moving it along the rack structure automatically and accurately;
3) Mechanically design an extraction system incorporated in the shuttle vehicle capable of extracting and placing the boxes in the rack structure automatically and accurately;
4) Mechanically design a picking system incorporated in the shuttle vehicle that allows to carry out the picking operations directly on the rack structure automatically and accurately;
5) Develop the parts and systems of the shuttle vehicle, ensuring easy assembly and removal, and minimizing the risk of accidents;
6) Define the sensors and electrical components to be applied in the shuttle vehicle to automate it and provide the necessary safety for its operation;
7) Study the operation of the shuttle vehicle when inserted in a rack structure;
8) Produce the necessary technical documentation to manufacture the shuttle vehicle.

1.3 METHODOLOGY

The methodology adopted to achieve the proposed objectives was the following:

1) Define concretely what problem is the basis of this work;
2) Analyze the main solutions in the market in order to obtain the strengths and weaknesses of each one;
3) Define how to improve existing weaknesses, and especially how to innovate the shuttle vehicle;
4) Define the main requirements to be considered for the development of the equipment;
5) Make initial sketches of previous ideas for mechanical design, for communication and validation of preliminary decisions;
6) Begin by designing the main structure of the shuttle vehicle;
7) Mechanically develop the shuttle vehicle travelling system with incorporation in the main structure, validating the critical parts with adequate calculations;
8) Mechanically develop the extraction system of the shuttle vehicle with incorporation in the main structure, validating the critical parts with adequate calculations;
9) Mechanically develop the picking system of the shuttle vehicle with incorporation in the main structure, validating the critical parts with adequate calculations;
10) Select the electrical equipment to be applied in the shuttle vehicle;
11) Design covers and transport points;
12) Study the interfaces of the shuttle vehicle with a hypothetical system with a rack structure;
13) List the technical specifications of the equipment developed;
14) Produce the detail drawings needed to fabricate the parts and assemble all the equipment.

1.4 THESIS' STRUCTURE

The present work, entitled "Development of an Innovative Shuttle Vehicle for Automated Storage and Retrieval Systems", is divided into four main sections.

The first section corresponds to the introduction, where it is intended to integrate the reader into the theme of this work, present the proposed objectives and define the methodology to achieve these objectives.

The second section is the background and corresponds to an intensive work of collecting theoretical information necessary to understand the development of the dissertation. It is subdivided into four sections: the role of logistics in supply chain management, AS/RS and all of its components, the mechanical design process of a machine, and the most relevant standards for mechanical equipment.

The third section corresponds to the thesis development, where it starts by describing the problem to be solved, presenting the benchmarking, and establishing the definition of the product with the requirements for its development. Then the whole mechanical design is presented, this being the main section of the work, from the initial sketches, through the design and calculations of each shuttle vehicle system, to the detailed drawings.

The fourth section corresponds to the conclusions and proposal of future works, describing what objectives have been achieved, what are the main limitations of the equipment developed and what works can be done in the future from this one.

1.5 TUTORING COMPANY

Consoveyo, S.A. (Figure 1) is a company specialized in automated material handling and storage systems. It is a business partner responsible for designing and building turnkey solutions for customers' intralogistics applications, by integrating all the systems involved.

This company was created in 1984 within one of the divisions of the group Efacec with the name Automação e Robótica. In 2015, it was acquired by the Körber group, a technology group with a strong market position, present worldwide and represented by around 12000 employees. Since then, Consoveyo, S.A. is an integral part of the Logistics

Systems Business Area of the Körber group and has officially changed its name in 2017 [1].

CONSOVEYO
 KÖRBER SOLUTIONS

Figure 1 - Company logo Consoveyo, S.A [1].

BACKGROUND

2.1 LOGISTICS IN SUPPLY CHAIN MANAGEMENT
2.2 AUTOMATED STORAGE AND RETRIEVAL SYSTEMS
2.3 MECHANICAL ENGINEERING DESIGN PROCESS OF A MACHINE
2.4 MECHANICAL EQUIPMENT STANDARDS

2 BACKGROUND

2.1 LOGISTICS IN SUPPLY CHAIN MANAGEMENT

Nowadays, products and services are delivered to the market every minute around the world. Behind this pace of demand and supply are millions of operations and activities between organizations that happen simultaneously so that every product and service is delivered on time. To achieve this, there must be maximum optimization of the flow of materials and information across all businesses, where high cadences and responsiveness are prime conditions to follow the evolution of the market.

The set of all parts involved in the actions necessary to put a product in the market from design to delivery to the customer is known as supply chain. Like Michael Hugos has said in his book Essentials of Supply Chain Management: "Supply chains refer to networks of companies that work together and coordinate their actions to deliver a product to market" [2].

To achieve maximum optimization of a supply chain there is another concept called supply chain management. This term appeared to define and classify the attitudes that are taken to improve the results of the supply chain. According to Michael Hugos in his book Essentials of Supply Chain Management: "Supply chain management is the coordination of production, inventory, location, and transportation among the participants in a supply chain to achieve the best mix of responsiveness and efficiency for the market being served" [2].

Sometimes the concept of supply chain management is confused with the concept of logistics. The difference is that the first one deals with suppliers, the organization itself, and customers as an individual association, networking all of them (Figure 2). The second one manages the actions and activities of a single organization, creating a single strategy for the flow of product and information through a business. For this reason, supply chain management is much more encompassing than logistics (Figure 3) [2],[3],[4].

Figure 2 - The idea of a network of suppliers and customers in a supply chain [3].

Figure 3 - Supply Chain Management is more encompassing than Logistics [4].
A definition of logistics was told by D. Bowersox, D. Closs and M. Cooper in their book Supply Chain Logistics Management: "Logistics is the process that creates value by timing and positioning inventory; it is the combination of a firm's order management, inventory, transportation, warehousing, materials handling, and packaging as integrated throughout a facility network". In other words, logistics networks five major areas of a company are: customer service, purchasing, production planning, warehouse, and transport (Figure 4) [4],[5].

Figure 4 - Company's areas managed by logistics [4].
The present work focuses on the subjects warehousing, materials handling and packaging. From the perspective of logistics and supply chain management, these issues are usually managed by suppliers of intralogistics solutions and Systems Integrators, topics that are described in the next sections.

2.1.1 INTRALOGISTICS AND WAREHOUSE OPERATIONS

The term intralogistics is relatively recent and has been increasingly used with the evolution of logistics in recent years. However, there is still no official meaning in the dictionary, and the existing definitions are those that are presented by companies dedicated to this type of business. So, what is intralogistics?

Many people relate the term intralogistics only to material handling technology, however there is much more to know about the subject. Intralogistics is the process of optimizing, automating, integrating and managing the flow of materials and information that circulates within a business unit and sometimes within a supply chain. It can be found within warehouses, manufacturing units, and distribution centers, but it is so specific that solutions are designed exclusively for each company (Figure 5). It is impossible to copy a system implemented in a single company, apply it to another and obtain the same results. In addition, it requires high knowledge in several subjects and very specific technical skills in the following areas [6],[7],[8]:

1) Project Management;
2) Industrial, Mechanical, Electrical and Software Engineering;
3) Systems Design, Integration, and Implementation;
4) Remote Monitoring and Technical Support.

Figure 5 - Example of an Intralogistics System [8].
Building on very sophisticated databases and warehouse management software, intralogistics enables increased resource productivity while reducing operational costs through control and processing of information along with a variety of material handling
technologies. But more important than all this, intralogistics increases the competitiveness of companies [6].

Using advanced material handling equipment, intralogistics serves warehouses in various operations. A warehouse reorganizes and repackages product, passing it through a series of operations until it is effectively ready to be delivered to the customer. Generally, the material flow is composed by a single sequence of steps from receipt of bulk shipments to final delivery of products to the customer. Those steps are divided into two major groups (Figure 6) [9]:

1) Inbound Processes (happen from the suppliers to the storage locations):
a. Receiving;
b. Put-away.
2) Outbound Processes (happen from the storage locations to the customers site):
a. Order-picking;
b. Packing and Shipping

Figure 6 - Physical processes that constitute the material flow in a warehouse [9].
The first stage of the sequence is called the Receiving process and it is where the warehouse receives goods from other suppliers. It begins with the arrival of a prior notification that makes it possible to prepare the reception and coordinate with other activities that take place inside the warehouse. After that, the product arrives (in larger units like pallets or cases) and is unloaded, inspected and registered in the computer system. The complete process ends when everything is staged for Put-away [9].

The second stage is the Put-away process. It is the transfer of the products from the Receiving area to the warehouse so, as such, its efficiency highly depends on the warehouse layout and storage disposition (see section 2.2 for more detailed information). The storage location and the distance from the Receiving area have major influence on the speed of subsequent retrieval of products, increasing the cost of the operation. Besides that, it is also essential to know all the time what is the current availability of the warehouse as well as its real capacity, being necessary an inventory of storage locations and a constant scanning to record where the products have been placed, which increases the complexity of the warehouse management system (WMS), a large software system that comprises all data and information of a warehouse [9].

[^0]Intralogistics helps the Put-away process because the flow of goods throughout the warehouse and the subsequent storage can be fully automated, using advanced technologies and sophisticated material handling equipment to perform specific tasks in a faster and cleaner way. A detailed description of the storage operations and respective process automation solutions was provided in section 2.2.

The third stage represents about 55% of warehouse operating costs, so it is the most important process in the sequence. This process is called Order-picking and, as the name indicates, begins with a customer order that is something like a list with specific items and quantities. To fulfill the list, it is necessary to verify the inventory available for each item and reorganize the sequence to achieve great efficiency by reducing the travel in the warehouse around the storage locations. All of this is done by the WMS, which makes a major difference in companies because there's a lot of unproductive time in the travelling part of the picking actions. Therefore, there is a constant search to optimize Order-picking processes and increase warehouse cadences and responsiveness for the company to become increasingly competitive, because the more customer orders a company can respond to, the more it will be able to sell [9].

Generally, there are two types of picking: the carton-picking and the broken-case picking. The difference is in the size and geometry of the component to pick. The first one is all about picking full cartons or cases, the second one is the picking of less-thancarton quantities, requiring much more labor due to handling of smallest units of measure in the warehouse. With the evolution of intralogistics, it is now possible to fully automate both with solutions like stacker cranes or pick and packing robots (see section 2.2.2 for more detailed information), increasing the competitiveness of a warehouse [9].

The last stage is the Packing and Shipping operation. By this time, all customer orders are fulfilled and checked so they must be packed in containers to send to the customer. This operation is labor-intensive but there is almost none unproductive time. The only difficulty here is that customers prefer to receive all products in as few containers as possible to facilitate the unloading process, so there must be a huge use of the volume of the containers so that this need can be satisfied, being essential to take care so that all orders arrive to packing together [9].

Since the Packing process has put together all items in a larger container, the Shipping operation deals with larger units than the Order-picking, so this is not an arduous task. This the time that the trailer leaves the warehouse to make the delivery to the customer site, so the operator needs to register in the WMS all the individual containers that leave the warehouse and enter the system of the shipper and the subsequent departure of the trailer, giving as finished the sequence of the material flow inside a warehouse [9].

Nowadays, what they say is the fourth revolution of intralogistics is happening. Major changes are happening, and distribution centers and warehouses will have to adapt to this rate of evolution. Innovative solutions and new equipment appear every day and the main change is going through an even greater cooperation between the man and the machine, where the robots deserve a special highlight (Figure 7) [10],[11].

So far, robots were only found in manufacturing units and assembly lines where they performed tasks such as the manufacture of parts by welding processes or the assembly of specific sets. From the point of view of intralogistics, robots are now used in conjunction with the automated equipment existing in the warehouses to perform operations such as Receiving, Put-away, Picking, Packing, and Shipping. Because of their ability to operate non-stop, these devices make warehouses less dependent on human labor and increase responsiveness by optimizing the material handling operations. Humans are already working side by side with robots and that is the great step for intralogistics [10].

Figure 7 - Robots and humans are now working together in warehouses and distribution centers [11].

2.1.2 SYSTEMS INTEGRATORS

In a logistics system, there are many material handling equipment working together to create a complete handling process. A system like this incorporates manual and automated mechanical devices to handle the products, while managing all the information that is processed during the materials flow in operations like storage, receiving or picking. Besides that, the linkage between all mechanical devices with a network of communications allows a continuous materials flow throughout the entire warehouse, minimizing delays and unnecessary storage activities [12].

Given its role in providing current logistics solutions, it is important to describe what System Integrators are and how they influence business benefits. A System Integrator is an individual or an organization that has the knowledge and the tools to combine subsystems, making them work together to create a single system that performs a set of operations in the most efficient way possible. In the optic of intralogistics, it is a company that is responsible for the implementation of a logistics system performing the design, installation and commissioning of an entire project that guarantees the combination and communication between all the equipment so that the flow of
materials is the most efficient (Figure 8). The subsystems that are integrated are the equipment, controls and information software (see section 2.2.2 for more information about typical systems) [13],[14].

Figure 8 - System Integrators can integrate several equipment for a single materials flow in a logistic system [14].
To be a truly competitive Systems Integrator in the intralogistics and automated warehouses market, there must be total control and cohesion of the following technical areas [15]:

1) Information Technology:
a. Automation Engineering;
b. Software Engineering.
2) Electrical Engineering;
3) Mechanical Engineering.

The implementation of a complete logistics system requires an interdisciplinary way of working with universal development methods and processes for each individual discipline that has its own aspects and technical details. However, even with each discipline working individually there must be constant communication between the entire team to ensure an effective response to the customer's request [15].

There are some models that have been designed to define the process of designing an integrated system from the customer's requirements to the final delivery of the product. In VDI Guideline 2206, a process model in a V shape is presented for the development of mechatronic systems - systems that intersect the knowledge of three main technical disciplines: information technology; mechanical engineering; electrical engineering. By analyzing the model in Figure 9, this can be interpreted as an iterative sequence until the best solution is reached. It all starts with the requirements of the customer, which are analyzed by the systems designer who compiles them and begins by defining a first approximation of the desired solution and the way forward. The engineering, divided by different disciplines, seeks to detail the different subsystems so that the systems integration team can connect them and create the final system, which will be provided
to the client, according to the characteristics initially defined by the system designer. Only with constant communication between the different areas of development it is possible to achieve the best solution, which is the main objective of a Systems Integrator [15].

Figure 9 - V model for development of mechatronic systems integrated. Adapted from [15].
Although there are some similarities between both, a Systems Integrator cannot be confused with an Original Equipment Manufacturer (OEM). In the intralogistics industry, an OEM is a person or company that produces specific types of logistics equipment and sells these to clients. These equipment, such as conveyors, Automated Guided Vehicles (AGV) or robots, are sold as individual products and then inserted into a logistics system by a System Integrator [13].

There are some significant differences between a System Integrator and an OEM. The most important one is that a System Integrator seeks to deliver the best solution possible for the client requirements and create a long-term relation for the supply of spare parts and maintenance services, even if there is the need to look for solutions in other suppliers. On the other hand, OEM's only sell the products that exist in the company's catalogue so, to have spare parts available, they try to sell products that are not in a declining phase. Since they are limited to their product range, the risk in the OEM's strategy is that the solution provided can make system processing difficult [13].

Another major difference is, as one would expect, in product integration. If Systems Integrators are experts in integrating products, whether theirs or from of other manufacturers, and always try to find the best combination possible to meet end-user needs, OEMs do not have the ability to integrate their products with others, and they always try to sell products that generate greater profit even if it is not the most appropriate solution for the customer's system [13].

Briefly, a Systems Integrator is someone who can optimize the entire logistics system of a company. In addition to providing the entire system of equipment, controls, software and installation services, a Systems Integrator can analyze a complex material handling project and optimize it to the maximum to increase its efficiency. For the customer, it is enough to define the initial parameters and the rest is done by the System Integrator who delivers a turnkey solution [14].

2.2 AUTOMATED STORAGE AND RETRIEVAL SYSTEMS

In logistics, storage operations are one of the processes with the greatest source of income for the warehouse. Due to the lack of measures to implement optimization solutions for these processes, many warehouses do not run at maximum efficiency, which increases operating costs unnecessarily. Problems like bad occupation of storeplaces and underutilization of storage devices are easily solved with specific storage techniques [16].

The task of storing can be separated in the two operations that are performed with the storage unit [16]:

1) storing of the storage unit by a device specifically designed to stock the storage system;
2) retrieving of the storage unit into the storage system by the same device or a similar one.

Having these two operations as a starting point, the two most important components of a storage system are the unit loads to handle and the storage equipment used to hold or buffer them over a period [17].

A unit load is the set of one or more products and the structure that supports them (such as pallets or boxes) maintaining their integrity when they are handled. The fact of handling the products/materials through unit loads brings some advantages to the logistics system of a company. These include the possibility of using standard material handling equipment which, in turn, reduces material flow times and handling costs [17].

The main structures used in warehouses and in-process storages to support the materials and form a unit load are described in Table 1 [17],[18],[19],[20],[21].

Table 1 - Types of structures used to form unit loads [17],[18],[19],[20],[21].

Designation	Definition	Materials
Pallets	Rigid structure with openings at its base for attachment of a forklift to lift and transport. The products are placed on top of it.	Wood (most common), pressed wood fiber, corrugated fiberboard, rubber, plastic, or metal.
Skids	Like pallets, but with a continuous plate at the top that allows the transport of heavier loads. It also lets the attachment of forklifts. The products are also placed on top of it.	Metal (most common), wood, or plastic.
Slip Sheets	Thick piece of paper or plastic that lies on the floor and the load is placed on top of it. Tabs on the end of the sheet are grabbed by a special push/pull lift truck attachment. The products are placed on top of it.	Thick paper (most common), corrugated fiber, or plastic.
Tote Pans	Medium/small dimensions container that is used to protect and unitize loose discrete items. Due to their high rigidity, they can be reused.	Plastic (most common), or metal.

Although there are many types of storage equipment used to stock unit loads, this dissertation only focuses in the Automated Storage and Retrieval Systems (AS/RS).
$\mathrm{AS} / \mathrm{RS}$ are warehousing systems that are used for the operations of storage and retrieval of products in distribution centers and in-process storages. It is an integrated computercontrolled system that achieves fast and accurate random storage of products and materials through various levels of automation. The first systems appeared in the 1950's and 1960's in Europe, the United States and Japan, however, since then, there was a very significant evolution in computer systems, electrical controls and material handling equipment that contributed to the increase in the number of companies acquiring this kind of solutions for their warehouses [22].

A basic AS/RS normally consists of Storage and Retrieval (S / R) machines running on one or more rails between fixed aisles of storage racks (Figure 10). Despite the low human
intervention in its operation, there are several advantages in the use of this type of solutions. As this is an automatic system, it reduces the labor costs, floor space, and error rates, increasing reliability and material control (including security). On the other side, the disadvantages are the high investment and maintenance costs, and the low flexibility to modify the system design [5],[17].

A complete $\mathrm{AS} / \mathrm{RS}$ is composed by the following components [5],[17]:

1) Rack Structures;
2) Storage/Retrieval (S/R) Machines;
3) Input/Output Points (I/O-points);
4) Peripheral Equipment;
5) AS/RS Control Systems.

Figure 10 - Representation of an AS/RS [5].

2.2.1 RACK STRUCTURES

The rack structure is a fixed steel structure used to store the inventory, where pallets or bins are supported between load-supporting beams. Normally, a typical AS/RS uses high-rise stationary storage racks that can be freestanding or used to support the building (RSS - rack-supported structure), however there are other types of racks divided by two main groups (Figure 11): stationary racks and movable racks [17],[22].

Figure 11 - Classification of racks [22].

Stationary Racks

Stationary racks are fixed on the floor and there is low flexibility to modifications, however there is the possibility to increase rack capacity by increasing the size of the steel structure. This type of rack can be single deep or multiple deep (Figure 12), depending on the number of unit loads stored per position (single or multiple unit load per position, respectively) [17],[22].

Figure 12 - Single Deep Rack (a) and Multiple Deep Rack (b). Adapted from [17].

Movable Racks

Movable racks take up less floor space and allow greater flexibility for changes, however they are not very common in AS/RS since they are more expensive to implement. The movement can be linear or rotary, depending if it is a mobile rack (on rails) or a rotating rack (carousel) (Figure 13). Mobile or sliding racks are characterized by the movement
of racks along guide rails in floor that changes the location of the aisles. They are used when only single deep storage is possible and the space is limited. Rotating racks are carousels that consist of horizontally or vertically revolving storage levels (normally used for baskets or bins). Each level can rotate individually which makes this system achieve great efficiency of storing and retrieving [17],[22].

Figure 13 - Mobile Rack (a) and Rotating Rack (b). Adapted from [17].

2.2.2 STORAGE/RETRIEVAL MACHINES

The S / R machine is the device that run along aisles (horizontally and vertically) to serve rack slots on both sides of the aisles, executing the operations of storing and retrieving. In an AS/RS, this machine is what characterize and classify the several types of AS/RS existing. Figure 14 represents the types of $A S / R S$ and their S / R machines [17],[23].

Figure 14 - Types of AS/RS and their S/R machines [17],[23].

Unit Load AS/RS

The unit load AS/RS is normally used to store/retrieve unitized and palletized heavy loads in single or double deep stationary racks (Figure 15). This is the most common system found in warehouses and it has several advantages like fast speed, load stability and security of operations [17],[24].

Figure 15 - Unit Load AS/RS [24].
The S / R machine is a unit load stacker crane (Figure 16), a highly developed equipment that can handle up to eight unit loads. It runs horizontally along the aisle guided through rails and vertically through the hoist carriage guided in the mast of the machine structure. In a simplified way, this equipment is composed by the following components: a single or double mast with solid steel structure; a hoisting motor and drum wire to ensure the elevation of the hoist carriage and emergency stops; a top frame used to guide the top of the stacker crane through guide rollers and increase horizontal movement stability; a telescoping fork to store or retrieve the unit loads in or out of the storage rack with maximum security and damage prevention of the unit load; a carriage that moves vertically and supports both the telescopic fork and unit load; a bottom frame assembled on the rail through guide rollers that allows the horizontal movement through the travel machine (a driving wheel); an on-board controller that owns all automation and control systems of the entire equipment [25].

Figure 16 - Unit load stacker crane [25].
Another important characteristic of the unit load stacker crane is that it can operate in more than one aisle through mechanisms that transfer the stacker crane from one aisle to another. One example of these mechanisms is the pivoting wheels option in the bottom frame (Figure 17) [26].

Figure 17 - Pivoting wheels to transfer the stacker crane between aisles [26].

Mini Load AS/RS

The mini load AS/RS is similar to the unit load AS/RS in all aspects, however it is applied to store/retrieve lighter and smaller products that can be unitized in a tote pan or a bin. For that reason, this system has lighter components which makes it less expensive to implement, operate and maintain. On the other hand, it also has the advantages of fast material handling speed, load stability and security of operations. Figure 18 represents an example of a mini load AS/RS [17],[27].

Figure 18 - Mini load AS/RS [27].
The S / R machine is a mini load stacker crane (Figure 19). It is like the unit load stacker crane with the same main components, however, as it is dimensioned to handle lighter
loads, it is smaller and has a lighter main structure with a single mast and a carriage that can handle up to four unit loads. This equipment can also operate in more than one aisle [27].

Figure 19 - Mini load stacker crane [27].

Deep-lane AS/RS

Also similar to unit load AS/RS is the deep-lane AS/RS (Figure 20). The main difference is that this system is used to store palletized unit loads to greater depths in the storage rack (in multiple deep racks). In this sense, the space occupied by this system is also smaller, as well as the number of S / R machines needed. However, the main disadvantage of this system is that all the unit loads should be the same in order to achieve maximum efficiency of the system [17].

Figure 20 - Deep-lane AS/RS [17].

The stacker crane for this system is very similar to the unit load stacker crane in all components except the telescopic fork that is replaced by a satellite car positioned on the carriage (Figure 21). This component is no more than a cart that has four or more wheels and it moves at high speed under the palletized unit loads along two rails that are part of the racking system (Figure 22). It is capable of store and retrieve unit loads in and out of the racking structure by a lifting mechanism that transports the pallet. The power for this vehicle comes from batteries or supercapacitors that can be charged in the carriage [28],[29].

Figure 21 - Stacker crane with satellite car [29].

Figure 22 - Satellite car that moves under the palletized unit loads along two rails [28].

Pallet/Box Shuttle AS/RS

The most emerging AS/RS in recent years is the pallet/box shuttle AS/RS. This system, characterized by its high storage/retrieve cadences, has been one of the solutions of choice for the goods-to-person technologies. Among all the advantages, it is worth mentioning that it is a more compact storage system, with increased storage capacity and density, reduced handling times, and lower risk of accidents [30].

This solution is used to store/retrieve pallets or boxes (tote pans or bins), and the difference between the two strands lies in the type of rack structure and in the S/R machine. Regarding the rack structure, on the pallet shuttle AS/RS it uses a multiple deep stationary rack similar to the one used in the deep-lane AS/RS but with no aisles and more compact (Figure 23). On the box shuttle AS/RS it uses a single or double deep stationary rack very similar to the mini load AS/RS (Figure 24) [28],[30],[31].

Figure 23 - Pallet shuttle AS/RS [28].

Figure 24 - Box shuttle AS/RS [31].
The S / R machine for this solution is a shuttle vehicle (Figure 25), the great innovation of this system. Although it is very much like the satellite car used in the deep-lane AS/RS, there is no stacker crane in the aisles, which makes it possible to have multiple shuttle vehicles per aisle, one for each storage level. It also consists of a cart that has four or more wheels and moves at high speed along two rails that are part of the racking structure, but the vertical movement from one level of the rack to another is ensured by a second equipment which can be a lifter positioned at one end of the rack or an industrial truck (for pallets) that can remove and place the shuttle vehicles on the rack. However, there is a difference between the shuttle vehicle used to store pallets and the
one used to store boxes. The first runs under the pallets inside the rack slots and the storing/retrieving mechanism is a lifting device that is actuated when the vehicle is under the unit load. The box shuttle vehicle runs in the aisles of the rack structure and stores/retrieves on both sides of the aisles. The storing/retrieving mechanism is normally a telescopic load extractor [28],[30],[32].

Figure 25 - Shuttle vehicle for storing/retrieving of pallets (a) and boxes (b). Adapted from [28],[32].

Carousel AS/RS

The last type of AS/RS is the carousel AS/RS (Figure 26), a system that has the rotating rack as principle of operation. This is simply a series of adjacent storage columns mechanically connected and rotating horizontally around an oval track by an overhead or floor mounted drive mechanism, with no aisles and no machines inside the rack structure. Normally applied to store/retrieve bins or tote pans, this solution gained position in the market because it is a compact system that can achieve a high number of picks per hour [33],[34],[35].

Figure 26 - Carousel AS/RS [35].

The S / R machine works in conjunction with the rotary movement of the rack. It is a lifting system, normally positioned at the end of each storage set, capable of reaching each level of storage, storing/retrieving two or more unit loads simultaneously through a platform with an extraction mechanism (Figure 27) [34].

Figure 27 - Lifting system for the carousel AS/RS. Adapted from [34].
Still within the AS/RS carousel, it is important to mention two other variations with the same operating principle, which, although targeted to other markets and for different applications, are often included in the range of AS/RS solutions. The two variations available are as follows: the vertical carousel (Figure 28 - a), a set of horizontal shelves linked to an oval track which rotates vertically; the vertical lift module (Figure 28 - b), a storage system like the vertical carousel but with two parallel columns separated with fixed shelf locations for containers that are inserted/extracted and travel up and down by a lifting device [36],[37].

Figure 28 - Vertical carousel (a) and vertical lifting module (b). Adapted from [36],[37].

The I/O points location of the AS/RS are part of the warehouse layout, having influence in the cost associated with each storage location. For that reason, it is important to study all the options available and decide the one that reduces traveling costs. The I/O points location can be seen as the location of the receiving and shipping zones. These two zones can adopt two possible configurations: located at opposite sides of the rack structure (Figure 29) or located at the same side of the rack structure (Figure 30) [9].

The first option is the most used in AS/RS, being sometimes called the flow-through configuration because all unit loads flow from one side to the other. This configuration brings some advantages to the AS/RS like the possibility to make many storage locations of equal convenience with a conservative design, being appropriate for extremely high volume [9].

The second configuration is called the U-flow configuration because all unit loads flow in and out of the same side of the rack structure. Here, the best storage locations are much more convenient than the previous configuration, however there are more inconvenient storage locations, which is a disadvantage for high volume of storing/retrieving. On the other side, this solution allows expansion along three sides of the rack structure, and a more efficient use of fork lifts [9].

Figure 29 - Flow-through configuration: receiving and shipping located at opposite sides of the rack structure [9].

Figure 30 - U-flow configuration: receiving and shipping located at the same side of the rack structure [9].

2.2.4 PERIPHERAL EQUIPMENT SOLUTIONS FOR AUTOMATED STORAGES AND RETRIEVAL SYSTEMS

In an AS/RS, besides the main system with the rack structure and the S / R machines, there are many peripheral equipment to execute different operations and tasks to achieve maximum efficiency in a warehouse. Over the years, different equipment has been developed for certain types of operations and, due to their high applicability to the warehouses, many have become standard equipment for suppliers of intralogistics solutions [17].

Although there are many peripheral equipment for AS/RS, they can be divided into two broad categories: transport equipment and positioning equipment. The first category refers to all equipment that performs tasks of continuous movement of the material from one point to another (for example, from one workplace to another). The second covers all machines and devices designed to manipulate materials within a single workstation, performing tasks such as short positioning movements of parts

Figure 31 - Types of peripheral equipment for $\mathrm{AS} / \mathrm{RS}$ [17].
[17].
Given the wide variety of equipment, the two main categories can still be divided into sub categories, representing the families of equipment that operate on a similar principle or for the same purpose. This division between each of the categories is represented in Figure 31 [17].

2.2.4.1 CONVEYORS

Conveyors were one of the first equipment to appear in the market and may even be considered the "backbone" of material handling. Known for their simple technology that allows the movement of material between specific points, these devices offer great efficiency to move materials over a fixed path, having great flexibility to handle different types of loads and to be located on the floor or overhead. This is only possible due to a wide range of conveyors that have been developed over the years, each type being able
to offer different advantages. The main types of existing conveyors are shown in the Table 2 [17],[38],[39],[40],[41],[42],[43],[44].

Table 2 - Types of conveyors used as peripheral equipment for AS/RS [17],[38],[39],[40],[41],[42],[43],[44].

Designation	Definition
Gravity Conveyor	Since these are non-powered roller conveyors, they are one of the most economical material handling solutions. The loads move due to Earth's gravity, so these conveyors are usually inclined.

Similar to the gravity conveyor, the load moves over a horizontal set of rollers that rotate due to the action of a gearmotor or drive rollers.

This is a powered conveyor that moves loads through the movement of roller chain loops divided in two or more stringers to accommodate the load. The friction between the chain and the base of the load prevents slipping between the two.

Belt ConveyorFor incline/decline applications, the belt conveyor can move loads with great orientation due to the movement of a belt that is actuated by a gearmotor. With a great contact area between the load and the belt, this conveyor is effectively used for elevation changed.

Definition
The magnetic belt conveyor is like the
belt conveyor, the difference is that it
has a steel belt that moves over a
magnetic slider bed. That magnetic
surface is used to transport ferrous
materials vertically.

2.2.4.2 CRANES

When the material flow is not sufficient to justify the use of conveyors to move loads, an alternative and cost-effective solution is the use of cranes. These devices use hoists mechanisms to lift the loads and move them into a restricted area, however they have a few advantages compared to conveyors. With greater flexibility of movement than conveyors and lower than industrial trucks, the main advantage is the ability to handle
a greater variety of loads (geometries and weights) using simple technologies and mechanisms. Table 3 represents the main types of cranes used as peripheral equipment of AS/RS [17],[45],[46],[47].

Table 3 - Types of cranes used as peripheral equipment for AS/RS [17],[45],[46],[47].

2.2.4.3 LIFT TRUCKS

One of the material handling equipment found in virtually all manufacturing plants and warehouses is the lift truck. Being one of the greatest innovations for industrial logistics, this equipment is the most used for moving products at variable distances (usually short)
and flexible trajectories. Its operating principle addresses the lifting and transportation of the most varied products, functioning through manual or powered systems (normally hydraulic, electric or combustion systems) [17],[48].

Among all the advantages that a lift truck can offer, stand out the possibility of moving materials horizontally without restrictions of area or of route, being able to still make vertical movements through mechanisms of elevation. In this way, this equipment become more advantageous than conveyors or cranes for providing greater flexibility of movement [17],[48].

Table 4 represents the types of lift trucks that exist in the market. The differences between each type lie in certain operational characteristics of the lift trucks. These characteristics include the type of load to be handled, the type of power source, whether the operator can drive it, or whether it has the capacity to stack loads [17],[48],[49],[50],[51],[52],[53],[54].

Table 4 - Types of lift trucks existing in the market [17],[48],[49],[50],[51],[52],[53],[54].

Designation	Definition/Characteristics Hond trucks are used for manual transport of non-palletized loads. It is a trolley that tilts to support the load, moving on two wheels by the operator. Among all lift trucks, this is the most economical solution, since it is not powered.
Load Type: Non-Pallet	

Definition/Characteristics
The difference between the walkie stacker and
the pallet jack is the stacking capacity and the
existence of power sources for the lifting and
translating mechanisms. For that reason, the
operator can handle the vehicle and walk
without making any effort (the powered travel
speed is limited to a normal walking pace).
Load Type: Pallet

2.2.4.4 DRIVERLESS TRANSPORT VEHICLES

Still within the transport equipment group, the last sub category is the one that puts together the transport vehicles that do not require human interaction. These efficient vehicles are characterized by their high speed, high throughput, great flexibility and great reliability, existing very economical solutions for the amount of advantages that can be obtained [55],[56].

These solutions are used to create complex sorting systems and move loads between very distant points which, in fact, makes it a great alternative for conveyor systems with the added advantage of being able to move on complex routes and perform other operations besides linear transport. Besides that, a wide range of load handling units can fit in a transport vehicle, even if they are not standardized, which allows to solve many problems of transport on certain products [55],[56].

The principle of movement of these vehicles consists on guiding them through rails or laser reflection, depending on the type of transport vehicle. Each solution existing in the market is described in Table 5 [55],[57],[58],[59].

Table 5 - Types of peripheral transport vehicles for AS/RS [55],[57],[58],[59].
The RGV is an automatic carrier mounted on the
floor and guided through rails. Capable of
moving in linear or curvilinear directions, this
equipment moves safely and smoothly by
carrying one or more load units which, in
addition to being transported between two
distinct points, are also automatically
loaded/unloaded through the conveyor
mounted on top of the RGV.

2.2.4.5 POSITIONING EQUIPMENT

The category of positioning equipment, unlike transport equipment, encompasses relatively recent solutions that have gained a prominent place in the market during the last 20/30 years, as a result of a marked evolution in the area of intralogistics that caused the introduction of new operations besides the traditional transport of the unit loads between two different points [17].
Starting with the sub category of the positioning tables, it includes all the equipment that carry out operations of lifting or turning in short working areas. For example, in a conveyor system there may be a need to transfer the unit loads from one line to another in a transverse direction, or in a different height. The main equipment developed to perform this type of tasks are represented in Table 6 [60],[61],[62],[63].

Table 6 - Types of positioning tables used as peripheral equipment for AS/RS [60],[61],[62],[63].
The lift table is, as the name indicates, used to
carry out lifting operations. This equipment is
used to hold the vertical conveyor in situations
where the drop causes such a low stroke (for
example the difference between the conveyor
line and the loading / unloading dock) that the
use of the vertical conveyor is not justified.
Typically, a conveyor is mounted on the top of
the lifting table so that it is possible to transfer
the unit load to another work station or
conveyor.
Operation Type: Lifting
Power Source: Electric, Hydraulic or Pneumatic

2.2.4.6 ROBOTS

The continuous development of advanced robots is changing the world with each passing day, influencing society and its behaviors in a deep and positive way. Today, this technology is present in many places, helping or replacing human actions in medicine, in the environment, in manufacturing plants, or even at home [64].

The wide acceptance and demand for this type of technology is essentially due to the fact that it allows one or more complex operations to be carried out efficiently. Although some initial investment is still needed, there are some advantages that should be highlighted [65]:

1) Quality improvement - robots efficiently perform tasks that require high positioning accuracy, high repeatability, high-precision inspection and sensor measurement, increasing product quality;
2) Improvement of the working environment - robots can perform heavy and repetitive work in contaminated environments, avoiding the risk of injury when these same tasks are performed with human labor;
3) Cost effectiveness - a robot can operate with maximum efficiency for 24 hours without stoppages, something that with human labor would only be possible by creating three shifts, which increases the cost of salaries of operators;
4) Productive flexibility - robots can be reprogrammed and, by changing only the manipulation tool and maintaining the main structure and movement axes, it becomes easily possible to perform new tasks on new products.

Analyzing the different advantages, it makes sense that the robots are applied in logistics, considering the market growth in this area. In fact, such technologies are increasingly being used in warehouses and distribution centers, however, many studies point out that in the future it will be possible to observe operators and robots working side by side, a real industrial revolution that will make services faster, safer and more productive [64].

Numerous robots can already be found in AS/RS peripheral equipment, being able to perform various tasks continuously (24/7). Currently, these logistic robots consist mainly of traditional robots with one or more grippers to pick and move items within a logistics operation, however, these are still solutions developed specifically for each customer (for example, fully automatic picking stations), because the logistics robots have not yet reached a level of intelligence and simplicity of mechanisms that allow them to be a standard and economic solution. Despite this, many have already been developed to perform certain tasks in the warehouses. The main operations that a logistic robot is capable of performing are described in Figure 32 [64],[66],[67].

Figure 32 - Tasks and functions of logistics robots. Adapted from [66],[67].

2.2.4.7 PICKING STATIONS

As mentioned in section 2.1.1, one of the most important functions of every distribution center and many warehouses is the order fulfillment process. As such, it is extremely important that this operation is fast, efficient and accurate, as it is here that many companies can differentiate themselves from their competitors, in other words, the ability to respond to customer orders.

There are many engineering order fulfillment systems that depend on several factors related intrinsically with the activity profile and objectives of the warehouse or distribution center. Although there are several order fulfillment configurations, AS/RS normally operates according to the "goods-to-person" configuration which, as the name implies, means that the operator responsible for order picking does not move and the system itself brings the products to the picking station (normally through conveyors). In the picking station, the product is picked and then send back to the storage location [68].

The "goods-to-person" technology is the best when it comes to operator's productivity and security, since there is no need for walking to perform the picking tasks. Besides, these systems save a lot of space in the warehouses due to the fixed working stations, enabling an easy expansion when needed [68].

When picking tasks are performed manually, there are many solutions directed to the diverse types of picking. Picking stations should be adapted to the desired performance, product characteristics and ergonomics and space requirements. This is where the interface between the AS/RS and the human is located, so some standard solutions were developed for the most common requirements of the warehouses and distribution centers. The main solutions of "goods-to-person" picking stations existing in the market are represented in Table 7 [68],[69],[70].

Table 7 - "Goods-to-person" picking stations for AS/RS [69],[70].

Designation	Definition/Characteristics
Picking Station for Single Orders	In this solution, the operator works on a single order at a time. There is only one source carton and one order box are moved fully automated around the picking station. The advantages are the lowest failure rates and the high flexibility for different load types and sizes.
Picking Station for Multiple	In this system, there is one or two source cartons Orders multiple order boxes. The operator supplies each of the order boxes with the products that are common in different customers' orders. The main advantage is the maximum throughput rate.

2.2.5 AS/RS CONTROL SYSTEMS

All production systems that perform operations automatically need control systems so that processes can be performed in an accurate and orderly manner. These control systems make up the various existing automation solutions for all other equipment and machines of the manufacturing units [71].

Demand for automation solutions has been steadily increasing over the years. This is fundamentally due to the advantages that automation can provide as higher production speed, higher product quality, higher working safety and lower labor costs. These advantages are much more relevant and evident in repetitive and systematic processes, where high speed and precision are required in the execution of multiple operations, since the initial investment is low compared to the amount of advantages that are obtained. An AS/RS and its peripheral equipment are one of the areas of greater application of automation and control systems because, as can be seen in sections 2.2 and 2.2.2, material handling operations consist of simple and repetitive movements involving the precise positioning of products [71].

Production systems are controlled and executed through industrial control systems (ICS). In automatic processes, with several interconnected equipment, there are three main types of ICS's for different types of applications: programmable logic controllers (PLC), distributed control systems (DCS), and supervisory control and data acquisition (SCADA). In this work, DCS and SCADA systems are not very important since they apply in situations that require the control and supervisory of an entire process with points that can be widely distant at a geographical level, such as the water distribution process or the production process of an oil company. On the other hand, PLC systems are used to control an individual machine or a set of equipment that performs a single process, sending the information to the supervision central. For this reason, taking into account that this is a work directed to the machine design subject, PLC systems were given greater focus [72].

PLC's (Figure 33) are compact, modular and multifunctional controllers based on microprocessors prepared for industrial environments. It consists of a Central Processing Unit (CPU), a programmable memory and input and output ports, three components that together allow the control of operations in machines and automatic processes. The input and output ports provide information about the machines (from the sensors) and thus act on them (via the actuators). On the other hand, in order for the CPU to process all the information and properly send the commands to the machine it is necessary to create a program with a sequence of instructions and logical functions that is then stored in the memory of the PLC. The great advantage of these systems is their versatility, because as the whole architecture is modular, the automation system can always be optimized or even grow with the increase in the number or complexity of the variables to be controlled [65],[73].

Figure 33 - Example of a PLC and its functioning principle. Adapted from [65],[73].
In a process like an $\mathrm{AS} / \mathrm{RS}$, where all equipment is interconnected, there is a constant communication between all automatisms and the central of control and supervision. All of this is possible thanks to the existence of specialized software, communication networks and industrial terminals that ensure the transmission of information, the exploitation, remote control and supervision of the entire process in a compatible way [65].

2.2.5.1 SENSORS

As already mentioned, PLC's receive the information about the machines and their operations through sensors. These devices can convert physical phenomena into electrical signals, functioning as the interface between the physical domain, composed of the operations performed by the machines, and the electrical domain, where all the ICS's operate [73].

Currently, there is a very wide range of sensors capable of performing all kinds of functions. In material handling equipment, sensors are mostly used for positioning products and machine components, for identification of materials, or for accident prevention and safety assurance of the operators. In this work, due to the wide range of sensors, only those that are most used in intralogistics equipment were approached (Figure 34) [74],[75].

Figure 34 - Main categories of sensors used in intralogistics equipment [74],[75].

Sensors for Machine Positioning

Sensors for machine positioning constitute the group of sensors used in virtually all material handling equipment, since they are simple to install, have a long lifespan and a high detection accuracy. In addition, these sensors can be used in different types of applications, either to position the platform of a stacker crane in the rack, or to detect the end of the stacker crane movement in the aisle. Table 8 represents the main sensors used for machine positioning [75],[76],[77],[78].

Table 8 - Sensors used for machine positioning [75],[76],[77],[78].

Functioning Principle/Applications
This is an electromechanical contact device that
has a small actuator connected to a set of
contacts. When this actuator is actuated the
electrical circuit is interrupted and a signal is sent
to the PLC. Its robustness and ease of installation
make this sensor to be used in detecting the
presence of loads on the machines and, as the
name implies, in detecting the limit switches of
the machines.

Photoelectric Sensors

This is a device that detects the presence of any object through the break of a light beam (a modulated LED) that is emitted between a transmitter and a photoelectric receiver. It is mainly used to measure the distance of an object or just to detect its presence.
Functioning Principle/Applications

Sensors for Product Identification

In an AS/RS, products move throughout the system independently and without any human intervention. Each product can take different starting and finishing points, and each machine knows what to do with every product, but everything is done autonomously through a constant communication between products and machines, which drives the entire process in an efficient way. When everything is incorporated in a network created through the Internet of Things, it becomes possible to convert warehousing systems and manufacturing units into smart environments where the entire process can be controlled and supervised through a unique system, the vision for the fourth industrial revolution [79].

For the communication between products and machines to be possible, it is very important that each product has its own unique identity, so that there are never two products that are completely alike. In addition, it is also essential that this identity or reference has all the data about the product and is easy to identify or read. Only then will it be possible for each machine to acquire the data of each product and know the operations to be performed.

Product characterization and identification devices are part of the AS/RS automation and control systems. Over the years, innovative ways and tools to identify products appeared in the market, increasing the ease of access and visualization for the operators and machines. Although there are many other forms to do the task, the most used devices for product identification are represented in Figure 35 [75],[80],[81],[82].

Figure 35 - Examples of readers for product identification by: bar code (a), data matrix (b) or radio frequency (c). Adapted from [75],[80],[81],[82].

Sensors for Machine Safety

Due to the unpredictability and danger related to the operation of the machines, automation solutions were developed to reduce the risk of accidents and improve the relationship between operators and machines. These solutions include several sensors
that are connected to the equipment's PLCs and are triggered when, for example, there is a fault in the machine's operation or when the operator has exceeded safety distances. Some of the main types of sensors used in machine safety are described in Table 9 [83],[75].

Table 9 - Sensors used for machine safety [83],[75].
Safety light curtains protect operators from
access to hazardous areas of machinery, usually
the mobile components. Its operation is a set of
light beams which, when interrupted,
immediately stop one or several functions of the
machines.

Sensors for robots and driverless vehicles were not approached in such detail since they are sensors too specific for the main subjects of this work.

2.2.5.2 DRIVE SYSTEMS (ACTUATORS)

From the information collected from the sensors, the PLCs act on the machine through drive systems (or actuators) capable of performing the most varied type of operations. In this way, actuators are components that convert signals sent by the controllers into physical parameters. In other words, actuators are devices that convert a type of energy (generated from a source) into mechanical energy (usually in the form of linear or rotational motions) [65].

The types of actuators that exist are directly related to the source of power that makes them operate. In automatic materials handling equipment, the most commonly used types of actuators are those that operate from hydraulic, pneumatic and electric power (Figure 36). In a very brief way, hydraulic actuators are driven by the movement of a hydraulic fluid under pressure, pneumatic actuators are driven by the movement of compressed air, and electric actuators are driven through the electricity that is generated by the power stations. The choice of the type of actuator to be used in a particular equipment depends on several factors such as the type of load, the function to be performed, the desired accuracy, or even the cost [84],[85].

Figure 36 - Types of actuators used in material handling equipment [84],[85].
In the following sections, a more detailed description of each type of actuator was made.

Hydraulic Actuators

As already mentioned, hydraulic actuators are driven by the transport of hydraulic fluids under pressure. As such, these actuators are inserted in a hydraulic circuit, which is composed of a hydraulic pump responsible for pumping the fluid from a reservoir (Figure 37), causing it to reach pressures in the order of 400 bar [85],[86].

Figure 37 - Example of a hydraulic pump [86].
Hydraulic systems perform energy transmission through Pascal's Law which states that "when there is an increase in pressure at any point in a confined fluid, there is an equal increase at every other point in the container". In Figure 38, this means that when a smaller force (F1) is applied over a smaller area (A1) it can move a much larger load (F2) if it is supported on an area (A2) that is high enough to lower the pressure ($\mathrm{P} 1=\mathrm{P} 2$). Under this principle, hydraulic systems need lower dimensions and powers to handle the loads, which makes the hydraulic actuators widely used in applications that require the handling of high loads while maintaining high movement accuracy. Within material handling equipment, hydraulic systems are widely used in positioning tables and lift trucks [85].

Figure 38 - Example of application of Pascal's Law [85].
In addition to the pumps, hydraulic circuits are also made up of actuators that serve to realize the movements of drive of the machines where they are applied, and valves that serve to control the actuators of the circuits. Although there is a huge diversity of valves and actuators, the most common are, respectively, the hydraulic directional control valve and the hydraulic cylinder (Figure 39) [85],[87],[88].

The directional valve is a device with multiple input and output ports that allow the fluid to be directed to more than one actuator from a single source. In other words, it is a device that controls the flow of hydraulic fluid that is sent to the actuators, however the opening and closing of the doors (functioning positions) is ensured mechanically or electrically through automation and control devices [85].

The hydraulic cylinder is an actuator constituted by a piston that exerts a high unidirectional load, providing linear movement in response to hydraulic pressure [85].

Figure 39 - Example of a hydraulic directional control valve (a) and a hydraulic cylinder (b). Adapted from [87],[88].

Pneumatic Actuators

Pneumatic systems have some similarities with hydraulic systems. In pneumatics, the actuators are driven by compressed air, a safe and inexhaustible source of energy that is obtained after aspiration and accumulation of air from the atmosphere under pressure. The production of compressed air is ensured by compressors (Figure 40) which increase the air pressure of the atmosphere by reducing its volume, retaining it in reservoirs for later use [85],[89].

Figure 40 - Example of an air compressor [89].
Compressed air is easy to transport and store, and can achieve high working speeds (1 to $2 \mathrm{~m} / \mathrm{s}$), however, the major disadvantage of this energy source is that it is not possible to maintain speeds and forces since there is a limitation of maintaining working pressures between 6 and 12 bar which makes the actuator work forces low (between 20 and 30 kN). For this reason, pneumatic actuators are most commonly used in applications requiring low loads and high operating speeds and are widely used in robot manipulation tools [85].

As in hydraulic circuits, pneumatic circuits are also mainly made up of valves and actuators for the same purpose. However, the difference lies in the operating principle since compressed air and hydraulic fluid under pressure are two completely different energy sources. The most common pneumatic valves and actuators are, respectively,
the directional control valve and the pneumatic cylinder (Figure 41), which perform the same function as is performed by these same devices in the hydraulics [65],[85],[90].

The pneumatic directional control valve is used to control the flow of compressed air that is sent to the actuators and is characterized by the number of input/output ports and by the number of configurations it can assume when it is actuated [85].

The pneumatic cylinder consists of a piston that exerts a unidirectional force, and is often characterized by the return of the piston to its initial state after performing the linear movement (if by spring or by compressed air) [65].

Figure 41 - Example of a pneumatic directional control valve (a) and a pneumatic cylinder (b). Adapted from [65],[90].

Electric Actuators

Electric actuators operate from the electrical energy which is one of the cleanest, most available and cheapest forms of energy available, which makes these actuators the most used in material handling equipment. Another great advantage of these actuators is that they cover a wide range of speeds and loads at low power, which allows them to be used for all types of applications [65],[84].

The electrical supply of the equipment depends essentially on whether they are fixed or mobile. In the first case, the power is supplied by electrical cables that connect the different machines to the electricity generator (Figure 42-a). In the second case, there are two possible scenarios: if the machine moves linearly, it is common to use a conductor bar (Figure 42 - b) that accompanies the whole course of the machine and which is no more than a rail with copper wires that are connected to the machine through a contact device that slides along the rail during the movement of the machine; if the movement of the machine is unpredictable and random, it is common to use energy storage forms such as rechargeable batteries (Figure $42-c$) that can be mounted directly on the machines [91],[92],[93].

Figure 42 - Examples of electrical cables (a), conductor bar (b) and rechargeable batterie (c). Adapted from [91],[92],[93].

The main electric actuators used to drive the machines and equipment are the electric motors that have the function of converting electrical energy into mechanical energy, usually in the form of rotational movement (torque). This type of actuator is characterized by the type of current that operates it, which can be either direct current (DC) or alternating current (AC) motors (Figure 43). DC motors are electromagnetic rotary motors widely used in applications where power is supplied through batteries. However, since they are quite compact and able to fully control the angular displacement of the axis (DC stepper motors), they are widely used in robots [65],[84],[94],[95].

AC motors are electromagnetic rotary motors, more commonly used than DC motors because they are cheaper, simpler in construction, and are more suitable for applications that are powered by electric cable (electricity generator) or by conductor bar system [65],[84].

Figure 43 - Example of an electric DC motor (a) and an electric AC motor (b). Adapted from [94],[95].
The maximum mechanical efficiency of electric motors generally occurs at high speeds, so it is common to use gear units, thereby reducing speed and hence obtaining an increase in torque available for transmission of mechanical power. The motor and gearbox assembly is called the gearmotor (Figure 44) [96],[97].

Figure 44 - Example of an electric DC gearmotor (a) and an electric AC gearmotor (b). Adapted from [96],[97].

2.3 MECHANICAL ENGINEERING DESIGN PROCESS OF A MACHINE

Mechanical design is a complex process assured by mechanical engineers, but it requires both mastery and knowledge of many fields beyond mechanical engineering. It is a very variable process that starts from scratch and goes through a series of steps that are dependent on each other, making it also an iterative process [98].

The process starts with the design phase in general and selection of the mechanical components so that the machine can fulfill its intended purpose, and there are several resources to support the engineer such as sources of technical information and computational design tools [98].

The second step is to prevent the failure of the mechanical components through the calculation of stresses and strength, which leads to an optimization of the machine design [98].

The third stage happens when the entire machine is designed and needs to be put into production. For this purpose, detailed drawings with the dimensions and tolerances of each part are produced so that they can be manufactured and assembled in the machine [98].

The process ends with the issuance of all relevant technical documentation such as the technical data sheet of the machine, the maintenance manual, among others [98].

In the sections that follow, it is possible to perceive in more detail each of the stages of the mechanical design of a machine.

2.3.1 THE DESIGN PROCESS

The design of a machine arises after the appearance of a specific need or problem to solve. This problem may be the need to perform a certain task automatically such as handling a material.

Design is a very iterative process supported by constant decision-making that is often made on the basis of little information and then adjusted as the machine is developed. As such, mechanical engineers must have a well-resourced problem-solving ability and, because it is a work that addresses people from different areas, they must also develop high oral and written communication skills [98].

Mechanical engineering is the main building block of machine design, being present in all stages of this process, since it is an extremely comprehensive discipline. In addition, mechanical design covers practically all areas of mechanical engineering, from the production and transmission of energy, the mechanics of materials and solids, manufacturing processes, technical drawings, to the electrical and computer components of machines [98].

The design process can be divided into a series of main steps that are linked together, constituting a sequence that is represented in Figure 45. The complete process begins with the identification of a need in a still very vague way. Next, the specification of the need is set out in more detail by defining the problem. With the problem defined, a synthesis of possible solutions is made and the hypotheses that do not fulfill the requirements are discarded through a deep analysis and optimization. In the end, the best solution is evaluated, and a final presentation is made to the main receiver, where the engineer must defend his work and the solution he has defined. It is important to mention that throughout the process several iterations are performed between the stages of the sequence so that it is possible to answer the various questions that arise [98].

Figure 45 - The phases of the design process [98].
Currently, there is a wide variety of resources available to assist the mechanical engineer when designing a machine. These resources are basically made up of published technical information and computational tools. Sources of technical information are no more than
engineering books, government sources, legal standards, or catalogs of manufacturers of mechanical components [98].

The computational tools are essentially the computer-aided design (CAD) and computeraided engineering (CAE) software. CAD software allows the modeling of the machine in three dimensions (3D), and it is possible to perform the two-dimensional (2D) detail drawings from the modeling. Some examples of CAD software are AutoCAD, Inventor or Unigraphics [98].

CAE software allows to simulate some engineering applications, such as resistance calculations or fluid dynamics. An example of this type of software are the finite element analysis (FEA) programs such as ANSYS or Algor [98].

The mechanical engineer must then combine the design process with the tools that are available to create machines that are essentially functional, secure, reliable, competitive, usable, manufacturable, and marketable.

2.3.2 STRESS AND STRENGTH CALCULATIONS

The calculation of stress and strength of materials is one of the most important steps in the design of a machine. At this stage the mechanical engineer must ensure that the loads exerted on the parts do not cause stresses that exceed the tensile strengths of the materials, creating irreversible displacements in the geometry [98].

This calculation is usually performed on the most critical parts of the machine, such as bolts, beams or shafts, and can be made in two different ways depending on the type of load to which the part is subjected. If the load is static then the calculation is performed considering a static behavior in the part, where the existing stresses cannot exceed the yield stress of the material. If the load is cyclic, then the calculation is performed considering a dynamic behavior in the part, where the existing stress cannot exceed the fatigue limit of the material [98].

It is thus possible to optimize the machines so that they are not oversized for the loads to which they are subjected, however, one should always consider a margin of error when performing the calculations, since there are several external factors that can condition the behavior of the machines, parts and material properties, such as the manufacturing processes or the working temperature of the machine. Through the safety factor, a dimensionless value defined by the mechanical engineer or by tables of standards that increases the loads considered in the calculations above their actual values (generally doubling the actual values), there is always a margin for the possible unexpected variations of the behavior of machines [98].

The calculations of stress and strength of the parts of this work were carried out by the FEA, which is based on the integral or differential equations of mechanics of the materials, through a CAE software.

Solving problems of mechanics of materials analytically through differential equations is only possible for simple geometries where all constraints are well defined and controlled. The reality of machine design is that the problems to be analyzed are much more complex than theoretical ones, and it is here that the FEA plays a fundamental role in the optimization of the products, since it allows to divide the model to analyze in many small parts of simple geometry

Figure 46 - Creation of a mesh with elements of simple geometry [99]. denominated finite elements, creating a mesh (Figure 46). The vertices of each finite element are designated nodes and, in a general way, the FEA establishes a numerical estimation of algebraic equations that return approximate solutions of the stresses and displacements in each one of the nodes, straining them to the complete model [99].

The FEA can be used in many other applications besides the analysis of stresses and displacements of mechanical components, such as the seismic analysis of civil constructions, however, all of them are based on a procedure consisting of three stages [99]:

1) Preprocessing;
2) Solution;
3) Postprocessing.

In preprocessing, the finite element mesh is defined, choosing the type and size of the element and the refinement of the mesh to guarantee precision of the results. Then it is necessary to define the material and mechanical properties of the model. At the end, the loads are applied, and the physical constraints are established in the form of reaction forces (called boundary conditions), simulating the balance of forces of the real body (Figure 47) [99],[100].

Figure 47 - Mesh creation and boundary conditions in FEA [100].

In the phase of obtaining the solution, the FEA software calculates the algebraic equations for each finite element, forming a system of global equations. In this step the numerical values of the stresses and displacements are obtained [99].

Post-processing is the analysis phase of the simulation results. The software orders the stresses of the elements by magnitude, creating an animation of the model with a color scale of stresses and displacements (Figure 48). At this stage, it is still possible to verify the static equilibrium of the body and to calculate safety coefficients and reaction forces [99],[101].

Figure 48 - Animation with color scale of stresses and displacements in FEA [101].

2.3.3 DETAIL DRAWINGS

After realizing the complete design of the machine, it is necessary to manufacture the different parts that constitute it and carry out the assembly operations. For this, the drawings of the parts and the assemblies are made using a universal representation language with rules and symbols established by legal standards of technical drawing, being therefore a means of expression and communication [102].

The drawings of the parts represent a single component of a set and provide, by means of an orthographic representation, their general dimensions and acceptable manufacturing tolerances (Figure 49 - a). It is therefore all the technical information necessary to produce the parts, with a graphic presentation established according to ISO standardization that makes it universal [102],[103].

The assembly drawings give the parts lists and the details of the arrangement of the assembled components (Figure 49 - b). These drawings may be in orthographic or
isometric representation, with views of the assembled set of parts or exploded views [102],[103].

Figure 49 - Examples of part drawing (a) and assembly drawing (b). Adapted from [103].

2.3.4 TECHNICAL DOCUMENTATION

In addition to ensuring and monitoring all stages of the design of a machine, including the manufacturing and assembly operations, the mechanical engineer may also be responsible for ensuring the issuance of the following technical documentation related to the machine [104]:

1) Spare parts list - list of parts critical to the operation of the machine and which suffer greater wear over the lifecycle of the machine. These parts must be purchased for stock in the event of a breakdown, so that the machine can be repaired immediately;
2) User manual - technical communication document designed to assist persons in using the machine. Generally, it is performed by automation engineers, although it can also be written by mechanical engineers;
3) Maintenance manual - Technical communication document designed to assist people in maintaining the machine. This document contains the operations required to repair the machine during a preventive or corrective maintenance task, such as replacing an end-of-life component.

2.4 MECHANICAL EQUIPMENT STANDARDS

Before the creation of the European Union (EU), the commercial exchange of products between the different countries of Europe was largely conditioned by the different technical specifications required for each state. After the creation of the EU, it was necessary to eliminate all obstacles to the free movement of products, creating a single homogeneous market. As such, a set of directives was created to ensure that the safety conditions of the products were met by approaching the design, manufacture and marketing of the products [104].

Currently, machine safety throughout the EU is legally secured by a set of directives and standards. The directives are mandatory and establish the essential safety requirements, being divided between the economic aspect, which establishes the set of requirements for the placing on the market and entry into service in the area of health, people, goods and animals, and the social aspect, which establishes the rules for accident prevention and improving the safety of workers in the workplace. On the other hand, the standards are optional and function as guides that provide more technical specifications for compliance with the requirements of the directives [104].

The main directive that is currently used to regulate the safety of machines and equipment is the Machinery Directive (Directive 2006/42/EC) which establishes the rules and procedures for the legal marketing of machines, and is addressed to the respective manufacturers and merchants. A manufacturer is any natural or legal person responsible for the design and/or manufacture of a machine [104].

If the machines are used by workers in the workplace, it is necessary to add the Machinery Directive to the Use of Work Equipment Directive (Directive 2009/104/EC) to ensure the safety of workers. As such, the aim of this directive is to promote the improvement of working conditions, ensuring a higher level of protection of the health and safety of workers [104].

In terms of material handling equipment, it is important to highlight the standards created by the European Materials Handling Federation (Fédération Européenne de la Manutention, FEM), which provide a set of technical specifications that focus on integrating safety into design, supporting European manufacturers of equipment of this scope [105].

In the following ssections a more detailed description of the directives presented here was made.

2.4.1 MACHINERY DIRECTIVE

The Machinery Directive (Directive 2006/42/EC) applies to all machines placed on the market or in service since the date on which it became official. As such, all machinery, whether new or used from inside or outside the EU, whose destination is the internal
market are covered by this Directive and must comply with all safety and health requirements [104].

According to the Directive, the concept machine may be defined as "an assembly, fitted with or intended to be fitted with a drive system other than directly applied human or animal effort, consisting of linked parts or components, at least one of which moves, and which are joined together for a specific application". The equipment presented in this work are considered machines so only the procedures covered by the Machinery Directive for this type of equipment were addressed [106].

Compliance with the requirements of the Directive must be considered at all stages of the design and manufacture of a machine because, if all safety and health requirements are not met, the machine cannot be used and marketed. As such, the Directive can be fulfilled through the following main steps [104]:

1) Ensure that the machine meets the essential safety, health and environmental protection requirements;
2) Produce a technical file of the machine with relevant technical documentation;
3) Issue the EU/EC declaration of conformity and affix the CE marking to the machine.

The safety, health and environmental protection requirements applicable to each machine shall be adopted at the design stage by implementing necessary protective measures and / or informing users of the existing hazards and the need to use protective devices [104].

In the first instance, one of the ways of ensuring the key essential safety requirements of the Directive can be to consult harmonized standards at the design stage. Harmonized standards, which are not compulsory, serve as methodological guides made up of technical specifications which are designed as aid to designers and manufacturers who need to integrate the technical rules defined by the European directives in the design and manufacture of machines. Often these standards can still be adopted as evaluation methods used by recognized standards bodies.
The Machinery Directive relies on the technical specifications of a hierarchy of European standards (ISO, EN and IEC standards). This hierarchy is composed of three levels and is represented in Figure 50 [104],[107].

Type A Fundamental safety standards applicable to all machinery. Type A standards deal with basic concepts, principles for design, and general aspects.

Type B Standards applicable to a wide range of machinery. Type B is divided into two catagories:

81: Specific safety aspects (ie., safety distance, surface temperature, and noise)
B2: Safety related devices ;ie., two-hand controls, interlocking devices, pressure sensitive devices, and guards)

Type C Detailed standards applicable to a specific machine or a particular group of machines.

Figure 50 - Hierarchy of European Standards [107].

Another way of ensuring the viability of a machine in terms of safety for people and the environment using the least resources is to carry out a risk assessment. This is a way of determining the level of risk by defining the limits of the machine's use to identify the safety mechanisms to be implemented [104].

Risk assessment plays a key role in the manufacture of a machine because it is this assessment that allows determining the technological solutions to be implemented to make the equipment safe. There are standards that serve as guidelines for the preparation of a risk assessment such as ISO EN 12100-1: 2003 and ISO EN 12100-2: 2003 [104].

The flow diagram in Figure 51 represents the risk assessment process that begins with a hazard identification, an estimation of the associated risks and ends with an analysis of the existing safety levels, repeating the procedure until these levels are acceptable after implementation of security measures [108].

Figure 51 - Flow diagram of Risk Assessment [108].
There are a variety of risks associated with a machine depending on its function and operation. These hazards can be caused mechanically, electrically, thermally, by noise, by vibrations, by radiation, by hazardous materials and substances, or by disrespect of the ergonomic principles of machinery. As discussed in section 2.2.2, one way of minimizing the risks present in the machine may be protection devices which are nothing more than components that interact with the machine, preventing operator access to danger (Figure 52) [104].

Figure 52 - Different types of risks and protective devices [104].

The second step of the Machinery Directive procedures for a machine to be marketed and used is to constitute a technical file with all relevant technical documentation. This file acts as a register that proves that the machine has been designed and manufactured in accordance with the required safety requirements. As such, it must be produced in accordance with Annex VII of the Directive and must contain all relevant technical documentation such as assembly drawings, control and power circuits, certificates, calculation notes, operating instructions, technical description of the machine, among others [104].

The EC declaration of conformity is the document attesting that the machine meets the essential requirements of the Machinery Directive. When designing and signing the EC declaration of conformity, the manufacturer shall assume responsibility for the conformity of the machinery and shall issue it prior to placing the product on the market. According to Annex II of the Directive, the declaration must contain elements such as the name and address of the manufacturer, machine identification (type, model and serial number), place and date of declaration, among others [104].

The CE marking of a machine is a declaration by the manufacturer that the product is in conformity with the essential requirements of the relevant European legislation on health, safety and environmental protection. The letters "CE" are the initials of French phrase "Conformité Européene" which means "European Conformity". All machines covered by the Machinery Directive must bear the acronyms "CE" and the identification number of the notified body involved in the production control phase recorded on its surface, so that they can be marketed and used. This marking shall be carried out in accordance with Annex III of the Directive and the dimensions and shapes laid down shall be respected (Figure 53) [104].

Figure 53 - CE marking [104].

2.4.2 USE OF WORK EQUIPMENT DIRECTIVE

The Use of Work Equipment Directive (Directive 2009/104/EC) establishes the minimum safety and health requirements for the use of work equipment by workers at work and is therefore often added to the Machinery Directive as a way of ensuring the safety and health of workers. It is applicable to all branches of activity of the private, cooperative
and social sectors, central public administration, regional and local, public institutes and self-employed [104].

According to the Directive, a work equipment is "any machine, apparatus, tool or installation used at work" and, in turn, the use of work equipment is defined as "any activity involving work equipment such as starting or stopping the equipment, its use, transport, repair, modification, maintenance and servicing, including, in particular, cleaning" [109].

Safety and health requirements must be guaranteed at the design and manufacturing stage of the work equipment, however periodic checks and tests must also be carried out to ensure the proper functioning of the equipment, thus avoiding accidents and consequences to the workers safety [104].

Material handling equipment, such as stacker cranes, are often used by workers in a variety of ways, either by starting or stopping machines or through maintenance activities over their lifetime (Figure 54). For this reason, the Use of Work Equipment Directive is therefore applicable to this type of equipment [110].

Figure 54 - Maintenance of the gearmotor of a stacker crane [110].

2.4.3 FEM STANDARDS

As already mentioned, the European Federation of Material Handling (FEM) is an association representing European manufacturers of material handling, lifting and storage equipment (Figure 55). Founded in 1953, this association was created with the purpose of supporting these manufacturers through the publication of legal

European
materials
handling
federation

Figure 55 - FEM logo [105]. standards with technical recommendations for the machine designers in Europe [105].

The FEM standards are no more than technical guides with very specific rules for the design of this type of equipment, providing recommendations on structural calculation, safety coefficients, periodicity of inspections, among others. The FEM technical documentation is divided by the types of equipment covered (Figure 56) [111].

Heavy lifting and Handling Equipment
Continuous Handling Equipment
Industrial Trucks
Mobile Cranes
Series Lifting Equipment
Storage and retrieval machines
Elevating Equipment
Mobile Elevating Work Platforms

Figure 56 - Types of equipment covered by FEM standards [111].

THESIS DEVELOPMENT

3.1 DESCRIBING THE PROBLEM
3.2 BENCHMARKING
3.3 PRODUCT DEFINITION
3.4 MECHANICAL DESIGN

3 THESIS DEVELOPMENT

3.1 DESCRIBING THE PROBLEM

One of the first steps of the work was to define concretely what problem to solve. From there, the desired objectives were established and the way forward was traced.

The challenge proposed was to develop a shuttle vehicle for the box shuttle AS/RS. As already mentioned (see section 2.2.2), this is the great innovation of this type of AS/RS, having the function of storage and retrieval the products. As such, the major goal of this work was to design a shuttle vehicle that fulfilled its basic function but which at the same time could be innovative when compared to what already exists in the market.

As already mentioned (see section 2.2.2), the shuttle vehicle is like a cart that has four or more wheels and it moves along two rails that are part of the racking structure (Figure 57). When applied on a box shuttle AS/RS, it is capable of transferring packages (cartons, totes or trays) in and out of the layered stacked racks and transport them in a package carrying area [68].

Figure 57 - Example of a shuttle vehicle for cartons, totes or trays [68].
Its main characteristic is the ability of running along the racking structure at high speeds, increasing system cadences and warehouse productivity. However, there are some differences between all the shuttle vehicles existing in the market. The major differences are in the mechanism that is used to store and retrieve packages, and in the source of power that feeds the system. Those differences were described and analyzed in the next section.

3.2 BENCHMARKING

3.2.1 ANALYSIS OF EXISTING SOLUTIONS IN THE MARKET

Having defined the problem to solve, it was necessary to make a complete analysis of the existing solutions in the market and, from there, to study the advantages and disadvantages of each one. The tool that was used to organize ideas and filter distinct aspects was the SWOT analysis.

The first solution encountered is a shuttle vehicle equipped with a telescopic load extractor that expands and contracts to adjust the carrying area for varied sizes of boxes. The power comes from busbars existing in the railway and the vehicle is only capable of moving in one direction. The Dematic Multishuttle ${ }^{\circledR}$ is an example of this solution (Figure 58 and Figure 59) [30].

Figure 58 - Dematic Multishuttle ${ }^{\circledR}$ equipped with a telescopic load extractor [30].

Figure 59 - Dematic Multishuttle ${ }^{\circledR}$: expansion and contraction of the carrying area [30].

The SWOT analysis for this type of shuttle vehicle is represented in Figure 60.

Figure 60 - SWOT Analysis for the Dematic Multishuttle ${ }^{\circledR}$.
The second solution is quite different from the first one. It is a shuttle vehicle that comes with a load deck plate that moves over a belt conveyor, however the carrying area has a fixed length, width and height. On the other hand, it is capable of rotating 360°, thanks to its pivoting wheels, which allows the vehicle to move crosswise and longitudinally, something that is only possible with the use of batteries to feed the system. This solution belongs to KNAPP AG with his YLOG-shuttle (Figure 61 and Figure 62) [112].

Figure 61 - YLOG-shuttle-system (from KNAPP AG) with an extractor plate that moves over a belt conveyor [112].

Figure 62 - YLOG-shuttle-system (from KNAPP AG): pivoting wheels that allows the vehicle to move transversely and longitudinally [112].

The SWOT analysis for this type of shuttle vehicle is represented in Figure 63.

Figure 63 - SWOT Analysis for the YLOG-shuttle-system (from KNAPP AG).
The next solution is very much like the previous one. It also works with batteries and the vehicle can move crosswise and longitudinally. The difference is in the extraction mechanism and the carrying area. In this case, it is composed by a belt conveyor and the carrying area has an open base with fixed dimensions. The ADAPTO from Vanderlande is an example of this solution (Figure 64) [113].

Figure 64 - ADAPTO from Vanderlande with a belt conveyor to extract the packages from the racking system [113].
The SWOT analysis for this type of shuttle vehicle is represented in Figure 65.

Figure 65 - SWOT Analysis for the ADAPTO from Vanderlande.
The last solution is the Perfect Pick ${ }^{\circledR}$ from OPEX Corporation, an innovative method to make the operations of goods-to-person faster. It is a shuttle system that has the picking stations directly connected to the racking system (composed with only one aisle), in other words, the shuttle vehicles provide the operators without resorting the packages to conveyor systems, working as a single module that encompasses all these components (Figure 66) [114].

The shuttle vehicle in this system walks around a racking structure, going down to the various levels by means of a mechanism actuated by rack and pinion. It is powered by ultracapacitors that capture regenerated energy from a conductor bar, runs along one direction, and the extraction device is a roller conveyor that picks and stores totes and trays on both sides of the aisle (Figure 67) [114].

Figure 66 - Perfect Pick ${ }^{\circledR}$ solution from OPEX Corporation [114].

Figure 67 - Perfect Pick ${ }^{\circledR}$ solution from OPEX Corporation: the iBOT® shuttle vehicle [114].

The SWOT analysis for this type of shuttle vehicle is represented in Figure 68.

Figure 68 - SWOT Analysis for the Perfect Pick ${ }^{\circledR}$ solution from OPEX Corporation.
In this section, only the main solutions available in the market were analyzed, however there are more similar solutions from other manufacturers.

3.2.2 ANALYSIS OF EXISTING PATENTS

Before starting the mechanical design of the shuttle vehicle, some of the main patents related to this type of equipment were analyzed. In this way, it was possible to know more in detail the technical concepts of the product and to analyze the claims to be avoided during the mechanical design.

Although there are many other patents related to this subject, only two patents published by Dematic GmbH , one of the main manufacturers and drivers of this solution, were analyzed. The publications reviewed were as follows: U.S. Patent No. 2011/0008138 A1 entitled Transferring Shuttle for Three Dimensional Automated Warehouse and U.S. Patent No. 2012/0099953 A1 entitled Shuttle for Automated Warehouse [115],[116].

The first patent claims a shuttle vehicle for storage and retrieval of packages from a racking structure that is part of a three-dimensional automatic warehouse. This vehicle, shown in Figure 69, is composed by a platform that moves horizontally along the racking structure and which includes an article-carrying area of fixed size. For extraction and replacement of the articles, the vehicle has two retractable arms that extend horizontally in a direction perpendicular to the direction of vehicle movement. This is a telescopic mechanism that draws the products into the transport area through several articulated fingers positioned on each of the arms, being actuated over a transmission by means of belt and pulley [115].

Figure 69 - Transferring shuttle from the U.S. Patent No. 2011/0008138 A1 [115].
The second patent claims a shuttle vehicle very similar to the previous one but with some improvements and variations. This shuttle (Figure 70) is also used in warehouses with several article spaces and a runway for the shuttle to move. It is composed by a structure with two different chassis portions divided by an article-carrying area. Both chassis portions contain a pair of running wheels adapted to travel along the runway, driven by a drive motor connected directly to both wheels through a shaft and a coupling. The products are transferred between an article space and the article-carrying area through two retractable arms similar to the previous patent, containing fingers along the length and a drive mechanism with belt and pulley. However, the great innovation in this patent lies in the connector assembly that links the two chassis portions and is adapted to vary the spacing between, allowing the transport of articles with different widths. This solution is possible through linear actuators or a rack and pinion mechanism, both operated by a drive motor that slides a plurality of overlapping plates along the article support surface [116].

Figure 70 - Shuttle from the U.S. Patent No. 2012/0099953 A1 [116].

3.2.3 PROBLEMS ENCOUNTERED AND HOW TO IMPROVE

According to the analysis performed at the level of existing solutions in the market and some patents related to the subject, it was necessary to identify the problems of the existing solutions in the market, find ways to improve them and create an idea to innovate the shuttle vehicle.

The idea to increase the cadences of the vehicle appeared, in other words, by causing the shuttle vehicle to give the system even more products per minute. The solution found for this problem follows a product introduced by KNAPP AG, the Pick-it-Easy Robot (Figure 71). It is a fully automatic robotic arm capable of performing picking operations for the order-fulfillment process, a task that is normally performed manually by all distribution centers and warehouses. This robotic arm handles small products transporting them from a full box to an empty box that is intended to meet the quantities of a customer order [117].

The idea would be to incorporate a similar solution to the Pick-it-Easy Robot directly in the shuttle vehicle, so that it was able to carry out the picking operations directly on the rack structure, through a material manipulator like a robotic arm of four axes or a system of gantry and gripper. In this way, the shuttle vehicle will increase its cadences because it moves in shorter distances inside the rack structure, and it will create an innovative solution.

Figure 71 - Pick-it-Easy Robot from KNAPP AG [117].

3.3 PRODUCT DEFINITION

3.3.1 MAIN REQUIREMENTS

The developed shuttle is intended for a target market made up of distribution centers and light product warehouses with small dimensions and well-defined geometries such as the pharmaceutical industry or the consumer goods industry (Figure 72), where the products are stored in boxes and order fulfillment operations are a constant [118].

Figure 72 - Consumer goods with small dimensions and well-defined geometries, stored in boxes [118].
The general requirements, without any technical specification, necessary for the design and development of the shuttle vehicle are identified in Table 10, according to the degree of importance to the operation of the equipment and fulfillment of its main function that is to store and retrieve boxes from a rack of an automatic warehouse.

Table 10 - Main requirements for the shuttle vehicle and respective degrees of importance (from 1 (little important) to 5 (very important)).

General Requirement
 Degree of
 Importance

1) The equipment must be able to remove the boxes in both sides of the railway from a single deep stationary rack structure, position them on the transport platform and put them back on the rack structure properly positioned.
2) The equipment must have a transport platform with a fixed size for the transport of two boxes.
3) The equipment should only move in a straight line, always on a single
level of the rack structure.

General Requirement
4) The equipment must be able to perform the picking operations Importance
automatically and directly on the rack structure.
:---
5) The equipment must be able to position itself accurately in the different storage positions of the boxes.
6) All actuators must be electric.
7) The equipment must be kept guided in all directions along the course.
8) The electric power supply must allow the movement of the shuttle vehicle over the several meters in length that the rack structure can possess and still be able to operate $24 / 7$.
9) The equipment should be as light as possible (supporting all associated loads), as fast as possible, and be produced at low cost.
10) The equipment must have all kinds of safety devices, ensuring all EHS protection requirements.
11) The maintenance of the equipment shall be facilitated in terms of accessibility to the different components of the vehicle.

3.3.2 SELECTION OF SOLUTIONS FOUND FOR THE MAIN REQUIREMENTS

This section describes the phase of prior definition of the solutions found for each of the main requirements of the shuttle vehicle. This definition, although still without any detailed technical specification, allowed to trace the way to go during the phase of the mechanical design and to facilitate the decision making.

Table 11 describes the solution found for each of the requirements and the respective justification for such selection.

Table 11 - Found solution for each main requirement of the shuttle vehicle.

General Requirement	Found Solution
1) Store and Retrieve Boxes	Fixed Stroke Load Extractor
2) Fixed Size Transport Platform	Load Extractor Non-Expandable
3) Vehicle Movement in Straight Line	Non-Pivoting Wheels
4) Perform Picking Operations Automatically	Four-Axis Robot

General Requirement	Found Solution
5) Vehicle Guided on the Route	Side Rollers
6) Accurate Positioning in Box Storage Positions	Bar Code Positioning Device
7) Electric Actuators	AC Gearmotors
8) Electric Power Supply for Movable	
Equipment	Conductor Bar
9) Lightweight, Fast and Inexpensive	Optimized Steel Structure and AC
Gearmotors	

All decisions were considering the benchmarking that was made and the solutions that are used for the various material handling equipment. Therefore, the justifications for the solutions selected for each of the main requirements of Table 11 are described below.

1) Store and Retrieve Boxes: The telescopic load extractor has been chosen because it allows easier access to the storage positions of the boxes on the rack structure, correcting them to a possible misalignment of the same. In addition, it is a system that can be used in double deep rack structures;
2) Fixed Size Transport Platform: To ensure that the transport platform maintains its fixed size, it is sufficient that the telescopic loader is not expandable;
3) Vehicle Movement in Straight Line: To ensure that the vehicle only moves in a straight line, it is enough that the wheels are not pivoting;
4) Perform Picking Operations Automatically: The four-axis robot was selected as a portico system due to its smaller space of occupancy, greater precision of movement and greater combination of movements. In addition, this system can be developed and provided externally, since there are many robot manufacturers with very competitive cost;
5) Vehicle Guided on the Route: The use of side rollers ensures that the vehicle remains guided transversely along the rail, compensating for possible deflections of the structure;
6) Precise Positioning in Box Storage Positions: The barcode positioning sensor was selected because of its high accuracy and low cost;
7) Electric Actuators: The AC gearmotors were selected for the travelling system and the extraction system because of its high efficiencies and low drive powers;
8) Electric Power Supply for Movable Equipment: The conductor bar has been chosen to power the vehicle because, although it is more expensive than batteries, there is no need for power charging, maintenance operations are simpler, and it is a very suitable solution for vehicles moving in straight line;
9) Lightweight, Fast and Inexpensive Equipment: An optimization of the main steel structures of the vehicle for the loads to which it is subjected allows to lower the final weight of the assembly and, at the same time, reduce the manufacturing cost of these parts. On the other hand, the use of AC geared motors allows to achieve high speeds of rotation with low power of operation;
10) Ensure all EHS Protection Requirements: At the level of the equipment mechanics, the use of shields was defined to protect the access to components with dangerous movement. At the automation level, it was defined the use of safety devices that made the equipment stop its operation immediately whenever there were situations of danger of accident;
11) Good Accessibility for Maintenance Tasks: To facilitate the tasks of maintenance of the equipment, during the mechanical design, solutions were studied to remove the equipment from the rack structure, such as the points of transport, and, on the other hand, all the conditions were guaranteed for a quick and simple replacement of all parts.

3.3.3 PRELIMINARY TECHNICAL SPECIFICATIONS

Table 12 represents the detailed technical specifications at a stage prior to the mechanical design. During the design of the equipment, other technical specifications were defined, such as the power of the gearmotors, which are not listed in this section. Some of these values were changed during the mechanical design process, so section 3.4.10 shows the final technical specifications of the shuttle vehicle.

Table 12 - Preliminary technical specifications for the shuttle vehicle.

Technical Specification	SI Unit	Value/Description
Load Type	-	Plastic Tote Box
Load Dimensions	mm	$600 \times 400 \times 200$
Maximum Payload	kg	100 (50 kg/box)
Robot Maximum Payload	kg	1
Load Extraction System	-	Telescopic Load Extractor
Maximum Vehicle Speed Loaded (Unloaded)	m/s	3,0 (3,0)
Maximum Vehicle Acceleration Loaded (Unloaded)	$\mathrm{m} / \mathrm{s}^{2}$	1,5 (1,5)
Extraction System Speed Loaded (Unloaded)	m / s	0,25 (0,5)
Extraction System Acceleration Loaded (Unloaded)	$\mathrm{m} / \mathrm{s}^{2}$	1,0 (2,0)
Number of Wheels	u	4
Expandable Transport Platform (Yes/No)	-	No
Pivoting Wheels (Yes/No)	-	No
Temperature Range	${ }^{\circ} \mathrm{C}$	0-40
Position Control	-	Bar Code Positioning Device
Power Supply	-	Conductor Rail
Power Supply Voltage	V	230

All values were selected considering the technical specifications collected during the benchmarking phase and some standard values existing in the market. Therefore, the reasons for the values selected for each of the technical specifications of Table 12 are described below.

- Load Type: The plastic tote box was selected due to its ergonomics, high rigidity and low weight;
- Load Dimensions: Standard dimensions were selected from the range of values collected during the benchmarking phase;
- Maximum Payload: This value was set having in mind the fact that the shuttle will transport two different boxes at the same time (so, 50 kg for each box), having the possibility to increase the weight range of the products to store;
- Robot Maximum Payload: This value was established considering a storage capacity of fifty products within each box;
- Maximum Vehicle Speed and Acceleration: These values reflect what is currently used by other shuttle vehicle manufacturers, however as the maximum payload has increased, the vehicle dynamics were reduced to ensure greater load transport stability;
- Load Extraction System Speed and Acceleration: These values were defined considering an extraction stroke of 500 mm (for a box with 400 mm width) covered in $1,0 \mathrm{~s}$ without load and $2,0 \mathrm{~s}$ with load to guarantee stability of the products. On the other hand, it is intended that the speed be reached in $0,25 \mathrm{~s}$, so the acceleration values are four times higher than the speeds;
- Number of Wheels: The number of wheels was selected considering the values from the benchmarking, however it is important to highlight that this characteristic directly affects the stability of the vehicle and the difficulty to remove the equipment from the rack structure;
- Temperature Range: These values reflect what is currently used by other shuttle vehicle manufacturers;
- Power Supply Voltage: This value was set according to the residential voltage used in most of the countries from Europe.

3.4 MECHANICAL DESIGN

Having defined the main problem to be solved, analyzed similar solutions in the market, and established the main requirements and technical specifications, the starting point for the mechanical design of the shuttle vehicle was given.

As can be seen from section 2.3, the design process of a machine is a complex process involving a series of steps, often iterative, depending on each other. Given the high number of small steps involved in the development of the shuttle vehicle, only the main phases are reflected in this work, being described in a very synthesized and concise way so that the reader can easily understand the linkage of the work and, at the same time, evaluate the main decisions that have been taken until the final version of the equipment was reached.

The main development phases of the equipment range from the initial sketches and calculations, which allowed to obtain the first images and an approximation of what could be the equipment, the design and validation of the main components and machine systems (both mechanical and electrical), the most important part of all the work and that has allowed to obtain the final result, until the production of the detailed drawings, which allow to manufacture the different parts and assemble the entire machine..

One thing that helped to sequence the mechanical design was the Work Breakdown Structure (WBS) of the shuttle vehicle (Figure 73). This tool allowed dividing the main system into sub-systems and, in this way, directing the efforts to each of the subsystems in isolation. Since these are dependent on each other, the design process had to be often iterative so that in the end the vehicle would be compact and without interferences between the different subsystems.

Figure 73 -WBS of the shuttle vehicle.
The final version of the equipment is shown in Figure 74 and Figure 75, where it is possible to analyze which are the subsystems of the vehicle.

Figure 74 - Final version of the shuttle vehicle with identification of the main systems and components.

Figure 75 - Right, front and top views of the shuttle vehicle.
In order to better understand the purpose of each of the subsystems of the shuttle, it is necessary to analyze the principle of operation and the different tasks that it is able to perform when inserted in an AS/RS. In Figure 76 it is possible to observe the shuttle vehicle in operation, being inserted in a rack structure that supports it through rails and that has one shuttle for each level. This rack also has the purpose of storing products that are handled by the shuttle vehicle systems.

It is important to note that the purpose of this work was only the shuttle vehicle, so only the vehicle was part of the mechanical design scope, but there are other essential equipment for the shuttle operation within an $A S / R S$, such as the rack or conveyor lines, that were not the subject of study for this work. The rack used in this work is merely representative and serves only to help understand the operating principle of the shuttle vehicle. On the other hand, it is not shown here how the vehicle is placed inside the rack and interfaces with the outside of the rack so that it can send/receive the boxes of products that are being handled throughout the AS/RS. The shuttle vehicle can be placed on the rack by lift trucks or vertical conveyors (see section 2.2.4) placed on the top of the rack and allow interface with conveyor lines that move the boxes throughout the AS/RS.

Figure 76 - Shuttle vehicle in operation.

To explain the principle of operation of the shuttle, a hypothetical example of a warehouse is considered to have three different products: blue, green and red bottles stored in the dark grey boxes that stay in the rack. The system then receives customer orders where the number of bottles of each color is indicated. Fully automatically, the shuttle vehicle satisfies each order by placing the respective bottles in the light grey boxes (the customer boxes), directly in the rack, avoiding the need to travel long distances. All the boxes handled by the system have the dimensions initially considered in the technical specifications ($600 \mathrm{~mm} \times 400 \mathrm{~mm} \times 200 \mathrm{~mm}$), storing a maximum of fifty bottles positioned in the wells of a matrix sized for this type of product (Figure 77).

Figure 77 - Plastic boxes ($600 \mathrm{~mm} \times 400 \mathrm{~mm} \times 200 \mathrm{~mm}$) with tree different products: blue, green and red bottles.
The shuttle vehicle can carry two boxes at the same time (each 50 kg maximum) that may be dark grey boxes or light grey boxes. The light grey boxes are never stored in the rack since they are the boxes to send to the customer.

The vehicle has three fundamental systems for the operations it can perform. These three systems are as follows: the travelling system, the extraction system and the picking system. It is important to note that each of the systems works independently of the others, it means that when one of the systems is in motion, the other two remain locked.

The travelling system, as the name implies, is responsible for the travelling movement of the vehicle along the rack structure rails (Figure 78), ensuring straight line movement and correct positioning of the vehicle in relation to the boxes it is loading or removing from the rack.

Figure 78 - The shuttle vehicle travels along the racking structure rails through the travelling system.

The extraction system is responsible for extracting or storing the boxes on the rack through two retractable arms that cause the box to move in or out of the vehicle (Figure 79). The shuttle vehicle can extract or store boxes on both sides of the rails, keeping them properly positioned both on the rack and inside the vehicle when they are being handled.

Figure 79 - The shuttle vehicle extracts/sores the boxes on the rack through the extraction system.
The picking system is the system that allows the picking operations to be performed directly in the rack in a completely automatic way, this being the great innovation of the shuttle vehicle when compared to what exists in the market. It is a robot with four axes that transfers the bottles of each color between the dark grey boxes and the light grey box (Figure 80), satisfying the customer's order.

Figure 80 - The shuttle vehicle performs the picking operations directly in the rack.

The following sections address the main steps that were taken throughout the mechanical design until the final version of the shuttle vehicle was reached.

3.4.1 INITIAL SKETCHES

Like any mechanical design of a machine, it always begins with some hand-drawn sketches with paper and pencil. This allows to get the first images of what could be the machine and, more importantly, it facilitates communication between the people involved in the equipment development process.

Two sketches were made for the shuttle vehicle. The first one (Figure 81), handmade and without any software resources, allowed to explain the concept of the equipment and convey the main ideas to the stakeholders in this project. The second one (Figure 82), made using a software with capability for 2D drawing (Autodesk ${ }^{\circledR}$ AutoCAD ${ }^{\circledR}$), served to estimate the dimensions of the equipment.

Figure 81 - Handmade sketch.

Figure 82 - Sketch made using software with ability to draw 2D (Autodesk ${ }^{\circledR}$ AutoCAD ${ }^{\circledR}$).

3.4.2 PRELIMINARY CALCULATIONS

Three preliminary calculations were made for the shuttle vehicle:

1) Calculation of reactions in the vehicle supports (wheels) and stability check;
2) Calculation of the travelling wheels and the guiding wheels;
3) Calculation of the travelling gearmotor.

Due to the lack of information that existed at this stage of the mechanical design, it was necessary to estimate some parameters to perform the calculations, namely the mass of the vehicle and the centers of mass of the mechanisms since it has great influence on the stability of the vehicle and the selection of the gearmotor. These calculations have therefore only allowed an initial estimate of the dimensions of some components of the equipment, such as the wheels diameters and widths and the size of the travelling gearmotor. It was therefore necessary to repeat all the calculations in an advanced phase of the process.

All the preliminary calculations presented here can be seen in more detail in Annex 1.

It is important to note that to understand the calculations made here, it is necessary to have some knowledge of static and dynamic mechanics at the level of the equilibrium equations of the static body and Newton's 2nd Law of Motion.

3.4.2.1 PRELIMINARY CALCULATION OF REACTIONS IN THE VEHICLE SUPPORTS AND STABILITY CHECK

In order to calculate the vehicle reactions, the parameters described in Table 13 were considered. The brake acceleration was determined in the preliminary calculation of the travelling gearmotor (see section 3.4.2.2).

Table 13 - Parameters considered to calculate the reactions of the vehicle.

Parameter	Value
Vehicle Mass (estimated) (m mehicle	150 kg
Boxes Mass (mioad)	$100 \mathrm{~kg}(50 \mathrm{~kg} / \mathrm{box})$
Robot Mass (estimated) (mrobot)	30 kg
Vehicle Acceleration (estimated) (atravelling)	$1,5 \mathrm{~m} / \mathrm{s}^{2}$
Brake Acceleration (abrake)	$1,65 \mathrm{~m} / \mathrm{s}^{2}$
Gravitational Acceleration (g)	$9,81 \mathrm{~m} / \mathrm{s}^{2}$

The reactions were determined when the vehicle is stationary (static reactions) and when the vehicle is accelerating (dynamic reactions), in both cases first without the mass of the boxes and then adding that value to the mass of the vehicle. In the case where the vehicle is starting the movement, the reaction forces vary according to the direction of the acceleration, however only the most severe scenario for the vehicle stability was analyzed here, where one of the supports is more overloaded than the other.

The scenario in which the vehicle has an emergency stop is like when the vehicle is accelerating, diverging only in the value of the acceleration. This scenario was also analyzed, not to obtain the reactions, but to study the stability of the vehicle against emergency stops, so in this case only the dynamic reactions with the vehicle unloaded were calculated, because it is the worst condition for the vehicle stability.

The process started by drawing the free-body diagrams for both cases (Figure 83), positioning the different loads to which the vehicle would be subject. In addition, the masses of the robot and the vehicle were separated because of the lack of information about the center of mass of the system and, although the vehicle has two wheels at point A and two wheels at point B, it was assumed that the loads of each reaction are equitably distributed by each of the wheels of the pair. Besides that, it was also
considered that the robot remains fixed (no oscillation) and that the floor is perfectly horizontal (no inclination).

Figure 83 - Shuttle vehicle free-body diagrams when the vehicle is stationary (a) and when the vehicle is starting the movement (b).

With the two free-body diagrams finalized, it was necessary to write the respective equilibrium equations, with at least two equations being required for the two variables corresponding to the reactions on each of the points of support of the vehicle, points A and B. As such, to calculate the static reactions (Figure $83-a$), Equation 1 and Equation 2 were used which relate to the equilibrium of the forces in the Y axis and the moments on the point A, respectively.

$$
\begin{gathered}
\sum F_{y}=0 \Rightarrow \\
\Rightarrow R_{A, \text { stat }}+R_{B, \text { stat }}-P_{\text {robot }}-P_{\text {vehicle }}=0 \Leftrightarrow \\
\Leftrightarrow R_{A, \text { stat }}+R_{B, \text { stat }}-m_{\text {robot }} \cdot g-m_{\text {vehicle }} \cdot g=0
\end{gathered}
$$

Where:
F_{y} - Y -axis forces (N);
$\mathrm{R}_{\mathrm{A}, \text { stat }}$ - Static reaction force on point $\mathrm{A}(\mathrm{N})$;
$\mathrm{R}_{\mathrm{B}, \text { stat }}$ - Static reaction force on point $\mathrm{B}(\mathrm{N})$;
$P_{\text {robot }}$ - Weight of the robot (N);
Pvehicle - Weight of the vehicle (N).

$$
\begin{gathered}
\sum M_{A}=0 \Rightarrow \\
\Rightarrow R_{B, \text { stat }} \cdot 930+P_{\text {robot }} \cdot 35-P_{\text {vehicle }} \cdot(930 / 2)=0 \Leftrightarrow \\
\Leftrightarrow R_{B, \text { stat }} \cdot 930+m_{\text {robot }} \cdot g \cdot 35-m_{\text {vehicle }} \cdot g \cdot 465=0
\end{gathered}
$$

Where:

$$
\mathrm{M}_{\mathrm{A}} \text { - Moments on point A }(\mathrm{N} \cdot \mathrm{~m}) \text {. }
$$

To calculate the dynamic reactions (Figure $83-b$), Equation 3 and Equation 4 were used, which also relate to the equilibrium of forces in the Y axis and moments on the point A , respectively. In this case the sum of moments in the point A remains zero since it is assumed that the vehicle has a purely horizontal movement.

$$
\begin{gathered}
\sum F_{y}=0 \Rightarrow \\
\Rightarrow R_{A, \text { dyn }}+R_{B, \text { dyn }}-P_{\text {robot }}-P_{\text {vehicle }}=0 \Leftrightarrow \\
\Leftrightarrow R_{A, \text { dyn }}+R_{B, \text { dyn }}-m_{\text {robot }} \cdot g-m_{\text {vehicle }} \cdot g=0
\end{gathered}
$$

Where:
$\mathrm{R}_{\mathrm{A}, \mathrm{dyn}}$ - Dynamic reaction force on point $\mathrm{A}(\mathrm{N})$;
$R_{B, d y n}$ - Dynamic reaction force on point $B(N)$.

$$
\begin{gathered}
\sum M_{A}=0 \Rightarrow \\
\Rightarrow R_{B, \text { dyn }} \cdot 930+P_{\text {robot }} \cdot 35+I_{\text {robot }} \cdot 650-P_{\text {vehicle }} \cdot(930 / 2)+I_{\text {vehicle }} \cdot 125=0 \\
\Leftrightarrow \\
\Leftrightarrow R_{B, \text { dyn }} \cdot 930+m_{\text {robot }} \cdot g \cdot 35+m_{\text {robot }} \cdot a \cdot 650-m_{\text {vehicle }} \cdot g \cdot 465+m_{\text {vehicle }} \\
\cdot a_{\text {travelling }} \cdot 125=0
\end{gathered}
$$

Equation 4
Where:
Irobot - Inertia of the robot (N);
Ivehicle - Inertia of the vehicle (N);
$a_{\text {travelling }}$ - Vehicle acceleration ($\mathrm{m} / \mathrm{s}^{2}$).
The results of the reaction forces for each case are shown in Table 14.

Table 14 - Results of the reaction forces of the vehicle.

	Without the Mass of the Boxes	With the Mass of the Boxes
Stationary Vehicle	$\mathrm{R}_{\mathrm{A}, \text { stat }}=1041 \mathrm{~N}$	$\mathrm{R}_{\mathrm{A}, \text { stat }}=1532 \mathrm{~N}$
	$\mathrm{R}_{\mathrm{B}, \text { stat }}=725 \mathrm{~N}$	$\mathrm{R}_{\mathrm{B}, \text { stat }}=1215 \mathrm{~N}$
Vehicle Accelerating	$\mathrm{R}_{\mathrm{A}, \mathrm{dyn}}=1103 \mathrm{~N}$	$\mathrm{R}_{\mathrm{A}, \mathrm{dyn}}=1613 \mathrm{~N}$
	$\mathrm{R}_{\mathrm{B}, \mathrm{dyn}}=663 \mathrm{~N}$	$\mathrm{R}_{\mathrm{B}, \mathrm{dyn}}=1133 \mathrm{~N}$
Vehicle Braking	$\mathrm{R}_{\mathrm{A}, \mathrm{dyn}}=1109 \mathrm{~N}$	N/A
	$\mathrm{R}_{\mathrm{B}, \mathrm{dyn}}=657 \mathrm{~N}$	

With these results it can be concluded that the wheels of the vehicle always remain in contact with the ground, since there was no negative value for the reaction forces. Although it is a good indication of the stability of the vehicle, the FEM 9.311 standard suggests a direct calculation of the stability for S / R machines through Equation 5, Equation 6 and Equation 7, where the variables must be replaced by the previously determined values. This is a dimensionless factor which, according to the standard, must be equal to or greater than 1,5 under service conditions [119].

$$
\sum \text { stabilising moments }=R_{\text {stat }, \text { min }} \times r
$$

Where:
$R_{\text {stat,min }}$ - Minimum static reaction force between the two support points (N);
r - Distance between the two support points (m).

$$
\sum_{i=1}^{n} \text { overturning moments }=F_{1} \cdot h_{1}+F_{2} \cdot h_{2}+(\ldots)+F_{n} \cdot h_{n}
$$

Equation 6
Where:
$\mathrm{F}_{1}, \mathrm{~F}_{2},(\ldots), \mathrm{F}_{\mathrm{n}}$ - Inertia forces due to the weight of the bodies (N);
$\mathbf{h}_{1}, h_{2},(\ldots),. h_{n}$ - Vertical distance between the inertia forces and the floor (m).
$v=\frac{\sum \text { stabilising moments }}{\sum \text { overturning moments }}$
Equation 7
Where:

> v - Stability factor (-).

The stability factor (v) was determined for two scenarios - with and without the mass of the boxes - and the results are represented in Table 15.

Table 15 - Results of the stability factor.

	Without the Mass of the	With the Mass of the
	Boxes	Boxes
Vehicle Accelerating	$v=11,8$	$v=14,8$
Vehicle Braking	$v=10,7$	N/A

As expected, the vehicle exhibits greater instability when moving without the boxes since the center of mass rises slightly due to the mass reduction. However, all values are well above the minimum value indicated in the standard, which represents a good indication that there will be no problems with the equipment operation, since the value of the vehicle mass was intentionally estimated below.

3.4.2.2 PRELIMINARY CALCULATION OF THE TRAVELLING GEARMOTOR

To calculate the travelling gearmotor, the parameters presented in Table 16 were considered.

Table 16 - Parameters considered to calculate the travelling gearmotor.

Parameter	Value
Vehicle Total Mass (estimated) ($m_{\text {vehicle }}$)	180 kg (estimated)
Boxes Mass (m $m_{\text {load }}$)	$100 \mathrm{~kg}(50 \mathrm{~kg} / \mathrm{box})$
Vehicle Speed (vtravelling)	$3 \mathrm{~m} / \mathrm{s}$
Vehicle Acceleration (estimated) (atravelling)	$1,5 \mathrm{~m} / \mathrm{s}^{2}$ (estimated)
Gravitational Acceleration (g)	$9,81 \mathrm{~m} / \mathrm{s}^{2}$
Diameter of the Wheels ($\left.\mathrm{D}_{\text {wheel }}\right)$	125 mm

Parameter	Value
Diameter of the Wheels Axle ($\mathrm{d}_{\text {axle }}$)	45 mm
Gear Ratio between Sprockets (iv)	1,0
Lever Arm of Rolling Friction (polyurethane/steel) (f)	0,9 mm
Coefficient of Friction (polyurethane/steel) ($\mu_{\text {stat (PU/steel) }}$)	0,55
Coefficient of Friction of the Bearings (anti-friction bearings) (μ_{L})	0,005
Chain Efficiency ($\mathrm{n}_{\text {chain }}$)	0,9
Load Efficiency ($\eta_{\text {load }}$)	0,9
Gearmotor Type	Helical Gearmotor (Type R)
Operation Type	$16 \mathrm{~h} /$ day; 100 cycles/h
Load Classification	Non-uniform
Static Reaction Force on Wheels A (vehicle unloaded) ($\mathrm{R}_{\mathrm{A}, \text { stat }}$)	1041 N

Static Reaction Force on Wheels B
(vehicle unloaded) ($\left.\mathrm{R}_{\mathrm{B}, \text { stat }}\right)$$\quad 725 \mathrm{~N}$

To pre-select the gearmotor, it was decided to choose an AC gearmotor from SEW's standard range due to the low cost, durability and wide range of solutions for all types of assemblies. Although the type of assembly for the travelling gearmotor of the shuttle vehicle was still unknown, it was known that the torque would be transmitted to the drive wheels by means of a roller chain and a pair of sprockets. For this reason, the type of gearmotor selected was the type R (Figure 84), considering a gear ratio of 1 between the pair of sprockets [120].

Figure 84 - SEW helical gearmotor (type R) [120].

The gearmotor was calculated according to SEW's Project Planning of Drives calculation procedure for travel drives. As such, it begun with the calculation of the driving force required to move the vehicle (Equation 8), which depends on the force of inertia and the force of resistance to movement. When this value was reached, it became possible to determine the static power (Equation 10), which corresponds to the power output by the motor when the vehicle moves at constant speed, and the dynamic power (Equation 11), which corresponds to the power output by the motor when the vehicle accelerates. Both values had to be affected by the system total efficiency (Equation 9) [121].

$$
\begin{gathered}
F_{\text {drive }}=F_{\text {inertia }}+F_{\text {rolling }} \\
F_{\text {drive }}=m_{\text {total }} \cdot a_{\text {travelling }}+m_{\text {total }} \cdot g \cdot\left(\mu_{L} \cdot \frac{d_{\text {axle }}}{D_{\text {wheel }}} \cdot \frac{2 f}{D_{\text {wheel }}}\right)
\end{gathered}
$$

Where:
$F_{\text {drive }}$ - Driving force (N);
Finertia - Vehicle inertia force (N);
Frolling - Rolling resistance to motion force (N).

$$
\eta_{\text {total }}=\eta_{\text {chain }} \cdot \eta_{\text {load }}
$$

Where:
$\eta_{\text {total }}$ - Gearmotor total efficiency (-).

$$
P_{\text {static }}=\frac{F_{\text {rolling }} \cdot v_{\text {travelling }}}{\eta_{\text {total }}}
$$

Equation 10
Where:
$\mathbf{P}_{\text {static }}$ - Static power (W).

$$
P_{\text {dynamic }}=\frac{F_{\text {drive }} \cdot v_{\text {travelling }}}{\eta_{\text {total }}}
$$

Equation 11
Where:
$\mathbf{P}_{\text {dynamic }}$ - Dynamic power (W).
The motor could then be selected via the calculated value of the dynamic power, choosing a motor from SEW's 4-pole motor range. Motor selection can go through several iterations, varying the motor frequency between 50 and 87 Hz , using a frequency inverter that allows adjusting the speed of rotation of the motor without losing torque to the output of the gearmotor, so that it is possible to select a lower power motor.

Between each iteration it was necessary to verify the choice of the motor through the quotient between the motor acceleration torque, the value that the motor must provide to the application when the vehicle is starting, and the motor nominal torque, a catalog value. This quotient must be less than $1,30(130 \%)$ so that the motor selection is valid, which means that the manufacturer of the gearmotors admits that the acceleration torque of the application is 1,30 times higher than the motor nominal torque for travel drives.

To determine the value of the acceleration torque (Equation 15), it was necessary to calculate the external moment of inertia (Equation 12), the motor load torque (Equation 13) and the acceleration time of the shuttle vehicle (Equation 14).

$$
J_{X}=91,2 \cdot m_{\text {total }} \cdot\left(\frac{v_{\text {travelling }}}{n_{N}}\right)
$$

Where:

$$
\begin{aligned}
& \mathbf{J}_{\mathrm{x}}-\text { External mass moment of inertia }\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right) ; \\
& \mathbf{n}_{\mathrm{N}}-\text { Rated motor speed (rpm). }
\end{aligned}
$$

$$
M_{L}=\frac{F_{\text {rolling }} \cdot v_{\text {travelling }} \cdot 9,55}{n_{N}}
$$

Where:

$$
\begin{aligned}
& \mathbf{M}_{\mathrm{L}} \text { - Load torque }(\mathrm{N} \cdot \mathrm{~m}) . \\
& \qquad t_{a}=\frac{v_{\text {travelling }}}{a_{\text {traveling }}}
\end{aligned}
$$

Where:
$\mathbf{t}_{\mathbf{a}}$ - Acceleration time (s).

$$
M_{H}=\frac{\left(J_{\text {Mot }}+\frac{1}{\eta_{\text {total }}} \times J_{X}\right) \times n_{N}}{9,55 \times t_{a}}+\frac{M_{L}}{\eta_{\text {total }}}
$$

Where:

$$
\begin{aligned}
& \mathbf{M}_{H}-\text { Acceleration torque }(\mathrm{N} \cdot \mathrm{~m}) \text {; } \\
& \mathbf{J}_{\mathrm{Mot}} \text { - Mass moment of inertia of the motor }\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right) \text {. }
\end{aligned}
$$

The results for the selected motors are shown in Table 17.

Table 17 - Results for the selected motor.

Variable	Result
Driving Force ($\mathrm{Fdrive}^{\text {) }}$	464,5 N
Gearmotor Total Efficiency ($\eta_{\text {total }}$)	0,81
Static Power ($\mathrm{P}_{\text {static }}$)	164,8 W
Dynamic Power ($\mathrm{P}_{\text {dynamic }}$)	1720 W
	SEW Motors - 4-pole Motors - DRN90L4
	$\underline{\mathrm{P}}_{\mathrm{N}}=1,5 \mathrm{~kW}$
Selected Motor (1 ${ }^{\text {st }}$ Selection)	$\underline{\mathrm{n}}_{\mathrm{N}}=1461 \mathrm{rpm}(50 \mathrm{~Hz})$
	$\underline{J}_{\text {Mot }}=67,2 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\underline{\mathrm{M}_{\mathrm{N}}}=9,8 \mathrm{~N} \cdot \mathrm{~m}$
External Mass Moment of Inertia ($1^{\text {st }}$ Selection) (J_{x})	0,1077 kg $\cdot \mathrm{m}^{2}$
Load Torque (1 ${ }^{\text {st }}$ Selection) (M_{L})	0,87 N•m
Acceleration Time ($1^{\text {st }}$ Selection) ($\mathrm{ta}_{\text {a }}$)	2 s
Acceleration Torque ($1^{\text {st }}$ Selection) (M_{H})	11,76 N•m
Motor Start-Up Torque/Motor Rated Torque ($1^{\text {st }}$ Selection) ($\mathrm{M}_{\mathrm{H}} / \mathrm{M}_{\mathrm{N}}$)	120\%

SEW Motors - 4-pole Motors - DRN90S4

$$
\underline{P}_{N}=1,1 \mathrm{~kW}
$$

Selected Motor ($\mathbf{2}^{\text {nd }}$ Selection)
$\underline{\mathrm{n}}_{\mathrm{N}}=2400 \mathrm{rpm}(87 \mathrm{~Hz})$
$\mathrm{J}_{\text {Mot }}=54 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$

$$
\underline{\mathrm{M}}_{\mathrm{N}}=7,2 \mathrm{~N} \cdot \mathrm{~m}
$$

External Mass Moment of Inertia (2 ${ }^{\text {nd }}$ Selection) (J_{x})	0,0399 kg $\cdot \mathrm{m}^{2}$
Load Torque ($\mathbf{2}^{\text {nd }}$ Selection) (M_{L})	0,53 N•m
Acceleration Torque ($2^{\text {nd }}$ Selection) (M_{H})	7,52 N•m
Motor Start-Up Torque/Motor Rated Torque (2 ${ }^{\text {nd }}$ Selection) ($\mathrm{M}_{\mathrm{H}} / \mathrm{M}_{\mathrm{N}}$)	104\%

Standard Motor Brake
$\underline{M}_{\text {Brake }}=5,0 \mathrm{~N} \cdot \mathrm{~m}$

Both selections would be valid since in both cases the acceleration torque is less than 1,50 times the nominal torque of the motor, however the motor form the 2 nd selection was chosen because it has less power. The selected motor (2nd selection) has a lower power than the 1st selection, however it requires that a frequency inverter is used to adjust the speed of rotation of the motor (for a frequency of 87 Hz) without losing torque at the output of the gearmotor.

The selection of the gear unit was a simpler process since this depends only on the following parameters:

1) Output speed of the gearmotor (Equation 16), directly related to the desired linear speed for the shuttle vehicle;
2) Gear ratio between the motor and the gear unit (Equation 17), which depends on the speed of the motor and the output speed of the gearmotor;
3) Mass acceleration factor (Equation 18), a SEW factor calculated through the quotient between the external mass moment of inertia and the mass moment of inertia of the motor, which must be less than 10 for a non-uniform load classification of the shuttle vehicle application;
4) Minimum service factor, a factor that provides an estimate of the maximum torque supported by the gear unit, being determined by querying a graph on SEW's catalog through the operation type and the load classification of the shuttle vehicle application.

$$
n_{a}=19,1 \times 10^{3} \times \frac{v_{\text {travelling }}}{D_{\text {wheel }}} \times i_{v}
$$

Equation 16
Where:
\mathbf{n}_{a} - Gearmotor output speed (rpm).

$$
i_{\text {gear unit }}=\frac{n_{N}}{n_{a}}
$$

Equation 17
Where:
$\mathrm{i}_{\text {gear unit }}-\mathrm{Gear}$ unit ratio (-).

$$
f_{M}=\frac{J_{X}}{J_{M o t}}
$$

Where:

$$
\mathbf{f}_{\mathrm{M}}-\mathrm{Mass} \text { acceleration factor (-). }
$$

After selecting the gear unit, it was necessary to validate the selection by comparing the static and dynamic driving torques, required to move the shuttle vehicle, with the rated
output torque of the gearmotor. As such, Equation 19 and Equation 22 were used to determine, respectively, the static driving torque and the dynamic driving torque.

$$
M_{\text {static }}=\frac{F_{\text {rolling }} \cdot \frac{D_{\text {wheel }}}{2}}{\eta_{\text {total }}}
$$

Where:
$\mathbf{M}_{\text {static }}$ - Static driving torque ($\mathrm{N} \cdot \mathrm{m}$).

$$
M_{\text {dynamic }}=\frac{F_{\text {drive }} \cdot \frac{D_{\text {wheel }}}{2}}{\eta_{\text {total }}}
$$

Where:
$\mathrm{M}_{\text {dynamic }}$ - Dynamic driving torque ($\mathrm{N} \cdot \mathrm{m}$).
The results for the selected gear unit are shown in Table 18.
Table 18 - Results for the selected gear unit.

Variable	Result
Gearmotor Output Speed (calculated) $\left(n_{a}\right)$	458,4 rpm
Gear Unit Ratio (calculated) (igear unit)	5,24
Mass Acceleration Factor (f_{M})	7,39
Minimum Service Factor (f_{B})	1,6
Selected Gear Unit	$\begin{gathered} \underline{\text { SEW Gear Units - Helical Gearmotors - }} \\ \underline{R 27} \\ \underline{i=5,00} \\ \underline{n_{a}}=480 \mathrm{rpm} \text { (with the motor rotating at } \\ \underline{2400 \mathrm{rpm})} \\ \underline{\mathrm{M}_{\mathrm{a}} \max }=95 \mathrm{~N} \cdot \mathrm{~m} \\ \underline{M_{a}}=36 \mathrm{~N} \cdot \mathrm{~m} \\ \underline{f_{B}=2,6} \end{gathered}$
Static Driving Torque ($\mathrm{M}_{\text {static }}$)	3,4 N•m
Dynamic Driving Torque (Mdynamic) $^{\text {d }}$	35,8 N•m

Variable	Result
Dynamic Driving Torque/Gearmotor	$99,6 \%$
Rated Output Torque (Mdynamic/Ma)	

Selected Gearmotor
R27 DRN90S4 BE2
The selected gear unit complies with the required rotational speed requirements, having a service factor of 2,6 (greater than the minimum value calculated), which means that it is structurally capable of supporting a maximum torque of about 2,6 times the rated torque. Besides this, the static and dynamic driving torques are above the rated gearmotor rated output torque ($36 \mathrm{~N} \cdot \mathrm{~m}$), so the selected gear unit is validated.

The selected gearmotor is the final combination between the selected gear unit and the selected engine, along with the respective standard motor brake.

Finally, it was necessary to check the maximum allowable acceleration for each of the wheel pairs of the shuttle vehicle to ensure that the wheels will not slip when accelerating or braking. As such, it was necessary to calculate the friction force in each of the pairs of wheels (Figure 85) that depends on the previously calculated static reactions and the coefficient of static friction between the wheel and the rails (Equation 21). It was considered the scenario where the vehicle is unloaded because it is the worstcase scenario for wheel slippage.

Figure 85 - Friction force applied on the travelling wheels.

$$
F_{\text {friction }}=N \cdot \mu_{\text {stat }} \Leftrightarrow F_{\text {friction }}=R_{\text {stat }} \cdot \mu_{\text {stat }}
$$

Where:

$$
\begin{aligned}
& \mathbf{F}_{\text {friction }} \text { - Friction force (N); } \\
& \mathbf{N} \text { - Normal force (N); } \\
& \mu_{\text {stat }} \text { - Static coefficient of friction between the wheel and the floor (-); } \\
& \mathbf{R}_{\text {stat }} \text { - Static reaction force of the vehicle (N). }
\end{aligned}
$$

For the wheels to not slip, the driving force of the gearmotor should be equal to or less than the friction force. As such, through Equation 22 it was possible to determine the maximum permissible acceleration.

$$
\begin{gathered}
F_{\text {drive }} \leq F_{\text {friction }} \Leftrightarrow \\
\Leftrightarrow m_{\text {total }} \cdot a_{\text {travelling }}+m_{\text {total }} \cdot g \cdot\left(\mu_{L} \cdot \frac{d_{\text {axle }}}{D_{\text {wheel }}} \cdot \frac{2 f}{D_{\text {wheel }}}\right) \leq F_{\text {friction }}
\end{gathered}
$$

The results for the maximum permissible acceleration on each wheel pair are shown in Table 19.

Table 19 - Results for the maximum permissible acceleration on each wheel pair.

	Wheels A	Wheels B
Friction Force (Ffriction)	$572,6 \mathrm{~N}$	$398,8 \mathrm{~N}$
Maximum Vehicle Acceleration (atravelling)	$3,0 \mathrm{~m} / \mathrm{s}^{2}$	$2,1 \mathrm{~m} / \mathrm{s}^{2}$

By analysis of the results it is easily concluded that the wheels A should be the driving wheels since they allow a greater acceleration, although this value is strongly related to the center of mass of the shuttle vehicle, which was unknown at this stage. However, wheels B can also be the driving wheels because the maximum acceleration is also above the estimated value for the travelling acceleration.

With the maximum permissible values for the travelling acceleration, it was necessary to check whether the deceleration caused by an emergency braking would cause the travelling wheels to slip. As such, to determine the deceleration caused by the rated braking torque of the motor brake, Equation 23 and Equation 24 were used, which correspond to the emergency deceleration time and the emergency deceleration, respectively.

$$
t_{a, \text { brake }}=\frac{\left(J_{\text {Mot }}+J_{X} \cdot \eta_{\text {total }}\right) \cdot n_{N}}{9,55 \cdot\left(M_{\text {Brake }}+M_{L} \cdot \eta_{\text {total }}\right)}
$$

Where:
$\mathbf{t}_{\mathrm{a}, \text { brake }}$ - Emergency deceleration time (s).

$$
a_{\text {brake }}=\frac{v_{\text {travelling }}}{t_{a, \text { brake }}}
$$

Where:

$$
\text { abrake - Emergency deceleration }\left(\mathrm{m} / \mathrm{s}^{2}\right) \text {. }
$$

The result for the emergency deceleration is shown in Table 20.

Table 20 - Results for the emergency deceleration.

$\underline{\text { Variable }}$	Result
Emergency Deceleration (abrake)	$1,65 \mathrm{~m} / \mathrm{s}^{2}$

The emergency deceleration caused by the motor brake is less than the maximum permissible accelerations for each travelling wheels pair. As such, the rated braking torque is not enough to cause the wheels to slip, ensuring a good estimate that there will be no problems during the operation of the shuttle vehicle.

3.4.2.3 PRELIMINARY CALCULATION OF THE GUIDING WHEELS AND THE TRAVELLING WHEELS

To calculate the loads on the wheels, the parameters described in Table 21 were considered. The vehicle driving force was determined in the preliminary calculation of the travelling gearmotor (see section 3.4.2.2).

Table 21 - Parameters considered to calculate the loads on the wheels.

Parameter	Value
Vehicle Total Mass (estimated) ($\mathrm{m}_{\text {vehicle }}$)	150 kg
Boxes Mass (mload)	100 kg (50 kg/box)
Vehicle Speed (Vtravelling)	$3 \mathrm{~m} / \mathrm{s}$
Gravitational Acceleration (g)	$9,81 \mathrm{~m} / \mathrm{s}^{2}$
Vehicle Driving Force ($\mathrm{F}_{\text {drive }}$)	464,5 N
Maximum Dynamic Reaction Force on the Wheels (vehicle accelerating) ($R_{\text {max, dyn }}$)	1613 N
Vehicle Deflection when Accelerating (β)	1°
Coefficient of Friction (polyurethane/steel)	$\mu_{\text {stat (PU/steel) }}=0,55$
Brauer ${ }^{\circledR}$ factor for the continuous running condition (C_{1})	0,75
Brauer ${ }^{\circledR}$ factor for the surface speed $10-$ $16 \mathrm{~km} / \mathrm{h}$ condition $\left(\mathrm{C}_{2}\right)$	0,7
Brauer ${ }^{\otimes}$ factor for the driving wheels condition (C_{3})	0,7
DEVELOPMENT OF AN INNOVATIVE SHUTTLE VEHICLE FOR AUT Storage and retrieval systems	

It was decided that both the guiding wheels and the travelling wheels would be polyurethane because of the high load capacity and the great ability to adapt to the unevenness of the floor when in service conditions. As such, the wheels were selected considering Brauer ${ }^{\circledR}$ load factors associated with specific service conditions for this type of wheels [122].

For the selection of the guiding wheels it was difficult to determine the worst-case scenario for the wheels due to the unpredictability of movements that may occur, however it was considered a scenario where the vehicle accelerates deflected, with one of the guiding wheels causing the vehicle to align. This guiding wheel must be able to support the Y axis component of the driving force and the force of dragging approximately half of the vehicle to align it, according to free body diagram (Figure 86).

Figure 86 - Shuttle vehicle free-body diagram with the forces on the guiding wheel when the vehicle is accelerating.
To determine the force on the guiding wheel, Equation 25 was used, which relate to the equilibrium of forces in the Y axis.

$$
\begin{aligned}
& \sum F_{y}=0 \Rightarrow \frac{F_{\text {friction total }}}{2}+F_{\text {drive }} \cdot \sin (\beta)-F_{\text {guiding wheel }}=0 \Leftrightarrow \\
& \Leftrightarrow \frac{m_{\text {total }} \cdot g \cdot \mu_{\text {stat }\left(\frac{P U}{\text { steel }}\right)}}{2}+F_{\text {drive }} \cdot \sin (\beta)-F_{\text {guiding wheel }}=0
\end{aligned}
$$

Equation 25
Where:
$\mathrm{F}_{\mathrm{y}}-\mathrm{Y}$ axis forces (N);
Ffriction total - Total friction force (N);
$\mathrm{F}_{\text {guiding wheel }}$ - Force on the guiding wheel (N).
$\mathrm{m}_{\text {total }}$ - Vehicle total mass (kg).

With the load on each of the guiding wheels, it was possible to select a wheel from the catalog. The second step was to correct the permissible load of the selected wheel using the $\mathrm{Brauer}^{\circledR}$ factors (Equation 26) and validate the selection by calculating the safety factor between the actual load and the permissible wheel load (Equation 27). The guiding wheels are subject only to factors relating to rolling bearing condition and surface speed $10-16 \mathrm{~km} / \mathrm{h}$ condition.

$$
P_{\max \mathrm{corr}}=P_{\max } \cdot C_{1} \cdot C_{2}
$$

Where:
$\mathbf{P}_{\text {max corr }}$ - Maximum load supported by the wheel (corrected) (N);
$\mathbf{P}_{\text {max }}$ - Maximum load supported by the wheel (N);

$$
S F=\frac{P_{\text {max corr }}}{F_{\text {guiding wheel }}}
$$

Where:
SF - Safety factor.
The results are shown in Table 22.
Table 22 - Results of the guiding wheels.

Variable	Result
Force on the Guiding Wheel (Fguiding wheel)	$F_{\text {impacto }}=840 \mathrm{~N}$
Selected Wheel	Brauer $^{\circledR}$ Wheels - Polyurethane Tyred Wheels - Wheel Type H75/35
Maximum Load supported by the Wheel ($\mathrm{P}_{\text {max }}$)	$300 \mathrm{kgf}=2943 \mathrm{~N}$
Maximum Load supported by the Wheel (Corrected) ($\mathrm{P}_{\text {max corr) }}$	1545 N
Safety Factor (SF)	2,0

A coefficient of safety of 2,0 is a very acceptable value for a pre-selection of the guiding wheels as it provides some room for maneuver in the event of significant and unexpected variations due to the mechanical design of the machine.

For the travelling wheels, the calculation procedure was very similar to that of the guiding wheels. The difference is that in this case the loads to which the wheels are subjected correspond to the reaction forces of the vehicle, values already determined previously (Table 14). As the worst-case scenario for the travelling wheels, it was considered the maximum dynamic reaction when the vehicle accelerates, which occurs on wheels A (Figure 87).

Figure 87 - Force on the travelling wheels.
As such, the force per traveling wheel was calculated through Equation 28.

$$
F_{\text {trav.wheel }}=\frac{R_{\text {max,dyn }}}{2} \Leftrightarrow F_{\text {trav.wheel }}=\frac{R_{A, d y n}}{2}
$$

Where:
Ftrav. wheel - Force per travelling wheel (N).
After selecting a catalog wheel, it was necessary to affect the permissible load with the Brauer ${ }^{\circledR}$ factors (Equation 29) and, again, validate the selection through the safety coefficient (Equation 30). In this case, the travelling wheels are subject to the factors related to the conditions of continuous rolling, surface speed of $10-16 \mathrm{~km} / \mathrm{h}$ and driving wheels. Although it is known that only two of the four wheels will be driving, as always, it is considered the worst-case scenario for the wheels selection.

$$
P_{\text {max corr }}=P_{\max } \cdot C_{1} \cdot C_{2} \cdot C_{3}
$$

$$
S F=\frac{P_{\text {max corr }}}{F_{\text {trav. wheel }}}
$$

The results are shown in Table 23.
Table 23 - Results of the travelling wheels.

Variable	Result
Selected Wheel	$\frac{\text { Brauer }^{\oplus}}{} \frac{\text { Wheels }}{} \frac{\text { Wheels - Polyurethane Tyred }}{}$
Maximum Load supported by the Wheel $\left(\mathbf{P}_{\text {max }}\right)$	$\underline{530 \mathrm{kgf}=5199 \mathrm{~N}}$
Maximum Load supported by the Wheel (Corrected) ($\mathbf{P}_{\text {max corr) }}$	1911 N
Safety Factor (SF)	2,4

As with the guiding wheels, a coefficient of safety of 2,4 guarantees some room for maneuver to compensate for possible variations due to the mechanical design of the machine.

3.4.3 DESIGN OF THE MAIN STRUCTURE

With the first sketches made and the preliminary calculations finalized, the 3D design of the equipment was started. It started with the main structure, although it is a component that depends on all the other systems of the machine.

Being one of the main parts of the vehicle, it was necessary to have some care in the design of it, trying to simplify its manufacture to try to reduce the production costs of the machine. Given its complexity, it is natural that there are many alternatives to what is presented in this work, so it is important to note that the solution presented here is only a possible solution and may not even be the optimal solution.

In making the first sketches (Figure 88), the main questions that arose were whether the structure was to be made in structural tube or sheet and whether the material to be used would be aluminum or steel. As it was known at the outset that this structure would undergo welding processes, the material selected was steel because it is easier to weld than aluminum and for having a considerably lower cost. It was decided to design a steel sheet structure to reduce weight, although it is more difficult to have as much mechanical strength as would have been the case if using the structural tube.

Figure 88 - Sketches of the main structure.
This structure has evolved over time, as different systems of the shuttle vehicle have been developed, so to understand the purpose of each of the elements that constitute this part, it is necessary to read the sections for each of these systems (sections 3.4.4 to 3.4.8). In Figure 89 it is possible to notice the evolution of the structure from the first version to the final version, proving to be an iterative work.

As the main features, the structure is visually symmetrical and consists of two longitudinal plates which are transversely separated by two other U-shaped bent plates
(Figure 90). It then has small bars, bent sheets and reinforcing plates which support the different vehicle systems (see sections 3.4.4 to 3.4.8).

Figure 89 - First and last version of the main structure.

Figure 90 - Some details of the main structure.
The detail drawing of the main structure can be visualized in more detail in Annexes 2 and 3.

3.4.4 DESIGN OF THE TRAVELLING SYSTEM

The travelling system (Figure 91) was the first system to be developed for the shuttle vehicle. It is a system with the main purpose of moving the vehicle along the aisle of the
rack automatically at a defined speed and acceleration, stopping accurately in the storage positions of the boxes.

Figure 91 - Travelling system for the shuttle vehicle.
In addition to its main purpose, some requirements were defined from the outset to facilitate decision making throughout the design process of the final solution. These requirements are indicated below:

1) It shall be possible to assemble the travelling system in the main structure of the shuttle vehicle based on the geometry pre-designed for it, trying to put most of the components inside so there is no component visible;
2) The movement of the vehicle is only rectilinear along the aisle, and must remain guided transversely on the rails;
3) The vehicle must be composed of four wheels, two driving and two driven;
4) The gearmotor must be of alternating current and type helical gearmotor of SEW's range of gearmotors;
5) There should be a waste removal system along the rail to extend wheel life;
6) The travelling system shall have shock absorbers at the ends to absorb the impact of the vehicle on the aisle end stoppers in the event of any failure of the controls;
7) The travelling system must have the necessary sensors and controllers to operate automatically and accurately.

The different components that constitute the travelling system were selected or developed in such a way that the mentioned requirements were satisfied. In Figure 92 it is possible to observe the WBS of the travelling system and to see how these components are organized.

Figure 92 - WBS of the travelling system.
To better understand the description and operation of each of the components from the travelling system, it is necessary to visualize and interpret the respective detail drawings of the parts and assemblies (Annexes 2 and 3), and the standard components data sheets (Annexes 4 and 5).

For the driving wheels assembly (Figure 93), the following components were selected:

Figure 93 - Driving wheels assembly for the travelling system.

1) A driving shaft that rotates supported by two bearings and where the two driving wheels are assembled;
a. Notes about the design:
i. The driving shaft was designed according to the maximum permissible stress and displacement, where it was tried to avoid the creation of zones of stresses concentration, for example softening the transitions of diameter;
ii. The wheels were selected according to the calculations made initially;
iii. It was decided to place two driving wheels, instead of one, to ensure greater vehicle stability at start/stop;
iv. Sheet steel housing units with ball bearing have been selected because of their compactness, ease of assembly, shaft diameter and load capacity.
b. Notes about the assembly:
i. This assembly is mounted on the main structure of the shuttle vehicle entering through the slots placed for that purpose;
ii. The connection is made in the housing units by means of bolts, nuts and Nord-Lock washers, special washers that are used in situations of great vibration because they guarantee a greater safety of the bolted connections due to the interlocking teeth that they have in their support surfaces. These washers were selected for this bolted connection due to the vibration caused by the gearmotor and the rotation of the wheels;
iii. The shaft is locked axially through bushes placed between the wheels and the bearings, and on the tops through the wheels covers.
2) A gearmotor that transmits the motion to the driving shaft by means of a pair of sprockets and chain;
a. Notes about the design:
i. The gearmotor was selected according to the calculations made initially. A helical gearmotor of the SEW range was selected because they have great durability and a wide range of solutions for all types of assemblies.;
ii. It was decided to transmit the torque of the gearmotor instead of mounting it directly on the driving shaft, so that the displacement of the driving shaft does not affect the gear unit, thus being independent;
iii. The use of chain and sprockets, instead of belt and pulleys, is due to the great load capacity of the chains and to the fact that they allow some transverse adjustment between the sprockets, being very difficult to disengage;
iv. A maintenance-free roller chain DIN 8187 08B-2 has been selected. Double chain to increase the load capacity, and
maintenance-free for having a longer life span and for being cleaner;
v. The sprockets were selected considering the following factors: chain type, available space within the main structure of the vehicle, a transmission ratio of 1 , pitch diameters high enough to reduce radial loads on the axles, and number of teeth odd and equal to or greater than 17 to reduce tooth wear (chain supplier suggestion).
b. Notes about the assembly:
i. The gearmotor is connected to a support plate using bolts and Nord-Lock washers. The support plate and the gearmotor are then mounted in the main structure between two welded bars, that guide the support plate, and fixed by bolted connection;
ii. The chain loop is placed around the two sprockets, engaging the links in the teeth, and closed with a connecting link;
iii. The support plate of the gearmotor guided on the two welded bars serves to tension the chain. To do this, the plate fixing bolts are relieved in the structure slots and through an adjustment bar the bolt is moved by untightening/tightening two nuts, causing the gearmotor shaft to move away from the driving shaft, which causes the chain tensioning.
3) Locking assemblies and a taper lock bushing that transmit motion to the wheels and sprockets.
a. Notes about the design:
i. It was decided to use locking assemblies to transmit the torque of the driving shaft to the wheels and the driven sprocket, and a taper lock bushing to transmit torque from the output shaft of the gearmotor to the driving sprocket. The keys have not been used because for this type of applications they are advised against due to the constant start/stop cycles and inversions of the movement;
ii. The locking assemblies and the tapper lock bushing are standard components that transmit the movement between shafts and hubs through the friction caused by the tightening between the two existing conical surfaces;
iii. According to the diameters of the shafts and the holes, the following types of locking assemblies and taper lock bushing were selected:

- For the transmission of the movement between the gearmotor output shaft and the driving sprocket the taper lock bushing 1210 D25 was selected due to the existence of the gearmotor key. In this situation the bushing is composed of only one part that has the tolerance hole and a conical surface on the outer diameter. This outer conical surface fits into a conical bore in the driving sprocket;
- For the transmission of the movement between the driving shaft and the driven sprocket, the locking assembly TLK300 25×30 was selected due to the small space between the outside diameters of the driving shaft and the driven sprocket. Two locking assemblies were placed to increase the contact surface area and consequently the torque transmission capacity between the parts;
- For the transmission of the movement between the driving shaft and the travelling wheels, the locking assembly TLK200 25×50 has been selected because it guarantees great torque transmission capacity, and there is enough space for its assembly.
b. Notes about the assembly:
i. The friction between the contact surfaces is caused by the tightening of the conical surfaces against each other which, in turn, is created by tightening one of the parts against the other. This sliding movement of the conical surfaces causes the outer diameter to expand and the inner diameter contracts, engaging the bushing between the hub and the shaft so that the entire assembly is joined and there may be transmission of movement;
ii. For proper positioning of the wheels and the sprockets, spacer washers were placed to abut the components before the final tightening of the locking assemblies and the taper lock bushing.

For the driven wheels assembly (Figure 94), the following components were selected:

Figure 94 - Driven wheels assembly for the travelling system.

1) A driven shaft that rotates supported by two bearings and where the two driven wheels are mounted;
a. Notes about the design:
i. The driven shaft was designed in accordance with the same principles used for the driving shaft, so they are very similar in terms of dimensions and geometry;
ii. The selected driven wheels were the same as the driving wheels so that all the travelling wheels are the same and so the processes of purchasing the articles and assembling the assemblies are easier;
iii. The selected housing units were the same ones selected for the driving wheels assembly.
b. Notes about the assembly:
i. The mounting of this assembly in the main structure is like the assembly of the driving wheels, in other words, it enters through the slots of the main structure and is bolted through the housing units, all being locked axially through bushes and the wheel covers.
2) Locking assemblies that transmit motion between the driven shaft and the wheels.
a. Notes about the design:
i. In this case it was not necessary to use the locking assemblies because there is no torque transmission between the driven shaft and the wheels, however, as it was decided to place driven wheels equal to the driving wheels, it was necessary to use the same locking assemblies to attach the driven wheels to the driven shaft so that there was rotation of the assembly.

For the guiding wheels assembly (Figure 95), the following components were selected:

Figure 95 - Guiding wheels for the travelling system.

1) Fork-shaped supports, each with an axle where the guiding wheel is assembled.
a. Notes about the design:
i. The guiding wheels supports were designed so that the wheels could be mounted on the main structure with the axis perpendicular to the axis of the travelling wheels, with the guiding rolling laterally between the two rails;
ii. The wheels were selected according to the calculations made initially;
iii. For the axles, standardized bolts were selected (ISO 7379) with a smooth and tolerance zone for fitting the wheel with adjustment, and a threaded tip for fixing.
b. Notes about the assembly:
i. Each guiding wheel is assembled on its support entering with interference on the axle, and then locked axially through compensation washers and a nylon insert lock nut that is tightened at the threaded end of the axle;
ii. The supports are fixed to the main structure by bolted connection, where the final tightening should only be given after positioning the wheels on the rail. This adjustment is made through the adjustment bar, by tightening or loosening the nuts on the threaded rod, which causes the wheels to approach or move away from the rail.

The rail brushes (Figure 96), used to remove the waste along the rail, have the following components:

Figure 96 - Rail brush for the travelling system.

1) Brushes and the supports to assemble the set.
a. Notes about the design:
i. The brushes consist of a Polyvinyl Chloride (PVC) body in which sixteen blocks of forty-six bristles are embedded, with a width greater than the width of the wheel for cleaning to be effective;
ii. The brackets are welded construction parts that hug the entire body of the brushes to give them greater strength and protection. b. Notes about the assembly:
i. The brushes are fixed to the respective supports by means of a threaded rod that engages the brush against the base of the support. This rod allows adjusting the brush in height so that it is always in contact with the rails;
ii. The brushes and their supports are mounted on the main structure in front of the travelling wheels by means of clamps and bolted connection, being attached to L-shaped rods;
iii. The L-shaped rods allow the brushes to be adjusted in two directions by sliding over the clamps.

The shock absorbers (Figure 97), used to absorb the impact of the vehicle on the aisle end stoppers, have the following components:

Figure 97 - Shock absorbers for the travelling system.

1) Polyurethane buffers.
a. Notes about the design:
i. The selected shock absorbers were the polyurethane buffers with 80 mm of diameter and 120 mm of height, because they have sufficient load capacity to absorb the impact of the vehicle and because the height allows them to be the most prominent components of the vehicle so that the remaining components remain intact upon impact;
ii. Two buffers were placed on each side of the vehicle to provide greater impact stability and, at the same time, to distribute the load across the two buffers.
b. Notes about the assembly:
i. The shock absorbers are assembled on the main structure by bolted connection, using the threaded bolt they have, and nylon insert lock nut to ensure greater safety in the connection.

The electrical equipment was described in the section 3.4.7.

3.4.5 DESIGN OF THE EXTRACTION SYSTEM

The extraction system (Figure 98) was the second system to be developed for the shuttle vehicle. It is a system with the main purpose of extracting and storing the boxes on the rack at a defined speed and acceleration, ensuring alignment in the final positioning. The entire operation must be performed automatically, accurately and smoothly.

Figure 98 - Extraction system for the shuttle vehicle.

In addition to its main purpose, some requirements were defined from the outset to facilitate decision making throughout the design process of the final solution. These requirements are indicated below:

1) It shall be possible to assemble the extraction system in the main structure of the shuttle vehicle based on the geometry pre-designed for it;
2) Only one box at a time should be removed or stored, even if the vehicle can carry two boxes;
3) The extraction mechanism shall be a retractable mechanism composed of two fixed arms and two movable arms;
4) The extraction or storage movement of the boxes must be linear in the direction of pulling or pushing the boxes, with a maximum stroke of 540 mm ;
5) The boxes must be guided along the movement to ensure correct alignment in the final positioning both on the vehicle and on the rack;
6) The boxes must remain locked on all faces when the vehicle is in motion;
7) The fixed and movable arms shall be manufactured from extruded profiles;
8) The parts that make up the system should be made of aluminum, preferably, to reduce the weight of the vehicle;
9) The system must be driven by an electric servo gearmotor to increase the positioning accuracy;
10) The linear movement of the arms must be carried out by means of chain and rack;
11) There shall be mechanical end stoppers for the movable arms;
12) The extraction system must have the necessary sensors and controllers to operate automatically and accurately.

The different components that constitute the extraction system were selected or developed in such a way that the mentioned requirements were satisfied. In Figure 99 it is possible to observe the WBS of the extraction system and to see how these components are organized.

Figure 99 - WBS of the extraction system.
To better understand the description and operation of each of the components from the extraction system, it is necessary to visualize and interpret the respective detail drawings of the parts and assemblies (Annexes 2 and 3), and the standard components data sheets (Annexes 4 and 5).

The drive assembly (Figure 100), used to operate the system, consists of the following components:

Figure 100 - Drive assembly for the extraction system.

1) Two pairs of support plates to secure the drive assembly and connect it to the support structures of the extraction system;
a. Notes about the design:
i. The support plates are aluminum parts divided by two pairs, one for each movable/fixed extraction arm. Each of these pairs has a main bore that is traversed by the driving shaft, with the sprockets and chains being inside each pair;
ii. Each plate has a small shoulder on the contact surface with the support structures to ensure correct positioning and alignment of the entire drive assembly.
b. Notes about the assembly:
i. The support plates are fixed to the support structure of the extraction system by means of bolted connection, using NordLock washers to ensure safety in the attachment since the whole assembly is subject to the vibration coming from the servo gearmotor;
ii. Each of the pairs of support plates is joined and locked together by pins which are placed inside the plates and fixed with countersunk head bolts.
2) A servo gearmotor that drives a shaft that rotates supported on two bearings, the first mounted on the fixing flange of the servo gearmotor and the second mounted on a customized bearing housing;
a. Notes about the design:
i. A servo gearmotor was selected to drive the system because it is suitable for applications that require high positioning accuracy and have low space available (the main reason for this application). A servo gearmotor of the SEW range was selected because, as for the travelling gearmotor, these have great durability and a wide range of solutions for all types of assemblies.

The type of servo gearmotor chosen was the helical type due to the type of assembly that was thought and because the gear unit belongs to the standard range from SEW, which reduces considerably the cost of the machine;
ii. The driving shaft, made of carbon steel, has a diameter that allows it to withstand all the associated loads and guarantee a maximum displacement of less than $0,5 \mathrm{~mm}$. At one end it has a blind hole with keyway for coupling the servo gearmotor and at the other end has a groove for a retaining ring;
iii. In this case the transmission of motion between the gearmotor and the driving shaft had to be keyed because the output shaft of the servo gearmotor is very short and the available space was reduced for mounting a locking assembly between the two parts;
iv. To support the driving shaft rotation, self-aligning ball bearings were selected because they have high axial and radial load capacity and compensate slight angular shaft misalignments without affecting rotation;
v. By supporting the driving shaft on two bearings, all radial loads are absorbed by them and never pass to the output shaft of the servo gearmotor;
vi. The fixing flange of the servo gearmotor, as the name implies, serves to secure the servo gearmotor to the support plates when coupled to the driving shaft. In addition, it has a space for housing one of the self-aligning ball bearings, thus one end of the driving shaft attached to the support plates. This part was designed to be possible to assemble/disassemble the bolts without interference;
vii. The customized bearing housing serves to accommodate the second self-aligning ball bearing and, consequently, securing the other end of the driving shaft to the support plates.
b. Notes about the assembly:
i. The servo gearmotor is fixed by bolted connection in the respective fixing flange. Nord-Lock washers were used because it is a connection subjected to vibration of the servo gearmotor;
ii. The servo gearmotor, together with the driving shaft, is mounted on the support plates through the main bore and are then connected by bolted connection at the ends of the driving shaft, through the customized bearing housing and the servo gearmotor fixing flange. Nord-Lock washers were used because these are connections subjected to vibration of the servo gearmotor;
iii. The driving shaft is locked axially through bushings and retaining rings.
3) Two sprockets, that are used to drive the roller chains, coupled to the driving shaft through locking assemblies;
a. Notes about the design:
i. The use of chain and sprockets, instead of belt and pulleys, is due to the great load capacity of the chains and to the fact that they allow some transverse adjustment between the sprockets, being very difficult to disengage;
ii. The sprockets were selected considering the following factors: chain type, available space within the extraction system, pitch diameters high enough to reduce radial loads on the axles, and number of teeth odd and equal to or greater than 17 to reduce tooth wear (chain supplier suggestion);
iii. Sprockets are standard steel parts that are purchased to produce the desired hole;
iv. A maintenance-free roller chain DIN 8187 06B-1 has been selected. Maintenance-free for having a longer life span and for being cleaner;
iii. It was decided to use locking assemblies to transmit the movement of the driving shaft to the sprockets because there is enough space available. The keys have not been used because, as previously mentioned, for this type of applications they are not advised due to the constant start/stop cycles and inversions of the movement;
iv. The locking assembly TLK110 20×58 was selected because it guarantees great torque transmission capacity, and there is enough space for its assembly.
b. Notes about the assembly:
i. For proper positioning of the sprockets, spacer washers were placed to abut the components before the final tightening of the locking assemblies.
4) Chain deviation rollers, so that the chain contacts more than half of the sprocket teeth;
a. Notes about the design:
i. The deviation rollers are small steel rings that have a ball bearing housed inside that allows the roller to rotate freely;
ii. Each roller rotates on a steel axle that is locked in all directions through a small groove where a locking washer is attached.
b. Notes about the assembly:
i. The rollers are mounted between the support plates through the axle that passes through the holes of the plates;
ii. The rollers are locked and positioned axially through bushings and the locking washers that are tightened onto the support plates.

Each of the two support structures (Figure 101), used to support the entire extraction system and to fix it to the main structure of the shuttle vehicle, consists of the following components:

Figure 101 - Support structures for the extraction system.

1) Two longitudinal bars and a structural tube to support the fixed and movable extraction arms and to connect the extraction system to the main structure of the vehicle;
a. Notes about the design:
i. The longitudinal bars are parts made of aluminum and are the basis of the entire extraction system, so they have a length equal to the extraction arms. The notches on one side serve to position the parts that are assembled inside the support structure;
ii. The structural tube is a commercial rectangular profile made of steel that serves to increase the support surface for the fixed extraction arm. It has several slots along the length for access to the fixing bolts.
b. Notes about the assembly:
i. The longitudinal bars are joined and locked together by pins that are placed inside the bars and fixed with countersunk head bolts;
ii. The structural tube is fixed to the longitudinal bar by bolted connection with Nord-Lock washers because it is subject to vibration caused by the movement of the extraction arms.
2) An intermediate block with a plastic profile on top for supporting and sliding the chain;
a. Notes about the design:
i. The plastic profile serves to slide the chain avoiding it from being suspended in that zone. It is a part made of plastic to reduce the coefficient of friction between the two surfaces and, at the same time, cause the plastic to wear out instead of being the chain;
ii. The intermediate block serves only to support and reinforce the plastic profile. It is a part made of aluminum.
b. Notes about the assembly:
i. The intermediate block is fixed between the longitudinal bars with countersunk head bolts;
ii. The plastic profile is fixed on top of the intermediate block with countersunk head bolts.
3) Tensioning systems actuated by spring washers to tension the roller chains.
a. Notes about the design:
i. The tensioning systems are constituted by a roller, where the chain passes, which is mounted on a steel fork that slides along the two longitudinal bars of the support structure causing the chain to be tensioned;
ii. To move the fork, a threaded bolt and a nut are used which when tightened/loosened against the spring washers and the fixed adjusting pin causes the fork to approach or move away;
iii. Spring washers are flexible washers which, when mounted in pairs and in parallel, form a compression spring capable of deforming as much as the sum of the maximum permissible displacements of each washer;
iv. The spring washers ensure absorption of the impact caused by the starting or stopping of the chain, which is very beneficial for the wear of all the associated components.
b. Notes about the assembly:
i. The roller is mounted on the fork by being supported on an axle and locked through bushings;
ii. The fork is mounted between the longitudinal bars, being guided in the notches of each bar;
iii. The threaded rod passes through the adjusting pin, which is mounted between the longitudinal bars by bolted connection and threaded into the base of the fork. The nylon insert nut ensures locking the entire assembly and crushing the spring washers;
iv. The number of washers to be placed depends on the maximum deflection desired.

Each of the fixed extraction arms (Figure 102), used to support and guide the movable extraction arms, consists of the following components:

Figure 102 - Fixed extraction arm for the extraction system.

1) A stringer made by an extruded aluminum profile to support all the components and work as the main structure of the fixed extraction arm;
a. Notes about the design:
i. The use of a stringer produced from a customized aluminum profile allows the design of a customized part according to the required interfaces and the necessary fixing points. Although it is an expensive manufacturing process, it can be very profitable if several meters of profile are produced.
ii. The profile has protrusions to support and guide the stringer of the movable arm, and openings in the base and side top for attachment of the stringer to other parts using hammer nuts;
iii. In the design of the profile, it was tried to optimize the aluminum extrusion process, trying to reduce the volume of extruded material, by placing cavities in the areas with the largest filled area, and surrounding the sharp edges of the profile in the various corners. In this way, in addition to optimizing the manufacturing process, it was also possible to reduce the weight of the stringer.
b. Notes about the assembly:
i. The stringer is assembled on top of the structural tube from the support structure by bolted connection using hammer nuts. The hammer nuts can run along the openings that the stringer has for this purpose, ensuring great adjustment, being nailed to the clamping surfaces through the tooth of the contact surface.
2) A mechanical end stopper used to limit the stroke of the retractable mechanism, preventing the movable arm from projecting from the extraction system in the event of a failure of the controls.
a. Notes about the design:
i. The mechanical stopper is a small steel plate with two bends, one to create the support face and another to create the face that supports the impact. To increase the strength of the part, two reinforcements were placed in the zone of the two bends in the direction opposite to the force of impact;
ii. This stopper acts as a fixed stopper since it is attached to the fixed extraction arm. To work properly, it must be aligned with the movable stopper, which is attached to the movable extraction arm.
b. Notes about the assembly:
i. The connection between the mechanical stopper and the stringer is made by bolted connection, using blind rivet nuts that allow to increase the depth of the threaded hole since the thickness of the stringer for opening the threaded hole is very reduced. The blind rivet nuts are interlocked between their outer surface and the hole surface.

Each of the movable extraction arms (Figure 103), used to create the retractable mechanism and perform the linear movement, consists of the following components:

Figure 103 - Movable extraction arm for the extraction system.

1) A stringer, made from an extruded aluminum profile, with the purpose of fixing all the remaining components of the assembly and increasing the strength. Between the contact surfaces of the movable and fixed extraction arms, the stringer has sliders, made from extruded plastic profiles, that facilitate the sliding between the two parts;
a. Notes about the design:
i. The use of a stringer produced from a customized aluminum profile has the same advantages already mentioned before;
ii. This profile of the fixed stringer, such as the profile of the movable stringer, has protrusions so that it can be fitted and guided along the movable stringer. It also has an upper opening and a lower opening for attachment of the longitudinal cover, wherein one of the openings further has a cavity for housing the DC drives and the retractable fingers. There is also a lower rip to attach the rack;
iii. In the design of the profile, it was also tried to optimize the aluminum extrusion process, as already mentioned before;
iv. The plastic sliders are made of high density polyethylene in the form of an extruded profile that embraces the protrusions of the movable stringer, reducing the coefficient of friction between the two stringers and functioning as a sacrifice part that wears out over time.
b. Notes about the assembly:
i. The movable stringer is mounted on the fixed stringer entering from the top in the direction in which it moves. As it is a movable component, the movable stringer only remains engaged and properly guided through the protrusions that are separated by the sliders.
2) A rack that is driven by the roller chain so that the arm can move;
a. Notes about the design:
i. The rack is a part made of steel that, through the driving chain, allows to turn the rotary movement of the servo gearmotor in linear motion. This mechanism is fundamental for the movement
of extracting the boxes to be carried out, because it creates the driving force transmitted to the movable arm through the attachment between the rack and the movable stringer;
ii. The rack has several large holes along its length for weight reduction, since it is a steel part and the mechanical strength must be mostly needed on the teeth.
b. Notes about the assembly:
i. The assembly of the rack is carried out at the bottom of the movable stringer in the existing space for that purpose. The connection is made by bolted connection using countersunk head bolts because there is not enough space for the bolt head.
3) Three retractable fingers, driven by DC drives, that perform the operations of pushing or pulling the boxes, besides serving to keep them locked inside the vehicle;
a. Notes about the design:
i. The retractable fingers are parts made of steel composed of a rod attached to a cylindrical body that allows to perform a rotating movement of 90 degrees on its axis, carrying out the operations of pushing or pulling the boxes. For the movement to be properly done, each of the fingers is housed inside the movable stringer being locked axially and radially. The tangential movement is guided by a support that engages the cylindrical body of the retractable finger, having small stoppers positioned so that the retractable finger stroke never exceeds 90 degrees;
ii. To drive each of the retractable fingers it was decided to use DC drives because it is an application that requires low torque and where the available space is reduced. In addition, the use of a DC drive for each retractable finger guarantees independent control, which is fundamental for the extraction system to function without failures;
iii. As a reaction arm for the DC drive, a plate was developed that fixes to the movable stringer and locks the DC drive body so that it can transmit the movement to the retractable finger;
iv. The transmission of motion between the DC drive and the retractable fingers is carried out directly by mounting the output shaft of the DC drive in the hole of the cylindrical body of the retractable finger through a set screw which is bolted onto the retractable finger and tightened against the output shaft of the DC drive.
b. Notes about the assembly:
i. The DC drive is mounted on the reaction plate by bolted connection on the surface of the output shaft, using countersunk head bolts that allow the output shaft to be released;
ii. The retractable finger is mounted on the output shaft of the DC drive, practically leaning against the reaction plate. Further, as already mentioned, the connection between the output shaft of the motor and the retractable finger axis is made through a set screw which engages against a flat face of the output shaft of the motor;
iii. Each subassembly, together with the retractable finger guiding support, is engaged in the movable stringer laterally in the respective housings, being locked axially through the reaction plate which is fixed in small slots of the stringer that lock it.
4) A mechanical end stopper used to limit the stroke of the retractable mechanism, preventing the movable arm from projecting from the extraction system in the event of a failure of the controls;
a. Notes about the design:
i. The mechanical stopper is a small steel plate with one bend to create the face that supports the impact. To increase the strength of the part, two reinforcements were placed in the zone of the bend in the direction opposite to the force of impact;
ii. This stopper acts as a movable stopper since it is attached to the movable extraction arm. To work properly, it must be aligned with the fixed stopper, which is attached to the fixed extraction arm.
b. Notes about the assembly:
i. The connection between the mechanical stopper and the stringer is made by bolted connection, using blind rivet nuts that allow to increase the depth of the threaded hole since the thickness of the stringer for opening the threaded hole is very reduced. The blind rivet nuts are interlocked between their outer surface and the hole surface.
5) A longitudinal cover for guiding and locking the boxes inside the vehicle, and two top covers so that the components inside the stringer are not visible.
a. Notes about the design:
i. The longitudinal cover is a plate made of aluminum having a length equal to the length of the movable stringer and cuts in the stroke regions of the retractable fingers. The main function of this part is guiding and transversely locking the boxes between the two extraction arms by creating a contact surface along the entire movable stringer;
ii. The two top covers are two bars made of aluminum that occupy the whole area of the top faces of the movable stringer, hiding the components that lie inside.
b. Notes about the assembly:
i. The longitudinal cover is assembled laterally on the movable stringer by bolted connection using hammer nuts that ensure great adjustment, as already mentioned before;
ii. The top covers are assembled on the top faces of the movable stringer by bolted connection.
The electrical equipment was described in the section 3.4.7.

3.4.6 DESIGN OF THE PICKING SYSTEM

The picking system (Figure 104) was the third system to be developed for the shuttle vehicle. It is a system with the main purpose of performing the picking operations automatically directly on the rack, in other words, transferring the products between the warehouse boxes and the boxes where customer orders are met. In this case, the products must be handled with high precision and flexibility.

Figure 104 - Picking system for the shuttle vehicle.

In addition to its main purpose, some requirements were defined from the outset to facilitate decision making throughout the design process of the final solution. These requirements are indicated below:

1) It shall be possible to assemble the picking system in the main structure of the shuttle vehicle based on the geometry pre-designed for it;
2) Only one product at a time should be transferred between the two boxes, with high precision and flexibility;
3) The pick and place operations shall be carried out by a robotic arm with an electromechanical gripper at the end to grab the products;
4) The robot must be able to reach the entire occupying area of the two boxes inside the vehicle;
5) The system must have a resting point, in the form of a rod or a block, for the robot to grasp when it is not in operation;
6) The picking system must have the necessary sensors and controllers to operate automatically and accurately.

The different components that constitute the picking system were selected or developed in such a way that the mentioned requirements were satisfied. In Figure 105 it is possible to observe the WBS of the picking system and to see how these components are organized.

Figure 105 - WBS of the picking system.
To better understand the description and operation of each of the components from the picking system, it is necessary to visualize and interpret the respective detail drawings of the parts and assemblies (Annexes 2 and 3), and the standard components data sheets (Annexes 4 and 5).

The robot, used to transfer products between boxes, consists of the following components:

Figure 106 - Robot for the picking system.

1) A four-axis robot responsible for moving the products between boxes in a flexible way.
a. Notes about the design:
i. A four-axis robot was selected because it allows to move the products in a very flexible way, maintaining great speed and positioning precision. The number of axes required was determined according to the robot's reach between the two boxes and how to position the gripper to grab the products;
ii. The robot selected was a robotic modular system of the robolink ${ }^{\circledR}$-type D range, a low-cost solution patented by IGUS where it is possible to quickly configure the entire robotic arm according to the needs (using an online configurator from IGUS), creating a kit that can be supplied ready to use (including a programmable controller for the robot movement);
iii. The robot was configured to reach the farthest point between the two boxes, covering the entire area occupied by them, without reducing the desired load capacity (see calculations section).
b. Notes about the assembly:
i. The robolink ${ }^{\circledR}$ robotic arm has a support structure at its base where the connection is performed. The robot is assembled on
the main structure of the vehicle through its support structure, resting on two welded bars reinforced with ribs;
ii. The connection is made by bolted connection.

The gripper (Figure 107), used to grab the products inside the boxes, consists of the following components:

Figure 107 - Gripper for the picking system.

1) An electromechanical gripper with two jaws to grab the products.
a. Notes about the design:
i. It was decided to use an electric gripper to facilitate the type of power supply. Although most grippers are pneumatic, this would require placing additional components into the system as a compressor, something that would not be advantageous given the limited space available inside the vehicle;
ii. The gripper was selected from Schunk's EGP range. This is a twofinger parallel gripper with smooth-running base jaws guided on roller bearings, used to handle small and low weight products. The number of fingers depends on the complexity of the products to be handled. For this work, it was considered that bottles would be handled, so two fingers are enough to carry out the operation;
iii. The jaws are parts made of aluminum designed to grip cylindrical surfaces (bottle caps) and to fit the fingers of the gripper, according to the maximum permissible finger length predicted on the gripper technical datasheet. Each of the jaws has a V-shaped full length cut so that the contact with the cylindrical surface of the bottle is made in four points.
b. Notes about the assembly:
i. The connection between the jaws and the fingers of the gripper is made by bolted connection. To increase the safety of the connection, two elastic pins are attached to each jaw to withstand all kinds of radial stresses, relieving the load on the bolt;
ii. The gripper is attached to the end axis of the robotic arm and is bolted to an existing adapter.

The robot resting rod (Figure 108) is used so that the robotic arm remains in charge when grabbing the rod, preventing it from being loose whenever it is not in operation, namely during the travelling movement of the vehicle. It consists of the following components:

Figure 108 - Robot resting rod for the extraction system.

1) A rod that is gripped by the robotic arm, keeping it loaded and locked.
a. Notes about the design:
i. The rod is a part made of steel with two bends, which protrudes from the vehicle so that the robotic arm can grip it;
ii. It is positioned in a zone outside the product handling zone so that it reduces the risk of collisions between the robotic arm and the rod.
b. Notes about the assembly:
i. The rod is assembled inside the main structure next to the base structure of the robot. The connection is made by bolted connection through a clamp that allows adjusting the rod in the axial and tangential direction.

The electrical equipment was described in section 3.4.7.

3.4.7 SELECTION OF ELECTRICAL EQUIPMENT

The selection of the electrical equipment to be applied in the machines is a competence of the automation project engineer and is not therefore the responsibility of the mechanical design engineer. The responsibility of the mechanical design engineer is to develop the supports to assemble the electrical components in the machine. However, this is a very important step in the process of developing a machine because it is what guarantees the automatism and control of the equipment, requiring a lot of
communication between the automation project engineer and the mechanical design engineer.

Although the present work is included in the scope of the mechanical design of a machine, a selection of electrical components was made. Even though it is not the best solution, it is a possible solution to automate and control all operations of the shuttle vehicle.

The different electrical components selected are described in Table 24, with all the information necessary to understand the operation of each component and its application in the shuttle vehicle. The communication system selected was the PROFINET, a network based on an Industrial Ethernet communication standard.

To better understand the description and operation of each of the electrical equipment, it is necessary to visualize and interpret the shuttle vehicle assembly drawings (Annexes 2 and 3), and the electrical components data sheets (Annex 6).

Table 24 - Selection of electrical equipment to be applied to the shuttle vehicle.

Shuttle vehicle subsystem	Problem to solve	Type of device selected	Reference (Manufacturer)	Operation and application on the shuttle vehicle
Travelling System	Measure the position of the shuttle vehicle along the rail.	Bar Code Positioning Sensor	$\begin{gathered} \text { BPS-8-SM } \\ \text { (Leuze) } \end{gathered}$	The barcode positioning sensor measures the position of the shuttle vehicle along the rail through a bar code strip placed along the entire length of the rail.
Travelling System	Detect the shuttle vehicle's maximum travel at the end of the aisle.	Electromechanical Switch	3SE5112-0CH01 (Siemens)	The limit switch of the shuttle vehicle is driven through ramps at the ends of the aisle.
Travelling System	Restore initial vehicle position for program control purposes (reset).	Inductive Sensor	IME18-05BPS-ZCOS (Sick)	The initial position of the vehicle is restored whenever the limit switch is activated, which means that the inductive sensor is also actuated via the limit ramp.
Travelling System	Possibility of manual emergency stop if the vehicle is being manually controlled.	Emergency Stop Mushroom Pushbutton, Illuminable	3SU1001-1HB20-0AA0 (Siemens)	The shuttle vehicle has one emergency button at each end.

Shuttle vehicle subsystem	Problem to solve	Type of device selected	Reference (Manufacturer)	Operation and application on the shuttle vehicle
Travelling System	By colored light signals, inform the operators of the state of operation of the vehicle.	Indicator Lights	$\begin{aligned} & 3 S U 1001-6 A A 40-0 A A O \\ & 3 S U 1001-6 A A 30-0 A A 0 \\ & \text { (Siemens) } \end{aligned}$	The vehicle moves three light signals at each end (green - means the vehicle is in correct operation, yellow - the vehicle has an anomaly, red - emergency stop, light signal embedded in the emergency button).
Travelling System	Adjust the speed and acceleration of the travelling gearmotor.	Frequency Inverter	MDX61B0022-5A3-4-00 (SEW-Eurodrive)	Frequency inverter located next to the travelling gearmotor, allows to control the motor speed and torque by varying motor input frequency and voltage.
Travelling System	Decelerate the travelling gearmotor by dynamic braking.	Braking Resistor	BW100-006 (SEW-Eurodrive)	Resistors consume heat. A braking resistor can be used to decelerate an electric motor by transforming kinetic energy (generated during normal motor operation) into electrical energy. The braking resistor was placed on the exterior of the shuttle vehicle to facilitate the dissipation of the heat that is consumed.

Shuttle vehicle subsystem	Problem to solve	Type of device selected	Reference (Manufacturer)	Operation and application on the shuttle vehicle
Extraction System	Guide/protect the electrical cables of the different electrical devices embedded in the movable arms, so that they do not become loose during the retractable movement of the arms.	Energy Chain	$\begin{gathered} 0.702 \mathrm{~m} 045.20 .038 .0+ \\ 0450.20 .12 \mathrm{PZ} . \mathrm{A} 2 \\ \text { (lgus) } \end{gathered}$	Energy chain with a section sufficient to store the cables of the DC drives and sensors on the movable extraction arms, and a stroke equal to the stroke of the extraction system.
Extraction System	Detect the presence of a box between the extraction arms.	Photoelectric Sensor + Mirror	GL6-P3211 + P250 (Sick)	A photoelectric sensor and a mirror were placed for each of the two positions of the boxes between the extraction arms. The presence of a box in one of these positions interrupts the light beam between the sensor and the mirror.
Extraction System	Detect the opening of the movable extraction arms so that the vehicle does not start with them open.	Photoelectric Sensor + Mirror	GL6-P3211 + P250 (Sick)	A sensor and a mirror were placed at each end of the fixed extraction arms. When the movable extraction arms move, they interrupt the light beam between the sensor and the mirror.

Shuttle vehicle subsystem	Problem to solve	Type of device selected	Reference (Manufacturer)	Operation and application on the shuttle vehicle
Extraction System	Detect the end of the box along the width (extraction stroke) to begin closing the extraction arms.	Photoelectric Sensor + Mirror	WL2SG-2F3235 + P45A (Sick)	A sensor and a mirror were placed at each end of the movable extraction arms. When the movable extraction arms move along the width of the carton, the light beam between the sensor and the mirror is interrupted until reaching the end of the box, at which point the arms can stop. This sensor only exists for safety because all the positioning of the extraction system is performed by programming and measuring the rotation of the servomotors.
Extraction System	Detect the maximum positions of the extraction arms (open or closed).	Inductive Sensor	IM08-1B5PS-ZTK (Sick)	There is an inductive sensor in each of the movable extraction arms, one for each direction of the retractable movement. The sensors are actuated by targets placed on the fixed extraction arms whenever the maximum extraction stroke is exceeded or whenever the extraction arms are collapsed.

$\left.\begin{array}{cccc}\hline \begin{array}{c}\text { Shuttle } \\ \text { vehicle } \\ \text { subsystem }\end{array} & \text { Problem to solve } & \begin{array}{c}\text { Type of device } \\ \text { selected }\end{array} & \text { Reference (Manufacturer) }\end{array} \begin{array}{c}\text { Operation and application on the shuttle } \\ \text { vehicle }\end{array}\right]$

Shuttle vehicle subsystem	Problem to solve	Type of device selected	Reference (Manufacturer)	Operation and application on the shuttle vehicle
Extraction System	Adjust the speed and acceleration of the extraction servo gearmotor.	Frequency Inverter	MDX61B0011-5A3-4-00 (SEW-Eurodrive)	Frequency inverter located next to the extraction servo gearmotor, allows to control the motor speed and torque by varying motor input frequency and voltage.
Picking System	Confirm product presence inside the box.	Laser Photoelectric Proximity Sensor	WTB8L-P2231 (Sick)	Laser photoelectric proximity sensor placed next to the gripper, with the laser beam properly aligned so that the robot confirms the presence of product in the different positions of the matrix of the box. The product is what triggers the sensor since it is below the maximum distance detectable by the sensor.
Picking System	Detect that the robot is in the rest position, so the vehicle can start the movement.	Photoelectric Sensor + Mirror	GL6-P3211 + P250 (Sick)	A sensor and a mirror were placed aligned with the robot's resting rod, and the light beam is interrupted by the gripper of the robot whenever it grabs the rod.
Generic	Identify the reference of the boxes being handled by the system.	Barcode Reader	CLV621-1120 (Sick)	Two barcode readers were placed, one for each of the box handling positions inside the vehicle, which read the barcode at the bottom of the boxes.

Shuttle vehicle subsystem	Problem to solve	Type of device selected	Reference (Manufacturer)	Operation and application on the shuttle vehicle
Generic	House all control components (power supply, PLC, etc.).	Terminal Box	KL 1503.510 (Rittal)	Terminal box placed inside the vehicle for storage of control components such as PLC, power supply, safety devices, etc.
Generic	Communicate with the PLC of the shuttle vehicle.	IWLAN antennas	6GK5795-6MN10-0AA6 (Siemens)	Wireless communication device so that there is a connection between the main control PLC of the entire AS / RS and the shuttle vehicle PLC.
Generic	Power the entire system electrically.	Conductor Rail + Collector	$\begin{aligned} & \text { 081106-5303+081106- } \\ & 5301 \\ & \text { (Conductix-Wampfler) } \end{aligned}$	Power rail powered shuttle, recommended for systems that move in a straight line and over long distances. The collector that serves as the interface between the vehicle and the power rail is double so that the vehicle never loses power when leaving the rack.

3.4.8 INTERFACES, COVERS AND TRANSPORTATION POINTS

The last components to be developed solved problems related to the shuttle vehicle interfaces inside the rack structure, the transport and handling of the equipment, and the covers/protections of the vehicle. These components do not belong to any of the major subsystems described in previous sections but have the same importance because the mechanical design would be unfinished without them.

To better understand the description and operation of each of these components, it is necessary to visualize and interpret the respective detail drawings of the parts and assemblies (Annexes 2 and 3), and the standard components data sheets (Annexes 4 and 5).

The interface of the shuttle vehicle with the rack structure is related to the passage of the boxes to the interior of the vehicle because there is a natural gap caused by the separation of the two surfaces. As such, two flat steel plates were developed to support the boxes inside the vehicle, between the extraction arms (Figure 109). These plates are fixed to the main frame by bolted connection, using countersunk head bolts to allow the sliding of the boxes on the support surface.

Figure 109 - Boxes support plates.
The plates have four bends all around, two at 90 degrees for reinforcement and two at 20 degrees to smooth the passage of the boxes between the rack structure and the interior of the vehicle (Figure 110).

Figure 110 - Passage of the boxes between the shuttle vehicle and the rack.
The transport and handling of the shuttle vehicle during the assembly, installation or maintenance process is carried out by means of four lifting eyes placed at the top of the main structure (Figure 111), allowing the vehicle to be lifted with the use of industrial cranes.

Figure 111 - Four lifting eye bolts on top of the main structure.
The lifting eye was selected according to the total mass of the equipment ($300 \mathrm{~kg} \mathrm{)}$ divided by the four lifting eyes, which gives a load of about 750 N on each one, assuming a bolted connection with the main structure of the vehicle. As such, the lifting eye bolt DIN 580 M10 was selected because it has a load capacity of 1700 N (see Annex 5), more than double the 750 N . The load capacity of the lifting eyes varies according to the direction of the lifting rope (Figure 112). The shuttle vehicle will always be lifted according to scenario 2 of Figure 112 because it has four lifting eyes assembled on top.

Axial load-bearing capacity per eye bolt

Load-bearing capacity at max. 45° per eye bolt

Lateral load-bearing capacity at max. 45° per eye bolt

Do not use under shear tension

Figure 112 - Types of loads on lifting eyes.
The covers are used to close the two cavities that exist in the main structure of the shuttle vehicle where the travelling and extraction gearmotors are housed. They have been developed to protect the components from external waste, to prevent the risk of manually accessing the components during the testing phases of the equipment off the rack, and to aesthetically improve all equipment.

They were the last components to be developed, being designed in such a way that they could be assembled/disassembled without interfering with any of the other parts. As such, the cover on the side of the travelling gearmotor is a single part that protects the whole area, with cuts close to the components that must stay outside, being fixed to the main structure by bolted connection (Figure 113).

Figure 113 - Cover assembly on the travelling gearmotor side.
The cover on the side of the extraction gearmotor has the same principle as the previous one but is divided into two parts so that the assembly can be carried out without interfering with the robotic arm. The connection is also made laterally in the main frame by bolted connection and the two half covers are further tightened against one another.

Figure 114 - Cover assembly on the extraction gearmotor side.

3.4.9 FINAL CALCULATIONS

During the development of the three main systems that constitute the shuttle vehicle, several calculations were made as a way of validating the selection of some components and the design of certain parts. As such, these calculations were made to predict whether the parts and components will support the loads to which they will be subjected during the operation of the equipment, allowing to adjust the design of the machine so that it is not undersized, avoiding the risk of the parts failing with the time, nor oversized, avoiding the risk of developing a more expensive machine to produce.

The loads on the different components and parts are strongly related to the mass of each of the subsystems, a variable that has remained open throughout the design process. For this reason, the calculations performed underwent several revisions throughout an iterative process until the systems were perfectly defined and the values of the applied loads were the final ones. The masses of each of the main shuttle vehicle subsystems are listed in Table 25.

Table 25 - Masses of each of the shuttle vehicle systems.

Shuttle Vehicle Subsystem	Value
Total Mass of the Shuttle Vehicle	300 kg
Mass of the Travelling System (with the Shuttle Vehicle Main Structure)	192 kg
Mass of the Extraction System	46 kg
Mass of the Picking System	22 kg
Other information that was also very important to carry out the different calculations is related to the mechanical properties of the materials of the parts studied, since the results of certain equations depend on these values, for example the calculation of the coefficient of safety coefficient after the simulation of the parts by FEA, which depends	

on the yield stress of the material. The mechanical properties of the materials of the parts that have been studied are listed in Table 26 [123],[124],[125],[126].

Table 26 - Mechanical properties of the materials of the parts studied [123],[124],[125],[126].

Material	Yield Strength $\left(\sigma_{\text {Yield }}\right)$	Tensile Strength $(\mathbf{R m})$	Young's Modulus (E)
Steel EN S235 JR	235 MPa	435 MPa	210 GPa
Steel EN C45	310 MPa	590 MPa	210 GPa
Aluminum 5052	193 MPa	228 MPa	$70,3 \mathrm{GPa}$
Aluminum 6060	120 MPa	160 MPa	$69,5 \mathrm{GPa}$

The calculations performed on each of the main shuttle vehicle subsystems are described in the following sections. However, all calculations described here, with the exception of FEA calculations, can be seen in more detail in Annex 7.

3.4.9.1 CALCULATIONS IN THE TRAVELLING SYSTEM

For the travelling system, the following calculations were performed:

1) Final calculation of reactions in the vehicle supports and stability check;
2) Final calculation of the travelling gearmotor;
3) Final calculation of the guiding wheels and the travelling wheels;
4) Calculation of the driving shaft;
5) Calculation of the housing units;
6) Calculation of the driving chain;
7) Calculation of the locking assemblies;
8) Calculation of the guiding wheel axle;
9) Calculation of the polyurethane buffer;
10) Calculation of the fork for the guiding wheel (using FEA);
11) Calculation of the main structure (using FEA).

Final Calculation of Reactions in the Vehicle Supports and Stability Check

A preliminary calculation of the vehicle's reactions and stability was done to give an idea of what loads would be on the travelling wheels and what would be the behavior of the vehicle in operation according to the dimensions estimated in the initial sketches and the estimated values for some parameters of the vehicle.

After finishing the mechanical design of the machine, it was necessary to validate these calculations for the dimensions and final parameters of the shuttle vehicle. As such, the parameters used to perform these calculations are indicated in Table 27, where it was DEVELOPMENT OF AN INNOVATIVE SHUTTLE VEHICLE FOR AUTOMATED STORAGE AND RETRIEVAL SYSTEMS
chosen to reduce the travelling acceleration to compensate for the mass increase of the shuttle vehicle compared to the values initially estimated. The brake acceleration was determined in the final calculation of the travelling gearmotor.

Table 27 - Parameters considered to calculate the reactions of the vehicle.

Parameter	Value
Vehicle Mass (unloaded and without the robot) ($m_{\text {vehicle }}$)	278 kg
Boxes Mass (mload)	100 kg
Robot Mass ($\mathrm{m}_{\text {robot }}$)	22 kg
Vehicle Acceleration (atravelling)	$1,25 \mathrm{~m} / \mathrm{s}^{2}$
Brake Acceleration (abrake)	1,34 m/s ${ }^{2}$
Gravitational Acceleration (g)	9,81 m/s ${ }^{2}$

The calculation procedure adopted was exactly the same as the preliminary calculation, and the same assumptions and equations were used, adjusting only the dimensions according to the new free-body diagrams for the two scenarios studied: stationary vehicle (Figure 115-a) and vehicle accelerating/braking (Figure 115-b). The centers of gravity were determined using the 3D modeling software used in the mechanical design phase (Autodesk ${ }^{\circledR}$ Inventor ${ }^{\circledR}$) [119].

Figure 115 - Shuttle vehicle free-body diagrams when the vehicle is stationary (a) and when the vehicle is starting the movement (b).

In this section, only the results of the equations are represented, without any description of how they were obtained (see section 3.4.2.1 to know which assumptions and equations were considered). These results of the reactions and stability of the vehicle are represented in Table 28 and Table 29, respectively, for each of the scenarios studied.

Table 28 - Results of the reaction forces of the vehicle.

	Without the Mass of the Boxes	With the Mass of the Boxes
Stationary Vehicle	$\mathrm{R}_{\mathrm{A}, \text { stat }}=1556 \mathrm{~N}$	$\mathrm{R}_{\mathrm{A}, \text { stat }}=2028 \mathrm{~N}$
	$\mathrm{R}_{\mathrm{B}, \text { stat }}=1387 \mathrm{~N}$	$\mathrm{R}_{\mathrm{B}, \text { stat }}=1896 \mathrm{~N}$
Vehicle Accelerating	$\mathrm{R}_{\mathrm{A}, \mathrm{dyn}}=1567 \mathrm{~N}$	$\mathrm{R}_{\mathrm{A}, \mathrm{dyn}}=2039 \mathrm{~N}$
	$\mathrm{R}_{\mathrm{B}, \mathrm{dyn}}=1376 \mathrm{~N}$	$\mathrm{R}_{\mathrm{B}, \mathrm{dyn}}=1896 \mathrm{~N}$
Vehicle Braking	$\mathrm{R}_{\mathrm{A}, \mathrm{dyn}}=1568 \mathrm{~N}$	N/A
	$\mathrm{R}_{\mathrm{B}, \mathrm{dyn}}=1375 \mathrm{~N}$	

	Table 29 - Results of the stability factor.	
	Without the Mass of the	With the Mass of the
	Boxes	Boxes
Vehicle Accelerating	$v=125,5$	$v=164,6$
Vehicle Braking	$v=117,0$	N/A

As expected, due to the increase in mass and reduction of acceleration, the shuttle vehicle presents greater stability in this final calculation than in the preliminary calculation, as evidenced by the fact that the values of the reaction forces are all positive and the stability factor is above of 1,5 . However, this calculation had to be performed to determine the final loads on the wheels and to ensure that the final dimensions, namely the mass centers of the vehicle and the robot, would not hamper the stability of the shuttle vehicle.

Final Calculation of the Travelling Gearmotor

The travelling gearmotor was previously calculated before any design of the machine (see section 3.4.2.2) as a way of estimating which would be the gearmotor to use and thus advance with the design of the parts that interface with this component. However, for this preliminary calculation some parameters were estimated, namely the mass of the shuttle vehicle and the travelling acceleration.

After finalizing the design of the shuttle vehicle, it was necessary to validate the preliminary calculation of the travelling gearmotor according to the final values of the parameters that had been initially estimated. As such, the parameters required for the final calculation of the travelling gearmotor are shown in Table 30 , where it was chosen to reduce the travelling acceleration to compensate for the mass increase of the shuttle vehicle compared to the values initially estimated.

Table 30 - Parameters used for the final calculation of the travelling gearmotor.

of the gearmotor more quickly and automatically by simply entering the parameters that characterize the motion of the shuttle vehicle and the respective loads [127].

The steps given in the software until reaching the final solution are indicated below:

1) Select the type of motion, the type of application and the type of power transmission. In this case, it is a travelling movement for a vehicle supported by four wheels, with a power transmission by means of a pair of sprockets and chain (Figure 116);

Figure 116 - SEW Workbench - Calculation of the Travelling Gearmotor - Selection of the type of application.
2) Introduction of the parameters that characterize the application, namely related to the calculation of the rolling friction (Figure 117);

Figure 117 - SEW Workbench - Calculation of the Travelling Gearmotor - Introduction of the parameters to calculate the rolling friction.
3) Introduction of the parameters that characterize the transmission by chain and sprockets (Figure 118). It is important to note that this type of transmission creates a radial load on the gearmotor output shaft caused by the tangential force of the chain. As such, it was necessary to indicate some data for the software to carry out the overhung load calculation;

Figure 118 - SEW Workbench - Calculation of the Travelling Gearmotor - Introduction of the parameters that characterize the transmission by chain and sprockets.
4) Definition of the travel diagram of the shuttle vehicle with indication of the respective distances and times of acceleration, and calculation of the driving torques and forces for the gearmotor (Figure 119). In this step it is important to highlight the maximum value of the static and dynamic torques $(43,88 \mathrm{~N} \cdot \mathrm{~m})$ since it was used for many of the calculations performed on the travelling system;

Figure 119 - SEW Workbench - Calculation of the Travelling Gearmotor - Definition of the travel diagram.
5) Selection of the best gearmotor for this application, according to the type desired (Figure 120). It is important to note that, as already mentioned, the shuttle vehicle has a frequency inverter to control the speed and acceleration of
the gearmotor, so a base frequency of 87 Hz was considered for selecting a smaller gearmotor.

Figure 120 - SEW Workbench - Calculation of the Travelling Gearmotor - Selection of the gearmotor.
The main parameters of the selected gearmotor are shown in Table 31.
Table 31 - Parameters of the selected travelling gearmotor.

Variable	Result
Reference of the Selected Gearmotor	R27 DRN90S4/BE2/TF
Maximum Gearmotor Output Torque during operation (Mstat+dyn)	$43,88 \mathrm{~N} \cdot \mathrm{~m}$
Gearmotor Rated Output Torque	$36 \mathrm{~N} \cdot \mathrm{~m}$
Motor Speed	$2292 \mathrm{rpm}(87 \mathrm{~Hz})$
Motor Rated Torque	$7,2 \mathrm{~N} \cdot \mathrm{~m}$
Gear Unit Ratio	5,00
Gearmotor Output Speed (\mathbf{n}_{a})	$458,4 \mathrm{rpm}$
Service Factor	2,6
Motor Start-Up Torque/Motor Rated	
Torque	$134,9 \%$
Brake Rated Torque	$5,0 \mathrm{~N} \cdot \mathrm{~m}$
Brake Acceleration (abrake)	$1,34 \mathrm{~m} / \mathrm{s}^{2}$
Although the mass of the shuttle vehicle increased from the initially estimated value, the gearmotor chosen in the final calculation remained the same as that chosen in the	
DEVELOPMENT OFAN INNOVATIVE SHUTTLE VEHICLE FORAUTOMATED sTORAGE AND RETRIEVAL SYSTEMS	

preliminary calculation. This was possible because it was decided to reduce the travelling acceleration to $1,25 \mathrm{~m} / \mathrm{s}^{2}$, a reduction with little impact on the travelling cycle, that compensated for the mass increase, reducing the necessary acceleration torque in the gearmotor and maintaining it less than 1,5 times the rated torque.

In this case, it was not necessary to check whether the wheels will slip, by calculating the maximum permissible travelling acceleration, because the travelling acceleration and the braking acceleration were reduced from the initially estimated values. In addition, the mass of the shuttle vehicle has also increased, which increases the reactions on the wheels and the friction between the travelling wheels and the rails, ensuring that the wheels will not slip in any of the cases.

Final Calculation of the Guiding Wheels and the Travelling Wheels

A preliminary calculation was made of the guiding wheels and the travelling wheels to pre-select the wheels that would be used in the travelling system of the shuttle vehicle. However, this calculation was performed before the mechanical design, based on estimated values for the mass of the vehicle and the travelling acceleration. As such, due to the increased mass of the shuttle vehicle and consequent increase of the loads on the wheels, it was necessary to recalculate the wheels and validate the selection that was made initially.

The parameters required for the final calculation of the guiding wheels and the travelling wheels are shown in Table 32. Note that the calculation was made using the maximum gearmotor output torque during operation to consider the worst scenario for the wheels.

Table 32 - Parameters needed to calculate the loads on the wheels.

Parameter	Value
Shuttle Vehicle Mass (mvehicle)	300 kg
Boxes Mass (mioad)	100 kg
Vehicle Speed (vtravelling)	$3 \mathrm{~m} / \mathrm{s}$
Acceleration of the Vehicle (atravelling)	$1,25 \mathrm{~m} / \mathrm{s}^{2}$
Gravitational Acceleration (g)	$9,81 \mathrm{~m} / \mathrm{s}^{2}$
Coefficient of Friction	0,55
(polyurethane/steel) ($\mu_{\text {stat (PU/steel) })}$	$43,88 \mathrm{~N} \cdot \mathrm{~m}$
Maximum Gearmotor Output Torque during operation (M $\mathrm{M}_{\text {stat+dyn }}$)	

Parameter	Value
Maximum Dynamic Reaction Force on the Wheels (vehicle accelerating) ($\mathrm{R}_{\mathrm{A}, \mathrm{dyn}}$)	2039 N
Travelling Wheel Diameter ($\mathrm{D}_{\text {wheel }}$)	125 mm
Brauer ${ }^{\circledR}$ factor for the continuous running condition $\left(\mathrm{C}_{1}\right)$	0,75
Brauer ${ }^{\circledR}$ factor for the surface speed $10-$ $16 \mathrm{~km} / \mathrm{h}$ condition $\left(\mathrm{C}_{2}\right)$	0,7
Brauer ${ }^{\circledR}$ factor for the driving wheels condition (C_{3})	0,7

The procedure for calculating the guiding wheels was very similar to the one adopted in the preliminary calculation, except for the way of determining the driving force of the shuttle vehicle. In this case, the driving force was calculated by Equation 31, transforming the maximum gearmotor output torque (known value) into the driving force that is applied to the drive wheel. Moreover, the same assumptions were considered, and the same equations were used to determine the loads on the guiding wheels and consequent checking of the chosen wheel [122].

$$
M_{\text {stat }+ \text { dyn }}=F_{\text {drive }} \cdot \frac{D_{\text {wheel }}}{2}
$$

The results of the loads and subsequent validation of the chosen guiding wheel are indicated in Table 33.

Table 33 - Results of the guiding wheels.

Variable	Result
Drive Force (F drive $^{\text {) }}$	707 N
Load on the Guiding Wheel (Fguiding wheel) $^{\text {a }}$	1091 N
Selected Wheel	Brauer ${ }^{\otimes}$ Wheels - Polyurethane Tyred Wheels - Wheel Type H75/35
Maximum Load supported by the Wheel ($\mathrm{P}_{\text {max }}$)	$300 \mathrm{kgf}=2943 \mathrm{~N}$
Maximum Load supported by the Wheel (Corrected) ($\mathrm{P}_{\text {max corr) }}$	1545 N
Safety Factor (SF)	1,4

Even with the increased mass of the shuttle vehicle and consequent increase of the load on the guiding wheels, it was not necessary to choose a wheel with greater load capacity. As such, the safety factor dropped, but remained above 1, validating the selected wheel.

For the calculation of the travelling wheels, the same procedure of the preliminary calculation was adopted, considering the same assumptions and using the same equations. Therefore, in this section only the results of the loads and subsequent validation of the chosen travelling wheel are represented (Table 34) [122].

Table 34 - Results of the travelling wheels.

Variable	Result
Load on the Travelling Wheel ($F_{\text {travelling wheel }}$)	1020 N
Selected Wheel	Brauer ${ }^{\circledR}$ Wheels - Polyurethane Tyred Wheels - Wheel Type H125/40
Maximum Load supported by the Wheel ($\mathrm{P}_{\text {max }}$)	$530 \mathrm{kgf}=5199 \mathrm{~N}$
Maximum Load supported by the Wheel (Corrected) ($\mathrm{P}_{\text {max corr) }}$	1911 N
Safety Factor (SF)	1,9
Again, the increase in mass of the shuttle on the travelling wheels was not sufficien wheel. The safety factor dropped, as expe chosen wheel.	icle and consequent increase of the load cause a change of the initially selected d, but remained above 1, validating the

Calculation of the Driving Shaft

The driving shaft was calculated to predict its behavior relative to bending and torsional stresses during the operation of the shuttle vehicle. The driving and driven shafts bear the full weight of the shuttle vehicle, with the driving shaft being more loaded because it receives the torque from the gearmotor. As such, only the driving shaft has been calculated because the driven shaft is geometrically equal and not so loaded, so if the driving shaft is able to withstand the loads to which it is subjected, the driven shaft will also be.

During operation of the shuttle vehicle, the driving shaft is supported on the two drive wheels, being subjected to radial loads caused by the total mass of the shuttle vehicle (the same reaction forces on the travelling wheels) through the housing units, and to an intermediate radial load aligned with the chain and caused by its tangential pulling force (Figure 121). In addition, it is further subjected to torsional stresses, because of the
maximum gearmotor output torque which is divided by the two drive wheels to move them.

Figure 121 - Loads on the driving shaft from the travelling system.
The parameters required to perform the calculation are indicated in Table 35. Note that the calculation was made using the maximum gearmotor output torque during operation and the maximum dynamic reaction force on the wheels, to consider the worst scenario for the driving shaft.

Table 35 - Parameters used to calculate the driving shaft.

Parameter	Value
Driving Shaft Material	Steel EN C45
Maximum Torsional Torque per Driving Sprockets (equal to the Maximum Gearmotor Output Torque during operation ($\mathrm{M}_{\text {stattdyn }}$)) ($\mathrm{M}_{\mathrm{t} \text { _sprocket }}$)	$43,88 \mathrm{~N} \cdot \mathrm{~m}$
Maximum Dynamic Reaction Force on the Wheels (vehicle accelerating) ($\mathrm{R}_{\mathrm{A}, \mathrm{dyn}}$)	2039 N
Load on the Travelling Wheel (Ftravelling wheel)	1020 N
Pitch Diameter of the Driven Sprocket $\left(D_{P}\right)$	69,11 mm
Shaft Rotation Speed (equal to the Gearmotor Output Speed (n_{a}))	58,4 rpm
The first step of the calculation was the determination of the radial force of the chain on the driving shaft caused by the tangential force of the chain when being pulled by the vehicle acceleration. This force was determined by Equation 32 which converts the maximum torque on the driving shaft (which in this case is equal to the maximum gearmotor output torque because the transmission ratio is equal to 1) in the tangential force of the chain.	

$$
M_{t_{-} \text {sprocket }}=F_{\text {tang }} \cdot \frac{D_{P}}{2}
$$

Where:

$$
\mathrm{F}_{\text {tang }} \text { - Chain tangential pulling force (N). }
$$

The second step of the calculation was the determination of the maximum stresses and deflections on the shaft. This was made through the shaft calculation module of the software MITCalc, a software for the mechanical calculation of machinery parts. The steps given in the software until reaching the results are indicated below [128]:

1) Representation of the geometry and dimensions of the shaft, with positioning of the two supports (Figure 122). In this case, the supports could be the two wheels or the two housing units, however it was decided to place the housing units because the loads on the wheels are known and theoretically the two supports of the calculation must be rigid, so the housing units represent better this scenario than the wheels that allow some flexibility for deflection of the shaft;

Figure 122 - MITCalc - Calculation of the Driving Shaft from the Travelling System - Geometry and dimensions of the shaft.
2) Representation of the loads to which the driving shaft is subjected (Figure 123). The forces and torque shown in Figure 123 correspond to the following loads:

- F1: Load on the first drive wheel ($\mathrm{F}_{\text {travelling wheel }}$);
- Mt1: Torsional moment of reaction in the first drive wheel ($\mathrm{M}_{\text {stat+dyn }} / 2$);
- F2: Chain tangential pulling force ($\mathrm{F}_{\text {tang }}$);
- Mt2: Maximum gearmotor output torque ($\mathrm{M}_{\text {stat+dyn }}$);
- F3: Load on the second drive wheel ($\mathrm{F}_{\text {travelling wheel }}$);
- Mt3: Torsional moment of reaction in the second drive wheel ($\mathrm{M}_{\text {stat+dyn }} / 2$).

Figure 123 - MITCalc - Calculation of the Driving Shaft from the Travelling System - Loads on the shaft.
3) Characterization of the mechanical properties of the shaft material and indication of the load conditions (Figure 124). The material of the shaft is the steel EN C45, a steel found in the MITCalc database. The types of loads on the shaft are mainly repeated radial loads, due to constant accelerations/decelerations and loading/unloading of the shuttle vehicle, and torsional loads reversed because the shaft rotates in both directions.

6.1 Shaft material (Ultimate tensile strength min-max)				6.17 Dead load 6.18 Max. displayed coefficient of safety 6.19' Stress ratio factor	Yes	回		
A...Structural steel (350 - 700)	-	595	[MPa] [MPa]		20			
6.2 Ulitimate tensile strength	Su/Rm	590			6.19 Stress ratio factor $\alpha_{0} \quad 1,15$ $6.20^{\text {T }}$ Coefficient of maximum loading			
6.3 Yield strength in tension	$\mathrm{S}_{\mathrm{Y}} / \mathrm{Re}$	310	[MPa]					
6.4 Yield strength in bending	$\mathrm{S}_{\mathrm{r}} / \mathrm{Re}_{\mathrm{b}}$	449	[MPa]	6.21 Bending	1,00			
6.5 Yield strength in shear	$\mathrm{S}_{\mathrm{r}} / \mathrm{Re}_{5}$	242	[MPa]	6.22 Radial load	1,00			
6.6 For reversed loading				6.23 Torsion	1,00			
6.7 Fatigue limit - tension-pressu	$\sigma_{\text {c }}$	226	[MPa]	6.24 Tension/Compression	1,00			
6.8 Fatigue limit - bending	$\sigma_{\text {cc }}$	292	[MPa]	6.25 Loading conditions				
6.9 Fatigue limit - torsion	τ_{c}	208	[MPa]	6.26 Loading from bending moment	B...Repeated	\checkmark		
6.10 For cyclic loading				6.27 Loading from radial force	B...Repeated	\checkmark		
6.11 Fatigue limit - tension-pressu	$\sigma_{\text {w }}$	339	[MPa]	6.28 Load from torsional moment	C...Reversed	\checkmark		
6.12 Fatigue limit - bending	$\sigma_{\text {exc }}$	437	[MPa]	6.29 Loading from tension/pressure force	A...Statio	\checkmark		
6.13 Fatigue limit - torsion	τ_{nc}	239	[MPa]	6.30 Dynamic strength check				
6.14 Specific mass	Ro	7850,0	[kg/m^3]	6.31 Impact from shaft surface	Yes	\checkmark		
6.15 Modulus of elasticity in tensir	E	210000	[MPa]	6.32 Impact from shaft size	Yes	\checkmark		
6.16 Modulus of elasticity in shear	G	80000	[MPa]	6.33 Impact from stress concentration (notd	Yes	\checkmark		

Figure 124 - MITCalc - Calculation of the Driving Shaft from the Travelling System - Material and type of loading.
4) According to the loads and conditions described so far, determination of the following results:

- Determination of reaction forces on the supports;
- Determination of maximum stresses and deflections on the shaft;
- Graphical representation of the deflection distribution and equivalent stress along the shaft length.

	x	y	z	£ y+z		Graph		<	>
7.1 Reaction in the support R1	0	1041,3592	-503,272	1156,5948	[N]	16..Deflection	-Sum [mm]		
7.2 Reaction in the support R2	0	109,65173	-935,0988	941,50588	[N]	30..Equivaler	stress [MPa]		
7.3 Total shaft weight	m	6,51							
7.4 Maximum deflection	y	0,7037							$\begin{gathered} { }^{100} \\ -90 \\ -80 \\ -70 \\ -60 \\ -50 \\ -40 \\ -30 \\ -20 \\ -10 \\ -0 \end{gathered}$
7.5 Maximum torsional deflectio		0,0722							
7.6 Angular deflection in R1	ง	0,2974							
7.7 Angular deflection in R2	ง	0,1690							
7.8 Max. bending stress	$\sigma_{\text {e }}$	87,3							
7.9 Max. stress in shear	τ_{5}	2,4							
7.10 Max. stress in torsion	τ_{t}	7,2							
7.11 Max. stress in tension/press	σ_{9}	0,0							
7.12 Max. equivalent stress	$\sigma_{\text {r }}$	89,3							
7.13 Min. static safety	SF_{3}	5,04							
7.14 Min. dynamic safety	SF_{o}	7,22							
$7.15^{\text {² }}$ Critical speed (A)	n_{c}	0,0							
Critical speed (B)	n_{c}	5682,8	[/min] [/min] Sh						
Critical speed (C)	n_{c}	5061,9		haft freely rotating in bearings, rotating disc between the bearings ($\mathrm{K}=1$)					\checkmark
7.16 Results for X co-ordinate	>	0,00	17,00	76,50	159,00	509,00	942,50	1002,00	1019,00
16..Deflection-Sum [mm]	\checkmark	0,4194501	0,3283308	0,005679	0,3610244	0,6935423	0,0027847	0,1872933	0,2488887
27...Torsion angle []	\checkmark	0	0	-0,024217	-0,058454	-0,008811	0,0479424	0,0721589	0,0721589
30..Equivalent stress [MPa]	\checkmark	0	0,004636	42,879309	89,327566	24,715098	42,200382	18,399934	0
41..Safety coefficient (static)	\checkmark	20	20	10,5904	5,0371367	18,20983	10,71742	20	20
42..Safety coefficient (dynamic)	\checkmark	20	20	13,098094	7,2209129	20	13,459608	19,705826	20

Figure 125 - MITCalc - Calculation of the Driving Shaft from the Travelling System - Final results.
The main results of the calculation of the driving shaft are shown in Table 36.
Table 36 - Results of the calculation of the driving shaft.

$\underline{\text { Variable }}$	$\underline{\text { Result }}$
Reaction in the First Support (R1)	1157 N
Reaction in the Second Support (R2)	942 N
Maximum Deflection	$0,70 \mathrm{~mm}$
Maximum Torsional Deflection	$0,07^{\circ}$
Maximum Equivalent Stress	89 MPa
Minimum Static Safety Factor	5,0
Minimum Dynamic Safety Factor	7,2
Maximum Critical Speed	5062 rpm

The results of the driving shaft calculation are acceptable. The maximum deflection is below 1 mm in a portion of the shaft length where no functional component (such as wheels or sprockets) is mounted and the torsional deflection is below $0,25^{\circ}$, which is the maximum recommended value for such applications. It can be concluded from the analysis of the deflection distribution curve that the deflection values do not exceed 0.3 mm in the wheel or carriage mounting zones, which is accepted since these deflections are all elastic and their maximum value only occurs at the time of acceleration of the shuttle vehicle.

For the equivalent maximum stress, static and dynamic safety factors above 2 ensure that the shaft material withstands the most severe load conditions.

Regarding the critical speed of the shaft, this value is well above the shaft rotation speed of $458,4 \mathrm{rpm}$.

Finally, note that the values of the reaction forces in the supports are very important for the calculation of the housing units that support the shaft.

Calculation of the Housing Units

The housing units were calculated to determine their durability and load safety factors in relation to the load conditions to which they are subjected. As they support the driving and driven shafts, they react to the radial loads to which they are subjected, in other words, the loads falling on the housing units are equal to the reaction forces required to balance the shaft radially, allowing it to rotate freely and without oscillations. As such, the parameters required to calculate the housing units are indicated in Table 37. Note that the four housing units of the shuttle vehicle are subjected to different loads, however, the calculation was only made for the largest of the loads between the four housing units (worst scenario), in other words, the largest of the reaction forces determined in the calculation of the driving shaft.

Table 37 - Parameters used to calculate the housing units.

Parameter	Value
Selected Housing Unit	RAY25-XL
Shaft Rotation Speed (equal to the Gearmotor Output Speed (n_{a}))	$458,4 \mathrm{rpm}$
Radial Load (equal to Reaction in the First Support (R1))	1157 N

The calculation was made using the bearings calculation module from Schaeffler website. The steps taken to perform the calculation are indicated below [129]:

1) Determination of the recommended lubricant to be used according to the speed of rotation (Figure 126);

Figure 126 - Schaeffler website - Calculation of the housing units - Calculation of the recommended lubricant.
2) Indication of the loads on the housing unit (Figure 127), which in this case are only radial loads;

Loadcase 1			
Loadcase			
Designation	Bez	Loadcas	
Time portion	q	100.000	\%
Axial load	Fa	0.0	N
Radial load	Fr	1157.0	N
Type of movement		rotating	v
Speed	n_i	458.40	1/min
Mean operating temperature	T	70	${ }^{\circ} \mathrm{C}$

Figure 127 - Schaeffler website - Calculation of the housing units - Loads on the housing unit.
3) According to the load conditions, determination of the rating life and the safety factors for the housing unit (Figure 128).

Figure 128 - Schaeffler website - Calculation of the housing units - Rating life and safety factors for the housing unit.

The main results of the calculation of the housing unit are shown in Table 38.
Table 38 - Results of the calculation of the housing unit.

$\underline{\text { Variable }}$	$\underline{\text { Result }}$
Total Rating Life	77651 h
Static Load Safety Factor	6,7
Dynamic Load Safety Factor	12,9

According to the results, the housing unit is oversized because it has a total rating life above 60000 h and load safety factors above 6. As such, the housing unit will not have problems during operation, but it would be possible to have chosen another one with less load capacity.

Calculation of the Driving Chain

The driving chain was calculated to determine their durability and load safety factors in relation to the load conditions to which it is subjected. As it is used to transmit power and torque between the gearmotor and the wheels through two sprockets, it is subjected to the gearmotor output torque that moves the shuttle vehicle (Figure 129). This torque creates a pulling force on the chain, so it is necessary to verify if the chain can withstand that force without breaking or stretching too early.

Figure 129 - Torque transmitted between the driving sprocket and the driven sprocket through the chain to drive the travelling system.

The parameters required to calculate the driving chain are indicated in Table 39. Note that the calculation was made using the maximum gearmotor output torque during operation to consider the worst scenario for the driving chain.

Table 39 - Parameters used to calculate the driving chain from the travelling system.

Parameter	Value
Selected Roller Chain	DIN 8187 08B-2 Maintenance Free (equivalent to Iwis D 85 ML)
Pitch Diameter of the Driving Sprocket	$69,11 \mathrm{~mm}$
Number of Teeth of the Driving Sprocket	17
Pitch Diameter of the Driven Sprocket	$69,11 \mathrm{~mm}$
Number of Teeth of the Driven Sprocket	17
Distance between the Two Sprockets	157 mm
Maximum Gearmotor Output Torque	$43,88 \mathrm{~N} \cdot \mathrm{~m}$
Driving Sprocket Rotation Speed (equal to the Gearmotor Output Speed (na))	$458,4 \mathrm{rpm}$
Lubrication Factor (f5)	1
Shock Factor (Y)	2

The chain was calculated using Iwis Chain Engineering software, a chain-dedicated calculation software, with the full range of chains produced by lwis. The steps given in the software to reach the result are indicated below [130]:

1) Characterization of the chain loop according to the chain type, and the dimensions and positioning of the sprockets. Indication of the operating conditions, in other words, indication of the torque on the driven sprocket, rotation speed of the driving sprocket, lubrication factor and shock factor (Figure 130);

Figure 130 - Iwis Chain Engineering - Calculation of the Driving Chain for the Travelling System - Characterization of the chain loop and indication of the operating conditions.
2) Graphical representation of the chain loop (Figure 131);

Figure 131 - Iwis Chain Engineering - Calculation of the Driving Chain for the Travelling System - Graphical representation of the chain loop.
3) According to the load conditions, determination of the rating life and the safety factors for the driving chain (Figure 132).

- refer to 3.0% relative Chain Elongation

Figure 132 - Iwis Chain Engineering - Calculation of the Driving Chain for the Travelling System - Rating life and safety factors for the driving chain.

The main results of the calculation of the driving chain are shown in Table 40.
Table 40 - Results of the calculation of the driving chain.

Variable	Result
Static Fracture Surety	31,4
Dynamic Fracture Surety	15,7
Expected Durability	>20000

According to the results, the current is oversized because it has a nominal service life above 20000 h , and at this time only the time in which the current remains in operation is counted. In addition, the static and dynamic safety factors are well above the recommended minimum values, which ensures that the chain is far from being broke by the loads it is subjected to. As such, the chain will have no problems during the operation, but it would be possible to choose a smaller one.

Calculation of the Locking Assemblies

The locking assemblies used to transmit the torque between the driven sprocket and the driving shaft and between the driving shaft and the travelling wheels had to be calculated to verify that the chosen models will be able to transmit the torque between the component pairs and to ensure that the travelling wheels and the driven sprocket
will be able to withstand the pressure that is exerted by the locking assemblies on the contact surface.

As already mentioned, the driven sprocket receives the torsional torque of the gearmotor dividing it equally by the two drive wheels. As such, the locking assembly of the driven sprocket must be capable of transmitting the maximum output torque of the gearmotor while the locking assembly of each driving wheel must be able to transmit only half of that torque. Since there are two different locking assemblies and subject to different conditions, two separate calculations were made for each one. These calculations were made according to the procedures, equations and values indicated in the Tollok locking assemblies catalog [131].

The locking assembly for the driven sprocket is represented in Figure 133 and the parameters required to perform the verification calculations are indicated in Table 41.

Figure 133 - Locking assembly for the driven sprocket.
Table 41 - Parameters used to calculate the locking assembly for the driven sprocket.

Parameter	Value
Selected Locking Assembly	$(2 x)$ TLK300 25×30
Locking Assembly Internal Diameter (d TLK)	25 mm
Locking Assembly External Diameter (DLK)	30 mm
Locking Assembly Thickness (L1)	$10,6 \mathrm{~mm}$
Locking Assembly Pre-Load Force (Pt)	10000 N

Parameter	Value
Locking Assembly Surface Pressure on Hub (pn)	95 MPa
Flange Thickness (Sf)	8 mm
Fixing Bolts Tightening Force (Pv)	M 6
Fixing Bolts Center Distance (I)	9000 N
Hub Material (Driven Sprocket Material)	42 mm
Hub Diameter (Driven Sprocket Minimum Outer Diameter) (DM)	EN Steel C45
Hub Width (Driven Sprocket Width) (B)	54 mm
Application Type Factor (C)	21 mm
Tollok Coefficient K	0,8
Maximum Torsional Torque in the Driven Sprocket (equal to the Maximum Gearmotor Output Torque (Mstat+dyn))	1,25

To determine the torque transmissible by two locking assemblies TLK300, Equation 33, Equation 34 and Equation 35 were used. Equation 33 was used to determine the total tightening force of the locking assembly fastening screws; Equation 34 was used to determine the torque transmissible by a locking assembly; Equation 35 was used to determine the torque transmissible by two locking assemblies.

$$
P a=N o \text { of bolts } \cdot P v
$$

Where:
Pa - Fixing Bolts Total Tightening Force (N).

$$
M t_{T L K}=\frac{P a-P t}{0,54} \cdot 0,12 \cdot \frac{d}{2000}
$$

Where:
Mtтьк - Transmissible torque by one locking assembly ($\mathrm{N} \cdot \mathrm{m}$).

$$
M t_{2 T L K}=M t_{T L K} \cdot 1,55
$$

Where:
$\mathrm{Mt}_{\text {2tLK }}$ - Transmissible torque by two locking assemblies ($\mathrm{N} \cdot \mathrm{m}$).
Since this type of locking assembly does not have a tightening flange, it was necessary to check the dimensions of the flange designed for this purpose. To determine the minimum flange thickness and the recommended fixing bolts center distance, Equation 36 and the Equation 37, respectively, were used.

$$
S f \geq d g \cdot 1,3
$$

Equation 36

$$
l=D+12+d g
$$

Equation 37
Finally, to calculate the minimum values for the diameter and width of the hub where the locking assembly is inserted, Equation 38 and Equation 39, respectively, were used.

$$
D M \geq D \cdot K
$$

Equation 38

$$
B \geq 2 \cdot L 1
$$

The calculations results for the locking assembly for the driven sprocket are showed in Table 42.

Table 42 - Results of the calculation of the locking assembly for the driven sprocket.

Variable	Result
Maximum Transmissible Torque by Two Locking Assemblies (Mt 2 TLK $)$	$112 \mathrm{~N} \cdot \mathrm{~m}$
Minimum Flange Thickness (Sf)	$7,8 \mathrm{~mm}$
Recommended Fixing Bolts Center Distance (I)	48 mm
Minimum Hub Diameter (DM)	$37,5 \mathrm{~mm}$
Minimum Hub Width (B)	$21,2 \mathrm{~mm}$

By analyzing the values in Table 42 it is concluded that the selected locking assembly is capable of transmitting the torque between the driven sprocket and the driving shaft, since the maximum transmissible torque is well above the application torque of 43,88
$N \cdot m$. In addition, the minimum dimensions of flange thickness, hub diameter and hub width have been met during the design of the tightening flange and the driven sprocket, ensuring that these components withstand the pressures caused by contact with the locking assembly. Only the recommended fixing bolts center distance could not be guaranteed due to space limitations in the positioning of the threaded holes on the driven gear, but this does not prevent the correct torque transmission.

The locking assembly for the driving wheels is represented in Figure 134 and the parameters required to perform the verification calculations are indicated in Table 43.

Figure 134 - Locking assembly for the driving wheels.
Table 43 - Parameters used to calculate the locking assembly for the driving wheels.

Parameter	Value
Selected Locking Assembly	(2x) TLK200 25x50
Locking Assembly Internal Diameter (dтıK)	25 mm
Locking Assembly External Diameter ($\mathrm{D}_{\text {tık }}$)	50 mm
Locking Assembly Transmissible Torque ($\mathrm{Mt} \mathrm{t}_{\mathrm{tL}}$)	$400 \mathrm{~N} \cdot \mathrm{~m}$
Hub Material (Wheel Centre Material)	Cast Iron ($\sigma_{\text {Yield }}=276 \mathrm{MPa}$)
Hub Diameter (Wheel Center Minimum Outer Diameter) (DM)	70 mm
Hub Width (Wheel Center Width) (B)	45 mm
Application Type Factor (C)	0,8

Parameter	Value
Tollok Coefficient K	1,36
Maximum Torsional Torque per Wheel (half the Maximum Gearmotor Output Torque $\left(\mathrm{M}_{\text {stat+dyn }}\right)$	$21,94 \mathrm{~N} \cdot \mathrm{~m}$

In this case, the torque transmissible by the locking assembly TLK200 is a catalog value so it did not have to be calculated. In addition, this type of locking assembly already has a built-in tightening flange, so it was not necessary to check its dimensions. However, it was necessary to check the contact pressure between the wheel bore and the locking assembly. As such, Equation 38 and Equation 39 were used again to calculate the minimum diameter and width of the hub where the locking assembly is inserted.

The calculations results for the locking assembly for the driving wheels are showed in Table 44.

Table 44 - Results of the calculation of the locking assembly for the driving wheels.

$\underline{\text { Variable }}$	$\underline{\text { Result }}$
Maximum Transmissible Torque (MtTLK)	$400 \mathrm{~N} \cdot \mathrm{~m}$
Minimum Hub Diameter (DM)	68 mm
Minimum Hub Width (B)	34 mm

By analyzing the values in Table 44 it is concluded that the selected locking assembly is capable of transmitting the torque between the driving shaft and the driving wheels, since the maximum transmissible torque is well above the application torque of 21,94 $\mathrm{N} \cdot \mathrm{m}$. In addition, the minimum dimensions of hub diameter and hub width are guaranteed by the driving wheel dimensions, ensuring the wheel center withstands the pressures caused by contact with the locking assembly. In this case, a greater locking assembly was used than the one used on the driven sprocket, because the space limitations are much smaller, allowing greater freedom of assembly of a more robust locking assembly.

The driving sprocket has a similar assembly on the output shaft of the gearmotor through a taper lock bushing (Figure 135), however this does not need to be calculated since the sprocket and bushing are a direct choice of catalog, in other words, for each sprocket there is a recommended bushing, and may even be supplied as a set. Therefore, the bushing is chosen according to the sprocket.

Figure 135 - Taper lock bushing for the driving sprocket.

Calculation of the Guiding Wheels Axle

The support axle of the guiding wheel is subjected to the same radial loads of the guiding wheel (Figure 136), so it was necessary to check whether it can resist such loads.

Figure 136 - Loads on the guiding wheel axle.
The parameters necessary to carry out the calculation of the guiding wheels axle are indicated in Table 45. Note that the calculation was made using the maximum load on the guiding wheel, value determined in the calculation process of the wheel.

Table 45 - Parameters used to calculate the guiding wheels axle.

Parameter
 Value

Acting Force on the Axle (equal to the
Load on the Guiding Wheel (Fguiding wheel))

Parameter	Value
Axle Material	Hexagon Socket Shoulder Head Bolt
Class $12.9(\mathrm{Rm}=1220 \mathrm{MPa})$	
Material of the Guiding Wheel Support Fork	Steel EN S235 JR

High Grade and Alloy Steel
Material of the Guiding Wheel Bearings

$$
\text { (Rm > } 700 \mathrm{MPa} \text {) }
$$

The axle calculation was performed through the pinned coupling calculation module of the MITCalc software. The steps given in the software to get the results are listed below [128]:

1) Characterization of the pinned coupling type, load conditions and mechanical properties of the materials from the clevis and the rod, in other words, the parts bonded by the pin (Figure 137). In this case, the guiding wheel axle is subjected to a unidirectional and repeated loading condition, and the materials of the parts making up the coupling are the steel EN S235 JR for the fork and the high alloy steel for the guiding wheel center (inner rings of ball bearings);

Figure 137 - MITCalc - Calculation of the Guiding Wheel Axle - Loading and basic parameters of the coupling.
2) Indication of pin type, mechanical properties of pin material, and pin coupling dimensions (Figure 138). In this case, the guiding wheel axle is a standard bolt ISO 7379 (class 12.9) which can be compared, from the point of view of dimensions and geometry, to a standard pin ISO 2341-A;

Figure 138 - MITCalc - Calculation of the Guiding Wheel Axle - Design of coupling dimensions.
3) According to the load conditions and dimensions indicated so far, checking of the pin coupling strength (Figure 139). As such, calculation of the safety factors for the axle strength against shearing and bending stresses and calculation of the safety factors for the surface strength of the fork and guiding wheels holes against the contact pressure caused by the axle.

Figure 139 - MITCalc - Calculation of the Guiding Wheel Axle - Design of coupling dimensions.
The safety factors for checking the strength of the guiding wheel axle and respective parts that make up the entire pin coupling, are presented in Table 46.

Table 46 - Results of the safety factors from the calculation of the guiding wheel axle.

Variable	Result
Axle Shear Stress Safety Factor	88,4
Axle Bending Stress Safety Factor	11,5
Fork Contact Pressure Safety Factor	2,6
Guiding Wheel Contact Pressure Safety	
Factor	10,8
As all safety factors are above 2,5, the dimensioning of the guiding wheel axle is validated, ensuring a large safety margin against possible problems that may occur in the coupling during the operation of the shuttle vehicle.	

Calculation of the Polyurethane Buffer

The polyurethane buffers are used to stop the shuttle vehicle if it exceeds the maximum travel limit, preventing it from escaping from the rack. It is therefore a mechanical safety component subject to the impact effort caused by the collision of the shuttle vehicle against the end stoppers of the rail.

If the shuttle vehicle exceeds the maximum travel limit, first, the limit switch is actuated and electrically shuts off the system. Then, the emergency brake of the travelling gearmotor is mechanically actuated to brake the vehicle. The polyurethane buffers enter as a third safety component, in case the gearmotor brake is not able to stop the vehicle in the distance between the maximum travel limit and the end stoppers of the rail. Therefore, the worst scenario for the buffers is the shuttle vehicle crashing against the end stoppers of the rail at full speed and loaded with boxes but without any driving force from the gearmotor because the system was electrically switched off. The buffers calculation was made for this scenario.

The parameters required to calculate the polyurethane buffers are listed in Table 47.
Table 47 - Parameters used to calculate the polyurethane buffers.

Parameter	Value
Total Shuttle Vehicle Mass	300 kg
Boxes Mass	100 kg
Vehicle Speed	$1,25 \mathrm{~m} / \mathrm{s}^{2}$
Number of Impact Buffers	2 un

The calculation was made using the elastomer buffers calculation module from Weforma website. The steps taken to perform the calculation are indicated below [132]:

1) Indication of the type of application (Figure 140). In this case, the vehicle strikes horizontally against the end stoppers of the rail and without any driving force.

Figure 140 - Weforma website - Calculation of the polyurethane buffers - Indication of the type of application.
2) Indication of the application parameters (Figure 141): vehicle mass, impact speed and number of shock absorbers.

```
B. Mass without force, horizontal Weforma
```


\downarrow

Figure 141 - Weforma website - Calculation of the polyurethane buffers - Indication of the application parameters.
3) Selection of the polyurethane buffer from among the recommended options (Figure 142).

Figure 142 - Weforma website - Calculation of the polyurethane buffers - Selection of the polyurethane buffer.
The polyurethane buffer is a direct choice as a result of the calculation, requiring no checking. As such, the chosen buffer is indicated in Table 48.

Table 48 - Selected polyurethane buffer.

Variable	Result
Selected Polyurethane Buffer	PU Buffer D80×120-M12×35
	(Weforma WCB-080-120-6-B)

Calculation of the Fork for the Guiding Wheel (using FEA)

The support fork of the guiding wheel, such as the axle, is subjected to the radial load that is exerted on the guiding wheel. As such, it was necessary to check its behavior against the loading conditions as a way of validating the design that was made for this part.

The parameters required to calculate the fork are given in Table 53.
Table 49 - Parameters used to calculate the fork for the guiding wheel.

Parameter	Value
Acting Force on the Fork (equal to the Load on the Guiding Wheel (Fguiding wheel))	1091 N
Material of the Fork for the Guiding	
Wheel	Steel EN S235 JR

To determine the maximum stress and displacement of the fork against the load to which it is subject, an FEA simulation was performed through the Simulation module of the CAD software Autodesk ${ }^{\circledR}$ Inventor ${ }^{\oplus}$. As such, the steps that followed to the results are indicated below:

1) Since this is a model composed of more than one part, the first step was the indication of the types of contact between the parts that make up the model to be simulated. The principles that have been assumed for this first step apply to all simulations of models with more than one part. However, these principles are exposed only in this section to facilitate the reading of the work, avoiding the repetition of information. Therefore, the principles for defining the types of contacts were as follows:
a. In bolted connections it was defined that the two contact surfaces would be bonded by the area of occupancy of the washer and all the rest would be separated, simulating the actual behavior of a bolted connection;
b. In welded connections of tee joints or corner joints, it was defined that the two contact surfaces would be bonded throughout the area of contact between both, so there was no need to represent the weld beads in these cases because the bonded contact area between the surfaces would be practically the same;
c. In welded connections of lap joints, it was defined that the two contact surfaces would be separated from each other, but bonded through the weld beads, so there was a need to represent them to simulate the actual behavior of a welded connection.
2) Definition of the boundary conditions. In this case, a fixed constraint was applied in all directions of the part used to simulate the support and the bolted connection of the fork (Figure 143);

Figure 143 - FEA simulation - Calculation of the Fork for the Guiding Wheel - Definition of the boundary conditions.
3) Definition of the applied loads. In this case, the fork is subjected to the radial load of the guiding wheel, being applied on the support holes of the guiding wheel axle. The weight of the fork is already included in the simulation and is not considered an external force (Figure 144);

Figure 144 - FEA simulation - Calculation of the Fork for the Guiding Wheel - Definition of the applied loads.
4) Mesh creation. Figure 145 shows the mesh aspect on the fork surface and the number of nodes and elements that characterize it;

Figure 145 - FEA simulation - Calculation of the Fork for the Guiding Wheel - Mesh creation.
5) Obtaining the results of the simulation. Figure 146 shows the distribution of the Von Mises stresses across the surface of the analyzed part. Figure 147 shows the displacements suffered by the part.

Type: Von Mises Stress
Unit: MPa

Figure 146 - FEA simulation - Calculation of the Fork for the Guiding Wheel - Distribution of the Von Mises stresses.
Type: Displacement
Unit: mm
2018-11-10, 17:18:31

Figure 147 - FEA simulation - Calculation of the Fork for the Guiding Wheel - Displacements on the part.
After obtaining the results, the safety factor between the yield strength of the material and the maximum Von Mises stress was calculated by Equation 40.

$$
S F=\frac{\sigma_{\text {Yield }}}{\sigma_{\text {Von Mises }, \max }}
$$

Where:
$\sigma_{\text {Yield }}-$ Yield strength of the material (MPa);
$\sigma_{\text {Von }}$ Mises,max $-M a x i m u m ~ V o n ~ M i s e s ~ s t r e s s ~(M P a) . ~ . ~$
All the main results of the FEA simulation are summarized in Table 50.

Table 50 - Results of the FEA simulation of the fork for the guiding wheel.

Variable	Result
Maximum Von Mises Stress	
($\sigma_{\text {von Mises,max }}$)	$26,0 \mathrm{MPa}$
Maximum Displacement	$0,02 \mathrm{~mm}$
Safety Factor (SF)	9,0
A safety factor of the fork of 9,0 ensures that there is no danger of failure of the component for the case studied. In addition, the maximum displacement is very close to 0 mm, ensuring that the part hardly deforms.	

Calculation of the Main Structure (using FEA)

All subsystems that make up the shuttle vehicle are mounted on the main structure. As such, it is essential that it is of structurally supporting the weight of all systems and even the drive torques of each of the subsystems, although these occur in isolation from the rest.

To study the behavior of the main structure when subjected to the weight of all subsystems and the output torque of the travelling gearmotor, in other words, when the travelling system is operating, it was necessary to carry out a structural calculation.

The parameters required to calculate the main structure are given in Table 51. Note that the calculation was done using the maximum gearmotor output torque to increase the level of safety of the results. The weights were calculated by multiplying the masses of the respective components by the gravitational acceleration.

Table 51 - Parameters used to calculate the main structure when the travelling system is operating.

Parameter	Value
Maximum Gearmotor Output Torque $\text { (} \mathrm{M}_{\text {stat+dyn }} \text {) }$	43,88 N•m
Gearmotor Weight	270 N
Picking System Weight	216 N
Extraction System Weight	457 N
Boxes Weight	981 N
Material of the Main Structure	Steel EN S235 JR
To determine the maximum stress and displacement of the main structure against the load to which it is subject, an FEA simulation was performed through the Simulation	
DEVELOPMENT OF AN INNOVATIVE SHUTTLE VEHICLE FOR AU STORAGE AND RETRIEVAL SYSTEMS	JoÃo FERNANDES

module of the CAD software Autodesk ${ }^{\circledR}$ Inventor ${ }^{\circledR}$. As such, the steps that followed to the results are indicated below:

1) Since this is a model composed of more than one part, the first step was the indication of the types of contact between the parts that make up the model to be simulated. The principles that have been assumed were described before;
2) Definition of the boundary conditions. In this case, pin constraints were applied in the radial directions of the travelling wheel axles and in the holes for the fixing bolts to connect the forks of the guiding wheels (Figure 148), blocking the movement of the main structure in the three possible directions;

Figure 148 - FEA simulation - Calculation of the Main Structure when the Travelling System is Operating - Definition of the boundary conditions.
3) Definition of the applied loads. In this case, the main structure is subjected to the gearmotor weight and output torque, to the extraction system weight, to the picking system weight and to the boxes weight (Figure 149). The weight of the main structure is already included in the simulation and is not considered an external force;

Figure 149 - FEA simulation - Calculation of the Main Structure when the Travelling System is Operating - Definition of the applied loads.
4) Mesh creation. Figure 150 shows the mesh aspect on the main structure surface and the number of nodes and elements that characterize it;

Figure 150 - FEA simulation - Calculation of the Main Structure when the Travelling System is Operating - Mesh creation.
5) Obtaining the results of the simulation. shows the distribution of the Von Mises stresses across the surface of the analyzed part. shows the displacements suffered by the part.

Figure 151 - FEA simulation - Calculation of the Main Structure when the Travelling System is Operating Distribution of the Von Mises stresses.

Figure 152 - FEA simulation - Calculation of the Main Structure when the Travelling System is Operating Displacements on the part.

After obtaining the results, the safety factor between the yield strength of the material and the maximum Von Mises stress was calculated by Equation 40.

All the main results of the FEA simulation are summarized in Table 50.

Table 52 - Results of the FEA simulation of the main structure when the travelling system is operating.

Variable	Result
Maximum Von Mises Stress	$84,3 \mathrm{MPa}$
(GVon Mises,max)	

Variable	Result
Maximum Displacement	$0,27 \mathrm{~mm}$
Safety Factor (SF)	2,8

A safety factor of the main structure of 2,8 ensures that there is no risk of failure of the component to the load conditions studied. In addition, the maximum stress occurs only in a small area of the structure not as strong as the rest of the part where the Von Mises stresses are below 20 MPa .

The maximum displacement of the part is very close to 0 mm , ensuring that the part hardly deforms.

3.4.9.2 CALCULATIONS IN THE EXTRACTION SYSTEM

For the extraction system, the following calculations were performed:

1) Calculation of the servo gearmotor;
2) Calculation of the driving shaft;
3) Calculation of the driving shaft bearings;
4) Calculation of the driving chains;
5) Calculation of the locking assemblies for the driving sprockets;
6) Calculation of the DC drive;
7) Calculation of the DC drive fixing plate (using FEA);
8) Calculation of the retractable finger (using FEA);
9) Calculation of the stringers (using FEA);
10) Calculation of the flange for the servo gearmotor (using FEA);
11) Calculation of the main structures (using FEA).

Calculation of the Servo Gearmotor

The servo gearmotor is used to drive the extraction system, in other words, it is used to linearly move the extraction arms to drag the boxes into or out of the shuttle vehicle through a transmission system composed of chains, driving sprockets and racks (Figure 153). As such, it was necessary to perform a calculation to select a servo gearmotor that would be able to drive this system.

The driving force for moving the movable extraction arms and the box is equal to the force required to overcome the friction between the box and its bearing surface and between the movable struts and the fixed struts, in other words, to overcome the friction between polymer and steel caused by the total mass of the movable extraction arms and the box.

Figure 153 - Servo gearmotor used to produce a driving force for moving the movable extraction arms and the box.
The parameters required to calculate the servo gearmotor are given in Table 53. It should be noted that the speed and acceleration values of the extraction system were altered, with the speed being slightly increased and the acceleration being reduced, keeping the same values whether the system moves with boxes or without boxes.

Table 53 - Parameters used to calculate the servo gearmotor.

Parameter	Value
Mass of the Movable Extraction Arms	$17,5 \mathrm{~kg}(8,75 \mathrm{~kg} / \mathrm{arm})$
Boxes Mass	$100 \mathrm{~kg}(50 \mathrm{~kg} / \mathrm{box})$
Extraction System Speed	$0,45 \mathrm{~m} / \mathrm{s}$
Extraction System Acceleration	$0,9 \mathrm{~m} / \mathrm{s}^{2}$
Static Coefficient of Friction (polymer/steel)	0,45
Pitch Diameter of the Driving Sprockets Number of Teeth of the Driving Sprockets	76 mm
Mass Moment of Inertia of the Driving	25
Sprockets	Gear Unit Type
Motor Type	Flange-Mounted Synchronous Servomotor (Type CMP)
Servo Gearmotor Mounting Position	M1

This calculation was made using the SEW Workbench calculation software. The steps given in the software until reaching the final solution are indicated below [127]:

1) Selection of the type of motion, the type of application and the type of power transmission. In this case, it is a linear movement created by a mechanism of driving sprocket and rack (Figure 154). There is no additional gear;

Figure 154 - SEW Workbench - Calculation of the Servo Gearmotor - Selection of the type of application.
2) Introduction of the parameters that characterize the driving sprocket (Figure 155). In this case, there is no need to calculate the overhung load on the gearmotor output shaft because all radial loads are absorbed by the bearings that support the extraction system driving shaft;

Figure 155 - SEW Workbench - Calculation of the Servo Gearmotor - Introduction of the parameters that characterize the driving sprocket.
3) Definition of the travel diagram for the extraction system movement with indication of the respective distances and times of acceleration, and calculation of the driving torques for the servo gearmotor (Figure 156). In this step it is important to highlight the maximum value of the static and dynamic torques
($15,15 \mathrm{~N} \cdot \mathrm{~m}$) since it was used for many of the calculations performed on the extraction system;

Figure 156 - SEW Workbench - Calculation of the Servo Gearmotor - Definition of the travel diagram.
4) Selection of the best servo gearmotor for this application, according to the type of gear unit and motor desired (Figure 157).

Figure 157 - SEW Workbench - Calculation of the Servo Gearmotor - Selection of the servo gearmotor.

The main parameters of the selected servo gearmotor are shown in Table 54.
Table 54 - Parameters of the selected servo gearmotor.

Variable	Result
Reference of the Selected Gearmotor	RF07 CMP40M/BK/KY
Maximum Gearmotor Output Torque during operation (Mstat+dyn)	$15,15 \mathrm{~N} \cdot \mathrm{~m}$
Gearmotor Rated Output Torque	$18,7 \mathrm{~N} \cdot \mathrm{~m}$
Motor Speed	2637 rpm
Motor Rated Torque	$0,8 \mathrm{~N} \cdot \mathrm{~m}$
Gear Unit Ratio	23,32
Gearmotor Output Speed (n_{a})	$113,08 \mathrm{rpm}$
Service Factor	2,7
Motor Start-Up Torque/Motor Rated	
Torque	

Calculation of the Driving Shaft

The driving shaft was calculated to predict its behavior relative to bending and torsional stresses during the operation of the extraction system. The driving shaft is supported on two bearings, being subjected to radial loads caused by tangential pulling forces of the driving chains (Figure 158). In addition, it is further subjected to torsional stresses, because of the maximum gearmotor output torque which is divided by the two driving sprockets to actuate the extraction system.

Figure 158 - Loads on the driving shaft from the extraction system.

The parameters required to perform the calculation are indicated in Table 55. Note that the calculation was made using the maximum gearmotor output torque during operation to consider the worst scenario for the driving shaft.

Table 55 - Parameters used to calculate the driving shaft from the extraction system.

Parameter	Value
Driving Shaft Material	Steel EN C45
Maximum Gearmotor Output Torque during operation ($\mathrm{M}_{\text {stattdyn }}$)	15,15 N•m
Maximum Torsional Torque per Driving Sprockets (half the Maximum Gearmotor Output Torque during operation ($\mathrm{M}_{\text {stat+dyn }}$)) ($\mathrm{M}_{\mathrm{t} \text { _sprocket }}$)	7,6 N•m
Pitch Diameter of the Driving Sprockets (DP)	76 mm
Shaft Rotation Speed (equal to the Gearmotor Output Speed (n_{a}))	113 rpm

The first step of the calculation was the determination of the radial forces on the driving shaft caused by the chain tangential pulling force when being pulled by the servo gearmotor acceleration. This force was determined by Equation 32.

The second step of the calculation was the determination of the maximum stresses and deflections on the shaft. This was made through the shaft calculation module of the software MITCalc. The steps given in the software until reaching the results are indicated below [128]:

1) Representation of the geometry and dimensions of the shaft, with positioning of the two supports (Figure 159). In this case, the supports are the two bearings.

2.1 The scale of the displayed shaft diameter. $\sqrt{\nabla}$					Calculation units		SIUnits ($\mathrm{N}, \mathrm{mm}, \mathrm{k} \mathrm{W} . . \mathrm{s}$) -				
2.2	Table	1	2	3	4	5	6	7	8	9	10
	Origin	0,00	727,00	742,00	782,00	782,00	782,00	782,00	782,00	782,00	782,00
	L	727,000	15,000	40,000							
	\emptyset Da	20,000	30,000	30,000							
	$\emptyset \mathrm{Db}$	20,000	30,000	30,000							
	\emptyset da			20,000							
	$\emptyset \mathrm{db}$			20,000							
	R										
2.3 Total length of the shaft						782,00	$\begin{array}{ll} \hline[\mathrm{mm}] & 2.6 \\ {[\mathrm{~mm}]} & \end{array}$				
2.4 X-coordinate of the left support (bearing)					Free	12,00			E...Rough machined (3,2)		\checkmark
2.5	X-coordinate of the right support (bearing)				Fixed	718,00	C [mm]				

Figure 159 - MITCalc - Calculation of the Driving Shaft from the Extraction System - Geometry and dimensions of the shaft.
2) Representation of the loads to which the driving shaft is subjected. The forces and torque shown in Figure 213 correspond to the following loads:

- F1: Chain tangential pulling force on the first driving sprocket ($F_{\text {tang }}$);
- Mt1: Torsional reaction torque on the first driving sprocket (M_{t} sprocket);
- F2: Chain tangential pulling force on the second driving sprocket ($\mathrm{F}_{\text {tang }}$);
- Mt2: Torsional reaction torque on the second driving sprocket (M_{t} sprocket);
- Mt3: Maximum gearmotor output torque ($\mathrm{M}_{\text {stat+dyn }}$).

Figure 160 - MITCalc - Calculation of the Driving Shaft from the Extraction System - Loads on the shaft.
3) Characterization of the mechanical properties of the shaft material and indication of the load conditions (Figure 161). The material of the shaft is the steel EN C45. The types of loads on the shaft are mainly repeated radial loads, due to constant accelerations/decelerations of the extraction system, and torsional loads reversed because the shaft rotates in both directions.

Figure 161 - MITCalc - Calculation of the Driving Shaft from the Extraction System - Material and type of loading.
4) According to the loads and conditions described so far, determination of the following results (Figure 162):

- Determination of reaction forces on the supports;
- Determination of maximum stresses and deflections on the shaft;
- Graphical representation of the deflection distribution and equivalent stress along the shaft length.

Figure 162 - MITCalc - Calculation of the Driving Shaft from the Extraction System - Final results.
The main results of the calculation of the driving shaft are shown in Table 56.
Table 56 - Results of the calculation of the driving shaft from the extraction system.

$\underline{\text { Variable }}$	$\underline{\text { Result }}$
Chain Tangential Pulling Force (Ftang)	200 N
Reaction in the First Support (R1)	191 N
Reaction in the Second Support (R2)	189 N
Maximum Deflection	$0,1 \mathrm{~mm}$
Maximum Torsional Deflection	$0,26^{\circ}$
Maximum Equivalent Stress	21 MPa
Minimum Static Safety Factor	20,3
Minimum Dynamic Safety Factor	7,1
Maximum Critical Speed	4406 rpm

The results of the driving shaft calculation are very acceptable. The maximum deflection is approximately $0,1 \mathrm{~mm}$ in a portion of the shaft length where no functional component (such as sprockets or bearings) is mounted and the torsional deflection is close to $0,25^{\circ}$, which is the maximum recommended value for such applications.

For the equivalent maximum stress, the static and dynamic safety factors above 2 ensure that the shaft material withstands the most severe load conditions.

Regarding the critical speed of the shaft, this value is well above the shaft rotation speed of 113 rpm .

Finally, note that the values of the reaction forces in the supports are very important for the calculation of the bearings that support the shaft.

Calculation of the Driving Shaft Bearings

The bearings that support the driving shaft were calculated to determine their durability and load safety factors in relation to the load conditions to which they are subjected. As they support the driving shaft, they react to the radial loads to which it is subjected, in other words, the loads falling on the bearings are equal to the reaction forces required to balance the shaft radially, allowing it to rotate freely and without oscillations. As such, the parameters required to calculate the bearings are indicated in Table 57. The calculation was made for the largest of the loads between the two bearings (worst scenario), in other words, the largest of the reaction forces determined in the calculation of the driving shaft.

Table 57 - Parameters used to calculate the housing units.

Parameter	Value
Selected Bearing	Self-aligning ball bearing 2204-2RS-TVH
Shaft Rotation Speed (equal to the Gearmotor Output Speed (na $)$)	113 rpm
Radial Load on the Bearing (equal to Reaction in the First Support (R1))	191 N

The calculation was made using the bearings calculation module from Schaeffler website. The steps taken to perform the calculation are indicated below [133]:

1) Determination of the recommended lubricant to be used according to the speed of rotation (Figure 163);

2204-2RS-TVH					
Bearing	Load ratings	Lubrication	Other conditions		
Permitted lubricants				Only grease	V
Type of lubrication				Grease	V
Type of grease				user defined	v
ISO VG class				ISO VG 460	v
Contamination				normal cleanliness	v
External heat flow dQ/dt				0.0	kW
Calculation of reference viscosity for INA-/FAG bearings					
Operating temperature				70	${ }^{\circ} \mathrm{C}$
Speed				113.00	1/min
Mean bearing diameter				33.500	mm
				Calculate	
ISO VG class				ISO VG 460	

Figure 163 - Schaeffler website - Calculation of the driving shaft bearings from the extraction system - Calculation of the recommended lubricant.
2) Indication of the loads on the bearing (Figure 164), which in this case are only radial loads;

Loadcase 1			
Loadcase			
Designation	Bez	Loadcase	
Time portion	q	100.000	\%
Axial load	Fa	0.0	N
Radial load	Fr	191.0	N
Type of movement		rotating	-
Speed	n_i	113.00	$1 /$ min
Mean operating temperature	T	70	${ }^{\circ} \mathrm{C}$

Figure 164 - Schaeffler website - Calculation of the driving shaft bearings from the extraction system - Loads on the bearing.
3) According to the load conditions, determination of the rating life and the safety factors for the bearing (Figure 165).

Figure 165 - Schaeffler website - Calculation of the driving shaft bearings from the extraction system - Rating life and safety factors for the bearing.

The main results of the calculation of the bearing are shown in Table 58.
Table 58 - Results of the calculation of the housing unit.

Variable	Result
Total Rating Life	$>1000000 \mathrm{~h}$
Static Load Safety Factor	13,6

According to the results, the bearing is oversized because it has an infinite total rating life and a static load safety factor above 13 for the load conditions described before. As such, the bearing will not have problems during operation, but it would be possible to have chosen another one with less load capacity.

Calculation of the Driving Chains

The driving chains were calculated to determine their durability and load safety factors in relation to the load conditions to which they are subjected. As they are used to convert the rotation movement of the driving sprockets in linear movement of the racks, they are subjected to the torques from the sprockets that drive the extraction system (Figure 166). Those torques create a pulling force on the chains, so it is necessary to verify if the chains can withstand that force without breaking or stretching too early.

Figure 166 - Torque from the driving sprocket converted in a linear drive force to move the rack and drive the extraction system (opposite directions to visualize the creation of the tangential pulling force in the chain).

The parameters required to perform the calculation are indicated in Table 59. Note that the calculation was made using the maximum torsional torque on the driving sprockets to consider the worst scenario for the driving chain.

Table 59 - Parameters used to calculate the driving chain from the extraction system.

Parameter	Value
Selected Roller Chain	DIN 8187 06B-1 Maintenance Free (equivalent to Iwis G67 ML)
Pitch Diameter of the Driving Sprocket	76 mm
Number of Teeth of the Driving Sprocket	25
Outer Diameter of the Deviation Roller	36 mm
Maximum Torsional Torque per Driving Sprockets (half the Maximum Gearmotor Output Torque during operation (Mstat+dyn))	$7,6 \mathrm{~N} \cdot \mathrm{~m}$
Chain Tangential Pulling Force (Ftang)	200 N

Parameter	Value
Driving Sprocket Rotation Speed (equal to the Gearmotor Output Speed (n_{a}))	$113,1 \mathrm{rpm}$

Iwis Lubrication Factor (f5)	1
Iwis Shock Factor (Y)	2

The chain was calculated using Iwis Chain Engineering software. The steps given in the software to reach the result are indicated below [130]:

1) Characterization of the chain loop according to the chain type, and the dimensions and positioning of the sprockets. The software does not allow a calculation with rack and deviation rollers. As such, the deviation rollers have been replaced by driven sprockets with a similar outside diameter, and the rack has been replaced by the resistive force that opposes the movement of the chain creating the tangential pulling force on the chain that is essential to perform the calculation; Indication of the operating conditions, in other words, indication of the chain tangential pulling force, rotation speed of the driving sprocket, lubrication factor and shock factor (Figure 167);

Figure 167 - Iwis Chain Engineering - Calculation of the Driving Chain for the Extraction System - Characterization of the chain loop and indication of the operating conditions.
2) Graphical representation of the chain loop (Figure 168);

Figure 168 - Iwis Chain Engineering - Calculation of the Driving Chain for the Extraction System - Graphical representation of the chain loop.
3) According to the load conditions, determination of the rating life and the safety factors for the driving chain (Figure 169).
S stat (>7)

$$
55.0
$$

>20000

* refer to 3.0% relative Chain Elongation

Figure 169 - Iwis Chain Engineering - Calculation of the Driving Chain for the Extraction System - Rating life and safety factors for the driving chain.

The main results of the calculation of the driving chain are shown in Table 60.
Table 60 - Results of the calculation of the driving chain from the extraction system.

$\underline{\text { Variable }}$	Result
Static Fracture Surety	55,0
Dynamic Fracture Surety	36,7
Expected Durability	>20000

According to the results, the chain is oversized because it has a nominal service life above 20000 h . In addition, the static and dynamic safety factors are well above the recommended minimum values, which ensures that the chain is far from being broke by the loads it is subjected to. As such, the chain will have no problems during the operation, but it would be possible to choose a smaller one.

Calculation of the Locking Assembly for the Driving Sprockets

The locking assemblies used to transmit the torque between the driving shaft and the driving sprockets had to be calculated to verify that the chosen models can transmit the torque and to ensure that the driving sprockets are able to withstand the pressure that is exerted by the locking assemblies on the contact surface.

As already mentioned, the torsional torque of the gearmotor is divided equally by the two driving sprockets. As such, the locking assemblies for the driving sprockets must be capable of transmitting half of the maximum gearmotor output torque. The calculation of the locking assembly was made according to the procedures, equations and values indicated in the Tollok catalog [131].

The locking assembly for each of the driving sprockets is represented in Figure 170 and the parameters required to perform the verification calculations are indicated in Table 61.

Figure 170 - Locking assembly for the driving sprockets.
Table 61 - Parameters used to calculate the locking assembly for the driving sprockets from the extraction system.

Parameter	Value
Selected Locking Assembly	$(2 x)$ TLK110 20×58
Locking Assembly Internal Diameter (d d̦K)	20 mm
Locking Assembly External Diameter (DTLK)	28 mm
Locking Assembly Transmissible Torque (MtTLK)	$220 \mathrm{~N} \cdot \mathrm{~m}$
Hub Material (Driving Sprocket Material)	Steel EN C45
Hub Diameter (Driving Sprocket Minimum Outer Diameter) (DM)	57 mm
Hub Width (Driving Sprocket Width) (B)	19 mm
Application Type Factor (C)	1
Tollok Coefficient K	1,41

Parameter	Value
Maximum Torsional Torque per Driving Sprocket (half the Maximum Gearmotor Output Torque (M ${ }_{\text {stat+dyn }}$))	$7,6 \mathrm{~N} \cdot \mathrm{~m}$

The torque transmissible by the locking assembly TLK110 is a catalog value so it did not have to be calculated. It was necessary to check the contact pressure between the driving sprocket bore and the locking assembly. As such, Equation 38 and Equation 39 were used to calculate the minimum diameter and width of the hub where the locking assembly is inserted.

The calculations results are showed in Table 62.
Table 62 - Results of the calculation of the locking assembly for the driving sprockets from the extraction system.

$\underline{\text { Variable }}$	Result
Maximum Transmissible Torque of the Locking Assembly (Mtткк)	$220 \mathrm{~N} \cdot \mathrm{~m}$
Minimum Hub Diameter (DM)	$39,5 \mathrm{~mm}$
Minimum Hub Width (B)	18 mm

By analyzing the values in Table 62, it is concluded that the selected locking assembly can transmit the torque between the driving shaft and the driving sprockets, since the maximum transmissible torque is well above the application torque of $7,6 \mathrm{~N} \cdot \mathrm{~m}$. In addition, the minimum dimensions of hub diameter and hub width are guaranteed by the driving sprocket dimensions, ensuring that the sprocket bore withstands the pressures caused by the contact with the locking assembly.

Calculation of the DC Drive

As already mentioned, the DC drives of the extraction system are used to perform the rotary motion of the retractable fingers. As such, the retractable finger when rotating around the axis of the DC drive works like the drive of an eccentric because of its geometry, causing the greater load on the DC drive whenever it is in the lower position and it is necessary to put it in the position higher (Figure 171). As such, it was necessary to determine the loads on the DC drive to choose the most suitable one.

Figure 171 - Representation of the retractable finger drive as the actuation of an eccentric.
The parameters used to determine the loads on the DC drive are represented in Table 63.

Table 63 - Parameters used to calculate the loads on the DC drive for the retractable finger.

Parameter	Value
Total Stroke of the Retractable Finger $\left(\Delta \varphi_{\text {total }}\right)$	$\pi / 2 \mathrm{rad}$
Retractable Finger Eccentric Distance (e)	$0,0225 \mathrm{~m}$
Time for Total Stroke of the Retractable Finger (t $\left.\mathrm{t}_{\text {potal }}\right)$	1 s
Acceleration Time (t_{a})	$0,3 \mathrm{~s}$
Deceleration Time	$0,3 \mathrm{~s}$
Stopped Time in each Cycle ($\mathrm{t}_{\text {stopped }}$)	2 s
Retractable Finger Mass (mfinger)	$0,12 \mathrm{~kg}$
Gravitational Acceleration (g)	$9,81 \mathrm{~m} / \mathrm{s}^{2}$
Load Efficiency (n_{L})	0,9
Maximum DC Drive Diameter for	
selection	

Figure 172 represents the positioning of the center of mass of the retractable finger with respect to its axis of rotation, in other words, it represents the positioning of the eccentric load relative to the axis of the DC drive, which is the essential dimension for performing the calculations.

Figure 172 - Positioning of the center of mass of the retractable finger with respect to its axis of rotation.
The first step in determining the DC drive loads was the graphical representation of its operating cycle (Figure 173), in other words, from the time it accelerates to the point where it remains stopped to start a new cycle. Note that one cycle corresponds to the four sections shown in the chart: acceleration (section 1), constant speed (section 2), deceleration (section 3) and stop (section 4).

Figure 173-Graphical representation of the operating cycle of the DC drive.
This calculation was based on the equations and procedures of the "Formulae Handbook" from Maxon Motor, a manufacturer of DC drives [134].

Equation 41, Equation 42 and Equation 43 were used to determine, respectively, the maximum angular velocity, the maximum rotation speed and the angular acceleration, which are essential values for the DC drive selection.

$$
\omega_{\max }=\frac{\Delta \varphi_{2}}{\mathrm{t}_{2}}
$$

Where:
$\omega_{\text {max }}$ - Maximum angular speed (rad/s);
$\Delta \boldsymbol{\varphi}_{\mathbf{2}}$ - Stroke of the retractable finger in section 2 (rad);
\mathbf{t}_{2} - Cycle time in section 2 (s).

$$
n_{\max }=\frac{30}{\pi} \cdot \omega_{\max }
$$

Where:
$\mathbf{n}_{\text {max }}$ - Maximum rotation speed (rpm).

$$
\alpha=\frac{\Delta \varphi_{2}}{\mathrm{t}_{a}}
$$

Where:
$\boldsymbol{\alpha}$ - Angular acceleration (rad/s ${ }^{2}$).
The required torque on the DC drive was determined for each of the first three sections of the operating cycle shown in Figure 173 because the values are different for each section.

In section 1, Equation 44 and Equation 45 were used to determine the linear acceleration of the application and the torsional torque required to move the retractable finger (static and dynamic torque).

$$
a_{t 1}=\alpha \cdot e
$$

Where:

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{t} 1} \text { - Linear acceleration in section } 1\left(\mathrm{~m} / \mathrm{s}^{2}\right) . \\
& M_{t 1}=M_{\text {stat }}+M_{\text {dyn }} \Leftrightarrow M_{t 1}=m_{\text {finger }} \cdot g \cdot \frac{1}{\eta_{L}} \cdot e+m_{\text {finger }} \cdot a_{t 1} \cdot \frac{1}{\eta_{L}} \cdot e
\end{aligned}
$$

Where:
$\mathbf{M}_{\mathrm{t} 1}$ - Torsional torque in section $1(\mathrm{~N} \cdot \mathrm{~m})$.
In section 2, the speed is constant, so the acceleration is zero and, consequently, there is no dynamic torque. Equation 46 was used to determine the torsional torque required to move the retractable finger (static torque).

$$
M_{t 2}=M_{\text {stat }} \Leftrightarrow M_{t 2}=m_{\text {finger }} \cdot g \cdot \frac{1}{\eta_{L}} \cdot e
$$

Where:
$\mathbf{M}_{\mathrm{t} 2}$ - Torsional torque in section $2(\mathrm{~N} \cdot \mathrm{~m})$.

In section 3, the linear acceleration is equal to the acceleration in section 1 because the acceleration time is equal to the deceleration time. So, only the Equation 47 was used to determine the torsional torque required to move the retractable finger (static and dynamic torque).

$$
M_{t 3}=M_{\text {stat }}-M_{d y n} \Leftrightarrow M_{t 3}=m_{f \text { finger }} \cdot g \cdot \frac{1}{\eta_{L}} \cdot e-m_{\text {finger }} \cdot a_{t 3} \cdot \eta_{L} \cdot e
$$

Where:
$\mathbf{M}_{\mathbf{t 3}}$ - Torsional torque in section $3(\mathrm{~N} \cdot \mathrm{~m})$;
$a_{\text {t3 }}$ - Linear acceleration in section $3\left(\mathrm{~m} / \mathrm{s}^{2}\right)$.
The torsional torques of the three sections were calculated using the maximum cam distance as reference of the force acting arm. It was decided to perform the calculations in this way so as not to make them too complex and increase the margin of safety in the DC drive selection.

The DC drive was chosen according to the root mean square torque required for the application, so this variable was calculated through the Equation 48.

$$
M_{R M S}=\sqrt{\frac{M_{t 1}^{2} \cdot t_{1}+M_{t 2}^{2} \cdot t_{2}+M_{t 3}^{2} \cdot t_{3}}{t_{c y c l e}}}
$$

Where:
$\mathrm{M}_{\text {RMs }}$ - Root mean square torque ($\mathrm{N} \cdot \mathrm{m}$);
\mathbf{t}_{1} - Cycle time in section $1(\mathrm{~s})$;
\mathbf{t}_{3} - Cycle time in section $3(s)$;
$\mathrm{t}_{\text {cycle }}$ - Total cycle time (s).
The main results of the calculations of the DC drive loads for selection of a suitable model are represented in Table 64.

Table 64 - Results of the calculation of the DC drive loads for selection of the model to use.

$\underline{\text { Variable }}$	Result
Maximum Rotation Speed $\left(\mathbf{n}_{\max }\right)$	15 rpm
RMS Torque ($\mathbf{M}_{\text {RMS }}$)	$0,017 \mathrm{~N} \cdot \mathrm{~m}$

The DC drive was selected through the selection program from Maxon Motor website. The steps given in the program are indicated below [135]:

1) Indication of the main parameters of the application (Figure 174): maximum rotation speed, RMS torque and maximum drive diameter;

> Supply voltage
> Max. load speed
> rms load torque
> Max. diameter

24	V	\checkmark	Find solutions:
15	rpm	-	
0.017	Nm	-	with sensor
24	mm	\checkmark	

Figure 174 - Maxon Selection Program - Calculation of the DC Drive - Indication of the main parameters of the application.
2) Selection of one DC Drive among the recommended options (Figure 175).

Figure 175 - Maxon Selection Program - Calculation of the DC Drive - Selection of the DC drive.
As a conclusion, the selected DC drive that fits inside the movable extraction arm and can actuate the retractable finger was the Maxon GP 22 B + A-MAX 22 GB.

The DC drive is a direct choice as a result of the calculation, requiring no checking. As such, the chosen DC drive is indicated in Table 65.

Table 65 - Selected DC drive.

Variable	Result
Selected DC Drive	Maxon GP 22 B + A-MAX 22 GB

Calculation of the Retractable Finger (using FEA)

The retractable fingers on each of the movable extraction arms are used to push the housings into or out of the shuttle vehicle, so the driving force caused by the servo gearmotor is divided by each of the retractable fingers, creating two reaction forces in the contact surfaces with the carton being moved (Figure 176). As such, it was necessary to perform a calculation to verify that the retractable fingers are able to withstand this reaction force without deforming plastically.

Figure 176 - Reaction forces on the retractable fingers.
The parameters used perform the calculation are indicated in Table 66. Note that the calculation was made using the maximum chain tangential pulling force to consider the worst scenario for the retractable finger.

Table 66 - Parameters used to calculate the retractable finger.

Parameter	Value
Actuating Force on the Retractable	
Finger (equal to the Chain Tangential	
Pulling Force (Ftang))	200 N
Material of the Main Structure	Steel EN S235 JR

To determine the maximum stress and displacement of the retractable finger against the load to which it is subject, an FEA simulation was performed through the Simulation module of the CAD software Autodesk ${ }^{\circledR}$ Inventor ${ }^{\oplus}$. As such, the steps given in the software until reaching the results are indicated below:

1) In this case, pin constraints were applied in the radial directions of the retractable finger assembly holes (Figure 177), blocking the movement in the three possible directions;

Figure 177 - FEA simulation - Calculation of the Retractable Finger - Definition of the boundary conditions.
2) Definition of the applied loads. In this case, the retractable finger is subjected to the reaction force created when pulling the box into the shuttle vehicle (). The weight of the retractable finger is already included in the simulation and is not considered an external force;

Figure 178 - FEA simulation - Calculation of the Retractable Finger - Definition of the applied loads.
3) Mesh creation. Figure 179 shows the mesh aspect on the retractable finger surface and the number of nodes and elements that characterize it;

Figure 179 - FEA simulation - Calculation of the Retractable Finger - Mesh creation.
4) Obtaining the results of the simulation. Figure 180 shows the distribution of the Von Mises stresses across the surface of the analyzed part. Figure 181 shows the displacements suffered by the part.

Figure 180 - FEA simulation - Calculation of the Retractable Finger - Distribution of the Von Mises stresses.

Figure 181 - FEA simulation - Calculation of the Retractable Finger - Displacements on the part.
After obtaining the results, the safety factor between the yield strength of the material and the maximum Von Mises stress was calculated by Equation 40.

All the main results of the FEA simulation are summarized in Table 67.
Table 67 - Results of the FEA simulation of the retractable finger.

$\underline{\text { Variable }}$	Result
Maximum Von Mises Stress	$135,4 \mathrm{MPa}$
($\sigma_{\text {Von Mises,max }}$)	
Maximum Displacement	$0,15 \mathrm{~mm}$
Safety Factor (SF)	1,7

A safety factor of the of 1,7 ensures that there is no risk of failure of the retractable finger to the load conditions studied. In addition, the maximum displacement of the part is very close to 0 mm , ensuring that the part hardly deforms.

Calculation of the DC Drive Fixing Plate (using FEA)

As the retractable fingers are axially attached to the output shaft of the DC drive, when they must pull a box into or out of the shuttle vehicle, they are loaded from a counterreaction force (force used in the calculation of the retractable finger). The part that ensures that the retractable finger and the DC drive do not move axially is the DC drive fixing plate because it is blocked inside the movable stringer, suffering from that same reaction force through the DC Drive (Figure 182). It was then necessary to study the behavior of the plate when subjected to this type of load, calculating the maximum stress and displacement.

Figure 182 - Actuating force on the DC drive fixing plate.
The parameters used to perform the calculation are indicated in Table 68.
Table 68 - Parameters used to calculate the DC drive fixing plate.

Parameter	Value
Actuating Force on the DC Drive Fixing Plate (equal to the Actuating Force on the Retractable Finger)	200 N

Material of the DC Drive Fixing Plate
Steel EN S235 JR

To determine the maximum stress and displacement of the DC drive fixing plate against the load to which it is subject, an FEA simulation was performed through the Simulation module of the CAD software Autodesk ${ }^{\circledR}$ Inventor ${ }^{\circledR}$. As such, the steps given in the software until reaching the results are indicated below:

1) Definition of the boundary conditions. In this case, frictionless constraints were applied in the contact surfaces of the fixing plate with the movable stringer preventing the motion in the direction normal to that faces;

Figure 183 - FEA simulation - Calculation of the DC Drive Fixing Plate - Definition of the boundary conditions.
2) Definition of the applied loads. In this case, the fixing plate is loaded by the DC drive with a force equal to the actuating force on the retractable finger when pulling a box into the shuttle vehicle (Figure 184). The weight of the fixing plate is already included in the simulation and is not considered an external force;

Figure 184 - FEA simulation - Calculation of the DC Drive Fixing Plate - Definition of the applied loads.
3) Mesh creation. Figure 185 shows the mesh aspect on the DC drive fixing plate surface and the number of nodes and elements that characterize it;

Figure 185 - FEA simulation - Calculation of the DC Drive Fixing Plate - Mesh creation.
4) Obtaining the results of the simulation. Figure 186 shows the distribution of the Von Mises stresses across the surface of the analyzed part. Figure 187 shows the displacements suffered by the part.

Figure 186 - FEA simulation - Calculation of the DC Drive Fixing Plate - Distribution of the Von Mises stresses.

Figure 187 - FEA simulation - Calculation of the DC Drive Fixing Plate - Displacements on the part.
After obtaining the results, the safety factor between the yield strength of the material and the maximum Von Mises stress was calculated by Equation 40.

All the main results of the FEA simulation are summarized in Table 69.
Table 69 - Results of the FEA simulation of the DC drive fixing plate.

$\underline{\text { Variable }}$	$\underline{\text { Result }}$
Maximum Von Mises Stress	$77,4 \mathrm{MPa}$
($\sigma_{\text {von Mises,max }}$)	
Maximum Displacement	$0,01 \mathrm{~mm}$
Safety Factor (SF)	3,0

A safety factor of the of 3,0 ensures that there is no risk of failure of the DC drive fixing plate to the load conditions studied. In addition, the maximum displacement of the part is very close to 0 mm , ensuring that the part hardly deforms.

Calculation of the Stringers (using FEA)

The stringers that compose each of the extraction arms are subjected to the stresses caused by the activation of the rack that causes the movable stringer to slide over the fixed stringer. As such, it was necessary to study the behavior of the two stringers together when subjected to such efforts.

Basically, the movable stringer is driven through the rack, sliding on the fixed stringer, and the part that tries to prevent its movement, creating an opposite reaction force, is the DC drive fixing plate, as can be perceived by Figure 188.

Figure 188 - Actuating forces on the movable stringer.
The parameters used to calculate the stringers are given in Table 70. The weights were calculated by multiplying the masses of the respective components by the gravitational acceleration.

Table 70 - Parameters used to calculate the stringers.

Parameter	Value
Actuating Force on the Retractable Finger (equal to the Chain Tangential Pulling Force ($F_{\text {tang }}$)	200 N
Movable Extraction Arm Weight	80 N
Material of the Stringers	Aluminum
	6060

To determine the maximum stress and displacement of the stringers against the loads to which they are subject, an FEA simulation was performed through the Simulation module of the CAD software Autodesk ${ }^{\circledR}$ Inventor ${ }^{\circledR}$. As such, the steps that followed to the results are indicated below:

1) This is a model composed of more than one part, the first step was the indication of the types of contact between the parts that make up the model to be simulated. However, there is no bonded contacts between the two stringers because they are not fixed to each other. The movable stringer is only guided by the fixed stringer when moving longitudinally;
2) Definition of the boundary conditions (Figure 189). For the fixed stringer, a fixed constraint was applied on the clamping faces of the hammer nuts. For the movable stringer, a frictionless constraint was applied in the contact surface of the DC drive fixing plate with the movable stringer preventing the motion in the direction normal to that face;

Figure 189 - FEA simulation - Calculation of the Stringers - Definition of the boundary conditions.
3) Definition of the applied loads. In this case, the movable stringer is subjected to the weight of the movable extraction arm on the top face, and to the drive force caused by the connection with the driving rack (Figure 190). The weight of the stringers is already included in the simulation and is not considered an external force;

Figure 190 - FEA simulation - Calculation of the Stringers - Definition of the applied loads.
4) Mesh creation. Figure 191 shows the mesh aspect on the main structure surface and the number of nodes and elements that characterize it;

Figure 191 - FEA simulation - Calculation of the Stringers - Mesh creation.
5) Obtaining the results of the simulation. Figure 192 shows the distribution of the Von Mises stresses across the surface of the analyzed part. Figure 193 shows the displacements suffered by the part.

Figure 192 - FEA simulation - Calculation of the Stringers - Distribution of the Von Mises stresses.

Figure 193 - FEA simulation - Calculation of the Stringers - Displacements on the part.
After obtaining the results, the safety factor between the yield strength of the material and the maximum Von Mises stress was calculated by Equation 40.

All the main results of the FEA simulation are summarized in Table 71.
Table 71 - Results of the FEA simulation of the stringers.

$\underline{\text { Variable }}$	Result
Maximum Von Mises Stress	
($\sigma_{\text {von Mises,max) }}$	$3,0 \mathrm{MPa}$
Maximum Displacement	$0,001 \mathrm{~mm}$
Safety Factor (SF)	40
A safety factor of the main structure of 40,0 ensures that there is no risk of failure of the component to the load conditions studied, however it shows that the stringers are oversized for this application. The maximum displacement of the part is very close to 0 mm, ensuring that the parts hardly deform.	

Calculation of the Flange for the Servo Gearmotor (using FEA)

The flange for the servo gearmotor is one of the most important parts of the extraction system. It is responsible for making the connection between the servo gearmotor and the extraction system and housing one of the support bearings support of the driving shaft. As such, it is fundamentally subject to the output torque of the gearmotor and the radial load applied on the bearing. It was then necessary to check the flange behavior when subjected to these loading conditions.

The parameters used to calculate the flange are given in Table 72. The weights were calculated by multiplying the masses of the respective components by the gravitational acceleration.

Table 72 - Parameters used to calculate the flange for the servo gearmotor.

Parameter	Value
Maximum Servo Gearmotor Output Torque $\left.\left(\mathrm{M}_{\text {stat+dyn }}\right)\right)$	$15,15 \mathrm{~N} \cdot \mathrm{~m}$
Servo Gearmotor Weight	59 N
Radial Load on the Bearing	191 N
Flange Material	Aluminum
	5052

To determine the maximum stress and displacement of the flange against the loads to which they are subject, an FEA simulation was performed through the Simulation module of the CAD software Autodesk ${ }^{\circledR}$ Inventor ${ }^{\circledR}$. As such, the steps given in the software to reach the results are indicated below:

1) Since this is a model composed of more than one part, the first step was the indication of the types of contact between the parts that make up the model to be simulated. The principles that have been assumed were described before;
2) Definition of the boundary conditions (Figure 194). A fixed constraint was applied on the support plate of main structure of the extraction system, preventing the motion in the three possible directions. The rest of the parts are bonded to the support plate;

Figure 194 - FEA simulation - Calculation of the Flange for the Servo Gearmotor - Definition of the boundary conditions.
3) Definition of the applied loads (Figure 195). In this case, the flange is subjected to the weight and output torque of the servo gearmotor, and to the radial load on the bearing. The weight of the flange is already included in the simulation and is not considered an external force;

Figure 195 - FEA simulation - Calculation of the Flange for the Servo Gearmotor - Definition of the applied loads.
4) Mesh creation. shows the mesh aspect on the flange surface and the number of nodes and elements that characterize it;

Nodes:101262

Figure 196 - FEA simulation - Calculation of the Flange for the Servo Gearmotor - Mesh creation.
5) Obtaining the results of the simulation. Figure 197 shows the distribution of the Von Mises stresses across the surface of the analyzed part. Figure 198 shows the displacements suffered by the part.

Type: Von Mises Stress
Unit: MPa
2018-11-11, 13:42:10

Figure 197 - FEA simulation - Calculation of the Flange for the Servo Gearmotor - Distribution of the Von Mises stresses.

Type: Displacement
Unit: mm
2018-11-11, 13:43:47
$\left[\begin{array}{l}0,01001 \mathrm{Max} \\ 0,008 \\ 0,006 \\ 0,004 \\ 0,002 \\ 0 \mathrm{Min}\end{array}\right.$

Figure 198 - FEA simulation - Calculation of the Flange for the Servo Gearmotor - Displacements on the part.
After obtaining the results, the safety factor between the yield strength of the material and the maximum Von Mises stress was calculated by Equation 40.

All the main results of the FEA simulation are summarized in Table 73.
Table 73 - Results of the FEA simulation of the flange for the servo gearmotor.

$\underline{\text { Variable }}$	$\underline{\text { Result }}$
Maximum Von Mises Stress	$14,4 \mathrm{MPa}$
($\sigma_{\text {von Mises,max) }}$	$0,01 \mathrm{~mm}$
Maximum Displacement	13,4
Safety Factor (SF)	

A safety factor of the flange of 13,4 ensures that there is no risk of failure of the component to the load conditions studied, however it shows that the flange is oversized for this application. In addition, the maximum displacement of the part is very close to 0 mm , ensuring that the part hardly deform.

Calculation of the Main Structure (using FEA)

To study the behavior of the shuttle vehicle main structure when subjected to the weight of all subsystems and the output torque of the servo gearmotor, in other words, when the extraction system is operating, it was necessary to carry out a structural calculation.

The parameters required to calculate the main structure are given in Table 74. Note that the calculation was done using the maximum servo gearmotor output torque to increase the level of safety of the results. The weights were calculated by multiplying the masses of the respective components by the gravitational acceleration.

Table 74 - Parameters used to calculate the main structure when the extraction system is operating.

Parameter	Value
Maximum Servo Gearmotor Output Torque (Mstat+dyn)	$15,15 \mathrm{~N} \cdot \mathrm{~m}$
Travelling Gearmotor Weight	270 N
Picking System Weight	216 N
Extraction System Weight	457 N
Boxes Weight	981 N
Material of the Main Structure	Steel EN S235 JR

To determine the maximum stress and displacement of the main structure against the load to which it is subject, an FEA simulation was performed through the Simulation module of the CAD software Autodesk ${ }^{\circledR}$ Inventor ${ }^{\circledR}$. As such, the steps that followed to the results are indicated below:

1) Since this is a model composed of more than one part, the first step was the indication of the types of contact between the parts that make up the model to be simulated. The principles that have been assumed were described before;
2) Definition of the boundary conditions. In this case, pin constraints were applied in the radial directions of the travelling wheel axles and in the holes for the fixing bolts to connect the forks of the guiding wheels (Figure 199), blocking the movement of the main structure in the three possible directions;

Figure 199 - FEA simulation - Calculation of the Main Structure when the Extraction System is Operating Definition of the boundary conditions.
3) Definition of the applied loads. In this case, the main structure is subjected to the travelling gearmotor weight, to the extraction system weight, to the servo gearmotor output torque, to the picking system weight and to the boxes weight
(Figure 200). The weight of the main structure is already included in the simulation and is not considered an external force;

Figure 200 - FEA simulation - Calculation of the Main Structure when the Extraction System is Operating - Definition of the applied loads.
4) Mesh creation. Figure 201 shows the mesh aspect on the main structure surface and the number of nodes and elements that characterize it;

Figure 201 - FEA simulation - Calculation of the Main Structure when the Extraction System is Operating - Mesh creation.
5) Obtaining the results of the simulation. shows the distribution of the Von Mises stresses across the surface of the analyzed part. shows the displacements suffered by the part.

Figure 202 - FEA simulation - Calculation of the Main Structure when the Extraction System is Operating Distribution of the Von Mises stresses.

Figure 203 - FEA simulation - Calculation of the Main Structure when the Extraction System is Operating Displacements on the part.

After obtaining the results, the safety factor between the yield strength of the material and the maximum Von Mises stress was calculated by Equation 40.

All the main results of the FEA simulation are summarized in Table 75.
Table 75 - Results of the FEA simulation of the main structure when the extraction system is operating.g

Variable	Result
Maximum Von Mises Stress	$27,5 \mathrm{MPa}$
($\sigma_{\text {Von Mises,max })}$	

Variable	Result
Maximum Displacement	$0,07 \mathrm{~mm}$
Safety Factor (SF)	8,5

A safety factor of the main structure of 8,5 ensures that there is no risk of failure of the component to the load conditions studied. In addition, the maximum stress occurs only in a small area of the structure not as strong as the rest of the part where the Von Mises stresses are below 10 MPa . This means that the main structure is oversized to the load conditions caused by the extraction system operation.

The maximum displacement of the part is very close to 0 mm , ensuring that the part hardly deforms.

3.4.9.3 CALCULATIONS IN THE PICKING SYSTEM

For the picking system, the following calculations were performed:

1) Configuration of the robot;
2) Selection of the electromechanical gripper;
3) Calculation of the shuttle vehicle main structure (using FEA)

Configuration of the Robot (using FEA)

The robot selected for the picking system was a robot from the robolink-type D range of Igus. As already mentioned, it is a low-cost solution where it is possible to quickly configure the entire robotic arm according to the needs (using an online configurator from Igus).

To configure the robot, the parameters indicated Table 76 were used.
Table 76 - Parameters used to configure the robot.

Parameter	Value
Minimum Reach	1020 mm
Minimum Load Capacity	1 kg
Number of Robot Axes	4

Figure 204 represents the final specifications of the robot after configuration, which highlights the fact that the desired minimum reach has been reached together with the desired load capacity [136].

Figure 204 - Configuration of the robolink-type D from igus [136].
The result of the configuration of the robot produced a robolink of Igus with the following reference: Robolink RL-D-RBT-5532-BC. Figure 205 represents the list of components that make up the configured robolink-type D according to the intended specifications.

Joints

Part No.	Qty	Description
RL-D-50-102-48-01035	1 x	Asymmetrical high-end RL-D 50 joint
RL-D-50-101-48-01033	1 x	Symmetrical high-end RL-D 50 joint
RL-D-30-101-50-01000	1 x	Symmetrical RL-D 30 joint
RL-D-20-101-38-01000	1 x	Symmetrical RL-D 20 joint

Motor kits

Part No.	Qty	Description
RL-D-50-MK-C-N23XL-02	2 x	NEMA 23XL
RL-D-30-MK-C-N23-02	1 x	NEMA 23
RL-D-20-MK-C-N17-02	1 x	NEMA 17

INI kits

Part No.	Qty	Description
RL-D-50-IK-001	2 x	INI kit for RL-D 50 joint
RL-D-30-IK-001	1 x	INI kit for RL-D 30 joint
RL-D-20-IK-001	1 x	INI kit for RL-D 20 joint
Other		
Part No.	Qty	Description
RL-DC-BL-50-BX-AA-02	1 x	Mounting box for RL-D 50 base joint
RL-DC-50-50-T-AB	1 x	Connection element 50-50
RL-DC-50-30-AA	1 x	Connection element 50-30
RL-DC-30-20-AA	1 x	Connection element 30-20
RL-DC-20-GRI-90-01-NA	1 x	igus © end effector adapter 20-4

Figure 205 - List of components that make up the configured robolink-type D.

Selection of the Electromechanical Gripper

The gripper was a direct choice in Schunk's product catalog for mounting on the Igus robot and handling small products. The parameters used to make your selection are indicated in Table 77.

Table 77 - Parameters used to select the gripper.

Parameter	Value
Type of Drive	Electromechanical
Number of Jaws	2
Minimum Load Capacity	1 kg

The gripper chosen was Schunk's EGP 50-N-N-B and is shown in Figure 206 [137].

Figure 206 - Selected gripper from Schunk and the main technical data. Adapted from [137].

Calculation of the Main Structure (using FEA)

To study the behavior of the shuttle vehicle main structure when subjected to the weight of all subsystems and the output torque of the robot base joints, in other words, when the picking system is operating, it was necessary to carry out a structural calculation.

The parameters required to calculate the main structure are given in Table 78. Note that the calculation was done using the maximum output torque of the robot base joints to increase the level of safety of the results. The weights were calculated by multiplying the masses of the respective components by the gravitational acceleration.

Table 78 - Parameters used to calculate the main structure when the picking system is operating.

Parameter	Value
Maximum Output Torque of the Robot Base Joints (drive NEMA23XL)	$38 \mathrm{~N} \cdot \mathrm{~m}$
Travelling Gearmotor Weight	270 N
Picking System Weight	216 N
Extraction System Weight	457 N
Boxes Weight	981 N
Material of the Main Structure	Steel EN S235 JR

To determine the maximum stress and displacement of the main structure against the load to which it is subject, an FEA simulation was performed through the Simulation module of the CAD software Autodesk ${ }^{\circledR}$ Inventor ${ }^{\circledR}$. As such, the steps that followed to the results are indicated below:

1) Since this is a model composed of more than one part, the first step was the indication of the types of contacts between the parts that make up the model to be simulated. The principles that have been assumed were described before;
2) Definition of the boundary conditions. In this case, pin constraints were applied in the radial directions of the travelling wheel axles and in the holes for the fixing bolts to connect the forks of the guiding wheels (Figure 207), blocking the movement of the main structure in the three possible directions;

Figure 207 - FEA simulation - Calculation of the Main Structure when the Picking System is Operating - Definition of the boundary conditions.
3) Definition of the applied loads. In this case, the main structure is subjected to the travelling gearmotor weight, the extraction system weight, the boxes weight, the picking system weight and the boxes weight (Figure 208). The weight of the
main structure is already included in the simulation and is not considered an external force;

Figure 208 - FEA simulation - Calculation of the Main Structure when the Picking System is Operating - Definition of the applied loads.
4) Mesh creation. Figure 209 shows the mesh aspect on the main structure surface and the number of nodes and elements that characterize it;

Figure 209 - FEA simulation - Calculation of the Main Structure when the Picking System is Operating - Mesh creation.
5) Obtaining the results of the simulation. shows the distribution of the Von Mises stresses across the surface of the analyzed part. shows the displacements suffered by the part.

Figure 210 - FEA simulation - Calculation of the Main Structure when the Picking System is Operating - Distribution of the Von Mises stresses.

Figure 211 - FEA simulation - Calculation of the Main Structure when the Picking System is Operating Displacements on the part.

After obtaining the results, the safety factor between the yield strength of the material and the maximum Von Mises stress was calculated by Equation 40.

All of the main results of the FEA simulation are summarized in Table 79.
Table 79 - Results of the FEA simulation of the main structure when the picking system is operating.

Variable	Result
Maximum Von Mises Stress $\left(\sigma_{\text {Von Mises,max })}\right.$	$77,1 \mathrm{MPa}$
Maximum Displacement	$0,25 \mathrm{~mm}$
Safety Factor (SF)	3,0

A safety factor of the main structure of 3,0 ensures that there is no risk of failure of the component to the load conditions studied. In addition, the maximum stress occurs only in a small area of the structure not as strong as the rest of the part where the Von Mises stresses are below 15 MPa .

The maximum displacement of the part is very close to 0 mm , ensuring that the part hardly deforms.

3.4.10 FINAL TECHNICAL SPECIFICATIONS

Table 80 represents the final technical specifications after the mechanical design of the shuttle vehicle, where all technical specifications were defined and updated in relation to the preliminary ones. As such, some technical specifications that were not defined previously were added, such as the powers of the gearmotors or the mass of the shuttle vehicle, and some values that were adjusted during the calculations of the equipment such as the travelling acceleration or the extraction acceleration were updated.

Table 80 - Final technical specifications for the shuttle vehicle.

Technical Specification	SI Unit	Value/Description
Shuttle Vehicle Mass	kg	300 kg
Load Type	-	Plastic Tote Box
Maximum Payload	mg	$600 \times 400 \times 200$
Robot Maximum Payload	kg	$100(50 \mathrm{~kg} / \mathrm{box})$
Maximum Vehicle Speed Loaded (Unloaded)	m / s	1
Number of Wheels (Unloaded)	$\mathrm{m} / \mathrm{s}^{2}$	$3,0(3,0)$
Pivoting Wheels (Yes/No)	-	$1,5(1,5)$
Travelling Gearmotor	-	Standard AC Helical Gearmotor
(SEW Type R)		

Extraction System Gearmotor	-	Standard AC Helical Servo Gearmotor (SEW Type R)
Expandable Transport Platform (Yes/No)	-	No
Picking System	-	Four-Axis Robot with Electromechanical Gripper
Temperature Range	${ }^{\circ} \mathrm{C}$	$0-40$
Position Control	-	Bar Code Positioning Device
Power Supply	-	Conductor Rail
Power Supply Voltage	V	230

3.4.11 DETAIL DRAWINGS

As already mentioned, the detail drawings are the communication documents that allow to manufacture the parts that constitute the machines and to make the assembly of all the equipment.

As such, all the detailed drawings related to the parts and assemblies of the shuttle vehicle were carried out in accordance with the technical drawing standards, respecting the general principles of representation applicable to technical drawings of mechanical engineering.

In general, the parts drawings have information about the manufacturing dimensions, the material and the finish, but all were made according to the assembly needs, having been placed all the dimensional, geometric and general tolerances that must be respected during the manufacturing process. The general tolerances are defined according to international standards, depend on the manufacturing process and must be applied to all dimensions without individual tolerance. In this work, the following standards were adopted for the general tolerances [138],[139]:

1) ISO 2768-1:1989 - General tolerances - Part 1: Tolerances for linear and angular dimensions without individual tolerance indications;
2) ISO 2768-1:1989 - General tolerances - Part 2: Geometrical tolerances for features without individual tolerance indications.

The assembly drawings have information about assembling the subassemblies that make up the entire shuttle vehicle, namely the parts lists with the quantities and designations of each part. The shuttle vehicle was divided into subassemblies to cause a rapid interpretation of the assembly drawings and assembly operations, avoiding the density of information in the assembly drawings. The main assembly drawing of the shuttle vehicle is shown in Figure 212 and Figure 213, where the general dimensions of
the machine were represented, and an exploded view of the whole assembly, respectively.

The assemblies, parts and standard components (or purchase items) were encoded according to Consoveyo, S.A. internal coding process. This coding allows the separation of manufacturing parts from standard components (such as screws and bearings) by accordance with the subsystem in which they are applied. As such, the assembly codes are all those that start with R1, the part codes are all those that start with R2, R3, R4 OR R5, and the codes of the standard components are all those that start with G or O .

Annex 2 lists all the assemblies and manufacturing parts from the shuttle vehicle, together with the respective subsystem where they are applied, the material, the manufacturing process, the finishing and the assembly where they are used.

Annex 4 lists the main standard components (excluding all types of fasteners) with the respective manufacturer and the assembly drawing where they are used.

Figure 212 - Main assembly drawing of the shuttle vehicle (sheet 1/2).

Figure 213 - Main assembly drawing of the shuttle vehicle (sheet 2/2).

CONCLUSIONS

4.1 CONCLUSIONS
4.2 PROPOSALS OF FUTURE WORKS

4 CONCLUSIONS AND PROPOSALS OF FUTURE WORKS

4.1 CONCLUSIONS

According to the result of the equipment developed, it is possible to conclude that the main objective of innovating the shuttle vehicle for the shuttle box $A S / R S$ has been completed. The idea of incorporating in the shuttle vehicle a picking system able to carry out the picking operations automatically and directly in the rack structure is, in fact, something innovative with the solutions existing in the market.

The developed shuttle vehicle is functional and capable of handling boxes with mass and defined dimensions, through the contribution of the following main subsystems that make up the equipment:

1) The travelling system allows to move the vehicle automatically along the rack structure;
2) The developed extraction system allows to extract and store the boxes of the rack structure automatically and accurately;
3) The picking system allows to perform the picking operations automatically and directly in the rack structure.

These three main subsystems, together with the defined sensors and control components, guarantee the main operations of the shuttle vehicle and thus the operation of the $\mathrm{AS} / \mathrm{RS}$ with the appropriate interfaces between the rack structure and the vehicle.

The critical parts and components of the shuttle vehicle were all checked and validated using appropriate calculations. The results of the calculations proved that many of these parts and components are oversized, something to be expected since the boxes to be handled have a relatively low mass. This ensures that the parts will not cause problems during the operation of the vehicle but, on the other hand, there is margin to optimize the developed parts.

At the end of the mechanical design, all the detail drawings necessary for manufacturing the parts and assemble the equipment were made. The drawings produced are an important technical document for understanding the operation of the machine and reading the present work.

After all, and since there is no perfect machine, the shuttle vehicle has some disadvantages. The main disadvantage is the fact that the picking system, despite introducing an innovation in the AS/RS, requires that the space of occupancy of the rack structure is poorly used, since it is necessary to have enough gap between the levels. As such, implementing such system implies having enough space available in the warehouse, being necessary to realize an investment analysis to study if it pays to invest
in the shuttle vehicle with the picking system incorporated or not. It will always depend on the type of warehouse and the type of products stored.

The main difficulties experienced during the execution of this work are related to the management of time and the management of all the interested parties. Being a work limited in time, the design of the machine could not be optimized much for lack of available time, so the obtained result can be quite optimized. Also, it was not easy to align everyone involved in the job, from the company to the engineering school.

With this work it was possible to develop mechanical engineering competences strongly related to the field of machine design.

4.2 PROPOSALS OF FUTURE WORKS

As a suggestion for future works that may arise from this dissertation, the following are proposed:

1) Development of an alternative picking system for the four-axis robot. Possibly a gantry system of three axes to reduce the space occupied by the shuttle vehicle inside the rack structure;
2) Development of an elevator to transfer the shuttle vehicle between levels of the rack structure;
3) Calculation of a complete rack structure, with rails incorporated for the shuttle vehicle.

REFERENCES AND OTHER

SOURCES OF INFORMATION

5 REFERENCES AND OTHER SOURCES OF INFORMATION

[1] S. A. Consoveyo, "Our Company," Consoveyo Website, 2017. [Online]. Available: https://www.consoveyo.com/en/consoveyo.html. [Accessed: 15-Jul-2018].
[2] M. Hugos, Essentials of Supply Chain Management. John Wiley \& Sons, Inc., 2003.
[3] G. Ghiani, G. Laporte, and R. Musmanno, Introduction to Logistics Systems Management. John Wiley \& Sons, Ltd, 2013.
[4] B. Benjabutr, "What is Logistics and Supply Chain Management Definition?," Supply Chain Opz, 2012. [Online]. Available: http://www.supplychainopz.com/2012/04/what-is-logistics-and-supply-chainmanagement.html. [Accessed: 28-Apr-2017].
[5] D. Bowersox, D. Closs, and M. Cooper, Supply Chain Logistics Management. McGraw-Hill, 2002.
[6] J. Moris, "What is Intralogistics?," Invata Intralogistics, 2013. [Online]. Available: http://www.invata.com/what-is-intralogistics/. [Accessed: 01-May-2017].
[7] "Intralogistics," Logistics Journal, 2011. [Online]. Available: https://www.logistics-journal.de/about/intralogistics.
[8] "IntralogistIQ," KOHL Solutions With Power. [Online]. Available: http://www.koehl-mb.eu/en/products/intralogistics/intralogistiq/. [Accessed: 09-May-2017].
[9] J. Bartholdi and S. Hackman, Warehouse \& Distribution Science - Release 0.97. The Supply Chain \& Logistics Institute - H. Milton Stewart School of Industrial and Systems Engineering - Georgia Institute of Technology, 2016.
[10] J. Cooke, "Intralogistics 4.0 Will See Robots Alongside Humans in the DC," Invata Intralogistics, 2017. [Online]. Available: http://www.invata.com/intralogistics-4-0-robots-in-the-dc/. [Accessed: 12-May-2017].
[11] "Man or machine? Robots on the rise," The Manufacturer, 2015. [Online]. Available: http://www.themanufacturer.com/articles/man-or-machine-robots-on-the-rise/. [Accessed: 12-May-2017].
[12] "Integrated Material Handling Systems," Material Handling Industry. [Online]. Available: http://www.mhi.org/fundamentals/integrated-material-handling.
[13] M. Wynne, "Would you Choose a Systems Integrator or an Original Equipment Manufacturer for Your Logistics System?," Bastian Solutions, 2012. [Online]. Available:
https://www.bastiansolutions.com/blog/index.php/2012/02/16/systems-integrator-or-original-equipment-manufacturer/\#.WSG-cNzOWA9.
[14] S. Hernandez, "What Does a Material Handling Systems Integrator Do and How Can It Benefit My Business?," Bastian Solutions, 2016. [Online]. Available: https://www.bastiansolutions.com/blog/index.php/2016/08/10/how-material-handling-systems-integrator-can-benefit-business/\#.WSG-dtzOWA9.
[15] Schaeffler Technical Pocket Guide STT. Schaeffler Technologies AG \& Co. KG, 2014.
[16] T. Gudehus and H. Kotzab, Comprehensive Logistics. Springer-Verlag Berlin Heidelberg, 2009.
[17] M. G. Kay, "Material Handling Equipment," Material Handling Equipment Taxonomy, 2012. [Online]. Available:
http://www4.ncsu.edu/~kay/Material_Handling_Equipment.pdf. [Accessed: 27-May-2017].
[18] "How to choose pallets in shipping: Plastic vs. Wooden?," Cargo From China Cargo From China, 2017. [Online]. Available:
https://cargofromchina.com/plastic-pallets-vs-wooden-pallets/. [Accessed: 27-May-2017].
[19] "Skids," Carolina Crate and Pallet., 2015. [Online]. Available:
http://www.carolinacrate.com/skids/. [Accessed: 27-May-2017].
[20] "SLIP / PUSH \& PULL SHEETS," Corner-Edge Products Ltd. [Online]. Available: https://corneredgeproducts.com/slip-push-pull-sheets/. [Accessed: 27-May2017].
[21] "ATTACHED LID CONTAINERS (ALC'S)," L.K. Goodwin Co. website. [Online]. Available:
http://www.lkgoodwin.com/more_info/attached_lid_containers/attached_lid_c ontainers.shtml. [Accessed: 27-May-2017].
[22] K. J. Roodbergen and I. F. A. Vis, "A survey of literature on automated storage and retrieval systems," Eur. J. Oper. Res., vol. 194, no. 2, pp. 343-362, 2009.
[23] "Automated Storage \& Retrieval Systems (AS/RS)," Bastian Solutions. [Online]. Available: https://www.bastiansolutions.com/solutions/technology/asrs. [Accessed: 23-May-2017].
[24] A. Jones, "Options Available with ASRS Technology," Bastian Solutions, 2010. [Online]. Available:
https://www.bastiansolutions.com/blog/index.php/2010/03/05/options-available-with-asrs-technology/\#.WUL3LtzOWA8. [Accessed: 10-Jun-2017].
[25] "Stacker Crane (Unit Load)," Kwangwon LNS Co., Ltd. [Online]. Available: http://www.gobizkorea.com/catalog/product_view.jsp?blogld=kwsteel\&objld=1 088149. [Accessed: 11-Jun-2017].
[26] "DAMBACH Unit Load AS/RS," Bastian Solutions. [Online]. Available: https://www.bastiansolutions.com/solutions/technology/asrs/dambach/unitload\#multi. [Accessed: 12-Jun-2017].
[27] "Stacker cranes for boxes," Mecalux, S.A. [Online]. Available: https://www.mecalux.com/automated-warehouses-for-boxes/stacker-cranes-for-boxes. [Accessed: 12-Jun-2017].
[28] "Pallet Shuttle," Mecalux, S.A. [Online]. Available:
https://www.mecalux.com/pallet-racks/pallet-shuttle. [Accessed: 13-Jun-2017].
[29] "Las nuevas baterías y supercondensadores para sistemas automáticos de manutención," Mecalux, S.A. [Online]. Available:
https://www.mecalux.com.ar/articulos-de-logistica/baterias-y-supercondensadores-en-sistemas-manutencion. [Accessed: 13-Jun-2017].
[30] "Dematic Multishuttle ${ }^{\circledR} 2$ - An In-depth and Independent Review from a Supply Chain Consultant," Dematic Global Website, 2013. [Online]. Available:
http://info.dematic.com/na-downloads?doc=NA_WP1022\&_ga=1.126416461.139305952.1492455652. [Accessed: 13-Oct-2016].
[31] "Dematic launches new logistics technologies and celebrates 111 years at CeMAT," Ferret.com.au, 2011. [Online]. Available:
http://www.ferret.com.au/c/dematic/dematic-launches-new-logistics-technologies-and-celebrates-111-years-at-cemat-n910917. [Accessed: 13-Jun2017].
[32] D. Blanchard, "ProMat 2015: Product Preview," Material Handling \& Logistics, 2015. [Online]. Available: http://mhlnews.com/facilities-management/promat-2015-product-preview\#slide-0-field_images-171021. [Accessed: 13-Jun-2017].
[33] "Horizontal Carousels Automated Storage and Retrieval System (ASRS)," Integrated Systems Design. [Online]. Available: http://www.isddd.com/content/horizontal-carousels-automated-storage-and-retrieval-system-asrs. [Accessed: 13-Jun-2017].
[34] "SCHAEFER Carousel System," SSI Schaefer Systems International, Inc. [Online]. Available: http://www.ssi-schaefer.us/automated-systems/systems-products/storage-retrieval-systems/schaefer-carousel-system.html. [Accessed: 14-Jun-2017].
[35] "About Schaefer Systems International, Inc.," Material Handling Industry. [Online]. Available: http://www.mhi.org/members/14783. [Accessed: 14-Jun2017].
[36] "Automated Storage and Retrieval Systems," Integrated Systems Design. [Online]. Available: http://www.isddd.com/storage-retrieval-systems. [Accessed: 14-Jun-2017].
[37] "Vertical Lift Modules - the Ultimate Storage Solution," Outsource Equipment. [Online]. Available: http://www.osequip.com/products/vertical-lift-modules-the-ultimate-storage-solution/. [Accessed: 14-Jun-2017].
[38] A. Trusty, "Material Handling in a Conveyor World," Bastian Solutions, 2014. [Online]. Available:
https://www.bastiansolutions.com/blog/index.php/2014/02/13/choosing-the-right-conveyors-for-your-system/\#.WXOAjIGQyA9. [Accessed: 19-Jun-2017].
[39] "Gravity Roller Conveyor," Titan Conveyors. [Online]. Available: http://www.titanconveyors.com/products/gravity-roller/model-413-gravity-roller-conveyor. [Accessed: 19-Jun-2017].
[40] "Belt Driven, Live Roller Conveyors," EMI Corporation. [Online]. Available: http://www.emicorp.com/conveyor/roller-belt-driven.php. [Accessed: 19-Jun2017].
[41] "PA1500: Tiltable conveyors," MH Modules. [Online]. Available: http://www.mhmodules.com/pa1500-tiltable-conveyors/?lang=en. [Accessed: 19-Jun-2017].
[42] "Medium Duty Slider Bed Belt Conveyor," Automated Conveyor Systems, Inc. [Online]. Available: http://www.automatedconveyors.com/horizontal-powered/model-Ipb. [Accessed: 19-Jun-2017].
[43] "Beltless Magnetic Conveyors," Livonia Magnetics Company, Inc. [Online]. Available: http://www.livoniamagnetics.com/beltless_magnetic_conveyors.htm. [Accessed: 19-Jun-2017].
[44] "Conveyors \& Sorters," Interroll. [Online]. Available: https://www.interroll.com/industry-solutions/courier-express-parcel/conveyors-sorters/. [Accessed: 19-Jun-2017].
[45] "Pillar jib crane LS," ABUS Crane Systems Ltd. [Online]. Available: http://www.abuscranes.co.uk/cranes-hoists/jib-cranes/pillar-jib-crane-Is. [Accessed: 25-Jun-2017].
[46] "Bridge Crane = Overhead Crane = Overhead Bridge Crane," Dearborn Overhead Crane. [Online]. Available: http://dearborncrane.com/blog/bridge-crane-overhead-crane-overhead-bridge-crane/. [Accessed: 25-Jun-2017].
[47] "Lightweight mobile gantry," ABUS Crane Systems Ltd. [Online]. Available: http://www.abuscranes.co.uk/cranes-hoists/lightweight-mobile-gantry. [Accessed: 25-Jun-2017].
[48] "Lift Trucks," Material Handling Industry. [Online]. Available:
http://www.mhi.org/fundamentals/lift-trucks. [Accessed: 25-Jun-2017].
[49] "Beverages Truck," LKE Gesellschaft für Logistik. [Online]. Available: http://Ike-distributionslogistik.com/en/products/herkulex-hand-trucks/beverages-truck/sk250-0102.html. [Accessed: 26-Jun-2017].
[50] "Hand Pallet Jack," Toyota Material handling USA. [Online]. Available: https://www.toyotaforklift.com/forklifts/hand-pallet-jack\#overview. [Accessed: 26-Jun-2017].
[51] "Industrial Walkie Stacker," Toyota Material handling USA. [Online]. Available: https://www.toyotaforklift.com/forklifts/industrial-walkie-stacker. [Accessed: 26-Jun-2017].
[52] "End-Controlled Rider Pallet Jack," Toyota Material handling USA. [Online]. Available: https://www.toyotaforklift.com/forklifts/end-controlled-rider-palletjack. [Accessed: 26-Jun-2017].
[53] "Powered Platform Truck," Lift Mate. [Online]. Available: https://www.liftmate.co.uk/pc40-powered-platform-truck. [Accessed: 26-Jun2017].
[54] "Forklifts," Crown Equipment Corporation. [Online]. Available: http://www.crown.com/en-us/forklifts.html. [Accessed: 26-Jun-2017].
[55] "Rail-guided vehicle system 'Sorting Transfer Vehicle," Daifuku Co., Ltd. [Online]. Available: https://www.daifukulogisticssolutions.com/en/product/vehicle/stv.html. [Accessed: 01-Jul-2017].
[56] "What is an Automated Guided Vehicle?," Rocla OY. [Online]. Available: http://www.rocla-agv.com/en/agv-products-and-services/agv-philosophy. [Accessed: 01-Jul-2017].
[57] "RGV (Rail Guided Vehicle)," Shin-Heung Machine Co., Ltd. [Online]. Available: https://smck.en.ec21.com/RGV_Rail_Guided_Vehicle--3756831_3757228.html. [Accessed: 01-Jul-2017].
[58] "EMS(Electric Monorail System)," SMCore Inc. [Online]. Available: http://www.smck.com/factory_automation/ems_view.php\#. [Accessed: 01-Jul2017].
[59] "Straddle AGV," Rocla OY. [Online]. Available: http://www.rocla-agv.com/en/products/straddle-agv. [Accessed: 01-Jul-2017].
[60] "Scissor Lift Tables," EdmoLift AB. [Online]. Available: http://www.edmolift.com/enGB/scissor_lift_table/low_profile_lift_table/TCL_1000B/do.aspx\#.WXTG1VGQzD e. [Accessed: 04-Jul-2017].
[61] "Pallet Transfering," WTT-Fördertechnik GmbH. [Online]. Available: http://www.wtt-foerdertechnik.de/produkte_en/conveyor-components-for-pallets-and-crates-pallet-transfering.php. [Accessed: 04-Jul-2017].
[62] "Pallet Turning," WTT-Fördertechnik GmbH. [Online]. Available: http://www.wtt-foerdertechnik.de/produkte_en/conveyor-components-for-pallets-and-crates-pallet-turning.php. [Accessed: 04-Jul-2017].
[63] "Tilt Tables," Uni-Craft Corp. [Online]. Available: http://uni-craftcorp.com/products/tilt-tables/tilt-tables/. [Accessed: 04-Jul-2017].
[64] T. Bonkenburg, "Robotics in Logistics," DHL Customer Solutions \& Innovation, 2016. [Online]. Available: http://www.dhl.com/content/dam/downloads/g0/about_us/logistics_insights/d hl_trendreport_robotics.pdf. [Accessed: 09-Jul-2017].
[65] M. Soares, "Desenvolvimento de Sistemas Automáticos de Alimentação e Descarga de Injectora de Plásticos," Instituto Supeior de Engenharia do Porto, 2015.
[66] "KUKA Robots," Active8 Robots. [Online]. Available:
https://www.active8robots.com/robots/kuka-robots/. [Accessed: 09-Jul-2017].
[67] "Industrial Robotics," Bastian Solutions. [Online]. Available: https://www.bastiansolutions.com/solutions/technology/industrial-robotics. [Accessed: 09-Jul-2017].
[68] K. Ruehrdanz, "Goods To Person Order Fulfillment," Dematic Global Website. [Online]. Available: https://www.logisticsonline.com/doc/goods-to-person-order-fulfillment-0001q. [Accessed: 10-Jul-2017].
[69] "PickCenter ONE," TGW Logistics Group GmbH. [Online]. Available: http://login.tgw-group.com/br-en/services-solutions/order-fulfillment/order-picking-solutions/pickcenter-one/. [Accessed: 10-Jul-2017].
[70] "PickCenter MULTI," TGW Logistics Group GmbH. [Online]. Available: http://login.tgw-group.com/br-en/services-solutions/order-fulfillment/order-picking-solutions/pickcenter-multi/. [Accessed: 10-Jul-2017].
[71] S. Nof, Handbook of Automation. Springer-Verlag Berlin Heidelberg, 2009.
[72] K. Stouffer, J. Falco, and K. Scarfone, "Guide to Industrial Control Systems (ICS) Security," National Institute of Standards and Technology. 2013.
[73] W. Bolton, Programmable Logic Controllers. Elsevier, 2009.
[74] "Sensor Solutions for Material Handling," Pepperl+Fuchs. [Online]. Available: https://files.pepperl-
fuchs.com/webcat/navi/productInfo/doct/tdoct0885d_eng.pdf?v=21-JUL-17. [Accessed: 07-Aug-2017].
[75] "Smart Solutions for Intralogistics," Leuze electronic. [Online]. Available: http://www.leuze.com/media/assets/dv007_144dpi_geschuetzt_pdf/SEG_Indus try_Information_intra-logistics_en_144dpi.pdf. [Accessed: 07-Aug-2017].
[76] J. Wilson, Sensor Technology Handbook. Elsevier, 2005.
[77] "Chave de fim de curso - 3SE5," Siemens AG. [Online]. Available: http://w3.siemens.com.br/automation/br/pt/seguranca-de-maquinas/fim-decurso/3se5/Pages/3se5.aspx?istablet=true. [Accessed: 13-Aug-2017].
[78] "The Basics of How An Encoder Works," Clearwater Tech. [Online]. Available: http://www.clrwtr.com/How-Encoder-Works.htm. [Accessed: 29-Sep-2017].
[79] "Recommendations for implementing the strategic initiative INDUSTRIE 4.0," acatech - National Academy of Science and Engineering, 2013. [Online]. Available:
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/A catech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report_Indus trie_4.0_accessible.pdf. [Accessed: 24-Jul-2017].
[80] "Barcode Languages," Bar Code Graphics Inc. [Online]. Available: https://www.barcode.graphics/general-barcode-questions/. [Accessed: 29-Sep2017].
[81] "DataMatrix (2D) Barcode Symbologies - UID/UII," Roemer Industries. [Online]. Available: http://www.roemerind.com/datamatrix-2d-barcode-uid-uii/. [Accessed: 29-Sep-2017].
[82] "Radio Frequency Tags \& Readers," Enthentica, Inc. [Online]. Available: http://www.enthentica.com/rfid-tags/. [Accessed: 29-Sep-2017].
[83] "Efficient solutions for Warehouse and Distribution," Sick. [Online]. Available: https://www.sick.com/media/docs/7/87/187/Industry_guide_Efficient_solution s_for_Warehouse_and_Distribution_en_IM0058187.PDF. [Accessed: 07-Aug2017].
[84] W. Araújo, "Otimização de Processo Semiautomático de Fabrico de Componentes para Automóveis," Instituto Superior de Engenharia do Porto, 2014.
[85] P. Santos, "Projeto mecânico de equipamento para fabrico automatizado de vestuário," Instituto Superior de Engenharia do Porto, 2015.
[86] "Hydraulic Pumps," Northern Tool + Equipment. [Online]. Available: https://www.northerntool.com/shop/tools/category_hydraulics+hydraulicpumps. [Accessed: 05-Oct-2017].
[87] "ATOS DKE Solenoid Directional Valves," Parker Hydraulics. [Online]. Available: http://www.parkerhydraulics.co.uk/hydraulics/atos-valves/atos-dke-valves/. [Accessed: 05-Oct-2017].
[88] "Hydraulic Cylinders," Bailey International. [Online]. Available: http://www.baileyhydraulics.com/hydraulic-cylinders. [Accessed: 05-Oct-2017].
[89] "DEWALT 4.5-Gallon Portable Electric Hot Dog Air Compressor," Lowe's. [Online]. Available: https://www.lowes.com/pd/DEWALT-4-5-Gallon-Portable-Electric-Hot-Dog-Air-Compressor/1000092699. [Accessed: 08-Oct-2017].
[90] "Festo Solenoid Valves," Parker Hydraulics. [Online]. Available: http://www.parkerhydraulics.co.uk/pneumatics/festo-solenoid-valves/. [Accessed: 08-Oct-2017].
[91] "Our Products," S\&A Manufacturing Ltd. [Online]. Available:
http://www.samanufacturing.co.uk/our-services/. [Accessed: 08-Oct-2017].
[92] "Multiconductor," Akapp-Stemmann bv. [Online]. Available:
https://akapp.com/multiconductor/?lang=en. [Accessed: 08-Oct-2017].
[93] "Reconditioned / Used Forklift Batteries," Storage Battery Systems, LLC. [Online]. Available: http://www.sbsbattery.com/products-services/by-product/used-equipment/material-handling-equipment.html. [Accessed: 08-Oct-2017].
[94] "Drive Systems," DOGA S.A. [Online]. Available: http://www.doga.es/index.php/en/publicaciones/catalogos. [Accessed: 08-Oct2017].
[95] "SEW Eurodrive Motors," Clearwater Tech. [Online]. Available:
http://www.clrwtr.com/SEW-Eurodrive-Motors.htm. [Accessed: 08-Oct-2017].
[96] "DC Motors Industry," DOGA S.A. [Online]. Available:
http://www.doga.es/index.php/en/product/d-c-motors/industry. [Accessed: 08-Oct-2017].
[97] "SEW Gearboxes Repair," Motor and Gear Engineering, Inc. [Online]. Available: http://www.motorgearengineer.com/product/sew-gearboxes-repair/. [Accessed: 08-Oct-2017].
[98] R. Budynas and J. Nisbett, Shigley's Mechanical Engineering Design, 9th ed. McGraw-Hill, 2011.
[99] R. Campilho, Método de Elementos Finitos - Ferramentas para Análise Estrutural, 1st ed. Publindústria, 2012.
[100] "Finite element analysis of ram anchor and pin," Coupland Bell Ltd. [Online]. Available: http://www.couplandbell.com/study29ramanchor.htm. [Accessed: 05-Nov-2017].
[101] "Finite Element Analysis," Designs Lab Engineering Solutions. [Online]. Available: http://www.designslabs.com/finite-element-analysis.html. [Accessed: 05-Nov2017].
[102] S. Morais, Desenho Técnico Básico 3, 24th ed. Porto Editora, Lda., 2007.
[103] C. Simmons and D. Maguire, Manual of Engineering Drawing, 2nd ed. Elsevier, 2004.
[104] M. Costa, "Optimização do processo de fabrico de componentes para a indústria automóvel," Instituto Superior de Engenharia do Porto, 2014.
[105] "About FEM," FEM Copyright. [Online]. Available: http://www.femeur.com/about/. [Accessed: 22-Oct-2017].
[106] The European Parliament and the Council of the European Union, "Directive 2006/42/EC of the European Parliament and of the Council of 17 May 2006 on machinery, and amending Directive 95/16/EC (recast)," Off. J. Eur. Union, no. L 157, pp. 24-86, 2006.
[107] "Basic explanation of safety standards," IEC, 2015. [Online]. Available: https://blog.iec.ch/2015/02/basic-explanation-of-safety-standards/. [Accessed: 23-Oct-2017].
[108] G. Horgan, "Machinery Safety - Determining Your Essential Health and Safety Strategy," Chris Mee Group, 2016. [Online]. Available:
http://www.cmse.ie/blog/machinery-safety-determining-your-essential-health-and-safety-strategy/. [Accessed: 23-Oct-2017].
[109] The European Parliament and the Council of the European Union, "Directive No. 2009/104/EC, of 16 September 2009, concerning the minimum safety and health requirements for the use of work equipment by workers at work," Off. J. Eur. Union, no. L 260, pp. 5-19, 2009.
[110] "Maintainance of Stacker Crane and Conveyor System," Ultralift Mechanical Handling, 2013. [Online]. Available: http://ultralift-
$\mathrm{mh} . c o \mathrm{~m} / \mathrm{projects} /$ maintainance-of-stacker-crane-and-conveyor-system/. [Accessed: 23-Oct-2017].
[111] "Technical Guidance," FEM Copyright. [Online]. Available: http://www.fem-eur.com/publications/technical-guidance/. [Accessed: 24-Oct-2017].
[112] "YLOG-Shuttle - Think different," KNAPP Industry Solutions GmbH, 2015. [Online]. Available:
http://www.ylog.at/en/systemloesungenareferenzen/systemloesungen/ylogshu ttle. [Accessed: 25-Apr-2017].
[113] "ADAPTO," 2017 Vanderlande Industries B.V. - All rights reserved. [Online]. Available: https://www.vanderlande.com/warehouse-automation/innovative-systems/storage-asrs/adapto. [Accessed: 25-Apr-2017].
[114] "The Perfect Pick ${ }^{\text {TM }}$ Solution," OPEX Corporation Website. [Online]. Available: https://www.opex.com/assets/documents/perfect-pick-specs.pdf. [Accessed: 25-Apr-2017].
[115] S. Yamashita, "Transferring shuttle for three dimensional automated warehouse," 2011.
[116] P. J. Hortig, S. M. DeMan, S. Yamashita, L. Hallberg, and C. Hummel, "Shuttle for automated warehouse," 2012.
[117] "Picking," KNAPP AG Website. [Online]. Available:
https://www.knapp.com/en/solutions/technologies/picking/. [Accessed: 30-Apr-2017].
[118] "Consumer Goods Sector - NESTLE, CHAMPION and NB Record Over 1,000 PE Ratio," InvestAdvocate, 2016. [Online]. Available:
http://investadvocate.com.ng/2016/12/27/consumer-goods-sector-nestle-champion-nb-record-1000-pe-ratio/. [Accessed: 05-May-2017].
[119] "FEM 9.311 - Rules for the Design of Storage and Retrieval Machines Structures," Fédération Européenne de la Manutention (FEM), pp. 1-3, 1978.
[120] "Helical gearmotors," SEW-Eurodrive Website. [Online]. Available: https://www.seweurodrive.nl/products/gearmotors/standard_gearmotors/helical_gearmotors_r dr/helical_gearmotors_rdr.html. [Accessed: 15-Jul-2018].
[121] "Project Planning of Drives," SEW-Eurodrive Website, 2001. [Online]. Available: https://download.sew-eurodrive.com/download/pdf/10522913.pdf. [Accessed: 20-Dec-2017].
[122] "Wheels and Castors," Brauer Website. [Online]. Available: https://www.brauer.co.uk/files/downloads/2_wheels and castors catalogue.pdf. [Accessed: 20-Dec-2017].
[123] "S235JR," OVAKO. [Online]. Available: https://steelnavigator.ovako.com/steelgrades/s235/pdf?variantIDs=701. [Accessed: 15-Aug-2018].
[124] "C45," OVAKO. [Online]. Available: https://steelnavigator.ovako.com/steelgrades/c45/pdf?variantIDs=465. [Accessed: 15-Aug-2018].
[125] "Aluminum 5052-H32," MatWeb. [Online]. Available: http://www.matweb.com/search/datasheet_print.aspx?matguid=96d768abc51 e4157a1b8f95856c49028. [Accessed: 15-Aug-2018].
[126] "Aluminium Alloy 6060-T5 Extrusions," Aalco. [Online]. Available:
http://www.aalco.co.uk/datasheets/Aalco-Metals-Ltd_Aluminium-Alloy-6060-T5--Extrusions_144.pdf.ashx. [Accessed: 15-Aug-2018].
[127] "SEW-Workbench 2.25." SEW-Eurodrive GmbH \& Co KG.
[128] "MITCalc 1.7." MITCalc, 2003.
[129] "RAY25-XL Housing units," Schaeffler Website. [Online]. Available: https://medias.schaeffler.com/medias/en!hp.ec.br.pr/RAY*RAY25XL;bJdMQEjHFjb4. [Accessed: 01-Oct-2018].
[130] "IWIS Chain Engineering 5.0.1." IWIS.
[131] "Rexnord Tollok Locking Assemblies," Rexnord Website. [Online]. Available: https://www.rexnord.com/contentitems/techlibrary/documents/pt2001_catalog. [Accessed: 16-Mar-2018].
[132] "Mass without force, horizontal," Weforma Website. [Online]. Available: http://www.weforma.com/puffer/eingabe.php?flash=1\&fallid=2. [Accessed: 18-Aug-2018].
[133] "2204-2RS-TVH Self-aligning ball bearings," Schaeffler Website. [Online]. Available: https://medias.schaeffler.com/medias/pt!hp.ec.br.pr/22..-2RS*2204-2RS-TVH;br1OtsBMnfy9?lang=en. [Accessed: 20-Aug-2018].
[134] J. Braun, "Formulae Handbook," Maxon Motor Website. [Online]. Available: http://storkdrives.com/wp-content/uploads/2013/10/1-Formelsamling.pdf. [Accessed: 20-May-2018].
[135] "Maxon Selection Program," Maxon Motor Website. [Online]. Available: https://www.maxonmotor.com/maxon/view/msp/. [Accessed: 10-Sep-2018].
[136] "Robolink® Designer," Igus Website. [Online]. Available: https://robolinkdesigner.igus.tools/construction. [Accessed: 31-May-2018].
[137] "EGP 50-N-N-B," SCHUNK Website. [Online]. Available: https://schunk.com/br_en/gripping-systems/product/39759-0310960-egp-50-n-n-b/. [Accessed: 20-May-2018].
[138] "ISO 2768-1:1989 (EN) - General tolerances - Part 1: Tolerances for linear and angular dimensions without individual tolerance indications," International Organization for Standardization (ISO), 1989.
[139] "ISO 2768-1:1989 (EN) - General tolerances - Part 2: Geometrical tolerances for features without individual tolerance indications," International Organization for Standardization (ISO), 1989.

ANNEXES

6 ANNEXES

All the following annexes are available in digital format on a DVD that accompanies this work. The annexes are subdivided into the following sections:

- Annex 1 - Preliminary Calculations;
- Annex 2 - List of Parts and Assemblies;
- Annex 3 - Detail Drawings;
- Annex 4 - List of Standard Components;
- Annex 5 - Standard Components Data Sheets;
- Annex 6 - Electrical Equipment Data Sheets;
- Annex 7 - Final Calculations.

ANNEX 1

Preliminary Calculations

CONSOVEYO $\left.\right|_{\text {Subject }} ^{\text {Assio }}$ Master's Thesis - Preliminary Calculation of Reactions in the кobasa sourroms Vehicle supports and stability Check

| Design calculations |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Referincia |
| Reference |

\sum Mstabilising $=\min \left(R_{A, \text { stat }} ; R_{B, \text { stat }}\right) \cdot 930 \Leftrightarrow$ M M stabilising $=725 \cdot 930 \Leftrightarrow$
$\Leftrightarrow \sum M$ stabilising $=674250 \mathrm{~N} \cdot \mathrm{~mm}$
Calculation of the Dynamic Reactions (Vehicle Unloaded):
v) The results of the reactions are different according to the direction of the movement, however, the calculation is made for the worst scenario in terms of the stability of the vehicle, which is when it moves from left to right according bo the body diagram of the vehicle.
vi) In this case there is no oscillation effect of the robot, so $s_{w}=1$ (FEM 9.311)
 vii) Consider the scenario where the venice is initiating the movement (travelling acceleration) and the scenario in which the whicle brakes $\frac{(\text { emergency }}{\text { brake acceleration). }}$ The brake acceleration was determined in the document "Preliminary Calculation of the Travelling Gearmotor".
\rightarrow Travelling Acceleration:

$\Leftrightarrow\left\{\begin{array}{l}R_{A, d g_{n}}+R_{B, d y_{n}}-m_{\text {robot }} \cdot g-m_{\text {vehicle }} \cdot g=0\end{array}\right.$
$B_{B, d_{\mathrm{g}}} \cdot 930+m_{\text {robot }} \cdot g \cdot 35+m_{\text {robot }} \cdot a_{\text {travelling }} \cdot 650-m_{\text {vehicle }} \cdot g \cdot 465+m_{\text {vehicle }} \cdot a_{\text {Gravelling }} \cdot 125=$

\rightarrow Travelling Acceleration:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \sum F y = 0 } \\
{ \Sigma M _ { A } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
R_{A}, d y_{n}=1613 \mathrm{~N}>0 \text { ok! } \\
R_{B, d y n}=1133 \mathrm{~N}>0 \quad 0 \mathrm{~N}!
\end{array}\right.\right. \\
& \sum M_{\text {overturning }}=76123 \mathrm{~N} \cdot \mathrm{~mm}
\end{aligned}
$$

Stability Check:

\rightarrow Vehicle Unloaded (travelling acceleration):

$$
v=\frac{\sum M_{\text {stabilising }}}{\sum M_{\text {overturning }}} \Leftrightarrow V=\frac{674250}{57375} \Leftrightarrow V=11,8>1,5 \text { ok! }
$$

\rightarrow Vehicle Unloaded (brake acceleration):

$$
V=\frac{\sum \text { Mstabilising }}{\sum \text { Moverburning }} \Leftrightarrow V=\frac{674250}{63112,5} \Leftrightarrow V=10,7>1,5 \text { ok! }
$$

$$
\rightarrow \text { Vehicle Loaded (travelling acceleration): }
$$

$$
V=\frac{\sum M_{\text {stabilising }}}{\sum M_{\text {overturning }}} \Leftrightarrow v=\frac{1129950}{76125} \Leftrightarrow v=14,8>1,5 \text { ok! }
$$

ANNEX 2

List of Parts and Assemblies

Drawing Number	Designation	Material	Manufacturing Processes	Surface Finishing	Shuttle Vehicle Subsystem	Where Used
R1-SV01001	Shuttle Vehicle Assembly	-	-	-	Shuttle Vehicle	-

Drawing Number	Designation	Material	Manufacturing Processes	Surface Finishing	Shuttle Vehicle Subsystem	Where Used
R3-SV02017	Brush Support	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Cutting, Bending, Welding and Drilling	$\begin{aligned} & \text { Zinc } \\ & \text { Coating } \end{aligned}$	Travelling System	R1-SV02005
R4-SV02010	Support Plate for Gearmotor	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Cutting, Drilling, Welding and Machining	Zinc Coating	Travelling System	R1-SV02002
R4-SV02016	Fork for Guiding Wheel	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Cutting, Bending, Drilling and Welding	RAL 1018	Travelling System	R1-SV02004
R5-SV02006	Spacing Washer with Key Slot	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Machining	Zinc Coating	Travelling System	R1-SV02002
R5-SV02007	Adjuster	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Machining	Zinc Coating	Travelling System	$\begin{aligned} & \text { R1-SV02002 } \\ & \text { R1-SV02004 } \end{aligned}$
R5-SV02008	Tightening Flange for Tollok	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Machining	Zinc Coating	Travelling System	R1-SV02002
R5-SV02009	Double Sprocket Z17 For Chain 08B-2	Steel EN C45	Machining	Black Oxide	Travelling System	R1-SV02002
R5-SV02011	Cover for Wheel	Steel EN S235 JR	Machining	Zinc Coating	Travelling System	$\begin{aligned} & \text { R1-SV02002 } \\ & \text { R1-SV02003 } \\ & \hline \end{aligned}$
R5-SV02012	Drive Shaft	$\begin{gathered} \text { Steel } \\ \text { EN C45 } \end{gathered}$	Machining	Black Oxide	Travelling System	R1-SV02002

Drawing Number	Designation	Material	Manufacturing Processes	Surface Finishing	Shuttle Vehicle Subsystem	Where Used
R5-SV02013-01	Bushing	Steel EN S235 JR	Machining	Zinc Coating	Travelling System	R1-SV02002 R1-SV02003
R5-SV02014	Driven Shaft	Steel EN C45	Machining	Black Oxide	Travelling System	R1-SV02003

Drawing Number	Designation	Material	Manufacturing Processes	Surface Finishing	Shuttle Vehicle Subsystem	Where Used
R2-SV03008	Plate With 6 Holes	Steel EN S235 JR	Cutting	Zinc Coating	Extraction System	R1-SV03001
R2-SV03013	Anti-Rotating Washer	Steel EN S235 JR	Cutting	Zinc Coating	Extraction System	R1-SV03010
R2-SV03026	Stringer Support Tube	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Cutting	Zinc Coating	Extraction System	R1-SV03003
R2-SV03038	Top Cover for Moving Stringers	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Cutting	Zinc Coating	Extraction System	$\begin{aligned} & \text { R1-SV03006 } \\ & \text { R1-SV03007 } \end{aligned}$
R2-SV03041	Stepping Motor Fixing Plate	Steel EN S235 JR	Cutting and Drilling	Zinc Coating	Extraction System	$\begin{aligned} & \text { R1-SV03006 } \\ & \text { R1-SV03007 } \end{aligned}$
R3-SV03031	Fixed Stopper	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Cutting, Bending and Welding	Zinc Coating	Extraction System	$\begin{aligned} & \text { R1-SV03004 } \\ & \text { R1-SV03005 } \end{aligned}$
R3-SV03033	Moving Stopper	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Cutting, Bending and Welding	Zinc Coating	Extraction System	$\begin{aligned} & \text { R1-SV03006 } \\ & \text { R1-SV03007 } \end{aligned}$
R5-SV03009	Pin with Two Threaded Holes	Steel EN S235 JR	Machining	Black Oxide	Extraction System	$\begin{aligned} & \text { R1-SV03002 } \\ & \text { R1-SV03003 } \end{aligned}$
R5-SV03011	Deviation Roller	Steel EN C45	Machining	Black Oxide	Extraction System	$\begin{aligned} & \text { R1-SV03010 } \\ & \text { R1-SV03021 } \end{aligned}$
R5-SV03012	Axle with Groove	Steel EN C45	Machining	Black Oxide	Extraction System	R1-SV03010
R5-SV03014	Bearing Housing	Aluminum 5052	Machining	Natural	Extraction System	R1-SV03002

Drawing Number	Designation	Material	Manufacturing Processes	Surface Finishing	Shuttle Vehicle Subsystem	Where Used
R5-SV03015	Flange for Servo Gearmotor	Aluminum 5052	Machining	Natural	Extraction System	R1-SV03002
R5-SV03016	Support Plate for The Drive Assembly	Aluminum 5052	Machining	RAL 7022	Extraction System	R1-SV03002
R5-SV03017	Support Plate for The Drive Assembly	$\begin{aligned} & \text { Aluminum } \\ & 5052 \end{aligned}$	Machining	RAL 7022	Extraction System	R1-SV03002
R5-SV03018	Drive Shaft	Steel EN C45	Machining	Black Oxide	Extraction System	R1-SV03002
R5-SV03019-01	Bushing with Flange	Steel EN S235 JR	Machining	Zinc Coating	Extraction System	R1-SV03002
R5-SV03019-02	Bushing with Flange	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Machining	Zinc Coating	Extraction System	R1-SV03021
R5-SV03020	Simple Sprocket Z25 for Chain 06B-1	Steel EN C45	Machining	Black Oxide	Extraction System	R1-SV03002
R5-SV03022-01	Bushing	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Machining	Zinc Coating	Extraction System	R1-SV03010
R5-SV03022-02	Bushing	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Machining	Zinc Coating	Extraction System	R1-SV03021
R5-SV03023	Chain Tensioner Fork	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Machining	Black Oxide	Extraction System	R1-SV03021
R5-SV03024	Chain Tensioner Pin	Steel EN S235 JR	Machining	Black Oxide	Extraction System	R1-SV03021

Drawing Number	Designation	Material	Manufacturing Processes	Surface Finishing	Shuttle Vehicle Subsystem	Where Used
R5-SV03025	Roller Axle	Steel EN C45	Machining	Black Oxide	Extraction System	R1-SV03021
R5-SV03027	Structure of Support of Arms	Aluminum 5052	Machining	RAL 7022	Extraction System	R1-SV03003
R5-SV03028	Support Middle Bock for The Chain	Aluminum 5052	Machining	Natural	Extraction System	R1-SV03003
R5-SV03029	Slider for Chain 06B-1	Plastic PEHD	Machining	Natural	Extraction System	R1-SV03003
R5-SV03030	Fixed Stringer (Right)	$\begin{gathered} \text { Aluminum } \\ 6060 \\ \hline \end{gathered}$	Machining	Natural	Extraction System	R1-SV03005
R5-SV03032	Fixed Stringer (Left)	Aluminum 6060	Machining	Natural	Extraction System	R1-SV03004
R5-SV03034	Rack for Chain 06B-1	Steel EN C45	Machining	Black Oxide	Extraction System	R1-SV03004 R1-SV03005
R5-SV03035-01	Slider in PEHD	Plastic PEHD	Extrusion and Cutting	Natural	Extraction System	$\begin{aligned} & \text { R1-SV03006 } \\ & \text { R1-SV03007 } \end{aligned}$
R5-SV03035-02	Slider in PEHD	Plastic PEHD	Extrusion and Cutting	Natural	Extraction System	$\begin{aligned} & \text { R1-SV03006 } \\ & \text { R1-SV03007 } \end{aligned}$
R5-SV03036	Moving Stringer (Left)	Aluminum 6060	Machining	Natural	Extraction System	R1-SV03006
R5-SV03037-01	Cover for Moving Stringer	Aluminum 5052	Machining	Natural	Extraction System	R1-SV03006

Drawing Number	Designation	Material	Manufacturing Processes	Surface Finishing	Shuttle Vehicle Subsystem	Where Used
R5-SV03037-02	Cover for Moving Stringer	Aluminum 5052	Machining	Natural	Extraction System	R1-SV03007

Drawing Number	Designation	Material	Manufacturing Processes	Surface Finishing	Shuttle Vehicle Subsystem	Where Used
R5-SV04004	Gripper Claw	Jaw from SCHUNK ABR-MPG- plus 50	Machining	Natural	Picking System	R1-SV04003
R1-SV05001	Braking Resistor Assembly	-	-	-	Electrical Equipment	R1-SV02001
R1-SV05002	Frequency Inverter Assembly	-	-	-	Electrical Equipment	R1-SV02001
R1-SV05003	Inductive Sensor Assembly	-	-	-	Electrical Equipment	R1-SV02001
R1-SV05004	Limit Switch Assembly	-	-	-	Electrical Equipment	R1-SV02001
R1-SV05005	Bar Code Positioning System Assembly	-	-	-	Electrical Equipment	R1-SV02001
R1-SV05010	Frequency Inverter Assembly	-	-	-	Electrical Equipment	R1-SV03001
R1-SV05011	Energy Chain Assembly	-	-	-	Electrical Equipment	R1-SV03001
R1-SV05012	Photoelectric Sensor Assembly	-	-	-	Electrical Equipment	R1-SV03001
R1-SV05014	Assembly of The Inductive Sensor Target	-	-	-	Electrical Equipment	R1-SV03001

Drawing Number	Designation	Material	Manufacturing Processes	Surface Finishing	Shuttle Vehicle Subsystem	Where Used
R1-SV05016	Laser Sensor Assembly	-	-	-	Electrical Equipment	R1-SV03001

Drawing Number	Designation	Material	Manufacturing Processes	Surface Finishing	Shuttle Vehicle Subsystem	Where Used
R1-SV05037	Wi-Fi Antenna Assembly	-	-	-	Electrical Equipment	R1-SV01001
R1-SV05039	Collector Assembly	-	-	-	Electrical Equipment	R1-SV01001
R1-SV05041	Bar Code Reader Assembly	-	-	-	Electrical Equipment	R1-SV01001
R2-SV05006-01	L-Shaped Rod D12	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Cutting and Bending	Zinc Coating	Electrical Equipment	R1-SV02005
R2-SV05006-02	L-Shaped Rod D12	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Cutting and Bending	$\begin{aligned} & \text { Zinc } \\ & \text { Coating } \end{aligned}$	Electrical Equipment	R1-SV05005 R1-SV05032 R1-SV05034 R1-SV05041
R2-SV05007	Bar Code Positioning System Support	$\begin{gathered} \hline \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Cutting and Bending	Zinc Coating	Electrical Equipment	R1-SV05005
R2-SV05008	Inductive Sensor Support	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Cutting and Bending	Zinc Coating	Electrical Equipment	R1-SV05003
R2-SV05009	Limit Switch Support	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Cutting and Bending	Zinc Coating	Electrical Equipment	R1-SV05004
R2-SV05013	Photoelectric Sensor Support	$\begin{gathered} \hline \text { Steel } \\ \text { EN S235 JR } \\ \hline \end{gathered}$	Cutting and Bending	Zinc Coating	Electrical Equipment	R1-SV05012
R2-SV05015	Inductive Sensor Target	$\begin{gathered} \text { Steel } \\ \text { EN S235 JR } \end{gathered}$	Cutting and Bending	Zinc Coating	Electrical Equipment	R1-SV05014

Drawing	Designation	Material	Manufacturing Processes	Surface Finishing	Shuttle Vehicle Subsystem	Where Used
R2-SV05017-01	Laser Sensor Support	Steel EN S235 JR	Cutting and Bending	Zinc Coating	Electrical Equipment	R1-SV05016
R2-SV05017-02	Laser Sensor Support	Steel EN S235 JR	Cutting and Bending	Zinc Coating	Electrical Equipment	R1-SV05018
R2-SV05020	Reflector Mirror Support	Steel EN S235 JR	Cutting and Bending	Zinc Coating	Electrical Equipment	R1-SV05019
R2-SV05022	Reflector Mirror Support	Steel EN S235 JR	Cutting and Bending	Zinc Coating	Electrical Equipment	R1-SV05021
R2-SV05025	Inductive Sensor Support	Steel EN S235 JR	Cutting and Bending	Zinc Coating	Electrical Equipment	R1-SV05024
R2-SV05028	Fixed Support for The					
Energy Chain	Steel EN S235 JR	Cutting and Bending	Zinc Coating	Electrical Equipment	R1-SV05011	
R2-SV05029	Moving Support for The	Steel Energy Chain	Cutting and EN S235 JR	Zinc Bending	Electrical Coating	R1-SVuipment

Drawing Number	Designation	Material	Manufacturing Processes	Surface Finishing	Shuttle Vehicle Subsystem	Where Used
R2-SV05038	Wi-Fi Antenna Support	Steel EN S235 JR	Cutting and Bending	Zinc Coating	Electrical Equipment	R1-SV05037
R2-SV05040	Collector Locking Plate	Steel EN S235 JR	Cutting, Bending and Welding	Zinc Coating	Electrical Equipment	R1-SV05039
R2-SV05042	Bar Code Reader Support	Steel EN S235 JR	Cutting and Bending	Zinc Coating	Electrical Equipment	R1-SV05041
R1-SV06001	Left Cover Assembly	-	-	-	Covers and Protections	R1-SV01001
R1-SV06002	Right Cover Assembly	-	-	Covers and Protections	R1-SV01001	
R2-SV06003	Left Cover	Steel EN S235 JR	Cutting and Bending	RAL 3020	Covers and Protections	R1-SV06001
R2-SV06004	Right Cover	Steel EN S235 JR	Cutting and Bending	RAL 3020	Covers and Protections	R1-SV06002
R2-SV06005	Right Cover	Steel EN S235 JR	Cutting and Bending	RAL 3020	Covers and Protections	R1-SV06002

ANNEX 3

Detail Drawings

ANNEX 4

List of Standard Components

Reference	Designation	Manufacturer	Shuttle Vehicle Subsystem	Where Used
G200-2204-2RS	Self-aligning Ball Bearing 2204-2RS	Schaeffler	Extraction System	R1-SV03002
G200-6000-2RS	Deep Groove Ball Bearings 6000-2RS	Schaeffler	Extraction System	$\begin{aligned} & \text { R1-SV03010 } \\ & \text { R1-SV03021 } \end{aligned}$
G204-025-48-01	Housing Unit RAY25-XL	Schaeffler	Travelling System	R1-SV02002 R1-SV02003
G212-01-02-125X40-SK1-BR-00	Polyurethane Wheel H125/40	Brauer	Travelling System	R1-SV02002 R1-SV02003
G212-01-02-75x35x12-BR-01	Polyurethane Wheel H75/35/BJM 12	Brauer	Travelling System	R1-SV02004
G603-MAX-GP22A-Amax22-0001	DC Drive $\begin{gathered} \text { GP } 22 \text { B (110355)+ A-max } 22 \text { GB } \\ (353019) \\ \hline \end{gathered}$	Maxon	Extraction System	$\begin{aligned} & \text { R1-SV03006 } \\ & \text { R1-SV03007 } \end{aligned}$
G603-SEW-R27-DRN90S4BE2-0000	Gearmotor R27 DRN90S4BE2/TF	SEW-Eurodrive	Travelling System	R1-SV02002
G603-SEW-RZ07-CMP40MBK-0000	Servo Gearmotor RZ07 CMP40M/BK/KY	SEW-Eurodrive	Extraction System	R1-SV03002
G606-03-01-050	Energy Chain 045.20.038.0-54 Links	Igus	Electrical Equipment	R1-SV05011
G607-RE-TL-08B2-17-01	Sprocket 08B-2 $\mathrm{Z17}$ for Taper Lock 1210	Fenner	Travelling System	R1-SV02002

Reference	Designation	Manufacturer	Shuttle Vehicle Subsystem	Where Used
G608-D8187-06B1-20-L=1095,4mm	Maintenance Free Roller Chain DIN 8187 06B-1 (115 Links)	Iwis	Extraction System	R1-SV03001
G608-D8187-06B1-21	Maintenance Free Roller Chain Connecting Link 06B-1	Iwis	Extraction System	R1-SV03001
G608-D8187-08B2-01-L=520,7mm	Maintenance Free Roller Chain DIN 8187 08B-2 (41 Links)	Iwis	Travelling System	R1-SV02002
G608-D8187-08B2-02	Maintenance Free Roller Chain Connecting Link 08B-2	Iwis	Travelling System	R1-SV02002
G609-31-1210-D25-CH8X7	Taper Lock Bushing 1210 D25-Keyway	Fenner	Travelling System	R1-SV02002
G610-08-D580-M10-Z	Lifting Eye Bolt DIN 580 M10	Elesa + Ganter	Shuttle Vehicle	R1-SV01001
G612-02-20X28-01	Locking Assembly TLK110 20x28	Rexnord	Extraction System	R1-SV03002
G612-02-25X30-01	Locking Assembly TLK300 25x30	Rexnord	Travelling System	R1-SV02002
G612-02-25X50-02	Locking Assembly TLK200 25x50	Rexnord	Travelling System	R1-SV02002 R1-SV02003
G703-D80x120-M12x35	PU Buffer D80x120-M12x35	Weforma	Travelling System	R1-SV02001
O11-050	Robolink RL-D-RBT-5532-BC	Igus	Picking System	R1-SV04002
O15-050	Gripper EGP 50-N-N-B	Schunk	Picking System	R1-SV04003

ANNEX 5

Standard Components Data

Sheets

Self-aligning ball bearings 2204-2RS-TVH (Series 22..-2RS)

 main dimensions to DIN 630, lip seals on both sidesThe datasheet is only an overview of dimensions and basic load ratings of the selected product. Please always observe all the guidelines in these overview pages. Further information is given on many products under the menu item "Description". You can also order comprehensive information via the Catalogue selection system
(https://www.schaeffler.de/content.schaeffler.de/en/news_media/index.jsp) or by telephone on +49 (91 32) 82-28 97.

d	20 mm
D	47 mm
B	18 mm
D2	41 mm
d2	$25,8 \mathrm{~mm}$
Da	$41,4 \mathrm{~mm}$
max	$25,6 \mathrm{~mm}$
da	
min	1 mm
ra	1 mm
max	$0,151 \mathrm{~kg}$ Mass
rmin	10100 N Basic dynamic load rating, radial
m	2600 N Basic static load rating, radial
Cr	161 N Fatigue limit load, radial
Cor	$94001 / \mathrm{min}$ Limiting speed
Cur	0,28
ng	2,24
e	3,46
Y1	2,34
Y2	
Yo	

Deep groove ball bearings 6000-2RSR (Series 60..-2RSR)

main dimensions to DIN 625-1, lip seals on both sides

The datasheet is only an overview of dimensions and basic load ratings of the selected product. Please always observe all the guidelines in these overview pages. Further information is given on many products under the menu item "Description". You can also order comprehensive information via the Catalogue selection system
(https://www.schaeffler.de/content.schaeffler.de/en/news_media/index.jsp) or by telephone on +49 (91 32) 82-28 97.

d	10 mm
D	26 mm
B	8 mm
d1	$14,7 \mathrm{~mm}$
D2	$22,5 \mathrm{~mm}$
Da	24 mm
max	12 mm
da	$0,3 \mathrm{~mm}$
min	$0,3 \mathrm{~mm}$
ra	$0,02 \mathrm{~kg}$ Mass
max	4850 N Basic dynamic load rating, radial
rmin	1970 N Basic static load rating, radial
m	100 N Fatigue limit load, radial
Cr	$183001 / \mathrm{min}$ Limiting speed
Cor	

/medias/en!hp.ec.br.pr//medias/en!hp.pv/2.82.108.26RAYGehäuseeinheiten

Housing units RAY25-XL (Series RAY)

three/four-bolt flanged housing units, sheet steel, grub screws in inner ring, P seals

The datasheet is only an overview of dimensions and basic load ratings of the selected product. Please always observe all the guidelines in these overview pages. Further information is given on many products under the menu item "Description". You can also order comprehensive information via the Catalogue ordering system
(https://www.schaeffler.de/content.schaeffler.de/en/news_media/index.jsp) or by telephone on +49 (91 32) 82-28 97.

d	25 mm	
H	95 mm	
B	27 mm	
A $8,7 \mathrm{~mm}$		
J 76 mm		
$\mathrm{N} \quad 8,7 \mathrm{~mm}$		
n 3 Number of screw holes		
S (2 mm		
U 21,5 mm		
$\checkmark 60 \mathrm{~mm}$		
m	0,34 kg	Mass
Cor	3650 N	Load carrying capacity of housing, radial
G		
Cr	14900 N Basic dynamic load rating, radial	
Cor	7800 N	Basic static load rating, radial
	FLAN52-MSB (2 X) Designation of housing	
	AY25-XL-NPP-B Designation of bearing	

Polyurethane Tyred Wheels

Drawings show grease nipple but standard wheels do not come with grease nipple unless specifically requested.

		FULL PART NUMBER FOR ORDERING				
		$\begin{gathered} \hline \text { Axle } \\ \varnothing \end{gathered}$	Plain Bore	Plain Bore Keywayed	Ball Bearing	Taper Roller Bearing
WHEEL TYPE: See table for full part number	$\|-40-1\|$	METRIC AXLE \varnothing -				
		12	H100/40/PBM 12	H100/40/KM 12	H100/40/BJM 12	
	8×8	20	H100/40/PBM 20	H100/40/KM 20	H100/40/BJM 20	
	$\downarrow \square$ NT	25	H100/40/PBM 25	H100/40/KM 25	H100/40/BJM 25	
		30	H100/40/PBM 30	H100/40/KM 30		
		35	H100/40/PBM 35	H100/40/KM 35		
Wheels fitted with ball journals are pre-lubricated, double shielded						
WHEEL TYPE: H100/100 See table for full part number	-lubricated, double shielded	METRIC AXLE Ø				
		20	N/A		H100/100/BJM 20	H100/100/TBM 20
		25	N/A		H100/100/BJM 25	H100/100/TBM 25
		30	N/A		H100/100/BJM 30	H100/100/TBM 30
Maximum load rating: 1100 Kg See page 22 for load factors Approximate weight: $\quad 5 \mathrm{Kg}$ Wheels fitted with ball journals are pre-lubricated, double shielded		35	N/A	H100/100/KM 35		
		LOAD LIIIITED BY BEARINGS TO: (1) 900Kg				
WHEEL TYPE: H125/30 See table for full part number		METRIC AXLE 0				
		20	H125/30/PBM 20	H125/30/KM 20	H125/30/BJM 20	
		25	H125/30/PBM 25	H125/30/KM 25	H125/30/BJM 25	
		30	H125/30/PBM 30	H125/30/KM 30		
Maximum load rating: 400 Kg See page 22 for load factors Approximate weight: 1.5 Kg		35	H125/30/PBM 35	H125/30/KM 35		
WHEEL TYPE: H125/45 See table for full part number		METRIC AXLE 0				
		25	H125/45/PBM 25	H125/45/KM 25	H125/45/BJM 25	
		30	H125/45/PBM 30	H125/45/KM 30		
		35	H125/45/PBM 35	H125/45/KM 35		
Maximum Ioad rating: 600 Kg See page 22 for load factors Approximate weight: $\quad \mathbf{2 K g}$						

BRAUER ${ }^{\text {® }}$
 Polyurethane Tyred Wheels

For technical information covering load factors, chemical resistance, inertial and rolling resistance, coefficients of friction between wheel and surface, and keyway dimensions, see "Design Data" Index on page 20.
Drawings show grease nipple but standard wheels do not come with grease nipple unless specifically requested.

Tyres can be produced with crown/dome treads to suit specific applications.
ALLOWABLE LOADS @ 6KPH

Brauer HEAVITHANETM Polyurethane is resilient, durable material, resistant to abrasion and to many common chemicals. Polyurethane tyred wheels are capable of carrying heavy loads and of transmitting driving forces.
MATERIAL: Wheel centre - cast iron to BS1452: 1977: Grade 200 or steel to BS970: Part 1: 1983: 080M40.
Tyre - Polyester based polymer of $92^{\circ} \pm 3^{\circ} \mathrm{A}$ Shore hardness.
OPERATING TEMPERATURE RANGE:
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(115^{\circ} \mathrm{C}\right.$ for limited use)
PLEASE SPECIFY IF OPERATING IN HIGH HUMIDITY.
Anti-hydrolysis polyurethane is recommended for use in an operating environment of high humidity.
Polyurethane to the above hardness used on these wheels is Vulkollan, a high quality material that provides superior performance in most applications.
Should the mechanical properties of standard Vulkollan be inappropriate for the application, alternative grades of Polyurethane can be produced to meet the requirements. Polyurethane can be bonded onto most metal centres including aluminium, titanium, stainless steel and various ferrous and non-ferrous alloys.

The 'maximum load rating' given for each wheel is for operation under ideal conditions. Load factors must be applied according to the anticipated working conditions - see 'Design Data’ para. 5.1.

For wheels of larger diameter or greater load capacity see the PH series on pages 78-81. Alternative bore/bearing diameters and alternative bearing types (i.e. bronze bushes, self-lubricating bushes, roller bearings, spherical roller bearings, etc.) are available to order - see page 26-27.

WHEEL TYPE: H75/35 See table for full part number	
Maximum load rating:	or keyway $=\boldsymbol{\varnothing} 40$ max .
300 Kg	
See page 22 for load factors	\pm
Approximate weight: 0.5Kg	
Wheels fitted with ball journals are pre	ubricated, double shielded

Planetary Gearhead GP 22 B $\varnothing 22 \mathrm{~mm}, 0.1-0.3 \mathrm{Nm}$

Technical Data

Planetary Gearhead
Housing
Output shaf
Output shaft steel Bearing at output stainless steel, hardened Radial play, 6 mm from flange max. 0.06 mm Axial play $0.02-0.10 \mathrm{~mm}$
Max. axial load (dynamic)
Max. axial load (dynamic)
Max. force for press fits
Max. force for press fits
Direction of rotation, drive to output
Max. continuous input speed
Recommended temperature range
Extended range as option
$-30 \ldots+100^{\circ} \mathrm{C}$
Number of stages
Max. radial load, 6 mm
from flange

Stock program		art Nu							
Special program (on request)		110355	110356	110357	118653	110358	134772	110359	134775
Gearhead Data									
1 Reduction		4.4:1	19:1	84:1	157:1	370:1	690:1	1621:1	3027:1
2 Absolute reduction		57/13	3249/169	185193/2197	19683/125	10556001/28561	1121931/1625	601692057/371293	$63950067 / 21125$
3 Max. motor shaft diameter	mm	2	2	2	1.5	2	2	2	2
Part Numbers		118651	134767	134768		134770	118654	134773	134776
1 Reduction		5.4:1	24:1	104:1		455:1	850:1	1996:1	3728:1
2 Absolute reduction		27/5	1539/65	87723/845		5000221/10985	$5^{531411 / 625}$	285012027/148805	30292137/8125
3 Max. motor shaft diameter	mm	1.5	2	2		2	1.5	2	2
Part Numbers			118652	134769		134771		134774	118655
1 Reduction			29:1	128:1		561:1		2458:1	4592:1
2 Absolute reduction			729/25	41553/325		2368521/4225		$135005697 / 54925$	14388907/3125
3 Max. motor shaft diameter	mm		1.5	2		2		2	1.5
4 Number of stages		1	2	3	3	4	4	5	5
5 Max. continuous torque	Nm	0.10	0.15	0.20	0.20	0.25	0.25	0.30	0.30
6 Max. intermittent torque at gear output	Nm	0.150	0.225	0.300	0.300	0.375	0.375	0.450	0.450
7 Max. efficiency	\%	90	81	73	73	65	65	59	59
8 Weight	g	39	48	57	57	65	65	73	73
9 Average backlash no load	。	1.4	1.6	2.0	2.0	2.4	2.4	3.0	3.0
10 Mass inertia	gcm^{2}	0.07	0.05	0.05	0.05	0.05	0.05	0.05	0.05
11 Gearhead length L1	mm	15.9	19.5	23.1	23.1	26.7	26.7	30.3	30.3

+ Motor	Page	+ Sensor/Brake	Page	Overall length [mm] = Motor length + gearhead length + (sensor/brake) + assembly parts							
A-max 22	147-150			47.9	51.5	55.1	55.1	58.7	58.7	62.3	62.3
A-max 22	148/150	MR	416/417	52.9	56.5	60.1	60.1	63.7	63.7	67.3	67.3
A-max 22	148/150	Enc 22	426	62.3	65.9	69.5	69.5	73.1	73.1	76.7	76.7
A-max 22	148/150	MEnc 13	407	55.0	58.6	62.2	62.2	65.8	65.8	69.4	69.4

\square
\square
\square
\square

Part Numbers		
$4.4: 1$	144137	$455: 1$
$5.4: 1$	144138	$561: 1$
$19: 1$	144139	$690: 1$
$24: 1$	144140	$850: 1$
$29: 1$	144141	$1621: 1$
$84: 1$	144142	$1996: 1$
$104: 1$	144143	$2458: 1$
$128: 1$	144144	$3027: 1$
$157: 1$	144145	$3728: 1$
$370: 1$	144146	$4592: 1$

[^1]

M 1:1

with cables 139840353017199807320206323856108828199424202921267433325492313302353019

Motor Data

Values at nominal voltage

1 Nominal voltage	V	6	9	9	12	12	15	18	24	24	36	48	48
2 No load speed	rpm	9240	9690	8500	10200	9170	10000	9770	10500	8480	9630	9110	8210
3 No load current	mA	83.1	57.9	49.6	45.8	40.5	36	29	23.7	18.4	14.2	9.99	8.84
4 Nominal speed	rpm	6240	6530	5350	7060	6000	6890	6600	7380	5270	6420	5840	4940
5 Nominal torque (max. continuous torque)	mNm	5.91	6.88	7.04	6.96	6.95	6.93	6.92	6.9	6.97	6.86	6.75	6.86
6 Nominal current (max. continuous current)	A	1.08	0.859	0.77	0.681	0.613	0.534	0.432	0.347	0.283	0.21	0.147	0.135
7 Stall torque	mNm	19.4	22.1	19.8	23.7	20.9	22.9	22	23.7	18.9	21.1	19.2	17.6
8 Stall current	A	3.29	2.59	2.04	2.17	1.72	1.65	1.29	1.12	0.721	0.606	0.393	0.325
9 Max. efficiency	\%	67	70	69	72	70	72	72	73	70	72	71	70
Characteristics													
10 Terminal resistance	Ω	1.82	3.48	4.42	5.53	6.96	9.09	14	21.5	33.3	59.4	122	148
11 Terminal inductance	mH	0.106	0.223	0.288	0.363	0.445	0.585	0.891	1.37	2.1	3.69	7.3	8.97
12 Torque constant	$\mathrm{mNm} / \mathrm{A}$	5.9	8.55	9.73	10.9	12.1	13.9	17.1	21.2	26.2	34.8	48.9	54.3
13 Speed constant	$\mathrm{rpm} / \mathrm{V}$	1620	1120	981	875	790	689	558	450	364	274	195	176
14 Speed/ torque gradient	$\mathrm{rpm} / \mathrm{mNm}$	500	454	446	444	455	452	457	456	461	468	487	479
15 Mechanical time constant	ms	20.9	20.2	20.1	19.9	19.9	19.9	19.7	19.7	19.8	19.7	19.9	19.8
16 Rotor inertia	$\mathrm{gcm}{ }^{2}$	4	4.25	4.3	4.29	4.19	4.2	4.13	4.13	4.09	4.02	3.9	3.94

Specifications

Thermal data

17 Thermal resistance housing-ambient 18 Thermal resistance winding-housing 19 Thermal time constant winding
20 Thermal time constant motor
21 Ambient temperature
22 Max. winding temperature
Mechanical data (sleeve bearings) 23 Max. speed
24 Axial play
25 Radial play
26 Max. axial load (dynamic)

- 0.15 mm

27 Max force for press fits (stax
28 Max. radial load, 5 mm from flange
Mechanical data (ball bearings)
23 Max. speed
24 Axial play
25 Radial play
26 Max. axial load (dynamic)
27 Max. force for press fits (static)
28 Max. radial load, 5 mm from flange

Other specifications

29 Number of pole pairs
30 Number of commutator segments
31 Weight of motor
Values listed in the table are nominal.
Explanation of the figures on page 64.

Option

Ball bearings in place of sleeve bearings
0.05-0.

0.025 mm Planetary Gearhead

$3.3 \mathrm{~N} \quad \varnothing 22 \mathrm{~mm}$
$45 \mathrm{~N} \quad 0.1-0.6 \mathrm{Nm}$
12.3 N Page 331/332 Planetary Gearhead $\varnothing 22$ mm
0.5-2.0 Nm

Page 333/335
54 g Spur Gearhead $\varnothing 24$ mm 0.1 Nm
0.1 Nm
Page 339

Screw Drive
Ø22 mm
Page 372/373

R27F..

$(\rightarrow$ 甼 155)	DR63..	DR71S	DR71M	DRN80M	DRN90S	DRN90L	DRN100LS	DRN100L
AC	132	139	139	156	179	179	197	197
AD	105	119	119	128	140	140	157	157
ADS	105	129	129	139	150	150	158	158
L	384	395	420	475	476	508	507	557
LS	439	463	488	556	570	602	601	651
LB	191	202	227	282	283	315	314	364
LBS	246	270	295	363	377	409	408	458

Catalog - DRN.. Gearmotors (IE3)

Helical gearmotors - \mathbf{R} gear units
R07-127..CMP.. selection tables and dimension sheets

010270007

E-Chain System ${ }^{\circledR}$ E-Z Chain Series E045/Z045

Price Index

Series E045

Special Features / Options

IPA Qualification Certificate Air Cleanliness Class ISO Class 2 (at $\mathrm{v}=3.28 \mathrm{ft} / \mathrm{s}$) upon request

Flammability Class VDE 0304 IIC UL94 V2

Special equipment: Electrically conductive ESD/ATEX version upon request

Assembly Tips

Just push the cables into the E-Chain using your thumb

Usage Guidelines

- If filling is required without opening and closing
- If a very small pitch is required
- If smooth operation is required
> Series 045 E2 Micro
- If high stability is required
> Series 06 E2 Micro
- If non-opening is required Series 045 E2 Micro

Features \& Benefits

(1) Limited torsion tolerance

2 Small pitch for low-noise and smooth operation
3 Cable friendly interior
4 Patented push button design holds the links together
5 Very easy to fill
6 Mounting brackets available
7 "E" Series features split crossbar along the outer radius
8 "Z" Series features split crossbar along the inner radius
9 1-, 2-, or 3-chamber system available

Order Example: Complete E-Chain ${ }^{\circledR}$
Please indicate chain length or number of links. Example:
3.28 ft (1 m) E045-16-038-0

1 Set 0450-16-12

3 E-Chain ${ }^{\circledR}$
D) Mounting Bracket

E-Chain System ${ }^{\circledR}$ E-Z Chain Series E045/Z045 Installation Dimensions

Short travel, unsupported length
$\mathrm{FL}_{\mathrm{B}}=$ unsupported with permitted sag

- $\mathrm{FL}_{\mathrm{G}}=$ unsupported with straight upper run Further information > Design, Chapter 1

Pitch per link: = .51" (13 mm)
Links per ft (m): = 23.47 (77)
For center mount applications: Chain length $=s / 2+K$

The required clearance height: $\boldsymbol{H}_{F}=\boldsymbol{H}+.39 \mathrm{in} .(10 \mathrm{~mm})($ with $.067 \mathrm{lbs} / \mathrm{ft}(0.1 \mathrm{~kg} / \mathrm{m})$ fill weight.
Please consult igus ${ }^{\circledR}$ if space is particularly restricted.

E045

Short Travels -

 UnsupportedUnsupported E-Chains® feature positive camber over short travels. This must be accounted for when specifying the clearance height. Please refer to Installation dimensions for further details.

Legend	
$\mathrm{S}=$	Length of travel
$\mathrm{R}=$	Bending radius
$\mathrm{H}=$	Nominal clearance
	height
$\mathrm{D}=$	Overlength E-Chain ${ }^{\text {® }}$
	radius in final position
$\mathrm{K}=$	$\pi \bullet R+$ safety buffer
$\mathrm{HF}=$	Required clearance
	height

R	$.71(018)$	$1.10(028)$	$1.50(038)$
H	$1.91(48.5)$	$2.70(68.5)$	$3.48(88.5)$
D	$1.73(44)$	$2.13(54)$	$2.52(64)$
K	$3.35(85)$	$4.53(115)$	$5.91(150)$

Speed / acceleration $F L_{G}$

Speed / acceleration $F L_{B}$
Material (E-Chain ${ }^{\circledR}$) - permitted temperature
Material (mounting brackets)* - permitted temperature
Flammability Class (E-Chain®), igumid NB
Flammability Class (mounting brackets), igumid G
max. $65.6 \mathrm{ft} / \mathrm{s}(20 \mathrm{~m} / \mathrm{s}) / \mathrm{max} .656 \mathrm{ft} / \mathrm{s}^{2}\left(200 \mathrm{~m} / \mathrm{s}^{2}\right)$ max. $9.84 \mathrm{ft} / \mathrm{s}(3 \mathrm{~m} / \mathrm{s}) / \mathrm{max} .19 .69 \mathrm{ft} / \mathrm{s}^{2}\left(6 \mathrm{~m} / \mathrm{s}^{2}\right)$ igumid NB $/-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$ up to $+176^{\circ} \mathrm{F}\left(+80^{\circ} \mathrm{C}\right)$ igumid $\mathrm{G} /-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$ up to $+248^{\circ} \mathrm{F}\left(+120^{\circ} \mathrm{C}\right)$ VDE 0304 IIC UL94 V2 VDE 0304 IIC UL94 HB

Technical Data

Details of material properties $>$ Chapter 1

E-Chain System ${ }^{\circledR}$ E-Z Chain

 Series E045/Z045Series E045-Split crossbar along the outer radius

$\begin{array}{ll}\text { Telephone } 1-800-521-2747 \\ \text { Fax } & 1-401-438-7270\end{array}$

Internet: http://www.igus.com
email: sales@igus.com
QuickSpec: http://www.igus.com/quickspec
2.17

Single Chamber System 2 Chamber System

Supplement part number with required radius. Example: E045-16-038-0
Pitch: . $51 \mathrm{in} .(13 \mathrm{~mm})$ per link links/ft $(\mathrm{m})=23 . .47(77)$

Part Number Structure

Crossbar Gap in. (mm)
Part Number
in. (mm)
Ba
in. (mm)

$$
\begin{array}{ll}
.63(16) & \approx 0.06(0.09) \\
.91(23) & \approx 0.07(0.11)
\end{array}
$$

E045-10-	-0*	. 39 (10)	. 63 (16)	≈ 0.06 (0.09)	. 08 (2)
E045-16-	-0	. 63 (16)	. 91 (23)	≈ 0.07 (0.11)	-
2 Chamber System					
E045-2/7-	-0*	.28/.28 (7/7)	. 91 (23)	≈ 0.09 (0.13)	. 09 (2.25)
E045-2/9-	-0*	. $35 / .35$ (9/9)	1.06 (27)	≈ 0.09 (0.14)	. 09 (2.25)

3 Chamber System				
E045-3/9-		-0*	.35/.35/.35 (9	
		Choo Radiu		
	$\sqrt{018}$		$\sqrt{\frac{1}{028}}$	
	. 71 (018)	1.10 (028)	1.50 (038)	
	1.91 (48.5)	2.70 (68.5)	3.48 (88.5)	
	1.73 (44)	2.13 (54)	2.52 (64)	
	3.35 (85)	4.53 (115)	5.91 (150)	

$0=$ Standard color black. For other colors see Chapter 1
*Please note: For this series the crossbars do not overlap. Please see table for gap amount.

E-Chain System ${ }^{\circledR}$ E-Z Chain Series E045/Z045

Series Z045-Split crossbar along the inner radius

Single Chamber System
2 Chamber System

Supplement part number with required radius. Example: Z045-16-038-0 Pitch: . $51 \mathrm{in} .(13 \mathrm{~mm})$ per link links/ft $(\mathrm{m})=23 . .47$ (77)

E-Chain System ${ }^{\circledR}$ E-Z Chain
 Series E045/Z045 Mounting Brackets

$\begin{array}{ll}\text { Telephone } & 1-800-521-2747 \\ \text { Fax } & 1-401-438-7270\end{array}$

Full set, for both ends: | $0450-10-12 \mid P Z$ |
| :--- | :--- | :--- |

Full set, each part with pin/bore + tiewrap plate Single-part order:

Moving end
$0450 \ldots 1(\mathrm{PZ})$
Fixed
$0450 \ldots 2(\mathrm{Pz})$

Possible installation configurations -

Part Number Structure

With tiewrap plates
Complete Set
Width

0450-10-1 1 | PZ
Mounting bracket with bore + tiewrap plate 0450-10-| 2 | PZ
Mounting bracket with pin + tiewrap plate

Additional Accessories

Quickfix - mounting bracket with dowel, upon request
Part No.
0450-16-12Q

Taper looke Sproakets

STEEL C45

CAST IRON GG22

TYPE 7
TYPE 8
TYPE 9

06B T/L SPROCKET $3 / 8^{\prime \prime}(9.5 \mathrm{~mm})$ PITCH
Tooth Width

Cooth	Width
B_{1}	5.3 mm
$\mathrm{~b}_{1}$	5.2 mm
$\mathrm{~B}_{2}$	15.4 mm
$\mathrm{~B}_{3}$	25.6 mm

No.of Teeth	Pitch Dia	Outer Dia	Dia Over Chain	Simplex Taper Lock						Duplex Taper Lock						Triplex Taper Lock					
				Product code	Designation	Bush No.	Type	Length Bore	$\begin{aligned} & \text { Hub } \\ & \text { Dia } \end{aligned}$	Product code	Designation	Bush No.	Type	Length Bore	$\begin{aligned} & \text { Hub } \\ & \text { Dia } \end{aligned}$	Product code	Designation	BushNo.	Type	Length Bore L (mm)	$\begin{gathered} \begin{array}{c} \text { Hub } \\ \text { Dia } \end{array} \\ \hline \begin{array}{c} \mathrm{N} \\ (\mathrm{~mm}) \end{array} \end{gathered}$
	$\begin{gathered} \mathrm{dp} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{de} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (\mathrm{~mm}) \end{gathered}$					$\stackrel{\mathrm{L}}{(\mathrm{~mm})}$	$\begin{array}{\|c\|} \hline \mathrm{N} \\ (\mathrm{~mm}) \end{array}$					$\underset{(\mathrm{mm})}{\mathrm{L}}$	$\begin{array}{\|c\|} \hline \mathrm{N} \\ (\mathrm{~mm}) \end{array}$						
17	51.84	56	60	026A0117	31-17	1008	1	22.2	45	026A0217	32-17	1008	2	22.2	45	026A0317	33-17	1008	5	25.6	
19	57.86	62	66	026A0119	31-19	1008	1	22.2	45	026A0219	32-19	1008	2	22.2	45	026A0319	33-19	1008	5	25.6	
20	60.89	64	68	026A0120	31-20	1008	1	22.2	46												
21	63.91	68	72	026A0121	31-21	1008	1	22.2	46	026A0221	32-21	1008	2	22.2	49	026A0321	33-21	1008	5	25.6	
23	69.95	74	78	026A0123	31-23	1210	1	25.4	63	026A0223	32-23	1210	2	25.4	59	026A0323	33-23	1210	5	25.6	
25	76.00	80	84	026A0125	31-25	1210	1	25.4	63	026A0225	32-25	1210	2	25.4	65	026A0325	33-25	1210	5	25.6	
27	82.05	86	90	026A0127	31-27	1210	1	25.4	63	026A0227	32-27	1210	2	25.4	70	026A0327	33-27	1210	5	25.6	
30	91.12	95	99	026A0130	31-30	1210	1	25.4	63	026A0230	32-30	1210	2	25.4	75	026A0330	33-30	1615	4	38.0	79
38	115.34	119	123	026A0138	31-38	1210	1	25.4	70	026A0238	32-38	1610	2	25.4	80	026A0338	33-38	1615	4	38.0	90
45	136.55	141	145	026A0145	31-45	1210	1	25.4	70	026A0245	32-45	1610	2	25.4	80						
57	172.90	177	181	026A0157	31-57	1210	6	25.4	83	026A0257	32-57	1610	7	25.4	80						
76	230.48	234	239	026A0176	31-76	1210	6	25.4	83	026A0276	32-76	1610	7	25.4	92						
95	288.08	292	296	026A0195	31-95	1210	6	25.4	83	026A0295	32-95	1610	7	25.4	92						

[^2]
Taper Iocko Sprockets

08B T/L SPROCKET 1/2" (12.7mm) PITCH

Tooth Width

B_{1}	7.2 mm
$\mathrm{~b}_{1}$	7.0 mm
$\mathrm{~B}_{2}$	21.0 mm
$\mathrm{~B}_{3}$	34.9 mm

No.of Teeth	Pitch Dia.	Outer Dia	Dia Over Chain	Simplex Taper Lock					
				Product code	Designation	Bush No.	Type	Length Bore L (mm)	$\begin{gathered} \begin{array}{c} \mathrm{Hub} \\ \text { Dia } \end{array} \\ \hline \begin{array}{c} \mathrm{N} \\ (\mathrm{~mm}) \end{array} \\ \hline \end{gathered}$
	$\underset{(\mathrm{mm})}{\mathrm{dp}}$	$\begin{gathered} \mathrm{de} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{A}}$						
15	61.09	66	73	02680115	41-15	1008	1	22.2	45
17	69.11	74	81	02680117	41-17	1210	1	25.4	60
19	77.17	82	89	02680119	41-19	1210	1	25.4	63
20	81.19	86	93	026B0120	41-20	1610	1	25.4	65
21	85.22	90	97	$026 \mathrm{B0121}$	41-21	1610	1	25.4	71
23	93.27	99	106	02680123	41-23	1610	1	25.4	76
25	101.32	106	113	$026 \mathrm{B0125}$	41-25	1610	1	25.4	76
27	109.40	114	121	$026 \mathrm{B0127}$	41-27	1610	1	25.4	76
30	121.50	126	133	026B0130	41-30	2012	1	32.0	90
38	153.80	159	166	026B0138	41-38	2012	1	32.0	90
45	182.07	188	195	026B0145	41-45	2012	1	32.0	100
57	230.53	236	243	02680157	41-57	2012	6	32.0	110
76	307.31	312	319	02680176	41-76	2012	6	32.0	110
95	384.10	389	396	026B0195	41-95	2012	6	32.0	110

Duplex Taper Lock					
Product code	Designation	$\begin{array}{\|l} \text { Bush } \\ \text { No. } \end{array}$	Type	Length Bore	Hub Dia
				$\underset{(\mathrm{mm})}{\mathrm{L}}$	$\underset{(\mathrm{mm})}{\mathrm{N}}$
02680215	42-15	1008	2	22.2	46
02680217	42-17	1210	2	25.4	56
02680219	42-19	1210	2	25.4	62
02680221	42-21	1610	2	25.4	70
02680223	42-23	1610	2	25.4	79
02680225	42-25	2012	2	32.0	87
02680227	42-27	2012	2	32.0	87
026B0230	42-30	2012	2	32.0	87
026B0238	42-38	2012	2	32.0	100
026B0245	42-45	2012	2	32.0	100
02680257	42-57	2012	7	32.0	110
02680276	42-76	2012	7	32.0	110
02680295	42-95	2012	7	32.0	110

Triplex Taper Lock					
				tength Bore	Hub Dia
				$\underset{(\mathrm{mm})}{\mathrm{L}}$	$\underset{(\mathrm{mm})}{\mathrm{N}}$
02680315	43-15	1008	5	34.9	
02680317	43-17	1210	5	34.9	
02680319	43-19	1210	5	34.9	
02680321	43-21	1610	5	34.9	
02680323	43-23	1610	5	34.9	
02680325	43-25	2012	5	34.9	
02680327	43-27	2012	5	34.9	
026B0330	43-30	2012	5	34.9	
026В0338	43-38	2012	5	34.9	

Taper Lock bushes supplied as a separate item

10B T/L SPROCKET $5 / \mathrm{B}^{*}$ (15.9 mm) PITCH
Tooth Width

B_{1}	9.1 mm
$\mathrm{~B}_{1}$	9.0 mm
$\mathrm{~B}_{2}$	25.5 mm
$\mathrm{~B}_{3}$	42.1 mm

No .of Teeth	Pitch	Outer Dia	Dia Over Chain	Simplex Taper Lock					
				Product code	Designation	$\begin{aligned} & \text { Bush } \\ & \text { No. } \end{aligned}$	Type	Length Bore	Hub Dia
	$\begin{gathered} \mathrm{dp} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{de} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathbf{A}^{\prime} \\ (\mathrm{mm}) \end{gathered}$					$\begin{gathered} \mathrm{L} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{N} \\ (\mathrm{~mm}) \end{gathered}$
13	66.34	73	81	$026 C 0113$	51-13	1008	1	22.2	47
15	76.35	83	91	$026 C 0115$	51-15	1210	1	25.4	60
17	86.39	93	101	$026 C 0117$	51-17	1210	1	25.4	71
19	96.44	103	111	$026 C 0119$	51-19	1610	1	25.4	75
20	101.49	108	116	$026 C 0120$	51-20	1610	1	25.4	76
21	106.50	114	122	026C0121	51-21	1610	1	25.4	76
23	116.59	124	132	$026 C 0123$	51-23	1610	1	25.4	76
25	126.67	134	142	$026 C 0125$	51-25	2012	1	32.0	90
27	136.75	144	152	$026 C 0127$	51-27	2012	1	32.0	90
30	151.87	159	167	026C0130	51-30	2012	1	32.0	90
38	192.23	200	208	026C0138	51-38	2012	1	32.0	100
45	227.58	235	243	$026 C 0145$	51-45	2012	6	32.0	100
57	288.19	296	304	$026 C 0157$	51-57	2012	6	32.0	110
76	384.15	392	400	$026 C 0176$	51-76	2012	6	32.0	110

$026 C 0315$	53-15	1210	5	42.1	
026 CO 317	53-17	1210	5	42.1	
$026 C 0319$	53-19	1615	5	42.1	
026 CO 221	53-21	1615	5	42.1	
026 CO 223	53-23	2012	5	42.1	
026 CO 325	53-25	2517	4	45.0	105
026 CO 227	53-27	2517	4	45.0	110
026Со330	53-30	2517	4	45.0	120

[^3]iwis Customer Service
CallBack © +49 2739 86-0 色-22
sales-wilnsdorf@iwis.com

MEGAlife wartungsfreie Rollenketten

MEGAlife maintenance-free roller chains

Kettentyp Chain type		Teilung Pitch	Lichte Weite Width between inner plates	Rollen- \varnothing Roller \varnothing	Bolzen- \varnothing Pin \varnothing	Bolzenlänge Pin length	Max. zusätzl. Länge für Verschlussglieder Max. add. length of connecting link	Innengliedbreite Total width inner link	Laschen- dicke Plate thickness	Laschenhöhe Height inner plate	Querteilung Traverse pitch	Min. Bruchkraft Min. tensile strength	Gewicht pro Meter Weight per meter	Gelenkfläche Bearing surface
		$\begin{gathered} \mathrm{p} \\ \mathrm{~mm} \end{gathered}$	b1 min. mm	d1 max. mm	$\underset{\mathrm{mm}}{\mathrm{~d} 2 \text { max. }}$	b4 max. mm	b7 max. mm	b2 max. mm	$\begin{gathered} \mathrm{Ti} / \mathrm{To} \\ \mathrm{~mm} \end{gathered}$	h2 max. mm	$\begin{gathered} \mathrm{pt} \\ \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \mathrm{FU} \\ & \mathrm{kN} \end{aligned}$	$\underset{\mathrm{kg} / \mathrm{m}}{\mathrm{q}}$	$\underset{\mathrm{cm}^{2}}{\mathrm{f}}$
BS - Simplex														
06B-1 ML ${ }^{1}$	G67 ML	9,525	5,72	6,35	3,31	12,9	3,3	8,53	1,30/1,30	8,26	-	8,9	0,41	0,28
08B-1 ML	L85 ML	12,7	7,75	8,51	4,45	16,9	3,9	11,3	1,60/1,60	11,81	-	17,8	0,69	0,5
10B-1 ML	M106 ML	15,875	9,65	10,16	5,08	19,5	4,1	13,28	1,70/1,70	14,73	-	22,2	0,93	0,67
12B-1 ML	M127 ML	19,05	11,68	12,07	5,72	22,7	4,6	15,62	1,85/1,85	16,13	-	28,9	1,15	0,89
16B-1 ML	M161 ML	25,4	17,02	15,88	8,28	36,1	5,4	25,45	4,15/3,10	21,08	-	60	2,71	2,1
20B-1 ML	M2012 ML	31,75	19,56	19,05	10,19	41,6	6,1	29,01	4,50/3,50	26,42	-	95	3,7	2,96
24B-1 ML		38,1	25,4	25,4	14,63	53,4	6,6	37,92	6,00/4,80	33,4	-	160	7,1	5,54
BS - Duplex														
06B-2 ML ${ }^{1}$	D67 ML	9,525	5,72	6,35	3,28	23,4	3,3	8,53	1,30/1,30	8,26	10,24	10,24	0,77	0,56
08B-2 ML	D85 ML	12,7	7,75	8,51	4,45	30,8	3,9	11,3	1,60/1,60	11,81	13,92	13,92	1,34	1,01
10B-2 ML	D106 ML	15,875	9,65	10,16	5,08	36	4,1	13,28	1,70/1,70	14,73	16,59	16,59	1,84	1,34
12B-2 ML	D127 ML	19,05	11,68	12,07	5,72	42,1	4,6	15,62	1,85/1,85	16,13	19,46	19,46	2,31	1,79
16B-2 ML	D1611 ML	25,4	17,02	15,88	8,28	68	5,4	25,45	4,15/3,10	21,08	31,88	31,88	5,42	4,21
20B-2 ML	D2012 ML	31,75	19,56	19,05	10,19	79,7	6,1	29,01	4,50/3,50	26,42	36,45	36,45	7,2	5,91
BS - Triplex														
08B-3 ML	TR85 ML	12,7	7,75	8,51	4,45	44,7	3,9	11,3	1,60/1,60	11,81	13,92	13,92	2,03	1,51
10B-3 ML	TR106ML	15,875	9,65	10,16	5,08	52,5	4,1	13,28	1,70/1,70	14,73	16,59	16,59	2,77	2,02
12B-3 ML	TR127ML	19,05	11,68	12,07	5,72	61,5	4,6	15,62	1,85/1,85	16,13	19,46	19,46	3,46	2,68
16B-3 ML	TR1611 ML	25,4	17,02	15,88	8,28	99,2	5,4	25,45	4,15/3,10	21,08	31,88	31,88	8,13	6,31

${ }^{1}$ Gerade Laschen
Straight side plates

iwis.de/ELITE

METRIC BORES AND KEYWAYS

	Keyway		Shallow Keyway Depth	Product Code								
Bore Dia	Width	Depth		1008	1108	1210	1610	1615	2012	2517	3020	3030
9	3	1.4	-	029A0009	029B0009							
10	3	1.4	-	029A0010	029B0010							
11	4	1.8	-	029A0011	029B0011	$029 C 0011$						
12	4	1.8	-	029A0012	029B0012	$029 C 0012$						
14	5	2.3	-	029A0014	029B0014	$029 C 0014$	029G0014	029H0014	029K0014			
15	5	2.3	-	029A0015	029B0015	$029 C 0015$	029G0015	029H0015	029K0015			
16	5	2.3	-	029A0016	029B0016	$029 C 0016$	029G0016	029H0016	$029 \mathrm{K0016}$	029M0016		
18	6	2.8	-	029A0018	029B0018	$029 C 0018$	029G0018	029H0018	$029 \mathrm{K0018}$	029M0018		
19	6	2.8	-	029A0019	029B0019	$029 C 0019$	029G0019	029H0019	029K0019	029M0019		
20	6	2.8	-	029A0020	029B0020	02960020	029G0020	029H0020	029K0020	029M0020		
22	6	2.8	-	029A0022	029B0022	$029 C 0022$	029G0022	029H0022	029K0022	029M0022		
24	8	3.3	1.3	029A0024*	029B0024	$029 C 0024$	029G0024	029H0024	029K0024	029M0024		
25	8	3.3	1.3	029A0025*	029B0025	$029 C 0025$	029G0025	029H0025	029K0025	029M0025	029P0025	
28	8	3.3	1.3		029B0028*	$029 C 0028$	029G0028	029H0028	029K0028	029M0028	029P0028	
30	8	3.3	-			$029 C 0030$	029G0030	029H0030	029K0030	029M0030	029P0030	
32	10	3.3	--			$029 C 0032$	029G0032	029H0032	029K0032	029M0032	029P0032	
35	10	3.3	-				029G0035	029H0035	029K0035	029M0035	029P0035	02900035
38	10	3.3	-				029G0038	029H0038	029K0038	029M0038	029P0038	02900038
40	12	3.3	-				029G0040	029H0040	029K0040	029M0040	029P0040	02900040
42	12	3.3	2.2				029G0042*	029H0042*	029K0042	029M0042	029P0042	02900042
45	14	3.8	-						029K0045	029M0045	029P0045	02900045
48	14	3.8	-						029K0048	029M0048	029P0048	02900048
50	14	3.8	-						029K0050	029M0050	029P0050	02900050
55	16	4.3	-							029M0055	029P0055	02900055
60	18	4.4	-							029M0060	029P0060	02900060
65	18	4.4	-								029P0065	02900065
70	20	4.9	-								029P0070	02900070
75	20	4.9	-								029P0075	02900075

METRIC BORES AND KEYWAYS

	Keyway		Shallow Keyway Depth	Product Code							
Bore Dia	Width	Depth		3525	3535	4030	4040	4535	4545	5040	5050
35	10	3.3	-	029J0035	029R0035						
38	10	3.3	-	029J0038	029R0038						
40	12	3.3	-	029J0040	029R0040	029X0040	029S0040				
42	12	3.3	-	029J0042	$029 R 0042$	029×0042	02950042				
45	14	3.8	-	029J0045	$029 R 0045$	029X0045	02950045				
48	14	3.8	-	029J0048	029R0048	029X0048	029S0048				
50	14	3.8	-	029J0050	029R0050	029X0050	029S0050				
55	16	4.3	-	029J0055	029R0055	029X0055	029S0055	029Y0055	029 TO 055		
60	18	4.4	-	029J0060	029R0060	029X0060	02950060	029Y0060	02970060		
65	18	4.4	-	029J0065	029R0065	029X0065	02950065	029Y0065	029 T0065		
70	20	4.9	-	029J0070	029R0070	029X0070	02950070	029Y0070	029 O0070	02970070	$029 \cup 0070$
75	20	4.9	-	029J0075	029R0075	029X0075	02950075	029Y0075	029T0075	02970075	02900075
80	22	5.4	-	029J0080	029R0080	029X0080	02950080	029Y0080	029 O0080	02970080	029U0080
85	22	5.4	-	029J0085	029R0085	029×0085	029S0085	029Y0085	029T0085	02920085	029U0085
90	25	5.4	-	029J0090	029R0090	029X0090	029S0090	029Y0090	029 O0090	029Z0090	029U0090
95	25	5.4	-	029J0095		029X0095	029S0095	029Y0095	029T0095	02920095	029U0095
100	28	6.4	4.4	029.J0100*		029X0100	02950100	029Y0100	029 T0100	02920100	02900100
105	28	6.4	-			029X0105		029Y0105	029 O10 0	02920105	02900105
110	28	6.4	-			029×0110		029Y0110	029 T0110	02970110	02900110
115	32	7.4	5.4			029X0115*		029 Y 0115		02920115	02900115
120	32	7.4	-					$029 Y 0120$		02970120	02900120
125	32	7.4	-					029 Y 0125		02920125	02900125

[^4]
Taper Ioth ${ }^{\circledR}$ Injinearing Data

MINIMUM DIAMETERS OF TAPER BORED HUBS

The following table shows the recommended minimum diameter in mm for bespoke component hubs that are to be drilled, tapped and taper bored for use with Taper Lock bushes. The table differentiates between grey iron and ductile materials of various minimum tensile strength grades (in $\mathrm{N} / \mathrm{mm}{ }^{2}$ or $\mathrm{MN} / \mathrm{m}^{2}$ units, which are numerically equal).
All standard Fenner Taper Lock products are tested to ensure that they are capable of safely containing the radial and circumferential hub stresses generated by the wedging mechanism which makes Taper Lock the equivalent of a shrink-on fit. For Taper Lock hub machining details, consult your local Authorised Distributor.

Taper Lock Bush	Minimum Hub Diameters (mm) for Various Materials			
	Tensile Strength $\mathrm{N} / \mathrm{mm}^{2}$			
	Cast Iron 180	Cast Iron 250	Steel/Ductile Iron420	Steel 600
1008	62	54	51	47
1108	64	57	54	50
1210	104	86	78	69
1610	109	92	85	78
1615	90	81	77	73
2012	121	106	99	92
2517	130	119	113	108
3020	160	146	140	132
3030	144	136	132	127
3525	211	191	178	167
3535	191	176	168	160
4030	224	207	197	186
4040	209	195	188	180
4535	223	212	205	198
4545	215	205	200	194
5040	240	229	223	216
5050	233	223	219	213

AVERAGE SLIP TORQUES FOR TAPER LOCK FIXING (WITHOUT KEY)

The following table shows empirically derived average slip torque values in Nm for each basic Taper Lock bush size with a variety of common metric bore diameters.
The values assume that the assembly uses a Fenner Taper Lock bush fitted, in accordance with the instructions supplied with every bush, to a hub prepared to the Fenner specification. Slip will tend to occur at the bush/shaft interface, at the prescribed torque, unless a key is fitted. With a key, the slip tendency transfers to the bush/ hub interface at a greater torque value related to the ratio of bush outer dia. to bore dia.. Consult your local Authorised Distributor for specific values.
Taper Lock bushes should only be used without a key fitted on smooth, uniformly loaded drives with service factors of 1.0 or less.

Formula to calculate the slip torque if a key is used:

Bush	Bore (mm)	Average Slip Torque (Nm)	Bush	Bore (mm)	Average Slip Torque (Nm)
1008	12	29	3020	38	520
	19	51	3030	48	730
	24	66		55	890
1108	12	28		60	970
	19	49		75	1300
	24	64	3525*	42	1000
	28	79	3535	60	1580
1210	16	82		75	2150
	19	105		90	2600
	24	142		100*	3075
	32	210	4030*	48	1700
1610	19	98	4040	60	2300
1615	24	135		75	3150
	38	240		100	4400
	42	265		115*	5150
2012	24	165	4535*	55	2500
	38	320	4545	75	3900
	42	340		100	5500
	48	400		110	6300
	50	420		125*	6625
2517	24	220	5040	75	3950
	38	380	5050	100	5650
	42	430		125	7370

Large end diameter*
 Bush bore

x Average slip torque value Nm (below)

Taper Lock ${ }^{\circledR}$ Installation Instrutions

TO INSTALL

1. After ensuring that the mating tapered surfaces, bore and shaft are completely clean and free from oil or dirt, insert bush in hub so that holes line up.
2. Sparingly oil thread and point of grub screws, or thread and under head of cap screws. Place screws loosely in holes threaded in hub, shown thus © in diagram.
3. If a key is to be fitted place it in the shaft keyway before fitting the bush. It is essential that it is a parallel key and side fitting only and has TOP CLEARANCE.
4. Clean shaft and fit hub to shaft as one unit and locate in position desired, remembering that bush will nip the shaft first and then hub will be slightly drawn on to the brush.
5. Using a hexagon wrench tighten screws gradually and alternately to torque shown in table below.
6. Hammer against large-end of bush, using a block or sleeve to prevent damage. (This will ensure that the bush is seated squarely in the bore.) Screws will now turn a little more. Repeat this alternate hammering and screw tightening once or twice to achieve maximum grip on the shaft.
7. After drive has been running under load for a short time stop and check tightness of screws.
8. Fill empty holes with grease to exclude dirt.

Visit www.fptgroup.com to view the Taper Lock installation video.

TO REMOVE

1. Slacken all screws by several turns, remove one or two according to number of removal holes shown thus - in diagram. Insert screwsinto removal holes after oiling thread and under head of cap screws.

INSERT BUSH

tighten screws finger tight

tighten screws to the correct TORQUE SETTING
2. Tighten screws alternately until bush is loosened in hub and assembly is free on the shaft.
3. Remove assembly from shaft.

INSERT SCREWS AND LOCATE ON SHAFT

tighten screws alternately

REMOVAL

Bush size		1008	1108	1210	1610	1615	2012	2517	3020	3030	3525	3535	4030	4040	4535	4545	5040	5050
Screw tightening Torque (Nm)		5.6	2.6	20	20	20	30	50	90	90	115	115	170	170	190	190	270	270
Oty		2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3
Screw Details	Size (BSW)	1/4"	1/4"	3/8"	3/8"	3/8"	7/16"	1/2"	5/8"	5/8"	1/2"	1/2"	5/8"	5/8"	3/4"	3/4"	7/8"	7/8"
	Hex. Scket Size (mm)	3	3	5	5	5	6	6	8	8	10	10	12	12	14	14	14	14
Large end dia. (mm)		35.0	38.0	47.5	57.0	57.0	70.0	85.5	108.6	108	127	127	146	146	162	162	178	178
Bush length (mm)		22.3	22.3	25.4	25.4	38.1	38.1	44.5	50.8	76.2	63.5	89.0	76.2	102	89.0	114	102	127
Approx mass (kg)		0.1	0.1	0.2	0.3	0.5	0.7	1.5	2.7	3.6	3.8	5.0	5.6	7.7	7.5	10.0	11.1	14.0

DIN 580

Lifting eye bolts

Axial load-bearing capacity per eye bolt

Load-bearing capacity at max. 45° per eye bolt

Lateral load-bearing capacity at max. 45° per eye bolt

Do not use under shear tension

technical informations

Material
Drop-forged steel annealed body, zinc-plated blue passivated, machined contact face.

Features and applications

These lifting eye bolts correspond to standard sheet DIN 580.
The following guidelines of lifting eye bolts DIN 580 the have to be observed in addition to the load values given in the above table.
The eye bolt must be of fully screwd in to achieve a perfect contact between the two mating faces
Both threads must be of a equal length and the base material of equal strength to that of the bolt.

For more guidelines, see the enclosed operating instruction.

Standard Elements	Main dimensions							Threaded stud		$\mathrm{F}_{1 \text { max. in }} \mathrm{N}$	$\mathrm{F}_{2 \text { max. in }} \mathbf{N}$	$F_{3 \text { max. in }} \mathbf{N}$	Weigh
Description	d_{2}	d_{3}	d_{4}	e	h	k	m	d_{1}	I				g
DIN 580-M8-ST	20	36	20	6	36	8	10	M8	13	1400	1000	700	56
DIN 580-M10-ST	25	45	25	8	45	10	12	M10	17	2300	1700	1150	108
DIN 580-M12-ST	30	54	30	10	53	12	14	M12	20.5	3400	2400	1700	174
DIN 580-M16-ST	35	63	35	12	62	14	16	M16	27	7000	5000	3500	280
DIN 580-M20-ST	40	72	40	14	71	16	19	M20	30	12000	8600	6000	450
DIN 580-M24-ST	50	90	50	18	90	230	24	M24	36	18000	12900	9000	880
DIN 580-M30-ST	65	108	60	22	109	24	28	M30	45	32000	23000	16000	1525
DIN 580-M36-ST	75	126	70	26	128	28	32	M36	54	46000	33000	23000	2605

© Clesabanite

Characteristics

- Medium-high torque
- Restricted hub diameter
- Limited installation time
- Very low surface pressure

Installation

Carefully clean the hub and shaft contact surfaces and apply a light oil film. Slide the locking assembly into the hub bore, insert the shaft and tighten all screws gradually and regularly in crossed sequence to reach the tightening torque M_{s} as indicated in the table.

The values M_{t} and F_{ax} indicated in the table are valid only in case of oil installation. Do not use any oil with molibdenum bisulphide or high pressure additives and not grease. Above substances notably reduce the friction coefficient.

Tolerances, surface finish
A good surface finish by machine tool is sufficient.
Maximum allowable surface finish:
Rt max $16 \mu \mathrm{~m}$ (Ra $3 \mu \mathrm{~m}-\mathrm{Rz} 13 \mu \mathrm{~m}$)
Maximum permissible tolerances:
h8 for shaft
H8 for hub

Axial movement

TLK 110: during screws tightening the hub has no axial movement with respect to the shaft.

DM hub calculation

The pressure P_{n} in the hub can be compared to the inside pressure on a thick hollow cylinder.

For DM calculation see page 46.

Dismantling

Loosen the clamping screws. Insert the screws into the dismantling threading and tighten gradually and regularly in crossed sequence until the bottom cone is released. If the element is to be reused, relubricate both screws and threadings.

TLK 110 DIMENSIONS

Characteristics

- Medium-high torque
- Wide tolerances
- Easy availability
- Easy dismantling

Installation

Carefully clean the hub and shaft contact surfaces and apply a light oil film. Slide the locking assembly into the hub bore and insert the shaft. Tighten cadmium plated clamping screws until inner ring grips the shaft and the outer ring grips the hub bore then tighten gradually and regularly in crossed sequence all screws to reach the tightening torque M_{s} indicated in the table. The values M_{t} and $F_{a x}$ indicated in the table are valid only in case of oil installation.
Do not use any oil with molibdenum bisulphide or high pressure additives and not grease.

Dismantling

By loosening all tightening screws the clamping unit is normally released. In case of difficulties slightly hammer the released screws to push back the rear pressure cone.

Tolerances, surface finish
A good surface finish by machine tool is sufficient. Maximum allowable surface finish:
Rt max $16 \mu \mathrm{~m}$ (Ra $3 \mu \mathrm{~m}$ - Rz $13 \mu \mathrm{~m}$)

Maximum permissible tolerances:
h11 for shaft
H11 for hub

Centering

Mod. TLK 200 is not self-centering. The hub concentricity with respect to the shaft depends on the guide surface tolerance and its length.

Axial movement

TLK 200: during screws tightening the hub has no axial movement with respect to the shaft.

DM hub calculation

The pressure P_{n} in the hub can be compared to the inside pressure on a thick hollow cylinder.

For DM calculation see page 46.

M_{t} transmissible

If two or more clamping unit are installed together, as a result of carried tests, the $\mathbf{M}_{\mathbf{t}}$ transmissible shall be calculated as follow:

Nr. 1 TLK 200
$M_{t}=M_{t}$ cat.
Nr. 2 TLK 200
$\mathrm{M}_{\mathrm{t}}=\mathrm{M}_{\mathrm{t}} \mathrm{cat} . \cdot 1,9$
Nr. 3 TLK 200
$\mathrm{M}_{\mathrm{t}}=\mathrm{M}_{\mathrm{t}}$ cat. $\cdot 2,7$

Dimensions				Shaft / Hub tolerances h11 / H11				Shaft / Hub tolerances h7/ H7		Tightening screws		Weight	
				Torque	Axial force	Surface pressures on		Torque	Pressure on	$\begin{gathered} \text { DIN912 } \\ 12.9 \end{gathered}$	Tightening torque		
				Shaft		Hub	Hub						
$\underset{m m}{d x D}$	$\begin{aligned} & \mathrm{L1} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{L} 2 \\ & \mathrm{~mm} \end{aligned}$	$\begin{gathered} \text { B } \\ \text { mm } \end{gathered}$		$\begin{gathered} M_{t} \\ \mathrm{~N}_{\mathrm{m}} \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{ax}} \\ & \mathrm{KN} \end{aligned}$	p_{w} $\mathrm{N} / \mathrm{mm}^{2}$	p_{n} $\mathrm{N} / \mathrm{mm}^{2}$	$\begin{gathered} M_{t} \\ \mathrm{Nm} \end{gathered}$	p_{n} $\mathrm{N} / \mathrm{mm}^{2}$	N ${ }^{\circ}$ Type	$\begin{aligned} & M_{s} \\ & \mathrm{Nm} \end{aligned}$	Kg
17×47	17	20	26	280	33	305	110	310	125	$8 \times$ M6	17	0,2	
18×47	17	20	26	300	33	290	110	330	125	$8 \times \mathrm{M6}$	17	0,2	
19×47	17	20	26	310	33	275	110	350	125	$8 \times \mathrm{M6}$	17	0,2	
20×47	17	20	26	330	33	260	110	370	125	$8 \times \mathrm{M} 6$	17	0,2	
22×47	17	20	26	360	33	235	110	410	125	$8 \times \mathrm{M6}$	17	0,2	
24×50	17	20	26	390	33	215	105	440	115	$8 \times \mathrm{M} 6$	17	0,3	
25×50	17	20	26	410	33	205	105	460	115	$8 \times \mathrm{M} 6$	17	0,3	
28×55	17	20	26	570	41	230	115	650	130	$10 \times \mathrm{M} 6$	17	0,3	
30×55	17	20	26	610	41	215	115	690	130	$10 \times \mathrm{M} 6$	17	0,3	
32×60	17	20	26	780	49	240	130	890	145	$12 \times \mathrm{M} 6$	17	0,3	
35×60	17	20	26	850	49	220	125	970	145	$12 \times \mathrm{M} 6$	17	0,3	
38×65	17	20	26	1070	57	235	135	1230	155	$14 \times \mathrm{M} 6$	17	0,4	
40×65	17	20	26	1120	56	220	135	1300	155	$14 \times \mathrm{M} 6$	17	0,3	
42×75	20	24	32	1860	89	280	155	2170	185	$12 \times \mathrm{M} 8$	41	0,6	
45×75	20	24	32	1990	89	260	155	2320	185	$12 \times \mathrm{M} 8$	41	0,6	
48×80	20	24	32	2120	88	245	145	2480	170	$12 \times \mathrm{M} 8$	41	0,6	
50×80	20	24	32	2200	88	235	145	2580	170	$12 \times \mathrm{M} 8$	41	0,6	
55×85	20	24	32	2810	102	245	160	3310	190	$14 \times \mathrm{M} 8$	41	0,6	
60×90	20	24	32	3050	102	225	150	3610	180	$14 \times \mathrm{M} 8$	41	0,7	
65×95	20	24	32	3770	116	235	160	4470	190	$16 \times \mathrm{M} 8$	41	0,7	
70×110	24	28	38	5600	160	255	160	6700	190	$14 \times \mathrm{M} 10$	83	1,3	
75×115	24	28	38	5970	159	235	155	7170	185	$14 \times \mathrm{M} 10$	83	1,3	
80×120	24	28	38	6330	158	220	145	7650	175	$14 \times \mathrm{M} 10$	83	1,4	
85×125	24	28	38	7660	180	235	160	9290	195	$16 \times \mathrm{M} 10$	83	1,4	
90×130	24	28	38	8080	180	220	155	9840	185	$16 \times \mathrm{M} 10$	83	1,5	
95×135	24	28	38	9560	201	235	165	11600	200	$18 \times \mathrm{M} 10$	83	1,6	
100×145	26	33	45	11300	227	230	160	13900	195	$14 \times \mathrm{M} 12$	145	2,2	
110×155	26	33	45	12400	226	210	150	15300	185	$14 \times \mathrm{M} 12$	145	2,5	
120×165	26	33	45	15400	258	220	160	19100	195	$16 \times \mathrm{M} 12$	145	2,6	
130×180	34	38	50	20800	320	190	140	25800	175	$20 \times \mathrm{M} 12$	145	3,8	
140×190	34	38	50	24500	351	195	145	30600	180	$22 \times \mathrm{M} 12$	145	3,9	
150×200	34	38	50	28500	381	200	150	35800	185	$24 \times \mathrm{M} 12$	145	4	
160×210	34	38	50	32900	411	200	155	41400	190	$26 \times$ M12	145	4,3	
170×225	38	44	58	40400	476	195	150	51000	185	$22 \times$ M14	230	5,8	
180×235	38	44	58	46500	518	200	155	59000	195	$24 \times$ M14	230	6	
190×250	46	52	66	57200	602	185	140	72600	175	$28 \times$ M14	230	8,5	
200×260	46	52	66	64200	643	185	145	81900	180	$30 \times$ M14	230	8,6	
220×285	50	56	72	84500	769	185	145	108500	185	$26 \times$ M16	355	11	
240×305	50	56	72	106000	884	195	155	136600	200	$30 \times \mathrm{M} 16$	355	12	
260×325	50	56	72	129300	995	205	160	167800	210	$34 \times \mathrm{M} 16$	355	13	
280×355	60	66	84	157200	1123	175	140	204600	180	$32 \times \mathrm{M} 18$	485	19	
300×375	60	66	84	188200	1255	185	150	246700	195	$36 \times \mathrm{M} 18$	485	20	
320×405	72	78	98	259400	1622	185	150	341400	195	$36 \times \mathrm{M} 20$	690	30	
340×425	72	78	98	274500	1615	175	140	362700	185	$36 \times \mathrm{M} 20$	690	30	
360×455	84	90	112	360300	2002	175	140	478100	185	$36 \times \mathrm{M} 22$	930	42	
380×475	84	90	112	378700	1994	165	135	504600	175	$36 \times \mathrm{M} 22$	930	44	
400×495	84	90	112	397000	1985	155	125	531200	170	$36 \times \mathrm{M} 22$	930	46	
420×515	84	90	112	461800	2199	165	135	619700	180	$40 \times \mathrm{M} 22$	930	50	
440×545	96	102	126	557200	2533	160	130	749700	175	$40 \times \mathrm{M} 24$	1200	65	
460×565	96	102	126	580800	2526	150	125	783800	165	$40 \times \mathrm{M} 24$	1200	67	
480×585	96	102	126	634600	2644	150	125	858800	170	$42 \times \mathrm{M} 24$	1200	71	
500×605	96	102	126	690500	2762	155	125	937200	170	$44 \times$ M 24	1200	73	
520×630	96	102	126	732400	2817	150	125	996800	170	$45 \times \mathrm{M} 24$	1200	80	
540×650	96	102	126	759500	2813	145	120	1035000	165	$45 \times \mathrm{M} 24$	1200	82	
560×670	96	102	126	837700	2992	150	125	1145000	170	$48 \times \mathrm{M} 24$	1200	85	
580×690	96	102	126	902500	3112	150	125	1235000	170	$50 \times \mathrm{M} 24$	1200	88	
600×710	96	102	126	930900	3103	145	120	1278000	165	$50 \times \mathrm{M} 24$	1200	91	
620×730	96	102	126	997500	3218	145	120	1373000	170	$52 \times \mathrm{M} 24$	1200	93	
640×750	96	102	126	1067000	3337	145	125	1472000	170	$54 \times \mathrm{M} 24$	1200	96	
660×770	96	102	126	1140000	3456	145	125	1574000	170	$56 \times \mathrm{M} 24$	1200	99	
680×790	96	102	126	1173000	3450	140	120	1622000	165	$56 \times \mathrm{M} 24$	1200	102	
700×810	96	102	126	1290000	3686	145	125	1789000	175	$60 \times \mathrm{M} 24$	1200	104	
720×830	96	102	126	1325000	3681	140	125	1840000	170	$60 \times \mathrm{M} 24$	1200	107	
740×850	96	102	126	1405000	3798	140	125	1954000	170	$62 \times \mathrm{M} 24$	1200	110	
760×870	96	102	126	1487000	3915	140	125	2072000	175	$64 \times \mathrm{M} 24$	1200	113	
780×890	96	102	126	1548000	3970	140	125	2159000	170	$65 \times \mathrm{M} 24$	1200	116	
800×910	96	102	126	1610000	4025	140	120	2249000	170	$66 \times$ M24	1200	118	

For larger diameter please contact us.

TLK 300 DIMENSIONS

	DIN912			C=0,140		
dg	Pv in N			M $_{\boldsymbol{s}}$ in Nm		
	8.8	10.9	12.9	8.8	10.9	12.9
	3900	5450	6550	2,9	4,1	4,9
M5	6350	8950	10700	6	8,5	10
M6	9000	12600	15100	10	14	17
[M7]	13200	18500	22200	16	23	28
M8	16500	23200	27900	25	35	41
[M9]	22000	30900	37100	36	51	61
M10	26200	36900	44300	49	69	83
M12	38300	54000	64500	86	120	145
M14	52500	74000	88500	135	190	230
M16	73000	102000	123000	210	295	355
M18	88000	124000	148000	290	405	485
M20	114000	160000	192000	410	580	690
M22	141000	199000	239000	550	780	930
M24	164000	230000	276000	710	1000	1200
M27	215000	302000	363000	1050	1500	1800
M30	262000	368000	442000	1450	2000	2400

$\mathrm{Pa}=\mathrm{N}^{\circ}$ of screws $\cdot \mathrm{Pv}$
$\mathrm{Pt}=$ see page 25
M_{t} transmissible $=\frac{P a-P t}{0,54} \cdot 0,12 \cdot \frac{d}{2000}$

Screws center distance I = D + 12 + dg (screws fixed on the hub) Flange thickness $S f=d g \bullet 1,3$ (screws quality 8.8)
Screws center distance $I=d-12-d g$ (screws fixed on the shaft) Flange thickness $S f=d g \bullet 1,8$ (screws quality 12.9)
Note: On request the type TLK 300 can be supplied also with split rings: therefore the trasmissible torque M_{t} increases. Please contact our technical department.

Characteristics

- Medium low torque
- Restricted radial encumbrance
- Limited installation time
- Application economically advantageous

Installation

Carefully clean the hub and shaft contact surfaces and apply a light oil film. Slide the locking elements into the hub bore, insert the shaft and tighten gradually and regularly in crossed sequence all screws to reach the tightening torque M_{s} as indicated in the table. The values M_{t} and $F_{a x}$ indicated in the table are valid only in case of oil installation. Do not use any oil with molybdenum bisulphide or high pressure additives and not grease. Above substances notably reduce the friction coefficient.

Dismantling

By loosening all tightening screws the locking elements are released and the clamping is free. However in case of difficulties slightly hammer the hub.

Tolerances, surface finish
A good surface finish by the machine tool is sufficient. Maximum allowable surface finish:
Rt max $6 \mu \mathrm{~m}$ (Ra $1 \mu \mathrm{~m}-\operatorname{Rz} 5 \mu \mathrm{~m}$)

Maximum permissible tolerances: shaft h6 - hub H7 (up to 40 mm d. diameter) shaft h8 - hub H8 (over 42 mm d. diameter)

M_{t} transmissible

Nr. 1 TLK $300 \mathrm{M}_{\mathrm{t}}=\mathrm{M}_{\mathrm{t}}$ cat.
Nr. 2 TLK $300 \mathrm{M}_{\mathrm{t}}=\mathrm{M}_{\mathrm{t}}$ cat. $\bullet 1,55$
Nr. 3 TLK $300 \mathrm{M}_{\mathrm{t}}=\mathrm{M}_{\mathrm{t}}$ cat. $\bullet 1,85$
Nr. 4 TLK $300 \mathrm{M}_{\mathrm{t}}=\mathrm{M}_{\mathrm{t}}$ cat. $\bullet 2,02$

DM hub calculation

The pressure P_{n} in the hub can be compared to the inside pressure on a thick hollow cylinder.

For DM calculation see page 46.

Dimensions			Pre-load force Pt N	Total force Pa N	Torque$\mathbf{M}_{\mathbf{t}}$Nm	Axial force F_{ax} KN	Distance W before tightening				Spacer diameter		Surface pressures on		Weight	
			Inside								Outside	Shaft	Hub			
$\underset{\mathrm{mm}}{\mathrm{dxD}}$	$\begin{gathered} \mathrm{B} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{L} 1 \\ \mathrm{~mm} \end{gathered}$					$\begin{gathered} 1 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} 2 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} 3 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \mathrm{d} 1 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { D1 } \\ & \mathrm{mm} \end{aligned}$		p_{n} $\mathrm{N} / \mathrm{mm}^{2}$	Kg	
6×9	4,5	3,7		-	3800	2	0,84	2,5	2,5	3	4	6,1	8,9	115	75	0,002
7×10	4,5	3,7	-	3900	3	0,86	2,5	2,5	3	4	7,1	9,9	105	70	0,002	
8×11	4,5	3,7	-	5300	5	1,17	2,5	2,5	3	4	8,1	10,9	120	90	0,002	
9×12	4,5	3,7	7650	15600	8	1,76	2,5	2,5	3	4	9,1	11,9	140	105	0,000	
10×13	4,5	3,7	7000	15600	10	1,91	2,5	2,5	3	4	10,1	12,9	135	105	0,002	
12×15	4,5	3,7	7000	15600	11	1,91	2,5	2,5	3	4	12,1	14,9	115	90	0,002	
13×16	4,5	3,7	6500	15600	13	2,02	2,5	2,5	3	4	13,1	15,9	110	90	0,000	
14×18	6,3	5,3	11000	25400	22	3,18	3,5	3,5	4,5	5,5	14,1	17,9	115	90	0,005	
15×19	6,3	5,3	10800	25400	24	3,24	3,5	3,5	4,5	5,5	15,1	18,9	110	85	0,005	
16×20	6,3	5,3	10000	25400	27	3,42	3,5	3,5	4,5	5,5	16,1	19,9	105	85	0,006	
17×21	6,3	5,3	9600	25400	30	3,51	3,5	3,5	4,5	5,5	17,1	20,9	105	85	0,006	
18×22	6,3	5,3	9150	25400	32	3,61	3,5	3,5	4,5	5,5	18,1	21,9	100	80	0,007	
19×24	6,3	5,3	12500	36000	49	5,22	3,5	3,5	4,5	5,5	19,2	23,8	140	110	0,007	
20×25	6,3	5,3	12000	36000	53	5,33	3,5	3,5	4,5	5,5	20,2	24,8	135	105	0,009	
22×26	6,3	5,3	9000	36000	66	6	3,5	3,5	4,5	5,5	22,2	25,8	135	115	0,007	
24×28	6,3	5,3	8400	36000	73	6,13	3,5	3,5	4,5	5,5	24,2	27,8	130	110	0,008	
25×30	6,3	5,3	10000	36000	72	5,77	3,5	3,5	4,5	5,5	25,2	29,8	115	95	0,009	
28×32	6,3	5,3	7500	36000	88	6,33	3,5	3,5	4,5	5,5	28,2	31,8	115	100	0,010	
30×35	6,3	5,3	8600	36000	91	6,08	3,5	3,5	4,5	5,5	30,2	34,8	100	85	0,011	
32×36	6,3	5,3	7900	45000	131	8,24	3,5	3,5	4,5	5,5	32,2	35,8	130	115	0,011	
35×40	7	6	10000	54000	171	9,77	3,5	3,5	4,5	5,5	35,2	39,8	125	110	0,016	
36×42	7	6	11700	54000	169	9,39	3,5	3,5	4,5	5,5	36,2	41,8	115	100	0,019	
38×44	7	6	11000	54000	181	9,55	3,5	3,5	4,5	5,5	38,2	43,8	110	95	0,021	
40×45	8	6,6	13900	66000	231	11,57	3,5	4,5	5,5	6,5	40,2	44,8	115	105	0,021	
42×48	8	6,6	15550	66000	235	11,22	3,5	4,5	5,5	6,5	42,2	47,8	110	95	0,026	
45×52	10	8,6	28300	99000	353	15,71	3,5	4,5	5,5	6,5	45,2	51,8	105	95	0,045	
48×55	10	8,6	24700	132000	572	23,84	3,5	4,5	5,5	6,5	48,2	54,8	155	135	0,043	
50×57	10	8,6	23600	132000	602	24,08	3,5	4,5	5,5	6,5	50,2	56,8	150	130	0,045	
55×62	10	8,6	21700	132000	670	24,35	3,5	4,5	5,5	6,5	55,2	61,8	140	125	0,049	
56×64	12	10,4	29500	157200	790	28,2	3,5	4,5	5,5	7	56,2	63,8	130	115	0,070	
60×68	12	10,4	27500	157200	860	28,6	3,5	4,5	5,5	7	60,2	67,8	125	110	0,070	
63×71	12	10,4	26500	157200	910	28,8	3,5	4,5	5,5	7	63,2	70,8	120	105	0,080	
65×73	12	10,4	25500	157200	950	29,2	3,5	4,5	5,5	7	65,2	72,8	115	100	0,090	
70×79	14	12,2	31000	209600	1380	39,4	3,5	5	6,5	7,5	70,3	78,7	125	110	0,115	
71×80	14	12,2	31000	209600	1400	39,4	3,5	5	6,5	7,5	71,3	79,7	120	110	0,110	
75×84	14	12,2	34700	209600	1450	38,6	3,5	5	6,5	7,5	75,3	83,7	115	100	0,120	
80×91	17	15	48000	290000	2200	55	4	6	6,5	8	80,3	90,7	125	105	0,210	
85×96	17	15	45500	305000	2400	56,4	4	6	6,5	8	85,3	95,7	120	105	0,210	
90×101	17	15	43600	320000	2730	60,5	4	6	6,5	8	90,3	100,7	120	105	0,220	
95×106	17	15	41300	330000	3050	64,2	4	6	6,5	8	95,3	105,7	120	110	0,230	
100×114	21	18,7	61000	445000	4200	84	5	6	7	9	100,3	113,7	120	105	0,390	
110×124	21	18,7	66000	485000	5150	93,6	5	6	7	9	110,3	123,7	120	105	0,420	
120×134	21	18,7	60300	510000	6050	100,8	5	6	7	9	120,2	133,7	120	105	0,460	
130×148	28	25,3	96300	765000	9600	147,6	5	7	9	11	130,4	147,6	120	105	0,860	
140×158	28	25,3	89000	800500	11000	158,5	6	7	9	11	140,4	157,6	120	105	0,960	
150×168	28	25,3	85000	860000	12900	172	6	7	8	11	150,4	167,6	120	105	1,000	
160×178	28	25,3	78600	900000	14600	182,5	6	7	9	11	160,4	177,6	120	110	1,000	
170×191	33	30	117400	1160000	19500	229	7	9	10	12	170,5	190,5	120	105	1,540	
180×201	33	30	111300	1200000	21300	236	7	9	10	12	180,5	200,5	120	105	1,500	
190×211	33	30	105000	1260000	24200	255	7	9	10	12	190,5	210,5	120	110	1,800	
200×224	38	34,8	134200	1550000	31000	310	7	8	11	13	200,6	223,4	120	105	2,400	
210×234	38	34,8	127200	1610000	35000	333	7	9	11	13	210,6	233,4	120	110	2,500	
220×244	38	34,8	122100	1690000	38000	345	7	9	11	13	220,6	243,4	120	110	2,600	
230×257	43	39,5	164500	2000000	47000	408	7	10	12	14	230,6	256,4	120	105	3,400	
240×267	43	39,5	157400	2250000	51000	425	7	10	12	14	240,6	266,4	120	110	3,800	
250×280	48	44	190000	2060000	52000	415	7	10	13	16	250,8	279,2	100	89	4,800	
260×290	48	44	182000	2132000	56500	435	7	10	13	16	260,8	289,2	100	89	4,900	
270×300	48	44	177000	2207000	61000	450	7	10	13	16	270,8	299,2	100	89	5,000	
280×313	53	49	206000	2536000	72500	520	7	11	14	17	280,8	312,2	100	89	6,400	
290×323	53	49	222000	2632000	77500	535	7	11	14	17	290,8	322,2	100	89	6,500	
300×333	53	49	214000	2704000	83000	555	7	11	14	17	300,8	332,2	100	89	6,800	
320×360	65	59	292000	3492000	114000	710	10	15	20	25	321,0	359,0	100	89	11,000	
340×380	65	59	272000	3672000	128500	755	10	15	20	25	341,0	379,0	100	89	11,500	
360×400	65	59	258000	3858000	144000	800	10	15	20	25	361,0	399,0	100	90	12,300	
380×420	65	59	269000	4069000	160500	845	10	15	20	25	381,0	419,0	100	90	13,000	
400×440	65	59	256000	4256000	178000	890	10	15	20	25	401,0	439,0	100	90	13,700	
420×460	65	59	244000	4444000	196000	935	10	15	20	25	421,0	459,0	100	90	14,100	
440×480	65	59	234000	4633000	215000	980	10	15	20	25	441,0	479,0	100	90	14,800	
460×500	65	59	224000	4824000	235000	1020	10	15	20	25	461,0	499,0	100	91	15,500	
480×520	65	59	239000	5039000	256000	1070	10	15	20	25	481,0	519,0	100	91	16,000	
500×540	65	59	229000	5229000	278000	1110	10	15	20	25	501,0	539,0	100	91	16,700	
520×570	80	73	338000	6788000	372000	1430	12	18	24	30	521,0	569,0	100	91	27,000	
540×590	80	73	326000	7026000	400000	1480	12	18	24	30	541,0	589,0	100	91	28,000	

Kranpuffer • Crane Buffers

Butée de Grue • Respingenti per Gru • Amortiguadores de Gruas

D

Material	Mikrozelliges Polyurethan-Elastomer
Befestigung	Gewindebolzen oder Grundplatte
Temperaturbereich	$-35^{\circ} \mathrm{C}-+80^{\circ} \mathrm{C}$ (kurzzeitig bis ca. $+100^{\circ} \mathrm{C}$)
Lange Lebensdauer	Beständig gegen Öle, Fette, Ozon,
	UV-Strahlung und Alterung
Einsatzbereich	Krananlagen, Maschinenbau, Fördertechnik

GB	
Material	Microcellular polyurethane elastomer
Mounting	Threaded bolt or base plate
Temperature	$-35^{\circ} \mathrm{C}-+80^{\circ} \mathrm{C}$ (limited duration $+100^{\circ} \mathrm{C}$)
Long service life	Resistant to oil, grease, ozone, Upplications
	UV radiation and weathering Crane systems, machine building, conveyor technology

F

Matière

Fixation
Température
Longue durée de vie

Applications

Élastomère de polyuréthane micro-cellulaire
Boulon fileté ou plaque de base $-35^{\circ} \mathrm{C}-+80^{\circ} \mathrm{C}$ (durée limitée $+100^{\circ} \mathrm{C}$)
Résistant à l'huile, aux graisses, à l'ozone, aux rayons UV et au vieillissement
Grues, ingénierie, manutention

\square

Materiale

Fissaggio

Temperatura
Lunga durata

Applicazioni

Elastomero al poliuretano con struttura a microcellule
Spinotto filettato oppure piastra di supporto
$-35^{\circ} \mathrm{C}-+80^{\circ} \mathrm{C}$ (tempo limitato $+100^{\circ} \mathrm{C}$) Resistente a oli, grasso, ozono, raggi ultravioletti e invecchiamento Impianti di sollevamento, ingegneria meccanica, tecnica dei trasporti industriali

E

Material
Fijación
Temperatura
Larga vida útil
Aplicaciones

Elastómero de poliuretano microcelular Perno roscado o placa base $-35^{\circ} \mathrm{C}-+80^{\circ} \mathrm{C}$ (tiempo limitado $+100^{\circ} \mathrm{C}$) Resistente a aceites, grasas, ozono, radiación UV y envejecimiento Instalaciones de grúas, ingeniería mecánica, técnica de movimiento de materiales

Typ 1 x ${ }^{*}$

Typ $2 \times / y^{*}$

Typ 3 x

*x: mit Noppen, with nubs

*y: ohne Noppen, without nubs

ABMESSUNGEN - DIMENSIONS - DIMENSIONI - DIMENSIONES

	Typ*		$\underset{\mathrm{mm}}{\mathrm{~A}}$	$\begin{gathered} \mathrm{B} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \end{gathered}$	GW	Gewicht Weight
WCB-070-070-6-B	2	y	70	70	35	M 12	0,25
WCB-080-040-6-B	1	x	80	40	35	M 12	0,21
WCB-080-080-6-B	2	y	80	80	35	M 12	0,31
WCB-080-120-6-B	3	X	80	120	35	M 12	0,42
WCB-100-050-6-B	1	x	100	50	35	M 12	0,31
WCB-100-100-6-B	2	y	100	100	35	M 12	0,52
WCB-100-150-6-B	3	X	100	150	35	M 12	0,73
WCB-125-063-6-B	1	X	125	63	35	M 12	0,51
WCB-125-125-6-B	2	y	125	125	35	M 12	0,92
WCB-125-190-6-B	3	X	125	190	35	M 12	1,32
WCB-160-080-6-B	1	X	160	80	35	M 12	0,95
WCB-160-160-6-B	2	y	160	160	35	M 12	1,80
WCB-160-240-6-B	3	X	160	240	35	M 12	2,66

	Typ*		$\underset{\mathrm{mm}}{\mathrm{~A}}$	$\begin{gathered} \mathrm{B} \\ \mathrm{~mm} \end{gathered}$	$\underset{\mathrm{mm}}{\mathrm{~L}}$	GW	Gewicht Weight
WCB-200-100-6-B	1	x	200	100	35	M 12	1,76
WCB-200-200-6-B	2	y	200	200	35	M 12	3,43
WCB-200-300-6-B	3	X	200	300	35	M 12	5,10
WCB-250-125-6-B	1	x	250	125	80	M 24	5,40
WCB-250-250-6-B	2	x	250	250	80	M 24	8,50
WCB-250-375-6-B	3	x	250	375	80	M 24	11,50
WCB-315-158-6-B	1	X	315	158	80	M 24	8,50
WCB-315-315-6-B	2	X	315	315	80	M 24	14,65
WCB-315-475-6-B	3	X	315	475	80	M 24	20,80
WCB-400-200-6-B	1	X	400	200	80	M 30	16,50
WCB-400-400-6-B	2	x	400	400	80	M 30	29,10
WCB-400-600-6-B	3	X	400	600	80	M 30	41,60

LEISTUNGEN - PERFORMANCE - CARATTERISTICHE TECNICHE - CARACTERÍSTICAS TÉCNICAS

Federweg max. • max. Deflection max. Écrasement - max. Deformazione máx. Aplastante

	mm	kNm*	kN**								
WCB-070-070-6-B	56	0,46	24	0,59	26	0,67	30	0,84	35	1	38
WCB-080-040-6-B	32	0,37	31	0,47	34	0,54	41	0,67	47	0,8	51
WCB-080-080-6-B	64	0,70	31	0,89	34	1,02	41	1,28	47	1,52	51
WCB-080-120-6-B	96	1,08	31	1,37	34	1,57	41	1,96	47	2,33	51
WCB-100-050-6-B	40	0,69	50	0,88	55	1	65	1,25	75	1,5	80
WCB-100-100-6-B	80	1,42	50	1,81	55	2,1	65	2,6	75	3,1	80
WCB-100-150-6-B	120	2,10	50	2,6	55	3	65	3,7	75	4,5	80
WCB-125-063-6-B	50	1,33	65	1,7	80	2,06	95	2,42	110	2,9	120
WCB-125-125-6-B	100	2,61	65	3,33	80	4,04	95	4,75	110	5,7	120
WCB-125-190-6-B	150	3,94	65	5	80	6	95	7,1	110	8,6	120
WCB-160-080-6-B	64	2,30	123	3,1	147	3,9	172	4,9	186	6	200
WCB-160-160-6-B	128	4,70	123	6,1	147	7,8	172	9,7	186	11,4	200
WCB-160-240-6-B	192	7,10	123	9,14	147	11,8	172	14,55	186	18	200
WCB-200-100-6-B	80	5,50	190	7,2	230	8,8	270	10,4	300	12,2	315
WCB-200-200-6-B	160	10,80	190	14,2	230	17,4	270	20,5	300	24	315
WCB-200-300-6-B	240	15,80	190	20,7	230	25,3	270	30	300	35	315
WCB-250-125-6-B	100	10,54	275	13,64	300	16,74	350	19,84	400	23	490
WCB-250-250-6-B	200	21,13	275	27,35	300	33,56	350	39,79	400	46	490
WCB-250-375-6-B	300	31,71	275	41,03	300	50,36	350	59,68	400	69	490
WCB-315-158-6-B	126	13,30	650	17,5	717	22,5	728	35	750	47	780
WCB-315-315-6-B	252	26,60	650	35,28	717	45,36	728	70,56	750	93	780
WCB-315-475-6-B	380	39,84	650	54,67	717	69,58	728	109,34	750	140	780
WCB-400-200-6-B	160	31,13	1000	39,5	1100	49,22	1150	72	1200	94	1250
WCB-400-400-6-B	320	50,00	1000	80	1100	90	1150	140	1200	190	1250
WCB-400-600-6-B	480	80	1000	120	1100	140	1150	220	1200	282	1250

*Energieaufnahme - Energy absorption - Energie d'absorption - Assorbimento d'energia - Absorción de energia
** Endkraft max. - Force max. - Forces finales - Forza finale - Fuerza final

WCB

ABMESSUNGEN - DIMENSIONS - DIMENSIONI - DIMENSIONES

Kunststoffflansch Plastic Flange Bride en plastique Flangia in plastica	Aluminiumflansch Aluminum Flange Bride en aluminium Flangia in alluminio	A	B	C	D	$\varnothing \mathrm{E}$	F	Gewicht - Weight Poids - Peso - Peso	
		mm	mm	mm	mm	mm	mm	FK kg	FA kg
WCB-080-040-6-FK	WCB-080-040-6-FA	80	40	110	80	$14\left(13,8^{*}\right)$	10	0,2	0,4
WCB-080-080-6-FK	WCB-080-080-6-FA	80	80	110	80	14 (13,8*)	10	0,3	0,5
WCB-080-120-6-FK	WCB-080-120-6-FA	80	120	110	80	14 (13,8*)	10	0,4	0,6
WCB-100-050-6-FK	WCB-100-050-6-FA	100	50	125	100	14	10	0,3	0,6
WCB-100-100-6-FK	WCB-100-100-6-FA	100	100	125	100	14	10	0,5	0,8
WCB-100-150-6-FK	WCB-100-150-6-FA	100	150	125	100	14	10	0,7	1,0
WCB-125-063-6-FK	WCB-125-063-6-FA	125	63	160	125	18	12	0,6	1,2
WCB-125-125-6-FK	WCB-125-125-6-FA	125	125	160	125	18	12	1,0	1,5
WCB-125-190-6-FK	WCB-125-190-6-FA	125	190	160	125	18	12	1,4	2,0
WCB-160-080-6-FK	WCB-160-080-6-FA	160	80	200	160	18	12	1,1	1,6
WCB-160-160-6-FK	WCB-160-160-6-FA	160	160	200	160	18	12	2,0	2,8
WCB-160-240-6-FK	WCB-160-240-6-FA	160	240	200	160	18	12	2,8	3,7
WCB-200-100-6-FK	WCB-200-100-6-FA	200	100	250	200	22	14	2,15	3,6
WCB-200-200-6-FK	WCB-200-200-6-FA	200	200	250	200	22	14	3,8	5,5
WCB-200-300-6-FK	WCB-200-300-6-FA	200	300	250	200	22	14	5,5	7,2

* für Flansche aus Aluminium / for aluminum flange

Stahlflansch - Steel Flange Bride en acier - Flangia in acciaio Brida de acero	A	B	C	D	ØE	F	Gewicht - Weight Poids - Peso - Peso
	mm	mm	mm	mm	mm	mm	FS kg
WCB-250-125-6-FS	250	125	315	250	22	15	4,2
WCB-250-250-6-FS	250	250	315	250	22	15	7,8
WCB-250-375-6-FS	250	375	315	250	22	15	11,0
WCB-315-158-6-FS	315	158	400	315	22	15	22,0
WCB-315-315-6-FS	315	315	400	315	22	15	29,0
WCB-315-475-6-FS	315	475	400	315	22	15	36,0
WCB-400-200-6-FS	400	200	500	400	26	20	47,0
WCB-400-400-6-FS	400	400	500	400	26	20	59,0
WCB-400-600-6-FS	400	600	500	400	26	20	71,0
WCB-500-250-6-FS	500	250	630	500	26	20	83,0
WCB-500-500-6-FS	500	500	630	500	26	20	105,0
WCB-500-750-6-FS	500	750	630	500	26	20	129,0
WCB-600-300-6-FS	600	300	730	600	26	20	116,0
WCB-600-600-6-FS	600	600	730	600	26	20	167,0
WCB-600-900-6-FS	600	900	730	600	26	20	198,0

LEISTUNGEN - PERFORMANCE - CARATTERISTICHE TECNICHE - CARACTERÍSTICAS TÉCNICAS

Federweg max. - max. Deflection max. Écrasement • max. Deformazione máx. Aplastante

V statisch • static statique \cdot statico \cdot estática

V
$1 \mathrm{~m} / \mathrm{s}$
$2 \mathrm{~m} / \mathrm{s}$

V
$3 \mathrm{~m} / \mathrm{s}$

V
$4 \mathrm{~m} / \mathrm{s}$

	mm	kNm*	kN**	kNm*	$\mathrm{kN}^{* *}$	kNm*	$\mathrm{kN}^{* *}$	kNm*	kN**	kNm*	kN**
WCB-080-040-6	32	0,37	31	0,47	34	0,54	41	0,67	47	0,8	51
WCB-080-080-6	64	0,70	31	0,89	34	1,02	41	1,28	47	1,52	51
WCB-080-120-6	96	1,08	31	1,37	34	1,57	41	1,96	47	2,33	51
WCB-100-050-6	40	0,69	50	0,88	55	1	65	1,25	75	1,5	80
WCB-100-100-6	80	1,42	50	1,81	55	2,1	65	2,6	75	3,1	80
WCB-100-150-6	120	2,10	50	2,6	55	3	65	3,7	75	4,5	80
WCB-125-063-6	50	1,33	65	1,7	80	2,06	95	2,42	110	2,9	120
WCB-125-125-6	100	2,61	65	3,33	80	4,04	95	4,75	110	5,7	120
WCB-125-190-6	150	3,94	65	5	80	6	95	7,1	110	8,6	120
WCB-160-080-6	64	2,30	123	3,1	147	3,9	172	4,9	186	6	200
WCB-160-160-6	128	4,70	123	6,1	147	7,8	172	9,7	186	11,4	200
WCB-160-240-6	192	7,10	123	9,14	147	11,8	172	14,55	186	18	200
WCB-200-100-6	80	5,50	190	7,2	230	8,8	270	10,4	300	12,2	315
WCB-200-200-6	160	10,80	190	14,2	230	17,4	270	20,5	300	24	315
WCB-200-300-6	240	15,80	190	20,7	230	25,3	270	30	300	35	315
WCB-250-125-6	100	10,54	275	13,64	300	16,74	350	19,84	400	23	490
WCB-250-250-6	200	21,13	275	27,35	300	33,56	350	39,79	400	46	490
WCB-250-375-6	300	31,71	275	41,03	300	50,36	350	59,68	400	69	490
WCB-315-158-6	126	13,30	650	17,5	717	22,5	728	35	750	47	780
WCB-315-315-6	252	26,60	650	35,28	717	45,36	728	70,56	750	93	780
WCB-315-475-6	380	39,84	650	54,67	717	69,58	728	109,34	750	140	780
WCB-400-200-6	160	31,13	1000	39,5	1100	49,22	1150	72	1200	94	1250
WCB-400-400-6	320	50,00	1000	80	1100	90	1150	140	1200	190	1250
WCB-400-600-6	480	80,00	1000	120	1100	140	1150	220	1200	282	1250
WCB-500-250-6	200	50,00	1500	70	1700	90	1800	140	1900	185	1950
WCB-500-500-6	400	100,00	1500	154	1700	178	1800	275	1900	370	1950
WCB-500-750-6	600	150,00	1500	225	1700	275	1800	425	1900	555	1950
WCB-600-300-6	240	87,50	2500	125	2650	150	2700	250	2750	317	2800
WCB-600-600-6	480	175,00	2500	250	2650	300	2700	500	2750	633	2800
WCB-600-900-6	720	250,00	2500	400	2650	500	2700	750	2750	950	2800

* Energieaufnahme - Energy absorption - Energie d'absorption - Assorbimento d'energia - Absorción de energia
** Endkraft max. - Force max. - Forces finales - Forza finale - Fuerza final

The main components of the modular system at the moment

Robotic joints and components made from igus ${ }^{\circledR}$ tribo-polymers.

Our basic idea is to give developers, labs, and automation integrators access to a joint modular system to construct customised robots which can be used in the most different applications. Always at the lowest possible costs, with the appropriate technology. The required number of joint axes in the appropriate geometric constellation is often decisive for the correct solution.

Our robolink ${ }^{\circledR}$ joints (RL-D worm gear and RL-S strain wave gear) can be combined with each other and powered with different motors. In the framework of the modular system concept, our customers can select either joints, joints with our igus ${ }^{\circledR}$ motors or predefined articulated arm configurations and receive them within short delivery times. Central characteristics of our joints are lubrication-free plastic gears (worm, strain wave and the new cycloidal gear), igus ${ }^{\circledR}$ bearing technology (usually with our PRT polymer slewing ring bearings), and a variety of modular versions.

yeey u!pew

Product Manager robolink ${ }^{\circledR}$
e-mail: mraak@igus.de Phone.: +49 2203 9649-409

(1) blog.igus.eu/category/robolink

www.igus.eu/robolink www.igus.eu/robolink
Also visit our igus ${ }^{\circledR}$ website www.igus.eu, explore
other products, technical details, novelties, helpfu
 online tools, and benefit from our online product
range - any hour of the day. range - any hour of the day.
: $-\frac{\text { Our offers are exclusively directed to dealers / }}{\text { resellers. The quoted unit prices in Euros are net }}$
 invalid with the publication of this price list.

Multi-axis modular system
for drylin ${ }^{\circledR}$ linear robots
www.igus.eu/gantry

Linear robots
for predefined
and spaces
RL-S joints standard configuration
RL-D joints standard configuration

$\begin{aligned} & \text { Asymmetric joint } \\ & \quad i=50: 1 \\ & \text { Quality: high end }\end{aligned}$
from page 8
Motor kit for RL-D-30
NEMA23 stepper motor

+ encoder
more combinations
from page 12
\rightarrow from
Proximity switch kit
for RL-D-30 joints
more information
- from page 16

robolink ${ }^{\circledR}$ D | Robot joint
Symmetrical - with two PRT slewing ring bearings

robolink ${ }^{\circledR}$ D robot joint with two PRT slewing \qquad Slewing ring bearing (iglidur PRT) with a plastic housing. The drive component is a worm gear. The centre hole remains free for feeding cables etc. through. The articulated joints
can be ordered with or without motor.
- Self-locking drive only for reduction gearing of 1:70 - Standard motor option: stepper motor NEMA17 / 23 /
- INI kit for zero position optionally adaptable

Technical data

		RL-D-20-101	RL-D-30-101	RL-D-50-101
Size	$[\mathrm{mm}]$	$90 \times 80 \times 67$	$110 \times 100 \times 94$	$170 \times 150 \times 103$
Shaft diameter	$[\mathrm{mm}]$	8	10	15
Reduction gearing	$[1: \mathrm{x}]$	$3 / 5 / 8 / 16 / 38 / 70$	$3 / 5 / 8 / 30 / 50 / 70$	$3 / 5 / 16 / 48 / 70$
Axis distance	$[\mathrm{mm}]$	31	40	63
Backlash	$\left[{ }^{\circ}\right]$	<0.5	<0.5	<0.5
Breakaway torque	$[\mathrm{cNm}]$	<5	>700	<10
Max. axial dyn. load on output	$[\mathrm{N}]$	>500		
C- Delivery time				
2-3 days				

Dimensions [mm]

Technical data

		RL-D-20-102	RL-D-30-102	RL-D-50-102
Size	[mm]	$90 \times 80 \times 67$	$110 \times 100 \times 94$	$170 \times 150 \times 103$
Shaft diameter	[mm]	8	10	15
Reduction gearing	[1:x]	3/5/8/16/38/70	3/5/8/30/50/70	3/5/16/48/70
Axis distance	[mm]	31	40	63
Backlash	[${ }^{\circ}$	<0.5	<0.5	<0.5
Breakaway torque	[cNm]	< 5	< 7	< 10
Max. axial dyn. load on output	[N$]$	>500	> 700	> 1,200

 $\stackrel{\infty}{\infty}$ $\stackrel{\circ}{\circ}$

品
 $\stackrel{N}{N}$
$\stackrel{\circ}{\infty}$
$\stackrel{\infty}{\sim}$

 8888
 © 8

888

 $\stackrel{\infty}{ }$ 역 $1 \stackrel{\text { d }}{\substack{~}}$ $\stackrel{9}{7} \stackrel{9}{\sim}$ $\dot{\infty}$ no

\&
 8 $\infty \infty \infty$ ∞ 아 으 으 으 우우 으 으 으 ㅇํㄴํํํํ

๑上 ๓ ๓ ๓

$$
\begin{aligned}
& \text { RL-D-20-MK-C-N17-02 } \\
& \text { RI-D-20MK-C-N17-NM }
\end{aligned}
$$

$$
\begin{aligned}
& \text { RL-D-20-MK-C-N17-NM } \\
& \hline \text { RL-D-30-MK-C-N17-00 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { RL-D-30-MK-C-N17-00 } \\
& \text { RL-D-30-MK-C-N17-01 }
\end{aligned}
$$

$$
\frac{\text { RL-D-30-MK-C-N17-01 }}{\text { RL-D-30-MK-C-N17-02 }}
$$

\[
$$
\begin{aligned}
& \text { RL-D-50-MK-C-N23-02 } \\
& \text { RL-D-50-MK-C-N23-NM }
\end{aligned}
$$

\] | \circ |
| :--- | :--- | RL-D-50-MK-C-N23XL-02

igus

Adaptable to various motors, standard option:
NEMA17 / '23 / 'z3XL stepper motor

- INI kit for zero position optionally adaptable page 16

 ง ำํ子

\＆

∞	∞	∞	∞	∞

[^5]Available DC motors：
MOT－AE－B－024－001－037－F－A－AAAA（ 0.1 Nm ）
MOT－AE－B－024－003－037－F－A－AAAA $(0.3 \mathrm{Nm})$
 MOT－AE－B－024－007－037－F－A－AAAA $(0.7 \mathrm{Nm})$ MOT－AE－B－024－010－042－F－A－AAAA（1．0 Nm）
 MOT－AE－B－024－018－042－F－A－AAAA（1．8 Nm）

Technical data

Maximum voltage
Nominal voltage

Motor kits： RL－D－20－MK－C－DCxx－04
RL－D－30－MK－C－DCxx－04 RL－D－50－MK－C－DCxx－04
$x x=$ DC motor type
芯

아 아 아 아 $\stackrel{\infty}{\square} \underset{子}{\infty} \underset{子}{\infty} \underset{子}{\infty} \underset{子}{\infty}$
dot dot d ナ $\ddagger \stackrel{\infty}{\square}$ か \ddagger

Output encoder for RL－D gearboxes

 side by means of an external angle sensor．Hall sensor for the neutral position and incremental A / B signals with a high resolution for the control system．The INI switch and the

99\％81		0ع＇8乙			08＇ャะ			L0－INI－INOW－ם－¢	
［ ${ }^{3}$ ］ səэə！6七－乌z		［ ${ }^{3}$ ］ sevəid $ヶ て-0 \downarrow$			［3］ səoə！ 6 －				
Isenbex uodn	00＇z8	z0－ıld	ャ6	Ot	$9 W \times 7$	99	OZ卜	Og1	20－xヨ－0s－a－7
ısenber uodn	$00 \cdot 881$	10－1yd	ャ6	OL	$9 W \times 7$	99	021	OGL	10－xヨ－09－ם－7
ısenbar uodn	00 ＇t¢	zo－ıld	$\varepsilon 9$	OL	$t W \times \varepsilon$	1ε	09	08	20－メヨコ一0¢－ם－7
łsenber uodn	00 ＇tg	10－1yd	$\varepsilon 9$	Ot	$\square W \times \varepsilon$	1ε	09	08	เ0－メヨコ－0¢－ロ－7
tsenber uodn	00 でった	zo－1yd	$\angle t$	Ot	tW× \times	1ε	09	08	20－メヨコ－0z－ם－7
4senber uodn	00゙でっ	เ0－ıyd	$\angle t$	OL	tW×	1ε	09	08	เ0－yヨ－0z－ם－¢
səวə！ OL moィt	sooed 6－1	10	suled ә${ }^{\circ} \mathrm{d}$	4	u	εp	zp	tp	－ON Hed
［э］seoud								［mu］suo！suәm！a	
моө๐久		әn｜a		นәәб		әң！м			рәл
рәииеч я ләроэиヨ		ฉуиечэ \forall дәроэиэ		$\begin{gathered} \text { хәри। } \\ \text { дәроэиэ } \end{gathered}$		dosues ॥ен			＾s＋

INI kit

Fitting	Switching output	Switching function	Operating voltage	Rated operational
M8 $\times 1$	PNP	NO（Closer）	10．．． 30 V DC	100mA
INI kit－prices［€］				
Part No．			10－24 pieces ［ $€$	25－49 pieces ［ ϵ
RL－D－20－IK－001			34.20	32.30
RL－D－30－IK－001			36.90	34.85
RL－D－50－IK－001			39.96	37.74
Assembly costs INI kit				
RL－D－MONT－INI－01			15.50	13.90

（1）Selection： Initiator kit，drive encoder or output encoder

robolink ${ }^{\circledR}$ D｜Robot joint｜INI kit

robolink ${ }^{\oplus}$ D robot joint with direct drive

robolink $^{\circledR}$ D | RL-D-PT

Rotary-drive unit

Rotary-drive unit for highly precise manual adjustment of components

- 2 lubrication-free robolink ${ }^{\otimes}$ gearboxes with a transmission ratio of $1: 70$, incl. two hand wheels Gearboxes are self-locking

Pivoting: RL-D-30, gearbox set $1: 70$
Rotating: RL-D-20, gearbox set $1: 70$
Rotating: RL-D-20, gearbox set 1:70

- Lubrication-free support with igus ${ }^{\circledR}$ plain bearings

Typical application areas:
Adjustment of satellite dishes
Manual adjustment of instrume
Format adjustments
robolink ${ }^{\circledR}$ D RL-D-PT
Rotary-drive unit

robolink $^{\circledR} \mathrm{S}$ - low clearance strain wave gear
made from plastic
Coaxial gearbox added to the gearbox portfolio of igus ${ }^{\circledR}$. Can
be adapted to different motors, like the RL-D worm gear.
Advantages of strain wave gears: - Low clearance

- High transmission ratios in one stage
- High static holding strength
Typical application areas:

Dimensions [mm]

Dimensions [mm]

Part No.	$\varnothing \mathrm{D}$	B	øм	B1	B2	øG2	øG3	ØP1	øP2	øs	Prices [$\epsilon]$
RL-S-20-N23-00-38-12000	80	55.5	38	45	10.5	M 5×15.5	4xM4	31	66.67	$6.35 \mathrm{~mm}\left(1 / 4^{\prime \prime}\right)$	172.00
RL-S-30-N23-00-38-02000	100	66.5	38	54	12.5	M5 $\times 15.5$	4xM4	42.5	66.67	$6.35 \mathrm{~mm}\left(1 / 4{ }^{\prime \prime}\right)$	upon request

IGUS Developer blog, prices and delivery time www.igus.eu/robolink 23

RL-S-17-...

Properties

- Main components : igus ${ }^{\oplus}$ PRT-01/-02, shaft generator,
flexible inner ring, outer ring
RL-S-20: self-locking drive - s
RL-S-20: self-locking drive - slewing ring bearing
remains in position when powered off
- Lightweight and compact
Technical data - standard version

Part No.	Weight	Reduction gearing	Efficiency	Moment of breakage at the output (static)	Max. output torque	
	[g]			(long-term) (short-term)		
[Nm]	$\left[\begin{array}{c}\text { [Nm] })\end{array}\right.$					
RL-S-17-N11-00-28-020K0	100	$28: 1$	>0.2	26	0.5	0.75
RL-S-17-N17-00-28-020K0	100	$28: 1$	>0.25	26	1.5	3.0
RL-S-20-N23-00-38-12000	290	$38: 1$	>0.3	50	3.0	5.0
RL-S-30-N23-NM-38-02000	490	$38: 1$	>0.3	50	8.0	10.0

INI kit

Fitting	Switching output	Switching function	Operating voltage	Rated operational current
M8×1	PNP		NO (Closer)	$10 \ldots 30 \mathrm{VDC}$
INI kit - prices [€]			100 mA	
Part No.	$\mathbf{1 - 9}$ pieces	$\mathbf{1 0 - 2 4}$ pieces		
RL-S-17-IK-01	38.00	34.20	$\mathbf{2 5 - 4 9}$ pieces	
RL-S-20-IK-01	41.00	36.90	32.30	
Assembly costs INI kit	18.50	15.50	34.85	
RL-D-MONT-INI-01			13.90	

Output encoder for RL-S gearboxes

* The RL-S-17 output encoder does not change the outer dimensions.
$\begin{array}{lccc}\text { Assembly costs encoder kit } & \mathbf{1 - 9} \text { pieces }[\epsilon] & \mathbf{1 0 - 2 4} \text { pieces [} \epsilon] & \mathbf{2 5 - 4 9} \text { pieces [} \epsilon] \\ \text { RL-D-MONT-INI-01 } & 18.50 & 15.50 & 13.90\end{array}$
Developer blog, prices and delivery time www.igus.eu/robolink 25
0

Part No.	Gear	Motor	Specification	Prices $[€]$
RL-S-17-A0164	RL-S-17-N17-00-28-020K0	MOT-AN-S-060-005-042-M-C-AAAC	NEMA17 stepper motor with encoder and M12 connector	327.88 RL-S-20-A0165 RL-S-20-N23-00-38-12000

Configuration example
6 270 mm connecting part (7) 350 mm connecting part 8 50-50 connecting part
 (10) RL-S-17

 5th axis for robolink ${ }^{\circledR}$ RL-DC with RL-S-17 strain wave gear adaptable to robolink ${ }^{\circledR}$ RL-D-20

- Axis of rotation with igus ${ }^{\circledR}$ stepper motor NEMA11 and - Direct screw-connection to the RL-S-17 strain wave gear - The output disc has an INI switch for zero point definition The motor-gearbox unit is directly connected to the
robolink ${ }^{\text {RL-D-20-101-38-01000 standard joint by }}$ robolink ${ }^{\circledR}$ RL-D-20-101-38-01000 standard joint by
means of an adapter plate (4th axis in the modular articulated arm, "big" and "small version")
- Cables (motor, encoder and initiator cables are placed - Cables (motor, encoder and initiator cables are placed
in the existing e-chainsystem ${ }^{\text {® }}$ of the joint) in the existing e-chainsystem ${ }^{\oplus}$ of the joint)
- Output encoder optional

robolink ${ }^{\circledR}$ DQ
robolink ${ }^{\circledR} \mathrm{DQ}$ with decoupled motors

- ${ }^{\circ}$
robolink ${ }^{\ominus}$ DQ/SQ
robolink ${ }^{\circledR}$ SQ and $D Q$ with worm and strain wave gears

Combination of different gear types, worm gear and new igus ${ }^{\circledR}$ More Information about robolink ${ }^{\circledR} \mathrm{D}$ modular strain wave gear. With it, the prototype of a 5 -axis pivoting 1 system

0
0
0
0
\vdots
\vdots

from page 18
Information about the new robolink ${ }^{\oplus}$ strain
wave gears

- from page 18

\because Available
igus

robolink ${ }^{\circledR} \mid$ 5th axis for robolink ${ }^{\circledR}$ RL-DQ

5th axis for robolink ${ }^{\circledR}$ RL-DQ with RL-S-17 More Information about robolink ${ }^{\ominus}$ D modular

1. system
With the new robolink ${ }^{\circledR}$ designer, you can quickly and easily
configure your individual robolink ${ }^{\oplus}$ D robot arm online, in an
intuitive CAD interface.

- Select robolink ${ }^{\circledR}$ components step by step, individually
configure the robotic arms from the first axis up to the
tool
- Adapt to your working space with free selection of arm
length
- Output the max. payload and the max. range of your
individual configuration
Output the parts list
- Save and download your individual configurations
Also usable on a tablet/smartphone
- Inverse kinematics: Simulate movement of the entire
robot arm by pulling the tool axis
-Teach" function for learning movement sequences with
several intermediate steps
robolink ${ }^{\circledR}$ software for programming articulated joints

Supplier:
Commonplace Robotics GmbH
www.cpr-robots.com
info@commonplacerobotics.de

injection-moulding process with automated handling thanks to robolink ${ }^{\oplus}$ D with 4 DOF (Dr. BOY GmbH \& Co. KG)
 CPR control system for sorting good from bad parts (PROFACTOR GmbH)

Trade fair machine RL-DQ-RBT-5532S-AC with 5 DOF and 3 -finger gripper (igus ${ }^{\text {® }}$)
 Manual adjustment of a receiver unit for satellite signals

Trade fair machine - 5 DOF robot arm with RL-D and
RL-S joints. System simulates real use in the igus ${ }^{\circledR}$
factory (igus ${ }^{\circledR}$)
robolink ${ }^{\circledR}$ W | Product overview

 with 2 DOF weighs just 350 g).

The plastic joints are linked by aluminium tubes, which can through the arms. These are specially developed Bowden be made to specified lengths for every joint arm. In order cables. This method enables flexibility within the design stage allowing from 1 DOF up to a maximum of 6 DOF.
from $1,134.5$ \downarrow 园 $\underset{\text {-(E) }}{\text { RL-B103 }}$

菦

fed
from

* System price in EUR for 1 unit purchases, incl. aluminium tubes and wires (no sensors) DOF: degree of freedom robolink $^{\circledR} \mathrm{W} \mid$ System examples
7 joint variants ... unlimited possibilities ... several possible combinations ... The plastic joints are linked by aluminium tubes, which can to reduce weight further there are also options for carbon fibre or reinforced plastic tubes. The actuation wires are fed

2 DOF: : JOC 9
Today, 7 different joint types are available. There are a large number of combination options. The pivoting range can be varied $\left(\pm 90^{\circ},+130 /-50^{\circ},+180^{\circ} / 0^{\circ}\right)$ and there is a choice of rotating or pivoting joints. For higher load requirements a
base joint RL-90-BL1 is available. base joint RL-90-BL1 is available.
More information
www.igus.eu/robolink

robolink ${ }^{\circledR}$ W | Drive units 6 DOF

robolink ${ }^{\ominus}$ application examples

(igns ${ }^{\text {) }}$
 Haccack
HOBBIT" service robotics project at
robolink ${ }^{\circledR}$ articulated joints on autonomous systems. (Project partner Hella Automation, Austria)

Fraunhofer Special design with 4 DOF, 3 joints in series (Fraunhofer IFF Magdeburg)
 its autonomous robot FLASH with 2 robolink $^{\circledR}$ articulated arms, each with 4 DOF.

robolink ${ }^{\circledR}$ software for programming More information about software also online in robolink ${ }^{\circledR}$ blog

> Simple control software: free of charge, open source
www.igus.eu/robolink-software -www.igus.eu/robolink-software igus ${ }^{\circledR}$ uses its own control system for internal use. It consists of stepper motor controllers by Nanotec ${ }^{\circledR}$ and a Crumb 2560 ATmega Chip. The controllers make use of an RS485 bus which is transferred via USB by the Crumb chip (see picture below). For this hardware configuration, igus ${ }^{\circledR}$ offers an open source software named IME ("igus ${ }^{\circledR}$ motion editor"). The software has been developed by the University of Bonn, Institute for computer science. It is a stand-alone software for easy programming of robolink ${ }^{\circledR}$ systems and can be configured for individual joint arms (1-6 DOF).

[^6]$2,3,4,5$ or 6 axes. For all versions of articulated arms, 1-6 DOF
your individual ideas and concepts. No matter if you use 1, Intuitive programming
$2,3,4,5$ or 6 axes. For all versions of articulated arms, 1-6 DOF

- Intuitive programming
- Simple control software

Hardware configuration:
Stepper motor control - NANOTEC SMCI47-S2, memory-chip Crumb2560 ATmega USB module.
robolink ${ }^{\circledR}$ | Electro-mechanical robot arms

robolink ${ }^{\circledR}$ DCi-4 (4 DOF*)

output encoder
12.0
510
1,000
1
RL-DCi-4S
$4,978,-€$

With output encoder

13.0
680
500
1
RL-DCi-5S
$5,492,-€$

* DOF: degree of freedom
(4.) Available
igus
robolink ${ }^{\circledR}$ | Electro-mechanical robot arms

Milling with a robolink ${ }^{\circledR}$ DC

robolink ${ }^{\circledR}$ DC (5 DOF*)

* DOF: degree of freedom

Orders can be placed until 8pm local time. Ordering and deliveries weekdays from 7am to 8pm, Saturday from 8am to 12pm.
No minimum order quantities, no surcharges.
Quick delivery.
www.igus.eu Phone: +49-2203-9649-0 Fax -222

igus $^{\circledR}$ is certified in accordance with ISO 9001:2016 and ISO/TS 16949:2016 in the field of energy supply systems, cables and harnessing, as well as plastic bearings.

\bullet

Product Information

Gripper for small components EGP 50

High Performance Density. Fast. Compact. EGP gripper for small components

Electric 2-finger parallel gripper with smooth-running base jaws guided on roller bearings

Field of application

Gripping and moving of small to medium-sized workpieces with flexible force and high speed in clean environments, such as assembly, testing, laboratory and pharmaceutical industry

Advantages - Your benefits

Highest performance density for the use of smaller grippers sizes
Control via digital I/O for easy commissioning and rapid integration into existing systems
Two to four stage adjustable gripping force for simple adaption to sensitive workpieces

Backlash-free, pre-loaded cross roller guide for precise gripping with nearly constant force for all permissible finger lengths

Very high maximum cycles per minute for highest productivity
Compact dimensions for minimal interfering contours in the application
Proven a thousand times MPG-plus basis for equal gripping forces and strokes with identically high efficiency Brushless DC servomotor for almost wear-free use and a Iong service life

Functional description

The brushless servomotor drives the base jaw via the gear mechanism.

The jaw stroke is synchronized by means of rack and pinion kinematics.

(1) Base Jaw
for the connection of workpiece-specific gripper fingers
(2) Cross roller guidance
precise gripping due to backlash-free base jaw guidance
(3) Gear

Rack and pinion principle for centric gripping
(4) Drive

Brushless DC servomotor

(5) Control electronics

Integrated control and power electronics for decentralized control of the servomotor

CAD data, operating manuals and other current product documents can be found online.

General notes about the series

Operating principle: Rack and pinion principle
Housing material: Aluminum alloy, coated
Base jaw material: Steel
Actuation: servo-electric, via brushless DC servomotor
Warranty: 24 months
Scope of delivery: Enclosed pack with centering sleeves, mount for proximity switch, assembly and operating manual with Declaration of Incorporation.
Gripping force: is the arithmetic total of the gripping force applied to each gripper jaw at distance P (see illustration).

Finger length: is measured from the reference surface as the distance P in direction to the main axis.

Repeat accuracy: is defined as the spread of the end position during 100 consecutive strokes.

Workpiece weight: is calculated for force-fit gripping with a coefficient of static friction of 0.1 and a safety factor of 2 against workpiece slippage at acceleration due to gravity g. For form-fit or capture gripping, there are significantly higher permissible workpiece weights.
Closing and opening times: are purely the times that the base jaws or fingers are in motion. PLC reaction times are not a part of this and are to be considered when cycle times are calculated.

Application example

Electrically driven, dual-axis pick-andplace machine for small components
(1) EGP electric 2-finger parallel gripper
(2) PPU-E pick \& place unit

SCHUNK offers more ...

The following components make the product EGP even more productive - the suitable addition for the highest functionality, flexibility, reliability, and

(i) Additional information regarding the products can be found on the following product pages or at www.schunk.com. Please contact us for further information: SCHUNK technical hotline +49-7133-103-2696

Options and special information

Manually adjustable gripping force: With an integrated rotary switch, the gripping force can be adjusted in two stages for the EGP $25-100 \%$ and 50%, and in four stages for EGP 40,50 and $64-100 \%, 75 \%, 50 \%$, and 25%.
Optional status monitoring via external sensor system: The status of the gripper can be monitored by external senors. Optional adapter plates: Space-saving frontal mounting of the gripper is enabled by optional adapter plates.
KA connection cable: Connection cables with an angled or a straight female connector can be ordered in various lengths to connect the gripper with the power supply and higher-level control system.
Speed Version S: for faster closing and opening times due to the use of a different gear ratio. The option of a gripping force adjustment is no longer available.

EGP 50
Gripper for small components

Gripping force

Finger load

M_{X}
$M_{x} \max .3 \mathrm{Nm}$
$M_{y} \max .4 \mathrm{Nm}$
$\mathrm{F}_{2} \max .200 \mathrm{~N}$

(1) The specified torques and forces are static values, apply for each base jaw, and may occur simultaneously. My may arise in addition to the moment generated by the gripping force itself.

Technical data

Description		EGP $50-\mathrm{N}-\mathrm{N}-\mathrm{B}$
ID		0310960
General operating data		
Stroke per jaw	[mm]	8
Min./max. gripping force	[N]	54/215
Recommended workpiece weight	[kg]	1.05
Max. permissible finger length	[mm]	64
Max. permissible mass per finger	[kg]	0.14
Repeat accuracy	[mm]	0.02
Closing/opening time	[s]	0.21/0.21
Weight	[kg]	0.51
Min.Imax. ambient temperature	[${ }^{\circ}$]	5/55
Protection class IP		30
Noise emission	[dB(A)]	<70
Electrical operating data		
Nominal voltage	[V DC]	24
Nominal current	[A]	0.3
Max. current	[A]	2
Controller electronics		integrated
Communication interface		Digital Inputs
Number of digital inputs/outputs		21-

Main view

The drawing shows the basic version of the gripper with open jaws, without dimensional consideration of the options described below.
(1) Gripper connection
(2) Finger connection
(50) Electrical connection
(72) Fit for centering sleeves
(73) Fit for centering pins
(80) Depth of the centering sleeve hole in the counter part
(90) Sensor IN ...

Maximum permitted finger projection

Permitted range
Inadmissible range
$\mathrm{L}^{\max }$ is equivalent to the maximum permitted finger length, see the technical data table

Jaw design

(90) Vertically positioned prism
(91) Horizontally positioned prism

A workpiece, which is gripped using three points of contact, can be reliably gripped with high repeatability. A system with more than three points of contact is overdetermined. The drawing shows two alternative gripper finger designs for coaxial and radial gripping of a cylindrical part.

Adapter plate

(81) Not included in the scope of delivery

The adapter plate includes an 0-ring* for a direct air connection, additional centering sleeves, and screws for mounting the gripper. *Optional only with pneumatic actuators

Description	ID	
Adapter plate		
APL-MPG-plus 50	0305537	

(i) The adapter plate is a separately ordered, optional accessory.

Adapter plate

(1) Gripper connection
(72) Fit for centering sleeves
(80) Depth of the centering sleeve hole in the counter part

The adapter plate includes an 0-ring* for a direct air connection, additional centering sleeves, and screws for mounting the gripper. *Optional only with pneumatic actuators

(i) The adapter plate is a separately ordered, optional accessory.

Finger blanks with BSWS ABR-BSWS-MPG-plus 50

(2) Finger connection
(90) Machining volume

Finger blanks for customized subsequent machining with integrated jaw quick-change system for precise and fast finger changes.

Description	ID	Scope of delivery
Finger blanks with quick-change jaw system		
ABR-BSWS-MPG-plus 50	0302897	2

Finger blanks with BSWS

(90) Included in the scope of delivery
The finger blanks with jaw quick-change system allow fast and manual gripper finger changes. The mechanical interface to the gripper is already integrated. Only the specific workpiece geometry needs to be machined into the finger blank.

Description	ID	Scope of delivery
Finger blanks with quick-change jaw system		
ABR-BSWS-MPG-plus 50	0302897	2

Object distance sensor OAS-MPG-plus 50

(17) Cable outlet
(28) Through-hole

Object distance sensor for detecting a workpiece and for measuring its distance to the gripper.

Finger blanks ABR-MPG-plus 50

(73) Fit for centering pins

The drawing shows the finger blank which can be reworked by the customer.

Description	ID	Material	Scope of delivery
Finger blanks			
ABR-MPG-plus 50	0340214	Aluminum	2

Object distance sensor

(17) Cable outlet
(9) OAS
(81) Not included in the scope of delivery

Optical distance and presence sensor for direct mounting to to the gripper. One OAS sensor can be attached per gripper.

Description	ID		
Object distance sensor			
OAS-MPG-plus 50	0308894		
Evaluation electronics			
OAS-V09-D	0308865		
OAS-V10-A	0308867		
OAS-V10-D	0308866		

EGP 50
Gripper for small components

Modular Assembly Automation

(4) Grippers
(90) ASG adapter plate
(91) CLM/KLM/LM/ELP/ELM/ELS/HLM linear modules

Grippers and linear modules can be combined with standard adapter plates from the modular assembly system. For more information see our main catalog "Modular Assembly Automation".

IN 40 inductive proximity switches

(17) Cable outlet
(90) Inductive Proximity Switches

Directly mounted end position monitoring.

| Description | ID | Often combined |
| :--- | :--- | :--- | :--- |
| Inductive Proximity Switches | | |
| IN 40-S-M12 | 0301574 | |
| IN 40-S-M8 | 0301474 | |
| INK 40-S | 0301555 | |
| Cable extension | | |
| KV BG12-SG12 3P-0030-PNP | 0301999 | |
| KV BG12-SG12 3P-0060-PNP | 0301998 | |
| KV BW08-SG08 3P-0030-PNP | 0301495 | |
| KV BW08-SG08 3P-0100-PNP | 0301496 | |
| KV BW08-SG08 3P-0200-PNP | 0301497 | |
| KV BW12-SG12 3P-0030-PNP | 0301595 | |
| KV BW12-SG12 3P-0100-PNP | 0301596 | |
| KV BW12-SG12 3P-0200-PNP | 0301597 | |
| Clip for plug/s0cket | | |
| CLI-M12 | 0301464 | |
| CLI-M8 | 0301463 | |
| Connection cables | | |
| KA BG08-L 3P-0300-PNP | 0301622 | |
| KA BG08-L 3P-0500-PNP | 0301623 | |
| KA BG12-L 3P-0500-PNP | 30016369 | |
| KA BW08-L 3P-0300-PNP | 0301594 | |
| KA BW08-L 3P-0500-PNP | 0301502 | |
| KA BW12-L 3P-0300-PNP | 0301503 | |
| KA BW12-L 3P-0500-PNP | 0301507 | |
| Sen50r distributor | | |
| V2-M12 | 0301776 | |
| V2-M8 | 0301775 | |
| V4-M12 | 0301747 | |
| V4-M8 | 0301746 | |
| V8-M12 | 0301752 | |
| V8-M8 | 0301751 | |

(i) Two sensors (closer/S) are required for each unit and extension cables are available as an option. For sensor cables, note the minimum permissible bending radii. These are generally 35 mm .

Attachment kit for FPS

The following FPS position sensor can differentiate between five programmable areas or switching points for the stroke of a gripper, and can be used in connection with a PC as a measuring system.

| Description | ID | |
| :--- | :--- | :--- | :--- |
| Attachment kit for FPS | | |
| AS-FPS-MPG-plus 50 | 0301763 | |

(1) This attachment kit needs to be ordered optionally as an accessory.

Flexible position sensor

(90) FPS-S sensor
(91) FPS-F5 evaluation electronic

Flexible position monitoring of up to five positions.

Description	ID	Often combined
Attachment kit for FPS		
AS-FPS-MPG-plus 50	0301763	
Sensor		
FPS-S 13	0301705	
Cable extension		
KV BG08-SG08 3P-0050	0301598	
KV BG08-SG08 3P-0100	0301599	
Evaluation electronics		
FPS-F5	0301805	

(i) When using an FPS system, an FPS sensor (FPS-S) and an electronic processor (FPS-F5 / F5 T) are required for each gripper as well as an attachment kit (AS), if listed. Cable extensions (KV) are available as options in the "Accessories" catalog chapter.

EGP 50
Gripper for small components

Connection cables

(90) Electrical connection component
(91) Cable with straight connector
(92) Cable with angled connector

Description	ID	Length	Often combined
		$[\mathrm{m}]$	
Connection cables		5	
KA BG08-L 4P-0500	0307767	5	
KA BG08-L 4P-1000	0307768	10	
KA BW08-L 4P-0500	0307765	5	
KA BW08-L 4P-1000	0307766	10	

(i) BG stands for a connection cable with a straight female connector and BW for an angled female connector. SG stands for a connection cable with a straight male connector and SW for an angled male connector.

SCHUNK GmbH \& Co. KG

 Spann- und GreiftechnikBahnhofstr. 106-134 D-74348 Lauffen/Neckar Tel. +49-7133-103-0 Fax +49-7133-103-2239 info@de.schunk.com www.schunk.com

ANNEX 6

Electrical Equipment Data Sheets

Part no.: 50104783 BPS 8 SM 102-01 Bar code positioning system

Contents

- Technical data
- Dimensioned drawings
- Electrical connection
- Diagrams
- Operation and display
- Part number code
- Accessories

Δ Leuze electronic

Part no.: 50104783 - BPS 8 SM 102-01 - Bar code positioning system

Technical data

Basic data	BPS 8
Series	Binary protocol 1
Data telegram	Bar code tape must be ordered separately
Order guide	
	$80 \ldots 140 \mathrm{~mm}$
Optical data	Laser, Red
Depth of field	2, IEC/EN $60825-1: 2007$
Light source	Front
Laser class	
Light beam exit	$0 \ldots 10,000,000 \mathrm{~mm}$
	$0.001 \ldots 100 \mathrm{~mm}$
Measurement data	3.3 ms
Measurement range	$4 \mathrm{~m} / \mathrm{s}$
Resolution	
Measurement value output	Short circuit protected
Max. traverse rate	$4.9 \ldots 5.4 \mathrm{~V}, \mathrm{DC}$
	250 mA
Electrical data	100 mA
Protective circuit	1 Piece(s)
Performance data	
Supply voltage	
Current consumption, max.	
Inputs/outputs selectable	Output current, max.
Number of inputs/outputs selectable	

Interface	RS 232
Type	
RS 232	Process
Function	$1,200 \ldots 187,500 \mathrm{Bd}$
Transmission speed	Adjustable
Data format	1
Start bit	8 data bits
Data bit	1
Stop bit	Adjustable
Parity	Binary
Data encoding	

Service interface	
Type	RS 232
RS 232	
Function	Service

Connection

Number of connections 1 Piece(s)

Δ Leuze electronic

Part no.: 50104783 - BPS 8 SM 102-01 - Bar code positioning system

Connection 1	
Type of connection	Connector
Function	Connection to device
Thread size	M12
No. of pins	$5-\mathrm{pin}$

Mechanical data	
Dimension $(\mathrm{W} \times \mathrm{H} \times \mathrm{L})$	$15 \mathrm{~mm} \times 48 \mathrm{~mm} \times 40.3 \mathrm{~mm}$
Housing material	Metal, Diecast zinc
Lens cover material	Glass
Net weight	70 g
Housing color	Red Black Type of fasteningDovetail grooves Thounting thread
Via opthonal mounting mounting device	

Operation and display	
Lype of display	LED
Number of LEDs	2 Piece(s)

Environmental data

Ambient temperature, operation	$0 \ldots 40^{\circ} \mathrm{C}$
Ambient temperature, storage	$-20 \ldots 60^{\circ} \mathrm{C}$
Relative humidity (non-condensing)	$0 \ldots 90 \%$

Certifications	IP 67, EN 60529 with various connectors or screwed-on caps
Degree of protection	III
Protection class	C UL US
Certifications	US $6,822,774$ B
US patents	

Classification	
eCl@ss 8.0	27280190
eCl@ss 9.0	27280190

Dimensioned drawings

All dimensions in millimeters

Leuze electronic

Part no.: 50104783 - BPS 8 SM 102-01 - Bar code positioning system

Electrical connection

Connection $\mathbf{1}$	
Type of connection	Connector
Function	Connection to device
Thread size	M12

Part no.: 50104783 - BPS 8 SM 102-01 - Bar code positioning system

Connection 1	
Type	Male
Material	Metal
No. of pins	5 -pin
Encoding	A-coded

Pin	Pin assignment
1	+5 V DC
2	RS 232 TxD
3	GND
4	RS 232 RxD
5	SW IN/OUT

Diagrams

Operation and display

LEDs

LED	Display	Meaning
	Off	No supply voltage
	Green, flashing	Device ok, initialization phase
	Green, continuous light	Operational readiness

Leuze electronic

Part no.: 50104783 - BPS 8 SM 102-01 - Bar code positioning system

LED	Display	Meaning
	Red, flashing	Device OK, warning set
	Red, continuous light	Device error
	Orange, flashing	Service operation active
	Off	Positioning deactivated
	Green, continuous light	Positioning running (position value valid)
	Red, continuous light	Positioning running (position value invalid)
	Orange, continuous light	Positioning running (marker label detected)

Part number code

Part designation:
-

Accessories

Connection technology - Connection unit

	Part no.	Designation	Article

Part no.: 50104783 - BPS 8 SM 102-01 - Bar code positioning system

Connection technology - Connection cables

		Part no.	Designation	Article	Description
	U	50102971	$\begin{aligned} & \text { KB 008-10000 A- } \\ & S \end{aligned}$	Connection cable	Connection 1: Connector, M12, Axial, Male, A-coded, 5 -pin Connection 2: Open end Shielded: Yes Cable length: 10,000 mm Sheathing material: PUR
	E	50040757	KB 008-3000 A	Connection cable	Connection 1: Connector, M12, Axial, Female, A-coded, 5 -pin Connection 2: Open end Shielded: Yes Cable length: $3,000 \mathrm{~mm}$ Sheathing material: PUR
	H	50101941	KB-008-3000 A-S	Connection cable	Connection 1: Connector, M12, Axial, Male, A-coded, 5 -pin Connection 2: Open end Shielded: Yes Cable length: 3,000 mm Sheathing material: PUR
	4	50133861	$\begin{aligned} & \text { KD S-M12-5A- } \\ & \text { P1-100 } \end{aligned}$	Connection cable	Connection 1: Connector, M12, Axial, Female, A-coded, 5 -pin Connection 2: Open end Shielded: Yes Cable length: 10,000 mm Sheathing material: PUR

Connection technology - Interconnection cables

	Part no.	Designation	Article	Description

Leuze electronic

Part no.: 50104783 - BPS 8 SM 102-01 - Bar code positioning system

	Part no.	Designation	Article	Description

Connection technology - Connectors

	Part no.	Designation	Article	Description
	50040097	KD 01-5-BA	Connector	Connection: Connector, M12, Axial, Female, A-coded, 5-pin

Mounting technology - Rod mounts

	Part no.	Designation	Article	Description
	50127177	BTU 008M-D10	Mounting system	Design of mounting device: Mounting system Fastening, at system: Sheet-metal mounting, For 10 mm rod Mounting bracket, at device: Screw type Type of mounting device: Turning, 360 Material: Adjustable, Clampable Matal

Mounting technology - Other

	Part no.	Designation	Article	Description
	50104791	BT 8-01	Mounting device	Fastening, at system: Through-hole mounting Mounting bracket, at device: Screw type Material: Metal

Part no.: 50104783 - BPS 8 SM 102-01 - Bar code positioning system

Bar code tape

	Part no.	Designation	Article	Description
	50106467	BCB 8005	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 5,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104792	BCB 8010	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 10,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104793	BCB 8020	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 20,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104794	BCB 8030	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 30,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104795	BCB 8040	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 40,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104796	BCB 8050	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 50,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104797	BCB 8060	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 60,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104798	BCB 8070	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 70,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104799	BCB 8080	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 80,000 \mathrm{~mm}$ Grid dimension: 30 mm

Part no.: 50104783 - BPS 8 SM 102-01 - Bar code positioning system

	Part no.	Designation	Article	Description
	50104800	BCB 8090	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 90,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104801	BCB 8100	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 100,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104802	BCB 8110	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 110,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104803	BCB 8120	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 120,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104804	BCB 8130	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 130,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104805	BCB 8140	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 140,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104806	BCB 8150	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 150,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50106468	BCB 8200	Bar code tape	Dimensions: $47 \mathrm{~mm} \times 200,000 \mathrm{~mm}$ Grid dimension: 30 mm
	50104809	BCB 8 special length 25 mm high	Bar code tape	Dimensions: 25 mm Grid dimension: 30 mm
	50104808	BCB 8 special length 30 mm high	Bar code tape	Dimensions: 30 mm Grid dimension: 30 mm

Leuze electronic

Part no.: 50104783 - BPS 8 SM 102-01 - Bar code positioning system

	Part no.	Designation	Article	Description
	50104807	BCB 8 special length 47 mm high	Bar code tape	Dimensions: 47 mm Grid dimension: 30 mm

SIEMENS

 DEVICE CONNECTION 1X (M20X1,5) 1NO/ 1NC SNAP-ACTION CONTACTS ROTARY ACTUATOR RIGHT/LEFT ADJUSTABLE, METAL LEVER 27MM LONG AND PLASTIC ROLLER 19MM

Figure similar

Product designation	standard position switch
Manufacturer's article number - of the supplied basic switch - of the supplied actuator head for position switches - of the supplied operating lever - of the supplied switching contacts - of the supplied empty enclosure with cover	$\frac{3 S E 5112-0 C A 00}{3 S E 5000-0 A H 00}$ 3SE5000-0AA01 3SE5000-0CA00 3SE5112-0AA00
General technical data:	
Product function - positive opening	Yes
Insulation voltage - rated value	400 V
Surge voltage resistance rated value	6 kV
Protection class IP	IP66/IP67
Degree of pollution	class 3
Shock resistance - acc. to IEC 60068-2-27	$30 \mathrm{~g} / 11 \mathrm{~ms}$
Vibration resistance	

- acc. to IEC 60068-2-6	$0.35 \mathrm{~mm} / 5 \mathrm{~g}$
Mechanical service life (switching cycles) - typical	15000000
Electrical endurance (switching cycles) - at AC-15 at 230 V typical	100000
Electrical endurance (switching cycles) with contactor 3RH11, 3RT1016, 3RT1017, 3RT1024, 3RT1025, 3RT1026 typical	10000000
Electrical operating cycles in one hour with contactor 3RH11, 3RT1016, 3RT1017, 3RT1024, 3RT1025, 3RT1026	6000
Thermal current	6 A
Equipment marking - acc. to DIN EN 61346-2 - acc. to DIN EN 81346-2	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$
Continuous current of the C characteristic MCB	1 A ; for a short-circuit current smaller than 400 A
Continuous current of the quick DIAZED fuse link	10 A ; for a short-circuit current smaller than 400 A
Continuous current of the DIAZED fuse link gG	6 A
Active principle	mechanical
Repeat accuracy	0.05 mm
Minimum actuating torque in activation direction	$0.25 \mathrm{~N} \cdot \mathrm{~m}$
Operating current at AC-15	
- at 24 V rated value	6 A
- at 125 V rated value	6 A
- at 230 V rated value	6 A
- at 400 V rated value	4 A
Operating current at DC-13	
- at 24 V rated value	3 A
- at 125 V rated value	0.55 A
- at 230 V rated value	0.27 A
- at 400 V rated value	0.1 A
Enclosure:	
Design of the housing	block, narrow
Material of the enclosure	metal
Coating of the enclosure	cathodic immersion coating
Design of the housing acc. to standard	Yes
Drive Head:	
Standard-compliant actuator head	EN 50041, design A
Shape of the switch head	roller
Design of the switching function	positive opening
Connections/ Terminals:	
Type of electrical connection	screw-type terminals

Mechanical data:

Cable entry type

 1x (M20 x 1.5)| Communication/ Protocol: | | | |
| :---: | :---: | :---: | :---: |
| Design of the interface | without | | |
| Ambient conditions: | | | |
| Ambient temperature
 - during operation
 - during storage | $\begin{aligned} & -25 \ldots+85^{\circ} \mathrm{C} \\ & -40 \ldots+90^{\circ} \mathrm{C} \end{aligned}$ | | |
| Installation/ mounting/ dimensions: | | | |
| Mounting position | any | | |
| Mounting type | screw fixing | | |
| Certificates/approvals | | | |
| General Product Approval | | Functional Safety/Safety of Machinery | Declaration of Conformity |
| (CCC)
 ccc | | $\frac{\text { Baumusterprüfbesc }}{\text { heinigung }}$ | EG-Konf. |

Test Certificates	other
$\frac{\text { spezielle }}{\underline{n}}$	Bestätigungen

Further information

Information- and Downloadcenter (Catalogs, Brochures,...)
http://www.siemens.com/industrial-controls/catalogs
Industry Mall (Online ordering system)
https://mall.industry.siemens.com/mall/en/en/Catalog/product?mlfb=3SE51120CH01
Cax online generator
http://support.automation.siemens.com/WW/CAXorder/default.aspx?lang=en\&mlfb=3SE51120CH01
Service\&Support (Manuals, Certificates, Characteristics, FAQs,...)
https://support.industry.siemens.com/cs/ww/en/ps/3SE51120CH01
Image database (product images, 2D dimension drawings, 3D models, device circuit diagrams, EPLAN macros, ...)
http://www.automation.siemens.com/bilddb/cax_de.aspx?mlfb=3SE51120CH01\&lang=en

last modified:
11.03.2016

IME18-05BPSZCOS
IME

SICK

INDUCTIVE PROXIMITY SENSORS

IME18-05BPSZC0S | IME

Ordering information

Type	Part no.
IME18-05BPSZCOS	1040934

Other models and accessories \rightarrow www.sick.com/IME

C \mathcal{C} :

Detailed technical data
Features

Housing	Cylindrical thread design
Housing	Standard
Thread size	M18
	1
Diameter	$\varnothing 18 \mathrm{~mm}$
Sensing range $\mathbf{S}_{\mathbf{n}}$	5 mm
Safe sensing range $\mathbf{S}_{\mathbf{a}}$	4.05 mm
Installation type	Flush
Switching frequency	$1,000 \mathrm{~Hz}$
Connection type	Male connector M12, 4-pin
Switching output	PNP
Output function	NO
Electrical wiring	DC 3-wire
Enclosure rating	IP67 ${ }^{1)}$

${ }^{1)}$ According to EN 60529.
Mechanics/electronics

Supply voltage	$10 \mathrm{~V} \mathrm{DC} \mathrm{..} 30 V DC$.
Ripple	$\leq 10 \%$
Voltage drop	$\leq 2 \mathrm{~V}^{1)}$
Current consumption	$10 \mathrm{~mA}^{2)}$
Time delay before availability	$\leq 100 \mathrm{~ms}$
Hysteresis	$5 \% \ldots 15 \%$
1) At la max. 2) Without load. 3) Ub and Ta constant. 4) Of Sr.	

Reproducibility	$\leq 2 \%^{3)} 4$)
Temperature drift (of $\mathbf{S}_{\mathbf{r}}$)	± 10 \%
EMC	According to EN 60947-5-2
Continuous current I_{a}	$\leq 200 \mathrm{~mA}$
Short-circuit protection	\checkmark
Reverse polarity protection	\checkmark
Power-up pulse protection	\checkmark
Shock and vibration resistance	$30 \mathrm{~g}, 11 \mathrm{~ms} / 10 \mathrm{~Hz} . . .55 \mathrm{~Hz}$, 1 mm
Ambient operating temperature	$-25^{\circ} \mathrm{C} \ldots+75{ }^{\circ} \mathrm{C}$
Housing material	Metal, Nickel-plated brass
Sensing face material	Plastic, Plastic
Housing length	69 mm
Thread length	52 mm
Tightening torque, max.	$\leq 40 \mathrm{Nm}$
UL File No.	NRKH.E181493
${ }^{1)}$ At l_{a} max. ${ }^{2)}$ Without load. ${ }^{3)}$ Ub and Ta constant. ${ }^{4)} \mathrm{Of} \mathrm{Sr}$.	

Reduction factors

Note	The values are reference values which may vary
St37 steel (Fe)	1
Stainless steel (V2A, 304)	Approx. 0.8
Aluminum (Al)	Approx. 0.45
Copper (Cu)	Approx. 0.4
Brass $(\mathbf{B r})$	Approx. 0.4

Installation note

Remark	Associated graphic see "Installation"
B	18 mm
C	18 mm
D	15 mm
F	40 mm

Classifications

ECI@ss 5.0	27270101
ECI@ss 5.1.4	27270101
ECI@ss 6.0	27270101
ECI@ss 6.2	27270101
ECI@ss 7.0	27270101
ECI@ss 8.0	27270101
ECI@ss 8.1	27270101
ECI@ss 9.0	27270101

ETIM 5.0	ECOO2714
ETIM 6.0	ECOO2714
UNSPSC 16.0901	39122230

Installation note
Flush installation

Connection diagram
Cd-007
$-\frac{B N!1}{-B K!}+(L+)$
$\rightarrow+n O$

Dimensional drawing (Dimensions in mm (inch))
IME18 Standard, connector, flush

(1) Connection
(2) Indication LED
(3) Fastening nuts (2x); width across 24 , metal

Recommended accessories

Other models and accessories \rightarrow www.sick.com/IME

	Brief description	Type	Part no.
Universal bar clamp systems			
	Universal bar clamp for mounting bars with 12 mm diameter, Zinc diecast, without mounting plate and screws	BEF-KHS-KH3	5322626
Mounting brackets and plates			
	Mounting plate for M18 sensors, steel, zinc coated, without mounting hardware	BEF-WG-M18	5321870
	Mounting bracket for M18 sensors, steel, zinc coated, without mounting hardware	BEF-WN-M18	5308446
Terminal and alignment brackets			
	Clamping block for round sensors M18, without fixed stop, plastic (PA12), glass-fiber reinforced, mounting hardware included	BEF-KH-M18	2051481
	Clamping block for round sensors M18, with fixed stop, plastic (PA12), glass-fiber reinforced, mounting hardware included	BEF-KHF-M18	2051482
Plug connectors and cables			
C	Head A: female connector, M12, 4-pin, straight, A-coded Head B: Flying leads Cable: Sensor/actuator cable, PVC, unshielded, 2 m	YF2A14020VB3XLEAX	2096234
	Head A: female connector, M12, 4-pin, straight, A-coded Head B: Flying leads Cable: Sensor/actuator cable, PVC, unshielded, 5 m	$\begin{aligned} & \text { YF2A14- } \\ & \text { 050VB3XLEAX } \end{aligned}$	2096235
	Head A: female connector, M12, 4-pin, straight, A-coded Head B: Flying leads Cable: Sensor/actuator cable, PVC, unshielded, 10 m	$\begin{aligned} & \text { YF2A14- } \\ & \text { 100VB3XLEAX } \end{aligned}$	2096236
	Head A: female connector, M12, 4-pin, angled, A-coded Head B: Flying leads Cable: Sensor/actuator cable, PVC, unshielded, 2 m	$\begin{aligned} & \text { YG2A14- } \\ & \text { 020VB3XLEAX } \end{aligned}$	2095895
	Head A: female connector, M12, 4-pin, angled, A-coded Head B: Flying leads Cable: Sensor/actuator cable, PVC, unshielded, 5 m	$\begin{aligned} & \text { YG2A14- } \\ & \text { 050VB3XLEAX } \end{aligned}$	2095897
	Head A: female connector, M12, 4-pin, angled, A-coded Head B: Flying leads Cable: Sensor/actuator cable, PVC, unshielded, 10 m	$\begin{aligned} & \text { YG2A14- } \\ & \text { 100VB3XLEAX } \end{aligned}$	2095898
	Head A: female connector, M12, 4-pin, straight Head B: - Cable: unshielded	DOS-1204-G	6007302
	Head A: female connector, M12, 4-pin, angled Head B: - Cable: unshielded	DOS-1204-W	6007303

SICK AT A GLANCE

SICK is one of the leading manufacturers of intelligent sensors and sensor solutions for industrial applications. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in a wide range of industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services complete our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is "Sensor Intelligence."

WORLDWIDE PRESENCE:

Contacts and other locations www.sick.com

SIEMENS

product brand name
Product designation
Design of the product

Enclosure:
Number of command points

SIRIUS ACT

Commanding and signaling devices
EMERGENCY STOP mushroom pushbutton

Actuator:

Design of the operating mechanism	EMERGENCY STOP mushroom pushbutton; tamper-proof
Manner of function of the actuating element	Latching
Product expansion optional Light source	Yes
Color \bullet of the actuating element	Red
Material of the actuating element	plastic
Shape of the actuating element	round
Outer diameter of the actuating element	40 mm
Type of unlocking device	rotate-to-unlatch mechanism
Number of switching positions	2
Front ring:	
Product component front ring	No

General technical data:

Product function	
- positive opening	Yes
- EMERGENCY OFF function	Yes
- EMERGENCY STOP function	Yes
Protection class IP	IP66, IP67, IP69(IP69K)
Degree of protection NEMA rating	NEMA 1, 2, 3, 3R, 4, 4X, 12
Shock resistance	
- acc. to IEC 60068-2-27	Sinusoidal half-wave $50 \mathrm{~g} / 11 \mathrm{~ms}$
- for railway applications acc. to DIN EN 61373	Category 1, Class B
Vibration resistance	
- acc. to IEC 60068-2-6	$10 . . .500 \mathrm{~Hz}: 5 \mathrm{~g}$
- for railway applications acc. to DIN EN 61373	Category 1, Class B
Operating frequency maximum	600 1/h
Mechanical service life (switching cycles)	
- typical	300000
Equipment marking	
- acc. to DIN EN 61346-2	S
- acc. to DIN EN 81346-2	S

Safety related data:

B10 value

- with high demand rate acc. to SN 31920

100000

Ambient conditions:

Ambient temperature

- during operation
- during storage

```
-25 ... +70 }\textrm{C
-40 ... +80 }\textrm{C
```

Installation/ mounting/ dimensions:

Shape of the installation opening	round		
Mounting diameter	22.3 mm		
Mounting height	45.3 mm		
Installation width	40 mm		
Installation depth	26.3 mm		
Certificates/approvals			
General Product Approval		Declaration of Conformity	other
		EG-Konf.	Bestätigungen

Further information
Information- and Downloadcenter (Catalogs, Brochures,...)
http://www.siemens.com/industrial-controls/catalogs

Industry Mall (Online ordering system)

https://mall.industry.siemens.com/mall/en/en/Catalog/product?mlfb=3SU10011HB200AA0

Cax online generator

http://support.automation.siemens.com/WW/CAXorder/default.aspx?lang=en\&mlfb=3SU10011HB200AA0
Service\&Support (Manuals, Certificates, Characteristics, FAQs,...)
https://support.industry.siemens.com/cs/ww/en/ps/3SU10011HB200AA0
Image database (product images, 2D dimension drawings, 3D models, device circuit diagrams, EPLAN macros, ...) http://www.automation.siemens.com/bilddb/cax_de.aspx?mlfb=3SU10011HB200AA0\&lang=en

last modified:

24.02.2016

SIEMENS

Data sheet
INDICATOR LIGHT, 22MM, ROUND, PLASTIC,

product brand name
Product designation
Design of the product

SIRIUS ACT
 Commanding and signaling devices
 Pilot Light

Actuator:

Color		
- of the actuating element		Green
Material of the actuating element		plastic
Shape of the actuating element		round
Outer diameter of the actuating element	mm	29.45
Front ring:		
Product component front ring		No
General technical data:		
Vibration resistance - acc. to IEC 60068-2-6		$10 \ldots 500 \mathrm{~Hz}: 5 \mathrm{~g}$
Equipment marking - acc. to DIN EN 61346-2 - acc. to DIN EN 81346-2		

Ambient conditions:

Ambient temperature

- during operation
- during storage
${ }^{\circ} \mathrm{C} \quad-25 \ldots+70$
${ }^{\circ} \mathrm{C}$
$-40 \ldots+80$

Installation/ mounting/ dimensions:
Height
mm $\quad 29.45$

Width	mm	29.45
Shape of the installation opening		round
Mounting diameter	mm	22

Certificates/ approvals:

Further information

Information- and Downloadcenter (Catalogs, Brochures,...)
http://www.siemens.com/industrial-controls/catalogs
Industry Mall (Online ordering system)
http://www.siemens.com/industrymall
Cax online generator
http://support.automation.siemens.com/WW/CAXorder/default.aspx?lang=en\&mlfb=3SU10016AA400AA0
Service\&Support (Manuals, Certificates, Characteristics, FAQs,...)
http://support.automation.siemens.com/WW/view/en/3SU10016AA400AA0/all
Image database (product images, 2D dimension drawings, 3D models, device circuit diagrams, EPLAN macros, ...) http://www.automation.siemens.com/bilddb/cax_de.aspx?mlfb=3SU10016AA400AA0\&lang=en

last modified:

09.03.2015

SIEMENS

Data sheet
INDICATOR LIGHT, 22MM, ROUND, PLASTIC,

product brand name		SIRIUS ACT
Product designation		Commanding and signaling devices
Design of the product		Pilot Light

Actuator:

Color		
- of the actuating element		Yellow
Material of the actuating element		plastic
Shape of the actuating element		round
Outer diameter of the actuating element	mm	29.45
Front ring:		
Product component front ring		No
General technical data:		
Vibration resistance - acc. to IEC 60068-2-6		$10 \ldots 500 \mathrm{~Hz}: 5 \mathrm{~g}$
Equipment marking - acc. to DIN EN 61346-2 - acc. to DIN EN 81346-2		

Ambient conditions:

Ambient temperature

- during operation
- during storage
${ }^{\circ} \mathrm{C} \quad-25 \ldots+70$
${ }^{\circ} \mathrm{C}$
$-40 \ldots+80$

Installation/ mounting/ dimensions:

mm	29.45

Width	mm	29.45
Shape of the installation opening		round
Mounting diameter	mm	22

Certificates/ approvals:

Further information

Information= and Downloadcenter (Catalogs, Brochures,...)
http://www.siemens.com/industrial-controls/catalogs
Industry Mall (Online ordering system)
http://www.siemens.com/industrymall
Cax online generator
http://support.automation.siemens.com/WW/CAXorder/default.aspx?lang=en\&mlfb=3SU10016AA300AA0
Service\&Support (Manuals, Certificates, Characteristics, FAQs,...)
http://support.automation.siemens.com/WW/view/en/3SU10016AA300AA0/all
Image database (product images, 2D dimension drawings, 3D models, device circuit diagrams, EPLAN macros, ...) http://www.automation.siemens.com/bilddb/cax_de.aspx?mlfb=3SU10016AA300AA0\&lang=en

last modified:

09.03.2015

GL6-P3211 G6

SICK

MINIATURE PHOTOELECTRIC SENSORS

Ordering information

Type	Part no.
GL6-P3211	1068921

Other models and accessories \rightarrow www.sick.com/G6

Illustration may differ

Detailed technical data
Features

Sensor/ detection principle	Photoelectric retro-reflective sensor, Dual lens
Dimensions (W x H x D)	$12 \mathrm{~mm} \times 31.5 \mathrm{~mm} \times 21 \mathrm{~mm}$
Housing design (light emission)	Rectangular
Sensing range max.	$\leq 6 \mathrm{~m}^{1)}$
Sensing range	$\leq 5 \mathrm{~m}^{1)}$
Type of light	Visible red light
Light source	PinPoint LED ${ }^{2)}$
Light spot size (distance)	$\emptyset 8 \mathrm{~mm}(350 \mathrm{~mm})$
Wave length	650 nm
Adjustment	Potentiometer, 270°

${ }^{1)}$ Reflector PL80A.
${ }^{2)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{U}}=+25^{\circ} \mathrm{C}$.
Mechanics/electronics

Supply voltage	$10 \mathrm{~V} D C \ldots 30 \vee \mathrm{DC}$
1)	
Ripple	$\pm 10 \%^{2)}$

[^7]| Power consumption | $30 \mathrm{~mA}{ }^{3)}$ |
| :---: | :---: |
| Switching output | PNP |
| Switching mode | Light/dark switching |
| Switching mode selector | Selectable via light/dark selector |
| Signal voltage PNP HIGH/LOW | $\mathrm{V}_{\mathrm{S}}-(\leq 3 \mathrm{~V})$ / approx. 0 V |
| Output current $I_{\text {max }}$. | $\leq 100 \mathrm{~mA}{ }^{4}$ |
| Response time | < $625 \mu \mathrm{~s}^{5}$) |
| Switching frequency | $1,000 \mathrm{~Hz}^{6)}$ |
| Connection type | Connector M8, 3-pin |
| Circuit protection | $\begin{aligned} & A^{7)} \\ & B^{8)} \\ & D^{9)} \end{aligned}$ |
| Protection class | III |
| Weight | 20 g |
| Polarisation filter | \checkmark |
| Housing material | Plastic, ABS/PC |
| Optics material | Plastic, PMMA |
| Enclosure rating | IP67 |
| Ambient operating temperature | $-25{ }^{\circ} \mathrm{C} \ldots+55{ }^{\circ} \mathrm{C}{ }^{10}$ |
| Ambient storage temperature | $-40^{\circ} \mathrm{C} \ldots+70{ }^{\circ} \mathrm{C}$ |
| UL File No. | NRKH.E348498 \& NRKH7.E348498 |

${ }^{1)}$ Limit values when operated in short-circuit protected network: max. 8 A .
${ }^{2)}$ May not exceed or fall below U_{V} tolerances.
${ }^{3)}$ Without load.
${ }^{4)}$ At Uv $>24 \mathrm{~V}, \mathrm{IA}$ max. $=50 \mathrm{~mA}$.
${ }^{5)}$ Signal transit time with resistive load.
${ }^{6)}$ With light/dark ratio 1:1.
${ }^{7)} A=V_{S}$ connections reverse-polarity protected.
${ }^{8)} B=$ inputs and output reverse-polarity protected.
${ }^{9)} D=$ outputs overcurrent and short-circuit protected.
${ }^{10)}$ Temperature stability following adjustment $+/-10^{\circ} \mathrm{C}$.
Classifications

ECI@ss 5.0	27270902
ECI@ss 5.1.4	27270902
ECI@ss 6.0	27270902
ECI@ss 6.2	27270902
ECI@ss 7.0	27270902
ECI@ss 8.0	27270902
ECI@ss 8.1	27270902
ECI@ss 9.0	27270902
ETIM 5.0	EC002717
ETIM 6.0	EC002717
UNSPSC 16.0901	39121528

Adjustments possible
Adjustment possibility

(4) LED indicator green: Supply voltage active
(5) LED indicator yellow: Status of received light beam
(7) Sensitivity control: potentiometer

Connection diagram
Cd-045
$-{ }_{-}^{-N_{i}}{ }^{1}+(\mathrm{L}+)$
BUi3 $-(\mathrm{M})$
$\rightarrow \frac{\mathrm{BK}!4}{!} \mathrm{Q}$

Characteristic curve

GL6

Operating reserve

(1) Reflector PL80A
(2) Reflector PL40A
(3) Reflector P250
(4) Reflector PL20A
(5) Reflective tape REF-IRF-56

Light spot size
GL6, GL6G

Sensing range diagram
GL6, GL6G

(1) Reflector PL80A
(2) Reflector PL40A
(3) Reflector P250
(4) Reflector PL2OA
(5) Reflective tape REF-IRF-56

Dimensional drawing (Dimensions in mm (inch))

(1) Optical axis, receiver
(2) Optical axis, sender
(3) Mounting holes M3
(4) LED indicator green: Supply voltage active
(5) LED indicator yellow: Status of received light beam
(6) Light/ dark rotary switch: $L=$ light switching, $D=$ dark switching

Recommended accessories

Other models and accessories \rightarrow www.sick.com/G6

SICK AT A GLANCE

SICK is one of the leading manufacturers of intelligent sensors and sensor solutions for industrial applications. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in a wide range of industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services complete our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is "Sensor Intelligence."

WORLDWIDE PRESENCE:

Contacts and other locations www.sick.com

P250

SICK

Sensor Intelligence.

Ordering information

Type	Part no.
P250	5304812

Other models and accessories \rightarrow www.sick.com/

Detailed technical data

Technical specifications

Accessory group	Reflectors
Accessory family	Angular
Description	Rectangular, screw connection
Mounting system type	Screw-on, 2 hole mounting
Ambient operating temperature	$-20^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
Reflective area	$47 \mathrm{~mm} \times 47 \mathrm{~mm}$
Material	PMMA/ABS

Classifications

ECI@ss 5.0	27279203
ECI@ss 5.1.4	27279203
ECI@ss 6.0	27279203
ECI@ss 6.2	27279203
ECI@ss 7.0	27279203
ECI@ss 8.0	27279203
ECI@ss 8.1	27279203
ECI@ss 9.0	27273601
ETIM 5.0	EC002467
ETIM 6.0	EC002467
UNSPSC 16.0901	39111827

Dimensional drawing (Dimensions in mm (inch))

SICK AT A GLANCE

SICK is one of the leading manufacturers of intelligent sensors and sensor solutions for industrial applications. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in a wide range of industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services complete our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is "Sensor Intelligence."

WORLDWIDE PRESENCE:

Contacts and other locations www.sick.com

WL2SG-2F3235

 W2SG-2
SICK

Illustration may differ

Ordering information

Type	Part no.
WL2SG-2F3235	1063647

Other models and accessories \rightarrow www.sick.com/W2SG-2

$\frac{\text { SIRIC }}{\substack{\text { On }}}$

Detailed technical data

Features

Sensor/ detection principle	Photoelectric retro-reflective sensor, autocollimation
Dimensions (W x H x D	$7.7 \mathrm{~mm} \times 21.8 \mathrm{~mm} \times 13.5 \mathrm{~mm}$
Housing design (light emission)	Rectangular
Sensing range max.	$0 \mathrm{~m} . . .1 .2 \mathrm{~m}^{1)}$
Sensing range	$0 \mathrm{~m} . .0 .55 \mathrm{~m}^{1)}$
Type of light	Visible red light
Light source	PinPoint LED ${ }^{2)}$
Light spot size (distance)	$\emptyset 12 \mathrm{~mm}$ (250 mm)
Wave length	640 nm
Adjustment	Cable
AutoAdapt	\checkmark
Special applications	Detecting transparent objects
Special features	Detecting transparent objects
${ }^{1)}$ Reflector P250F. ${ }^{2)}$ Average service life: $100,000 \mathrm{~h}$ at T_{U}	

Mechanics/electronics

Supply voltage	10 V DC ... 30 V DC ${ }^{1)}$
Ripple	$\leq 5 \mathrm{Vpp}^{2}{ }^{\text {) }}$
Power consumption	$20 \mathrm{~mA}{ }^{3)}$
Switching output	PNP
Switching mode	Dark switching
Output current $I_{\text {max }}$.	< 50 mA
Response time	$<0.5 \mathrm{~ms}^{4}$
Switching frequency	$1,000 \mathrm{~Hz}^{5)}$
Connection type	Cable with M8 male connector, 4-pin, $200 \mathrm{~mm}{ }^{6}$
Cable material	PVC
Cable diameter	Ø 3 mm
Circuit protection	$\begin{aligned} & A^{7)} \\ & B^{8)} \\ & D^{9)} \end{aligned}$
Polarisation filter	\checkmark
Housing material	Plastic, ABS/PC
Optics material	Plastic, PMMA
Enclosure rating	IP67
Special feature	Detecting transparent objects
Ambient operating temperature	$-20^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Ambient storage temperature	$-40^{\circ} \mathrm{C} \ldots+75{ }^{\circ} \mathrm{C}$
UL File No.	NRKH.E181493

${ }^{1)}$ Limit values.
${ }^{2)}$ May not exceed or fall below U_{v} tolerances.
${ }^{3)}$ Without load.
${ }^{4)}$ Signal transit time with resistive load.
${ }^{5)}$ With light/dark ratio 1:1.
${ }^{6)}$ Do not bend below $0{ }^{\circ} \mathrm{C}$.
${ }^{7)} \mathrm{A}=\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected.
${ }^{8)} B=$ output reverse-polarity protected.
${ }^{9)} \mathrm{D}=$ outputs overcurrent and short-circuit protected.

Classifications

ECI@ss 5.0	27270902
ECI@ss 5.1.4	27270902
ECI@ss 6.0	27270902
ECI@ss 6.2	27270902
ECI@ss 7.0	27270902
ECI@ss 8.0	27270902
ECI@ss 8.1	27270902
ECI@ss 9.0	27270902
ETIM 5.0	EC002717
ETIM 6.0	EC002717

Connection diagram
Cd-092
$-{ }_{-}^{-\mathrm{B}_{i}}{ }^{1}+(\mathrm{L}+)$

- WHI 2^{2} Teach

BU! $3-(M)$
$\rightarrow \mathrm{BK}_{i} \underline{4} \mathrm{Q}$

Characteristic curve
WL2S-2

(1) Reflector P250F
(2) Reflector PL20F
(3) Reflective tape REF-AC1000
(4) PL10F reflector
(5) Reflector PL8FH

Light spot size
WL2S-2

Spot diameter in mm (inch)

Dimensions in mm (inch)

Sensing range	Spot diameter
$\mathbf{2 0}$	3.4
$\mathbf{(0 . 7 9)}$	(0.13)
$\mathbf{1 0 0}$	6.5
$\mathbf{(3 . 9 4)}$	(0.26)
$\mathbf{2 5 0}$	12.0
$\mathbf{(9 . 8 4)}$	(0.47)
$\mathbf{5 0 0}$	34.0
$\mathbf{(1 9 . 6 9)}$	(1.34)
$\mathbf{1 , 0 0 0}$	48.0
$\mathbf{(3 9 . 3 7)}$	(1.89)
$\mathbf{1 , 2 0 0}$	60.0
$\mathbf{(4 7 . 2 4)}$	(2.36)

Sensing range diagram

WL2S-2

(1)	0		550			1,200	
(2)	0			750	1,000		
(3)	0			750			
(4)	0	00	600				
(5)	0150	250					
	0		$\begin{array}{r} 500 \\ (19.6 \end{array}$			000	$\begin{array}{r} 1,500 \\ (59.06 \end{array}$
Distance in mm (inch)							

- Sensing range

Sensing range max.
(1) Reflector P250F
(2) Reflector PL20F
(3) Reflective tape REF-AC1000
(4) PL10F reflector
(5) Reflector PL8FH

WL2SG-2F3235 | W2SG-2

Dimensional drawing (Dimensions in mm (inch))
WL2S-2

(1) Optical axis, receiver
(2) Optical axis, sender
(3) Middle axis fixing hole Ø 3.2 mm
(4) LED indicator green: Supply voltage active
(5) LED indicator yellow: Status of received light beam
(6) Connection

Recommended accessories

Other models and accessories \rightarrow www.sick.com/W2SG-2

	Brief description	Type	Part no.
	Head A: female connector, M8, 4-pin, angled, A-coded Head B: Flying leads Cable: Sensor/actuator cable, PVC, unshielded, 2 m	YG8U14020VA3XLEAX	2095962
	Head A: female connector, M8, 4-pin, angled, A-coded Head B: Flying leads Cable: Sensor/actuator cable, PVC, unshielded, 5 m	YG8U14050VA3XLEAX	2095963
Reflectors			
	Rectangular, screw connection, $80 \mathrm{~mm} \times 80 \mathrm{~mm}$, PMMA/ABS, Screw-on, 2 hole mounting	PL80A	1003865
	Fine triple reflector, screw connection, suitable for laser sensors, $47 \mathrm{~mm} \times 47 \mathrm{~mm}$, PMMA/ABS, Screw-on, 2 hole mounting	P250F	5308843
	Fine triple reflector, screw connection, suitable for laser sensors, $18 \mathrm{~mm} \times 18 \mathrm{~mm}, \mathrm{PM}$ MA/ABS, Screw-on, 2 hole mounting	PL10F	5311210
	Fine triple reflector, screw connection, suitable for laser sensors, $38 \mathrm{~mm} \times 16 \mathrm{~mm}, \mathrm{PM}$ MA/ABS, Screw-on, 2 hole mounting	PL20F	5308844
2	Fine triple reflector, screw connection, suitable for laser sensors, $56 \mathrm{~mm} \times 28 \mathrm{~mm}, \mathrm{PM}$ MA/ABS, Screw-on, 2 hole mounting	PL30F	5326523
	Fine triple reflector, screw connection, suitable for laser sensors, $76 \mathrm{~mm} \times 45 \mathrm{~mm}$, PMMA/ABS, Screw-on, 2 hole mounting	PL81-1F	5325060
	Fine triple, not self-adhesive, high temperature up to $99^{\circ} \mathrm{C}, \varnothing 10 \mathrm{~mm}, \varnothing$ Reflexionsfläche $8 \mathrm{~mm}, \mathrm{PMMA} / \mathrm{ABS}$	PL8FH	5328583
	Suitable for laser sensors, self-adhesive, cut, see alignment note, $56.3 \mathrm{~mm} \times 56.3 \mathrm{~mm}$, self-adhesive	REF-AC1000-56	4063030
	Fine triple reflector, chemically resistant, screw connection, $18 \mathrm{~mm} \times 18 \mathrm{~mm}$, Plastic, Screw-on, 2 hole mounting	PL10F CHEM	5321636
	Chemically resistant, screw connection, suitable for laser sensors, $16 \mathrm{~mm} \times 38 \mathrm{~mm}$, Plastic, Screw-on, 2 hole mounting	PL20F-CHEM	5326089
	Stainless steel reflector, hygienic design, chemically resistant, enclosure rating IP69K, D12 adapter shaft, PMMA front screens, $25 \mathrm{~mm} \times 25 \mathrm{~mm}$, Stainless steel V4A (1.4404, 316L), D12-adapter shaft	PLH25-D12	2063404
	Stainless steel reflector, hygienic design, chemically resistant, Enclosure rating IP 69K, M12-adapter thread, PMMA front screens, $25 \mathrm{~mm} \times 25 \mathrm{~mm}$, Stainless steel V4A (1.4404, 316L), M12-adapter thread	PLH25-M12	2063403
	Stainless steel reflector, washdown design, chemically resistant, IP 69K enclosure rating, screw connection, PMMA front screens, $14 \mathrm{~mm} \times 14 \mathrm{~mm}$, Stainless steel V4A (1.4404, 316L), Screw-on, 2 hole mounting	PLV14-A	2063405

SICK AT A GLANCE

SICK is one of the leading manufacturers of intelligent sensors and sensor solutions for industrial applications. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in a wide range of industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services complete our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is "Sensor Intelligence."

WORLDWIDE PRESENCE:

Contacts and other locations www.sick.com

P45A

SICK
 Sensor Intelligence.

Ordering information

Type	Part no.
P45A	5320027

Other models and accessories \rightarrow www.sick.com/

Detailed technical data
Technical specifications

Accessory group	Reflectors
Accessory family	Angular
Description	Rectangular, screw connection
Mounting system type	Screw-on, 2 hole mounting
Ambient operating temperature	$-20^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
Reflective area	$31 \mathrm{~mm} \times 8.5 \mathrm{~mm}$
Material	PMMA/ABS

Classifications

ECI@ss 5.0	27279203
ECI@ss 5.1.4	27279203
ECI@ss 6.0	27279203
ECI@ss 6.2	27279203
ECI@ss 7.0	27279203
ECI@ss 8.0	27279203
ECI@ss 8.1	27279203
ECI@ss 9.0	27273601
ETIM 5.0	EC002467
ETIM 6.0	EC002467
UNSPSC 16.0901	39111827

Dimensional drawing (Dimensions in mm (inch))

SICK AT A GLANCE

SICK is one of the leading manufacturers of intelligent sensors and sensor solutions for industrial applications. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in a wide range of industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services complete our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is "Sensor Intelligence."

WORLDWIDE PRESENCE:

Contacts and other locations www.sick.com

IM08-1B5PS-ZTK
IM Standard

SICK

IM08-1B5PS-ZTK | IM Standard

Illustration may differ

Ordering information

Type	Part no.
IM08-1B5PS-ZTK	6020112

Other models and accessories \rightarrow www.sick.com/IM_Standard

Detailed technical data
Features

Housing	Cylindrical thread design
Housing	Short-body
Thread size	M8 x 1
Diameter	$\emptyset 8 \mathrm{~mm}$
Sensing range $\mathbf{S}_{\mathbf{n}}$	1.5 mm
Safe sensing range $\mathbf{S}_{\mathbf{a}}$	1.22 mm
Installation type	Flush
Switching frequency	$5,000 \mathrm{~Hz}$
Connection type	Connector M8, 3-pin
Switching output	PNP
Output function	NO
Electrical wiring	DC 3-wire
Enclosure rating	IP67

${ }^{1)}$ According to EN 60529.
Mechanics/electronics

Supply voltage	$10 \mathrm{VDC} \ldots 30 \mathrm{~V}$ DC
Ripple	$\leq 20 \%^{1)}$
Voltage drop	$\leq 2 \mathrm{~V}^{2)}$
Current consumption	$10 \mathrm{~mA}^{3)}$
Time delay before availability	$\leq 10 \mathrm{~ms}$
Hysteresis	$\leq 10 \%$
Reproducibility	$\leq 5 \%^{4)}$

[^8]| Temperature drift (of $\mathbf{S}_{\mathbf{r}}$) | $\pm 10 \%$ |
| :--- | :--- |
| EMC | According to EN $60947-5-2$ |
| Continuous current $\mathbf{I}_{\mathbf{a}}$ | $\leq 200 \mathrm{~mA}$ |
| Short-circuit protection | \mathbf{J} |
| Reverse polarity protection | \mathbf{J} |
| Power-up pulse protection | $\mathbf{\checkmark}$ |
| Shock and vibration resistance | $30 \mathrm{~g}, 11 \mathrm{~ms} / 10 \ldots 55 \mathrm{~Hz}, 1 \mathrm{~mm}$ |
| Ambient operating temperature | $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ |
| Housing material | Metal, Nickel-plated brass |
| Sensing face material | Plastic, Plastic |
| Housing length | 29 mm |
| Thread length | 12 mm |
| Tightening torque, max. | 4 Nm |
| 1) Of V. | |
| 2) At la max.
 3) Without load.
 4) Ub and Ta constant.
 5) Of Sr. | |

Reduction factors

Note	The values are reference values which may vary
Stainless steel (V2A, 304)	Approx. 0.8
Aluminum (AI)	Approx. 0.45
Copper (Cu)	Approx. 0.4
Brass $(\mathbf{B r})$	Approx. 0.5

Installation note

Remark	Associated graphic see "Installation"
A	1.5 mm
B	2 mm
C	8 mm
D	4.5 mm
E	0 mm
F	12 mm

Classifications

ECI@ss 5.0	27270101
ECI@ss 5.1.4	27270101
ECI@ss 6.0	27270101
ECI@ss 6.2	27270101
ECI@ss 7.0	27270101
ECI@ss 8.0	27270101
ECI@ss 8.1	27270101
ECI@ss 9.0	27270101

ETIM 5.0	ECOO2714
ETIM 6.0	ECOO2714
UNSPSC 16.0901	39122230

Installation note
Flush installation

Connection diagram
Cd-002
$-\overline{B N!} 1+(L+)$
$\rightarrow \mathrm{BKi} 4$ NO

BU

_...!

Dimensional drawing (Dimensions in mm (inch))
IM08, male connector, flush
(1)

(1) Connection
(2) Indication LED
(3) Fastening nuts $(2 x)$; width across 13 , metal

Recommended accessories

Other models and accessories \rightarrow www.sick.com/IM_Standard

SICK AT A GLANCE

SICK is one of the leading manufacturers of intelligent sensors and sensor solutions for industrial applications. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in a wide range of industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services complete our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is "Sensor Intelligence."

WORLDWIDE PRESENCE:

Contacts and other locations www.sick.com

WTB8L-P2231
W8 Laser

SICK

Ordering information

Type	Part no.
WTB8L-P2231	6033221

Included in delivery: BEF-W100-A (1)
Other models and accessories \rightarrow www.sick.com/w8_Laser Illustration may differ

C $\epsilon_{c}{ }^{\circ} \mathrm{NH}_{u s}$

量

Detailed technical data

Features

Sensor/ detection principle	Photoelectric proximity sensor, Background suppression
Dimensions (W x H x D)	$11 \mathrm{~mm} \times 31 \mathrm{~mm} \times 20 \mathrm{~mm}$
Housing design (light emission)	Rectangular
Sensing range max.	$30 \mathrm{~mm} \ldots 300 \mathrm{~mm}^{1)}$
Sensing range	$40 \mathrm{~mm} \ldots 300 \mathrm{~mm}^{1)}$
Type of light	Visible red light
Light source	Laser $^{2)}$
Light spot size (distance)	$\varnothing 1.5 \mathrm{~mm}(300 \mathrm{~mm})$
Wave length	650 nm
Laser class	1
Adjustment	Potentiometer, 4 turns
Special applications	Detecting small objects, Detection of objects moving at high speeds
Test input sender off	TE to + Vs

${ }^{1)}$ Object with 90% reflectance (referred to standard white, DIN 5033).
${ }^{2)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{U}}=+25^{\circ} \mathrm{C}$.

Mechanics/electronics

Supply voltage	10 V DC ... $30 \mathrm{~V} \mathrm{DC}^{1)}$
${ }^{1)}$ Limit values when operated in short-circuit protected network: max. 8 A .	
${ }^{2)}$ May not exceed or fall below U_{v} tolerances.	
${ }^{3)}$ Without load.	
${ }^{4)}$ Signal transit time with resistive load.	
${ }^{5)}$ With light/dark ratio 1:1.	
${ }^{6)} \mathrm{A}=\mathrm{V}_{S}$ connections reverse-polarity protected.	
${ }^{7)} \mathrm{B}=$ inputs and output reverse-polarity protected.	
${ }^{8)} \mathrm{D}=$ outputs overcurrent and short-circuit protected	

Ripple	$\pm 10 \%^{2)}$
Power consumption	$30 \mathrm{~mA}{ }^{3)}$
Switching output	PNP
Switching mode	Light/dark switching
Switching mode selector	Selectable via light/dark rotary switch
Signal voltage PNP HIGH/LOW	Approx. $\mathrm{V}_{\mathrm{S}}-1.8 \mathrm{~V} / 0 \mathrm{~V}$
Output current $I_{\text {max }}$.	$\leq 100 \mathrm{~mA}$
Response time	$\leq 0.25 \mathrm{~ms}^{4)}$
Switching frequency	$2,000 \mathrm{~Hz}^{5)}$
Connection type	Male connector M8, 4-pin
Circuit protection	$\begin{aligned} & A^{6)} \\ & B^{7)} \\ & D^{8)} \end{aligned}$
Weight	10 g
Housing material	Plastic, ABS
Optics material	Plastic, PMMA
Enclosure rating	IP67
Items supplied	Stainless steel mounting bracket (1.4301/304) BEF-W100-A
Ambient operating temperature	$-10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Ambient storage temperature	$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

${ }^{1)}$ Limit values when operated in short-circuit protected network: max. 8 A .
${ }^{2)}$ May not exceed or fall below U_{V} tolerances.
${ }^{3)}$ Without load.
${ }^{4)}$ Signal transit time with resistive load.
${ }^{5)}$ With light/dark ratio 1:1.
${ }^{6)} \mathrm{A}=\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected.
${ }^{7)} B=$ inputs and output reverse-polarity protected.
${ }^{8)} D=$ outputs overcurrent and short-circuit protected.
Classifications

ECI@ss 5.0	27270904
ECI@ss 5.1.4	27270904
ECI@ss 6.0	27270904
ECI@ss 6.2	27270904
ECI@ss 7.0	27270904
ECI@ss 8.0	27270904
ECI@ss 8.1	27270904
ECI@ss 9.0	27270904
ETIM 5.0	EC002719
ETIM 6.0	EC002719
UNSPSC 16.0901	39121528

Adjustments possible
WTB8

(4) Orange LED indicator: switching output active
(5) LED indicator green: stability indicator
(7) Adjustment of sensing range
(8) Light/ dark rotary switch: L = light switching, $D=$ dark switching

Connection diagram
Cd-078
$-{ }_{-}^{-B N_{i}} \frac{1}{=}+(L+)$

- WHi! ${ }^{2}$ Test
$B U!3$
$!-(M)$

Characteristic curve
WTB8L, 300 mm

(1) Sensing range on black, 6\% remission
(2) Sensing range on gray, 18% remission
(3) Sensing range on white, 90% remission

Sensing range diagram
WTB8, 300 mm

| (1) | 30 | | | 300 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| (2) | 30 | | | | 300 |
| (3) | 30 | | | | 300 |

Sensing range
(1) Sensing range on black, 6% remission
(2) Sensing range on gray, 18% remission
(3) Sensing range on white, 90% remission

WTB8L-P2231 | W8 Laser

Dimensional drawing (Dimensions in mm (inch))

Recommended accessories

Other models and accessories \rightarrow www.sick.com/W8_Laser

	Brief description	Type
Head A: female connector, M8, 4-pin, angled, A-coded Head B: Flying leads Cable: Sensor/actuator cable, PVC, unshielded, 2 m Head A: female connector, M8, 4-pin, angled, A-coded Head B: Flying leads Cable: Sensor/actuator cable, PVC, unshielded, 5 m Head A: female connector, M8, 4-pin, straight Head B: - Cable: unshielded Head A: female connector, M8, 4-pin, angled Head B: - Cable: unshielded	YG8U14- O20VA3XLEAX	
YG8U14-		

SICK AT A GLANCE

SICK is one of the leading manufacturers of intelligent sensors and sensor solutions for industrial applications. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in a wide range of industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services complete our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is "Sensor Intelligence."

WORLDWIDE PRESENCE:

Contacts and other locations www.sick.com

CLV621-1120

 CLV62x
SICK

Ordering information

Type	Part no.
CLV621-1120	1041787

Other models and accessories \rightarrow www.sick.com/CLV62x

Detailed technical data

Features

Version	Long Range
Connection type	Ethernet
Reading field	Front
Scanner design	Raster scanner
Focus	Fixed focus
Light source	Visible red light (655 nm)
MTBF	$40,000 \mathrm{~h}$
Laser class	$2($ IEC $60825-1: 2014$, EN 60825-1:2014)
Aperture angle	$\leq 50^{\circ}$
Scanning frequency	$400 \mathrm{~Hz} \ldots 1,200 \mathrm{~Hz}$
Code resolution	$0.35 \mathrm{~mm} \ldots 1 \mathrm{~mm}$
Reading distance	$60 \mathrm{~mm} \mathrm{...730} \mathrm{~mm}{ }^{1)}$
Raster height, number of lines, at distance	$15 \mathrm{~mm}, 8,200 \mathrm{~mm}$

${ }^{1)}$ For details see reading field diagram.

Performance

Bar code types	All current code types, Code 39, Code 128, Code 93, Codabar, GS1-128/EAN 128, UPC /			
GTIN / EAN, Interleaved 2 of 5, Pharmacode, GS1 DataBar, Telepen, MSI/Plessey		,	Print ratio	$2: 1 \ldots 3: 1$
:---	:---			
No. of codes per scan	$1 \ldots 20$ (Standard decoder)			
No. of codes per reading interval	$1 \ldots 50$ (auto-discriminating)			
No. of characters per reading interval	1,500			
No. of multiple readings	500 (for multiplexer function in CAN operation)			
Interfaces	$1 \ldots 99$			
Ethernet				

Mechanics/electronics

Electrical connection	$2 \times \mathrm{M} 12$ cylindrical connectors (12-pin male connector, 4-pin female connector) on swivel con- nector
Operating voltage	10 V DC ... 30 V DC
Power consumption	4.5 W
Housing	Aluminum die cast
Housing color	Light blue (RAL 5012)
Front screen	Glass
Enclosure rating	IP65 (DIN 40 050)
Protection class	III (VDE 0106/IEC 1010-1)
Weight	205 g, without connecting cable
Dimensions (L x W x H)	$61 \mathrm{~mm} \times 66 \mathrm{~mm} \times 38 \mathrm{~mm}{ }^{1)}$
1) Swivel connector is 15 mm longer.	

CLV621-1120 | CLV62x

BAR CODE SCANNERS

Ambient data

Electromagnetic compatibility (EMC)	EN 61000-6-3 (2001-10) / EN 61000-6-2:2005
Vibration resistance	EN 60068-2-6 (1995)
Shock resistance	EN $60068-2-27(1993)$
Ambient operating temperature	$0^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$
Storage temperature	$-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Permissible relative humidity	90%, Non-condensing
Ambient light immunity	2,000 Ix, on bar code
Bar code print contrast (PCS)	$\geq 60 \%$

Classifications

ECI@ss 5.0	27280102
ECI@ss 5.1.4	27280102
ECI@ss 6.0	27280102
ECI@ss 6.2	27280102
ECI@ss 7.0	27280102
ECI@ss 8.0	27280102
ECI@ss 8.1	27280102
ECI@ss 9.0	27280102
ETIM 5.0	EC002550
ETIM 6.0	EC002550
UNSPSC 16.0901	43211701

Dimensional drawing (Dimensions in mm (inch))
CLV62x Ethernet, front

(1) M5

Reading field diagram

Recommended accessories
Other models and accessories \rightarrow www.sick.com/CLV62x

SICK AT A GLANCE

SICK is one of the leading manufacturers of intelligent sensors and sensor solutions for industrial applications. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in a wide range of industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services complete our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is "Sensor Intelligence."

WORLDWIDE PRESENCE:

Contacts and other locations www.sick.com

Enclosures

Small enclosures

Terminal boxes KL

without gland plate

with gland plate

B1 $=$ Overall width
B2 = Cover width
B3 = Clearance width of enclosure
B4 = Clearance/width between profile strips
B5 = Distance between axes of the mounting holes in the profile strips
B6 = Distance from outer edge of enclosure - centre of gland plate

Detail Y
Detail Y
$\mathrm{T} 1=80$

$\mathrm{H} 1=$ Overall height
H2 = Cover height
H3 = Clearance height of enclosure
H4 = Clearance frame/height between profile strips

T1 = Overall depth

1 Only with $W \geq 600 \mathrm{~mm}$
2 Only with $W=800 \mathrm{~mm}$
3 Drilled hole does not apply to stainless steel version
i.L. = Clearance width

Model No. KL			Width dimensions mm						Height dimensionsmm				Depth dimensions
without gland plate	with gland plate	Stainless steel without gland plate	B1	B2	B3	B4	B5	B6	H1	H2	H3	H4	T1
1514.510	-	1521.010	150	148	132	109	125	-	150	148	132	-	80
1528.510	-	-	200	198	182	159	175	-	150	148	132	-	80
1516.510	-	1523.010	200	198	182	159	175	-	200	198	182	-	80
1515.510	-	1522.010	300	298	282	259	275	-	150	148	132	-	80
1517.510	-	1524.010	300	298	282	259	275	-	200	198	182	-	80
1518.510	-	-	400	398	382	359	375	-	200	198	182	-	80
1519.510	-	-	600	598	582	559	575	-	200	198	182	-	80
1500.510	-	1527.010	150	148	132	109	125	-	150	148	132	100	120
1529.510	-	-	200	198	182	159	175	-	150	148	132	100	120
1502.510	-	1528.010	200	198	182	159	175	-	200	198	182	150	120
1501.510	1530.510	-	300	298	282	259	275	150	150	148	132	100	120
1503.510	1531.510	1529.010	300	298	282	259	275	150	200	198	182	150	120
1507.510	1535.510	1526.010	300	298	282	259	275	150	300	298	282	250	120
1589.510	-	-	400	398	382	359	375	-	150	148	132	100	120
1504.510	1532.510	1525.010	400	398	382	359	375	200	200	198	182	150	120
1508.510	1536.510	1530.010	400	398	382	359	375	200	300	298	282	250	120
1511.510	1539.510	-	400	398	382	359	375	200	400	398	382	350	120
1505.510	1533.510	-	500	498	482	459	475	130	200	198	182	150	120
1509.510	1537.510	-	500	498	482	459	475	130	300	298	282	250	120
1506.510	1534.510	-	600	598	582	559	575	150	200	198	182	150	120
1510.510	1538.510	-	600	598	582	559	575	150	300	298	282	250	120
1512.510	1540.510	-	600	598	582	559	575	150	400	398	382	350	120
1527.510	1542.510	-	800	798	782	759	775	150	200	198	182	150	120
1513.510	1541.510	-	800	798	782	759	775	150	400	398	382	350	120

SIEMENS

Antenna ANT795-6MN

IWLAN ANTENNA ANT 795-6MN WITH OMNIDIRECTIONAL CHARACTERISTIC INCL. N-FEMALE CONNECTOR: 6/8 DBI; IP65 (-40-+70 DGR C), $2.4 / 5 \mathrm{GHZ}$; WI-FI COMPLIANCE AND NATIONAL APPROVALS; MOUNTING ON ROOF AND VEHICLES; COMPACT MANUAL ON PAPER GERMAN / ENGLISH; SCOPE OF SUPPLY: 1X ANT795-6MN, 1X TERMINATING RESISTANCE TI795-1R FOR MOUNTING USE MOUNTING SUPPORT 6GK5795-6MN01-0AA6

Wireless frequencies

Type of mobile network / is supported
Operating frequency

- for WLAN in 2.4 GHz frequency band
- for WLAN in 5 GHz frequency band 1
- for WLAN in 5 GHz frequency band 2

WLAN
2.4 ... 2.7 GHz
3.4 ... 3.7 GHz
4.9 ... 5.935 GHz

Electrical data

Impedance	50Ω
Polarization	linear vertical
Radiation characteristic	omnidirectional
Antenna gain compared to spherical radiator \bullet • of the WLAN antenna / in the 2.4 GHz 6 dB frequency band \bullet of the WLAN antenna / in the 5 GHz frequency band	8 dB
Standing wave ratio (VSWR) / maximum	1.8
Radiating angle of the antenna \bullet in the 2.4 GHz frequency band / horizontal	360°

- in the 5 GHz frequency band / horizontal Opening angle / Note
Type of electrical connection / of the antenna
Design of plug-in connection
Angle of inclination / downward / maximum
Transmit power / maximum
Range / with clear line of sight / without disturbance
150°
Note the antenna diagram regarding horizontal beam angle
N -Connector
female
0°
75 W ; at 25° ambient temperature
200 m ; Remark: the distance can be much less and is depending on the space around, on the wireless standard in use, on the data rate and on the antenna installed on the partner station

Mechanical data

Material

- of outer shell

Polycarbonate

Permitted ambient conditions

Ambient temperature

- during operation
- during storage
- during transport

Protection class IP
Wind load / maximum
$-40 \ldots+80^{\circ} \mathrm{C}$
$-40 \ldots+80^{\circ} \mathrm{C}$
$-40 \ldots+80^{\circ} \mathrm{C}$
IP65
10 N ; at $160 \mathrm{~km} / \mathrm{h}$

Design, dimensions and weight

Width	86 mm
Height	43 mm
Depth	86 mm
Net weight	300 g
Mounting type	
\bullet • mast mounting	No
• wall mounting	Yes
\bullet roof mounting	Yes
\bullet directly on the device	No

Product properties, functions, components / general
Product feature / silicon-free

```
Yes
```


Standards, specifications, approvals

Certificate of suitability

Certificate of suitability

- RoHS conformity
- Railway application in accordance with EN 50124-1
- Railway application in accordance with EN 50155

Railway application in accordance with NF-F-16-101, NF-F-16102

Yes

Yes

Yes

Wireless approval	Current national approvals can be found on the Internet under www.siemens.com/funkzulassungen
Further Information / Internet Links	
Internet-Link	
- to website: Selector SIMATIC NET	http://www.siemens.com/snst
SELECTION TOOL	
- to website: Industrial communication	http://www.siemens.com/simatic-net
- to website: Industry Mall	https://mall.industry.siemens.com
- to website: Information and Download Center	http://www.siemens.com/industry/infocenter
- to website: Image database	http://automation.siemens.com/bilddb
- to website: CAx Download Manager	http://www.siemens.com/cax
- to website: Industry Online Support	https://support.industry.siemens.com
last modified:	10.02.2016

ANNEX 7

Final Calculations

Customer $|$\begin{tabular}{c}
Travelling System

\hline Project

Final Calculation of the Travelling Gearmotor

\hline | Person in |
| :---: |
| charge |

\end{tabular}

[^9]a Important: The data you have provided us with serves as a basis for our evaluation or selection. The correctness and completeness of this data is assumed for the intended use of the drive. Please
confirm that the data is correct, including the assumptions we have made. In particular, contact SEW if there are deviating ambient conditions. The choosen drive unit contain descriptions and standard properties and standard options, which can be changed later.
Standard catalog data
Catalog designation

$\begin{array}{cl}{[1 / \mathrm{min}] 1455} & \text { Output speed } \\ 5 & \text { Service factor fb } \\ {[\mathrm{Nm}] 36} & \end{array}$
$[\mathrm{mm}] 25 \times 50$
$[\mathrm{~mm}]-$
$[\mathrm{kW}] 1,1$
Cyclic duration factor
Design specification
R27DRN90S4BE2/TF
Terminal box position
Permitted output overhung load (ne=1500 1/rpm and rated gear
torque)
Wiring dia
cos phi
Enclosure
Enclosure
choosen Braking torque (reduced)
[Nm] 5
Page 3/11
6
Input data
Movement - Transmission : Horizontal/inclined - carrying wheel

Additional gear		
Gear ratio and efficiency		
- Additional gear ratio		1
- Load efficiency	[\%]	90
Mass moments of inertia		
- Mass mom. of inertia of wheel/disc 1 (J1)	[kgm^{2}]	0,000223207
- Mass mom. of inertia of wheel/disc 2 (J2)	[kgm^{2}]	0,000223207
- Weight of chain/belt (m3)	[kg]	0,72
- Pitch diameter on the drive end (d01)	[mm]	69,11
Forces		
- Pitch diameter (determine overhung load) (d01)	[mm]	69,11
- Additional radial force (FR) pro Antrieb	[N]	0
- Transm. elem. factor for overh.load		1,25
- Number of teeth on drive end (z1)		14-19

6

Drive data	
Motor data	
- DR... - Asynchronous AC motor	
- DR../FG - Integral motor (or as stand-alone motor)	
- System voltage	[V] 400
- Min./Max. moment of inertia fac.	$1 / 50$
- With forced cooling fan	No
- Number of poles	4
- Base frequency / max. frequ.	$[\mathrm{Hz]}$] 8 / 87
- Efficiency class: IE3 = Premium efficiency	
- With encoder	No
Gear unit data	
- R - Helical gear unit	
-R, RX - Foot-mounted	
- Mounting position	M1
- Adapter	No

Page 5/11
d

α
Emergency stop results for max. emergency stop braking torque in travel section:6

Braking distance	[mm]	3420	Acceleration	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	-1,326
Braking time	[s]	2,272	Max. torque from braking (SEW output shaft)	[Nm]	-22,61
Braking work	[J]	1355	Max. overhung load (SEW output shaft)	[N]	817,7
Brake load	[\%]	13,93	Max. axial force (SEW output shaft)	[N]	0
Stopping accuracy	[mm]	410,4			
motor speed during brake application	[1/min]	2290			
Number of braking operations until readjustment		132808			

6

Result data / $1 \times$ R27DRN90S4BE2/TF, $i=5$

Customer machine / gear unit		
Result data with reference to gear unit output (only customer end without dynamic portion of the motor Jmot + Jgear)		
Max. acceleration	[m/s ${ }^{2}$	1,25
Max. decelaration	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	-1,25
Mean velocity	[m/s]	1,5
Max velocity	[m/s]	3
Max. torque during motor operation	[Nm]	43,88
Max. regenerative torque	[Nm]	-20,07
cubic torque	[Nm]	25,46
Max. static application torque	[Nm]	5,268
Max. overhung load (+ fz)	[N]	1587
cubic overhung load (+fz)	[N]	921
Max. axial load (+ fz)	[N]	0
Gear unit load at max. application torque (in relation to the max. permitted output torque))	[\%]	46,2
Gear unit load at max. application overhung load (based on max. permitted output overhung load $=1712,0 \mathrm{~N} ; \mathrm{x}=25,5 \mathrm{~mm}$)	[\%]	92,7

Motor (Delta connection, 87 Hz Base frequency, Power times the square root of 3)		
Catalog designation	DRN90S4	
Motor power (Power times the square root of 3)	[kW]	1,1 (1,9)
Motor speed (87 Hz Base frequency)	[1/min]	1455 (2530)
Cyclic duration factor		S1-100\%
Rated torque	[Nm$]$	7.2
Rated voltage	IV	230/400
Rated current (Power times the square root of 3)	[A]	2,55 (4.4)
Starting torque	[\%]	270
mean start-up torque	[\%	210
Mass moment of inertia of the motor	[kgm¹	0,005268
Pinion shaft end/shaft end	[mm]	12
Brake type:		BE2B
Maximum braking torque	[Nm]	20
choosen Braking torque	[Nm 1	5
Brake reaction time	[s]	0.017
Mass moment of inertia of the brake	[kam¹	0,00047
Braking work until inspection/maintenance	[J]	180000000

CONSOVEYO

Assunt Wheels and the Travelling Wheels

CONSOVEYO
 кoraer solutions

Subject Master's Thesis - Final Calcalation of
the Guiding Wheels and the Travelling Wheels

i Check lines:7.4;

?	Input sectinon										
1.0	Preliminary shaft diameter design										
2.0	Shaft shape and dimensions										
	The scale of the displayed shaft diameter.			『	Calculation units		SI Units ($\mathrm{N}, \mathrm{mm}, \mathrm{kW} . .$.$) -$				
	${ }_{-100^{\circ} \triangle}$		400		800		1200				
2.2	Table	1	2	3	4	5	6	7	8	9	10
	Origin	0,00	190,00	220,00	889,00	919,00	1019,00	1019,00	1019,00	1019,00	1019,00
	L	190,000	30,000	669,000	30,000	100,000					
	\varnothing Da	25,000	25,000	35,000	35,000	25,000					
	$\varnothing \mathrm{Db}$	25,000	35,000	35,000	25,000	25,000					
	\varnothing da										
	$\varnothing \mathrm{db}$										
	R										
2.3	Total length of the shaft				FreeFixed	1019,00	$\begin{array}{ll} & {[\mathrm{mm}]} \\ \bigcirc & {[\mathrm{mm}]} \\ 0 & {[\mathrm{~mm}]}\end{array}$	2.6	The shaft surface (Roughness Ra) E...Rough machined (3,2)		
2.4	X-coordinate of the left support (bearing)					76,50					
2.5	X-coordina	the right	ort (bear			942,50					
3.0	Notches and necking-down on the shaft										

4.0 Loading of the shaft

4.1 Loading	X	Fx	F	alfa	Mt	Mb	alfa	Q	b	alfa
	[mm]	[N$]$		[${ }^{\circ}$]	[Nm]		[${ }^{\circ}$]	[N / mm]	[mm]	${ }^{\circ} \mathrm{]}$
1	17,00		1019,5		-21,94					
2	159,00		-1270,0	65	43,88					
3	1002,00		1019,5		-21,94					

$\mathbf{4}$									
$\mathbf{5}$									
$\mathbf{6}$									
$\mathbf{7}$									
$\mathbf{9}$									
$\mathbf{1 0}$									

5.0 Rotating masses

$6.0 \quad$ Material and the type of loading

6.1 Shaft material (Ultimate tensile strength min-max)			
A...Structural steel (350-700)	\checkmark	595 -	[MPa]
6.2 Ultimate tensile strength	Su/Rm	590	[MPa]
6.3 Yield strength in tension	$\mathrm{S}_{\mathrm{Y}} / \mathrm{Re}$	310	[MPa]
6.4 Yield strength in bending	$\mathrm{SYb} / \mathrm{Re}_{\mathrm{b}}$	449	[MPa]
6.5 Yield strength in shear	$\mathrm{S}_{\mathrm{Y}} / \mathrm{Re}_{\mathrm{s}}$	242	[MPa]
6.6 For reversed loading			
6.7 Fatigue limit - tension-pressi	σ_{C}	226	[MPa]
6.8 Fatigue limit - bending	$\sigma_{\text {eC }}$	292	[MPa]
6.9 Fatigue limit - torsion	τ_{c}	208	[MPa]
6.10 For cyclic loading			
6.11 Fatigue limit - tension-pressı	$\sigma_{\text {hc }}$	339	[MPa]
6.12 Fatigue limit - bending	$\sigma_{\text {ehc }}$	437	[MPa]
6.13 Fatigue limit - torsion	$\tau_{\text {hc }}$	239	[MPa]
6.14 Specific mass	Ro	7850,0	[kg/m^3]
6.15 Modulus of elasticity in tensi	E	210000	[MPa]
6.16 Modulus of elasticity in shea	G	80000	[MPa]

6.17 Dead load	Yes	
6.18 Max. displayed coefficient of safety	20 -	
6.19 Stress ratio factor α_{0}	1,15	V
6.20 Coefficient of maximum loading		
6.21 Bending	1,00	
6.22 Radial load	1,00	
6.23 Torsion	1,00	
6.24 Tension/Compression	1,00	
6.25 Loading conditions		
6.26 Loading from bending moment	B...Repeated	\checkmark
6.27 Loading from radial force	B...Repeated	\checkmark
6.28 Load from torsional moment	C...Reversed	∇
6.29 Loading from tension/pressure force	A...Static	\checkmark
6.30 Dynamic strength check		
6.31 Impact from shaft surface	Yes	∇
6.32 Impact from shaft size	Yes	∇
6.33 Impact from stress concentration (not		∇

?	
7.0	Results - summary

7.1	Reaction in the support R1
7.2	Reaction in the support R2

\mathbf{x}
0
0

7.3 Total shaft weight
7.4 Maximum deflection
7.5 Maximum torsional deflectio
7.6 Angular deflection in R1
7.7 Angular deflection in R2
7.8 Max. bending stress
7.9 Max. stress in shear
7.10 Max. stress in torsion
7.11 Max. stress in tension/press।
7.12 Max. equivalent stress
7.13 Min. static safety
7.14 Min. dynamic safety
7.15 Critical speed (A)

Critical speed (B)
Critical speed (C)
Results section

medias

Bearing analysis

Calculation / Installation proposal

Date: 2018-11-08 13:27:14

Abstract

Attention Please see list of warnings at the end of print out. All rights are reserved with regard to this document, even in the event that a patent should be granted or a utility model registered. The document must be treated confidentially. Without our written consent, neither the document itself, nor copies thereof or any other renderings of the complete contents or of extracts therefrom may be made available to third parties or put to improper use by the recipient in any other way. The document has been prepared on the basis of your requirements as set forth above and our own assumptions. Our details take into account those risks which were apparent to us on the basis of your requirements as made available to us. The document has been prepared solely in connection with the purchase of our products. The results shown in the document have been worked out carefully and in accordance with the state of the art, but do not constitute an express or implied guaranty as to quality or durability in the legal sense. You are not dispensed thereby from checking the suitability of the products. We shall be liable for the details provided in the document only in the event of willful intent or negligence. If the document is part of a supply agreement, the liability provisions agreed there shall apply.

Table of contents

1 Input
2 Results
3 Warnings

1 Input

Bearing:

Designation
Inside diameter
Outside diameter
Width
Basic dynamic load rating
Basic static load rating
Fatigue limit load
Load carrying capacity of housing, radial
Limiting speed
Limiting speed, grease

RAY25-XL
d $\quad 25.000 \mathrm{~mm}$
D
B
C
CO
Cu
C_Or_G
n_lim
n_lim_g
52.000 mm
15.000 mm

14900 N
7800 N
395 N
3650.00 N
8000.0 1/min
16700.0 1/min

Basic frequency factors related to $60 / \mathrm{min}$:
Overrolling frequency factor on outer ring
Overrolling frequency factor on inner ring
Overrolling frequency factor on rolling element

Ring pass frequency factor on rolling element	RPFFB	4.6570
Speed factor of rolling element set for rotating inner ring FTFF_i	0.3972	
Speed factor of rolling element set for rotating outer ring FTFF_o	0.6028	

Lubrication data:

Permitted lubricants
Type of lubrication
Type of grease
ISO VG class
Contamination
External heat flow

Other conditions:

Ambient temperature
Requisite reliability
Condition of rotation
Clearance group

Load Loadcase 1:

Time portion	q	100.000%
Speed	n_i	$458.401 / \mathrm{min}$
Type of movement	rotating	
Radial load	Fr	1157.0 N
Axial load	Fa	0.0 N
Mean operating temperature	T	$70^{\circ} \mathrm{C}$

2 Results

Overrolling frequencies Loadcase 1:

Overrolling frequency on outer ring
Overrolling frequency on inner ring
Overrolling frequency on rolling element
Ring pass frequency on rolling element
Speed of rolling element set

BPFO	$27.30981 / \mathrm{s}$
BPFI	$41.45021 / \mathrm{s}$
BSF	$17.78991 / \mathrm{s}$
RPFB	$35.57981 / \mathrm{s}$
FTF	$3.03441 / \mathrm{s}$

Load factors and equivalent loads Loadcase 1:

Equivalent static load
Equivalent dynamic load

P0
P_i
1157.00 N
1157.00 N

Lubrication Loadcase 1:

Operating viscosity
Reference viscosity
Viscosity ratio
Life adjustment factor

Bearing behavior RAY25-XL:

Static load safety factor
Minimum load safety factor of housing, radial
Minimum load safety factor of housing, axial
ny
$51.6 \mathrm{~mm}^{2} / \mathrm{s}$
ny1
kappa
$44.8 \mathrm{~mm}^{2} / \mathrm{s}$
a_ISO
1.15
7.21

Total rating life in hours (nominal)	Lh10	77651 h
Modified rating life in hours	Lh_nm	559631 h
Maximum equivalent static load	P0_max	1157.00 N
Equivalent speed	n	$458.4 \mathrm{l} / \mathrm{min}$
Equivalent dynamic load	P	1157.00 N

3 Warnings

Do not overspecify the bearing - A rating life (to ISO 281) greater than 60000 hours usually leads to overspecified bearing arrangements.

The relubrication interval cannot be calculated for the grease used.
www.ina.com
www.fag.de
2018-11-08 13:27:14 (11.0)

Company:	ISEP
Name:	Fernandes
Adress:	Rua Dr. A. Bernardino de Almeida, 431
City:	$4200-072$ Porto

Phone: 228340500
eMail:
Project:
Editor:

Chain Drive Figure:

Chain Drive Data:

No.	Teeth	$X[m m]$	$Y[m m]$	$R w C[m m]$	Pos.	Torque $[\mathrm{Nm}]$	Force $[\mathrm{N}]$	In-, Outgoing Angle [${ }^{\circ}$]
0	17	0.00	0.00	40.7	i	0.0	0.0	270.0
1	17	157.00	0.00	40.7	i	43.9	0.0	90.0

Chain	D 85 ML		
Standard	8187	Total Length	[mm] 529.9
Pitch	[mm] 12.700	Number of Links	41.7
Height of Plate	[mm] 12.2	Even Number of Links	42

Load Assumption:

Pulling Force	$[\mathrm{N}]$	1269.8
Force from Tensioner	$[\mathrm{N}]$	0.0
Centrifugal Force	$[\mathrm{N}]$	3.7
Total Chain Force under Load	$[\mathrm{N}]$	1273.4

Revolutions of Driving Sprocket	$[\mathrm{rm}]$	458.4
Chain Velocity	$[\mathrm{m} / \mathrm{s}]$	1.65
Total Elastic Strain of Chain	$[\mathrm{mm}]$	0.19

External Factors:

Shock Faktor 2.00
Lubrication Factor 1.00

Results:

Pressure on Bearing Area		
calculated	$\left[\mathrm{N} / \mathrm{cm}^{2}\right]$	1273.43
allowed	$\left[\mathrm{N} / \mathrm{cm}^{2}\right]$	1720.23

Drive Capacity		
calculated	$[W]$	2100.5
corrected	$[W]$	5167.6

Static Fracture Surety
s stat (>7)
31.4

Dynamic Fracture Surety
S dyn (>5)
15.7
:---:
Working Hours
>20000

* refer to 3.0\% relative Chain Elongation

The selected chain satisfies the requirements of expected durability of 15000 h

Questions:

iwis-Responsible:

Phone:
eMail:

CAUTION, IMPORTANT NOTICE!

Our calculation program is only designed to give you an initial overview of our assortment. You should never use the result listed there as the basis for an order. For this, please contact our competent employees, who would be glad to make you an individual offer. We therefore assume no responsibility and make no guarantee for the correctness of the information delivered and for the orders, which are placed on the basis of the calculation program. The listed calculation result also does not represent an offer of iwis antriebssysteme GmbH \& Co. KG (iwis ketten)

CONSOVEYO

Assunto Master's Thesis - Travelling System - Calculation of the Locking Assemblies Tollow

i Calculation without errors.
ii Project information

Input section
1.0 Loading and basic parameters of the coupling
1.1 Calculation units
SI Units ($\mathrm{N}, \mathrm{mm}, \mathrm{kW}$...)
1.2 Coupling type : Clevis pin for rotating rod-clevis connection. Loading with transversal bending force.

1.3 Connection loading
1.4 Transferred power
1.5 Shaft speed
1.6 Torque
1.7 Acting force

P	7,46	$[\mathrm{~kW}]$
	1500,0	$[/ \mathrm{min}]$
	47,49	$[\mathrm{Nm}]$
	1091,0	$[\mathrm{~N}]$

1.8 Operational and mounting parameters of the coupling
1.9 Type of loading
1.10 Type of pin
1.11 Type of fit
1.12 Desired safety

1.18 Rod material (min. tensile strength)

2.0 Design of coupling dimensions

3.0 Strength checks of the coupling
3.1 Pin check for shearing
3.2 Permissible shear stress
3.3 Comparative stress
3.4 Safety

$\tau_{\text {A }}$	610,0	[MPa] [MPa]
τ	6,9	
	88,44	

Pin check for bending
Permissible bending stress
Comparative stress
Safety

$\sigma_{\text {A }}$	594,0	$\begin{aligned} & {[\mathrm{MPa}]} \\ & {[\mathrm{MPa}]} \end{aligned}$
σ	51,7	
	11,48	

3.9 Check of contact pressure : Pin - Clevis

3.10	Permissible pressure	$\mathrm{p}_{\text {A }}$	30,0	[MPa]
3.11	Comparative pressure	p	11,4	[MPa]
3.12	Safety		2,64	
3.13	Check of contact pressure: Pin - Rod			
3.14	Permissible pressure	p_{A}	35,0	[MPa]
3.15	Comparative pressure	P	3,2	[MPa]
	Safety		10,78	

Customer data

Mass	$\mathrm{m}:$	400	kg
Impact speed	$\mathrm{v}:$	3	$\mathrm{~m} / \mathrm{s}$
Strokes per hour	$\mathrm{X}:$	1	$1 / \mathrm{h}$
Number of parallel $\mathrm{n}:$ buffers 2 Stroke $\mathrm{S}:$ Auto mm			

Selection

Model	WCB-080-120-6-B	
Article number	CB080120-6B	
Rate of utilization/stroke	45.9	$\%$
Stroke	96.0	mm
Kinetic energy per stroke	900.00	Nm
Propelling energy p. stroke:	0.00	Nm
Total energy per stroke	900.00	Nm
Total energy per hour	900.00	Nm
Effective mass	200.00	kg
Counterforce	Click	N
Impact speed	3.00	$\mathrm{~m} / \mathrm{s}$

Warranty claims for calculated and selected products are only accepted after written confirmation of the selection.

Weforma Dämpfungstechnik GmbH
Werther Str. 44
DE-52224 Stolberg
Telephone: +49 2402 9892-0
Fax: +49 2402 9892-250
info@weforma.com

Weforma Dämpfungstechnik GmbH
Fischauergasse 148/2
AT-2700 Wiener Neustadt
Telephone: +43 2622 8823-30
Fax: +43 2622 8823-315
info.at@weforma.com

Weforma Dämpfungstechnik S.r.I.
Via Roma 55
IT-35027 Noventa Padovana (PD)
Telephone: +39 0498936194
Fax: +39 0498598096
info.it@weforma.com

Customer		
Project	Extraction System Calculation of the Servo Gearmotor	
Person in charge		
File	SEW - CÁLCULO MOTOREDUTOR DE TRANSLAÇÃO.SEWPRO	
Date	2018-05-16	

a

6
Input data
Movement - Transmission : Horizontal/inclined - gear wheel, gear rack

Page 3/9
d

\mathfrak{d}
Emergency stop results for max. emergency stop braking torque in travel section:6

Result data / $1 \times$ RF07CMP40M/BK/KY/../.., $\mathrm{i}=23,32$

Customer machine / gear unit				Motor		
Result data with reference to gear unit output (only customer end without dynamic portion of the motor Jmot + Jgear)				Result data with reference to motor shaft (with dynamic portion of the motor Jmot + Jgear)		
Max. acceleration	a	[m/s ${ }^{\text {² }}$]	0,9	Max. acceleration	[${ }^{1 / s^{2} \text {] }}$	31644
Max. decelaration	-a	[$\left.\mathrm{m} / \mathrm{s}^{2}\right]$	-0,9	Max. decelaration	[$\left./ 1 \mathrm{~s}^{2}\right]$	-31644
Mean velocity	vmittel	[m/s]	0,18	Mean motor speed	[1/min]	1055
Max velocity	vmax	[m/s]	0,45	Mean thermic motor speed	[1/min]	1288
Max. torque during motor operation	Mmax	[Nm]	15,15	Max. motor speed	[1/min]	2637
Max. regenerative torque	-Mmax	[Nm]	0	Max. mechanical braking time	[s]	0
Max. static application torque	Mstat_max	[Nm]	12,58	Max. torque during motor operation	[Nm]	0,7195
				Max. regenerative torque	[Nm]	0
Medium output speec	nam	[1/min]	45,23	R.m.s. square torque (mechanical)	[Nm]	0,3388
Effective torque	Maeff	[Nm]	12,3	R.m.s. square torque (thermal)	[Nm]	0,34
cubic torque	Makub	[Nm]	10,31	Max. static motor torque (mechanical)	[Nm]	0,5801
Speed ratio	fk		0,6808	Max. static motor torque (thermal)	[Nm]	0,5801
Thermic torque	Math	[Nm]	8,301	Travel sections with max. load		5
Max. overhung load (+ fz)	FRmax	[N]	0			
cubic overhung load (+fz)	FRkub	[N$]$	0	Motor utilization at S1 and mean speed	[\%]	42,5
Max. axial load (+ fz)	FAmax	[N$]$	0	Max. torque based on rated motor torque	[\%]	89,9
				Max. motor current	[A]	0,8378
Gear unit load at max. application torque (Mmax to Mapk)		[\%]	29,7	Max. inertia ratio Jext/mot		8,063
Gear unit load at effective application torque (Maeff to Mamax)		[\%]	24,59	Max. load inertia (without efficiency)	[kgm^{2}]	0,0001935
Gear unit load at cubic application torque (Macubic to Mamax/fK)		[\%]	14,04	Max. regenerative power	[kW]	0
Gear unit load at max. application overhung load (based on max. permitted output overhung load $=0,0 \mathrm{~N} ; \mathrm{x}=\mathrm{L} / 2$)		[\%]	0	Mean braking power (only regenerative travel sections) Regenerative cyclic duration factor	[kW]	0
Gear unit load at cubic application overhung load (FRcubic to FRamax)		[\%]	0	Regenerative energy	[J]	0
For preloaded drives (toothed belts, flat belts, narrow belts, and pinion / gear rack), the cubic overhung load (FRcub) equals the maximum overhung load (FRmax).						

2018-05-16 19:38:04

Diagrams

Page 9/9
i Check lines:7.5;

4										
$\mathbf{5}$										
$\mathbf{6}$										
$\mathbf{7}$										
9										
10										

5.0 Rotating masses

Material and the type of loading			
6.1 Shaft material (Ultimate tensile strength min-max)			
A...Structural steel (350-700)	\checkmark	595 -	[MPa]
6.2 Ultimate tensile strength	Su/Rm	590	[MPa] \square
6.3 Yield strength in tension	$\mathrm{S}_{\mathrm{Y}} / \mathrm{Re}$	307	[MPa]
6.4 Yield strength in bending	$\mathrm{S}_{\mathrm{Yb}} / \mathrm{Re}_{\mathrm{b}}$	400	[MPa]
6.5 Yield strength in shear	$\mathrm{S}_{\mathrm{YS}} / \mathrm{Re}_{\text {S }}$	215	[MPa]
6.6 For reversed loading			
6.7 Fatigue limit - tension-press	σ_{C}	201	[MPa]
6.8 Fatigue limit - bending	$\sigma_{\text {ec }}$	260	[MPa]
6.9 Fatigue limit - torsion	$\tau_{\text {c }}$	186	[MPa]
6.10 For cyclic loading			
6.11 Fatigue limit - tension-press	$\sigma_{\text {hc }}$	302	[MPa]
6.12 Fatigue limit - bending	$\sigma_{\text {ehc }}$	390	[MPa]
6.13 Fatigue limit - torsion	$\tau_{\text {hc }}$	213	[MPa]
6.14 Specific mass	Ro	7850,0	[kg/m^3]
6.15 Modulus of elasticity in tensi	E	210000	[MPa]
6.16 Modulus of elasticity in shea	G	80000	[MPa]

6.17 Dead load	Yes	
6.18 Max. displayed coefficient of safety	50 -	
6.19 Stress ratio factor α_{0}	1,15	\checkmark
6.20 Coefficient of maximum loading		
6.21 Bending	1,00	
6.22 Radial load	1,00	
6.23 Torsion	1,00	
6.24 Tension/Compression	1,00	
6.25 Loading conditions		
6.26 Loading from bending moment	B...Repeated	∇
6.27 Loading from radial force	B...Repeated	∇
6.28 Load from torsional moment	C...Reversed	∇
6.29 Loading from tension/pressure force	A...Static	∇
6.30 Dynamic strength check		
6.31 Impact from shaft surface	Yes	∇
6.32 Impact from shaft size	Yes	\checkmark
6.33 Impact from stress concentration (notc	Yes	\checkmark

$\boldsymbol{?}$	
7.0	Results - summary

7.16 Results for X co-ordinate		12,00	32,00	698,50	718,00	763,50			
16...Deflection - Sum [mm]	∇	0,00064837	0,01172665	0,01237324	7,5939E-05	0,02771563	0,00739587	0,00739587	0,00739587
27...Torsion angle [${ }^{\circ}$]	\checkmark	0	0	-0,2308728	-0,2449636	-0,2570766	0	0	0
30...Equivalent stress [MPa]	∇	0,00285209	4,8617911	10,8297138	20,488902	7,11960236	0	0	0
41...Safety coefficient (static)	∇	50	50	38,995925	20,9189837	50	50	50	50
42...Safety coefficient (dynamic)	∇	50	50	30,8609735	15,4834007	43,0847318	50	50	50

medias

Bearing analysis

Calculation / Installation proposal

Date: 2018-11-09 22:22:16

Abstract

Attention Please see list of warnings at the end of print out. All rights are reserved with regard to this document, even in the event that a patent should be granted or a utility model registered. The document must be treated confidentially. Without our written consent, neither the document itself, nor copies thereof or any other renderings of the complete contents or of extracts therefrom may be made available to third parties or put to improper use by the recipient in any other way. The document has been prepared on the basis of your requirements as set forth above and our own assumptions. Our details take into account those risks which were apparent to us on the basis of your requirements as made available to us. The document has been prepared solely in connection with the purchase of our products. The results shown in the document have been worked out carefully and in accordance with the state of the art, but do not constitute an express or implied guaranty as to quality or durability in the legal sense. You are not dispensed thereby from checking the suitability of the products. We shall be liable for the details provided in the document only in the event of willful intent or negligence. If the document is part of a supply agreement, the liability provisions agreed there shall apply.

Table of contents

1 Input
2 Results
3 Warnings

1 Input

Bearing:

Designation
Inside diameter
Outside diameter
Width
Basic dynamic load rating
Basic static load rating
Fatigue limit load
Limiting speed
Limiting speed, grease

2204-2RS-TVH
d $\quad 20.000 \mathrm{~mm}$
D $\quad 47.000 \mathrm{~mm}$
B $\quad 18.000 \mathrm{~mm}$
C
CO
Cu
n_lim
n_lim_g

10100 N
2600 N
161 N
9400.0 1/min
15400.0 1/min

Basic frequency factors related to $60 / \mathrm{min}$:

Overrolling frequency factor on outer ring
Overrolling frequency factor on inner ring
Overrolling frequency factor on rolling element
Ring pass frequency factor on rolling element

BPFFO	4.8666
BPFFI	7.1334
BSFF	2.5090
RPFFB	5.0180

Speed factor of rolling element set for rotating inner ring FTFF_i	0.4056
Speed factor of rolling element set for rotating outer ring FTFF_o	0.5944

Lubrication data:

Permitted lubricants
Type of lubrication
Type of grease
ISO VG class
Contamination
External heat flow

Only grease
grease
user defined
ISO VG 460
normal cleanliness
dQ/dt 0.0 kW
t
$20^{\circ} \mathrm{C}$
90 \%
rotating inner ring

Load Loadcase 1:

Time portion
Speed
Type of movement
Radial load
Axial load
Mean operating temperature

q	100.000%
n_i	$500.001 / \mathrm{min}$
rotating	
Fr	191.0 N
Fa	0.0 N
T	$70^{\circ} \mathrm{C}$

2 Results

Overrolling frequencies Loadcase 1:

Overrolling frequency on outer ring
Overrolling frequency on inner ring Overrolling frequency on rolling element
Ring pass frequency on rolling element
Speed of rolling element set

BPFO	$40.55531 / \mathrm{s}$
BPFI	$59.44471 / \mathrm{s}$
BSF	$20.90811 / \mathrm{s}$
RPFB	$41.81631 / \mathrm{s}$
FTF	$3.37961 / \mathrm{s}$

Load factors and equivalent loads Loadcase 1:

Equivalent static load
Equivalent dynamic load

Lubrication Loadcase 1:
Operating viscosity
Reference viscosity
Viscosity ratio
Life adjustment factor
ny
ny1
kappa
a_ISO

S0_min
Lh10
Lh_nm
P0_max
n
13.613
$>1000000 \mathrm{~h}$
191.00 N
191.00 N
$92.5 \mathrm{~mm}^{2} / \mathrm{s}$
$44.7 \mathrm{~mm}^{2} / \mathrm{s}$
2.07
50.00
$>1000000 \mathrm{~h}$
191.00 N
500.0 1/min

3 Warnings

Do not overspecify the bearing - A rating life (to ISO 281) greater than 60000 hours usually leads to overspecified bearing arrangements.

The relubrication interval cannot be calculated for the grease used.
www.ina.com
www.fag.de
2018-11-09 22:22:16 (11.0)

Company:
Name:
Adress:
City:

Phone:	
eMail:	
Project:	Extraction System-Calculation of the Driving Chain
Editor:	João Fernandes

Chain Drive Figure:

Chain Drive Data:

No.	Teeth	$X[m m]$	$Y[m m]$	$R w C[m m]$	Pos.	Torque $[\mathrm{Nm}]$	Force $[\mathrm{N}]$	In-, Outgoing Angle [${ }^{\circ}$]
0	25	0.00	0.00	42.1	i	0.0	200.0	165.4
1	11	45.00	45.00	21.0	o	0.0	0.0	194.6
2	11	145.00	86.50	21.0	i	0.0	0.0	274.3
3	11	-145.00	86.50	21.0	i	0.0	90.0	
4	11	-45.00	45.00	21.0	0	0.0	0.0	90.0

Chain	G 67 ML				
Standard		8187	Total Length	[mm]	859.1
Pitch	[mm]	9.525	Number of Links		90.2
Height of Plate	[mm]	8.2	Even Number of Links		92

Load Assumption:

Pulling Force	$[\mathrm{N}]$	200.0
Force from Tensioner	$[\mathrm{N}]$	0.0
Centrifugal Force	$[\mathrm{N}]$	0.1
Total Chain Force under Load	$[\mathrm{N}]$	200.1

Revolutions of Driving Sprocket	$[\mathrm{rm}]$	113.1
Chain Velocity	$[\mathrm{m} / \mathrm{s}]$	0.45
Total Elastic Strain of Chain	$[\mathrm{mm}]$	0.01

External Factors:

Shock Faktor 1.50
Lubrication Factor 1.00
iwis Chain Engineering

Results:

Pressure on Bearing Area		
calculated	$\left[\mathrm{N} / \mathrm{cm}^{2}\right]$	714.58
allowed	$\left[\mathrm{N} / \mathrm{cm}^{2}\right]$	1151.49

Drive Capacity		
calculated	$[W]$	89.8
corrected	$[W]$	570.1

Static Fracture Surety
s stat (>7)
55.0

Dynamic Fracture Surety

Sdyn (>5)
36.7

The expected durability refer to 3\% relative chain elongation amounts to 62764 working hours.

Questions:
iwis-Responsible:
Phone:
eMail:

CAUTION, IMPORTANT NOTICE!

Our calculation program is only designed to give you an initial overview of our assortment. You should never use the result listed there as the basis for an order. For this, please contact our competent employees, who would be glad to make you an individual offer. We therefore assume no responsibility and make no guarantee for the correctness of the information delivered and for the orders, which are placed on the basis of the calculation program. The listed calculation result also does not represent an offer of iwis antriebssysteme GmbH \& Co. KG (iwis ketten)
${ }^{\text {Assunto }}$ Subject Master's Thesis - Extraction Systern - Calculation of the Locking Assembly Tallow

Data:

Document "Calculation of the Extraction Servo Gearmobor" $\rightarrow M_{\text {stabladyn }}^{\operatorname{ma}}=15,15 \mathrm{~N} \cdot \mathrm{~m}$ $(2 x)$ Driving Sprockets $\Rightarrow M_{t / \text { sprocket }}=\frac{M_{\text {stat }}^{\text {máx }}+\text { din }}{2}=\frac{15,15}{2}=7,6 \mathrm{~N} \cdot \mathrm{~m}$

$7,6 \mathrm{~N} \cdot \mathrm{~m}$

Calculation of the Locking Assembly for the Driving Sprockets:
\rightarrow Selected Locking Assembly: TLK $110 \underbrace{20 \times 28} \rightarrow M_{t}=220 \mathrm{~N} \cdot \mathrm{~m} ; L_{n}=18 \mathrm{~mm} ; p n=115 \mathrm{MPa}$

Assembly Type 1, $C=1$
(Tollok Catalog - Page 38)
$M_{t}=220 \mathrm{~N} \cdot \mathrm{~m}>7,6 \mathrm{~N} \cdot \mathrm{~m}$ ok!
$C=1 ; \sigma_{0,2}=350 \mathrm{MPa} ; \mathrm{pr}=113 \mathrm{MPa} \Rightarrow k=1,41$ (Tollok Catalog -Page 39)
$D n \geqslant D \cdot K \Leftrightarrow D M \geqslant 28 \cdot 1,41 \Leftrightarrow D M \geqslant 39,48 \mathrm{~mm}<57 \mathrm{~mm}$ ok!
$B \geqslant L_{n} \Leftrightarrow B \geqslant 18 \mathrm{~mm}<19 \mathrm{~mm}$ ok!

$$
\frac{\text { Data: }}{\Delta p_{\text {total }}}=\frac{\pi}{2} \mathrm{rad} ; e=22,5 \mathrm{~mm}
$$

$$
t_{\varphi_{\text {total }}}=1 \mathrm{~s} \quad\left(t_{\text {accel }}=t_{\text {desac }}=0,3 \mathrm{~s}\right) ; t_{\text {stopped }}=2 \mathrm{~s}
$$

$$
m_{\text {finger }}=0,12 \mathrm{~kg} ; \eta_{L}=0,9 ; g=9,81 \mathrm{~m} / \mathrm{s}^{2}
$$

Kinematics and Loads on the DC Drive:

$\omega_{\text {max }}=\frac{\Delta \varphi_{2}}{\Delta t_{2}} \Leftrightarrow \omega_{\text {max }}=\frac{0,4 \cdot(\pi / 2)}{0,4} \Leftrightarrow \omega_{\text {max }}=1,57 \mathrm{rad} / \mathrm{s} \Rightarrow r_{\text {max }}=\frac{30}{\pi} \cdot \omega_{\text {max }} \Leftrightarrow$ $\Leftrightarrow n_{\text {max }}=\frac{30}{\pi} \cdot 1,57 \Leftrightarrow$
$\alpha=\frac{\omega_{\max }}{\Delta t_{1}} \Leftrightarrow \alpha=\frac{1,57}{0,3} \Leftrightarrow \alpha=5,23 \mathrm{rad} / \mathrm{s}^{2}$
$\Leftrightarrow n_{\text {max }}=15 \mathrm{rpm}$

Section 1

$a_{t_{1}}=\alpha \cdot e \Leftrightarrow a_{t_{1}}=5,23 \cdot 22,5 E-3 \Leftrightarrow a_{t_{1}}=0,12 \mathrm{~m} / \mathrm{s}^{2}$
$M_{t_{1}}=M_{\text {stat. }}+M_{\text {dy }} \Leftrightarrow M_{t_{1}}=m_{\text {finger }} \cdot g \cdot \frac{1}{n_{L}} \cdot e+m_{\text {finger }} \cdot a_{t_{1}} \cdot \frac{1}{n_{L}} \cdot e \Leftrightarrow$
$\Leftrightarrow M_{t_{1}}=0,12 \cdot 9,81 \cdot \frac{1}{0,9} \cdot 22,5 E-3+0,12 \cdot 0,12 \cdot \frac{1}{0,9} \cdot 22,5 E-3 \Leftrightarrow M_{t_{1}}=0,0299 \mathrm{~N} \cdot \mathrm{~m}$

Section 2

$$
\begin{aligned}
& a_{t_{2}}=0 \Rightarrow v=\text { const } \\
& M_{t_{2}}=M_{\text {stat }} \cdot \Leftrightarrow M_{t_{2}}=m_{\text {finger }} \cdot g \cdot \frac{1}{\eta_{L}} \cdot e \Leftrightarrow M_{t_{2}}=0,12 \cdot 9,81 \cdot \frac{1}{0,9} \cdot 22,5 E-3 \Leftrightarrow
\end{aligned}
$$

$$
\Leftrightarrow M_{t_{2}}=0,0294 \mathrm{~N} \cdot \mathrm{~m}
$$

CONSOVEYO

Assunto

Master's Thesis - Extraction System - Calculation of the DC Drive for the Retralable Fingers

Design calculations

Referencia

Section 3

$$
\begin{aligned}
& a_{t_{3}}=a_{t_{1}}=0,12 \mathrm{~m} / \mathrm{s}^{2} \\
& M_{t_{3}}=M_{\text {stat }}-M_{\text {dyn }} \Leftrightarrow M_{t_{3}}=0,0294-m_{\text {finger }} \cdot a_{t_{3}} \cdot \eta_{L} \cdot e \Leftrightarrow
\end{aligned}
$$

$\Leftrightarrow M_{t_{3}}=0,0294-0,12 \cdot 0,12 \cdot 0,9 \cdot 22,5 E-3 \Leftrightarrow M_{t_{3}}=0,0291 \mathrm{~N} \cdot \mathrm{~m}$
i) It was considered that the portions of the static and dynamic torques are equal in the three sections - acceleration, constant speed, deceleration - for the sake of safety in the calculations. In real situation, the torque decreases along the stroke of the finger because the center of mass is approaching the axis of rotation.
$M_{R M S}=\sqrt{\frac{M_{t_{1}}^{2} \cdot t_{1}+M_{t_{2}}^{2} \cdot t_{2}+M_{t_{3}}^{2} \cdot t_{3}}{t_{\text {ciclo }}}} \Leftrightarrow M_{R M S}=\sqrt{\frac{0,0299^{2} \cdot 0,3+0,0294^{2} \cdot 0,4{ }^{2}+0,0291^{2} \cdot 0,3}{3}} \Leftrightarrow$
$\Leftrightarrow M_{\text {RMS }}=0,017 \mathrm{~N} \cdot \mathrm{~m}$
$\oint_{\text {max motor }}=24 \mathrm{~mm}$
\rightarrow Selected DC Drive: Maxon GP 22 B + A-max 22 GB

[^0]: DEVELOPMENT OF AN INNOVATIVE SHUTTLE SYSTEM FOR AUTOMATED
 STORAGE AND RETRIEVAL SYSTEMS

[^1]: Technical Data
 Planetary Gearhead Housing
 Output shaft stainless steel hardened stainless steel, hardened Radial play, 6 mm from flange $\quad \max .0 .08 \mathrm{~mm}$ $\begin{array}{lrr}\text { Axial play at axial load } & <4 \mathrm{~N} & 0 \mathrm{~mm} \\ & >4 \mathrm{~N} \quad \max .0 .05 \mathrm{~mm}\end{array}$ Max. axial load (dynamic) 8 N Max. force for press fits 25 N Direction of rotation, drive to output 8000 rpm
 Max. continuous input speed Recommended temperature range $-40 \ldots+100^{\circ} \mathrm{C}$ Number of stages
 Max. radial load, 6 mm
 from flange $\quad 10 \mathrm{~N} \quad 15 \mathrm{~N} \quad 20 \mathrm{~N} \quad 20 \mathrm{~N} \quad 20 \mathrm{~N}$ Gearhead values according to sleeve bearing version

[^2]: Taper Lock bushes supplied as a separate items

[^3]: Taper Lock bushes supplied as a separate items

[^4]: Dimensions in millimetres.
 Keyways are British Standard Metric BS 4235: Part 1: 1972 DIN 6885 and conform to ISO recommendations with the exception of those marked* which are shallower. Where a key is to be used it should be parallel and side fitting, with top clearance. Depth of keyway is measured at the CENTRE.
 Bold italic type indicates bushes made of steel or ductile iron.

[^5]: Easy rotary movements without control technology
 －Only voltage supply needed

[^6]: pen source software
 for the robolink ${ }^{\circledR}$ modular system
 You can use our robolink ${ }^{\circledR}$ modular kit to easily implement - Free of charge your individual ideas and concepts. No matter if you use 1,

[^7]: ${ }^{1)}$ Limit values when operated in short-circuit protected network: max. 8 A .
 ${ }^{2)}$ May not exceed or fall below U_{v} tolerances.
 ${ }^{3)}$ Without load.
 ${ }^{4)}$ At Uv>24 V, IA max. $=50 \mathrm{~mA}$.
 ${ }^{5)}$ Signal transit time with resistive load.
 ${ }^{6)}$ With light/dark ratio 1:1.
 ${ }^{7)} \mathrm{A}=\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected.
 ${ }^{8)} B=$ inputs and output reverse-polarity protected.
 ${ }^{9)} \mathrm{D}=$ outputs overcurrent and short-circuit protected.
 ${ }^{10)}$ Temperature stability following adjustment $+/-10^{\circ} \mathrm{C}$.

[^8]: 1) Of V_{S}.
 ${ }^{2)}$ At l_{a} max.
 ${ }^{3)}$ Without load.
 ${ }^{4)} \mathrm{Ub}$ and Ta constant.
 ${ }^{5)} \mathrm{Of} \mathrm{Sr}$.
[^9]: SEW WORKBENCH-CÁLCULO MOTOREDUTOR DE
 TRANSLAÇÃO-0000.SEWPRO
 2018-11-06

 File
 Date

