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Inter-speaker speech variability assessment using statistical deformable models  

from 3.0 Tesla magnetic resonance images 

 

Abstract: The morphological and dynamic characterization of the vocal tract during speech 

production has been gaining greater attention due to the motivation of the latest improvements in 

Magnetic Resonance (MR) imaging; namely, with the use of higher magnetic fields, such as 3.0 

Tesla. In this work, the automatic study of the vocal tract from 3.0 Tesla MR images was assessed 

through the application of statistical deformable models. Therefore, the primary goal focused on the 

analysis of the shape of the vocal tract during the articulation of European Portuguese sounds, 

followed by the evaluation of the results concerning the automatic segmentation, i.e. identification of 

the vocal tract in new MR images. In what concerns speech production, this is the first attempt to 

automatically characterize and reconstruct the vocal tract shape of 3.0 Tesla MR images by using 

deformable models; particularly, by using active and appearance shape models. The achieved results 

clearly evidence the adequacy and advantage of the automatically analysis of the 3.0 Tesla MR 

images of these deformable models in order to extract the vocal tract shape and assess the involved 

articulatory movements. These achievements are mostly required, for example, for a better 

knowledge on speech production, mainly of patients suffering from articulatory disorders, and to 

build enhanced speech synthesizer models. 

 

Keywords: Medical Imaging; Image Analysis; Modelling and Segmentation; Active and Appearance 

Shape Models; Portuguese Speech Language; Vocal Tract Shape; Morphological Study. 
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1. Introduction 

Since the first applications of Magnetic Resonance (MR) imaging to speech production assessment, in the 

1980s [1, 2], many studies have been performed, namely for French [3], English [4], Swedish [5], Japanese 

[6], and European Portuguese (EP) [7-9] languages. 

Due to the lengthy data acquisition time of the early MR imaging systems, the first studies were restricted to 

vowels and some consonants [10, 11]. However, with the emerging development of rapid imaging 

techniques, such as synchronized sampling methods [12] or tagged cine-MR [13, 14], the acquisition of 

image data regarding articulatory movements became possible. Nowadays, the acquisition of three-

dimensional (3D) MR image sequences has been steady [15] and, consequently, enormous expectations have 

been made about the attainment of image data on speech production in a more efficient and repeatable 

manner. 

Various organs have important roles in the production of numerous speech sounds, functioning in an 

organized, i.e. articulated, manner in order to change the shape and length of a set of air cavities - the vocal 

tract. Most of these organs, named articulators, are soft-tissues that execute active movements during the 

speech production, such as the lips, tongue and velum. The tongue is a muscular organ capable of moving in 

nearly every direction, expanding, compressing and displaying a fine degree of articulation in the oral cavity. 

Nonetheless, individual differences in the vocal tract morphology turn speech production into a unique motor 

activity. Inter-speaker variability of the acoustic speech signal can confound the process of any movement 

data to evaluate theories of speech movement control [16]. Thus, this challenges the capability of Magnetic 

Resonance Imaging for the morphological description of the acoustical inter-speaker variability [17]. With 

the cutting-edge MR improvements, a proper 3D description on the vocal tract geometry of the speakers can 

be reached, both in terms of good image contrast and temporal resolution. In addition, useful and accurate 

morphological and dynamic information can also be attained, as to the positions and shapes of the involved 

articulators during speech production [9, 18-20]. 

The use of deformable models in image analysis has been generating remarkable results in innumerable and 

distinct applications [8, 21, 22]. Active contours, deformable templates, physical models and statistical 

models can be considered as the most well-known deformable models to extract object features from input 



4 

 

images [23]. Active contours were introduced in [24], by considering the segmentation contour as a “snake”. 

Hence, the segmentation contour consists of an elastic set of points that are adjusted to the border of the 

object to be segmented, driven by the combination of internal and external forces, in order to minimize the 

energy of the model. On the other hand, deformable geometrical shapes (templates), built considering the 

shape of the object to be segmented, are parameterized by appropriated functions in order to segment the 

modelled object in new images based on its characteristic image features [25]. Recently, enhanced physical 

modelling approaches integrate the previously acquired knowledge about the objects, making the models 

used in the image segmentation process more realistic [26]. Finally, statistical models, particularly Point 

Distribution Models (PDMs) are built from a set of training shapes of the object under study in order to 

extract its main characteristics through statistical modelling [21, 27]. Then, the PDMs can be used to 

segment the modelled object in new images by considering the image intensity information, resulting in the 

Active Shape Models (ASMs) [21, 28], or by considering the image texture information, following in the 

Active Appearance Models (AAMs) [19, 21, 29]. 

In this work, deformable models, in particular, PDMs, ASMs and AAMs, were applied in the automatic 

study of the vocal tract from 3.0 Tesla Magnetic Resonance Images; mainly, to evaluate the shape of the 

vocal tract during the articulation of European Portuguese sounds and later to automatically segment the 

vocal tract in new images. 

This paper has been organized as follows: First, the adopted MR imaging protocol is described. Then, the 

focus will be on PDMs, ASMs and AAMs, alongside the data used and the assessment adopted regarding the 

segmentation quality. Afterwards, the models built and their application in the segmentation of the vocal 

tract in new images representing EP speech sounds will be presented and discussed. The paper ends by 

pointing out the main conclusions. 

 

2. Methods 

In this section, the methodologies adopted to characterize the vocal tract during the production of EP speech 

sounds of 3.0 Tesla MR images are described. Thus, the used MR imaging protocol as well the procedures 
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adopted in the image acquisition process are indicated. Afterwards, an explanation regarding the modelling 

of objects in images with PDMs is provided, as well as the building process of ASMs and AAMs that were 

employed to segment the shape of the vocal tract in new images. Finally, the data set used and the 

assessment addressed are presented. 

 

2.1. Magnetic Resonance Imaging Protocol and Procedures 

According to the safety procedures for MR, a questionnaire was performed for screening patients before any 

procedure. In addition, patients were previously informed and instructed about the study to be performed and 

informed consents were obtained. 

The image data was acquired using a MAGNETOM Trio 3.0 Tesla MR system and two integrated coils (a 

32-channel head coil and a 4-channel neck matrix coil), with the subjects in supine position. The two young 

volunteers (one male and one female) were trained before the MR exam to ensure the proper production of 

the intended sounds. The speech corpus consisted of 25 sounds of European Portuguese language, including 

oral and nasal vowels, and consonants. 

Using turbo spin echo 2D sequence, and adopting the following parameters: a repetition time of 400 ms, an 

echo time of 10 ms, an echo train length of 5, a square field of view of 240 cm, a matrix size of 512x512 

pixels, a resolution of 2.133 pixels per mm and a 0.469x0.469 pixel size, 1 T1-weighted midsagittal slice of 3 

mm thickness was acquired for each sound. In order to reduce intra-speaker variability and to ensure 

consistency of results, 3 measurements (i.e. 3 slices per sound) were performed during the sustained sound 

with an overall acquisition time of approximately 8.07 seconds, resulting in 75 images for each subject. 

Examples of the MR images acquired are depicted in Figure 1. From these images, one may observe 

different vocal tract configurations for EP vowels and consonant production, as well as for some oral and 

nasal sounds. Comparing the several vocal tract configurations of the subjects during the articulation of the 

EP sounds, individual differences of vertical length and of organs morphology were revealed, although the 

main movements were similar. 

 

2.2. Vocal Tract Modelling 
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Some of the images acquired according to the imaging protocol described in the previous section were used 

to statistically model the shape of the vocal tract and the remainder to evaluate the models built. Hence, in 

the following sections, the process adopted to label the shape of the vocal tract, i.e. to define the landmark 

points to be addressed by the model, is described, and then the statistical modelling techniques are 

introduced. 

 

2.2.1. Shape Landmark Points 

In the building process of a PDM, each shape of the vocal tract that is presented in the image training set 

should be described by a group of labelled landmark points conveying important anatomical aspects of the 

structure, Figure 2. (In the current and subsequent images, the landmark points appear connected by fictitious 

line segments so as to enhance their visualization.) Consequently, the manual identification of these points in 

all training images requires a comprehensive knowledge of the structure in question, as the resultant model 

behaviour greatly depends on the landmark points selected. 

The manual selection of the landmark points was carried out by one of the authors who has excellent 

knowledge on MR imaging and on the anatomy of the vocal tract, in addition to being cross-checked by 

another co-author in accordance with the following criteria: 

- 4 points in the lips (front and back of the lips’ margins); 

- 3 points corresponding to the lingual frenulum and tongue’s tip; 

- 7 points equally spaced along the surface of the tongue; 

- 7 points along the surface of the hard palate (roof of the oral cavity) placed in symmetry with the tongue 

points; 

- 1 point at the velum (or soft palate); 

- 3 points equally spaced at the posterior margin of the oropharynx (behind the oral cavity). 

It should be noted that, during this task, the epiglottis was not taken into account. 

Thus, in each of the 150 acquired MR images, 25 landmark points were defined according to these criteria. 

 

2.2.2. Statistical Modelling 
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In order to study the admissible variation of the coordinates of the landmark points of the training shapes, it 

is initially necessary to align them by using, for instance, dynamic programming [30]. Therefore, given the 

co-ordinates  ,ij ijx y  of each landmark point j  of the shape i  of the modelled structure, the shape vector 

is: 

 0 1 1 0 1 1, , , , , , ,
T

i i i in i i inx x x x y y y  , 

where 1i N , with N  representing the number of shapes in the image training set and n  the number of 

landmark points used. Once the training shapes are aligned, the mean shape and the admissible variability of 

the modelled structure may be found. The modes of variation characterize the manner in which the 

landmarks of the modelled structure tend to move together, the result of which may be obtained by applying 

a Principal Component Analysis (PCA) to the deviations from the mean. Hence, it is possible to rewrite each 

vector 
ix  as: 

i s sx x Pb  ,  (1) 

where 
ix  represents the coordinates of the n  landmark points of the new shape of the modelled structure, 

 ,k kx y  are the coordinates of the landmark point k , x  is the mean position of all landmark points, 

 1 2s s s stP p p p  is the matrix of the first t  modes of variation, 
sip  corresponds to the most 

significant eigenvectors in a PCA applied to the coordinates of all landmark points, and 

 1 2

T

s s s stb b b b  is a vector of weights for each variation mode of the modelled structure. Each 

eigenvector describes the manner in which linearly correlated 
ix  move together over the training set, and due 

to this, is commonly known as a mode of variation. Thus, equation (1) represents the PDM of the modelled 

structure and may be used to generate new shapes that it can undertake. Further details about the construction 

of PDMs can be found in [21]. 

The local grey-level environment of each landmark point may also be considered in the statistical modelling 

of objects from images [21, 28]. Thus, statistical information is obtained in relation to the mean and 

covariance of the grey values of the image pixels around each landmark point. Additionally, this information 
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can be used to evaluate the matching between landmark points, resulting into the ASMs, in addition to 

considering the information on image texture ensuing to the AAMs, as explained in the following. 

a) Active Shape Models 

The consideration of a PDM in addition to the grey level profiles of each landmark point used in its building 

can be used to segment the modelled structure in new images through Active Shape Models, which are based 

on an iterative technique for fitting flexible models to structures represented in images [21, 27]. Hence, this 

technique is an iterative optimisation scheme that refines the mean shape, x , given by the PDM built for the 

structure under study, according to associated modes of variation, in a new image, i.e. this refining process 

segments the modelled structure in the new image. The refining process adopted may be summarized by the 

following steps: 1) The displacement required to dislocate the model to a more appropriate position, that is, 

closer to the final shape, is calculated at each landmark point; 2) The calculus of the changes in the overall 

shape position, orientation and scale that most adequately satisfy the local displacements found in 1); 3) The 

obtainment of the required adjustments in the parameters of the model, by analysing the residual differences 

between the shape of the model and the final desired shape. 

The image segmentation process with the aid of Active Shape Models was improved in [31] due to the 

adoption of a multiresolution approach that may be summarised as follows: First, a multiresolution pyramid 

of the input images is built by applying a Gaussian mask; following this, the grey level profiles at the various 

levels of the pyramid built are studied. Consequently, the ASMs are capable of segmenting the input images 

in a more efficient and trustworthy manner. 

b) Active Appearance Models 

The segmentation of structure in images by AAMs was initially proposed in [29], based on the building of 

texture and appearance models for the structures to be segmented. These models are generated by combining 

a shape variation model, i.e. a geometric model, with an appearance variation model in a shape-normalised 

framework [19, 21]. 

The geometric models integrated into the AAMS are the PDMs described by Equation 

Error! Reference source not found.. Conversely, to build the statistical models of the grey level 

appearances of the structures represented in the training images, one needs to deform each training image in 
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order that the landmark points match the mean shape of the structure to be modelled, using a triangulation 

algorithm. Then, the grey level information, i.e. the intensity values, 
img , from the shape-normalised image 

over the region covered by the mean shape is sampled. In order to minimize the effect of global intensity 

variation in the training images, the average vector of the grey levels (
img ) is once again normalized, thereby 

resulting in vector g . Following the application of a PCA to the previous vector g , a new linear model, 

called the texture model, is obtained: 

 g gg g P b  , (1) 

where g  is the mean normalised grey level vector, gP  is a set of orthogonal modes related to the grey level 

variations and gb  is a set parameters of the grey levels model. Therefore, the shape and appearance of any 

configuration of the modelled structure can be defined by vectors 
sb  and gb . 

Given that a correlation may exist between the variations of shape and of grey levels, a further PCA is 

applied to the data of the structure. Thus, for each training image a concatenated vector is generated: 

 
 

 

T
s s s s

T
g g

W b W P x x
b

b P g g

  
         

, (2) 

where 
sW  is a diagonal matrix of weights for each parameter of the global model built, allowing for the 

adequate balance between the models of shape and grey levels. Next, a PCA is applied to these vectors, 

which results in a novel model: 

 b Qc , (3) 

where Q  is the eigenvectors of b  and c  is the vector of the appearance parameters that control the shape in 

addition to the grey levels of the model built. In this manner, a new shape of the modelled structure can be 

obtained for a given vector c  by generating the shape-free grey level structure from vector g  and then 

deforming it by considering the landmark points provided by x . 

 

2.2.3. Data set and Assessment 
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A computational framework was developed in MATLAB to build statistical deformable models, namely 

PDMs and ASMs, which integrates the Active Shape Models software [32]. Additionally, the Modelling and 

Search Software [33] was used  to build AAMs. 

According to the International Phonetic Alphabet (IPA), the EP speech language consists of a total of 30 

sounds. In this work, 25 of these sounds have been considered in the building of the statistical models of the 

vocal tract by using 3 3.0 Tesla MR images per each one. The considered sounds include the most 

representative sounds of the EP speech language. Additionally, 2 new 3.0 Tesla MR images for the EP 

speech sounds /v/, /f/ and /a/ for each subject (making a total of 12 new images) were used to evaluate the 

quality of the segmentations obtained by the models built. These sounds were selected since: the associated 

sounds are easy to sustain, require slight efforts to the subjects and ensure the steadiness of the vocal tract 

shape; and include the two classes of sounds under study (two fricative consonants, one voiced and another 

one voiceless, respectively, and one vowel (/a/)). 

In order to analyse the sensibility of the Active Shape Models in terms of the percentage of retained variance 

and of the dimensions of the profile adopted for the grey levels in the modelling, ASMs were built adopting 

90%, 95% and 99% of retained variance and profiles of 7, 11 and 15 pixels [20]. Similarly, Active 

Appearance Models were built adopting equal values of retained variance and the following values of 5000 

and 10000 pixels were considered for building the texture model [19]. These parameters were defined based 

on the authors’ previous experience concerning the statistically modelling of vocal tract using these models 

[9, 19-21]. 

Following the building of the ASMs and AAMs from the training set constituted by 138 images, the models 

were then used to segment the vocal tract in 12 new images. As a stopping criterion of the segmentation 

process, a maximum of 6 iterations on each resolution level was taken into consideration. Due to the fact that 

5 resolution levels were defined based on the dimensions of the images under study, this criterion means that 

from the beginning of the segmentation process to its end, a maximum of 30 iterations could occur [21]. This 

maximum number of iterations was chosen as a result of the fact that in the experiments done it led to 

excellent segmentation results. In fact, it was observed that an inferior value was not always sufficient to 

attain satisfactory results and a superior value constantly caused similar results. 
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In order to assess the quality of the segmentations obtained for the vocal tract in new MR images by the 

models built, the values of the mean and standard deviation of the Euclidean distances between the landmark 

points of the final shape computationally obtained and the correspondent ones manually defined in the same 

images were calculated. 

 

3. Results and Discussion 

From Table 1, one may observe that the initial 11 modes of variation of the Active Shape Model built, that is, 

22% of the modes of variation, are capable of explaining 90% of all variance of the vocal tract. Moreover, 

one may conclude that the first 17 modes, i.e. 34% of the modes of variation, provide an explanation for 95% 

of all variance and the initial 33 modes, which means that 66% of the modes of variation illustrates 99% of 

all variance. Consequently, these findings clearly indicate the ability of the built ASM to considerably 

condense the data that is required to represent all configurations that the vocal tract assumes in the image 

training set. 

If one takes into consideration the first 7 modes of variation, it is possible to observe that a wide range of 

movements, including wide range ones to more refined and particular movements of the articulators, had 

been successfully addressed. The effects on varying the first 6 modes of variation of the built models are 

depicted in Figure 3. From this figure, one can realize that the first mode is related to the movements of the 

tongue from the front to the back in the oral cavity associated with the rise of the larynx. With regard to the 

second mode of variation, it is possible to observe the movements of the tongue from the front-high to the 

back-down in the oral cavity associated with the lips opening and narrowing. The third mode of variation 

describes the velum’s lowering associated with the enlargement/narrowing of the pharynx cavity and the 

tongue’s tip movement. The vertical movement of the body of the tongue towards the palate is revealed by 

the fifth mode of variation. In contrast, the variations of the sixth mode illustrate the open/close of the lips 

associated with the vertical movement of the tongue. After this mode of variation, all the remainder modes 

represent more particular movements, such as the larynx height adjustment, the tongue’s tip movement, the 

opening and closing of the lips, the vertical rise of the tongue’s body towards the palate and the pharynx 

narrowing. 
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After the analysis on the ability of the built statistical models to render the real behaviour of the vocal tract 

during the production of EP language sounds, 12 new MR images of the 3 distinct EP speech sounds 

previously selected (/f/, /v/ and /a/), i.e. of images not included in the used training image set, were 

automatically segmented by the same models. In Figure 4, one MR image of each subject articulating the EP 

speech sound /f/ is presented as well as the evolution of the correspondent segmentation by the active shape 

model built: the segmentation begins with a rough estimate for the vocal tract in the input image and then 

deforms it towards the desired segmentation. These results were obtained considering an ASM capable of 

explaining 90% of all variance of the vocal tract under study and adopting a grey level profile length of 11 

pixels, that is by considering 5 pixels from each side of the landmark points [21]. Analogously, the 

segmentation results obtained by using this model on other 4 new MR images are presented in Figure 5, 

where the first two images concerns one subject and the last image concerns the other subject articulating the 

EP speech sounds/v/ and /a/, respectively. 

In Table 2, the values of the mean and standard deviation that reflect the quality of the segmentations 

obtained by the built active shape models in each testing MR image are indicated. (For a more 

comprehensive understanding of the data included in this table, the models are named as 

Asm_varianceretained_profiledimension and cases of segmentation failures are indicated by a dash.) The 

results concerning the built ASMs considering 99% of all variance were not included in this table, since the 

models were not able to successfully segment the modelled organ in most of the testing images. This failure 

is precisely due to the percentage of retained variance used, 99%, which led to an extremely rigid model and, 

because of that, with a very low ability to be adapted to new configurations. 

As aforementioned, active appearance models are also proficient in modelling objects in images and to 

segment the modelled objects into new images. Texture and appearance modes of variation are more difficult 

to analyse because some motion artefacts (“blur effect”) are presented as a result of some inconsistencies of 

the female subject to sustain the sound, and also because of the inter-subjects differences of vocal tract 

morphologies. The effects of varying the initial 3 modes of variation in terms of texture and appearance of 

one of the active appearance models built are depicted in Figure 6. In this figure, it is possible to observe a 
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few slight movements, which are mostly related to the tongue. The first mode of texture depicts the 

movement of the lower lips and tongue’s enlargement in the oral cavity. Whereas, the second mode of 

variation describes the tongue’s tip movement to the alveolar region, and the same movement is observed in 

association with a backward movement of the tongue in the third mode of variation. On the other side, the 

first mode of variation of appearance describes the tongue’s enlargement in vertical and horizontal directions 

in the oral cavity. Conversely, the variation of the second mode demonstrates the forward and backward 

movements of the tongue associated with the rise of the larynx. Finally, the third mode of variation depicts 

the forward and backward movements of the tongue in direction to the palate. These results were obtained 

considering an AAM capable of explaining 95% of all variance of the vocal tract under study and using 

10000 pixels in the construction of the texture model. 

Figure 7 presents the segmentation result obtained using one of the active appearance models built on one 

testing MR image of each subject articulating the consonant /f/. In this figure, one may observe the evolution 

of the segmentation process through the same active appearance model: the process begins with a rough 

estimate of the vocal tract in the input image and then deforms it into the final vocal tract configuration. 

Similarly, the segmentation results obtained by using the model on other 4 testing MR images are depicted in 

Figure 8, where the first two images concerns to the female subject and the last image to the male subject 

during the articulation of the EP speech sounds /v/ and /a/, respectively. Additionally, the values obtained for 

the mean and standard deviation in order to translate the quality of the segmentation obtained in each testing 

MR image by the active appearance models built are included in Table 2. (Again, for a clearer understanding 

of the data indicated, the models have been named as Aam_varianceretained_npixelsused and cases of 

segmentation failures are indicated by a dash.) Similarity as had occurred with the active shape models used, 

the active appearance models built considering 99% of all variance were not able to successfully segment the 

modelled organ in most of the testing images and, hence, their results were not included in Table 2. 

Through the analysis of the data presented in Table 2, one may conclude that in comparison to the active 

shape models, the active appearance models obtained better results, in other words, inferior errors of 

segmentation. Furthermore, it is possible to realize that the use of more modes of variation do not always 
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assure the best results. While ASMs presented enhanced performance when 90% of all variance was 

addressed, AAMs addressing 95% of all variance had a superior performance when compared with the ones 

attaining 90% of the variance. Another significant result is that the use of 99% of modes regarding all 

variance translates in an extraordinary rigid model that it is not capable of be adapted to different 

configurations, and consequently leading to fail in the segmentation of new images. 

The experimental findings are also depicted in Figures 10 and 11, from which one may verify that the active 

appearance models built performed better than the active shape models used. The mean errors obtained for 

the female subject by the active shape models varied from 7.25 (Asm_90_p11 Image 2) to 17.72 

(Asm_95_p11 Image 3) pixels, 2 situations had occurred in which the segmentation failed. However, the 

mean errors obtained by the active appearance models varied from 5.34 (Aam_95_10000 Image 6) to 13.63 

(Aam_90_5000 Image 3) pixels, and 3 unsuccessfully segmentation had occurred. The mean errors obtained 

for the male subject using the active shape models varied from 6.25 (Asm_95_p15 Image 1) to 15.35 

(Asm_90_p7 Image 4) pixels, and one unsuccessfully case had occurred; while using the active appearance 

models, the mean errors varied from 4.91 (Aam_95_10000 Image 1) to 11.99 (Aam_90_10000 Image 3) 

pixels and the model failed to successfully segment one image. 

4. Conclusions 

In this work, the automatic study of the vocal tract from 3.0 Tesla MR images was assessed through the 

application of statistical deformable models, namely active shape models and active appearance models. The 

primary goal focused on the analysis of the vocal tract during the articulation of European Portuguese 

sounds, followed by the evaluation of the results concerning the automatic segmentation of the modelled 

vocal tract in new images. 

While active shape models consider the information around each landmark point of the modelled structure, 

active appearance models also use also the grey level information of the structure. Consequently, the former 

type of models tends to be less efficient than the latter, and it is this information which is confirmed in this 

work. Nevertheless, both active shape models and active appearance models obtained remarkable results, 
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either in terms of translating the movements and configurations involved in speech production, as well as in 

the segmentation of the vocal tract in new images. 

One of the premises for acquiring an efficient deformable model, and consequently obtaining good results 

concerning the segmentation of the modelled structure, is extremely related to the quality of the images to be 

studied. In this work, the images studied were acquired by a 3.0 Tesla MR system and, with the higher 

signal-to-noise ratio and resolution, it was expected that better segmentation results can be obtained when 

compared to the ones achieved in 1.5 Tesla MR images [9, 18-20]. Indeed, in our previous works mean 

errors rounding 10 pixels were achieved when 256 x 256 pixels 1.5 Tesla MR images were used, whilst the 

segmentation results using the 3.0 Tesla MR images led to similar mean errors but in double sized images 

(512 x 512 pixels). Hence, the errors obtained by the same models that were built adopting the same 

modelling conditions have been around 50% reduced with the improvement of the image quality. 

When compared to previous works [9, 18-20], another major contribution accomplished by this work 

concerns the amount of data studied. Here, 25 out of 30 possible EP speech sounds were modelled for two 

subjects, three measurements (slices) were used for each sound. Thus, using a training image set of 150 MR 

images, with more efficient and accurate models than the ones built so far could achieve, as was verified by 

the experimental findings obtained. 

To conclude, from the work here described, one should emphasize that the recent MR imaging systems, in 

particular the 3.0 Tesla, and the use of the adopted statistical modelling technique have made possible the 

automatically and realist simulation of the vocal tract during speech production as well as the efficient 

segmentation of vocal tract in new images. Therefore, the assessment of the articulators’ positions and 

movements can be facilitated, contributing, for example, to a better knowledge of the speech production, 

especially in patients with articulatory disorders, and to build improved computational speech models and 

devices. 
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FIGURES CAPTIONS 

 

Figure 1: Midsagittal MR images of the vocal tract from a female subject (top row) and one of a male subject 

(bottom row) during production of EP vowels and consonants. 

 

Figure 2: Training image (a), chosen landmark points (b), original image overlapped with the chosen 

landmark points (c). 

 

Figure 3: Effect on the vocal tract by varying  2sd  each of the first 6 modes of variation (
i ) of the model 

built. 

 

Figure 4: Test image of female (top row) and male (bottom row) subjects overlapped with the mean shape 

model built and after some iterations of the segmentation process of the active shape model built. 

 

Figure 5: Four test images overlapped with the mean shape model built (top row) and after the conclusion of 

the segmentation process by the active shape model built (bottom row). 

 

Figure 6: Influence of the first 3 modes of texture (left) and appearance (right) variation (
i ) of the active 

appearance model built  2sd . 

 

Figure 7: Segmentation process of two test images by the active appearance model built for the vocal tract. 

 

Figure 8: Four test images overlapped with the mean shape model built (top row), final results of the 

segmentation process by the active appearance model built (middle row) and correspondent original images 

(bottom row). 
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Figure 9: Mean errors (in pixels) and standard deviations of the segmentations obtained by the deformable 

models built for the vocal tract of the female subject. 

 

Figure 10: Mean errors (in pixels) and standard deviations of the segmentations obtained by the deformable 

models built for the vocal tract of the male subject. 
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TABLE CAPTIONS 

 

Table 1: Retained percentages along the initial first 17 modes of variation of the model built for the vocal 

tract. 

 

Table 2: Errors (in pixels) of the shapes segmented by the deformable models built (mean and standard 

deviation: mean sd ). 
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TABLES 

Table 1 

Mode of 

variation 

Retained % Cumulative Retained % 

1  40.893 40.893 

2  16.348 57.241 

3  8.065 65.306 

4  7.404 72.710 

5  4.595 77.305 

6  3.920 81.225 

7  2.515 83.740 

8  2.115 85.855 

9  1.703 87.558 

10  1.397 88.955 

11  1.296 90.251 

12  1.108 91.359 

13  1.021 92.380 

14  0.787 93.167 

15  0.677 93.844 

16  0.632 94.476 

17  0.562 95.038 
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Table 2 

Female subject 

Model Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 

Asm_90_p7 8.99 5.45  8.05 4.92  16.02 14.93

 
10.78 7.23  13.39 7.65  12.61 7.01  

Asm_95_p7 10.40 5.77  9.23 5.92  14.63 8.16  11.07 9.80  14.29 8.70  13.21 8.13  

Asm_90_p11 7.50 4.80  7.25 4.42  16.93 14.29

 
8.70 4.46  17.29 10.62

 
14.49 8.33  

Asm_95_p11 9.89 6.11  10.42 7.48  17.72 14.40

 
8.70 5.11  - - 

Asm_90_p15 8.28 4.41  8.29 3.44  16.77 15.50

 
8.38 4.68  16.54 8.05  14.34 8.17  

Asm_95_p15 8.29 4.56  8.19 3.78  16.40 15.79

 
8.67 4.29  16.40 8.73  14.19 8.41  

Aam_90_5000 6.75 4.09  7.81 4.74  13.61 15.67

 
9.37 6.07  9.54 8.36  9.28 8.59  

Aam_95_5000 - 6.87 5.89  13.53 15.06

 
- 8.89 6.53  - 

Aam_90_1000

0 

7.04 4.55  7.93 4.76  13.16 15.84

 
9.05 5.91  9.54 8.50  9.42 8.67  

Aam_95_1000

0 

6.43 5.21  6.92 4.91  13.10 14.72

 
9.63 6.38  8.66 5.15  5.34 2.82  

Male subject 

Model Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 

Asm_90_p7 9.35 5.18  9.23 7.31  11.11 7.48  15.35 11.34

 
7.68 3.53  11.05 6.39  

Asm_95_p7 8.93 6.21  10.90 8.48  14.92 8.23  10.20 6.57  - 11.02 9.10  

Asm_90_p11 6.51 3.12  6.83 4.12  12.81 7.41  9.80 7.50  7.83 4.65  9.66 4.73  

Asm_95_p11 9.08 4.55  8.71 5.71  13.87 7.77  9.65 6.09  8.13 4.53  10.30 5.55  

Asm_90_p15 6.53 3.85  9.25 4.54  11.75 6.86  10.33 5.55  8.56 5.91  10.11 7.01  

Asm_95_p15 6.25 4.09  8.84 5.07  11.59 7.05  10.46 5.36  8.47 6.11  9.94 7.36  

Aam_90_5000 6.75 6.84  11.22 7.13  11.61 7.23  10.05 5.65  7.62 5.68  8.81 5.51  

Aam_95_5000 5.06 4.40  10.05 7.29  9.28 6.52  5.32 2.98  - 5.32 4.45  

Aam_90_10000 6.93 7.06  11.82 7.47  11.99 7.46  10.37 5.93  7.78 5.78  8.24 5.19  

Aam_95_10000 4.91 4.19  11.20 7.59  9.79 6.81  7.96 3.97  6.19 4.81  4.97 3.55  
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