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Segmentation Algorithms for Ear Image Data towards 

Biomechanical Studies 

 

ABSTRACT 

In the recent years, the segmentation, i.e. the identification, of ear structures in Video-

otoscopy (VO), Computerized Tomography (CT) and Magnetic Resonance (MR) image data 

has gained significantly importance in the medical imaging area, particularly those in CT and 

MR imaging. Segmentation is the fundamental step of any automated technique for 

supporting the medical diagnosis and, in particular, in biomechanics studies, to build realistic 

geometric models of ear structures. In this paper, a review of the algorithms used in ear 

segmentation is presented. The review includes an introduction to the usually biomechanical 

modeling approaches and also to the common imaging modalities. Afterwards, several 

segmentation algorithms for ear image data are described, their specificities and difficulties 

as well their advantages and disadvantages are identified and analyzed using experimental 

examples. Finally, the conclusions are presented as well as a discussion about possible trends 

for future research concerning the ear segmentation. 

Keywords: Biomedical Engineering, Medical Imaging, Analogue Circuits, Multibody, Finite 

Element Modeling, Thresholding, Clustering, Deformable Models, Atlas, Review. 
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1. Introduction 

The human ear is the most complex organ of the human sensory system (Moller 2006, 

Seeley et al. 2004). Its hearing receptors convert sound waves into nerve impulses, and its 

equilibrium receptors are associated with the movements of the head. The vestibulocochlear 

nerve is responsible for transmitting impulses from these receptors to the brain. 

Anatomically, the auditory system consists of the outer ear, middle ear and inner ear, the 

auditory pathways and the auditory cortex. The outer ear captures the sound waves, which 

travel through the external auditory canal until they reach the eardrum. This causes the 

membrane and the attached chain of auditory ossicles to vibrate. The vibrations are passed to 

the ossicles, which transmit them to the cochlea. The cochlea contains tubes filled with fluid, 

inside one of these tubes tiny hair cells pick up the vibrations and convert them into nerve 

impulses. These impulses are delivered to the brain via the hearing nerve, which interprets the 

impulses as sound. Figure 1 depicts the anatomy of the human ear and illustrates how the 

sound waves travel through its main components. 

Heredity, toxins, drugs and infections are some factors that can have consequences either in 

the function or in the shape of the auditory system (Costa 2008). Otosclerosis, characterized 

by the abnormal ossification of the stapes – smallest bone in the human body – is one of the 

major causes of deafness in adults. People with this condition have large problems in 

communication, since adolescence, being worse in the adulthood (Niparko 1994). Tinnitus, a 

common phenomenon defined as an unwanted auditory perception of internal origin, usually 

localized and rarely heard by others (Meyerhoff and Cooper 1991), affects 17% of the 

general population and about 33% of the elderly (Jastreboff and Hazell 1993) and can cause 

very discomfort interfering with people life quality, leading to anxiety and depression that 

can result in suicide (Lewis et al. 1994). So, it is common believed there is a pressing need 

for further studies in this area. 

Computational models can be used to simulate the anatomic structure of the ear in order to, 

not only help radiological diagnosis, surgical planning and teaching, but also to better 

understand the relationship between its structures and function, simulate pathologies of the 

ear, comparing them with normal ear and improve the design of prosthesis. In general, there 

are two groups of models: (1) lumped parameter models (e.g., the analogue circuit models, 

mechanical models or multibody models) and (2) distributed parameter models (including 

Finite Element Models) (Volandri et al. 2012). There are numerous approaches in the 

literature describing how to obtain different models of the (animal and human) ear. 
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The segmentation of the image data to be studied is a prerequisite step for modeling and 

analysis the ear represented. A number of approaches have been presented for that purpose, 

most of them employing manual tracing of the contours on each slice (Jun et al. 2005, Sim 

and Puria 2008). However, since this procedure is very time consuming and subjective, 

attention has been focused on the development of both semi-automatic and automatic 

algorithms, but, particularly due to the complex shape and reduced dimension of the 

structures involved, several difficulties still persist. 

In the following sections, biomechanical modeling approaches are introduced, and 

afterwards, the image segmentation algorithms are classified into four groups: Thresholding, 

Clustering, Deformable models and Atlas based. The definition of each group, an overview of 

how each algorithm is implemented and a discussion of its advantages and disadvantages are 

exposed using illustrative experimental cases. It should be noted that we do not intend to 

propose a new algorithm for human ear segmentation, but to present, evaluate and discuss 

solutions that can be suitable for the building of geometric models of ear structures from 

medical images, mainly for biomechanical studies. Furthermore, the main guidelines that an 

effective algorithm should adopt for a successful segmentation of the human ear will be 

pointed out. 

The outline of the paper is as follows: The next section introduces the biomechanical 

modeling approaches applied to the ear. Section 3 provides the necessary background about 

medical image segmentation, including an overview about the current ear imaging modalities. 

Then, a review of segmentation algorithms that have been used in ear image data is 

presented, and examples of their experimental results are illustrated. In Section 4, the 

advantages and disadvantages of each segmentation algorithm group are pointed out as well 

as their main guidelines. Finally, in Section 5, the conclusions are presented and the possible 

trends in this are towards the effective segmentation of the human ear structures for realistic 

biomechanical simulations are identified. 

 

2. Biomechanical Modeling on Ear Structures 

For many ears, several modeling approaches have been successfully developed to refine the 

understanding and simulation of the hearing process. In the literature, models for the ear can 

be classified into two broad groups (Volandri et al. 2012). The first group consists of lumped 

parameter models, including electro-acoustical analogue circuit models (Goode et al. 1994, 
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Hudde et al. 1997, Kringlebotn 1988, Parent and Allen 2010, Peake et al. 1992, Puria and 

Allen 1998, Rosowski and Merchant 1995, Shera and Zweig 1991, Zwislocki 1962), 

electronic and signal processing based models (Chitore et al. 1983), mechanical (Stieger et al. 

2007, Yao et al. 2010) or multi-body (Eiber and Schiehlen 1995, Volandri et al. 2012, Wegel 

and Lane 1924, Wright 2005) models. The second group is composed of distributed 

parameter models, including analytical asymptotic models (Rabbitt and Holmes 1986), but 

mainly by Finite Element Models for the outer (Fay et al. 2005, Funnell et al. 1987, Funnell 

and Laszlo 1978, Funnell and Laszlo 1982, Gan et al. 2009, Gan et al. 2004, Gan et al. 2007, 

Gan et al. 2006, Gan and Wang 2007, Lee et al. 2010a, Lesser and Williams 1988, 

Prendergast et al. 1999a, Prendergast et al. 1999b, Williams and Lesser 1990, Zhang and Gan 

2011), middle (Beer et al. 1999, Bornitz et al. 2010, Bornitz et al. 1999, Chou et al. 2011, 

Ferris and Prendergast 2000, Gan et al. 2004, Gan et al. 2007, Gan et al. 2006, Gan and Wang 

2007, Gentil et al. 2005, Gentil et al. 2011, Gentil et al. 2012, Koike et al. 2002, Ladak and 

Funnell 1996, Lee et al. 2010a, Lee et al. 2006, Lesser et al. 1991, Prendergast et al. 1999a, 

Sun et al. 2002, Wada et al. 1992, Williams et al. 1995, Zhang and Gan 2011, Zhao et al. 

2009) and inner (Gan et al. 2007, Gan and Wang 2007, Zhang and Gan 2011) ear. 

 

2.1. Lumped parameter models 

Lumped parameter models use the analogy between acoustics and electrical engineering. 

Physical components with acoustic properties are then represented as behaving similarly to 

the standard electronic components: mass components are modeled as inductors, stiffness-

walled cavities containing air are modeled as capacitors and damping components are 

approximated as resistors. The firsts to present a model of the ear function using a 

transformer analogy with analogue circuit models were (Wegel and Lane 1924). Later, 

Zwislocki et al. (Zwislocki 1962) presented a key work in the field by modeling the entire 

ossicular chain of a cat. In their approach, numerical values derived from impedance 

measurements on normal and pathological ears were used. The results showed that changes in 

analog parameters corresponding to identified anatomical changes produce the same effect on 

its impedance characteristics as measured at the eardrum and that the input impedance of the 

analogue agrees with the experimental error with the acoustic impedance at the eardrum. On 

the other hand, the biomechanical models based on multi-body systems collect rigid and/or 

flexible bodies that are constrained by kinematic joints and contacts, acting upon by a set of 

internal and/or external forces (Figure 2). Essentially, the dynamic behavior of a multi-body 
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system is defined by solving equations of motion, usually derived from the Newton-Euler 

equations or Lagrange’s equations (Wright 2005). 

 

2.2. Distributed parameter models 

Distributed parameter models includes mainly the Finite Element Method (FEM), which is a 

mathematical method of discretization (subdivision) from a continuum medium from a 

smaller sub-domain (elements), while maintaining the same properties as the original 

medium. The behavior of these elements can be described by differential equations and 

resolved by mathematical models using computer analysis. Actually, FEM is one of the most 

powerful tools to simulate mechanical problems, allowing an analysis with a high level of 

complexity, from geometric models (Belytschko and Moran 2000). In this method, a 

continuous system is divided into a finite number of parts, called elements. In each element, 

the solution is obtained from nodes, ensuring their boundary conditions, turning a problem 

with an infinite number of freedom degrees in the continuum, into another finite problem 

(Belytschko and Moran 2000). From the conceptual viewpoint, the process of building 

mathematical FEM models firstly needs to know the geometry of the ear structures. Then, the 

material properties containing information on the internal constitution of the different 

structures also must be described. The influences of the surrounding environment must be 

described by the boundary conditions as well as the changes of the physical quantities, which 

interact at the model boundaries in different form. In order to import geometrical data into the 

mathematical model, the volumes of the different ear structures should be firstly imaged. 

Then, to extract selected regions of interest from the image data, an effective segmentation 

algorithm is required.  

The first FEM model of the ear was built in the cat and dates from 1978 (Funnell and Laszlo 

1978). This model was further refined in collaboration with other authors (Funnell et al. 

1987, Funnell and Laszlo 1982, Ladak and Funnell 1996). Other FEM models have been 

developed from the geometry of the human ear, considering the tympanic membrane, the 

ossicles and the cochlear impedance; then the inclusion of some ligaments and tendons (Beer 

et al. 1999, Koike et al. 2002, Wada et al. 1992, Williams and Lesser 1990). Since then, other 

FEM models have been developed to simulate the static and dynamic behavior of the model 

(Ferris and Prendergast 2000, Prendergast et al. 1999a). Many of these studies compare their 

results with experimental data. However, all these FEM models represent the behavior of the 

ear, taking the capsular ligaments as a continuous medium between the ossicles, not 
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presenting any analysis about the activation of the muscles of the ear. In the work of (Gentil 

et al. 2005, Gentil et al. 2011, Gentil et al. 2012), a formulation of contact was used in the 

simulation of the capsular ligaments, considering the ligaments with hyperelastic behavior 

(Figure 3). They also used a constitutive model to simulate the active and passive function of 

the middle ear muscles. 

As far as our knowledge, the geometric models used in aforementioned biomechanical 

studies were built from a complete set of histological section images, i.e. image slices, that 

were manually segmented (Gan et al. 2004, Gan et al. 2006, Gentil et al. 2011, Gentil et al. 

2012, Liu et al. 2009, Sun et al. 2002), using published data (Koike et al. 2002) or anatomic 

models available online as, for example, at 

http://audilab.bmed.mcgill.ca/~daren/3Dear/index.html, (Volandri et al. 2011). Hence, new 

solutions to build geometrical models for the imaged ear structures, in particular, fully 

automated, are demanded. Besides, all the biomechanical modeling approaches presented in 

the literature have a measurement error, caused either by the method of scanning or by the 

algorithms used to construct the geometry of the structures. Therefore, there is also a pressing 

need to minimizing this error, in order to make the biomechanical models more realistic and 

more customized to the patient under study. 

 

3. Building of Geometric Models from Medical Images 

There are two modes of building 3D geometric models from medical images. In one mode, 

the structures can be directly segmented from the 3D volumetric data from different medical 

imaging modalities, by using segmentation techniques such as region growing or deformable 

models (described in detail in Section 3.2.). Methods that used 3D segmentation for ear data 

images are scarce available on literature. The work of Xianfen et al. (Xianfen et al. 2005) is 

the only known example of how the cochlea and the semicircular canals can be well 

segmented with a Level set algorithm applied on 3D spiral CT images. In the other mode, the 

segmentation is done in each slice of the volumetric data, and the resulting 2D contours are 

used to create the 3D models using interpolation algorithms. 

We hereby concentrate our review on the second mode of building geometric models. Hence, 

in the next sections, we introduce the common medical modalities used in ear biomechanical 

simulations. Then, algorithms that have been applied to segment the outer, middle and inner 

ear in images from these modalities are addressed. 
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3.1. Imaging modalities 

Medical image segmentation consists of extracting some anatomical structures from various 

medical imaging modalities. Video-otoscopy (VO), Computerized Tomography (CT) and 

Magnetic Resonance (MR) are often used imaging techniques for the study of the ear. Figures 

4 and 5 illustrate a slice example of an ear CT and MR images, respectively. As far as our 

knowledge, there are few works made in the segmentation of ear structures concerning VO 

(Xie et al. 2005, Comunello et al. 2009) and MR (Shi et al. 2010, Melhem et al. 1998, Tabrizi 

2003, Folowosele et al. 2004) images, being the CT the most used image modality for this 

purpose. 

In clinical routine, the VO is the commonly used image acquisition process for consultants 

examine pathological alterations, especially in the ear canal and eardrum. The acquired 

examination data is stored using a digital video file format. The main disadvantage of VO 

images is that they present irregular illumination, which leaves some image regions brighter 

or darker than the average color of a given structure. It also turns out to obtain a good 

structural targeting into a difficult task. These characteristics together with the low contrast of 

the boundaries of anatomical structures make structures problematic to be segmented 

automatically. 

In CT, the images are reconstructed from a large number of X-rays to obtain structural 

information about the human body. X-rays are based on its property that all matters and 

tissues differ in their ability to absorb X-rays (Prince and Links 2006). It is primarily used for 

the imaging of bony structures, appearing white on the CT data. It is also used for searching 

for geometrical data of the cochlea at certain important regions (Spoor and Zonneveld 1998) 

and in surgical assessment for cochlear implants candidacy (Todd et al. 2009). Numerous 

artifacts can occur on CT images, such as partial volume effect, streak, motion, beam-

hardening, ring and bloom artifacts (Popilock et al. 2008). 

MR is the most widely used technique in the field of radio imaging (Macovski 1983, Prince 

and Links 2006). It is based on the achievement of a variable image contrast by using 

different pulse sequence and by changing parameters corresponding to longitudinal and 

transversal relaxation times. Signal intensities on those two times weighted images relate to 

specific tissue characteristics (Hendee and Morgan 1984). The contrast on MR images is a 

factor dependent on pulse sequence parameters. Partial volume effect, intensity 

inhomogeneity, motion, wrap around, Gibbs ringing are some artifacts that can occur on MR 
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images. MR is often used to create soft tissues models of the cochlea. The major 

disadvantage of this technique lies in the difficulty or even inability to display bony 

structures. Nevertheless, its main application has concentrated on the reconstruction of the 

fluid chambers of the inner ear (Counter et al. 2000, Thorne et al. 1999). MR also allows 

enhanced 3D visualization, especially when the inner ear has to be evaluated. With MR the 

different portions of the facial and vestibulo-cochlear nerve can be depicted to very high 

details (Rodt et al. 2002). 

Both CT and MR images suffer from partial volume effects and motion artifacts. CT has 

inferior soft tissue contrast when compared to MR. Also, in the case of MR image quality is 

not so good as CT. MR is relatively safe and unlike CT modality, can be used as often as 

necessary. 

The ossicles (malleus, incus and stapes), the tympanic membrane and the external ear canal 

are the types of ear structures that are better represented in CT images. Although in CT 

images the cochlea, the semicircular canals and the vestibule are also visible, is in MR 

images that those structures are better represented (see Figures 4 and 5). In MR images the 

facial and vestibular nerves are also well represented (see Figure 5).  

 

3.2.  Segmentation Algorithms for Ear Structures  

Segmentation is one of the most important techniques for image analysis (Sonka et al. 2008). 

Its purpose is to partition an image into non-overlapping, component regions that are 

homogeneous with respect to some characteristic, such as intensity or texture (Gonzalez and 

Woods 1992, Haralick and Shapiro 1985). Numerous approaches regarding image 

segmentation techniques are available in the literature (Gonzalez and Woods 1992, Pham et 

al. 2000, Sharma and Aggarwal 2010, Sonka et al. 2008, Withey and Koles 2007). 

Segmentation of the human ear includes the outlining labyrinth (cochlea, semicircular canals 

and vestibule), the ossicles, facial and vestibular nerves, external ear canal and tympanic 

membrane. A manual segmentation, including some anatomical structures on axial and 

coronal CT slices are depicted in Figures 4b) and c), respectively.  

In order to identify relevant publications on the article’s subject, during January to March 

2012, a literature review was performed. The following databases were explored to identify 

thesis, articles, conference papers and reviews: ISI Web of Knowledge, Scopus, Google-

Scholar and PubMed. The search was limited to manuscripts to which the authors had full 

access to and published in English. For each database, the search was accomplished 

Page 13 of 51

URL: http://mc.manuscriptcentral.com/gcmb

Computer Methods in Biomechanics and Biomedical Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

considering the following keywords: computational vision, segmentation approaches, and ear 

structures in CT, MRI or VO images. A first selection was accomplished considering the 

titles and the abstracts of the publications. Then, the duplicated titles were excluded, and the 

full texts were analyzed; only the publications that included a segmentation approach, in a 

whole or parts, were included. Further searches were conducted in the World Wide Web 

using the search engine Google to identify books, standards and publications from regulatory 

authorities. The remaining articles presented in this section are by way of example.  

The publications addressed in this study are indicated in Table 1. 

In this paper, we divide the segmentation algorithms into four groups: (1) Thresholding, (2) 

Clustering, (3) Deformable models and (4) Atlas based. Applications of each type to the ear 

are illustrated to further state their characteristics.  

 

3.2.1 Thresholding 

Thresholding is one of the most used segmentation algorithms in digital images. They 

basically create a portioning of the image based on quantifiable features like image intensity 

or gradient magnitude. Thresholding algorithms can roughly be categorized into two groups, 

namely: Global thresholding and Local thresholding, according to histogram or local 

properties of the image, respectively. Otsu method is one of the most well-known 

segmentation algorithms that uses global thresholding (Otsu 1979). Local thresholding 

algorithms can further be divided into edge based, region based ones and hybrids. Edge-based 

algorithms use edge detectors to find edges in the image. Laplacian (Davis 1975), Sobel 

(Davis 1975) and Canny (Canny 1986) operators are some examples of edge detectors. 

Laplacian finds edges by looking for zero crossings after filtering the image with a specified 

filter; Sobel finds edges using the Sobel approximation to the derivative, returning edges at 

those points where the gradient of the image is maximum; Canny operator finds edges by 

looking for local maxima of the gradient of the image. The gradient is calculated using the 

derivative of a Gaussian filter. The algorithm uses two thresholds, to detect strong and weak 

edges, and includes the weak edges in the output only if they are connected to strong edges. 

As such, this algorithm is less likely than the others to be fooled by noise, and more likely to 

detect true weak edges. 

Region based algorithms examine pixels in an image and build disjoint regions by merging 

neighborhood pixels with homogeneous properties based on a predefined similarity criterion. 

Region growing is the simplest region based algorithm, and it starts by selecting a pixel or a 
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group of pixels called seed points, which belong to the structure of interest. Then, the 

neighboring pixels of each seed point are inspected and those with properties similar to the 

original seeds are added to the region that the seeds belong to, and thus, the region is growing 

as shape is also changing. The procedure stops when no more pixels can be added. For a 

region growing algorithm to be automatic and therefore no initial seed dependence needed, 

statistical information and a prior knowledge can be integrated into the algorithms 

(Dehmeshki J. et al. 2003, Pohle R. and KD. 2001). Even so, due to the intrinsic dependence 

on intensity of the region growing algorithms, they tend to have difficulties to control the 

leakage or eliminate the influence of partial volume effect. 

Finally, hybrid algorithms fuse region information with a boundary detector to complete the 

segmentation. A typical hybrid algorithm is the watershed, which combine the image 

intensity with the gradient information. It is based on the assumption that the gradient 

magnitude of the image is a topographic surface. The gradient local minimum of each region 

is like a valley from which the water will rise up. The position where each two valleys are 

converging gives rise to a boundary called watershed line. Each local minimum is then 

surrounded by the watershed line, which represents a segmentation region. 

Global thresholding is one of the most used algorithms to identify the inner ear, localized in 

the temporal bone (Lee et al. 2010b, Melhem et al. 1998, Rodt et al. 2002). This method was 

applied in MR (Melhem et al. 1998) and CT images (Lee et al. 2010b, Rodt et al. 2002). 

Local thresholding, using region growing or watershed is also used to segment ear structures. 

In (Seemann et al. 1999), authors define an individual threshold based interval density value 

for each anatomical structure in order to perform an interactive volume-growing 

segmentation, especially of the temporal bone on spiral-CT images. In the same image 

modality, a Connected threshold region growing algorithm was applied in (Todd et al. 2009) 

to extract the external ear canal and the cochlea. Connected threshold region growing requires 

the user to specify the index of a seed point and the lower and upper threshold limits. Pixels 

are included into the region of interest if their intensity values are within the threshold range 

specified. In order to iterate through pixels within the image and establish the region of 

interest (ROI), the connected threshold applies a flood iterator for visiting neighboring pixels. 

To perform the segmentation of the semicircular canals, but in the case of micro-CT, a 

watershed algorithm was used, designed for boundary determination in situations where 

objects appear to overlap or are blurred together (Bradshaw et al. 2010). The strategy used to 

reconstructing a complete semicircular canal is then by combined with an automated tracking 

system using Active contours (see Section 2.2.3). 
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3.2.2 Clustering 

Clustering is a discovering process that organizes image structures into clusters such that the 

structures within a given cluster have a high degree of similarity, whereas structures 

belonging to different clusters have a high degree of dissimilarity (Kaufman and Rousseeuw 

2005). It is considered an unsupervised learning technique since it does not require a training 

data to be efficient. In order to compensate for the lack of training data, clustering methods 

train themselves using available data (Pham et al. 2000). They although require an initial 

segmentation (or equivalent, initial parameters). One of the most commonly used algorithms 

for clustering is the fuzzy c-mean (Bezdek et al. 1993), which generalizes the k-means 

algorithm (Bezdek et al. 1993) allowing for soft segmentation based on fuzzy set theory 

(Zadeh 1965). The vestibular system presented in the inner ear is segmented in (Shi et al. 

2010) by combining a clustering algorithm with a deformable model (see the next section). 

Automatic MR segmentation of the vestibular system involves the following steps: region of 

interest (ROI) extraction, resampling to make the image isotropic, edge-preserving filtering, 

k-means clustering and fine-tune using a deformable model. The k-means was applied as a 

pre-segmentation step to categorize the voxels into background and foreground based on their 

signal intensities. The foreground cluster contained several connected components, among 

which the largest was chosen as a coarsely defined vestibular region. 

3.2.3. Deformable models 

Deformable models were introduced by Kass et al. (Michael Kass et al. 1988) as a 

deformable contour in 2D and generalized to 3D by Terzopoulos and Metaxas (Terzopoulos 

and Metaxas 1991). Later, deformable models with the capacity of topological transformation 

were developed. Deformable models can be classified into Parametric and Geometric 

deformable models depending on the representation way of the contour.  

Typical parametric deformable models are the Active parametric contours (Michael Kass et 

al. 1988), also called snakes, which were the first deformable models used for medical image 

analysis. The main concept associated to the snakes is its energy. Similar to a physics 

process, the energy of the contour is composed by two terms: internal energy, which depends 

on the elasticity and rigidity of the model, and external energy associated to image 

characteristics. The final contour is obtained by an energy minimizing formulation, 

corresponding to an equilibrium situation between the internal and external forces associated 
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to the image. However, in non-interactive applications, initial contours of the snake model 

should be placed near the region of interest to guarantee a good performance. On the other 

hand, the shape of the region of interest has to be well known from the beginning, since 

deformable models are parametric and incapable of topological transformations without 

additional algorithms (McInerney and Terzopoulos 1996). Gradient information of the input 

image can be incorporated into the snake model, originating a method called Gradient Vector 

Field (GVF). The GVF is distinguished from nearly all previous snake formulations because 

its external forces cannot be written as the negative gradient of a potential function. 

Therefore, it cannot be formulated using the standard energy minimization framework; 

instead, it is specified directly from a force balance condition. In (Xie et al. 2005) a 

Generalized Gradient Vector Field snake (GGVF) algorithm was applied to VO images with 

the aim to delineate the tympanic membrane boundaries and to detect color abnormalities in 

the tympanic membrane. This geometric GGVF snake is useful to delineate boundaries with 

small gaps and tympanic membrane boundaries present this feature. The GGVF snake 

presents advantages over the traditional snake, which demonstrate its efficiency to segment 

the tympanic membrane boundaries, such as its insensitivity to initialization and its ability to 

move into boundary concavities. Furthermore, GGVF snake does not need prior knowledge 

about whether to shrink or expand toward the boundary. The GGVF snake also has a large 

capture range, which means that, barring interference from other objects, it can be initialized 

far away from the boundary. This increase capture range is achieved through a diffusion 

process that does not blur the edges themselves, as such multi-resolution methods are not 

needed (Xu and Prince 1998). Bradshaw et al. (Bradshaw et al. 2010) used a 2D B-spline 

snake to reconstruct cross-sectional slices of the semicircular canal taken from CT imaging. 

Tabrizi (Tabrizi 2003) used two different active contour approaches, i.e., parametric active 

contours and discrete dynamic contours and compared them in the segmentation of middle 

ear images from MR images. These two algorithms showed successfully similar boundary 

identification results. However, the original active contour has, intrinsically, some 

limitations. The small capture range and the convergence of the algorithm are mostly 

dependent of the initial position. Besides, it also has difficulties in progressing into boundary 

concavities. To overcome some of these difficulties, Yoo et al. (Yoo et al. 2001) used a 

coarse-to-fine strategy to segment the cochlea in human spiral-CT images. In coarse 

segmentation, intensity range and volume-of-interest of the cochlea were defined. In fine 

segmentation, the output of course segmentation was refined, and the cochlea was identified 

from mixed surrounding structures by an elaborated snake algorithm. To compensate the 
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inconsistencies between adjacent contours, Poznyakovskiy et al. (Poznyakovskiy et al. 2008) 

added to the standard snake approach a new energy linking the contours on consecutive slices 

of the cross-sections on pig cochlea micro-CT images to segment the cochlea. Noble et al. 

(Noble et al. 2011) proposed an algorithm based on a deformable model of the cochlea and its 

components to automatically segment intracochlear structures. To build such model, they first 

manually segment intracochlear structures in a series of scans from micro-CT images, which 

were used to build the active shape model (Vasconcelos and Tavares 2008). The procedure 

they used for segmentation was: first, the built model was placed in the input image to 

initialize the segmentation; then, better solutions are found while deforming the shapes only 

in ways that are described by the pre-computed modes of the variation and finally, after 

iterative shape adjustments, the shape converges, and the segmentation was complete. 

Geometric deformable models are characterized by Level set algorithms and include the 

following models: Mumford-Shah (Mumford and Shah 1989), Chan & Vese (Chan and Vese 

2001) and Malladi et al. (Malladi et al. 1995). They are based on a curve evolution that is 

related to the geometric characteristics of the region of interest. These models adjust to the 

topology of the target, and they can easily adapt its shape. The main idea of the Level set is to 

minimize a function solving the corresponding Partial Differential Equation (PDE). The 

algorithm involves a contour implicitly by manipulating the higher dimensional function. 

Typical geometric deformable models include Level set algorithm. Level set is involved in 

the image segmentation problem by asking the user to draw a contour outside or inside the 

object, and then the contour will shrink or extend. The procedure will be ended when the 

contour meets the boundary of the object to be segmented. The drawback of the Level set 

algorithms is the definition of a proper speed function as it plays the main role in controlling 

the direction of contour shrink or extending as well as in finding the endpoint of the 

procedure. Medical segmentation methods of this class can be divided into two subclasses; 

2D Level set methods and 3D Level set methods. The approach described by Xianfen et al. 

(Xianfen et al. 2005) is a 3D Level set method that requires a low level of intervention for the 

segmentation of cochlea and semicircular canals in spiral-CT images. The user locates a 

sphere contour in the cochlea region and uses it as the initial contour to run the Level set. 

Then, the 3D narrow band Level set algorithm was used to finish fine segmentation. In the 

final step of the 3D narrow band Level set, the segmented results are rendered with the 

Marching Cubes Algorithm (Lorensen and Cline 1987). The Mumford-Shah algorithm 

(Mumford and Shah 1989) was used by Comunello et al. (Comunello et al. 2009) to segment 

the tympanic membrane of VO data images. This algorithm presents effective in image 
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segmentation of the tympanic membrane, because it has high robustness in the presence of 

noise and in the choice of place to start the segmentation (Tsai et al. 2001). In addition, this 

algorithm guarantees that no segment leakage between structures occurs, and it also allows 

knowledge the quantitative information about tympanic membrane perforations, so it is 

indicated for clinic diagnosis. 

 

3.2.4. Atlas based 

Atlas based segmentation has become a standard paradigm for exploiting prior knowledge in 

medical image segmentation (Duay et al. 2005). The main idea of this approach is to generate 

an atlas by compiling some prior information about a structure and use this atlas to aid 

segmentation of similar structures. This information can be the contour of an object in a 2D 

image. After generating the atlas, it is placed near to the desired contour and registered to the 

input images by some local transformation. The registered atlas gives the segmentation result. 

Various registration techniques can be used in the registration process (Hill et al. 2001, 

Zitova and Flusser 2003). Generating the atlas based on a single sample is inadvisable, 

because the selected sample may not be a typical one and besides it does not may contain any 

information of variability, which cannot determine whether a deformed shape is an 

acceptable shape or not. One method that helps model anatomical variability is the use of 

Probabilistic atlas (Thompson and Toga 1997), which represents the spatial distribution of 

probability that a pixel belongs to a particular object (Hyunjin et al. 2003). The disadvantage 

of these is that it requires a lot of data to be collected. An atlas based registration process was 

used in the work of Noble et al. (Noble et al. 2009, Noble et al. 2010) to automatically 

identify the labyrinth, ossicles and external auditory canals in CT database images. For the 

segmentation of the facial nerve and chorda tympani, topological similarity between images 

cannot be assumed to the highly variable pneumatized bone. Therefore, facial nerve and 

chorda tympani were identified using a novel method that combines an atlas based approach 

with a minimum cost path finding algorithm. Christensen et al. (Christensen et al. 2003), used 

a combination of an atlas based approach with a minimum cost path finding algorithm for 

automatically segment the cochlea, the vestibule, the semicircular canals and the internal 

auditory canal from CT data. 

 

3.3.  Experimental Results: examples and discussion 
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In this section, some of the algorithms introduced in the previous section are applied on CT 

images in order to illustrate their use, and discuss their main advantages and disadvantages. 

 

3.3.1. Examples 

The segmentation results of Otsu method, Canny edge detector, region growing and 

watershed algorithms are illustrated in Figures 6 to 9. The segmentation result from Otsu 

method is not satisfactory (Figure 6). Although it can be observed the successfully 

identification of some structures, such as the ossicles and the semicircular canal, other 

structures, like the cochlea and the external auditory canal, are far away from being clearly 

identified. Otsu method is limited by the considerable amount of noise presented in the input 

image, by the small size of the structures and by the large variance of the background 

intensities. Therefore, Otsu method is useful as an initial step for further segmentation. Figure 

7 shows the result of applying Canny edge detector using standard parameters in the Matlab 

Image Processing Toolbox (The MathWorks, Inc., USA). Usually, an anisotropic diffusion 

filter, such the one proposed in (Perona and Malik 1990), is applied before the Canny edge 

segmentation for enhancing and smoothing the original image. This filter blurs areas of low 

contrast and enhances the edges, as a high pass filter. Thus, this filter is used to reduce the 

noise of the input image. The result shows that boundaries obtained are discontinuous, 

incomplete or wrongly connected. Changing parameters or applying different filters do not 

reveal any solution once all the boundaries of the objects were detected whereas all other 

edges were removed or most of the edges were obtained whereas an amount of noise was 

increased. These results are due to the noise presented in the image and partial volume effect. 

An example of a region growing algorithm application is shown in Figure 8. For each region 

that needed to be segmented, a seed point is manually defined. The seed is then iteratively 

grown by comparing all unallocated adjacent pixels to the same region. A measure of 

similarity based on the difference between the intensity value of the pixel and the mean value 

of the region is used. The pixel with the smallest difference is allocated to the region. This 

process stopped when the intensity difference between the region mean and the new pixel 

became higher than a certain predefined threshold value. Results show that the areas 

corresponding to the ossicles and the semicircular canal are successfully segmented. 

However, the segmentation of the cochlea and the external auditory canal is not so 

satisfactory, due to the influence of the intensity dependence of these algorithms. The 

Page 20 of 51

URL: http://mc.manuscriptcentral.com/gcmb

Computer Methods in Biomechanics and Biomedical Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

boundary of the vestibule leaks in the upward direction and the facial nerve is almost erased. 

Figure 9 shows the results of applying a watershed algorithm. It is observed that a complete 

segmentation of the image was accomplished; however, due to the presence of several pixels 

with local minimums of gradient magnitude, the resultant over segmentation is appreciable. 

Figure 10 presents the result by using a fuzzy c-means algorithm. An anisotropic diffusion 

filter was applied (Perona and Malik 1990) before the fuzzy c-means segmentation for 

enhancing and smoothing the original image. Four clusters were defined with initial mean 

intensities. The clustering process stopped when the maximum number of iterations was 

reached. Results show that the boundaries of the external auditory canal, the ossicles and the 

semicircular canal are successfully segmented. However, the boundaries of the vestibule, 

cochlea and facial nerve are not so effectively segmented, due to noise and outliers of the 

image. 

Figures 11 and 12 illustrate the segmentation result of applying a snake algorithm and a Level 

set algorithm, respectively, both proposed in (Lankton and Tannenbaum 2008). It is observed 

that boundaries are regular and smooth due to the items defined in the speed function of the 

deformable models. However, the external auditory canal and the cochlea were not totally 

segmented, either in the snake algorithm as in the Level set algorithm. In our experiments, we 

defined the stopping criterion for the algorithms as being the same for all structures, which 

means that, in some cases, it prevents the contours to keep moving (Figures 11 - right and 12 

- right). In other cases, the moving contours may leak or shrink to disappear after long time 

evolution. Nevertheless, with these parameters, the algorithms provide a good segmentation 

of the ossicles, the facial nerve and the semicircular canal. 

 

3.3.2. Discussion 

 

The segmentation of ear structures is still an open area for more research. Unfortunately, an 

objective comparison of their performance is not conceivable, or at least, not fair, due to the 

lack of an accepted manual segmentation common dataset. Nevertheless, some approaches 

are well-established in the literature in order to measure the results from automatic and 

manual processes, such as the relative intersection between the areas (Korfiatis et al. 2007), 

the Hausdorf distance (Ma et al. 2011) or the receiver operating characteristic (ROC) analysis 

(Gruszauskas et al. 2009, Gruszauskas et al. 2008).  

There are several structures of the ear that have been successfully segmented using 

thresholding algorithms. Thresholding algorithms are fast, computationally efficient and 
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inexpensive. However, due to noise sensitivity and intensity non-uniformity of the original 

images, threshold based segmentation can cause segmented regions with inner holes or even 

wrongly connected regions. In the most common medical images, segmentation results using 

this algorithm alone are not satisfactory. Therefore, thresholding algorithms are usually used 

as a pre-processing step for posterior segmentation algorithms. 

Clustering algorithms are simple, general and computational efficient, due to the lack of 

spatial modeling. However, they are very sensitive to noise, to intensity inhomogeneity and in 

the case of fuzzy c-means they could also be sensitive to the number of clusters, the initial 

partition and the stopping criterion. Pixels that belong to the same anatomical structure with 

inhomogeneous features may be grouped into different clusters. Many algorithms were 

introduced to make fuzzy c-means robust against noise and inhomogeneity but most of them 

still are not flawless (Acton and Mukherjee 2000, Catte et al. 1992, Zhang and Chen 2004). 

As such, good results could be achieved in the case of structures with large shape variations 

in medical images. 

As we can verify from the state-of-the-art of section 2.2, the methods that were used by most 

authors in the ear segmentation were the deformable models. Deformable models have the 

ability to directly generate closed parametric curves from images and to be smoothness to 

noise and artifacts. Moreover, deformable models can be implemented on the continuum 

space and achieve sub pixel accuracy (Xu et al. 2000), a highly desirable property for medical 

imaging applications. Geometric deformable models have advantages over Parametric models 

due to their parameterization independence, intrinsic behavior and easy implementation (Xiao 

et al. 2003). However, a long demanded advantage of Geometric deformable models is the 

ability to handle topology changes, crucial in applications where the object to be segmented 

has a known topology that must be preserved (Suri et al. 2007). Comparing with the other 

two segmentation algorithm groups, deformable models are more flexible and can be used for 

more complex segmentation. However, usually, thresholding, clustering and deformable 

models based algorithms require manual interaction. Besides, the selection of appropriate 

parameters on the deformable models procedures constitutes a challenge (Sharma and 

Aggarwal 2010), since it is critical to the final segmentation results. 

Atlas based algorithms are general applicable, robust and have a high computationally 

complexity. They are simple to implement since only a registration framework and a number 

of pre-segmented datasets are required. Expert knowledge is required to build these datasets. 

They also have the ability to incorporate prior information and employ global image 

information. The major disadvantage of these procedures is that every single atlas can only be 
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applied to a small number of specific images whose shapes are similar to the ones used to 

building the atlas. Therefore, when there is not enough contrast between tissues, the atlas 

based methods are the best choice (Balafar et al. 2010). Because of this lack of contrast and 

topological variation of the images, atlas based methods alone do not lead to results that are 

sufficient accurate (Noble et al. 2008). Both deformable models and atlas based algorithms 

are sensitive to the initial definition of the contours. Comparing with thresholding, clustering 

and atlas based algorithms, only deformable models based algorithms are able to handle 

structures with complex topology. Deformable models are promising because they 

incorporate prior knowledge about the location, size and shape of the anatomical structures of 

interest. However, parameters must be selected properly to get satisfied results. 

From the observation of the experimental results, some of them presented in the previous 

section, we can point out that for the segmentation of the cochlea, using a fuzzy c-means or a 

region growing algorithm may be the best solution; for the segmentation of the semicircular 

canal, Otsu, region growing, watershed or deformable models will work perfectly; in the case 

of the vestibule, Otsu, watershed and deformable models proved to be the most indicated 

algorithms; for the facial nerve, just the deformable models are advised because only the 

Level set algorithm worked successfully for this structure; in the case of the external ear 

canal, if the parameters of the speed function were well defined, deformable models may be 

the most recommended algorithms, otherwise, a region growing or a fuzzy c-means algorithm 

will be effective; for the segmentation of the ossicles, all algorithms presented are 

recommended. 

Fully automated, less user dependent and more efficient segmentation algorithms should be 

developed using prior shape information on the structures to be segmented. A possible way to 

design such algorithms could be by using improved image atlas, effective registration 

techniques and combining multiple segmentation approaches. 

 

4. Conclusions and Future Trends 

Image segmentation algorithms are essential for the construction of realistic biomechanical 

models of the human ear, which could be helpful for the simulation, understanding, diagnosis 

and treatment of ear disorders. In this paper, we reviewed some of the works regarding the 

ear biomechanical modeling focusing our analysis in two main groups: lumped parameter 

models and distributed parameter models. As far as our concern, there is no model built on 
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the basis of a totally automatic, subject-specific approach. In order to aim that, algorithms for 

the ear segmentation in VO, CT and MR images were reviewed. 

Segmentation algorithms were classified into four categories: thresholding, clustering, 

deformable models and atlas based. A critical description and analysis of the state of the art 

in this field were provided. Some experiments applying these algorithms were illustrated in 

axial and coronal CT ear images. The experiments confirmed that the segmentation of ear 

structures is still an open area for more research since various drawbacks and weaknesses of 

the current methods must still be addressed.  

During this review, we have identified the following trends and perspectives for future 

developments concerning the analysis of ear images: The acquisition of micro-CT images of 

specific parts of the ear may provide a modality for imaging the small structures involved, 

such as the ossicles, the semicircular canals and the facial nerve, with very high spatial 

resolution. The acquisition of CT and MR images with a lower spacing between slices or 

higher slice thickness, i.e. with higher Z-axis resolutions, may lead to more data about the 

structures involved and also to enhance the contrast between such structures and the image 

background. In order to segment the ear structures usually influenced by the partial volume 

effect and intensity inhomogeneity, such as the external auditory canal and the cochlea, 

image cues should be combined with the expected relative position of the structures; for 

example, using a 3D model atlas and applying the algorithms based on deformable models. 

So as to fulfill the segmentation of structures whose boundaries are barely defined or 

incomplete through the image appearance, which is often the case of the facial nerve and the 

ossicles, a good solution can be the combination of restrictions on shape variations with a 

prior shape model. 

To conclude, the future direction of the research concerning the analysis of ear images, both 

in terms of medical diagnosis and biomechanical simulation, will be towards the use of 

imaging acquisition processes with superior special image resolution and contrast, the 

developing of more accurate, efficient, automated and faster computational algorithms based 

on previous knowledge about the structures involved. Also, the registration, i.e. the fusion, of 

CT and MR data could improve the possibility of determining adjacent structures, such as 

nerve structures, soft-tissues masses and tumors. 
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FIGURE CAPTIONS 

 

Figure 1: Illustration of the outer, middle and inner ear. The outer ear includes the auditory 

canal. The middle ear includes the tympanic membrane and three tiny bones for hearing. The 

bones are called the hammer (malleus), anvil (incus) and stirrup (stapes) to reflect their 

shapes. The inner ear (labyrinth) contains the semicircular canals, vestibule for balance, and 

the cochlea for hearing.  

Figure 2: Geometric scheme of a multi-body model (adapted from (Volandri et al. 2012)).  

Figure 3: A Finite Element Model built for the middle ear ossicles, eardrum, ligaments and 

muscles. 

Figure 4: a) Original axial slice from a CT image, b) ROI image selected manually from the 

axial CT image showing the malleus, incus, vestibule, semicircular canal; c) ROI image 

selected manually from a coronal CT image showing the external auditory canal, malleus, 

facial nerve and cochlea. 

Figure 5: Original slice from a MR image, b) ROI image selected manually from the MR 

image showing the cochlea, semicircular canal, vestibular nerve and facial nerve.  

Figure 6: Segmentation results using the Otsu algorithm: on the left, in an axial CT image; on 

the right, in a coronal CT image. 

Figure 7: Segmentation results using the Canny edge detector: on the left, in an axial CT 

image; on the right, in a coronal CT image. 

Figure 8: Segmentation results using a region growing algorithm: on the left, in an axial CT 

image; on the right, in a coronal CT image. 

Figure 9: Segmentation results using a watershed algorithm: on the left, in an axial CT image; 

on the right, in a coronal CT image. 

Figure 10: Segmentation results using a fuzzy c-means algorithm: on the left, in an axial CT 

image; on the right, in a coronal CT image. 

Figure 11: Segmentation results using a snake algorithm: on the left, in an axial CT image; on 

the right, in a coronal CT image. 

Figure 12: Segmentation results using a Level set algorithm: on the left, in an axial CT 

image; on the right, in a coronal CT image. 
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TABLE CAPTIONS 

Table 1: Segmentation methods and imaging techniques that have been used in ear 

anatomical structures studies. 
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Figure 2 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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TABLES 

Table 1 

Author(s) Title Segmentation Method 
Imaging 

Modality 

Anatomical 

Structure(s) 

Sim and Puria 2008 
Soft tissue morphometry of the malleus-incus 

complex from micro-CT imaging 

Manual 

Micro-CT 
Middle Ear 

Ossicles 

Jun  et al. 2005 

Three-dimensional reconstruction based on images 

from spiral high-resolution computed tomography 

of the temporal bone: anatomy and clinical 
application 

Spiral-CT Inner Ear 

Melhem et al. 1998 
Inner ear volumetric measurements using high-
resolution 3D T2-weighted fast spin-echo MR 

imaging: Initial experience in healthy subjects 

Thresholding 
Global Thresholding 

MR Inner Ear 

Lee et al. 2010 
Reconstruction and exploration of virtual middle-

ear models derived from micro-CT datasets 

CT 
Middle Ear 

Ossicles 
Rodt et al. 2002 

3D visualisation of the middle ear and adjacent 

structures using reconstructed multi-slice CT 

datasets, correlating 3D images and virtual 

endoscopy to the 2D cross-sectional images 

Seemann et al. 1999 

Evaluation of the middle and inner ear structures: 

comparison of hybrid rendering, virtual endoscopy 

and axial 2D source images Thresholding 
Region Growing Spiral-CT 

Middle Ear 

Ossicles 

Todd et al. 2009 
An analysis of medical image processing methods 

for segmentation of the inner ear 

External Ear 

Auditory Canal 

Inner Ear 

Cochlea 

Bradshaw et al. 2010 

A Mathematical Model of Human Semicircular 

Canal Geometry: A New Basis for Interpreting 

Vestibular Physiology 

Thresholding 
Watershed 

CT 
Inner Ear 

Semicircular Canals 
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Shi et al. 2010 

Automatic MRI segmentation and morphoanatomy 

analysis of the vestibular system in adolescent 

idiopathic scoliosis 
Clustering MR 

Inner Ear 
Vestibular System 

Bradshaw et al. 2010 
A Mathematical Model of Human Semicircular 
Canal Geometry: A New Basis for Interpreting 

Vestibular Physiology 

Deformable Models 

Snake 

CT 
Inner Ear 

Semicircular Canals 

Xie et al. 2005 
Detecting Abnormalities in Tympanic Membrane 

Images. Medical Image Understanding an Analysis 

Video-

Otoscopy 
Outer Ear 

Tympanic Membrane 

Tabrizi 2003 
Using Active Contours for Segmentation of 

Middle-Ear Images 
MR Middle Ear 

Yoo et al.2001 
Semiautomatic segmentation of the cochlea using 
real-time volume rendering and regional adaptive 

snake modeling 

Spiral-CT 

Inner Ear 

Cochlea Poznyakovskiy et al. 2008 

The creation of geometric three-dimensional 

models of the inner ear based on micro computer 

tomography data Micro-CT 

Noble et al. 2011 
Automatic segmentation of intracochlear anatomy 

in conventional CT 

Xianfen et al. 2005 
3D semi-automatic segmentation of the cochlea 

and inner ear 

Deformable Models 

Level Set 

Spiral-CT 
Inner Ear 

Cochlea 

Semicircular Canals 

Comunello et al. 2009 

A computational method for the semi-automated 

quantitative analysis of tympanic membrane 

perforations and tympanosclerosis 

Video-

Otoscopy 
Outer Ear 

Tympanic Membrane 

Tabrizi 2003 
Using Active Contours for Segmentation of 

Middle-Ear Images 
MR Middle Ear 

Noble et al. 2009 

Noble et al. 2010 

Automatic identification and 3D rendering of 

temporal bone anatomy 
Atlas 

CT 

Inner Ear 

Middle ear 

Ossicles 

Outer ear 

Auditory canal 
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Chistensen et al. 2003 

Automatic Measurement of the Labyrinth Using 

Image Registration and a Deformable Inner Ear 
Atlas 

Inner Ear 

Cochlea 

Vestibule 

Semicircular canal 

Outer Ear 

Auditory canal 
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