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Abstract

The growing dependence of modern-day societies on electricity leads to the increasing

importance of effective monitoring and maintenance of power lines. Due to the popu-

lation’s renouncement to the installation of new electric power lines, the existing ones

are constantly operating at maximum capacity. This leaves no room for breakdowns,

as it leads to major economic losses for the electrical companies and blackouts for the

consumers.

Endowing Unmanned Aerial Vehicles (UAVs) with the appropriate sensors for inspec-

tion the power lines, the costs and risks associated with the traditional foot patrol and

helicopter-based inspections can be reduced. However, this implies the development of

algorithms to make the inspection process reliable and autonomous.

Visual detection methods are usually applied to locate the power lines and their

components. Although, they are generally too sensitive to atmospheric conditions and

noisy background. Poor light conditions or a background rich in edges may compromise

their results. In order to overcome those limitations, this dissertation addresses the

problem of power line detection and modeling based on the use of a Light Detection

And Ranging (LiDAR) sensor.

A novel approach to the power line detection was developed, the Power Line LiDAR-

based Detection and Modeling (PL2DM). It is based in a scan-by-scan adaptive neighbor

minimalist comparison for all the points in a point cloud. In the segmentation, the

breaking cluster points are detected by an analysis of their planar properties.

Exporting the potential power line points to a further step, it performs a scan based

straight line detection. The final model of the power line is obtained by matching and

grouping the several line segments detected using their collinearity properties. Horizon-

tally, the power lines are modeled as a straight line, while vertically are approximated

to a catenary curve.
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The algorithm was tested with a real dataset, showing promising results both in

terms of outputs and processing time. From there, it was demonstrated that the pro-

posed algorithm can be applied to real-time operations of the UAV, adding object-based

perception capabilities for other layers of processing.

Keywords: Power line, LiDAR, real-time, UAV, point cloud, segmentation, catenary
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Resumo

A crescente dependência das sociedades modernas no uso de eletricidade conduz

a uma crescente importância da eficiência da monitorização e manutenção das linhas

elétricas. A renitência das populações à instalação de novas linhas elétricas faz com que

as existentes estejam constantemente a operar na sua máxima capacidade. Isto faz com

que não possam existir falhas, uma vez que resultariam em grandes perdas económicas

para as companhias elétricas e em falhas energéticas para os consumidores.

Equipando um Unmanned Aerial Vehicle (UAV) com os sensores adequados à in-

speção de linhas elétricas, podem ser reduzidos os custos e riscos de operação associados

às inspeções tradicionais, baseadas em patrulhas pedonais e no uso de um helicóptero.

No entanto, isto implica o desenvolvimento de algoritmos para que o processo de inspeção

seja fiável e autónomo.

As linhas elétricas e os componentes associados são geralmente localizados através de

métodos de deteção visual. Estes métodos são, geralmente, muito senśıveis às condições

atmosféricas e a fundos ruidosos. Condições de luz deficientes ou fundos ricos em con-

trastes são alguns dos fatores que podem comprometer os seus resultados. De forma a

ultrapassar essas limitações, esta dissertação endereça o problema da deteção e mod-

elação de linhas elétricas, tendo por base o uso de um sensor Light Detection And

Ranging (LiDAR).

Foi desenvolvida uma nova abordagem aos métodos de deteção de linhas elétricas, o

Power Line LiDAR-based Detection and Modeling (PL2DM). Esta abordagem é baseada

numa análise individual de varrimentos, em que é feita uma comparação minimalista de

todos os pontos, presentes numa dada nuvem de pontos, com uma vizinhança adaptativa.

Na segmentação, os pontos de quebra dos grupos criados são detetados tendo em conta

as suas propriedades planares.

Passando os pontos pasśıveis de pertencerem a linhas elétricas para o processamento

v



vi

seguinte, é realizada, em cada varrimento, uma deteção de linhas retas. O modelo final

das linhas elétricas é obtido a partir da associação e agrupamento dos diversos segmentos

de reta detetados, tendo por base a sua colinearidade. Na sua projeção horizontal, as

linhas elétricas são modeladas como linhas retas. Verticalmente, são aproximadas ao

modelo de uma curva catenária.

O algoritmo foi testado com um conjunto de dados reais, tendo mostrado resulta-

dos promissores, tanto em termos de dados gerados como de tempo de processamento.

Com isso, ficou demonstrado que o algoritmo proposto pode ser aplicado nas operações

do UAV em tempo real, adicionando capacidades de perceção baseada em objetos para

outras camadas de processamento.

Palavras-Chave: Linhas elétricas, LiDAR, tempo real, UAV, nuvem de pontos,

segmentação, catenária
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Chapter 1

Introduction

During the last years, the application scenarios with Unmanned Aerial Vehicles

(UAVs) have been growing due to an increase in the research effort on the field of

aerial robotics [1]. Furthermore, this wider set of applications is related to a continu-

ous change on the research focus, which is starting to focus to higher level tasks (such

as navigation and task planning, paying attention to visual odometry, localization and

mapping). Until the beginning of this century, the UAV research was mainly focused on

hardware development, modeling and control. In the most recent years, researchers are

giving more importance to topics related to obstacle detection and collision avoidance.

At this point of development, the UAVs can be applied for search and rescue op-

erations, surveillance and inspection of structures, among others [2]. Depending on

its application, there are different types of UAVs more well prepared to achieve bet-

ter performance. Fixed-wings UAVs (figure 1.1(a)) have the advantage of flying longer

distances than a multirotor (figure 1.1(c)), however, they lack on the maneuverability

offered by the last. Hybrid systems (figure 1.1(b)) are a mixed type of the other two,

trying to get the advantages of both systems but increasing the complexity of its control.

Ornithopters (figure 1.1(d)) are a type of drones that fly by mimicking wing motions of

insects or birds but they are not widely used.

Considering the existing types of UAVs, the close inspection of a structure that is

located at a low altitude is an application that is performed better by a multirotor,

due to its high Three-Dimensional (3D) maneuverability and capability of operating

in harsh environments. Besides that, this type of drone is interesting for electrical

power providers [6–8], as it can support a reasonable payload of sensors and allows the

data collection from different positions, angles and distances, making it suitable for the

inspection of electric assets, such as electric pylons and insulators.

1



Chapter 1

(a) Fixed-wing (FALCOS) [3] (b) Hybrid (Greased Lightning) [4]

(c) Multirotor (OTUS) (d) Ornithopter (DelFly Micro) [5]

Figure 1.1: UAV examples.

Due to the growing dependence of modern-day societies on electricity, there is an

increasing importance of effective monitoring and maintenance of power lines [9], as

the distribution of the power from the source to the user is one of the key factors

in the quality of the service provided by the electrical power companies. Considering

the progressive development of new green power generation plants in Europe, the need

for a higher and more reliable electrical transport capacity is growing, however, the

installation of new electric power lines is usually not accepted by the population [10].

This leads to a constant operation at the maximum capacity of the power lines, without

having redundancies or reserves to compensate breakdowns. In order to avoid possible

economic losses and blackouts for the consumers, the electrical power companies need

to adopt a preventive and predictive maintenance philosophy by means of, for example,

a periodic visual and thermal inspection [10,11].

Power lines inspection takes into account not only their elements but also the sur-

rounding objects, especially vegetation [10–12]. The power lines are present in both ur-

ban and rural environments. In an urban environment, it is quite easy to ensure a safety

2



Chapter 1

separation from the man-made structures by applying building regulations, however, a

rural environment has usually an unmanaged growth of the surrounding vegetation [13].

When the minimum clearance between the vegetation and the conductors or assets is

violated, tree falls (figure 1.2(a)) or conductors oscillation during bad weather conditions

can lead to the short-circuiting of the line, causing widespread outages [14–16] or even

bush-fires, especially in drier environments [11–13,17,18]. These threats result in a gen-

eral acceptance on considering vegetation as one of the most hazardous factors for the

overhead power lines’ integrity [12–16]. The condition of the power components needs to

be checked for both mechanical and electrical faults [12,19], which occur on conductors,

insulators (figure 1.2(b)), electric pylons and other power line equipment [20,21]. Dam-

aged or corroded parts and contaminated conductors are some of the problems that can

be visually detected [19,20,22], but corona or gap discharges can also indicate problems

on the transmission line [20].

(a) Tree fall over line [23] (b) Defective insulator [24]

Figure 1.2: Power line problems examples.

The inspections of the power lines traditionally rely on human labour [10–13], as they

are primarily performed on foot by a team driving between spans (space between two

consecutive electric pylons) or from a helicopter flying alongside the line. The power

structures can be installed on complex and harsh environments, which makes the on-

foot patrols time-consuming and poorly efficient. Helicopter-based inspections are more

time-efficient but are both expensive and taxing on the pilot and operator [13,22,25].

To overcome those limitations, some remote sensing methods have been proposed

to assist or replace traditional ones. Synthetic Aperture Radar (SAR) images [26, 27],

optical satellite images [13,28] or Airborne Laser Scanning (ALS) data [29–31] are some of

the examples, however, due to the lack of resolution and optical or thermal images, these
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methods can only be used for mapping pylons and conductors or vegetation monitoring

[11]. A proper inspection of the power line elements can be done by using laser scanning

data, optical [32] and thermal [33, 34] images obtained by UAVs [10, 22, 35, 36], Rolling

on Wires Robots (RWRs) [10,37] or even land-based mobile systems [38]. Regarding the

diversity of the data, fixed-wing UAVs can only provide information about the upper

part of the line, contrasting with land-based systems, that only give information about

the lower one. RWRs (figure 1.3(a)) need the human intervention to first put them on

a conductor and a mechanism to overpass obstacles like insulators, warning spheres and

pylons. The constant contact with the conductor can be a disadvantage for this type

of robots, as they need a stronger electromagnetic shield. The advantages mentioned

above for the multirotor UAVs (figure 1.3(b)) are then confirmed, being those the most

suitable vehicles for a more complete inspection of the power line elements.

(a) RWR (LineScout) [39] (b) Multirotor UAV (Byrd II)

Figure 1.3: Power line inspection robots.

Despite the advantages, using a multirotor UAV in a complex and confined environ-

ment, as one where a power line can be inserted in, can be challenging for the pilot

and the autonomous mission planning. A noisy background (e.g., with vegetation) can

make the conductors visually undetectable by the pilot [22]. This arises the need for

an autonomous module of obstacle detection and collision avoidance that is capable of

actuating in both autonomous and assisted modes [40]. The detection of conductors can

also be used for improving the navigation filter and line following maneuvers [22].

In order to increase the perception capabilities of UAVs and allow a safer operation,

this dissertation addresses the development of an algorithm for real-time obstacle detec-

tion using Light Detection And Ranging (LiDAR) data. The main focus is the detection

of power line conductors and the prediction of their extent, as they can be detected as

sparse points and be ignored by the collision avoidance module.
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1.1 Background and Motivation

The Centre for Robotics and Autonomous Systems (CRAS)1, from the Institute for

Systems and Computer Engineering, Technology and Science (INESC TEC)2, and the

Autonomous Systems Laboratory (LSA)3, from the Engineering School of Porto Poly-

technic (ISEP)4, have been combining efforts, during the latest years, for the develop-

ment of autonomous systems. This partnership has resulted already in the development

of several robotic systems for multiple domains: land, water surface, underwater, and

air. Their experience in UAVs has started with the development of the fixed-wing FAL-

COS and GRIFO, but is now more directed to multirotor UAVs, with the OTUS [41],

STORK [42] and Byrd II.

(a) TURTLE [43] (b) ROAZ II [44]

(c) STORK (d) EVA

Figure 1.4: CRAS and LSA robots.

1https://www.inesctec.pt/en/centres/cras
2https://www.inesctec.pt/en
3http://lsa.isep.ipp.pt/
4http://isep.ipp.pt/
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CRAS is involved in several projects related to multirotor UAVs, such as ROSM,

SpilLess5 [45, 46] and Drone Project6 [47]. The later is a partnership with Energias de

Portugal (EDP) Labelec7 and aims to analyze and develop drone-based solutions for

the inspection of electrical sector assets, such as wind turbines, dams, substations and

power line elements. With this project, INESC TEC and ISEP earned the Innovation

and Supplier of the Year awards, from the third edition of the EDPartners8, and the

Innovation and Technology Transfer in the Field of Robotics Award, in 2017, from the

Portuguese Society of Robotics (SPR)9. The team has also won the Grand Challenge

of two international competitions of search and rescue robots: euRathlon10 [48, 49], in

2015, and ERL Emergency Robots11 [50], in 2017, using the OTUS and STORK UAVs,

respectively.

The Drone Project has already produced the second version of its UAV, the Byrd II,

which has a payload that is capable of obtaining high-resolution images, thermal images,

and LiDAR data. All the data is georeferenced, allowing EDP Labelec to post-process

it at the office, evaluate the state of the assets and generate detailed reports.

Regarding the specific application of power line elements inspection in the Drone

Project, it was already developed and applied an obstacle detection module that is a

variant of the work presented in [40]. Due to the low timestamp resolution of the point

cloud points (a single timestamp for a complete scan of the LiDAR), some measured

points can be transformed from the sensor to the world frame with a considerable error,

generating an obstacle with low accuracy in position. This could lead to a collision with

the real position of the power line. That problem can be more noticeable with some

possible processor overload, that introduces a delay to the transformation matrix, or

due to the error of a navigation filter based in low-cost sensors.

Detecting the power line conductors can help not only to the reduction of the obstacle

estimated position error effect, but also to predict where the conductors might be by

fitting the sparse detected points into a catenary curve model [51]. This model also

allows to implement line following algorithms.

5https://spilless.ciimar.up.pt/
6https://www.edplabelec.com/pt-pt/node/37658
7https://www.edplabelec.com/en
8https://www.edpartners.edp.pt/index.php/en/
9http://www.sprobotica.pt/

10https://www.eurathlon.eu/
11https://www.eu-robotics.net/robotics_league/erl-emergency/about/index.html
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1.2 Objectives

This dissertation addresses the fast extraction of power line conductors from a point

cloud, using a LiDAR sensor. This allows to improve the obstacle detection and colli-

sion avoidance modules, thus increasing the perception capabilities of the UAV. This

capability will provide to the UAV an improvement of autonomy for the inspection of

power lines, either in autonomous and pilot-assisted modes.

In order to accomplish the main objective of this dissertation, there are some inter-

mediate goals that need to be addressed:

• Study of the existing works related to the power lines extraction, either by vision

and using LiDAR;

• Analysis of the LiDAR raw data information before the point cloud generation in

order to identify possible improvements;

• Development of a segmentation step capable of extracting candidate points that

could represent a power line inside the received point cloud;

• Creation of a line detection method and mathematical modeling methodology for

the detected points;

• Development of a robust algorithm, capable of operating in real-time and success-

fully detect and model power lines based on the application requirements;

• Validation of the developed method for different environments.

1.3 Structure

This dissertation is divided into eight main chapters. In the next chapter is presented

a preliminary study of the works related to the dissertation’s topic. It ends with a

discussion of their properties, evidencing their advantages and pointing the drawbacks

while trying to detect the common assumptions made.

In chapter 3 are listed and described the concepts in which some parts of the algorithm

are based. In the section related to LiDAR sensors, is exposed a list of their types,

detailing the properties of a spinning LiDAR. The chapter 4 contains an overview of the

hardware and software architectures needed to implement the developed algorithm.

The description of the proposed algorithm is made along the chapter 5. There,

is presented the base concept of the algorithm, followed by a complete description of

7



1.3. Structure Chapter 1

the details associated to each part of the processing. Knowing those properties and

considering the algorithm’s requirements is crucial for having a proper functionality.

Chapter 6 lists the specifications of the used UAV and LiDAR sensor. At the end is

also detailed the software changes done to make them compatible with the requirements

presented in the previous chapter.

The outputs of the algorithm for a dataset are presented and analyzed in chapter 7.

Here is also made an evaluation to the performance of the developed algorithm.

Finally, in chapter 8 are made the final remarks and a general analysis of the developed

work. Some other detailed conclusions are also presented over the other chapters. The

chapter 8 ends with suggestions for further work that either brings advantages to this

dissertation or can be made on top of its outputs.
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Related Work

In this chapter is exposed some background about the use of Light Detection And

Ranging (LiDAR) sensors for some applications. For an overview closer to the disserta-

tion subject, some works related to the segmentation of point clouds based on LiDAR

sensors are presented. The particular case of power lines detection is also approached.

The study of existing methods allows a better understanding of the possible challenges

related to line recognition. The chapter ends with a brief analysis of the main advantages

and disadvantages of the current state of the art.

2.1 LiDAR

LiDAR is an active remote sensor that uses a laser in the visible or near-visible part of the

electromagnetic spectrum (figure 2.1) to obtain measures [52]. For this reason, it is also

known as optical or laser Radio Detection And Ranging (RaDAR), since they are only

separated by their energy source [53]. As its wavelength is smaller than the RaDAR’s,

it is able to detect tiny objects, such as particles in the atmosphere. LiDAR sensors are

divided into three major varieties: range finders, Differential Absorption LiDAR (DiAL),

and Doppler DiAL. Their type of measurements can range from altitude, shape, and size

of landscape features to atmospheric vertical profiles of aerosols and trace gas densities.

Wind velocities are also possible to measure with the Doppler DiAL, based on the

Doppler Shift effect [54].

Scientists have used this kind of sensors since the 1960s [52, 56]. The first LiDAR

measurements were made in 1963 [57] and, during that decade, it was clearly established

that this kind of sensors could provide an optimal source of electromagnetic radiation
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Figure 2.1: Electromagnetic spectrum (adapted from [55]).

for atmospheric studies [58–61]. At the beginning of the 1970s were made some of the

early space-based LiDAR measurements from lunar orbit using the laser altimeter on

the Apollo 15 mission [62]. Since the first lasers became widely available, ground-based

and airborne LiDAR systems started to increase steadily [52].

2.1.1 Segmentation

In the first half of the 1990s, LiDARs began to be assumed as sensors that could pro-

vide meaningful data for efficient Three-Dimensional (3D) terrain surveys [63], when

associated to an accurate positioning and orientation of the vehicle [64]. Their use com-

bined with the so far used photogrammetry allowed the obtaining of more precise Digital

Surface Models (DSMs) and triggered the development of new algorithms for extract-

ing man-made structures and vegetation from urban environments [65–70], and create

accurate 3D city models [71–73].

The extraction of valuable spatial data from the large amount of information that

LiDAR sensors can provide is difficult and time-consuming, therefore, segmentation

is generally a prerequisite for feature extraction. The first segmentation techniques

relied on Two-and-a-Half-Dimensional (2.5D) grid or image data [73, 74], where the

point cloud was interpolated to allow the application of some image-based segmentation

and classification, however, some important spatial information could be lost [70,75].

To overcome the loss of spatial information, Wang and Tseng, in [76], proposed an

octree-structure-based split-and-merge segmentation method more suitable for LiDAR

data. The method consists in hierarchically splitting a point cloud set on the octree

structure until all the sub-node points are coplanar or less than 3 (minimum number of
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points to generate a plane). Using the octree structure for neighboring, 3D planes with

similar attributes are merged and a Triangular Irregular Network (TIN) is generated

for visualization. In 2005, the same authors [77] complemented their previous work by

adding the automatic extraction of edges and corners using the intersection of neighbor-

ing calculated 3D best-fit planes. Later, Kutty and Ayyappan [78] proposed a quad-tree

segmentation of horizontal projected points that are merged by analyzing a constructed

TIN.

In [79], Shan and Sampath presented a binary segmentation method that labels each

point of an urban environment in either ground or non-ground using LiDAR raw data. It

is based on a sequential evaluation of each two-point sets along the One-Dimensional (1D)

LiDAR profile both in slope and elevation. Positive slopes can represent ground to non-

ground point transitions, and negative, the inverse. Elevation evaluation helps the point

labeling. The final classification results from the combination of the bidirectional labeling

followed by a local linear regression to remove some possible wrong-labeled points.

In 2008, Steinhauser et al. [80] proposed an algorithm to find drivable road using a

LiDAR mounted on a ground vehicle. It assumes that the road is a connected structure

and analyzes the Two-Dimensional (2D) scan from each angular step of the sensor.

A line fitting is then performed to mark the points as obstacle’s, surface’s or critical

surface’s (the last can be either drivable or not depending on the off-road capabilities

of the vehicle). Removing the points classified as passable environment, the obstacle

points are then clustered or not based in an Euclidian Distance (ED) threshold. After

detecting some stationary objects, they also detect and predict the ego-motion of the

vehicle.

Regarding urban environments, Moosmann et al. [81] presented a solution for dealing

with non-flat grounds by means of local convexity criteria (figure 2.2). Using ordered

Figure 2.2: Local convexity criteria (adapted from [81]). Local convexity holds if the
center point of a surface is below the other surface and vice versa.
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points from the LiDAR sensor, the estimated local surface normal results from the

average of the displacement vectors cross products between the left and lower, lower

and right, right and upper, and upper and left vectors, as in [82]. The segmentation is

based on the comparison between two neighbor surfaces. Given the graph, the region

growing algorithm is executed, which randomly selects a seed node and the segment

grows until no more nodes are added. The segment is then removed from the graph

and the operation is repeated until no more surfaces are left. Analyzing the segment

normal vector’s z value histogram, if the topmost bin contains more votes, it is classified

as ground, otherwise, as an obstacle.

Klasing et al. have developed a segmentation technique based on the Radially

Bounded Nearest Neighbors (RBNN) graph [83] to overcome some processing time and

resultant clusters limitations of the k-Nearest Neighbor (kNN) graph [85]. For improv-

ing the resultant clusters, in the RBNN graph, every node is connected to all neighbors

that lie within a predefined radius r and the clusters with less than n min points are

ignored (figure 2.3). The speedup is achieved by skipping the verification for all the

points that have been already associated to a cluster. Although the clustering using

RBNN is an interesting candidate technique for real-time processing, it cannot be di-

rectly applied for continuous stream of data mainly because the Nearest Neighbor (NN)

searching is based on a static kd-tree. Thence, the author presented a refined version

of RBNN algorithm [84], with real-time capabilities, that continuously monitors NNs

and uses a feature space consisting on both incoming points and their estimated normal

Figure 2.3: RBNN clustering (on top - adapted from [83]) and normal plane vector based
segmentation (on bottom - adapted from [84]).
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vectors for clustering. Knowing the structure of the range sensor, the obtained points

can be ordered by scanning angles and consecutive scans. Using those ordered points,

the continuous NNs monitoring relies on a k-window search. Given the neighborhood of

a point, the algorithm uses the PlanePCA method [86] for estimating the normal vector,

as it has shown, in [87], to be the best method both in quality and computational time.

Other segmentation techniques also use Principal Component Analysis (PCA) to get

the saliency features [88–91], however it is very sensitive to outliers [92], which lead to a

poor plane fitting, due to a bad estimation of normals [93,94]. Aware of these limitations,

in [95,96] is presented a Robust PCA (RPCA). This region-growing algorithm starts by

selecting as seed the point that presents the least surface curvature. Then it finds the k

neighbors of the seed points, calculates the ED, Orthogonal Distance (OD) to the best

fitting plane, and the angular difference of the normals. If all the calculated values are

below a threshold, the neighbor is added to the current region and removed from the

input point cloud, being considered as a seed point for the following iterations. When

no more seed points are found to the current region, the region size is evaluated and it

is considered valid if the size is above a threshold. The algorithm repeats until no more

points are available. The RPCA showed to be more robust than the traditional PCA,

especially for non-planar surfaces segmentation.

To segment a point cloud obtained by a ground vehicle, in [98] is presented a com-

bination of 2D and 3D data processing techniques. It generates a 2.5D ego-centered

occupancy grid (figure 2.4), at each LiDAR revolution, that stores the maximum ab-

solute difference in z-coordinates of all points falling into the respective grid cell, like

in [99]. That grid is then binarized for the segmentation procedure by means of a defined

threshold and a bounding box is created around the detected obstacles. The 3D points

Figure 2.4: Partioned radial grid into bins (adapted from [97]).
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of the bounding boxes are then recovered and the object classification is made using

point feature histograms and a Support Vector Machine (SVM), previously trained by

hand-labeled point clouds. For preventing the under-segmentation of data due to the

dimensionality reduction introduced by mapping 3D points to the 2.5D grid structure,

Himmelsbach et al. [97] proposed an improvement. It first organizes the points in both

direction and range and creates a discretization of the range, associating the 3D points

to a bin. Getting the point with the lowest height value from each bin, it applies an

Incremental Algorithm [100] for line fitting and ground plane detection. All non-ground

points are mapped to a 2D grid cell, but if there exists a large gap between the z-

coordinates of two consecutive points (that no third point falls into), a 3D segmentation

is performed. The algorithms were benchmarked alongside the RBNN [83], having better

results in runtime values.

Douillard et al. [101] made an evaluation and proposed some segmentation methods,

separating the analysis of sparse and dense data. It has empirically shown the benefit

of ground extraction prior to object segmentation for dense data. The general approach

used for this kind of data is a voxel grid based segmentation that relies on the local

neighborhood. Cluster-All with Variable Neighborhood was the method that had the

best trade-off in terms of simplicity, accuracy and computational times. It segments

the non-ground points by local voxel adjacency, being less restrictive for points farther

the sensor, as they become sparser. Due to the drawbacks of sparse data voxelization

(many empty cells), it presents some ground models of non-constant resolution either

providing a continuous probabilistic surface or a terrain mesh built from the structure

of a range image. The use of Gaussian Process (GP) methods for having a probabilistic

model of sparse terrain was explored in [102]. An iterative approach to those methods is

the GP Incremental Sample Consensus (GP-INSAC) algorithm. This method relies on

a set of offline learned parameters and is capable of processing data from any source or

multiple fused sources, however, it assumes that there exist few outliers. In the mesh-

based technique, after constructing the mesh, the ground points are extracted, based on

the computation of a gradient field, and the remaining points are clustered using the

Cluster-All method. Both of these sparse data segmentation methods provided close to

real-time performance.

In order to add real-time capability to their previous works [103, 104], in [105] is

made a comparison between the use of rectangular and radial grids centered on the

sensor. Their segmentation method is based in minimum and maximum height maps

difference calculation. Rectangular grids depend on a defined maximum range and hor-

izontal and height resolutions. Radial grids are generated based on a maximum range
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and angular, range and height resolutions. In the latter there is the need of stitching

the image border blobs, as they correspond to neighbor spatial regions. However, in

this analysis, the radial grid requires less cells and produces less fragmentation of the

objects, when compared to the rectangular grid, which leads to a faster processing. The

core of this approach is the use of smaller images instead of large point cloud data for

processing. Radial grids were also used in [106] for segment labeling, and in [107] for

ground segmentation.

In 2012, Choe et al. [109] proposed an improvement of the RBNN algorithm, like in

[84], with the purpose of applying it in a real-time segmentation of urban environments.

In order to be able to apply this method, the ground points need to be removed or

might be clustered with other urban structures (the segmentation is only based on the

ED of points). For that, all the points that lie on horizontal surfaces, detected by

calculating the angle between two consecutive points, are potential ground points and

will be removed from further calculations if lie on the larger cluster of horizontal points

(ground is considered as a dense structure). The remaining points are then clustered

regarding not a fixed [84] but a distance-varying radius. Using the continuous point

information, the radius of acceptance is calculated based on the neighbor points distance

and the sensor structure and then scaled by a predefined value to accept some possible

measurement errors. This kind of approach fulfilled the real-time requirements and

outperformed the fixed radius one. The work in [110] was based on Hidden Markov

Model (HMM) [111] that used the angles between points of consecutive scans to classify

them as horizontal, vertical and vegetation. Motivated by this work, in [108], the authors

refined their previous method and extended the point classification of [110], adding

the slope and invalid types (vegetation is here treated as scatter), simply thresholding

measurement distances and angles of consecutive points. For non-horizontal points, the

Figure 2.5: e-RBNN searching method (adapted from [108]).
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segmentation is here based on an Ellipsoid model based RBNN (e-RBNN), that uses

an ellipsoid rather a circular region (figure 2.5), defining a scaled radius based on the

neighbor points distance, and another based on the sensor-to-point ED. The cluster

classification is then performed using a Naive Bayes (NB)1 model, as it allows a fast

computation time to train or test, provides outputs with probabilities and can be trained

with few examples.

Another region growing [112] based algorithm was introduced in [113]. The segmen-

tation is dependent on the unevenness value that is calculated based on the difference

between the expected and measured ranges. Thus, this method relies on the knowl-

edge of the sensor’s scan geometry. For segmenting the point cloud, it first removes the

ground points, using an unevenness threshold, and then grows the remaining points as

obstacles by setting an unevenness interval of acceptance, associated with a maximum

range difference between neighbor points. Although this method explores the sensor ge-

ometry, its region growing approach makes it unsuitable for real-time applications, due

to the high processing time.

Later, in 2017, was presented an approach of 3D segmentation more directed to

autonomous ground vehicles [114]. It uses as input a 360 degrees coverage point cloud of

the sensor and performs a two-step segmentation: it first extracts the ground based on

a Ground Plane Fitting (GPF) followed by a clustering methodology named Scan Line

Run (SLR). In the GPF step, the point cloud is divided into a number of segments, along

the vehicle motion direction, and is assumed that the ground can be fitted to a plane

and the points with the lowest height are more likely of belonging to the ground. For

each segment, a set of seed points is selected and all the points are classified as ground

or not, based on an OD threshold, being the ground ones used for the refinement of the

ground plane estimation. For treating the non-ground points is used an adaptation of

the work in [115], called SLR (figure 2.6). For each ring of the scan, the consecutive

non-ground points are grouped into runs with an associated label. For the subsequent

rings runs’, the label can be inherited from the previous if the ED between the neighbor

points is below a threshold. If any label needs to be merged, the one with the lowest

value is kept and the other is replaced during the final pass of the algorithm through the

remaining point cloud. Although it showed to be applicable in real-time, the GPF was

only tested using even terrain, so its behavior when encountering rough, uneven terrain

and rapid slope changes was not evaluated.

Other existing works also use image color information from a camera [116] or Extruded

Surface of Cross Sections (ESCSs) [117] for segmenting 3D point clouds.

1http://www.statsoft.com/textbook/naive-bayes-classifier
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Figure 2.6: The four stages of SLR clustering algorithm. Circles represent points and
triangles report the cluster labels (adapted from [114]).

2.1.2 Line Extraction

The use of LiDAR sensors to provide a 3D model of the power lines is useful, not only to

evaluate its mechanical conditions but also to detect and monitor some possible dangers,

like encroaching objects [14,17,32,118]. This data can also be used to evaluate the risks

associated with the conductor blowout on certain wind conditions or to predict the ones

related to the vegetation growth. Therefore, this modeling can provide a multifaceted

analysis of power line maintenance and risk evaluation, saving time and costs [119].

In 2004, Melzer and Briese [120] introduced a new method to reconstruct power lines

using airborne LiDAR data. After filtering the terrain and some possible outliers and

vegetation, it applies a Hough Transform (HT) [121] to extract lines on the horizontal

plane projected points. Due to its sensitivity to the remaining outliers and the inho-

mogeneity of cell’s point density, an iterative version of HT is applied instead. After

grouping the detected lines, their model is estimated by a catenary fitting with pa-

rameters obtained from randomly selected line primitives based on RANdom SAmple

Consensus (RANSAC) [122].

Based on the assumption that only trees, power lines, and building edges generate a

significant height difference between the first and last pulses of LiDAR, in [123] is pre-

sented a stochastic method for separating trees and power lines in an urban environment.

The point cloud is preprocessed to extract buildings.

Another classification technique is presented in [124, 125] for clearance anomalies

detection, by separating the points into ground, power lines, towers (or pylons) or other
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objects. It also starts to consider real-time operation using a sweeping 2D LiDAR

attached to the helicopter fuselage, acquiring at a rate of 2 Hz. Using global positioning,

the power lines are modeled by a polynomial fitting that allows interpolating segments

of power lines not detected by taking into account previous geometrical information.

In [29] is proposed a helicopter point cloud segmentation method more specific for

power lines extraction. It identifies three types of data: power lines, vegetation and

surfaces; using an ellipsoid-based neighborhood along the direction of flight, as it assumes

that the flight is parallel to the power lines. Based on the eigenvalues of the covariance

matrix of each cluster, a classification is attributed and used for training an algorithm.

Each cluster classified as possible power line is then specified by its mean point and the

largest eigenvalue, which comprises a local affine model. The line span is then extracted

by fitting the power line to a straight line, on the horizontal plane, and a catenary, on

the vertical plane, along that direction. Due to the assumption of a flight aligned with

the power lines, this method will likely fail to detect perpendicular or transversal power

lines.

The work of Jwa et al. [126] presents a voxel segmentation technique to classify voxels

as linear, non-linear or undefined. This classification is performed by meeting trained

parameters of the HT, eigenvalues, and point density combination. In order to have an

initial orientation, for each power line candidate point is performed an eight-hypothesis

CLF (figure 2.7), selecting the one with the least sum of the squared residuals between

hypothesis and observations. Applying an outlier testing and removal, the power line

direction is calculated with the member points and a sub-cubic box, containing them, is

generated and used as a priori information for the next steps. The proposed Voxel-based

Figure 2.7: Eight-hypothesis CLF [126].
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Piece-wise Line Detector (VPLD) process will propagate the sub-cubic boxes based on

the previous information of the estimated catenary model, updating it with the new

information. If the number of points is not enough to model a catenary, a line equation

is used instead.

In [127] is used a semi-automatic method to get multiple power line models. From an

airborne LiDAR point cloud data, the power line points are manually selected and used

as input for the algorithm. The points are then clustered to their nearest neighbor, if a

distance threshold is not overpassed, and a polynomial model is used for the power line

fitting.

Zhu and Hyyppä [30] proposed a method for extracting lines in forest areas. It first

selects candidate points based on their height difference and density distribution on each

cell from the grid. Those points are then projected on the horizontal plane forming a

binary image. Image processing algorithms are then applied to extract the power lines,

taking into account aspects like continuity, binary blob area, and linearity. The 3D line

is then recovered from the resulting 2D blob, however, no fitting model is presented.

In 2014, Xiang [128] presented a work-flow for the 3D reconstruction of power lines.

In his work was approached the importance of a proper filtering of data in the quality of

the final results. The newly presented vertical spacing followed by an improved density-

based filtering outperformed the combination of the adaptive TIN and 8-neighbor culling

mechanism. Applying the HT to the filtered data, projected on the horizontal plane, are

obtained some line segments that will be concatenated by similarity (likely to belong to

the same wire; figure 2.8). Some possible remaining vegetation points are then removed

on the power line extraction and clustering, using a more restrictive vertical spacing

filtering. The power lines are then fitted and reconstructed by using a line model for the

Figure 2.8: Rectangular buffer to concatenate lines detected by HT (adapted from [128]).
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horizontal plane, and a catenary for the vertical one. The hazard tree detection is also

discussed, however, only vertical hazards are effectively detected.

Adapted for ground vehicle LiDAR data, in [129] the initial point cloud is voxelized

and filtered according to terrain clearance, up-down continuity, and feature eigenvector.

Analyzing the neighbor voxels, the point density can also be used to remove the remain-

ing non-power line points. A HT is then applied to the horizontally projected points for

detecting the power lines. A cluster-growing method based on local straight line fitting

is used to reach the final fitting to a polynomial. The local line fitting properties are

also used for cluster recovery from occlusions.

In [38] is proposed another method suited for ground vehicles. It extracts off-road

points by removing the curb ones, aided by a priori knowledge of the road size. The

extracted points are then sequentially segmented by height, spatial density, and size

and shape filters. The power line candidate points are extracted by using HT and then

clustered based on their ED. The spatial density and size and shape filters require a

voxel-based division of the data and are mainly used to detect pylons. The result of the

mathematical fitting of the power lines to a line on the horizontal plane and a catenary

on the vertical plane can then be used to aid the pylon detection. Another method for

pylon detection is presented in [130] for aerial vehicles.

Guo et al. [31] presented a method for power lines reconstruction that classifies the

point cloud data into power line, vegetation, building, ground, and pylon, based on

their previous work [131]. In order to prevent a false-positive in the classification of

vegetation as pylons, it is verified if the pylons are connected by wires, using a HT. The

power line points that belong to a span between two neighbor pylons are segmented

into profiles orthogonal to the span direction and their similarity is checked (figure 2.9).

Using a RANSAC-like method for setting the initial parameters of the catenary curve

and searching for candidate samples, the span is iteratively reconstructed and the points

are added to the estimation if they satisfy the so far predicted model. Due to the

assumption that, over the same span, the power lines model have approximately the

same parameters, this method outperformed the one in [29] on situations with power

line partial occlusion or data sparseness (up to a certain degree).

An automatic clearance anomaly detection algorithm was developed in [12]. It first

filters the terrain and then detects the existing pylons for isolating the power line spans

and perform an individual analysis. The resulting power line points are then segmented

into clusters, combining geometric distribution analysis and conditional Euclidean clus-

tering with linear feature constraints inside the divided spans. The resulting clusters

are fitted into a horizontal linear and a vertical catenary model. Comparing the power
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Figure 2.9: Similarity detection by span segmentation (adapted from [31]).

lines model with the previous filtered terrain and vegetation, the algorithm is capable

of detecting clearance anomalies on the line corridor.

Regarding the power line model fitting, Jaw et al. in [16] studied the effect of the

wind on the conductors’ motion while they are acquired by LiDAR sensors.

2.2 Discussion

After exposing the existing works related to the segmentation of point clouds and ex-

traction of power lines techniques, an overall analysis will help in the development of

the present project. Some of the enumerated techniques had already detected some

limitations related to the segmentation and power line detection, proposing solutions to

overcome them. Both those informations and some assumptions made and proven in the

existing works can be either improved or directly applied to this project.

Regarding the 3D segmentation of an input point cloud, it is common to use a voxel

grid division, as all the spatial information of the points is kept, unlike the 2.5D grids

or the plane projected images. This division of the environment in cells allows an easier

(neighboring information) and quicker (clustering) analysis of the recorded structures.

When the data is being treated for each complete scan of the LiDAR (360 degrees

revolution), a sensor-centered radial grid is preferred. This fact is based on the common

nature of the 3D LiDAR sensors, as they acquire the scene in a radial fashion and the

data becomes sparser with the distance to the sensor. The radial grids are capable of
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dealing with this data sparseness due to the larger spatial coverage of the farthest cells,

preventing some over-segmentation or meaningless cells (with too few points). This non-

constant spatial coverage generally leads to a smaller number of generated cells when

compared to the traditional rectangular grids and, thus, to a faster processing.

The basis of the point cloud segmentation on mobile robotics is the division of ground

and non-ground points. As the ground can play a role of a link between other structures,

its removal is beneficial because not only provides a deeper segmentation of the point

cloud but also greatly reduces the number of points to analyze, as the ground is usually

a structure that contains a large number of points. The speedup obtained with ground

removal may, however, not be sufficient to reach real-time processing. For reaching it,

the existing works had proved the need for LiDAR sensor data structure knowledge.

This prior information vastly decreases the number of operations needed, due to the

knowledge of the points’ neighborhood.

After the segmentation, the classification of the obtained clusters is mainly done by

using offline trained algorithms.

In the power line extraction techniques there is an effort to first isolate the candidate

to power line points from the others. This division is made based on the covariance

matrix eigenvalues of neighbor points and the point density. The resultant points are

then projected into a horizontal plane to generate a binary image and detect lines or

pylons based on the size and shape of the blobs, and to detect lines by applying a HT.

The detection of the pylons position helps in the span-by-span analysis, where power

lines similarity can be used. The power line fitting models used are generally a line on

its horizontal projection, and either a catenary or a polynomial for the vertical plane.

This models, however, can be affected in the presence of considerable wind [16]. Having

the fitted lines, clearance anomalies can be detected by analyzing the shortest distance

to a non-power line point.

In the presented methods, only in [124,125] is slightly considered the real-time oper-

ation for power line extraction. However, as it uses a 2D LiDAR at a low rate, conse-

quently having a small number of points to analyze, this method not suitable for larger

amounts of data at a higher rate. The studied power line extraction methods also depend

on several trained thresholds that can lead to a deterioration of the presented results for

other point cloud examples.

Using multirotor Unmanned Aerial Vehicles (UAVs), the ground estimation for subse-

quent removal is trickier. For ground vehicles, is easier to detect, with high confidence,

some ground points that can be used as seeds for region growing algorithms. As the

aerial vehicle’s operation is independent on the ground nature and can be done in both
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urban and rural environments, the ground may have a lot of variations and be similar to,

for example, the top of buildings. One challenger is the fact that the aerial vehicles can

easily change its altitude, changing the point density of the detected structures below

them, which leads to situations where the ground might not be the cluster with more

points.
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Chapter 3

Fundamentals

In this chapter is made a brief overview of some concepts that are considered impor-

tant for helping in the understanding of the developed work. The exposed information is

related with mechanical features of the sensors, mathematical concepts and middleware

architecture.

3.1 LiDAR

The rangefinder Light Detection And Ranging (LiDAR) is a sensor used to measure

distances to objects around it. Its operation is based on the Time-of-Flight (ToF) of

a fired pulse of light. For many years, these LiDAR sensors were either spinning or

flash, but, lately, their technology is evolving and begin to appear new ones, like the

MicroElectroMechanical System (MEMS) mirror and phased-array LiDARs [132,133].

3.1.1 Spinning LiDAR

In its basic configuration, a spinning LiDAR makes measurements by periodically firing

a light beam. Adding a moving mirror towards the fired laser beam, and spinning the

moving structure of the sensor (figure 3.1), is possible to obtain a Three-Dimensional

(3D) map of the environment around the sensor [132–134].

This LiDAR configuration is able of sensing in a 360 degrees Field-Of-View (FOV)

and can emit the laser source at a higher power level than a stationary one, achieving

longer ranges [134]. This last feature is related with the eye safety rules: as the spinning

LiDAR only fires in a particular direction at each moment, the additional power won’t

risk the eyes.
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Figure 3.1: Spinning LiDAR example [135].

Despite the advantages, these sensors are usually bulky, mechanically fragile to shocks

and vibrations, and expensive, easily reaching several thousands of euros [133,134]. The

lifetime of their mechanical parts is low (usually up to 2000 hours) [132].

3.1.1.1 Convert measures to spatial points

A beam corresponding point P is returned by a 3D spinning LiDAR in a polar coordinate

system P = (α, ω, r), where α is the azimuth angle, ω the elevation angle, and r the

measured range (refer to figure 3.2). For converting it to an euclidean 3D sensor-centered

frame, the following equations must be applied:

x = r · cos(ω) · sin(α) (3.1)

Figure 3.2: Spinning LiDAR coordinate system example (adapted from [136]).
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y = r · cos(ω) · cos(α) (3.2)

z = r · sin(ω) (3.3)

Having in mind that every point is measured at a different time, if the sensor or the

detected objects are not stationary, special care shall be taken to correct or interpret

the obtained data.

3.1.2 MEMS mirror LiDAR

In the MEMS mirror LiDAR, the highly-precise mechanical scanning mirrors of the spin-

ning LiDARs are replaced by spinning MEMS micro-mirrors to perform the transmitting

part by directing the beams [137] (figure 3.3).

Figure 3.3: MEMS mirror LiDAR example [137].

This huge reduction on the mechanical parts allows a huge shrinking on the LiDAR

size, significantly lowering its cost and sensitivity to vibrations [137]. Despite this,

it can still be susceptible to shock and vibrations and mirror drifts out of alignment,

needing to be recalibrated. Big changes in temperature may also lead to an uncalibrated

system [132].

Another drawback of this LiDAR is its FOV of 120 degrees or less, but due to its lower

cost, a complete 360 degrees coverage system can be built by using multiple sensors [134].

3.1.3 Solid-state LiDAR

Solid-state LiDARs are sensors that have no moving pieces. Their designs are being

developed to solve the cost, size, reliability and complexity of mechanical-based LiDARs

[133].
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3.1.3.1 Flash LiDAR

This kind of LiDAR periodically fires a powerful beam of light towards a lens that will

spread it to the environment. The reflected light is then captured by an array of photo-

sensors. As only a small portion of light returns, there is the need for very sensitive

(and expensive) receivers, what makes the cost of these sensors reach the hundreds of

thousands of euros [132]. Its main advantage is the complete FOV acquirement at one

moment, however, the FOV coverage is generally very small.

3.1.3.2 Phased-array LiDAR

In a phased-array, there exists an array of a large number of optical antennas synced up

in a specific way. By controlling their phase it is possible to form a radiation pattern,

or spot, that has a certain size and is pointed in a certain direction [132] (figure 3.4).

Figure 3.4: Phased-array LiDAR steering concept (adapted from [132]).

These systems are more economical interesting than the others (less than a thousand

euros) [132], but tend to produce beams that diverge more, making it hard to achieve a

combination of long range, high scanning resolution, and wide FOV [134].

3.2 3D Frame Relations

When a sensor is attached to a mobile robot or a global reference is needed for naviga-

tion, there is the need of a homogeneous transformation (M) between all the reference
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coordinate systems. The homogeneous transformation matrix (M) is given by [138]:

M4×4 =

[
R3×3 t3×1

0 0 0 1

]
(3.4)

Where R is the rotation matrix that maps the angular relation between the two

frames and t is the translation between the two coordinate systems’ origin.

Having the figure 3.5 as an example, the point P can be mapped into the global frame

(w), knowing its coordinates in the local frame (b), by applying the following equation:[
Pw

1

]
=

[
Rw
b tbw

0 0 0 1

]
·

[
Pb

1

]
= Mw

b ·

[
Pb

1

]
(3.5)

Being:

• Pw = [xw yw zw]T the point P coordinates in the global frame;

• Rw
b the rotation matrix from the local frame to the global frame;

• tbw the origin of the local frame denoted in the global frame coordinates;

• Pb = [xb yb zb]
T the point P coordinates in the local frame;

• Mw
b the homogeneous transformation matrix that maps the local frame coordinates

into the global frame.

Global Frame (w)

Xw

Zw

Yw

Global Frame (w)

[R | t]

Xw

Zw

Yw

Local Frame (b)
P

Xb

Yb

Zb

Local Frame (b)
P

Xb

Yb

Zb

Figure 3.5: Conversion of reference coordinate frames.

A 3D rotation matrix R can be obtained by the Euler angles (roll (ψ), pitch (θ) and

yaw (φ)) [139] and results from the ordered sequence of rotations around the three frame

axes:

R = Rx(ψ) ·Ry(θ) ·Rz(φ) (3.6)
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Where a rotation of an angle ψ around the x-axis is:

Rx(ψ) =

1 0 0

0 cos(ψ) − sin(ψ)

0 sin(ψ) cos(ψ)

 (3.7)

The rotation of an angle θ around the y-axis is defined as:

Ry(θ) =

 cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 (3.8)

And, finally, rotating an angle φ around z-axis:

Rz(φ) =

cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

 (3.9)

To complement the explanation above, in figure 3.6 are depicted the Euler angles in

the specific case of an Unmanned Aerial Vehicle (UAV) body frame.

Figure 3.6: UAV Euler angles representation (adapted from [140]).
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3.3 Eigenvalues and Eigenvectors

Eigenvalues are a special set of scalars associated with a linear system of equations

(matrix equation) [141, 142]. Each eigenvalue λ has a corresponding eigenvector. Their

determination is extremely important in engineering, where it is equivalent to matrix

diagonalization and arises in applications like system’s stability analysis.

Having a matrix A that represents a linear transformation, if there is a vector v ∈
Rn 6= 0 that satisfies

Av = λ · v (3.10)

For some scalar λ, then λ is an eigenvalue of A with the corresponding eigenvector v.

Simplifying equation 3.10:

(A− λ · I) v = 0 (3.11)

Where I is the identity matrix.

The eigenvalues λ can then be obtained by solving:

det (A− λ · I) = |(A− λ · I)| = 0 (3.12)

Substituting the calculated eigenvalues λ in equation 3.11 are obtained the associated

eigenvectors v.

3.4 3D Line Fitting Using Covariance Matrix

A line in R3 is defined by a point r0 = [a b c]T on the line and a direction r = [rx ry rz]
T

that is parallel to it. The set of points of this line comprises the equation 3.13 (vector

equation of the line) [143]:

[x y z]T = r0 + t · r , t ∈ R (3.13)

Considering a set of N data points in R3, organized in a matrix XN×3, with an

arithmetic average of the variables µX = [x1 x2 x3], the element i of the unbiased data

matrix Xc is given by:

Xci = Xi − µX (3.14)

The unbiased covariance matrix of ΣX is then calculated using [144–146]:

ΣX = XT
c Xc (3.15)
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The resultant covariance is expressed by a square 3x3 matrix with the eigenvalues

(λ1,λ2,λ3) and the eigenvectors (v1,v2,v3) can be calculated using the method described

in section 3.3. The eigenvectors indicate the directions through which the data is dis-

persed, and the associated eigenvalues represent their relative importance.

Figure 3.7: Eigenvectors of 2D data [147].

Assuming that the eigenvalues are ordered by their importance (λ1 > λ2 > λ3), if

λ1 � λ2 ≈ λ3 ≈ 0, it means that the data can be approximated to a 3D line, and

dimensionally reduced to one dimension, along the direction of the line, given by v1. If

only λ3 ≈ 0, the data propagates into two dimensions and can be approximated to a

plane with a normal defined by v1×v2. Otherwise, it is not possible to apply a reduction

to the data’s dimension.

When the line fitting is possible, the estimated parameters are easily obtained. The

fitted line will pass through the center of the data points, having the direction given by

the most relevant eigenvector:

r0 = µX (3.16)

r = v1 (3.17)

3.5 Minimum Distance Between 3D Lines

Having two 3D lines, r = r0 + tr · rd and s = s0 + ts · sd, the minimum distance between

them is given by the magnitude of the vector that connects a point in line r to a point

in line s and is orthogonal to both lines [148,149].

Taking two points from the lines (r0 and s0), the vector v connecting them is defined
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by v = s0−r0, and the distance between the lines is the component of v that is orthogonal

to lines r and s. That direction can be found by calculating the normalized cross product

of lines directions (rd × sd). Applying the dot product with v, the minimum distance d

will be the absolute value of the result (equation 3.18).

d =

∣∣∣∣ rd × sd
‖rd × sd‖

· v
∣∣∣∣ (3.18)

Note that equation 3.18 is only valid to skew lines1, once that if the lines are parallel

(rd = sd), the norm of their cross product is zero (‖rd × sd‖ = 0).

sd

d

r d

r0

s0

v

(a) Skew lines minimum distance.

s0

r0

d

α

r d

v

(b) Point to line distance

Figure 3.8: Minimum distance representation.

Parallel lines have the same distance at any point belonging to them. This property

allows to consider the calculation of the minimum distance between them as a point to

line distance problem: taking a point s0, in line s, calculate its minimum distance to line

r. From figure 3.8(b) is possible to visualize that d = ‖v‖ · sinα. As the cross product

of v with rd is v × rd = ‖v‖ · ‖rd‖ · sinα, the derivation of equation 3.19, that provides

the distance, is straight-forward.

d =

∥∥∥∥v × rd
‖rd‖

∥∥∥∥ (3.19)

1Two or more non-coplanar lines which have no intersections but are not parallel, also called agonic
lines. Since two lines in the plane must intersect or be parallel, skew lines can exist only in three or more
dimensions (http://http://mathworld.wolfram.com/SkewLines.html [Accessed: 11-Oct-2018]).
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3.6 Catenary Curve Model

By definition, a catenary is a curve formed by a wire, rope, or chain hanging freely from

two points that are not in the same vertical line and forming a U shape. The power

lines are generally modeled as a catenary curve that is defined by a hyperbolic cosine

function [29,51]:

y = a+ c · cosh

(
x− b
c

)
(3.20)

Where a and b are the translation values from the origin along the y and x-axis,

respectively, and c is a parameter that affects the catenary scale.

As equation 3.20 is a transcendental equation2 in c, it must be solved numerically.

This means that a set of previously known points belonging to the catenary curve is

needed. In [29] is exposed an already proven theorem for calculating the parameters:

Theorem 1 For a catenary with parameter a = 0, let (x′, y′) be any point on the cate-

nary, and let t be the tangent vector at (x′, y′). The minimum distance from t to the

point (x′, y′) will equal the catenary parameter c.

Figure 3.9 helps theorem 1 understanding and provides further equations’ notation.

Figure 3.9: Computing catenary parameters (a,b,c) [29].

2An equation or formula involving transcendental functions: a function which is not an algebraic
function. In other words, a function which ”transcends,” i.e., cannot be expressed in terms of, algebra
(http://mathworld.wolfram.com/TranscendentalFunction.html [Accessed: 30-Aug-2018]).

34



Chapter 3 3.7. ROS

From the figure, c is easily computed in terms of a, y1 and θ1, using elementary

geometry:

c = (y1 − a) · sin(θ1) (3.21)

And in terms of a, y2 and θ2:

c = (y2 − a) · sin(θ2) (3.22)

Combining 3.21 and 3.22, resolving in a:

a =
y2 · sin(θ2)− y1 · sin(θ1)

sin(θ2)− sin(θ1)
(3.23)

Substituting a in 3.21 or 3.22, c can be computed as well as b:

b = x1 + c · arccosh

(
y1 − a
c

)
(3.24)

Another odd property of the catenary curves [150] is that, if a = 0, the ratio of the

area under a catenary curve to the arc length is independent of the interval over which

they are measured and is equal to the parameter c.

3.7 Robotic Operating System (ROS)

ROS [151, 152] is a modular open-source software framework for robotic applications

that is becoming increasingly-widely used in the robotics research community. Its im-

plementation comprises a distributed communications infrastructure, low-level drivers

for a wide variety of sensors and actuators, a set of development and visualization tools,

and a large collection of robotics-specific algorithms. ROS communication between pro-

cesses is based on a Peer-To-Peer (P2P) topology, being language-neutral (it supports

very different languages, like C++, Python, Octave, and LISP). This framework has a

rich set of online resources3 and their source code for packages is typically hosted in

public repositories4.

A ROS system usually comprises a number of independent processes, called nodes,

that communicate with each other through a publish-subscribe mechanism. The com-

munication is done by passing typed messages over topics. Nodes can be either used

as device drivers, being connected directly to hardware, or to compute the data they

3http://ros.org
4https://github.com
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subscribe to and publish the result. ROS also provides support for synchronous and

asynchronous remote procedure calls (called services and actions, respectively).

The P2P communication between the nodes is established by a central broker agent,

the roscore: when a new node starts, it connects to roscore and lists both the topics

that it will publish and those that it wants to subscribe to; the roscore passes back the

information of the nodes publishing the desired topics, allowing the new and existing

nodes to make the connection. Roscore is also capable of working with nodes distributed

across a Local Area Network (LAN) (figure 3.10).

Figure 3.10: ROS high-level architecture using a LAN [153]. Circular boxes correspond
to nodes, light square box is a topic, and the roscore is represented by the darker square
box.

Besides nodes, ROS affords the use of nodelets. They behave similarly to nodes but

have the benefit of zero-copy cost between nodelets of the same nodelet handler [154].

Concerning the code organization, individual nodes are collected into packages, which

are themselves grouped into thematic meta-packages, containing an explicit list of meta-

information that provides, among other things, the package dependences for build, run

and test. This type of organization encourages the collaborative development, as it

facilitates the package migration between systems and developers.
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System Design

The use of multirotor Unmanned Aerial Vehicles (UAVs) for electrical assets inspec-

tion has several advantages already discussed in chapter 1, but it comes with the cost

of requiring some perception sensors. Those can be used to acquire data for the inspec-

tion purposes, but also to feed some collision avoidance algorithms or to perform some

predefined autonomous maneuvers. The acquisition of a complete 360 degrees 3D point

cloud for extracting power lines can be done by using a spinning Light Detection And

Ranging (LiDAR) sensor (see section 3.1).

This chapter contains an overview of the hardware and software architectures defined

for applying the developed algorithm. Taking advantage on the ROS modular structure,

the system’s software is based on this middleware, in order to use available ROS packages

and favor its integration in other possible future applications.

4.1 Hardware architecture

The developed algorithm is intended to be applied in a multirotor UAV, using a 3D

point cloud provided by a LiDAR sensor as input, during an electrical power assets

inspection. The onboard computer will be responsible for the algorithm processing,

using an architecture as the one presented in figure 4.1.

Nowadays LiDAR sensors can easily provide several hundreds of thousands of points

each second. Given this large amount of data, in the UAV system, the LiDAR sensor

needs to establish a communication with the onboard computer through an ethernet

connection (figure 4.1, in red), or other that allows a high transmission rate. The

computer first configures the sensor and then processes all the incoming stream of data.
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Figure 4.1: High-level hardware architecture (some graphics adapted from [155–157]).

Having a Global Navigation Satellite System (GNSS) receiver is possible to synchro-

nize all the subsystems’ data timestamps, using Coordinated Universal Time (UTC) as

reference. The receiver provides a Pulse Per Second (PPS) signal and GNSS data (figure

4.1, in blue) that are used to synchronize the LiDAR sensor’s data timestamp, the sys-

tem time of the onboard computer, and the estimated inertial data from the autopilot.

In the autopilot, GNSS data is also used for estimating the UAV pose, by fusing it with

the Inertial Measurement Unit (IMU) measurements.

4.2 Software architecture

The main objective of point cloud segmentation is to provide an easier perception of

the surrounding environment by creating clusters and detect features using application-

specific algorithms. In figure 4.2 is exposed the high-level software pipeline to segment

a point cloud generated by a LiDAR sensor. Apart from the input data, all the pipeline

components were developed with the ROS framework.

The estimated UAV pose is provided to the computer’s ROS environment (figure 4.1,

in orange) by means of a topic published by the mavros1 ROS package. This topic can

be used to establish relations between the sensor, UAV, and global coordinate frames

using the tf22 ROS package, that tracks the available frames’ relations (equation 3.4)

1http://wiki.ros.org/mavros
2http://wiki.ros.org/tf2
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Figure 4.2: High-level software pipeline.

over the time. The LiDAR pose can be either a defined fixed relation with respect to

the UAV, if it is fixed to the platform, or a dynamic relation, if attached to a gimbal,

for example. In the last case, the LiDAR pose can be defined in a similar way as the

UAV’s.

Point cloud segmentation can be done at different levels, depending on the desired

resolution and features, and the available time. Usually, the algorithms developed for

the segmentation have a limited and predefined number of object classes to classify the

detected structures. Those classes are defined according to the application requirements.

In mobile robotics applications, the ground estimation is generally desired, not only

to identify clear paths (ground vehicles) or landing spots (aerial vehicles) but also to

simplify further processing of the remaining points (see section 2.2).

Using the remaining clusters properly referenced into a global frame, other algorithms,

like obstacle’s or free space detection, can be applied. The detection of obstacles is im-

portant to avoid collisions, but the free space recognition is also necessary for navigation

and to identify unknown areas. Knowing those areas may be needed for inspection or

mapping surveys. Structure detection or vegetation monitoring are application-specific

algorithms. For power lines inspection, the classification of the objects into power lines,

pylons and vegetation may be necessary to detect faults and potential hazards. All of

those algorithms can feed a control system of the UAV either by sending high-level com-

mands to the autopilot (figure 4.1, in dark green) or controlling actuators, like releasing

some object near to a structure.

In this project is expected to develop a perception ROS package able to detect and

estimate power line 3D information, providing meaningful data for subsequent algo-
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rithms. The development can be assisted by the use of some already available and

stable ROS packages. This fact, however, does not reject the possibility of implementing

some changes to those packages’ operation, in order to perform better over some defined

project requirements.

Having a power line detection algorithm with real-time processing capability is useful

for the creation of online maps that can be used on the UAV control layer. Achieving

faster processing requires the knowledge of the LiDAR sensor structure. On 3D spinning

LiDARs, due to the large amount of data provided, the azimuth angular resolution is

usually high. Therefore, even when attached to a mobile frame, the pose difference is

neglectable between two consecutive azimuth measurements, which allows to directly

establish comparisons between them, not needing to map it to the global frame. This

strategy allows processing time saving and position error reduction, as the UAV pose

estimation (and associated errors) is not used.

Due to the above-mentioned properties, the point cloud segmentation can be per-

formed using the provided points in the LiDAR frame, as depicted in figure 4.2. The

resultant clusters can then be mapped to the global frame, in order to aid the structure

recognition or visualize structured maps.
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PL2DM Algorithm

This chapter details the algorithm developed to fulfill the objectives and requirements

addressed in the dissertation, the Power Line LiDAR-based Detection and Modeling

(PL2DM). It starts by presenting the concept in which the algorithm is based, following

with the detailed description of each data processing block. The complete processing

results on the detection and mathematical modeling of the power lines.

5.1 Concept

In order to achieve the main objective of detecting the power lines in a point cloud, the

process needs to be divided into several steps: the segmentation of an input point cloud,

the identification of candidate power line segments, and finally, the estimation of the

power line fit based on the mathematical model.

5.1.1 Segmentation

This is the most critical step to achieve a fast detection of the power lines. Due to a large

amount of data provided by Light Detection And Ranging (LiDAR) sensors, its analysis

needs to be a real-time and optimized step in order to ensure that will not introduce a

huge delay in the overall power line detection.

For time-saving purposes, the evaluation of each point received can be made with

respect to the LiDAR’s reference frame, not requiring to transform them into a global

frame. Adding to this, when possible, an analysis that relies on the values of range and

directions in relation to the sensor (polar coordinates), instead of one based in points

mapped into the Euclidean space, is preferable.
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Even if has low accuracy, a first classification of the obtained clusters needs to be made

at this step. The classification is critical for the performance of subsequent processing,

as the non-meaningful clusters are ignored. This reduces the data quantity and allows

a deeper (and, probably, more time-consuming) analysis.

5.1.2 Line Detection

The input for this layer is the points that were previously classified as potential power

lines, mapped into a global frame. Since that the quantity of data is, in principle,

much less than the initial input point cloud, here the points are submitted to another

clustering process. This process is responsible for refining the input clusters based on

collinearity properties. This procedure assumes that, in each LiDAR scan, the detected

fragments of power lines can be approximated to a line. Each cluster containing lines

is passed to a further layer, ignoring others with low evidence of collinearity. From the

clustering refinement, there may exist some isolated points that are not considered as

lines, however, they are not removed for the next steps.

5.1.3 Power Line Modeling

The mathematical modeling of the power lines is the last step of the algorithm. This layer

is responsible for saving the line clusters provided by the previous layer and iteratively

trying to estimate power lines model in the global frame. The isolated points can possibly

be associated with previously modeled lines that have a high degree of confidence.

The output generated by this layer may be useful to other algorithms running in the

vehicle, like the ones related to the navigation, not only to consider a power line as an

obstacle, but also as a possible target to inspect or follow.

5.1.4 Algorithm Architecture

The figure 5.1 summarizes the concept of the PL2DM architecture. Whenever a point

cloud (lPCL) provided by the LiDAR is available, the segmentation layer is triggered.

If there exists any evidence of the existence of lines, the candidate line points (lLp) are

provided to the next layer.

Based on the frame relations, described in section 3.2, the points lLp are mapped

from the local LiDAR frame (l) into the global frame (w). These relations are stored by

the Robotic Operating System (ROS) package tf2 that receives and tracks information

about the pose of the robot in the global frame (wpb) and the pose of the LiDAR sensor

in the robot frame (bpl).
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Figure 5.1: Concept of the proposed algorithm architecture.

The line detection is then performed over the candidate points in the global frame

(wLp). The clusters that comprise the collinearity constraints (wLs), or with isolated

points (wptiso), are passed to the power line modeling module. It tries to match the new

information with the one previously stored, trying to model the detected power lines

(wPLm).

The information of the obtained models can then be used to feed other algorithms.

Moreover, mapping those models in the local frame (lPLm) is still of great importance for

the next segmentation procedures, as they may help in the classification of the clusters.

5.2 Algorithm Procedure

During the development of the PL2DM algorithm, were created some rules related to

the input data organization and power line properties. Therefore, the algorithm might

fail if some of those rules are not respected.

5.2.1 Segmentation

The segmentation of a point cloud is the first step of the PL2DM. Once that it is the

closest layer to the sensor data input, a correct definition of the organization of the data

is crucial for its proper functionality.

5.2.1.1 Required Data Organization

For analysis, the input point cloud is represented by a Two-Dimensional (2D) matrix,

where each column represents an azimuth angle α, and each line an elevation angle ω

(figure 5.2, following the nomenclature of figure 3.2). Due to time constraints, the stream

of data provided by the LiDAR is assumed to be acquired (and sent) sequentially in a

raster-scanning order (orange arrow in figure 5.2), being used the same order for the

data analysis.
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Figure 5.2: LiDAR data organization.

During the data processing, some already processed points are kept into memory

to perform a neighbor comparison based on the layout presented in figure 5.3. Those

points are saved into two buffers: one of them contains the last processed points for each

elevation angle, and another contains the second last processed points (red and green

cells in figure 5.2, respectively).

l

c

Figure 5.3: Layout for neighbor comparison.

The layout chosen for neighbor comparison (figure 5.3) is the one that takes the least

iterations to compare all the points in the data matrix, considering the direction of
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analysis. Each point being processed (blue cell in figure 5.3) is compared against four

neighbors (top and left ones) unless it belongs to the first column, first line, or last line

of the data matrix. In this case, it is only evaluated with the available neighbors that

respect the layout.

5.2.1.2 Adaptive Neighbor Comparison

Whenever the input point cloud is dense, the data matrix cells are all properly filled,

and the neighbor comparison is performed between contiguous cells. In figure 5.4 is

evidenced the importance of the second last points buffer (bold green cell in figure 5.4)

to perform the point evaluation.
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Figure 5.4: Point analysis procedure.

In cases where the point cloud is sparse, i.e., it might have some invalid points (from

invalid ranges), the layout for neighbor comparison can be adaptive to the data matrix.

Figure 5.5 depicts the matrix representation of a point cloud with invalid points.

When analyzing a point, if some of its contiguous neighbors corresponds to an invalid

point, the comparison can be made with a non-contiguous one. In this case, the value of

∆α needs to be evaluated and, if the value is below a threshold, the point is compared
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with the non-contiguous neighbor, otherwise, it is assumed that the point has no neighbor

for that position.
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Figure 5.5: Point analysis procedure with a sparse data matrix.

Comparing figures 5.4 and 5.5 is possible to notice how the layout of neighbors is

adapted in the presence of invalid cells. This adaptation represents an effort to approx-

imate a sparse data matrix to a dense analysis, reducing the effect of possible over-

segmentation generated by sensor acquisition failures.

5.2.1.3 Expected Range Calculation

The proposed algorithm relies on a range-based segmentation, comparing the true and

expected ranges. Besides the range value, all the input points shall have azimuth and

elevation angles associated. As already pointed in subsection 3.1.1, those three values

are the ones that are usually provided by a spinning LiDAR, which means that the

algorithm has the capability of interpreting data directly from the sensor, not needing

any preprocessing of the values.

The segmentation of a scene consists in clustering the data points that share some

defined properties. In a scene with some structures, it is usual to find planar features,
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so the coplanarity among the points can be a property to consider for clustering. Other

features like the distance between consecutive points or the angle between them can also

help the division.

Due to their radial measurement nature, the points acquired with a LiDAR become

sparser with the range, which makes the clustering by distance threshold tricky. Among

other coexistent methods, in [158,159] is used an Adaptive Breakpoint Detection (ABD)

method for dividing the clusters of points. It consists in defining an incidence angle λ of

the previous beam with a virtual line that passes through its point (pn−1), calculating

the maximum distance Dmax allowed to cluster the current point (pn) with the previous,

using the law of sines [160] (figure 5.6). The defined λ can be interpreted as the worst

case incidence angle for a line on which points can be reliably detected.

Figure 5.6: ABD threshold Dmax.

The drawback of this approach is that the value of λ is predefined and remains

unchanged regardless of the actual incidence angle of the measured surface. Therefore,

its correct tunning is critical, as the quality of the segmentation is strongly dependent

on it. Adding to this, it lacks on the definition of a relation between the previous and

the current range values, not validating if the current range should be higher or lower

than the previous. Once satisfied the Dmax constraint, the points are clustered, which

can lead to clusters with significant changes in angular relations.

To overcome some of the identified limitations, the proposed algorithm uses a method

that is capable of calculating the expected range relation of neighbor beams, taking into

account the estimated plane (detailed in 5.2.1.4 and 5.2.1.5) of the cluster where the
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point belongs. This way, the calculated range relation will consider simultaneously the

distance and angle between the points.

For obtaining the range relation between beams, the analysis is separated into two

parts: one that considers the vertical displacement (Z’s direction), due to differences

in the elevation angle, and another related to the horizontal displacement (XY plane),

associated with the azimuth angle. The vertical analysis is made by having as reference

the intersection line of the plane formed by all the beams through a fixed azimuth angle,

with the estimated plane (Π) of the cluster (figure 5.7). The horizontal analysis is similar,

but instead is considered the plane generated by some beams over a fixed elevation angle

(figure 5.8).
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Figure 5.7: Vertical measurements of a LiDAR.

Taking figure 5.7 as reference for the further equations, it is possible to infer how the

range of neighbor beams are related. Considering two beams with range r0 (reference)

and r1 + ∆r1v (neighbor), and the intersection line with the plane Π, the equations of

the 2D lines, in the sensor’s frame are given by:

z0 = m0 · x0 + b0 (5.1)

z1 = m1 · x1 + b1 (5.2)

zΠ = mΠ · xΠ + bΠ (5.3)
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As the lines representing the beams pass through the reference, b0 = b1 = 0. The

value of bΠ can be obtained by the intersection of equations 5.1 and 5.3, where xΠ = x0:

bΠ = m0 · x0 −mΠ · x0 = (m0 −mΠ) · x0 (5.4)

Now taking the intersection between equations 5.2 and 5.3, where xΠ = x1:

x1 =
(m0 −mΠ)

(m1 −mΠ)
· x0 (5.5)

Substituting, in equation 5.5, x0 = r0 · cos(ω0), x1 = (r1 +∆r1v) · cos(ω1), m0 = tan(ω0),

m1 = tan(ω1), mΠ = tan(ωΠ):

(r1 + ∆r1v) · cos(ω1) =
(tan(ω0)− tan(ωΠ))

(tan(ω1)− tan(ωΠ))
· r0 · cos(ω0) (5.6)

Knowing that tan(a)− tan(b) = sin(a−b)
cos(a)·cos(b) , the final equation that calculates the range

relation is given by:
(r1 + ∆r1v)

r0
=

sin(ω0 − ωΠ)

sin(ω1 − ωΠ)
(5.7)

Generalizing equation 5.7 for a reference range rref and a neighbor range rnb, in the

vertical plane (rnbver):

verscale =
rnbver
rref

=
sin(ωref − ωΠ)

sin(ωnb − ωΠ)
(5.8)

The approach for the XY plane is similar to the above, and the horizontal range

relation is given by:

horscale =
rnbhor
rref

=
sin(αref − αΠ)

sin(αnb − αΠ)
(5.9)

Combining the two results, having a reference range, the expected neighbor range

will be obtained by solving:

rnb = horscale · verscale · rref (5.10)

When performing a comparison between a point and its neighbor, if the cluster where

the neighbor belongs is suitable for being approximated to a plane Π, ωΠ and αΠ are

calculated based on its normal, otherwise, it is assumed that ωΠ = π/2 (orthogonal to

XY ) and αΠ = αref + π/2 (perpendicular to the reference beam). After calculating

them, the angular values are constrained to the interval ωΠ, αΠ ∈ [0, π[.
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Figure 5.8: Horizontal measurements of a LiDAR.

An important note to this method is the fact that equations 5.8 and 5.9 can have a

null denominator, so they must be used with special care. For example, in equation 5.8,

this happens when ωnb = ωΠ or ωnb = ωΠ ± π. Even when those equalities are avoided,

a very small value of the denominator will rapidly increase the value of verscale, which

means that the relation between ωnb and ωΠ needs to be limited by setting a maximum

to the allowable value verscale. The algorithm will consider the calculated value of rnb

not valid if it overpasses the maximum range of the LiDAR.

Another physical limitation that is applied to this approach is the fact that the value

of a range is always positive. To ensure this, the values of verscale and horscale are

only accepted if they are positive, so their numerator and denominator must be both

positive or negative, which corresponds to, in the case of the verscale value, ωref , ωnb ∈
]ωΠ, ωΠ + π[ or ωref , ωnb ∈ ]ωΠ − π, ωΠ[, respectively. These constraints are represented

in the top row graphs of the figure 5.9, in blue. As the comparison is performed between

neighbor beams, ωref and ωnb, and αref and αnb, have similar values, so these limits will

likely not be respected only in cases where their values are close to ωΠ and αΠ.

Whenever some of the presented constraints is not satisfied, the values of ωΠ and αΠ

are set to their default, ωΠ = π/2 and αΠ = αref + π/2.
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Figure 5.9: Analysis of angular constraints for verscale. verscale value is limited to 2.
Left column represents the case where ωΠ = π/2 and right column ωΠ = 3π/4. Top row
depicts the combined values of ωref and ωnb that make verscale positive, in blue. Mid
and bottom rows detail the influence of ωref and ωnb, respectively. It is notorious that
when ωref tends to ωΠ or ωΠ±π, the value of verscale tends to zero. On the other hand,
when ωnb approaches ωΠ or ωΠ ± π, the value of verscale will increase to a predefined
limit.
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5.2.1.4 Point Clustering

There are two properties of the points that are used to create clusters. Besides the

comparison between the beam true and expected ranges, it is also evaluated the relation

of the normals. One of them is obtained directly from the previously estimated plane

where the neighbor points lie, and another results from the local planar estimation.

This local estimation comprises the point under analysis and the neighbors that pass

the range relation constraint.

The points are first compared with their neighbors regarding the range values, using

the methodology detailed in 5.2.1.3. The points may then clustered if the relation of the

true (rtrue) and expected (rexp) ranges is below a predefined threshold ζrange:

max(rtrue, rexp)

min(rtrue, rexp)
− 1 < ζrange (5.11)

As the relation is based in a quotient, for farther distances, it is allowed a larger error

to cluster the points. If this condition is not fulfilled, the points are not clustered and is

performed a comparison with the next neighbor, otherwise, the relation of the normals

is evaluated.

The local planar estimation (Πlocal) is based on the plane that fits better the set

composed by the point under analysis and its neighbor points that had passed the range

condition. The local plane normal (nΠlocal) is then obtained using the covariance matrix

of the set, in a strategy similar to the one described in the subsection 3.4, adapted to

planar data.

Having a valid estimated normal to the local plane, the comparison between the

angles of the local and the reference (Π - associated to the neighbor’s cluster) planes is

achieved by calculating the minimum angle (θ) between their normals, that is obtained

from the result of their dot product:

θ = arccos

(
|nΠlocal · nΠ|
‖nΠlocal‖ · ‖nΠ‖

)
(5.12)

After calculating the value of θ, the points will belong to the same cluster if θ is below

a predefined angular threshold (θ < ζangle). If the cluster of the neighbor point has no

valid normal to represent it, the clustering is made based only in the range threshold

(ζrange). The same happens if the reference point has no sufficient neighbors to form a

plane, i.e., less than two. When the point being tested has more than one valid neighbor

to associate, belonging to distinct clusters, the two clusters are merged.

52



Chapter 5 5.2. Algorithm Procedure

When a point is associated to a cluster, the resulting representative normal is adjusted

to the weighted average of it with the normal calculated for the point. Merging two

clusters results in an expansion of the cluster with the lowest index, adding the points

of the other cluster and averaging the representative normals, properly weighted based

on the number of points.

5.2.1.5 Obtaining ωΠ and αΠ

As already discussed in subsection 5.2.1.3, the parameters ωΠ and αΠ are crucial for the

comparison of a point with its neighbors. The value of ωΠ corresponds to the angle, with

the XY plane, of the line that results from the intersection of the vertical plane formed

by the beams over a fixed azimuth (αref ), and the reference plane Π. The value of αΠ

is the horizontal angle (in the XY plane) of the line resultant from the intersection of

a plane formed by the beams over a fixed elevation angle (ωref ), through a reference

azimuth direction (αref ), with the plane Π.

To obtain the value of ωΠ is defined a horizontal line lhor, passing through the origin

with a direction dlhor = [cos(αref ) sin(αref ) 0]. The normal of the vertical plane can

then be defined by a horizontal vector nlhor , orthogonal to the line lhor:

nlhor =
[
sin(αref ) − cos(αref ) 0

]
(5.13)

The intersection of the planes define the desired line, and its direction dlω is given

by the normalized cross product between their normals:

dlω =
nΠ × nlhor
‖nΠ × nlhor‖

(5.14)

Ensuring that the vertical component of dlω is positive, the angle of it with the

horizontal plane is calculated based in the dot product of dlω and dlhor :

ωΠ = arccos

(
dlω · dlhor
‖dlω‖ · ‖dlhor‖

)
(5.15)

For calculating the value of αΠ, both αref and ωref values need to be considered.

A new line (lver) is then defined, passing also through the origin, but with a direction

dlver , now given by:

dlver =
[
cos(αref ) · cos(ωref ) sin(αref ) · cos(ωref ) sin(ωref )

]
(5.16)
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Taking the normalized cross product of dlver and nlhor , is obtained the normal nlver

of the desired plane:

nlver =
dlver × nlhor
‖dlver × nlhor‖

(5.17)

Similarly to equation 5.14, the intersection line direction (dlα) is calculated by using:

dlα =
nΠ × nlver
‖nΠ × nlver‖

(5.18)

Now ensuring that the second component (y) of dlα is positive and its first compo-

nent (x) is non-null, the angle αΠ is obtained based on the horizontal projection of the

intersection line direction:

αΠ = arctan

(
dlα(y)

dlα(x)

)
(5.19)

Once that the value of the angle needs to be αΠ ∈ [0, π[, and the arctan function

returns values in the interval
]
−π

2 ,
π
2

[
, if the obtained value of αΠ < 0, its value is

converted to αΠ = π + αΠ.

5.2.1.6 Cluster Classification

The generated clusters are classified as planar, potential lines and undefined during the

segmentation step. The planar clusters usually have a great number of points clustered

with a small error between their expected and true ranges and angular difference θ near

to zero. The clusters classified as potential lines are, generally, composed by a set of few

points that have the same properties of the planar ’s when compared with potential lines

neighbors. When compared with planar neighbors, this kind of clusters have a large

range relation error, once they are always closer to the sensor.

The type of the clusters is determined by a voting system. Whenever some of the

properties mentioned above is verified, the corresponding voter is incremented in the

cluster. If the number of votes for a type, in relation to the number of points, is not

significant, the cluster is classified as undefined.

The voter of the potential lines type can also be supported by the known information

about the previously detected power lines (see subsection 5.2.3).

5.2.1.7 Algorithm

The algorithm 1 summarizes the information presented over the subsection 5.2.1. In

some lines of code are referred the subsections that have the necessary explanations to

understand the algorithm.
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Algorithm 1 lLp ← Segment(lPCL)

1: Initialize variables
2: for each pt ∈l PCL do
3: rref ← pt range
4: αref ← pt azimuth angle
5: ωref ← pt elevation angle
6: clref ← −1
7: NBvalid ← pt
8: for each ptnb (see subsections 5.2.1.1 and 5.2.1.2) do
9: rnb ← ptnb range

10: αnb ← ptnb azimuth angle
11: ωnb ← ptnb elevation angle
12: clnb ← ptnb cluster
13: ∆α = |αref − αnb|
14: if ∆α > ∆αthr then
15: Go to next neighbor
16: end if
17: Calculate rexp (see subsections 5.2.1.3, 5.2.1.4 and 5.2.1.5)
18: if range relation < ζrange (Eq. 5.11) then
19: NBvalid ← NBvalid ∪ ptnb
20: end if
21: end for
22: Calculate nΠlocal (see subsection 5.2.1.4)
23: for each ptnb ∈ NBvalid do
24: clnb ← ptnb cluster
25: nΠ ← ptnb cluster normal
26: if ‖nΠlocal‖ > 0 and ‖nΠ‖ > 0 then
27: Calculate θ (Eq. 5.12)
28: end if
29: if ‖nΠlocal‖ == 0 or ‖nΠ‖ == 0 or θ < ζangle then
30: if clref == −1 then
31: clref ← clnb
32: else if clref 6= clnb then
33: Merge clref and clnb
34: end if
35: end if
36: end for
37: if clref == −1 then
38: Create new cluster
39: else
40: Add pt to cluster clref
41: end if
42: end for
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43: for each cluster cl do
44: Evaluate cl type (cltype) based in a voter (see subsection 5.2.1.6)
45: if cltype == potential line then
46: lLp ←l Lp ∪ clpoints
47: end if
48: end for
49: return lLp

5.2.2 Line Detection

The line detection algorithm is a separate thread that is triggered whenever new potential

line points are generated from the segmentation process. It is responsible for analyzing

the incoming points, refining their clustering, and for trying to fit those clusters to a

straight line. From this processing stage, the points are mapped into an Euclidean global

frame, in order to allow the line matching between scans.

5.2.2.1 Cluster Refinement

Refining the clusters of the received points is needed to increase the quality of the line

generated by the fitting step (subsection 5.2.2.2). This first clustering is based in the

distance between points.

For associating the points, it is followed an approach similar to the Radially Bounded

Nearest Neighbors (RBNN) clustering [83], using a predefined dmax as a breaking condi-

tion to stop the process. The value setting for dmax is based on the minimum expected

distance between two power lines present in the environment of the inspection.

Although the use of RBNN can be time-consuming, its application is possible due to

the low number of potential line points that are usually detected on each scan.

5.2.2.2 Line Fit

Analyzing the created clusters cllpts, the algorithm tries to approximate their points to

a 3D line, using the method described in 3.4. The process of line fit is only applied to

clusters with more than three points, in order to decrease the probability of having an

erroneous estimation of a line.

The resultant fitted line is considered valid or not based on the value of λrel. This

value represents the relation between the two most significant eigenvalues (λ1, λ2). If

the condition of λ1/λ2 > λrel is met, the fitting is considered valid, otherwise, the

correspondent cluster is removed from the further processing steps.
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Due to some possible gaps on the line detection, different clusters can belong to the

same line and, in that case, they shall be merged. For that, the collinearity of the distinct

fitted lines is evaluated, using three conditions:

• The angular difference of the direction vectors (σ = arccos (v0 · v1/‖v0‖ · ‖v1‖))
needs to be below an angular threshold σthr;

• The shortest distance between the lines (using the approach described in section

3.5), defined by their line segments, cannot be greater than dmax;

• The distance, evaluated locally, of the line segments must be less than dmax.

If all of those three conditions are met, the lines are considered collinear, their clusters

are merged, an a new fitted line is calculated. As the skew lines can have their shortest

distance in a point far from the line segments, it arises the need for evaluating their

distance locally.

Once the lines are estimated, if there exists some clusters that has no fitted line (low

number of points), they can also be added to other cluster containing a line. This adding

process is based on the point to line distance (described in section 3.5). If the distance

value is below a more restrictive value than dmax, the point is added to the line cluster.

5.2.2.3 Algorithm

In the algorithm 2 is exposed the process described over the subsection 5.2.2.

Algorithm 2 (wLs,w ptiso)← Line Detect(wLp)
1: Initialize variables
2: for each pt ∈w Lp do
3: associated← false
4: for each cl ∈ cllpts do
5: for each ptcl ∈ cl do
6: if distance(pt,ptcl) < dmax then
7: cl← cl ∪ pt
8: associated← true
9: break

10: end if
11: end for
12: if associated then
13: break
14: end if
15: end for
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16: if ∼ associated then
17: Create new cluster newcl
18: newcl ← pt
19: cllpts ← cllpts ∪ newcl
20: end if
21: end for
22: for each cl ∈ cllpts do
23: if cl has more than 3 points then
24: Estimate best fit line (see subsection 5.2.2.2)
25: if λ1/λ2 > λrel then
26: wLs ←w Ls ∪ cl
27: end if
28: else
29: wptiso ←w ptiso ∪ cl
30: end if
31: end for
32: for each line ∈w Ls do
33: for each linecmp ∈w Ls\line do
34: is collinear ← Verify collinearity (see subsection 5.2.2.2)
35: if is collinear then
36: Merge line and linecmp
37: Estimate new best fit line
38: end if
39: end for
40: end for
41: for each line ∈w Ls do
42: for each pt ∈w ptiso do
43: if min distance(line,pt) < dmax/scale then
44: line← line ∪ pt
45: end if
46: end for
47: Estimate new best fit line
48: end for
49: return (wLs,wptiso)

5.2.3 Power Line Modeling

The power line modeling is the last step of the proposed algorithm. Here, the estimated

straight lines received from each scan are matched and grouped. Once grouped, this

process tries to estimate the mathematical model of the power lines. If some power line is

detected, the information about its positioning can be returned to feed the segmentation

process of the next scans (see subsection 5.2.1).
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5.2.3.1 Line Matching

The lines detected in each scan are stored into sets that represent a possible power line

each. To match the new incoming lines, it is performed a comparison of them with all

the last added lines of the sets. The lines are then added to the set if they respect some

collinearity constrains, similarly to what is done in subsection 5.2.2.2.

Choosing the last added line to compare with the new ones is due to a more probable

linear similarity between them, as they correspond to scans temporally closer than the

others. The isolated points are also compared with the power line models. If the new

lines do not match any of the already built models, a new one is created.

5.2.3.2 Model Estimation

For the online processing of the data, knowing where the lines are, at each moment, is far

more important than precisely match them with a mathematical model. For this reason,

the model estimation relies on the method presented in section 3.6, for a catenary curve

model, using only the first (lfirst) and last (llast) added lines of each set.

Each line segment is stored by saving the mean point of the original data (µl), the

direction vector of the fitted line (dl), and its minimum and maximum x values (xmin and

xmax). The power line to be estimated is modeled by a straight line into the horizontal

plane and by a catenary curve into the vertical one.

To obtain the horizontal model of the line it is needed to simply project the line

segment into the horizontal (XY ) plane. For having it into the simplified format of

y = m · x+ b, the values of m and b are easily calculated:

y =
dly
dlx
· x+

(
µy −

dly
dlx
· µx

)
(5.20)

The vertical analysis is also a 2D approach, where the vertical coordinate is z, and

the horizontal (xhor) results from a composition of the x and y values, based on the

estimated horizontal line. Having a line with an angle δ = arctan(m) = arctan(dly/dlx),

the value of xhor is obtained by doing xhor = x/ cos(δ). Based on the figure 3.9 and

equations of section 3.6, the variables correspondences are: y → z and x→ xhor.

The angles θfirst and θlast are also obtained from the direction vectors dlfirst and

dllast, respectively:

θfirst =

∣∣∣∣∣∣arctan


√

d2
lfirst x + d2

lfirst y

dlfirst z

∣∣∣∣∣∣ (5.21)
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Adapting equation 3.23 to the used variables, the value of a is given by:

a =
zlast · sin(θlast)− zfirst · sin(θfirst)

sin(θlast)− sin(θfirst)
(5.22)

From equation 5.22 it is easily observable that the values of sin(θfirst) and sin(θlast)

have to be different, which means that θfirst 6= θlast, assuming that θfirst, θlast ∈
]
0, π2

[
.

In figure 3.9 is visually explicit that the value of a is always smaller than zfirst and zlast.

The c parameter is obtained by adapting equation 3.21:

c = (zfirst − a) · sin(θfirst) (5.23)

Due to the effect of gravitational forces, the power lines always have a curvature

opening pointing upwards, which means that the value of c must be always positive.

Finally, the value of b is calculated based in adapted equation 3.24:

b = xhor first + c · arccosh

(
zfirst − a

c

)
(5.24)

As the hyperbolic cosine is the sum of two vertically symmetric exponential functions(
cosh(k) = exp(k)+exp(−k)

2

)
, its minimum value is 1. This minimum is a constrain to the

argument of the arccosh, that needs to be greater or equal to 1. Given this, in equation

5.24, the condition of
zfirst−a

c ≥ 1 has to be respected.

Summarizing the limitations described above, the catenary estimated parameters are

considered valid if:

• θfirst 6= θlast;

• a < zfirst and a < zlast;

• c > 0;

•
zfirst − a

c
≥ 1.

Although the incoming isolated points are associated to the power lines sets, they are

not used to perform the estimation of their model online. The objective of aggregating

them is to have more data available to a possible offline model refinement algorithm.

5.2.3.3 Parameter Return

After modeling the power lines or, at least, associating the detected lines to a valid set,

is generated a bounding box (defined into the global frame) that comprises them. The

60



Chapter 5 5.2. Algorithm Procedure

algorithm returns the power line models, if any, associated to the bounding box and the

direction (sensor’s azimuth) of the last detected lines. This information can be used to

feed the segmentation algorithm, refining its output for the subsequent scans.

5.2.3.4 Algorithm

The algorithm 3 details the power line modeling, described over the subsection 5.2.3.

Algorithm 3 wPLm ← Estimate Model(wLs,w ptiso)
1: Initialize variables
2: for each line ∈w Ls do
3: associated← false
4: for each pwline ∈w PLm do
5: llast ← pwline last added line
6: is collinear ← Verify collinearity of line and llast
7: if is collinear then
8: pwline ← pwline ∪ line
9: associated← true

10: lfirst ← pwline first added line
11: params valid← Estimate catenary curve parameters (see subsection 5.2.3.2)
12: if params valid then
13: Update pwline parameters
14: end if
15: break
16: end if
17: end for
18: if ∼ associated then
19: Create new power line set newpw
20: newpw ← line
21: wPLm ←w PLm ∪ newpw
22: end if
23: Update bounding box and direction of detection
24: end for
25: for each pt ∈w ptiso do
26: for each pwline ∈w PLm do
27: llast ← pwline last added line
28: if min distance(llast,pt) < dmax/scale then
29: pwline ← pwline ∪ pt
30: end if
31: end for
32: end for
33: return wPLm
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Chapter 6

Implementation

The proposed algorithm was intended to be applied in an Unmanned Aerial Vehicle

(UAV) using a Light Detection And Ranging (LiDAR) sensor to percept the surrounding

environment, as already suggested in chapter 4. The STORK UAV is a multirotor,

equipped with a LiDAR, that is frequently used to perform inspection tasks. This chapter

exposes the main characteristics of the used UAV and the respective sensor, detailing

some properties and adaptations that are crucial to the algorithm’s implementation.

6.1 STORK UAV

The multirotor UAV STORK [42] (figure 6.1) is a custom hexacopter designed to achieve

both efficiency and versatility. Its primary application is the power assets inspection.

Nonetheless, it has been also used in the first trials of the SpilLess project, and in

several precise mapping surveys. This range of applications can be attained by means

of an adaptive payload methodology: using the same frame, some payload sensors can

be easily replaced by others that provide a different type of data.

This UAV is capable of navigating in both manual and autonomous modes, hav-

ing also the ability to perform some autonomous maneuvers, like takeoff, landing or

the inspection of a structure, using the onboard sensors. In its current state, STORK

UAV is low-level controlled by a customized autopilot (INESC TEC Autopilot) and

has an onboard computer that is responsible for controlling the UAV at a higher level

(ODROID-XU41, running Ubuntu 16.04 LTS2 and Robotic Operating System (ROS)

Kinetic Kame3).

1https://wiki.odroid.com/odroid-xu4/odroid-xu4
2http://releases.ubuntu.com/16.04
3http://wiki.ros.org/kinetic
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Figure 6.1: STORK UAV

6.1.1 Payload sensors

6.1.1.1 Navigation

For navigation, this UAV has two Inertial Measurement Units (IMUs) and two Global

Navigation Satellite System (GNSS) receivers. Besides the default low-cost IMU sensors,

the autopilot can also use the STIM3004, that is a high-performance IMU. Similarly, the

single-band GNSS receiver Ublox NEO-M8T5 is the low-cost alternative of K501G6, a

dual-band receiver that supports onboard Real-Time Kinematic (RTK) positioning [161].

Although the low-cost combination of sensors generally fulfills the applications re-

quirements, others like precise mapping surveys imply the use of highly-accurate sensors.

6.1.1.2 Perception

To percept the surrounding environment, STORK UAV has two visual cameras (a fixed

Teledyne Dalsa G3-GC10-C20507, pointing 45 degrees forward-down, and a FLIR Point-

Grey CM3-U3-13S2C-CS8, attached to a gimbal), a LiDAR sensor (Velodyne VLP-169),

and in some applications a thermographic camera (FLIR A6510) can be used.

4https://www.sensonor.com/products/inertial-measurement-units/stim300
5https://drotek.com/shop/en/u-blox/884-ublox-neo-m8t-gps-lis3mdl-compass-xxl.html
6http://www.comnavtech.com/products-detail.asp?id=2&sw=1920&sh=1080
7http://www.teledynedalsa.com/en/products/imaging/cameras/genie-nano-gige
8https://www.ptgrey.com/chameleon3-13-mp-color-usb3-vision
9https://velodynelidar.com/vlp-16.html

10https://www.flir.com/products/a65
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The data provided by these sensors can be used as an input for processing algo-

rithms that will be used by the navigation layer, or to create other outputs, like Three-

Dimensional (3D) models of a structure.

6.2 Velodyne VLP-16

Velodyne VLP-16 (figure 6.2) is a spinning LiDAR (see section 3.1) that creates 360

degrees 3D images by using 16 laser beams mounted in a housing that spins from 5 to

20 times per second. It can operate either in single (Strongest or Last return) or dual

(both returns) mode. This allows the sensor to provide up to 300,000 points each second

operating in single mode, or twice that in dual return mode [136].

Figure 6.2: Velodyne VLP-16 [162]

For interfacing with this LiDAR sensor, there is an already developed ROS package

that is publicly available for use11.

6.2.1 Operational details

The knowledge of the Velodyne VLP-16’s operational details is important for the devel-

opment of further time-efficient algorithms related with point cloud segmentation.

6.2.1.1 Beam Structure

This sensor is capable of measuring distances up to 130 meters. Each adjacent beam of

the 16 lasers set is vertically spaced by 2 degrees, which results in a vertical Field-Of-

View (FOV) of 30 degrees. The horizontal angular resolution is variable and depends

on the sensor’s rotation frequency, once the firing period is kept. Table 6.1 shows the

horizontal angular resolution for different rotation frequencies.

11http://wiki.ros.org/velodyne
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Table 6.1: Horizontal angular resolution.

Frequency (Hz) Resolution (°)
5 0.1

10 0.2

15 0.3

20 0.4

In order to prevent possible interferences between the fired beams, the sequence of

firing is not made from one end to the other. Instead, the vertical firings are organized

in a sequence described in table 6.2.

Table 6.2: Firing sequence.

Laser ID Vertical Angle (°)
0 -15

1 1

2 -13

3 3

4 -11

5 5

6 -9

7 7

8 -7

9 9

10 -5

11 11

12 -3

13 13

14 -1

15 15

6.2.1.2 Data Format

Velodyne VLP-16 returns the read points organized into packets, each one composed by

a header, 12 data blocks, a timestamp and factory bytes. In a data block is contained

a two-byte flag, a two-byte azimuth and 32 three-byte data points (two bytes for range

and one for intensity), which means that when the sensor is operating in single mode,

each data block contains two firing sequences of 16 lasers. When in dual mode, each

data block only contains the information of one firing sequence, representing both the
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strongest and the last returns (if they are the same, the second-strongest return is also

reported). Figure 6.3 depicts the structure of one packet in single return mode.

Figure 6.3: Single return mode packet structure [136].

For converting the returned points from spherical to cartesian coordinates using equa-

tions 3.1, 3.2 and 3.3:

• The range value (r) is directly obtained from each data block;

• The elevation angle (ω) is inferred by the channel number (based on table 6.2);

• The azimuth angle (α) can be:

– Directly obtained from the data block, in dual return mode;

– Calculated as the mean azimuth value between two consecutive data blocks

if it is the second firing sequence of a data block, in single return mode.

6.2.1.3 Timing

The timestamp contained in each packet given by the sensor marks the moment of the

first data point in the first firing sequence and corresponds to the number of microsec-

onds elapsed since the top of the hour. When the sensor powers up it begins counting

microseconds using an internal time reference.
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The VLP-16 can synchronize its timestamp with Coordinated Universal Time (UTC)12

time. This feature is useful for matching the provided data with an inertial navigation

system and generate precise maps or avoid obstacles. For synchronizing it requires

the use of an external GNSS receiver that generates a Pulse Per Second (PPS) signal

and a National Marine Electronics Association (NMEA) GPRMC13 message. From the

GPRMC message, the sensor reads the minutes and seconds, setting its timestamp to

the number of microseconds past the hour, per UTC.

6.2.2 Software driver

The available velodyne ROS package is divided into sub-packages that allow the estab-

lishment of a connection with several Velodyne LiDAR sensors (among them, the VLP-16

model), receive their data and create a point cloud with it.

The three main sub-packages that are contained on the velodyne package are velo-

dyne msgs, velodyne driver and velodyne pointcloud. In velodyne msgs are placed the

ROS message type definitions for the Velodyne 3D LiDARs. The other two are closely

related to the data acquisition and processing.

6.2.2.1 velodyne driver

Velodyne driver is the ROS device driver for several Velodyne 3D LiDARs. It is respon-

sible for establishing the connection with the sensor and publishing the received packets

into a ROS topic called \velodyne_packets.

This package allows configuring the parameter n packets, that corresponds to the

number of sensor’s read packets to group before publishing them to the topic. If n packets

is greater than 1, the published message will have the timestamp of the last received

packet. Depending on the processing power of the system, a value of n packets too small

may lead to the loss of some messages, due to the high-frequency publishing. On the

other hand, if the value is too high, it may lead to a bad conversion of the points to

the global frame in a moving platform, due to the loss of temporal resolution for the

platform’s attitude matching.

6.2.2.2 velodyne pointcloud

This package subscribes to the \velodyne_packets topic and converts the packets into

a 3D point cloud, publishing it to the topic \velodyne_points.

12Primary time standard by which the world regulates clocks and time.
13https://www.gpsinformation.org/dale/nmea.htm
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In its implementation, this package publishes a sparse point cloud containing only

accepted points, i.e., valid points reported into the packets that are within a defined range

and angular interval. The resultant points are usually published into the sensor’s local

frame, however, if the user intends to, it can be published into another desired reference

frame (assuming that there exists a valid transformation relation between them).

6.3 Customized Velodyne ROS package

The already available Velodyne ROS package will be used to generate the input data

for the developed algorithm. The velodyne driver (subsection 6.2.2.1) is responsible for

converting the raw sensor’s data into a ROS topic, making it easily interpreted inside the

ROS environment. The package velodyne pointcloud (subsection 6.2.2.2) subscribes to

that topic and converts the data into a 3D point cloud, using the nodelet CloudNodelet,

that provides the needed functions.

6.3.1 Default Data Structure

The CloudNodelet transforms the Velodyne data into a set of points mapped into the

Euclidean space, the point cloud, publishing them to the \velodyne_points topic, in

the same order as the points are received. Each point has associated the data structure

presented in table 6.3.

The values of x, y and z correspond to the measured point converted into the 3D

Euclidean space, intensity is the measured intensity provided by the sensor. The value

of ring encodes the vertical angle of the beam (ω), where ω = −15 + 2 · ring.

Table 6.3: Default point data structure.

Type Name

float x

float y

float z

float intensity

uint16 t ring

However, it is worth noting that the reference frame used by the nodelet does not

match the one provided by the manufacturer in the sensor’s manual [136] (depicted in

figure 3.2). In the default frame, ydef points forward, xdef right and zdef upwards, but

in the one used by the nodelet, xnod points forward, ynod left and znod upwards. This

represents a rotation of π/2 around the z axis.
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For obtaining the values of x, y and z in the sensor’s default frame, the equations

3.1, 3.2 and 3.3 are valid. In the nodelet’s frame, the values need to be adapted to

xnod = ydef and ynod = −xdef .

6.3.2 Adapted Data Structure

The main drawback of existing nodelet is the fact that the default data structure is

not published in an ordered fashion. This is a requirement of the proposed algorithm

(pointed out in subsection 5.2.1.1), so the nodelet needed to be adapted.

Although the points are reported by the VLP-16 in an unordered fashion, all the data

points are stored and accessible at the same time. Having table 6.2 as a reference, the

data access, by a crescent vertical angular value, can be done by using:

laserID = 2 · it− 15 · (it > 7) (6.1)

Where it is an iterator of a loop cycle that ranges from 0 to 15.

To achieve a faster processing of the data by the proposed algorithm, the values of

range and azimuth angle were also added to the default data structure (table 6.4).

Having the range avoids the need for its calculation from the x, y and z values, as well

as for the azimuth. The data organization into a Two-Dimensional (2D) matrix format

also benefits from these values.

Table 6.4: Adapted point data structure.

Type Name

float x

float y

float z

float intensity

uint8 t ring

uint16 t azimuth

float range

The type of ring was changed to an 8-bit because it varies only between 0 and 15.

The value of range and azimuth are directly obtained from the sensor data. An unsigned

16-bit type for the azimuth is possible by approximating its value (in degrees) with a

precision of 2 decimal digits, multiplied by 100.

Adding range and azimuth to the structure does not affect the processing time of

the CloudNodelet, as they are already available and used to map the points into the
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Euclidean space. Placing these values into the end of the structure allows keeping the

compatibility of the data with previously developed algorithms, once it is parsed from

the beginning of a reference position, given by a defined offset in the published topic.
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Chapter 7

Results

The multirotor Unmanned Aerial Vehicle (UAV) STORK is used to perform electrical

power assets inspections, however, it is also capable of gathering data to generate accu-

rate maps of an environment. During other applications beyond the inspections tasks,

it is common to encounter some electrical assets, being mainly power lines and pylons.

To validate the PL2DM algorithm a dataset of a mapping survey was used, where there

were some power lines (described in section 7.1).

This chapter briefly describes some properties of the used dataset and presents the

outputs generated by the proposed algorithm. Associated to the obtained results, an

analysis of the PL2DM performance was made.

7.1 Experimental Dataset

The used dataset was recorded during a mapping survey of a rock stockpile in the

Malaposta quarry, in Santa Maria da Feira, Aveiro, Portugal (figure 7.1). The flight of

the survey was performed in manual mode and with special care due to the presence of

power lines. Above the mapped stockpile, there was a span composed of 6 power lines

and a guard cable, which made this dataset suitable for testing the algorithm.

From the UAV onboard images, in figure 7.2, it is noticeable the presence of the

described power lines. In the image on the right can be seen that the background created

by the stockpile is very noisy, which can lead to a worse performance of visual power line

detection algorithms. As they are mainly edge based, the presence of the rocks might

lead to a poor quality of the output results or to an increase of the processing time, once

that there are many edges to be analyzed. The presence of the power line’s shadows on
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Figure 7.1: Malaposta quarry.

the ground (also visible in figure 7.2) can also generate false positives, depending on the

threshold values used in the edge detector.

Figure 7.2: STORK UAV onboard images.

As the main objective of the flight was the mapping of the stockpile, the UAV had

the Velodyne sensor mounted under its frame, pointing downwards, with a negative

75 degrees pitch rotation. This kind of configuration allows the Light Detection And

Ranging (LiDAR) sensor to percept only the environment below and sideways with

respect to the UAV position. This means that everything that is immediately above, in

front or in the back of the UAV cannot be detected.

Both Inertial Measurement Units (IMUs) and Global Navigation Satellite System

(GNSS) receivers supported by the UAV were installed and running during the flight.

Due to the UAV being controlled manually, the estimation of its pose relied on the data

incoming from the low-cost set of sensors (see subsection 6.1). Meanwhile, the raw data
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provided by the more expensive set was being logged at a high rate to ensure a good

quality of the post-processed stockpile map.

Knowing that the power line span was almost aligned with North, and analyzing the

UAV’s trajectory (figure 7.3), represented into an East-North-Up (ENU) referential, is

possible to deduce that the power line was detected from several positions. The UAV

performed a flight on both sides of the power line, passing also under and above it when

switching sides.
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Figure 7.3: UAV trajectory.

Among others, the available dataset has the topic \velodyne_packets and the UAV

stamped pose, published by a mavros package. To apply the proposed algorithm, the

topic \velodyne_packets was subscribed by the adapted version of the package velo-

dyne pointcloud, that publishes the point cloud to the \velodyne_points topic, respect-

ing the new structure for the data points. This is the topic which the proposed algorithm

subscribes to. The pose of the UAV is then used with a tf2 package, generating the proper

stamped relations between the sensor’s, UAV’s and global frames.

7.2 Parameters

During the description of the developed algorithm, in chapter 5, were introduced some

parameters in whose its functionality relies on. In table 7.1 are presented the values of

the main ones used to obtain the results of section 7.3. For each parameter listed is

associated a brief description of its influence in the algorithm’s behavior.
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Table 7.1: Used parameters values.

Parameter Unit Value Description

Segmentation

∆α degrees 10
Maximum azimuth (α) difference
between a point and its neighbor.

ζrange − 0, 02
Maximum relation error of true
(rtrue) and expected (rexp) ranges.

ζangle degrees 5
Maximum angular error of local
(nΠlocal

) and cluster plane (nΠ).

Line Detection
and

Power Line Modeling

λrel − 100
Minimum relation of λ1/λ2 to ac-
cept the line fitting parameters.

dmax meters 0, 75
Maximum distance to cluster
points.

σthr degrees 2
Maximum angular error to merge
line segments.

7.3 Results from the Dataset

The results obtained are divided by the several layers of the proposed algorithm. Each

result is then analyzed, being made a global analysis of the algorithm’s performance at

the end of this section.

7.3.1 Segmentation and Point Classification

Using the values of parameters of table 7.1, the segmentation result for one Velodyne

scan is depicted in figure 7.4. Each color of the points in the figure represents a dif-

ferent cluster. From there, it is clear that the points with planar properties tend to be

represented by the same color, as they are associated to the same cluster.

Figure 7.4: Segmented point cloud from one scan, colored by point clusters. Scan
direction from blue to red points.

For a better understanding of the resultant clusters, in figure 7.5 the structures de-

tected in that scan are identified. Having the point cloud associated with the structures,

it becomes evident that clusters’ breakpoints occur mainly in the presence of the power

lines, stockpiles, and vegetation, as expected.
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Stockpile 1

Stockpile 2

Power Lines
Vegetaton

Figure 7.5: Object identification in the point cloud.

Focusing on the clusters created for the power line points, both figures 7.4 and 7.5

evidence an over-segmentation of the points. This can result from the difficulty of

detecting a power line contiguously. As they have a small section, working with Velodyne

in single mode, both Strongest and Last return modes might fail to detect it when other

structures are behind, due to the beam dispersion [136]. This raises the importance

of the cluster refinement (subsection 5.2.2.1) and line association (subsection 5.2.2.2)

performed during the Line Detection step.

From the resultant clusters, the algorithm classifies the points based on a voting

system that evaluates the relations between a point and its neighbors. Figure 7.6 shows

the classification attributed to the points. Blue represents undefined points, green planar,

and red the potential line ones (see subsection 5.2.1.6).

Figure 7.6: Segmented point cloud from one scan, colored by point type. Green corre-
sponds to planar, red to potential lines and blue to undefined.

The results in figure 7.6 show an almost correct classification of the power line as

potential line points (one point is classified as undefined). The stockpiles and vegetation

are predominantly composed by undefined points and the ground is considered planar.
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A part of the stockpile is not well classified as a planar structure. This may occur

depending on the point where the cluster begins to grow. As explained in subsection

5.2.1.4 and in algorithm 1 (lines 23-36), whenever a point has no sufficient neighbors to

estimate a local plane, or the neighbor cluster has no normal estimated, the clustering

is only based in the range relation (ζrange). This leads to a cluster growing without

a representative normal associated. Eventually, a point containing a valid local planar

estimation may be added to it and used as a reference for further comparisons, however,

the points already added to the cluster are not re-evaluated, remaining as part of the

final cluster.

Another property of the developed algorithm that had revealed to be useful was the

feedback information about the line model. The figure 7.7 evidences its effect, where

both images refer to the same scan. Here occurs the effect described above, being the

stockpile considered as planar.

UAV
Positon

(a) Without feedback from previously detected lines.

UAV
Position

Azim
uth Lim

it

Azim
uth Lim

it

(b) With feedback from previously detected lines.

Figure 7.7: Effect of the feedback about previously detected lines.
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In figure 7.7(a) the algorithm was running without getting any feedback about the

position of the lines from the previous scans. As they were detected by the LiDAR

without any background behind them, the voter is not capable of distinguishing them

from the vegetation or outliers, attributing the undefined classification.

Adding the information feedback, the point classification task had a better perfor-

mance, labeling almost all the power line points as potential lines. In figure 7.7(b), the

information received by the segmentation is represented by the red lines. Their aperture,

from the LiDAR’s center, is related with the azimuth limits. Their length and initial

and final points represent the range interval where is expected the lines to be found.

This value is obtained from the bounding box created when the lines were detected.

7.3.2 Line Detection

The line detection thread is triggered whenever new potential line points are found in

the segmentation of each scan. The process of fitting the incoming points to lines is

depicted in figure 7.8, for one scan. From this point forward, the points are mapped into

an ENU global frame that follows the same reference frame used in figure 7.3.

Having the incoming potential line points (figure 7.8(a)), the algorithm follows the

sequence presented in subsection 5.2.2. It first performs the cluster refinement (sub-

section 5.2.2.1) based in the defined value of dmax, resulting both in some clusters and

isolated points (figure 7.8(b), colored by cluster).

From the resultant clusters, it is performed a line fitting to the ones containing more

than three points, as referred in subsection 5.2.2.2. If the eigenvalues, obtained from

the line estimation, comprise the relation imposed by the parameter λrel, the line is

considered valid and associated with the cluster. Otherwise, it is not considered for the

remaining steps. In the example scan, the algorithm was capable of fitting 9 valid lines.

As it can be seen in figure 7.8(c), there were still some disperse points and some

separate line segments that corresponded to the same line. This may be overcome by

verifying the collinearity of the valid segments, with each other, and then with the

isolated points (subsection 5.2.2.2).

If it is verified that two line segments are collinear, or that some isolated point

belongs to a line, the correspondent points are clustered and the line parameters are

re-estimated (applying the same constraints to the eigenvalues as before). In most of

the cases (like the one depicted in figure 7.8(d)), the algorithm is capable of properly

merging the line segments and recover the isolated points information by adding them

to the correspondent line.
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(a) Potential line points.
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(b) Cluster refinement.
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(c) Line fitting.
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(d) Merge collinear lines and points.

Figure 7.8: Line detection process.

7.3.3 Power Line Modeling

The line matching step for trying to obtain the power line model is based on collinearity

properties of the candidate lines. Therefore, it is clearly dependent on the quality of

line detection. Once it is used a global reference frame for the line modeling, this means

that, in consequence, the line matching is very sensitive to the possible lack of accuracy

of the UAV pose estimation.
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The relations between the LiDAR, UAV and global frames were created by using the

estimated pose of the UAV, provided by a mavros topic. This estimation is performed

onboard by the autopilot of the UAV, publishing information to the ROS environment at

a rate of 30 Hz. The computer can then access this data and create the needed relations

between frames during the flight.

Running all the dataset, the algorithm has generated the points depicted in figure

7.9 as being power lines. Each attributed color corresponds to a distinct detected line.

As it can be seen, although the algorithm was capable of correctly matching the lines

over the time, this was only possible due to a local comparison between the candidate

line and the last added line of the model. If a comparison with the global model of the

line was desired, it would have to be very noise permissive to allow the association. The

uncertainty in the estimated position of the power lines, observable in figure 7.9, was

mainly caused due to an erroneous height estimation. This conclusion is suggested by a

more notorious effect of those estimation errors in the side and cut views.

Cut View

Top View

Side View

Figure 7.9: Power lines obtained with the default sensors configuration.

With such uncertainty in the estimated position, the mathematical approximation of

the power line to a catenary curve was impossible to obtain. Even if, at some point,

the catenary parameters could be obtained, the estimated height variation would make

them not suitable for the next measurements of the line.

As it was referred in section 7.1, the objective of this dataset was the mapping of

the stockpile. Thereby, the data of the high-accuracy set of sensors was available and

properly timestamped with the Velodyne data. In order to use this dataset to test the

algorithm, the post-processed pose estimation of the UAV was adapted and used to

create the frame relations over time. The pose estimation was available at a rate of 1

kHz. The algorithm’s resultant power line points using that estimation is exposed in

figure 7.10.
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Cut View

Top View

Side View

Figure 7.10: Power lines obtained with the high-accuracy sensors configuration.

The resultant points are far better than the ones presented in figure 7.9, however,

they still have a small estimation uncertainty at some points, which does not happen

in the post-processed map. This effect is generated by the fact that only one pose is

considered for the whole scan, contrary to what happens in the mapping survey case,

where each point is time and pose labeled individually.

Applying the methodology described in subsection 5.2.3, the algorithm was capable

of detecting 8 distinct power lines in the whole data set. As previously known, there were

present 6 power lines and a guard cable (considered also a power line by the algorithm),

which means that it has generated one line more. Analyzing figure 7.11, it can be

seen that the extra line was created by a detection break in the guard cable, where the

algorithm was not capable of merging them due to their large distance (> 30 meters).
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Figure 7.11: Estimated power line models (green) and line segments centers (blue).
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The power line modeling was based in the direction and center points of all the line

segments associated to the same model. In figure 7.11, the valid power models obtained

are displayed in green and the line segment centers in blue. The red numbers correspond

to a labeling of the detected power lines to match the results presented below. The top

graph shows the power lines in perspective, while the bottom graph corresponds to their

horizontal projection.

From figure 7.11 can also be perceived that power line cluster 8 has no mathematical

model associated. The algorithm was not capable of reaching a valid model due to the

straightness of the segment, having an almost constant vertical slope. This situation was

already discussed in subsection 5.2.3.2, where was imposed the constraint θfirst 6= θlast

in equation 5.22. For the remaining clusters, this fact has also caused some differences

in the model estimation of the other segments, due to the sensibility of the value of a to

a near null denominator, in equation 5.22.

The power lines were modeled as a straight line in the horizontal plane. Their direc-

tion was obtained from the average of the correspondent line segments direction. Their

vertical model was an approximation to a catenary curve, using the method described in

subsection 5.2.3.2, based in [29]. When a valid set of the catenary parameters a, b and

c was found, if the vertical error of the line segments centers to the model was reduced,

at that moment, the set was associated to the line. Otherwise, the previously estimated

parameters were kept.

Figure 7.12 shows the vertical model of the power lines. For better visualization, the

line was divided into two parts along its span.
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Figure 7.12: Vertical analysis of estimated power lines.
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The power line clusters 1, 2 and 3 (represented in the top graph) have a vertical

model that is better adjusted to their data points when compared to the clusters 4, 5

and 6 (represented in the bottom graph). This happened because the power lines 1, 2

and 3 were continuously seen from the moment when they become to be detected. Unlike

them, the other lines were only partially detected in the first part of the flight (until N

between 10 and 20 meters). The rest of their line segments were sequentially merged in

an inverse way (decreasing N), when the UAV was returning to the initial point. This

means that the final model has resulted from the combination of, at least, two distinct

models, and no better valid model was found after the merging.

In table 7.2 are listed the parameters of the detected power lines, associated with

the error of the fitting. The value of ψ represents the horizontal angular direction of

the lines with respect to the North. Em, Nm and Um are the mean values of the line

segment centers used to fit the power lines.

Apart from line 5, with an absolute vertical mean error of 0, 49 meters, all the other

lines have an estimation with an average error lesser than 0, 07 meters. In the horizontal

fitting, all the mean errors are placed below the 0, 14 meters. The value of ψ is nearly the

same for all lines. As the calculation of b and c are dependent on a, it can be observed

that the values of those parameters have some fluctuation. This happens due to the

similar vertical slope of the line segments, as explained above.

Table 7.2: Power line models parameters

Horizontal Vertical
Error Parameters Error Parameters

Line µ(m) σ2(m2) ψ(deg) Em(m) Nm(m) Um(m) µ(m) σ2(m2) a b c

1 0,12 0,0100 -4,55 16,14 24,86 19,35 0,07 0,0080 -1534,07 167,99 1546,67

2 0,09 0,0111 -4,57 16,39 24,29 21,26 0,04 0,0036 -1030,92 126,04 1046,99

3 0,14 0,0151 -4,61 16,58 24,20 22,98 0,05 0,0046 -957,37 121,02 975,26

4 0,07 0,0070 -4,37 20,54 26,68 19,27 0,07 0,0239 -3105,51 304,11 3112,29

5 0,12 0,0142 -4,50 20,66 21,98 21,51 0,49 0,0726 -780,87 111,93 797,44

6 0,12 0,0134 -4,51 20,42 21,88 23,24 0,04 0,0035 -877,53 113,69 895,73

7 0,06 0,0042 -4,65 19,71 6,62 28,78 0,05 0,0052 -3004,90 285,93 3020,77

8 0,03 0,0009 -4,34 15,09 67,96 23,99 - - - - -

Although some of the models might be not precisely fitted to the data points, their

expansion into space allows a prediction of where the power lines are placed in the

global frame. Exporting the values of the power line parameters obtained, higher-level

algorithms can evaluate the reliability of the models and expand them accordingly to

their needs. In figure 7.13 are represented the obtained power line models in the Google

Earth. It can be seen that the lines lie between the two associated pylons, connecting

to them when the models are expanded. This confirms the validity of the modeling.
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Figure 7.13: Power line models represented in Google Earth. Estimated models, in
green, with their expansion in space, in red. UAV trajectory in blue.
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7.3.4 Performance Evaluation

In the previous sections of this chapter, the analysis was focused on the outputs generated

by the several steps of the algorithm. Here is evaluated the quality of the power line

points classification and the processing time of each step.

7.3.4.1 Line Points Classification

Running the complete dataset, the scene perceived by the LiDAR sensor was composed

by almost 35 millions of points. From those, 86 887 points corresponded to power lines

(value obtained by manual labeling). In figure 7.14 is represented the whole point cloud,

colored by point type, based in the output of the segmentation step of the algorithm. It

can be seen that the area near to the UAV’s takeoff and landing spots is mainly planar.

In their majority, the points correspondent to the stockpiles and vegetation are labeled

as undefined.

Figure 7.14: Complete dataset point cloud colored by point type. In blue are the unde-
fined points, green the planar structures, and the potential lines are represented in red.
The UAV trajectory is depicted in light gray.

The performance evaluation of the PL2DM considers only the points correspondent to

power lines, once that their detection is the main objective of this dissertation. Following

the strategy in [130], the completeness (Cm) and correctness (Cr) are given by:

Cm =
TP

TP + FN
(7.1)

Cr =
TP

TP + FP
(7.2)

Being TP the true positive results, i.e., the points correctly labeled as potential lines,

FN the false negatives (true power line points not classified as potential lines), and FP

the false positives or the points wrongly labeled as potential lines.
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Outliers

(a) Potential line points. (b) Used potential line points.

Figure 7.15: Potential line type points. Outliers depicted in blue.

Regarding the outputs of the segmentation step, the algorithm has classified 69 914

points as potential lines. However, as depicted in figure 7.15(a), some FP points were

generated (1 038 points). For this case, the number of the manually labeled power line

points corresponds to the TP + FN value. The values of correctness (Cr class) and

completeness (Cm class) of the point classification are:

Cm class =
69 914− 1 038

86 887
= 79, 27% (7.3)

Cr class =
69 914− 1 038

69 914
= 98, 52% (7.4)

During the line fitting process, some of the potential line points are not considered.

The figure 7.15(b) contains the valid potential line points used to construct the power

line models. Thus, its completeness (Cm fit) and correctness (Cr fit) can be evaluated

against the received points. Here, the value of TP + FN corresponds to the inliers

of figure 7.15(a) (68 876 points). For this case, the generated power line points (figure

7.15(b)) has no FN points and 66 624 TP ones.

Cm fit =
66 624

68 876
= 96, 73% (7.5)

Cr fit =
66 624

66 624
= 100% (7.6)

From the values of Cm class, Cr class, Cm fit, and Cr fit, is possible to observe that

the main limitation of the algorithm is related with the point classification. More than

20% of the available power line points were wrongly classified and not used to create the

models of the lines. Even without those points, the majority of the lines were modeled

with an error below 10 centimeters (table 7.2). Other noticeable property of the line

fitting and modeling steps is the fact of being able to reject outliers.
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In order to evaluate the advantage of using the power line model feedback for the

segmentation (figure 7.7), is made a comparison between this method and the one with

no feedback. The completeness (Cm no feed) and correctness (Cr no feed) are calculated

and compared with Cm class and Cr class. Without feedback, the algorithm has generated

1 022 FP points and 27 091 TP . Calculating the values of Cm no feed and Cr no feed:

Cm no feed =
27 091

86 887
= 31, 18% (7.7)

Cr no feed =
27 091

27 091 + 1 022
= 96, 36% (7.8)

Comparing the values of Cm no feed and Cm class is noticeable a huge difference on the

completeness value when using the feedback of the models. The value increases more

than 48% when the previous power lines detected are considered. For the correctness,

the difference is not so evident. The value of Cr no feed is slightly smaller than Cr class.

The number of FP is almost constant for both conditions, being the difference in the

correctness caused by the great diminishing of the TP points. In table 7.3 are listed all

the obtained values for the completeness and correctness.

Table 7.3: Point classification performance

Classification Line Fit

Cm no feed Cr no feed Cm class Cr class Cm fit Cr fit
31, 18% 96, 36% 79, 27% 98, 52% 96, 73% 100%

7.3.4.2 Processing Time

In order to achieve an online power line detection algorithm, the processing time is a

crucial property. During the used dataset, Velodyne VLP-16 was providing data at an

approximated rate of 10 Hz and working in the single Strongest return mode. Knowing

this, the algorithm will be real-time capable if processes the data and generates outputs

in less than 100 ms.

Due to the quantity of data involved, the segmentation step is the most crucial in

terms of the overall processing time of the algorithm. In figure 7.16 is presented the

processing time of the segmentation layer in terms of the number of data points. As the

LiDAR was mounted below the UAV’s frame, almost half of its data points is neither

valid nor useful. Returning a maximum of 30 000 points per scan, with this mounting

configuration, this mean that, from the outset, having a number of points above 15 000

in one scan is almost impossible.
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Figure 7.16: Processing time of the segmentation step.

Figures 7.16 and 7.17 support what was said above. There were no occurrences of

scans with more than 15 500 points. Regarding the processing time (figure 7.16), it is

visible an increase with the number of data points. This was expected due to the fact of

the segmentation be a loop-based algorithm. The highest processing time registered was

near the 29 ms, while the highest mean time (in green) is below 22 ms. For the same

number of points, the variation of the processing time values is closely related with the

number of neighbors associated.
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Figure 7.17: Number of points occurrence in the segmentation step.
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In figure 7.17 can be observed that the LiDAR was returning a number of points

between 11 000 and 13 500 in most of the time. The peak registered in the 5 − 6 000

points is related to the time while the UAV was on the ground.

The results obtained for the line detection step are depicted in figure 7.18. The

number of points that are passed to this step is almost always under a hundred, being

noticed an increase of the processing time with the incoming points. In the left graph can

be seen that the processing time is almost negligible when compared to the segmentation

processing times. The top time registered was under the 160 µs.
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Figure 7.18: Processing time and number of points occurrences in the line detecting.

In the last step of the algorithm, the power lines modeling, were obtained the results

exposed in figure 7.19.
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Figure 7.19: Processing time and number of line segments for power line modeling.
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After being associated, the line segments of the power line clusters are not removed.

This makes the algorithm having a growing processing time over the flight duration. In

the left graph can be verified that, during all the dataset, the processing time has never

overpassed the 1 ms. This constant increase in the time value is related to the evaluation

of the vertical error whenever some new valid parameters a, b, and c are found. In the

right graph is observable a dominance in the occurrence of a number of line segments

between 4 500 and 5 000. This may refer to a period of the flight where few new line

segments were added to the power line models at each iteration. In the rest of the flight,

the line segments number had an almost constant growth.

From the obtained results for all the algorithm’s steps (figure 7.20), with respect

to processing times, it can be concluded that the current implementation is able of

processing up to nearly 500 000 points per second in real-time. This allows its application

with other LiDAR sensors that provide more data or using the VLP-16 in dual-return

mode. Using the dual-return mode can be useful for detecting the power lines.
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Figure 7.20: Total processing times of the PL2DM.

In a long flight or in a scenario with several power lines, the constant increase of

the processing time corresponding to the power line modeling might be limiting. To

overcome this, some down-sampling strategy of the line segments can be applied when

the confidence in the estimated model is high.

For running the dataset and the developed algorithm was used a computer with an In-

tel Core i7 4720HQ processor and 8 GB of RAM. The processing was made in the Ubuntu

18.04 LTS operating system, inside the ROS Melodic Morenia environment. Migrating

this code to the STORK’s onboard computer may cause an increase of the processing

times, however, the developed code has room for improvements and optimizations.

When using the proposed algorithm in a situation where the processing time is close

to the available time, there are some considerations that must be taken. The algorithm

was designed for having a parallel processing of the segmentation and line detection and
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modeling (figure 7.21). Whenever the segmentation is performed, if some potential line

points are found, the other thread is triggered (blue dashed line in figure 7.21). From

the line detection and modeling thread are returned the line models to the next scan to

aid the segmentation (green dashed line in figure 7.21).

Segmentatin Line Detectin and Mideling 

Thread 0

Thread 1

Data interval

Ignired

MidelLine Midel Line Midel

Figure 7.21: Effect of slow processing.

If the combined time of the segmentation and the line detecting is greater than the

available time (imposed by the sensor’s data rate), the data may desynchronize. The

next scan will use the same line model as the previous and the new line model can be

either ignored or delayed for the subsequent scans. In the case depicted at figure 7.21, in

red, the generated line model is ignored by the next scan due to the existence of newer

data. However, if no new model is generated, is used the one obtained from the two (or

more) previous scans data.
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Conclusions and Future Work

This dissertation has focused on the development of an algorithm capable of detect-

ing and modeling surrounding power lines in real-time, the Power Line LiDAR-based

Detection and Modeling (PL2DM). The incoming data for processing is provided by a

LiDAR sensor mounted in a multirotor Unmanned Aerial Vehicle (UAV). Its outputs

and performance were evaluated using a dataset containing several types of structures,

acquired during a mapping survey in the Malaposta quarry.

From the results presented in chapter 7, the main objectives of this dissertation were

fulfilled. The algorithm is capable of segmenting an input point cloud, detect power

lines points and, from there, generate line segments that are merged to construct the

final power line model. The whole process has shown to be suitable for being applied in

tasks with real-time requirements.

In the classification of power line points, the algorithm fails to label some of them

as potential line. This is due to the difficulty in discerning between power lines and

vegetation points, labeling them as undefined. Nonetheless, the power line modeling is

still reached with a low error associated in most of the cases. The knowledge of those line

models for the next scans segmentation has turned out to be very useful in helping the

point classification, increasing in 48% the number of power line points used for modeling.

To the author’s knowledge until the writing of this document, the contribution to the

segmentation’s methodology is derived from a novel approach based on planar properties

of the structures. In the line detection and modeling steps, there is also a contribution

to the existent methods. It applies a methodology that does not rely on the Hough

Transform (HT) to detect lines nor assumes a flight direction parallel to the power lines.

Instead, it uses collinearity properties and accepts lines from any direction. Another

advantage of the PL2DM is using a low number of thresholds for tunning (table 7.1).
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Although the concept of the algorithm was validated with the used dataset, it still

needs to be submitted to others with different conditions. One of those conditions may

be the detection of multiple spans of a power line set, or even in scenarios with multiple

distinct lines. Having different types of backgrounds (vegetation, rocks, buildings, ...)

or lines with various slopes are other interesting conditions to validate the method. Its

online operation during a real flight shall also be evaluated. The outputs generated

by the PL2DM can then be compared to a ground truth geo-referenced point cloud

generated, for example, by a FARO Laser Scanner1.

For trying to improve and refine the point classification, the use of the LiDAR in

dual-return mode can be tested. However, the algorithm would need adaptations to

consider the double point existence for the same direction.

When migrating the algorithm to new processing units, the running time needs to

be re-evaluated to either consider or not the effect of slow processing, depicted in figure

7.21. The increase of the time expended in the line modeling needs to be handled with

care. The development of a down-sampling of the line segments has to be pondered if

that increase turns out to be limitative to the algorithm’s performance. An alterna-

tive implementation in a Graphics Processing Unit (GPU) can be advantageous to the

performance of the algorithm, specially in the segmentation step (see figure 7.20). The

scan could be divided into several parts and analyzed in parallel, being then merged by

processing the contiguous limits of each part.

On top of this work, several higher-level algorithms can be developed using the data

provided. The power line model is useful to obstacle detection, collision avoidance,

or line following algorithms. At the height of the power line, the undefined points

usually correspond to vegetation. Associating this with the obtained models allows the

application of vegetation clearance anomalies detectors. The horizontal planar structures

are useful to detect possible safe landing spots for the UAV.

The sequence of developments that led to this dissertation’s work has resulted in

a scientific publication of the paper ”Collision avoidance for safe structure inspection

with multirotor UAV” on the European Conference on Mobile Robots (ECMR) 2017, in

Paris [40]. The mapping survey used to test the PL2DM is part of the scientific work

”Unmanned geo-technology systems: aerial imagery, survey and mapping of georesources

and maritime structures”, submitted for review on the 3rd International Conference on

Information Technology in Geo-Engineering (ICITG) 2019, in Guimarães [163].

1https://www.faro.com/products/construction-bim-cim/faro-focus/
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reira A., Chaminé H.I., and Silva E. Unmanned geo-technology systems: aerial im-

agery, survey and mapping of georesources and maritime structures. In Proceedings

of 3rd International Conference on Information Technology in Geo-Engineering.

Geomechanics and Geoengineering Journal, Springer Series, 2019. Submitted.


