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ABSTRACT In this paper, we consider the use of a team of multiple unmanned aerial vehicles (UAVs) to
accomplish a search and rescue (SAR) mission in the minimum time possible while saving the maximum
number of people. A novel technique for the SAR problem is proposed and referred to as the layered search
and rescue (LSAR) algorithm. The novelty of LSAR involves simulating real disasters to distribute SAR
tasks among UAVs. The performance of LSAR is compared, in terms of percentage of rescued survivors
and rescue and execution times, with the max-sum, auction-based, and locust-inspired approaches for multi
UAV task allocation (LIAM) and opportunistic task allocation (OTA) schemes. The simulation results show
that the UAVs running the LSAR algorithm on average rescue approximately 74% of the survivors, which
is 8% higher than the next best algorithm (LIAM). Moreover, this percentage increases with the number
of UAVs, almost linearly with the least slope, which means more scalability and coverage is obtained
in comparison to other algorithms. In addition, the empirical cumulative distribution function of LSAR
results shows that the percentages of rescued survivors clustered around the [78%–100%] range under an
exponential curve, meaning most results are above 50%. In comparison, all the other algorithms have almost
equal distributions of their percentage of rescued survivor results. Furthermore, because the LSAR algorithm
focuses on the center of the disaster, it finds more survivors and rescues them faster than the other algorithms,
with an average of 55%∼77%. Moreover, most registered times to rescue survivors by LSAR are bounded
by a time of 04:50:02 with 95% confidence for a one-month mission time.

INDEX TERMS Autonomous agents, drones, search and rescue, unmanned aerial vehicles.

I. INTRODUCTION
Recently, unmanned aerial vehicles (UAVs), known as
drones, have been shown to be quite effective in several appli-
cations such as smart agriculture [1], surveillance [2], [3],
survey and mapping [4], delivery [5], and search and
rescue (SAR) [5]–[8] (Figure 1).

In this paper, we focus on the SAR problem by employing
a team of multiple UAVs. In natural disasters (such as earth-
quakes, floods, and fires), it becomes crucially important to
retrieve survivors in the minimum amount of time possible.
Using UAVs with multi-model sensors (such as high quality
cameras and gas detectors) helps to reduce the search time,
because UAVs can provide aerial images that allow people
needing assistance to be identified in an unprecedented and
efficient manner.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yang Tang.

FIGURE 1. UAVs’ real life applications.

The control of UAVs can be accomplished manually by
an expert pilot. However, this approach may not achieve the
highest efficiency, as the coordination between pilots during
a disaster is not straightforward, considering such environ-
ments are subject to dynamic critical events.
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A more efficient approach is to deploy a team of
autonomous UAVs that coordinate between each other to
accomplish SAR tasks in the minimum amount of time
while saving the maximum number of survivors. This prob-
lem is rather challenging and is mapped to the multi-robot
task allocation (MRTA) problem [9], known as an NP-hard
problem [10]–[12]. As the robots employed in this case are
UAV robots, Kurdi et al. [12] refer to this problem as multi-
UAV task allocation (MUTA). The SAR application MUTA
consists of finding an unknown number of survivors in a
planar search area. It should be noted that the location of
the survivors is also not known in advance. Further, because
the robots are flying, this complicates MUTA compared to
regular MRTA; hence, a highly dynamic search in differ-
ent dimensions is required. Due to such complexity, several
heuristic-based approaches have been proposed.

Max-sum [13]–[16] is a centralized optimization approach
applied to several UAV applications, including MUTA in
SAR applications [15]. Max-sum uses message passing
that can be configured to work in an approximate mode.
The main drawback of max-sum algorithms is the need to
re-plan the whole assignment for each time period to optimize
the assignment. Thus, it may not be effective for real-time
applications with high dynamicity; in addition, it may not
scale well with a large number of UAVs due to the increase
in communication overheads.

On the other hand, auction-based approaches are decentral-
ized and are based on a bidding-auctioning process [17]–[24].
The key point is to apply an auctioneer to announce tasks for
bids, and a robot with the best bid will win the task. In the
context of the multi-UAV SAR problem, the auction-based
approach assigns the most suitable UAV to a survivor accord-
ing to the bidding value calculated as the distance between
a UAV and a survivor. However, the bidding negotiation
overhead consumes more time and computational resources
compared to other approaches [25], [26].

The opportunistic task allocation (OTA) strategy was pro-
posed in [27]. In OTA, a UAV selects a random block in the
search area that has not yet been explored. If a survivor is
found, the UAV will rescue them immediately. OTA is based
on a random search strategy, whichmay produce good results;
however, there is no guarantee that this will occur.

The fourth closely related algorithm is the locust-inspired
approach (LIAM) [12], [27], [28], which is a problem-
dependent heuristic, tailored to the task allocation problem
in multi-UAV SAR missions. In LIAM, the UAVs switch
between three operational modes according to the mission
time. In each mode, the UAV flies with a different speed and
different battery consumption rates. LIAM is a decentralized
approach that requires heavy communication between indi-
vidual UAVs, which mostly have limited computational and
energy capabilities. In addition, LIAM considers all search
regions equally without prioritizing particular regions.

In natural disasters, there is a center in which most of the
survivors are located, which is a key factor in this work.
Therefore, SAR missions should be planned in a way that

FIGURE 2. Disasters’ forms.

focuses more on the center itself, with decreasing importance
given with increasing distance from this location (Figure 2).
We refer to this as the layered SAR (LSAR) algorithm.

In addition, with the emergence of cloud robotics and the
possible connectivity of drones over the Internet [29]–[32],
the LSAR algorithm is centralized in the sense that it assumes
that UAVs communicate with a cloud server that coordinates
the SAR missions among them. This assumption is realistic,
as a cloud-based management system for the Internet of
Drones (Dronemap) has already been developed and imple-
mented in [29].

This paper is organized as follows: after this brief intro-
duction, the details of closely related work are described in
Section II. The LSAR algorithm is discussed in Section III,
followed by a theoretical comparison of candidate algo-
rithms in Section IV. The experimental results and discus-
sions on different performance measurements are contained
in Section V. Finally, the concluding remarks and future
works are presented in Section VI.

II. LITERATURE REVIEW
There are four types of SAR problem, according to their
application: maritime, combat, urban, and wilderness [33].

Maritime SAR refers to incidents where people are lost
at sea. In [34], Lee et al., provided a mixed integer linear
program for application to maritime SAR problems. In such
problems, the probability of locating survivors changes due
to wind and currents. They summarized maritime SAR chal-
lenges as follows:
• limited fuel capacity of commercial UAVs,
• uncertainty and dynamicity of survivor locations,
• autonomous control of fuel service stations.

Their mixed integer linear program (MILP) model addressed
these three challenges and worked efficiently on different
numerical examples. Ghazali et al. [33], employed UAVs
with rotary wings for maritime SAR operations, hovering
around disaster areas to locate survivor locations. More-
over, the authors provided an algorithm for this purpose
whereby photographs were taken of areas that may con-
tain survivors, then the photographs were divided into four
quarters, and process was repeated until a survivor was
found.
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Authors in [35] addressed the maritime SAR problem
using cognitive and automated UAVs. They applied coopera-
tive game theory to enable cognitive multi-UAVs, and tried to
achieve their goal based on UAVs with on-board computers
and with pre-knowledge of victims last seen locations. These
two factors were obviously the main weakness of this work
for the following reasons: First, UAVs have limited capacity
for an onboard computer, and second, the paper violated the
main constraints of an SAR problem-having unknown victim
locations. They assumed the last location of survivors would
be known.

When there is a disaster, such as an earthquake or terrorist
attack, human teams start looking for survivors manually
using dogs, which is termed urban SAR (USAR). More
recently, human teams have begun to use robots, because
they can perform more successfully than humans in such
situations. Mainly, this is because they are able to squeeze
into spaces too small for people and reach very dangerous
areas. The attack on the World Trade Center (September 11)
provided an unfortunate opportunity to analyze data collected
during human-robot interactions [36]. This study reported on
most of aspects related to USAR missions and human-robot
interactions. Therefore, it provided a set of recommendations
in the form of more research studies, a call for organization,
construction of models for robot states, and statements and
feedback on received observations.

In [37], the paper presented autonomous USAR robots
from the perspective of achievements in research and tech-
nical aspects. The proposed solution attempted to handle two
aspects of the SAR problem: First, for survivor search and
detection, the system needs to be as close as possible to the
survivors so they can be detected, even if the sensor only
covers a very small portion of survivor′s body. This will lead
to difficulties in detecting most survivor locations. Second,
for navigation towards goal poses, they rely on the fact that
the robot can only observe the position of the survivor when
they are directly in front, which requires the robot to turn
around each side for detection.

In [38], the authors developed different algorithms that
deployed multiple cooperative MAVs for SAR missions after
disasters. Their solution included real-time image stitch-
ing, indoor navigation, digit-detection, and vision-based pose
estimation. The implemented method has two phases: First,
aerial photography and map stitching are used by MAVs
to explore the search area. Second, MAVs search and iden-
tify each house and its street in the city. However, this
proposed solution is not fully autonomous, because ini-
tially (before MAVs start the rescue mission) the human
operator must manually use the stitched map to iden-
tify routes with no obstacles for MAVs to enter the city.
Further, in the second phase, the operator also needs to
manually identify the number of victims in each house,
based on the received feedback from the MAVs built-in
camera.

Wilderness SAR (WiSAR) is the search process for people
who are lost (or in distress) in the wilderness. Because the

rescue team may also be infected when they reach the dis-
aster area, medical UAV helicopters may help in wilderness
SAR operations by reaching distant disaster areas quickly and
safely, by providing urgent medical care, and by transferring
injured patients as quickly as possible. The actual rescue can
be carried out either by landing the helicopter on uncontrolled
terrain, or by evacuating the patient and delivering them to the
helicopter staff at the nearest safe landing area. Moreover,
UAVs can offer detailed information about the area, which
can help in future explorations [39]. In [40], the authors
developed a camera-based position-detection system for
SAR operations and integrated these into UAV plans. This
system has been proven to identify real-time targets and
post-targets, and to collect photographs of disaster areas for
subsequent applications.

In [41], the WiSAR problem was handled using UAVs,
which protect human life from risks during work in com-
plex and unsafe environments. They presented human body
detection and tracking algorithm, by using an onboard sen-
sor on the UAV that can capture color and depth data.
The paper validated the system with real and simulated
environments, and proved its ability to detect multiple
survivors.

The authors of [42] discussed SAR problems after an
earthquake, andwhat kind ofmulti-robot coverage algorithms
could handle the problem. The authors surveyed and com-
pared the performance of a set of real time multicopter algo-
rithms, which developed autonomous multi-drone strategies
for SAR after earthquakes. The paper classified algorithms
based on consumed energy and the time required for accom-
plishing the mission. The paper presented different coverage
algorithms: Edge Counting [43], Node Count [44], Learning
RealTime A* (LRTA*) [45], and PatrolGRAPH [46]. All of
these can be used during search missions to cover the disaster
area. Their experimental results demonstrated that the Node
Count algorithm is the most efficient solution in multi-robot
searches. For example, LRTA* suffers from drawbacks due
to the increased complexity of the heuristics implemented to
choose the next vertex to be visited. Further, Edge Counting
and PatrolGRAPH* are less efficient, both in single- and
multi-robot cases.

Combat SAR is an operation carried out during war.
In [47], the authors presented an auction-based approach
and a novel prediction approach to address the SAR prob-
lem for dynamic allocation. The auction-based algorithm
assigned tasks for each robot by using techniques for
determining winner tasks. Further, when the robot was inop-
erative, the prediction approach only has to allocate a task
for the idle robot to perform. They measured the com-
pletion time and the required steps, indicating the level
of consumed energy. The drawback of this approach is
that they assumed to have previous knowledge of pos-
sible tasks and the initial locations of survivors; hence,
the robots would only search these areas. However, this is
opposed to the main condition in SAR-survivor locations are
unknown.
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FIGURE 3. System architecture.

III. THE LSAR ALGORITHM
The key idea of the LSAR algorithm is that in natural disasters
there is a center where most of the survivors are located.
Assuming that these centers can be detected [48]–[50],
the SAR mission should be planned in a way that focuses
more attention on the center, and gradually less attention with
increasing distance from the center [51].

The LSAR algorithm is proposed as a centralized algo-
rithm based on using a Cloud server for the Internet-based
drone mission Controller. Accordingly, dronemap planner
cloud (Cloud Server) is a possible structure that can be used
for this task [29]–[32], which can control UAVs through
the Internet (Figure 3). The limited capabilities of UAVs
(such as battery power, processing unit, and memory) makes
offloading all computation fromUAVs (and transferring them
to the cloud server) beneficial for improving the overall
performance. The dronemap planner cloud controls UAVs
through the cloud, can schedule their mission, and manage
communications between UAVs remotely. Further, dronemap
planner cloud supports the MAVLink protocol that man-
ages communication between the dronemap planner cloud,
the user, and the UAVs. This protocol is supported by most
commercial UAVs.

A. SYSTEM MODEL
The system architecture is presented in Figure 3.

We consider a team of drones connected through a cloud
server and collaborating to accomplish an SAR mission.
Dronemap planner [29]–[32] is a cloud-based management
system that was recently proposed, and can be used to ensure
communication and collaboration between a team of drones.

The proposed LSAR algorithm is a centralized approach.
The cloud server receives information on the disaster
center [48]–[50], as an emergency call from the area that has
a number of survivors in unknown locations (Figure 4 (a)).
In addition, the cloud server running the LSAR algorithm
divides the disaster area into a set of incremental, numbered,
square shaped layers L (Figure 4 (b)). Layer number x has
a survivor list denoted as Lx[SurvivorList], which
records the locations of found survivors as pair of latitude
and longitude co-ordinates in that layer during a search
mission. These layer lists are located and updated on the
cloud server. Moreover, the cloud server running the LSAR
algorithm employs a set of UAV aircraft (denoted as P) to
search for missing survivors and rescue them. Therefore, each

FIGURE 4. Partitioning to layers.

FIGURE 5. UAVs planes assignment.

UAV aircraft running the LSAR algorithm can switch
between two different modes: searcher and rescuer. As shown
in Figure 5 (a), generally the cloud server only assigns
one UAV for each layer. However, there are some cases
where the cloud server assigns multiple UAVs to one layer
(Figure 5 (b)).

B. ALGORITHMS
The LSAR system has two phases: (i.) the environment parti-
tioning phase, which is a pre-process that samples the disaster
area, and (ii.), the SAR phase, which is the SAR process
coordinated by the cloud server.

1) PARTITIONING ALGORITHM
Given the disaster area specified by its coordinates
in Figure 6 (a), in addition to the center of the disaster
specified by its latitude and longitude coordinates, the cloud
server running the LSAR algorithm divides the disaster area
into a set of incremental, numbered, square shape layers L.
Initially, the cloud server unifies a standard unit for a region;
the smallest location unit specified by its coordinates. For
example, these regions sizes could be 1 m, 1 km, or 1 ft .
(Algorithm.1: line.1). Then, the cloud server determines how
many regions are contained in the disaster area (Algorithm.1:
line.2, Figure 6 (b)), According to this information, a disaster
matrix is created whereby the real environment is sampled as
a set of regions (Algorithm.1: line.5).

The layer thickness describes how thick a layer will be in
terms of the number of adjacent regions. Because the layers
have an incremental square shape, each layer should have
two rows (upper and lower rows) and two columns (right
and left columns). Hence, the cloud server calculates the
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FIGURE 6. Partitioning disaster’s area.

thickness of layers according to the width/2 or height/2 and
the number of available UAV aircraft (Algorithm.1: line.6).
In Figure 6, the height andwidth are 12 units and it is assumed
that the system has 7 UAV aircraft; hence, the thickness is
d(12/2)/7e = one unit, as shown in Figure 6 (c). Moreover,
number of layers is also calculated according to the number
of UAV aircraft (Algorithm.1: line.7-8). In this case, number
of layers is 6 and the cloud server will subsequently assign
many UAV aircraft to one layer (Figure 5 (b)).

However, if the system has a limited number of UAV
aircraft (such as 3), compared to the minimum thickness in
Algorithm.1: line.7, the thickness of a layer is d(12/2)/3e =
two units, as shown in Figure 6 (d). Further, the number of
layers is equal to the number of UAV aircraft. The cloud
server will subsequently assign one UAV aircraft to each
layer, as shown in Figure 5 (a).

Once the environment is sampled as a matrix of
regions, the cloud server fills each layer list with the
region indexes with which it is assigned. For example,
Algorithm.1 line.17 fills the matrix with regions in the upper
border of a layer, line.18 fills it regions in the right border,
line.19 fills it with regions in the left border, and line.20 fills
the layer with regions in the lower border of a layer. This
process repeats many times equal to the calculated thickness
(Algorithm.1: line.23). Subsequently, the algorithm moves
to fill the next layer (Algorithm.1: lines.24-26). Therefore,
the output is a list of layers, and each one records a set of
region coordinates to which it is assigned.

2) LSAR ALGORITHM
Given the disaster area and center coordinates, the cloud
server calls the partitioning algorithm to create set of layers
(Algorithm1: line.1). According to this strategy, survivors
closer to the center have a higher rescue priority than sur-
vivors in the outer layers, because most of them are located
closer to the disaster center. Moreover, the cloud server
defines a special way to distribute the aircraft over layers

Algorithm 1 Partitioning
Input : The disaster area is described by its latitude

and longitudes (x11, y11) (x12, y12) (x21, y21)
(x22, y22), disaster’s center latitude and
longitude (xc.yc)

Output: Set of layers L
1 region← 1 x 1 unit
2 regions← area / region
3 width← number of adjacent regions horizontally
4 height← number of adjacent regions vertically
5 Matrix[width][height]← regions
6 Layer thickness← d[e

]
(width/2)/|P|

7 if |P| > width / 2 then
8 layer number← width/2
9 else
10 layer number← |P|
11 end
12 t ← 0
13 x ← 0
14 while x < layer number do
15 for i← 0, height do
16 for j← i,width− i do
17 Lx ← Matrix[i][j]
18 Lx ← Matrix[j][i]
19 Lx ← Matrix[j][width− i]
20 Lx ← Matrix[width− i][j]
21 end
22 end
23 t ← t + 1
24 if t = thickness then
25 x ← x + 1
26 t ← 0
27 end
28 end

to reflect the LSAR argument (Algorithm.1: line.2-9). Here,
assuming the number of aircraft |P| equals the number of
layers, it sets every UAV aircraft as a searcher and assigns
it to each layer in a one-to-one manner (e.g. it assigns plane x
to layer x). This starts from layer number zero (center layer)
towards the outer layers. When the number of aircraft |P| is
larger than the number of defined layers |L| the cloud server
reassigns the remaining aircraft to layers (starting with layer
number zero) towards the outer layers, until they are assigned
completely. In this way, any extra UAV planes are assigned to
layers with higher probability to locate survivors. According
to the UAV aircraft distribution in Figure 5 (a) and (b),
the LSAR algorithm has two executions (a and b) described
below.

a: ONE UAV PLANE FOR EACH LAYER
When there is a small number of UAV aircraft, the LSAR
algorithm assigns only one for each layer, as shown
in Figure 5 (a). Initially, the UAV aircraft executes its
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FIGURE 7. LSAR execution: One UAV plane for each layer.

searcher mode; it searches for survivors in its assigned layer
(Algorithm.3: line.3). If a survivor is found, the searcher
UAV aircraft adds its location (defined by its latitude and
longitude) to survivor list Lx[SurvivorList] of layer
number x (Algorithm.3: line.4-5). At the same time,
the searcher UAV aircraft checks the survivors list
Lx[SurvivorList] periodically whether or not it
reaches a predefined threshold. If so, the searcher UAV
aircraft sends a helping call to the cloud server (Algorithm.3:
line.7-8). Then, the server makes an inward shift starting
from the caller layer, because the probability of locating
survivors on the inner layers higher than in outer layers,
i.e., the second layer shown in Figure 7 (b) sends a helping
call. The server interrupts UAV aircraft missions and makes
an inward shift starting from the third layer and outer layers,
one step toward layer two. The searcher UAV aircraft that
was in layer three becomes a rescuer UAV aircraft in layer
two (Algorithm.2: line.13-14), while all other shifted UAV
aircraft continue as searchers in their new hosting layers
(Figure 7 (c), (Algorithm.2: line.15-17). The rescuer UAV
aircraft then starts rescuing all survivors, according to their
locations recorded in L2[SurvivorList] (Algorithm.3:
line 11-12). Then, the rescuer UAV aircraft sends a notifica-
tion call to the server reporting that the rescuemission is com-
plete (Algorithm.3: Line.13-14). When the server receives
a notification call coming from layer two (Algorithm.2:
line.23), it recovers the rescuer UAV aircraft mode in layer
two to the searcher mode (Figure 7 (c) and Algorithm.2:
line.24). Then, it moves all UAV aircraft (starting from layer
two) to their original layer to continue their interrupted search
mission (Figure 7 (d-e)). Note that the interrupted missions
could be recovered using the list of survivors attached to each
layer; Lx[SurvivorList] (Algorithm.2: line.26-28).

b: MULTIPLE UAV PLANES FOR EACH LAYER
When there is a large number of UAV aircraft, the LSAR algo-
rithm assigns many for each layer, as shown in Figure 8 (a).
The UAV aircraft initially work in the same way

FIGURE 8. LSAR execution: Multiple UAV planes.

FIGURE 9. The LSAR sequence diagram.

described earlier, and a different interaction only happens
when the cloud server receives a helping call. In this case,
the server changes one of the UAV aircraft from searcher to
rescuer, i.e., the second layer shown in Figure 8 (b) sends
a helping call. The server interrupts a searcher UAV aircraft
mission in that layer; hence, a searcher UAV aircraft becomes
a rescuer in the same layer (Algorithm 2: lines.19-20). The
rescuer UAV aircraft then starts rescuing all survivors accord-
ing to their locations recorded in L2[SurvivorList]
(Algorithm.3: lines.11-12). When the rescuer UAV aircraft
sends a notification call to the server reporting that the rescue
mission is complete, and the server receives a notification call
coming from layer two, it recovers the rescuer UAV aircraft
mode in layer two to the searcher mode (Figure 8 (c) and
Algorithm.2: line.24).When the layer has been fully explored
and all survivors on this layer have been rescued, the cloud
server reassigns the UAV aircraft of that layer to the outer
layer (Algorithm.2: line.17-19). The interaction between the
cloud server and UAV aircraft is summarized in the sequence
diagram shown in Figure 9.

IV. THEORETICAL COMPARISON OF CANDIDATE
ALGORITHMS
The research problem addressed in this paper is to find
an efficient optimization algorithm for the SAR problem.
In this section, we theoretically compare the LSAR algorithm
with other candidate algorithms by considering the differ-
ences between their techniques. Table 1 presents the main
characteristics affecting the performance of LSAR, LIAM,
auction-based, and OTA algorithms.
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Algorithm 2 Cloud Server
Input : Planes set P,disaster area described by its

latitudes and longitudes (x11, y11) (x12, y12)
(x21, y21) (x22, y22), disaster’s center latitude
and longitude (xc.yc)

Output: Online schedule
1 Layers set (L)← Partitioning Algorithm (x11, y11),(x12,
y12),(x21, y21),(x22, y22),(xc.yc)

2 for i← 0, |P| and x← 0, |L| do
3 Pi[type] = SEARCHER
4 if i > |L| then
5 t=i mod |L| Assign Pi to layer Lt
6 else
7 Assign Pi to layer Lx
8 end
9 end
10 if call(x) is received then
11 if call[type] is helpCall at layer Lx then
12 if |P| at layer Lx = 1 then
13 Px+1 [type] = RESCUER
14 Assign Px+1 to layer Lx
15 for i← x+1,|P| do
16 Pi[type] = SEARCHER
17 Assign Pi to layer Li−1
18 end
19 else
20 Px [type] = RESCUER
21 end
22 end
23 if call[type] is notificationCall at layer Lx then
24 Px+1 [type] = SEARCHER
25 if |P| at layer Lx = 1 then
26 for i← x,|P| do
27 Pi[type] = SEARCHER
28 Assign Pi to layer Li+1
29 end
30 end
31 end
32 end

The theoretical comparison between the LSAR and other
algorithms involves to test a hypothesis which may be
proven or contradicted by the empirical results.

The differences (D1, D4, D7, and D9 in the table) should
be reflected by the increased number of rescued survivors by
LSAR compared with the number of survivors rescued by
LIAM, auction-based, Max-sum and OTA algorithms. This
is because UAV aircraft in the LSAR algorithm search for
survivors in the area where there is a higher probability of
locating them. In terms of battery consumption, the difference
(D2) may reduce the time needed to rescue a survivor by the
LIAM algorithm more than the LSAR algorithm. In addi-
tion, according to the differences (D3, D6, and D11), the
centralized LSAR is expected to produce better coverage than

Algorithm 3 Plane
Input : Assigned Layer Lx
Output: Online search and rescue missions

1 while time ≤ mission time do
2 if Pi[type] is SEARCHER for layer Lx then
3 Search for a survivor in the layer Lx
4 if a survivor s is found then
5 Lx[SurvivorList]← s
6 end
7 if |Lx[SurvivorList] | ≥ survivorThreshold then
8 Call (helpCall, cloud server, x)
9 end

10 end
11 if Px[type] is RESCUER for layer Ly then
12 Rescue all survivors ∈ Ly[SurvivorList]
13 if Ly[SurvivorList] = 8 then
14 Call (notificationCall, cloud server, y)
15 end
16 end
17 if Ly is fully explored ∧ Ly is not last layer then
18 Assign Py to layer Ly + 1
19 end
20 end

the decentralized LIAM, auction-based, and OTA algorithms.
However, it requires more coordination time.

The auction-based algorithm is similar to the LSAR,
according to similarity (S1). However, the difference in the
responding technique described in difference (D5) concludes
that the bidding negotiation in the auction-based algorithm
may consume more time than the LSAR algorithm. This
may contradict the results concluded earlier based on (D6).
Hence, the empirical results will decide whether the coordi-
nation in the centralized approach consumes more time than
the negotiation in the decentralized approaches. Difference
(D8) assumes that max-sum produces an optimal assignment,
which should improve the overall performance metrics. How-
ever, due to their computation overhead, such algorithms may
be unsuitable for dynamic SAR environments; these may
produce lower throughput and higher rescue times.

The random SAR strategy in the OTA algorithm may
achieve some good results; however, this is not guaranteed.
The searcher UAV aircraft in areas around the center of
disasters should continue their roles and other rescuer UAV
aircraft should help to balance the twomissions, to benefit the
greatest number of survivors. Hence, according to difference
(D10), the LSAR may produce better throughput, time, and
coverage than the OTA algorithm when the center of the
disaster is detected.

V. EXPERIMENTAL EVALUATION
A. SIMULATION MODEL
We used the MASPlanes++ [52] simulator to conduct an
extensive comparative simulation study among the LSAR
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TABLE 1. Theoretical comparison between LIAM and benchmark
algorithms.

TABLE 2. Parameters and scenarios.

approach and the other candidate algorithms.MASPlanes++
is a simulation environment geared towards testing the
dynamic coordination and task allocation methods in
SAR problems. MASPlanes++ implements four well-
established benchmark algorithms: theLIAM, auction-based,
max-sum, and OTA schemes. Three main performance mea-
surements are evaluated, as follows:

1) Scalability: We evaluate the impact of increasing the
number of UAV aircraft.

2) Sustainability:We aim to evaluate how the algorithms
perform in more complicated environments.

3) Responsiveness: We evaluate the time taken to rescue
all the survivors.

The parameters used to control each scenario are listed
in Table 2. The total number of created scenarios was 492
[(i.e. 5 × 7 × 12 + 6 × 12)]. In other words, number of
algorithms to be tested × number of values for the num-
ber of UAV aircraft × number of values for the number of
survivors + number of values for the number of survivors ×
number of values for survivor life expectancy ranges. Each
scenario was run several times to ensure the neutrality of the
results [51].

MASplanes++ calculated three performance metrics that
are related to our performance measurements as net through-
put, mean time to find and rescue a survivor, and total running
time. Survivor locations were generated in a way to simulate
real-life disasters, where most survivors were located around
the center of the disaster, decreasing gradually further away
from the center. The parameter settings of the evaluation
environment are detailed in Table 3. In the following section,
we will discuss the results for the three scenarios: (1) scala-
bility, (2) sustainability, and (3) responsiveness.

B. SCALABILITY AND SUSTAINABILITY
In this section, we evaluate both system scalability and sus-
tainability when changing the number of UAV aircraft and
survivors. According to [12], each result was averaged and
presented in graphs defined by the following: a logarithmic
base 2 scale for the number of UAV aircraft on the x-axis,
and by a linear scale for the performance measurement on
the y-axis. The value of the critical variables that control this
evaluation are listed in Table 2.

1) PERCENTAGE OF RESCUED SURVIVORS (NET
THROUGHPUT)
To measure the net throughput of the system, we collected
the total number of rescued survivors in each scenario.
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TABLE 3. Parameter settings of evaluation environment.

The percentages of rescued survivors were calculated and
plotted against the number of UAV aircraft in the line-
log graphs (Figure 10). As the graphs level from top-left
to bottom-right (in Figure 10), the number of survivors
increases, and the problem becomes more difficult. However,
as the number of UAV aircraft on the x-axes in each graph
increases, the problem becomes less difficult.

In the earlier results described in Figure 10 (a-c), the LSAR
algorithm found most of the survivors using a smaller num-
ber of UAV aircraft than other algorithms. For example,
Figure 10 (a) shows that the LSAR only needs 4 UAV aircraft
to find 100% of the survivors, while the LIAM needs 8 UAV
aircraft to achieve the same percentage. Moreover, the other
algorithms need even more UAV aircraft to find the same
percentage of survivors. However, in the same results set, it is
notable that the general behavior of LSAR is closer to the
behavior of the LIAM algorithm.

Moreover, there are some differences in the general behav-
ior of the LSAR graph between Figure 10 (a), (b) and (c). For
example, LSAR found approximately 50% of the survivors
when there were 2 UAV aircraft, approximately 25% when
there were 4 UAV aircraft, and 50% (again) when there were
8 UAV aircraft. This is because when the number of survivors
is small, they would not be concentrated around a center.
Hence, the power of LSAR could not be shown clearly when
the problem contained a small number of survivors. Due to
the same reason, when the number of survivors increases
in Figure 10 (g-l), the percentage of rescued survivors by
the LSAR algorithm significantly outperforms the other
algorithms.

Moreover, the performance shown in the LSAR graph is
almost linear with an increasing number of UAV aircraft
and has the least slope, which means more scalability and

coverage than the other algorithms. To sum up, the empirical
results confirm the hypothesis. They show that the LSAR
algorithm found more survivors than the other algorithms
in highly constrained problems, with better scalability and
coverage factors.

2) MEAN RESCUE TIME
The rescue time of a survivor is calculated as the difference
between the simulation start-time to the time taken for a sur-
vivor to be found by any UAV aircraft. This time is calculated
for each survivor and averaged in Figure 11. The behavior
of the LSAR algorithm is not clear in Figure 11 (a) due to
the same reason described earlier; in problems with a low
number of survivors, the LSAR displays random behavior.
However, when the number of survivors is large, the behavior
of LSAR should improve as the number of UAV aircraft
increases. This is shown clearly in Figure 11 (b-l), where the
average rescue time decreases with increasing UAV aircraft
numbers.

Because the LSAR algorithm focuses on the center of
the disaster more than other algorithms, it finds more sur-
vivors and rescues them quicker (Figure 11(b-l)), which
was expected in the hypothesis. Finally, most LSAR graphs
in Figure 11 (b-l) exhibit a linear behavior. In addition, they
show too low a slope line (almost constant line) which means
high scalability and coverage.

3) EXECUTION TIME PERFORMANCE
The execution of each simulation scenario was recorded and
displayed in Figure 12. The earlier results (Figure 12 (a-f))
show that the execution times of LSAR was higher than other
algorithms. This is because when the number of survivors is
small, LSAR selects one survivor as a center randomly, then
distributes the probability among other layers according to
their distance away from the center. However, this center may
be the furthest survivor from other survivors.

Even though the behavior of the LSAR graph in
Figure 12 (a-f) is too high, it displays a more constant linear
behavior than the other algorithms, which means high scala-
bility and coverage.

In the later results in Figure 12 (g-l), LSAR takes less time,
almost the same as the LIAM and OTA algorithms, because
most of the survivors concentrate around disaster centers in
such highly constrained problems, which makes, an earlier
decision.

The average results for the percentage of rescued survivors,
the mean time to rescue a survivor, and the execution times
are summarized in Figs. 13-15, respectively.

Table 4 presents the statistical results of all the above
experiments in terms of the mean and standard deviation for
each performance measurement. The UAV aircraft running
the LSAR algorithm consume the least mean time to rescue
a survivor; they require 68 min (on average) to rescue a
survivor. Moreover, most of the recorded results are very
close to that average as the standard deviation is too low. The
UAV aircraft running the OTA algorithm consume between
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FIGURE 10. Percentage of rescued survivors. (a) 2 survivors. (b) 4 survivors. (c) 8 survivors. (d) 16 survivors. (e) 32 survivors. (f) 64 survivors.
(g) 128 survivors. (h) 256 survivors. (i) 512 survivors. (j) 1024 survivors. (k) 2048 survivors. (l) 4096 survivors.
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FIGURE 11. Mean time to rescue a survivor. (a) 2 survivors. (b) 4 survivors. (c) 8 survivors. (d) 16 survivors. (e) 32 survivors. (f) 64 survivors.
(g) 128 survivors. (h) 256 survivors. (i) 512 survivors. (j) 1024 survivors. (k) 2048 survivors. (l) 4096 survivors.
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FIGURE 12. Execution time. (a) 2 survivors. (b) 4 survivors. (c) 8 survivors. (d) 16 survivors. (e) 32 survivors. (f) 64 survivors.
(g) 128 survivors. (h) 256 survivors. (i) 512 survivors. (j) 1024 survivors. (k) 2048 survivors. (l) 4096 survivors.
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FIGURE 13. Average of results for the percentage of rescued survivors. (a) Different UAVs number. (b) Different survivors number.

FIGURE 14. Average of results for the mean time to rescue a survivor. (a) Different UAVs number. (b) Different survivors number.

FIGURE 15. Average of results for the execution time. (a) Different UAVs number. (b) Different survivors number.

15-240 min (on average) to rescue a survivor, which is the
highest average among other algorithms, with most of the
recorded results also being close to that average. Regard-
ing the metric of percentage of rescued survivors, the UAV
aircraft running the LSAR algorithm were able to rescue
approximately 74% of survivors, and most of the results were
around this percentage. However, UAV aircraft running the
OTA algorithms only rescued 45% of survivors, whilst requir-
ing the lowest execution time to finish the SAR missions
(16 s on average).

The UAV aircraft running the max-sum algorithm required
too much time, as the max-sum algorithm is not applicable
to dynamic environments. This is clearly shown, as they
required an average execution time of approximately 7.5 h.

Figures 16 and 17 present the distribution of empiri-
cal results for the LSAR, LIAM, OTA, auction-based, and
max-sum algorithms. As shown in Figure 16, the range
of the mean time for a UAV aircraft to rescue a survivor

was 0:00:00.0-16:48:00.0 running the LSAR algorithm,
0:00:00.0-13:08:00.0 running the LIAM algorithm,
0:00:00.0-19:49:00.0 running the OTA algorithm, 0:00:00.0-
18:14:00.0 running the auction-based algorithm, and
0:00:00.0-15:45:00.0 running the max-sum algorithm.
Although the range of mean LSAR times to rescue a survivor
was longer than some algorithms (such as LIAM and max-
sum), most of the LSAR mean times were bounded by
04:50:02.00 with 95% confidence. Figure 17 shows that the
percentage of rescued survivors by UAV aircraft running the
LSAR and its comparative algorithms ranged between 0%
and 100%, but with different distributions. The area under
the LSAR curve shows that the results clustered around the
78%-100% range under an exponential behavior curve, which
means a small number of results were less than 50% and most
of the results were above 50%. All the other curves exhibit
almost linear behavior, which means equal distribution of
their results.
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TABLE 4. Descriptive statistics.

FIGURE 16. ECDF for mean time to rescue a survivor.

FIGURE 17. ECDF for percentage of rescued survivors.

C. RESPONSIVENESS
In this section, we evaluate how the system responds to
different survivor life expectancies. Three-dimensional (3D)
performance models that illustrate the responsiveness of the
LSAR system (under different running conditions) were gen-
erated and presented. Here, the 3D space is defined by a
logarithmic base 2 scale for the number of survivors on the

FIGURE 18. Percentage of rescued survivors by LSAR.

x-axis, a linear scale for survivor life expectancies on the
y-axis, and by the responsiveness measure in terms of net
throughput, mean time to rescue a survivor, or the algorithm
execution time on the z-axis. The value of the critical vari-
ables that control this evaluation are listed in Table 2.

1) PERCENTAGE OF RESCUED SURVIVORS (NET
THROUGHPUT)
Figure 18 shows that UAV aircraft running the LSAR algo-
rithm rescued the largest percentage of survivors when their
number is too low, and they have highest life expectancy;
for example, more than 80% of survivors were rescued when
there were 8 and their life expectancies were selected ran-
domly between 50 to 60 min. In addition, stable behavior is
apparent when the number of survivors increases, and they
live between 40 to 50 min. Further, approximately 60%-80%
are rescued regardless of the number of survivors. Moreover,
another stable behavior is exhibited when the number of
survivors increases, and they live between 30 to 40 min; here,
approximately 40%-60% are rescued. Therefore, the number
of survivors has less impact on the response of the LSAR than
their life expectancy ranges. However, a gradual decrease is
shown only when the number of survivors increases and they
live for very short time (between 10 to 20 min). It should be
remembered that the mission time is set to be finished in one
month. Further, the lowest percentage of rescued survivors
is 0%-20%, which occurs when the number of survivors is
4096 and they only live between 10 to 20 min.

2) MEAN RESCUE TIME
Figure 19 shows that UAV aircraft running the LSAR algo-
rithm rescued survivors faster when they live longer and their
numbers are large. Here, UAV aircraft need less than 1 min
to rescue survivors. Even though this result seems to be unex-
pectedly natural, it is acceptable according to the LSAR tech-
nique, meaning that when the number of survivors is too low
there will be no center to be detected, which makes the LSAR
algorithm achieve inferior result. The critical factor affecting
LSAR time is the range of survivor life expectancies; as the
life expectancy range increases, the surface descends sharply.
When the number of survivors is too low, and they live for
very short time, the UAV aircraft need approximately 5.75 h
to find them.
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FIGURE 19. Mean time to rescue a survivor by LSAR.

When the number of survivors is too low, and they are
in the highest life expectancy window, more than 80% of
survivors were rescued when there were 8 survivors and
their life expectancies were between 50 and 60 min. In addi-
tion, the surface shows stable behavior when the number of
survivors increases, and they live between 40 and 50 min;
then approximately 60%-80% are rescued.Moreover, another
stable behavior is shown when the number of survivors
increases, and they live between 30 and 40 min.

VI. CONCLUSION
This paper has presented a novel task-distribution technique
for SAR scenarios involving multiple autonomous UAV air-
craft. The impact of the proposed techniques has already
been discussed through exhaustive empirical experiments and
statistics. In summary, the following interesting observations
can be deduced from the experiments:
• UAV aircraft running the LSAR algorithm rescue on
average approximately 74% of survivors, which is 8%
higher than next best algorithm (LIAM), followed by the
auction-based and max-sum algorithms, and finally the
OTA algorithm, which is worse than LSAR by 28.9%.

• UAV aircraft running the LSAR algorithm require the
least amount of time to rescue a survivor, whichwas 55%
less than the next fastest algorithm (LIAM), followed by
the max- sum and auction-based algorithms, and finally
by the OTA algorithm, which is slower than the LSAR
by 77%.

• The empirical cumulative distribution function of the
LSAR results show that the percentages of rescued sur-
vivors clustered around the 78%-100% range under an
exponential curve, which means that most of the results
are above 50%. All other algorithms have almost equal
percentage distributions for rescued survivors.

• Most of the registered times to rescue survivors by the
LSAR algorithm are bounded by 04:50:02 with 95%
confidence for a one-month mission time.

• The main factor to be optimized in the SAR problem
concerns how early the rescue mission commences.

• The SAR problem is not affected by the number of
survivors to be rescued; to be accurate, it is affected by
the way they are clustered.

Although this work proposed a novel technique for the
SAR problem, there are some limitations and open research

problems that still need to be investigated and solved in
future studies. One of the major factors that is clearly limiting
the performance of the LSAR algorithm is the density of
the survivors; in other words, detecting the disaster center
in which most of the survivors are located. Hence, using
image processing techniques for this purpose offers the best
practical results in real-life applications. Moreover, the mes-
sages passed between the server and UAV aircraft (such as
survivor and disaster locations) are not encrypted. This secu-
rity issue needs to be addressed. Additionally, deploying the
LSAR algorithm on real UAV aircraft for SAR purposes will
be conducted in our future work.

REFERENCES
[1] P. Tripicchio, M. Satler, G. Dabisias, E. Ruffaldi, and C. A. Avizzano,

‘‘Towards smart farming and sustainable agriculture with drones,’’ in Proc.
Int. Conf. Intell. Environ., Jul. 2015, pp. 140–143.

[2] R. L. Finn and D. Wright, ‘‘Unmanned aircraft systems: Surveillance,
ethics and privacy in civil applications,’’ Comput. Law Secur. Rev., vol. 28,
no. 2, pp. 184–194, 2012.

[3] T.Wall and T.Monahan, ‘‘Surveillance and violence from afar: The politics
of drones and liminal security-scapes,’’ Theor. Criminol., vol. 15, no. 3,
pp. 239–254, 2011.

[4] T. C. Luciani, B. A. Distasio, J. Bungert, M. Sumner, and T. L. Bozzo,
‘‘Use of drones to assist with insurance, financial and underwriting related
activities,’’ U.S. Patent 2016 0 063 642 A1, Mar. 3, 2016.

[5] G. Bevacqua, J. Cacace, A. Finzi, and V. Lippiello, ‘‘Mixed-initiative
planning and execution for multiple drones in search and rescue missions,’’
in Proc. ICAPS, Jun. 2015, pp. 315–323.

[6] D. Câmara, ‘‘Cavalry to the rescue: Drones fleet to help rescuers opera-
tions over disasters scenarios,’’ in Proc. IEEE Conf. Antenna Meas. Appl.
(CAMA), Nov. 2014, pp. 1–4.

[7] L. Apvrille, T. Tanzi, and J.-L. Dugelay, ‘‘Autonomous drones for assisting
rescue services within the context of natural disasters,’’ in Proc. 31st Gen.
Assem. Sci. Symp. (URSI GASS), Aug. 2014, pp. 1–4.

[8] P. Molina et al., ‘‘Drones to the rescue!’’ Inside GNSS, Jul./Aug. 2012.
[Online]. Available: http://infoscience.epfl.ch/record/180464

[9] B. P. Gerkey and M. J. Mataric, ‘‘Multi-robot task allocation: Analyzing
the complexity and optimality of key architectures,’’ in Proc. ICRA, vol. 3,
Sep. 2003, pp. 3862–3868.

[10] B. P. Gerkey and M. J. Matarić, ‘‘A formal analysis and taxonomy of
task allocation in multi-robot systems,’’ Int. J. Robot. Res., vol. 23, no. 9,
pp. 939–954, Sep. 2004.

[11] Z. Yan, N. Jouandeau, and A. A. Cherif, ‘‘A survey and analysis of multi-
robot coordination,’’ Int. J. Adv. Robot. Syst., vol. 10, no. 12, p. 399, 2013.

[12] H. A. Kurdi et al., ‘‘Autonomous task allocation for multi-UAV sys-
tems based on the locust elastic behavior,’’ Appl. Soft Comput., vol. 71,
pp. 110–126, Oct. 2018.

[13] A. Corrêa, ‘‘Binary max-sum for clustering-based task allocation in the
RMASBench platform,’’ in Proc. IEEE Congr. Evol. Comput. (CEC),
2016, pp. 1046–1053.

[14] M. Pujol-Gonzalez, J. Cerquides, A. Farinelli, P. Meseguer, and
J. A. Rodriguez-Aguilar, ‘‘Binary max-sum for multi-team task allocation
in RoboCup rescue,’’ in Optimisation in Multi-Agent Systems and Dis-
tributed Constraint Reasoning (OptMAS-DCR). Paris, France, 2014.

[15] F. M. D. Fave, A. Rogers, Z. Xu, S. Sukkarieh, and N. R. Jennings,
‘‘Deploying the max-sum algorithm for decentralised coordination and
task allocation of unmanned aerial vehicles for live aerial imagery collec-
tion,’’ in Proc. IEEE Int. Conf. Robot. Automat., May 2012, pp. 469–476.

[16] S. D. Ramchurn, A. Farinelli, K. S. Macarthur, and N. R. Jennings,
‘‘Decentralized coordination in robocup rescue,’’Comput. J., vol. 53, no. 9,
pp. 1447–1461, 2010.

[17] E. J. M. Casado, D. Scarlatti, D. Esteban-Campillo, I. Maza, and
F. Caballero, ‘‘Network of unmanned vehicles,’’ U.S. Patent 8 914 182 B2,
Dec. 16, 2014.

[18] H.-L. Choi, L. Brunet, and J. P. How, ‘‘Consensus-based decentralized
auctions for robust task allocation,’’ IEEE Trans. Robot., vol. 25, no. 4,
pp. 912–926, Aug. 2009.

VOLUME 7, 2019 55831



E. T. Alotaibi et al.: LSAR: Multi-UAV Collaboration for Search and Rescue Missions

[19] L. Johnson, H.-L. Choi, and J. P. How, ‘‘The hybrid information and plan
consensus algorithm with imperfect situational awareness,’’ in Distributed
Autonomous Robotic Systems. Tokyo, Japan: Springer, 2016, pp. 221–233.

[20] P. Segui-Gasco, H.-S. Shin, A. Tsourdos, and V. Segui, ‘‘A combinato-
rial auction framework for decentralised task allocation,’’ in Proc. IEEE
Globecom Workshops (GC Wkshps), Dec. 2014, pp. 1445–1450.

[21] S. Trigui et al., ‘‘A distributed market-based algorithm for the multi-robot
assignment problem,’’ Procedia Comput. Sci., vol. 32, pp. 1108–1114,
2014.

[22] O. Cheikhrouhou, A. Koubâa, and H. Bennaceur, ‘‘Move and improve:
A distributed multi-robot coordination approach for multiple depots mul-
tiple travelling salesmen problem,’’ in Proc. IEEE Int. Conf. Auton. Robot
Syst. Competitions (ICARSC), May 2014, pp. 28–35.

[23] A. Koubâa, O. Cheikhrouhou, H. Bennaceur, M.-F. Sriti, Y. Javed, and
A. Ammar, ‘‘Move and improve: A market-based mechanism for the
multiple depot multiple travelling salesmen problem,’’ J. Intell. Robot.
Syst., vol. 85, no. 2, pp. 307–330, 2017.

[24] A. Koubâa et al., ‘‘Coros: A multi-agent software architecture for cooper-
ative and autonomous service robots,’’ in Cooperative Robots and Sensor
Networks. Cham, Switzerland: Springer, 2015, pp. 3–30.

[25] M. Alighanbari, ‘‘Robust decentralized task assignment algorithms for
UAVS,’’ Ph.D. dissertation,Massachusetts Inst. Technol., Cambridge,MA,
USA, 2007.

[26] K. Macarthur, ‘‘Multi-agent coordination for dynamic decentralised task
allocation,’’ Ph.D. dissertation, Univ. Southampton, Southampton, U.K.,
2011.

[27] H. Kurdi, J. How, and G. Bautista, ‘‘Bio-inspired algorithm for task allo-
cation in multi-UAV search and rescue missions,’’ in Proc. AIAA Guid.,
Navigat., Control Conf., 2016, p. 1377.

[28] H. Kurdi, ‘‘Patient: Dynamic task allocation in an autonomous multi-UAV
mission,’’ US Patent Office, May 2017.

[29] A. Koubâa et al., ‘‘Dronemap planner: A service-oriented cloud-based
management system for the Internet-of-Drones,’’ Ad Hoc Netw., vol. 86,
pp. 46–62, Apr. 2019.

[30] A. Koubaa,M. Alajlan, and B. Qureshi, ‘‘ROSLink: Bridging ROSwith the
Internet-of-Things for cloud robotics,’’ in Robot Operating System (ROS).
Cham, Switzerland: Springer, 2017, pp. 265–283.

[31] R. Chaâri et al., ‘‘Cyber-physical systems clouds: A survey,’’ Comput.
Netw., vol. 108, pp. 260–278, Oct. 2016.

[32] A. Koubaa and B. Quershi, ‘‘DroneTrack: Cloud-based real-time object
tracking using unmanned aerial vehicles over the Internet,’’ IEEE Access,
vol. 6, pp. 13810–13824, Mar. 2018.

[33] S. N. A. M. Ghazali, H. A. Anuar, S. N. A. S. Zakaria, and Z. Yusoff,
‘‘Determining position of target subjects in maritime search and rescue
(MSAR) operations using rotary wing unmanned aerial vehicles (UAVs),’’
in Proc. Int. Conf. Inf. Commun. Technol. (ICICTM), May 2016, pp. 1–4.

[34] S. Lee and J. R. Morrison, ‘‘Decision support scheduling for maritime
search and rescue planning with a system of uavs and fuel service sta-
tions,’’ in Proc. Int. Conf. Unmanned Aircr. Syst. (ICUAS), Jun. 2015,
pp. 1168–1177.

[35] M. Rahmes, D. Chester, J. Hunt, and B. Chiasson, ‘‘Optimizing cooper-
ative cognitive search and rescue UAVs,’’ Proc. SPIE, vol. 10643, 2018,
Art. no. 106430T.

[36] J. Casper and R. R. Murphy, ‘‘Human-robot interactions during the robot-
assisted urban search and rescue response at the world trade center,’’
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 33, no. 3, pp. 367–385,
Jun. 2003.

[37] S. Kohlbrecher et al., ‘‘Towards highly reliable autonomy for urban search
and rescue robots,’’ in Robot Soccer World Cup. Cham, Switzerland:
Springer, 2014, pp. 118–129.

[38] J. Q. Cui et al., ‘‘Drones for cooperative search and rescue in post-disaster
situation,’’ in Proc. IEEE 7th Int. Conf. Cybern. Intell. Syst. (CIS) IEEE
Conf. Robot., Automat. Mechatronics (RAM), Jul. 2015, pp. 167–174.

[39] C. K. Grissom, F. Thomas, and B. James, ‘‘Medical helicopters in wilder-
ness search and rescue operations,’’ Air Med. J., vol. 25, no. 1, pp. 18–25,
2006.

[40] J. Sun, B. Li, Y. Jiang, and C.-Y. Wen, ‘‘A camera-based target detection
and positioning UAV system for search and rescue (SAR) purposes,’’
Sensors, vol. 16, no. 11, p. 1778, 2016.

[41] A. Al-Kaff, M. J. Gómez-Silva, F. M. Moreno, A. de la Escalera, and
J.M. Armingol, ‘‘An appearance-based tracking algorithm for aerial search
and rescue purposes,’’ Sensors, vol. 19, no. 3, p. 652, 2019.

[42] C. Nattero, C. Recchiuto, A. Sgorbissa, and F. Wanderlingh, ‘‘Coverage
algorithms for search and rescue with uav drones,’’ in Proc. 13th Workshop
AIIA Symp. Artif. Intell., 2014.

[43] S. Koenig and R. G. Simmons, ‘‘Easy and hard testbeds for real-time search
algorithms,’’ in Proc. AAAI/IAAI, vol. 1, Aug. 1996, pp. 279–285.

[44] R. E. Korf, ‘‘Real-time heuristic search,’’ Artif. Intell., vol. 42, nos. 2–3,
pp. 189–211, 1990.

[45] S. Koenig, B. Szymanski, and Y. Liu, ‘‘Efficient and inefficient ant cover-
age methods,’’ Ann. Math. Artif. Intell., vol. 31, nos. 1–4, pp. 41–76, 2001.

[46] M. Baglietto, G. Cannata, F. Capezio, A. Grosso, A. Sgorbissa, and
R. Zaccaria, ‘‘Patrolgraph: A distributed algorithm for multi-robot
patrolling,’’ in Proc. 10th Int. Conf. Intell. Auton. Syst., Baden, Germany,
2008, pp. 415–424.

[47] C. Wei, K. V. Hindriks, and C. M. Jonker, ‘‘Dynamic task allocation
for multi-robot search and retrieval tasks,’’ Appl. Intell., vol. 45, no. 2,
pp. 383–401, 2016.

[48] M.-C. Chen, C.-H. Chen, M.-S. Huang, J.-Y. Ciou, and G.-T. Zhang,
‘‘Design of unmanned vehicle system for disaster detection,’’ Int. J. Distrib.
Sensor Netw., vol. 11, no. 4, 2015, Art. no. 784298.

[49] C. Baker, G. Ramchurn, L. Teacy, and N. Jennings, ‘‘Planning search and
rescue missions for uav teams,’’ Univ. Southampton Institutional Reposi-
tory, vol. 285, pp. 1777–17782, Jun. 2016.

[50] H. Unabor, ‘‘Geospatial response with remote sensing, GIS, Open-
StreetMap and Ushahidi: The Haiti earthquake of 12th January, 2010,’’ Int.
J. Sci. Eng. Res., vol. 5, no. 2, pp. 250–257, 2014.

[51] Shahad Illustration Demo for LSAR: Multi-Drone Collaboration for
Search and Rescue Missions. Accessed: Apr. 4, 2019. [Online]. Available:
https://www.youtube.com/watch?v=3uJcn2hzkuU

[52] G. Bautista. (2016). Masplanes. [Online]. Available: https://github.com/
guille-byte/MASPlanes

EBTEHAL TURKI ALOTAIBI received the B.S. degree in computer science
from Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi
Arabia, in 2014, and the M.S. degree in computer science (Artificial intel-
ligence field) from Mohammad Ibn Saud Islamic University, in 2016. From
2012 to 2015, she was a Research Assistant with Non-clairvoyant Scheduler
for Hybrid IaaS Clouds (Novel-HIC) Project, Science and Technology Unit,
Riyadh. Since 2014, she has been a Lecturer with the Computer Science
Department, Al-Imam Mohammad Ibn Saud Islamic University. She is the
author of over eight articles in highly rated journals and conferences. Her
research interests include NP-Hard problem, optimization algorithms, and
robot/multi-robot applications. She received the Excellent Research Award
fromAl-ImamMohammad Ibn Saud IslamicUniversity for five publications,
in 2017, and for two publications, in 2018.

SHAHAD SALEH ALQEFARI received the M.Sc. degree from King Saud
University, Saudi Arabia, in 2015. She is currently a Lecturer of computer
science. Her current research interests include integrating intelligence algo-
rithm for drones and robots solution, in the context of multi-task allocation,
security, and robot operating systems (ROS).

ANIS KOUBAA received theM.Sc. degree fromUniversity Henri Poincar’e,
France, in 2001, and the Ph.D. degree from INPL, France, in 2004. He is
currently a Professor of computer science, an Aide to Rector of Research
Governance, and the Director of the Robotics and Internet of Things
Research Lab, Prince Sultan University. He is also a Senior Researcher
with CISTER/INESC and ISEP-IPP, Porto, Portugal, and a Research and
Development Consultant with Gaitech Robotics, China. His current research
interests include providing solutions towards the integration of robots and
drones into the Internet of Things (IoT) and clouds, in the context of cloud
robotics, robot operating systems, robotic software engineering, wireless
communication for the IoT, real-time communication, safety and security for
cloud robotics, intelligent algorithms design for mobile robots, and multi-
robot task allocation. He is also a Senior Fellow of the Higher Education
Academy, U.K. He has been the Chair of the ACM Chapter, Saudi Arabia,
since 2014.

55832 VOLUME 7, 2019


	INTRODUCTION
	LITERATURE REVIEW
	THE LSAR ALGORITHM
	SYSTEM MODEL
	ALGORITHMS
	PARTITIONING ALGORITHM
	LSAR ALGORITHM


	THEORETICAL COMPARISON OF CANDIDATE ALGORITHMS 
	EXPERIMENTAL EVALUATION
	SIMULATION MODEL
	SCALABILITY AND SUSTAINABILITY
	PERCENTAGE OF RESCUED SURVIVORS (NET THROUGHPUT) 
	MEAN RESCUE TIME
	EXECUTION TIME PERFORMANCE

	RESPONSIVENESS
	PERCENTAGE OF RESCUED SURVIVORS (NET THROUGHPUT)
	MEAN RESCUE TIME


	CONCLUSION
	REFERENCES
	Biographies
	EBTEHAL TURKI ALOTAIBI
	SHAHAD SALEH ALQEFARI
	ANIS KOUBAA


