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ABSTRACT

Arbuscular mycorrhizal (AM) fungi and plant growth-promoting rhizobac-
teria, responsible for enhancing plant nutrition, vigour and growth, may
be used to reduce dosages of chemical fertilisers. Technologies that allow
an economically viable and efficient application of these beneficial
microbes in large scale agriculture must be studied. Seed coating is a
potential delivery system for efficiently introducing minor amounts of
bioinoculants. Despite the dramatic reduction on inoculum dose per
plant, inoculation of AM fungi via seed coating was as effective as con-
ventional soil inoculation. Fertilisation and inoculation had a significant
impact on maize shoots nutrient concentrations. Different fertilisation
regimes did not influence mycorrhizal colonisation. Plants without fertili-
sation and singly inoculated with R. irregularis showed shoot nutrient
concentration increments of 110, 93, 88 and 175% for nitrogen, phos-
phorus, potassium and zinc, respectively, comparing with non-inoculated
controls. Plants singly inoculated with P. fluorescens via seed coating under
full fertilisation, presented enhancements of 100, 75 and 141% for mag-
nesium, zinc and manganese, respectively, comparing with non-inoculated
controls. Seed coating is a promising tool for delivering microbial inocu-
lants into the soil, while promoting sustainable production of maize. This
technology is particularly pertinent in low input agriculture, with potential
environmental profits and food quality improvements.
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A new route on agricultural practices is required to ease the pressure on the environment and
human health (Adesemoye et al. 2009; Malusá et al. 2012). In order to maintain productivity and
reduce the input of agrochemicals, the exploitation of plant beneficial microbes, such as arbuscular
mycorrhizal (AM) fungi and plant growth-promoting rhizobacteria (PGPR) is of great potential
(Kumar et al. 2007; Walker et al. 2011; Couillerot et al. 2013).

The roles of AM fungi in agriculture are widely recognised, as they have the capacity to improve
plant fitness by enhancing uptake of nutrients and water, protecting plants against biotic and
abiotic stresses and improving soil quality and structure (Mäder et al. 2011; Njeru et al. 2015;
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Oliveira et al. 2017a, 2017b). On the other hand, PGPR are responsible for promoting growth and
plant protection through mechanisms such as production of siderophores and phytohormones,
nitrogen fixation, reduction of ethylene levels, solubilisation of nutrients and induction of pathogen
resistance (Walker et al. 2011; Bhattacharyya and Jha 2012; Nadeem et al. 2014). Among all the
mechanisms they may also stimulate the development of mycorrhiza. Some mycorrhiza helper
bacteria, such as Pseudomonas fluorescens F113 can facilitate root colonisation by AM fungi, and at
the same time display properties of plant growth promoting bacteria (Couillerot et al. 2013).

In agricultural practice only 10 to 40% of the total applied chemical fertilisers are taken by the
plants, the remaining is lost by a variety of mechanisms or processes (Bhardwaj et al. 2014). PGPR
and AM fungi can greatly improve nutrient use efficiency, leading to a reduced need for chemical
fertilisers (Adesemoye et al. 2009; Bhardwaj et al. 2014; Oliveira et al. 2016a, 2016b).

With over 1 billion ton harvested worldwide in 2013, maize (Zea mays L.) is the world’s most
cultivated cereal crop, with indubitable economic and nutritional value (Berta et al. 2014; Zerbe
2015). To meet the growing demand for this cereal and to satisfy the need for a more sustainable
agriculture with lower agrochemical inputs, AM fungi and PGPR stand as promising tools (Malusá
et al. 2016). Recent studies demonstrated the efficiency of these beneficial microbes in promoting
maize growth and yield in field experiments (Adesemoye et al. 2008; Jarak et al. 2012; Krey et al.
2013; Sangeetha et al. 2013; Berta et al. 2014) and in greenhouse trials (Wu et al. 2005; Couillerot
et al. 2013). Despite these promising results, the application of both AM fungi and PGPR by
broadcasting inocula in open agricultural fields is not economically feasible, since non targeted
spreading of inoculum over large areas results in high cost per plant (Vosátka et al. 2012; Oliveira
et al. 2016b). In order to use minor amounts of inoculum, seed coating, a technique in which a
certain active compound is adhered around the seed, is here proposed as an inoculation mechan-
ism for maize seeds (Ehsanfar and Modarres-Sanavy 2004; Colla et al. 2015; Oliveira et al. 2016b).

The aims of the present study were to (i) assess the effectiveness of seed coating as a delivery
system of inocula of AM fungi and PGPR and (ii) evaluate whether the application of microbial
inoculants via seed coating could minimise the input of chemical fertiliser in maize production.

Materials and methods

Soil and plant material

The soil used in this study was a sandy loam with the following properties: pH 6.5, 0.1 dS m−1 electrical
conductivity, 1.2% organic matter, 3.8 g kg−1 total nitrogen (N), 48.8 mg kg−1 extractable phosphorus (P),
4.3 g kg−1 potassium (K), 1.6 g kg−1 calcium (Ca), 66 mg kg−1 magnesium (Mg) and 147 mg kg−1 sodium
(Na). The soil, collected from an organic farm in northern Portugal, was sieved (4 mm) and autoclaved
twice at 121 ºC for 25 min. Maize (Zea mays L.) seeds (ACC Nº06694, free pollination) were obtained from
Banco Português de Germoplasma Vegetal, Instituto Nacional de Investigação Agrária e Veterinária.

Inoculum preparation and seed coating

The AM fungus used was Rhizophagus irregularis BEG140 grown for 8 months in a multispore pot
culture containing a 1:1 (v/v) mixture of zeolite and expanded clay with Trifolium pratense L. as host
plant. For the seed coating procedure, the R. irregularis inoculum was sieved through a 500 µm mesh
and mixed with silicon dioxide (1:1 w/w), which served as coating material (the inoculum-coating
material mixture was provided by Symbiom Ltd., Czech Republic). For plants where the seeds were
not coated, the same AM fungal inoculum was used without sieving.

Pseudomonas fluorescens F113, a PGPR isolated from sugar beet rhizosphere by Fenton et al.
(1992), was purchased from the International Center for Microbial Resources from the Bacteria
Associated with Plants strain collection (CFBP 5935) in France (http://www6.inra.fr/cirm_eng/CFBP-
Plant-Associated-Bacteria). To obtain P. fluorescens inocula, bacteria cells were grown on Luria
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Bertani (LB) medium supplemented with 0.25 g l−1 MgSO4·7H2O for 8 h at 30°C and 200 rpm,
according to the procedures from Couillerot et al. (2013). For the seed coating, P. fluorescens grown
in LB media was centrifuged at 7000 rpm for 10 min and resuspended in 10 mM MgSO4·7H2O with
2% (w/w) glycerol, added as a protective agent to the cell suspension to minimise the loss of cell
viability during the coating process, and mixed with the coating material (1:1 v/w). Both fungus and
bacterium were also coated together using the same procedure and proportions (1:1:1 w/v/w) as
aforesaid. Maize seeds were coated by gradually adding the inoculum-coating mixture and air dried
at 22–23°C for 72 h according to the pan coating method (Scott et al. 1991) as described by Oliveira
et al. (2016b). Non-inoculated control seeds were coated only with silicon dioxide.

Experimental design

This study was divided in two experiments (A and B), which were performed simultaneously. Both trials
were conducted in a greenhouse with a temperature and relative humidity ranging from 14 to 42°C
(average 20 to 30°C) and from 55 to 85%, respectively, and with an average photoperiod of 12 h. Pots of
3 L were disposed in a fully randomised scheme for both experiments and in order to minimise
differences due to their location in the greenhouse, their positions were periodically swapped.

Experiment A aimed at comparing conventional soil inoculation with seed coating inoculation
and encompassed seven treatments: (i) non-inoculated controls (C), (ii) R. irregularis conventionally
inoculated in the soil (RIsoil), (iii) R. irregularis inoculated through seed coating (RIcoat), (iv) P.
fluorescens conventionally inoculated in the soil (PFsoil), (v) P. fluorescens inoculated through seed
coating (PFcoat), (vi) a consortium of R. irregularis and P. fluorescens conventionally inoculated in
the soil (RI+PFsoil), and (vii) a consortium of R. irregularis and P. fluorescens inoculated through seed
coating (RI+PFcoat). Plants that were treated by conventional soil inoculation with R. irregularis
(RIsoil), received 12 g of non-sieved inoculum placed 2 cm below one uncoated seed, which
corresponded to 4860 AM fungal propagules (viable inoculum) per plant, estimated by the most
probable number method (MPN) (Porter 1979). Pots from the RIcoat treatments received one maize
seed coated with R. irregularis, which corresponded to 273 AM fungal propagules per plant,
estimated by the MPN method after the coating procedure. For the treatment PFsoil, 1 ml of
bacterial suspension with a concentration of 107 colony-forming unit (CFU) ml−1 was pipetted onto
each pot that received one uncoated maize seed, while for the coated seed treatment (PFcoat), the
same CFU concentration was mixed with the coating material according to the aforementioned
procedure. After coating, a final bacterial concentration of 105 CFU per coated seed was obtained.
The CFU was estimated by placing one coated seed in 1 ml of ringer solution followed by serial
dilutions and plate count method. For the treatment RI+PFsoil, each pot received one uncoated
seed plus 12 g of fungal inoculum and 1 ml bacterial inoculum as described above. Pots of
non-inoculated control plants received one Z. mays seed coated only with silicon dioxide. Each
treatment combination was replicated 8 times. Each plant received 25 ml of full strength Hoagland
solution (composition described below) with 20% of P twice a week.

Experiment B aimed at evaluating the growth and nutritional status of maize inoculated with AM
fungi and PGPR via seed coating, under 3 levels of fertilisation (no fertilisation, reduced fertilisation
and full fertilisation). Experimental pots were arranged in a 4 × 3 factorial design, where the first
factor was inoculation [non-inoculated controls (C), R. irregularis inoculated through seed coating
(RIcoat), P. fluorescens inoculated through seed coating (PFcoat) and a consortium of R. irregularis and
P. fluorescens inoculated through seed coating (RI+PFcoat)] and the second was fertilisation
[no fertilisation (F0), 80% strength Hoagland solution with 20% of P (F1) and full strength
Hoagland solution (F2)]. Fertilised plants received 25 ml of the corresponding Hoagland solution
per pot twice per week and non-fertilised plants received 25 ml deionised water. The composition of
the full strength Hoagland solution was: 224 mg l−1 KNO3, 235 mg l−1 Ca(NO3)‧4H2O, 160 mg l−1

NH4H2PO4, 62 mg l−1 MgSO4‧7H2O, 1.77 mg l−1 KCl, 0.27 mg l−1 H3BO3, 0.11 mg l−1 MnSO4‧

H2O, 0.13 mg l−1 ZnSO4‧7H2O, 0.03 mg l−1 CuSO4‧5H2O, 0.05 mg l−1 H2MoO4 (85%MoO3), 3 mg l−1



NaFeEDTA (10% Fe) (Taiz and Zeigher 2002). The reductions of 80% strength and 20% of P were
made to the full strength solution. The coating procedure, amounts and concentrations of inocula
used in experiment B were the same as those in experiment A. Each treatment combination was
replicated 8 times.

AM fungal analysis

In both experiments the presence of R. irregularis in the roots of maize was assessed by microscopic
methods. According to a modified Phillips and Hayman (1970) protocol (Oliveira et al. 2005), the
roots of maize were cut into 1-cm pieces and stained with trypan blue for the assessment of the
percentage of root length colonised (RLC) and abundance of arbuscules and vesicles. The RLC by
AM fungi in the mycorrhizal root segments was evaluated by the grid-line intersect method
(Giovannetti and Mosse 1980) under a stereomicroscope (Leica EZ4 HD, Germany). Arbuscule and
vesicle abundances were examined under a compound microscope (Leica DM 5000-D, Germany)
(×100–400) as described by Troulevout et al. (1986) and the percentages determined with the
software Mycocalc (http://www.dijon.inra.fr/mychintec/Mycocalc-prg/download.html).

PGPR analysis

After 70 days of growth, 1 g of maize roots and adhering soil was sampled and transferred into
a 50 ml tube and flash-frozen in liquid N. The extraction of DNA from P. fluorescens present in
the rhizosphere of maize was performed as described by Couillerot et al. (2010). The samples
were homogenised using Precellys24 (Bertin instruments, France) and 250–300 mg used for
DNA extraction, using the FastDNA® SPIN® kit for soil (MPBiomedicals, CA, USA). The DNA
quantification was made using Qubit fluorometric quantitation system (Life Technologies,
Carlsbad, CA, USA) according to the manufacturer’s recommendations. The primers used,
F113_1_for (CAAGAAAGGTGAGCCGAGAC) and F113_1_rev (CGACAACCAGCACTTGAGAA) were
designed and previously tested, with attainment, for P. fluorescens by Von Felten et al. (2010).
The quantification by real-time polymerase chain reaction (PCR) was based on the methodology
described by Walker et al. (2011). A Step One Plus Real-time PCR system (Applied Biosystems,
Canada) was used with the following conditions: 20 μl reaction volume with 0.5 μM of each
primer, 2 μl of template DNA and 10 μl Fast Sybr Green mix (Applied Biosystems, Canada). The
two-step cycling program included an initial pre-incubation of 20 s at 95°C followed by 40
cycles of 95°C for 3 s and 60°C for 30 s.

Plant analysis

In both experiments (A and B) plants were harvested after a growth period of 70 days, the root
system separated from the shoot and washed to remove adhered soil. In experiment B, shoots
were dried at 70ºC for 48 h and weighed. After drying, stems were grained and digested
according to the European Standard EN 13805 (2014). Total P, K, Ca, Mg, sulfur (S), iron (Fe),
manganese (Mn) and zinc (Zn) were determined by inductively coupled plasma optical emission
spectrometry (ICP-OES; GBC Quantima, Australia). Operating conditions for ICP-OES determina-
tions were as follows: RF power – 1000 W, 15.0 l min−1 plasma gas flow rate, 1.2 l min−1

auxiliary gas flow rate, 1.0 l min−1 carrier gas flow rate, 50 scan/reading, 3 measurement
replicates and dual detector. Total N was determined with a segmented flow analyser (Skalar
Inc. SanPlus, The Netherlands).

http://www.dijon.inra.fr/mychintec/Mycocalc-prg/download.html


Statistical analysis

Normality and homogeneity of variances were confirmed and data analysed using one-way and
two-way analysis of variance (ANOVA) for each dependent variable (plant and fungal parameters)
versus the independent variables (inoculation, in experiment A and inoculation and fertilisation in
experiment B). For experiment B the main effects of the factors inoculation (C, PFcoat, RIcoat and RI
+PFcoat), fertilisation (F0, F1 and F2) and their interaction were analysed. When a significant F-value
was obtained (P < 0.05), treatment means were compared using Duncan’s multiple range test.
Fungal parameters data were analysed without including the respective non-inoculated control
treatments and the bacteria inoculated treatments. All statistical analyses were performed with the
SPSS 23.0.0 software package (IBM SPSS Statistics, USA).

Results

In both experiments, coated and non-coated seeds had a germination rate of 100%. After 70 days,
non-inoculated plants formed no AM fungal root colonisation. In experiment A, all plants inocu-
lated with AM fungi had root mycorrhizal colonisation, with values higher than 70% and presence
of arbuscules and vesicles (Figure 1). The results showed no significant differences in % RLC,
arbuscule and vesicule abundances between plants conventionally inoculated in the soil with R.
irregularis and those inoculated via seed coating, regardless of inoculation with P. fluorescens
(Figure 1). No effect of bacterial inoculation on root colonisation by AM fungi was observed. In
experiment B, all AM fungi inoculated plants showed root mycorrhizal colonisation, while control
and bacteria inoculated treatments presented no AM fungal colonisation. Root length colonisation
was higher than 60% in all treatments. The % of RLC, arbuscule and vesicle abundances in the
mycorrhizal roots of plants inoculated with R. irregularis, presented no significant differences across
the different levels of fertilisation (Table 1). No effect of bacterial inoculation on the AM fungal root
colonisation was perceived.

After the coating procedure and prior to sowing, seeds treated with P. fluorescens presented a
concentration of 105 CFU per coated seed, yet after the 70 days of plant growth, it was not possible
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Figure 1. Experiment A – Percentage root length colonised (%RLC), arbuscule (A%) and vesicle (V%) abundances in the roots of
Zea mays L. conventionally inoculated in the soil with Rhizophagus irregularis (RIsoil) or R. irregularis + Pseudomonas fluorescens
(RI+PFsoil) or inoculated via seed coating (RIcoat and RI+PFcoat). Values are means ± 1 SE. There were no significant
differences according to Duncan’s Multiple Range test at P < 0.05.



to detect the bacterial strain by the used molecular methods. Therefore, the presence of P.
fluorescens could not be confirmed in the roots and rhizosphere of maize.

In experiment B, both shoot and root dry weights of maize were positively affected by the
fertilisation regime. For instance, roots and shoots had higher biomass at full fertilisation and lower
biomass without fertilisation, irrespective of the inoculation treatments (Figure 2 and Table 2).
Inoculation had a significant impact on root biomass and no influence on shoots, being the
interaction between inoculation and fertilisation only significant regarding roots (Table 2). Plants
subjected to reduced fertilisation and inoculated with R. irregularis presented lower root biomass
when compared with the remaining treatments. Overall, plants inoculated with beneficial microbes
showed no growth enhancement. Both inoculation and fertilisation factors influenced the final
maize shoot nutrient concentrations (Tables 3 and 4). Plants inoculated singly with P. fluorescens
(PFCoat) increased their shoot concentration of N, K, Ca, Mg and Mn by 40, 49, 60, 100 and 141%,
respectively. Most of the increments were observed under full fertilisation regime. Treatments
where only R. irregularis was added (RIcoat), showed substantial increases in N and Zn shoot

Table 1. Experiment B – Percentage of root length colonised (%RLC), arbuscule (A%) and vesicle (V%) abundances of
Rhizophagus irregularis (RIcoat) and R. irregularis and Pseudomonas fluorescens consortium (RI+PFcoat) inoculated via seed
coating in the roots of Zea mays L. under no fertilisation (F0), reduced fertilisation (F1) and full fertilisation (F2).

Inoculation Fertilisation RLC% A% V%

RIcoat F0 67.8 ± 3.8 25.9 ± 8.6 18.3 ± 8.8
F1 62.2 ± 6.3 17.7 ± 6.3 10.7 ± 3.0
F2 69.7 ± 6.6 25.5 ± 4.3 15.1 ± 3.1

RI+PFcoat F0 64.5 ± 1.6 19.3 ± 4.1 6.3 ± 1.6
F1 76.8 ± 1.1 16.8 ± 3.1 12.4 ± 2.0
F2 62.4 ± 5.6 17.1 ± 5.8 9.5 ± 2.8

Values are means (±1 SE). There were no significant differences according to Duncan’s Multiple Range test at P < 0.05.
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concentrations under all fertilisation levels. Nevertheless, the higher values of enhancement and
the number of nutrients affected by the AM fungi inoculation where obtained in the F0 and F1
fertilisation levels. In RIcoat treatment without fertilisation (F0) N, P, K, Mg and Zn had increments
of 110, 93, 88, 73 and 175%, respectively. In reduced fertilisation regime (F1) the same nutrients
had increases of 44, 20, 68, 58 and 145%, respectively, while under full fertilisation (F2) only N and
Zn concentrations were enhanced. Plants inoculated with R. irregularis + P. fluorescens (RI+PFcoat)
showed a significant enhancement of N, Ca, Mg and Zn shoot concentration, mainly under F0 and
F1 fertilisation levels. It is noteworthy that in plants inoculated with AM fungi, nutrient content
enhancement was higher in treatments under reduced fertilisation than in those under full
fertilisation. No influence by R. irregularis or P. fluorescens was noticed in S and Fe shoot concen-
trations. The analyses of the main effects of microbial inoculation on maize shoot nutrient
concentration showed significant increases in all assessed nutrients, except for P and S in PFcoat,
Fe and Mn in RIcoat and K, S and Fe in RI+PFcoat (Table 4). The main effects of fertilisation only
showed significant differences in N and P shoot concentrations. Higher fertilisation resulted in
increased N and reduced P shoot concentration (Table 4).

Discussion

The seed coating process used in this study had no negative effect on seed germination.
Previously, the same seed coating method had been used with wheat seeds by Oliveira et al.
(2016b), also with a germination rate of 100%. Maize and wheat seeds have different sizes and
shapes, showing the applicability of this seed coating procedure to dissimilar types of seeds. Due to
the relatively high cost of AM fungi inocula per plant, the application in open agricultural fields,
apparently is not economically feasible (Vosátka et al. 2012). This study showed that in the case of
AM fungi, the use of minor amounts of inoculum through inoculation via seed coating is possible,
resulting in similar root colonisation when compared with conventional soil inoculation.
Comparable results were also obtained by Oliveira et al. (2016b) with wheat seeds coated with
AM fungi. With the seed coating process, inoculated bacteria can suffer a loss of viability in the
seed, which consequently could have a negative effect on colonisation and persistence of bacteria
in the soil (Pedrini et al. 2016). However, after the coating procedure and prior to sowing, seeds
treated with P. fluorescens presented a concentration of 105 CFU per coated seed, which is sufficient
for successful colonisation (Weller 1983; Tang et al. 1995; Landa et al. 2003). Yet, after the 70 days
of plant growth, it was not possible to detect the inoculated bacterial strain in the soil samples by

Table 2. Experiment B – Main effects of the factors inoculation and fertilisation and two-way ANOVA F-values and significances
for shoot and root biomass of Zea mays L.

Main effects Shoot dry weight (g) Root dry weight (g)

Inoculation (I) C 2.74 a 0.63 b
PFcoat 2.61 a 0.61 ab
RIcoat 2.51 a 0.50 a
RI+PFcoat 2.77 a 0.62 ab

Fertilisation(F) F0 1.52 a 0.37 a
F1 3.06 b 0.61 b
F2 3.88 c 0.95 c

Two-way ANOVA F-values and significances
Inoculation (I) 2.7 ns 3.5*
Fertilisation (F) 218.1*** 60.2***
I x F 1.1 ns 3.4*

Letters indicate significant differences according to Duncan’s Multiple Range test. * and ***, significant effect at the level of
P < 0.05 and P < 0.001, respectively; ns, non-significant effect. C, non-inoculated controls; PFcoat, Pseudomonas fluorescens;
RIcoat, Rhizophagus irregularis; RI+PFcoat, consortium of R. irregularis and P. fluorescens; F0, no fertilisation; F1, reduced
fertilisation; F2, full fertilisation.
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molecular methods, indicating that the concentration of P. fluorescens was possibly below the
detection limit for the qPCR analysis. That fact might be related with the findings of Von Felton
et al. (2010) who reported a decrease with time in the population density of P. fluorescens F113.
This was also pointed out by Haas and Défago (2005), who showed that introduced PGPR can
colonise plant roots initially at levels of about 107–108 CFU g−1 but these levels always decline in a
few weeks. The persistence in the soil of introduced rhizobacteria can vary considerably from plant
to plant (Landa et al. 2003). The decline can be related with several factors such as direct growth
inhibition, resource competition (root exudates utilisation) or need of a wider range of resources
than other bacteria (Adee et al. 1990; Farrar et al. 2014). Moreover, in experiments with wheat and
maize, Rosas et al. (2009) showed that Pseudomonas aurantiaca can, in fact, decrease over time in
rhizosphere soil yet, effects of the inoculated bacteria on plant growth were shown during the
whole cycle of the crop. Thus, in our study, the fact that the presence of P. fluorescens F113 in the
soil could not be confirmed after 70 days, should not lead to the conclusion that there was no
bacterial effect in different phases of plant development. In future studies, it will be crucial to
perform time course samplings throughout the development of the roots in order to understand
the behaviour of the inoculated bacteria and also to comprehend the impact on the target plants
of changes in bacterial concentrations in the roots and rhizosphere. Depending on the bacteria, the
development of mycorrhiza can be negatively or positively affected. In fact, most of these interac-
tions are competitive, but some can be beneficial to the mycorrhizal colonisation process (Garbaye
1994). Pseudomonas fluorescens are of great predisposition to benefit mycorrhiza establishment
and specifically strain F113 proved to be capable of improving the formation of AM associations, as
previously shown for other rhizosphere microorganisms (Barea et al. 1998). However, the stimula-
tory effects by P. fluorescens on AM fungi root colonisation was not noticed in the present study,
since no difference in maize mycorrhizal colonisation was observed.

Maize has a high demand for N and P and their soil concentrations can affect AM fungal develop-
ment. In fact, AM fungal colonisation is often negatively correlated with soil P values (Gianinazzi and
Schüepp 1994; Liu et al. 2000). However, the results showed no significant difference in AM fungal
colonisation between the treatments under different fertilisation regimes. P is critical for maximising
plant growth and crop yields, playing a key role in several plant functions andmaking up to about 0.2%
of the dry weight (Smith et al. 2011). Consequently, its absence or low amounts have negative
consequences for plant development. The 80%decrease of P instead of 20% of the remaining nutrients,
in the treatment of reduced fertilisation (F1), might contributed to hamper maize growth. Both AM
fungi and PGPR are extensively recognised for their role in agriculture as biofertilisers (Vessey 2003;
Nadeem et al. 2014). Nonetheless, the application of plant growth promoting microorganisms (PGPM)
may not always contribute to plant growth, having other beneficial effects on plants such as nutritional
enhancement (Ryan and Graham 2002). Even so, increases in plant nutrient concentration may not
always translate into enhanced growth and yield (Miller 2000; Galvez et al. 2001). In this study no
enhancement of biomass on plants inoculated with beneficial microbes was observed, being plant
growth mainly dictated by the fertilisation regime. Although, no significant improvement in plant
growth was observed, there was a noteworthy augmentation on nutrient shoot content by microbial
inoculation including in the reduced (F1) or no fertilisation (F0) regimes. Plants require bothmacro and
micronutrients which are generally obtained from the soil (White and Brown 2010). AM fungal roots can
greatly enhance acquisition of mineral nutrients in host plants, especially those that are of lowmobility
or sparingly soluble (Clark and Zeto 2000). The N, P, K, Mg and Zn content on maize were positively
affected by inoculation with R. irregularis, particularly in treatments where fertilisation was reduced or
absent. The uptake of micronutrients by mycorrhizal plants is considered to be negatively influenced
by the availability of P in the soil, which might explain the effect of mycorrhizal plants on Zn content
(Lambert et al. 1979; Liu et al. 2000). The significance of AM fungi inoculation might be highest at low
nutrient availability, mainly P. In fact, even though no difference in mycorrhizal colonisation was
observed, the efficiencies of AM fungi in increasing shoot nutrient concentrations varied according
to the fertilisation regime. N shoot concentration was directly correlated with fertilisation, and this



might be related with the high demand of N by maize plants (Schröder et al. 2000). On the other hand,
plants with single P. fluorescens inoculation presented most of the nutritional increments when full
fertilisationwas applied. Thismight indicate that the beneficial properties of the bacteria are stimulated
by the presence of higher levels of nutrients in the soil. These results supported the overall hypothesis
that microbial inoculum can increase nutrient assimilation of plants and can be used for integrating
nutrient management strategies (Alloush and Clark 2001; Wu et al. 2005; Adesemoye et al. 2008; Berta
et al. 2014). This ability in enhancing the concentration of nutrients provides an added value to food
plants, which currently should be taken in great consideration.

Conclusions

The exploitation of beneficial microbes as biofertilisers appears to be a natural route. Particularly in low
agrochemical input systems, they can be responsible for maintaining long term soil fertility and sustain-
ability by improving the uptake efficiency and availability of macro and micro nutrients to plants. Plants
inoculated with AM fungi and PGPR via seed coating displayed enhanced shoot concentration of macro
and micronutrients, under different fertilisation regimes. The increments of maize nutrient contents
suggest that PGPM-based inoculants applied via seed coating can be used and should be further
evaluated as component of integrated nutrient management strategies. To our knowledge this is the
first report on successful coating of maize seeds with inocula of AM fungi and PGPR. Seed coating for AM
fungi inoculation had the same efficiency as direct soil inoculation, showing that there is great potential
for PGPM inoculation in large scale agriculture, as it can allow the use of minor amounts of inocula and a
more precise application. Thus, seed coating can open the way for large scale inoculation of beneficial
microorganisms in maize production. Additionally, field experiments with maize and other crops will be
useful to verify the efficacy of seed coating as a microbial delivery system and the benefits of the
application.
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