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A B S T R A C T

Classical ortho-phthalate plasticizers are, due to their endocrine disrupting potency and reproductive toxicity,
increasingly replaced by alternative plasticizers. Di(2-ethylhexyl) terephthalate (DEHTP) is one of these
substitutes. In this study, we investigated DEHTP exposure in 107 Portuguese children (4–17 years old) by
analyzing specific DEHTP metabolites in their urine using a newly developed LC-MS/MS method. We could
detect the major, specific DEHTP metabolite mono(2-ethyl-5-carboxypentyl) terephthalate (5cx-MEPTP) in
100% of the samples with levels above the limit of quantification in 96% of the samples (median concentration
4.19 μg/L; 95th percentile 26.4 μg/L; maximum 3400 μg/L). Other minor DEHTP metabolites (5OH-MEHTP,
5oxo-MEHTP and 2cx-MMHTP) were detected at lower rates and levels. Daily DEHTP intakes calculated from
urinary 5cx-MEPTP levels were generally far below the tolerable daily intake (TDI) of 1000 μg/kg bw/d (median
0.67 μg/kg bw/d; 95th percentile 6.25 μg/kg bw/d; maximum 690 μg/kg bw/d). However, for one child the
biomarker-derived health-based guidance value (HBM-I value) for 5cx-MEPTP of 1800 μg/L was exceeded by
about a factor of two. Levels of 5cx-MEPTP and calculated daily DEHTP intakes were higher in normal/under-
weight children who nourished on their usual diet compared to overweight/obese children who received
nutritional guidance with fresh and unprocessed food (p = 0.043 and p < 0.001 respectively). This indicates to
processed and fatty foodstuff as a major source of DEHTP exposure. Additionally, we found children of lower age
having higher DEHTP intakes (p = 0.045). Again, foodstuff as a major DEHTP source, together with other child
specific DEHTP sources such as mouthing of toys or ingestion of dust might be contributing factors. With the
present study, we provide a first data set on the omnipresent DEHTP exposure in children. So far, general levels
of DEHTP exposure seem no cause for concern. However, due to the increasing use of DEHTP as an ortho-
phthalate substitute, possible increasing exposures in the future should be followed closely.

1. Introduction

Di(2-ethylhexyl) terephthalate (DEHTP), CAS Registry No. 6422-86-
2, a structural isomer of Di(2-ethylhexyl) phthalate (DEHP), is used as
an alternative plasticizer for polymers like polyvinylchloride (PVC).
Lately, some “classic” PVC plasticizers such as the high molecular
weight (HMW) phthalate DEHP, are under scrutiny due to their proven
reproductive toxicity and anti-androgenic activity in rodents. These
effects, also known as the “phthalate syndrome” are mainly caused by
inhibition of fetal testicular testosterone production during sexual

differentiation leading to reproductive tract malformations, reduced
fertility and/or influences on the male phenotype (shortening of the
anogenital distance and areola/nipple retention) (Foster, 2006, Boberg
et al., 2011, Kilcoyne et al., 2014). As a consequence, DEHP has been
classified as toxic to reproduction category 1B according to the
European Regulation on classification, labelling and packaging of
substances (EU CLP Regulation) (European Parliament, 2008). Since
1999, DEHP, di(isononyl) phthalate (DiNP), di(isodecyl) phthalate
(DiDP) and di(n-octyl) phthalate (DnOP) have been banned or re-
stricted in sensitive applications such as toys or childcare articles
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according to Regulation (EC) No 1907/2006, Annex XVII, 51/52. From
February 2015 on (REACH sunset date), DEHP must not be placed on
the EU market any more, being listed in Annex XIV of the REACH
regulation EC No 1907/2006 (European Commission, 2006). However,
since plasticizers are still indispensable in many applications, alter-
native plasticizers like DEHTP, with advantageous toxicological profiles
(Gray et al., 2000, Furr et al., 2014) and no use restrictions are gaining
importance in the worldwide plasticizer market. In the year 2002 the
Western European consumption volume of DEHTP amounted to a total
of 2000 mt. Consumption rose to 100,000 mt in 2014. Predictions for
the year 2019 estimate a total production of about 135,000 mt, clearly
reflecting the growing importance of DEHTP as an alternative plastici-
zer (Malveda et al., 2015).

Typical effects associated with DEHP toxicity have not been
observed for DEHTP (Gray et al., 2000). Furr et al. (2014) reported
no disruption of fetal testosterone synthesis or altered testis gene
expression in rats in their Fetal Phthalate Screen (FPS). Toxicological
studies with DEHTP reported no or very weak peroxisome proliferating
potential in rats (Barber and Topping, 1995, Topping et al., 1987)
indicated by increased relative liver weight at the highest dietary
DEHTP content of 2.5%. However, the authors concluded, that relative
liver weight might have been increased only due to reduced feed
consumption. The European Food Safety Authority (EFSA) evaluated
DEHTP (EFSA, 2008) and derived a tolerable daily intake (TDI) of
1000 μg/kg bw/d based upon a 2-year combined toxicity/carcinogeni-
city study (Deyo, 2008); the most sensitive end points observed were
effects on the retina and nasal turbinates. Recently, the German Human
Biomonitoring Commission has published new HBM values for emer-
ging chemicals, DEHTP being one of them (Apel et al., 2016). The HBM-
I value for the main specific urinary metabolite mono(2-ethyl-5-
carboxypentyl) terephthalate (5cx-MEPTP) in urine, above which a
possible adverse health effect cannot be excluded anymore, was derived
to be 1800 μg/L based on the endpoint “effects on the retina” as
observed by Deyo (2008).

According to Commission Regulation (EU) Regulation No 10/2011,
DEHTP is approved as an additive in food contact materials with a
specific migration limit of 60 mg/kg food (European Commission, 2011).
Together with the gradually increasing production of DEHTP, a wide-
spread exposure of the general population to DEHTP has to be expected.
Human biomonitoring has been proven to be an ideal tool to assess
population exposure to phthalates or other plasticizers (Silva et al., 2003,
Koch et al., 2004, 2005, 2013a, 2013b, Koch and Angerer, 2012, Kasper-
Sonnenberg et al., 2014, Schütze et al., 2014). A pilot biomonitoring
study with German adults already indicated an omnipresent exposure of
non-occupationally exposed individuals to DEHTP (Lessmann et al.,
2016a). More than 90% of the urine samples analyzed contained DEHTP
metabolites above the limit of quantification. With this study we intend
to broaden the knowledge on DEHTP exposure to Portugal, another
country in the European Union. Furthermore, previous studies have
reported that the plasticizer body burden of children can be higher,
compared to adults (Koch and Angerer, 2007, Kasper-Sonnenberg et al.,
2014, Den Hond et al., 2015, Cutanda et al., 2015, Fromme et al., 2016).
Thus, investigating children in this study was of additional interest. Due
to the special composition of the children population of this study (obese
children under nutritional guidance vs. normal weight children on their
usual diet) another aim was to investigate possible differences in DEHTP
exposures among these children.

2. Methods

2.1. Subjects and urine specimens

The present study is part of an ongoing study investigating exposure
of obese/overweight and regular weight children to certain environ-
mental chemicals. The initial aim of this project was the determination
of exposure to several suspected or confirmed (predominately persis-

tent) endocrine disruptors and/or obesogens. Due to the ongoing
substitution process and considering new regulatory requirements,
plasticizers and plasticizer substitutes like DINCH and DEHTP have
subsequently been added to the list of substances of interest. The study
design itself has not been created with relevance to DEHTP. Originally,
112 Portuguese children donated first morning urine voids, and their
complete anthropometric data (gender, age, height, and weight) were
recorded. Samples were collected in the years 2014/2015 in the
pediatric appointment at Hospital de S. João, and several local schools
in the regions of Oporto and Aveiro, located in the north and central
region of Portugal. At the time of analysis of the present study, sample
material of 107 children, aged 4–17 years, was left. The available
samples were divided into two groups according to the respective
children's body mass index (BMI). Group 1 consisted of 39 normal/
underweight children, without any known associated diseases, on a
usual diet without further nutritional guidance. Group 2 consisted of 68
overweight/obese children, without other known associated diseases,
receiving specific nutritional guidance with fresh and unprocessed food
(meaning fresh fruits and vegetables, whole grains, low-fat and nonfat
dairy products, beans, fish, and lean meat). The children's nutritional
status was assessed according to the World Health Organization growth
charters (WHO, 2007). Body weight and BMI differed significantly
(p < 0.05) between the two investigated study groups, whereas age,
gender, height and urinary creatinine did not (p > 0.05). A detailed
description of the study population is given in Table 1.

2.2. Chemical analysis

The on-line HPLC-MS/MS method used for quantification of specific
urinary DEHTP metabolites has been described in detail by Lessmann
et al. (2016a). In short, to each urine sample aliquot, ammonium
acetate buffer and internal standard solution were added. After enzy-
matic hydrolysis with β-glucuronidase from E. coli K12 (arylsulfatase
free), the pH was adjusted with acetic acid and samples were frozen
over night to precipitate proteins. After thawing, samples were
centrifuged and the supernatant was injected into an Agilent Technol-
ogies LC 1260 system (Agilent 1260 autosampler, two Agilent 1260
binary pumps) coupled to an AB Sciex 4500 triple quadrupole mass
spectrometer in negative ionization mode. On-line SPE column assem-
bly, HPLC gradient and MS/MS conditions remain as described in
Lessmann et al. (2016a). The limit of quantification (LOQ) was 0.2 μg/L
for mono(2-ethyl-5-carboxypentyl) terephthalate (5cx-MEPTP) and
mono(2-ethyl-5-oxohexyl) terephthalate (5oxo-MEHTP), 0.3 μg/L for
mono(2-ethyl-5-hydroxyhexyl) terephthalate (5OH-MEHTP), and
0.4 μg/L for mono[2-(carboxymethyl)hexyl] terephthalate (2cx-
MMHTP). Urinary creatinine concentrations were determined accord-
ing to a modified Ja ffé method (Jaffe, 1886) with an Olympus AU5400®
Chemistry Analyzer.

Table 1
General characteristics of the investigated study population.

Population
characteristics

Group 1 Group 2 Total
Normal/under
weight, usual
diet

Overweight/obese,
nutritional guidance

n 39 68 107
Age (years) median 11.0 9.0 10.0
Gender (%) 44% female,

56% male
56% female, 44% male 49% female,

51% male
Height (cm) median 143 142 142
Body weight (kg)
median

35 46 45

BMI (kg/m2)
median

17.1 24.7 22.3

Creatinine (g/L)
median

0.87 0.96 0.93



2.3. Daily intake estimation

For the estimation of daily intakes based on 5cx-MEPTP levels in
spot urine samples of children, we applied the approach published by
Koch and Angerer (2007) and Wittassek et al. (2007) for the plasticizers
Di(n-butyl) phthalate (DnBP), butyl-benzyl phthalate (BBzP) and DEHP.
In short, the calculation is based on the creatinine related metabolite
concentration, combined with reference values for the 24-hour creati-
nine excretion in children according to Remer et al. (2002). The daily
intake in μg/kg bw/d is calculated by the following equation modified
according to previous daily intake calculations (David, 2000, Kohn
et al., 2000, Koch et al., 2003a, 2003b, Schütze et al., 2014):

DI(μg kg day) =
UE (μmol g ) × CE (g day)

F × bw(kg)
× MW (g mol)

bw
5cx‐MEPTP crea smoothed

UE

DEHTP

UE5cx-MEPTP is the concentration of 5cx-MEPTP in the respective
urine sample in micromole per gram creatinine. CEsmoothed is the
gender- and body height dependent 24-hour reference value for the
creatinine excretion of healthy Caucasian children (aged 4–17 years) in
gram creatinine per day according to Remer et al. (2002). The urinary
excretion factor FUE represents the percentage of excreted metabolite
5cx-MEPTP, relative to the dose of the parent compound DEHTP. We
used the FUE 0.13 as determined in an oral human metabolism study
with three healthy male volunteers (Lessmann et al., 2016b), meaning
that 13% of the orally administered dose of DEHTP were recovered as
5cx-MEPTP in urine. MWDEHTP is 390.56 g/mol, the molecular weight
of DEHTP.

2.4. Statistical analysis

Statistical analysis was conducted with IBM SPSS statistics 23.
Boxplots were generated with OriginPro 2016. DEHTP metabolite
concentrations were calculated in μg/L and creatinine adjusted values
in μg/g creatinine. Metabolite concentrations below the LOQ were
substituted with LOQ/2 (Hornung and Reed, 1990). For associations
between metabolite levels, the bivariate correlation Spearman's rho was
used. To investigate associations between metabolite levels or daily
intake and gender, body weight or age, we applied the Mann-Whitney-
U test. For the statistical analysis, age groups were categorized
according to European guidelines for clinical studies with pediatric
patients (ICH, 2000). By use of the Jonckheere-Terpstra test
(Jonckheere, 1954), we investigated a possible age dependent trend
in the daily intake of DEHTP. The Jonkcheere-Terpstra test is a
nonparametric test for independent samples, comparable to the Krus-
kal-Wallis test. In contrast to the Kruskal-Wallis test, the Jonckheere-
Terpstra test analyzes an existence of a trend among groups.

3. Results and discussion

3.1. Metabolite levels

The main specific DEHTP metabolite 5cx-MEPTP was detectable in
all 107 samples analyzed with levels above the limit of quantification in

96% of the samples. The median concentration was 4.19 μg/L, the 95th
percentile 26.4 μg/L, and the maximum concentration 3400 μg/L. The
other metabolites were detected at lower rates and concentrations.
Detailed results including creatinine adjusted concentrations are shown
in Table 2. The metabolic pattern reflected in the median and 95th
percentile metabolite concentrations is comparable to the pattern
observed in the oral metabolism study with three male volunteers
performed by our group (Lessmann et al., 2016b). 5cx-MEPTP was
clearly the dominant specific urinary metabolite followed by 5OH-
MEHTP and 5oxo-MEHTP at concentrations about an order of magni-
tude lower. 2cx-MMHTP was detected only in those urine samples with
highest levels of the other DEHTP metabolites.

We observed significant correlations between all three major
DEHTP metabolites (see Fig. 1). Similar correlations have also been
reported for the specific, oxidized metabolites of DEHP (Koch et al.,
2003a, 2003b, Barr et al., 2003) or the metabolites of the phthalate
substitute DINCH (Schütze et al., 2012, 2017). Obviously, the correla-
tion between 5cx-MEPTP and 5oxo-MEHTP was weakest among the
three oxidized DEHTP metabolites. From the human metabolism study
we know, that parameters of elimination kinetics differ the most
between 5cx-MEPTP (tmax = 4.2 h) and 5oxo-MEHTP (tmax = 5.2 h)
(Lessmann et al., 2016b). Likewise to DEHP or DINCH, correlations
were strongest for those metabolites with similar behavior in elimina-
tion kinetics.

We can compare the metabolite levels of this study with the, so far,
only other human biomonitoring study on DEHTP with metabolite
levels in 34 German adults from the year 2014 (Lessmann et al., 2016a).
Compared to the median 5cx-MEPTP level of 0.90 μg/L in German
adults, the median level in Portuguese children (4.19 μg/L) is approxi-
mately 5-times higher. The maximum concentration of 5cx-MEPTP
(38.7 μg/L vs. 3400 μg/L) is almost 100-times higher in the Portuguese
children. For the other metabolites a comparison is difficult because of
their rather low detection rates in the German adults. Previous studies
have already reported children being additionally exposed to plastici-
zers, due to behavioral differences and an increased food uptake
(Wittassek et al., 2007, Frederiksen et al., 2013, Cutanda et al., 2015,
Myridakis et al., 2015, Fromme et al., 2016). In the European
DEMOCOPHES study (Černá et al., 2015, Den Hond et al., 2015)
children consistently excreted higher levels of DEHP metabolites
compared to their mothers, both in Germany and Portugal. At the same
time, DEHP metabolite excretions were generally higher in Portugal
than in Germany. Similar country and age specific differences in
exposure can thus be assumed also for DEHTP as a direct substitute
of DEHP and explain the 5-times higher median metabolite levels in
Portuguese children compared to German adults.

In a more detailed investigation of the Portuguese children we
checked for possible influences of gender, study group (normal-/
underweight children on usual diet vs. overweight/obese children on
nutritional guidance), and age on urinary 5cx-MEPTP concentrations
(both in μg/L and μg/g creatinine). The results are shown in Table 3 and
depicted as boxplots in Fig. 2.

We did not evaluate the other DEHTP metabolites, due to their
considerably lower urinary concentrations and detection rates. We
found no influence of gender on urinary 5cx-MEPTP concentrations in
μg/L and μg/g creatinine. However, we observed significantly higher

Table 2
Results of the human-biomonitoring study with 107 Portuguese children, aged 4–17.

Metabolite LOQ [μg/L] > LOQ [%] Concentration [μg/L] Concentration [μg/g creatinine]

Median 95th P. Max. Median 95th P. Max.

5OH-MEHTP 0.3 67 0.45 2.86 182 0.49 4.01 209
5oxo-MEHTP 0.2 58 0.27 2.18 60.7 0.31 3.28 69.6
5cx-MEPTP 0.2 96 4.19 26.4 3400 3.88 35.0 3900
2cx-MMHTP 0.4 7 < LOQ 0.57 67.9 < LOQ 1.07 77.9



urinary 5cx-MEPTP concentrations in the group of normal weight
children compared to the group of overweight children. This significant
difference (with obese children exhibiting lower exposures to DEHTP
than regular weight children) stands in some contrast to previous
(epidemiological) studies on phthalate plasticizers that found e.g. DEHP
body burden to be associated with an increase in body weight and BMI
(Trasande et al., 2013, Buser et al., 2014, Hou et al., 2015, Yaghjyan
et al., 2015, Kim et al., 2016). However, as part of the study design, the
group of overweight/obese children received nutritional guidance with

unprocessed and fresh food, whereas the regular weight children fed on
their usual diet. Several studies have already identified certain groups
of food as possible sources of DEHP exposure (Sathyanarayana et al.,
2013, Mervish et al., 2014). Additionally, exposure to DEHP can be
reduced by dietary interventions (Rudel et al., 2011, Koch et al., 2013a,
2013b, Ackerman et al., 2014). Since DEHTP is a direct substitute for
DEHP, we thus assume that the influencing factor resulting in sig-
nificantly lower urinary levels of 5cx-MEPTP in the overweight children
is their style of diet. In regard to age, we found elevated 5cx-MEPTP
concentrations in the younger children only after creatinine adjustment
and not for unadjusted levels in μg/L. Creatinine excretion is known to
be lower in younger children (Barr et al., 2005), which in turn drives
creatinine adjusted concentrations to higher values in younger children
compared to older children. The significance of this effect in terms of
actual exposure doses is investigated in more detail in the following
daily intake section.

3.2. Daily intakes

We calculated the daily DEHTP intakes, based on the urinary 5cx-
MEPTP concentrations, taking account of body height and gender based
reference values for urinary creatinine excretion (Remer et al., 2002;
Koch and Angerer, 2007). For the study population as a whole, the
median daily DEHTP intake was 0.67 μg/kg bw/d (95th percentile
6.25 μg/kg bw/d; maximum 690 μg/kg bw/d). Detailed results for the
different subgroups (gender, study group, age) are shown in Table 4
and depicted as boxplots in Fig. 3.

We could not observe any gender specific differences in daily
DEHTP intakes. Actually, boys and girls had very similar median daily
DEHTP intakes (0.62 vs. 0.67 μg/kg bw/d). However, the children who
received specific nutritional guidance, had about 2.5 fold lower daily
intakes compared to the children who fed on their usual diet (0.40 μg/
kg bw/d vs. 1.01 μg/kg bw/d; p < 0.001). In terms of absolute intakes
(calculated as a product of each child's estimated daily intake and the
respective body weight), findings were pointing in the same direction
with children on nutritional guidance having lower absolute intakes
compared to children feeding on a usual diet (23.1 μg/d vs. 32.4 μg/d
respectively). These findings confirm previous assumptions that the
children's style of diet is an important factor influencing DEHTP
exposure. Furthermore, calculated median daily DEHTP intakes of the
younger children, 4–11 years of age, were about 2 fold higher
compared to older children, 12–17 years of age (0.71 vs. 0.36 μg/
kg bw/d; p = 0.045).

To further investigate age dependency of DEHTP exposure, we
divided the children into six smaller age groups and applied the
Jonckheere-Terpstra test. The results are depicted as boxplots in Fig. 4.

We could observe a significant downward trend for the median daily
DEHTP intakes with increasing age (p = 0.014*, level of significance
α= 0.05). The youngest children (median DI 1.7 μg/kg bw/d) had> 4
fold higher daily DEHTP intakes compared to the older children
(median DI 0.4 μg/kg bw/d). This, again, points to contaminated
foodstuff as a major source of DEHTP exposure, because young children
have an increased food intake per kg body weight. Similar findings on
age dependent plasticizer exposure have already been reported for
DEHP and other plasticizers (Fromme et al., 2007, 2013, Koch and
Angerer, 2007, Wittassek et al., 2007).

Higher plasticizer exposures in young children might additionally
be caused by other age dependent characteristics, like mouthing of toys
and playing near the ground leading to increased dust intake (Moya
et al., 2004, Sathyanarayana, 2008, Lee et al., 2014, Ginsberg et al.,
2016). Biedermann-Brem et al. (2008) determined plasticizers in> 250
toys and could detect DEHTP in 10% of all samples analyzed. Another
study investigated the mass content of alternative plasticizers in toys
and childcare articles and found DEHTP to be the most frequently used
plasticizer with contents of up to 25% DEHTP relatively to PVC (Xie
et al., 2016). In 953 dust samples, collected in German households
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Fig. 1. Spearman-correlations between urinary concentrations of the specific DEHTP
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between 1997 and 2009, Nagorka et al. (2011) reported a rapid
increase in DEHTP detection frequencies (< 5% in the early samples,
94% in samples of the year 2009) and concentration levels (95th
percentile in 2009: 24 mg/kg). Fromme et al. (2016) detected DEHTP in
all dust samples from 63 German daycare centers for children collected
in 2011/2012 with a median concentration of 40 mg/kg dust. However,
they concluded that DEHTP intake by dust ingestion was low compared
to tolerable daily intake values even under worst case assumptions.

3.3. Risk assessment

For a risk assessment of DEHTP exposure in the Portuguese children,
we can either compare urinary metabolite concentrations directly to the
Human-Biomonitoring Value (HBM-I value) for DEHTP, a biomarker
derived, health based guidance value of the German Human
Biomonitoring Commission (Apel et al., 2016), or we can compare
the calculated daily intakes to the TDI value of EFSA (2008). The HBM-I

Table 3
Median concentrations of 5cx-MEPTP in μg/L and μg/g creatinine graded by gender, study group and age; significant differences (level of significance α= 0.05) marked with an asterisk.

Gender Study group Age

Boys (n = 52) Girls (n = 55) Normal-/underweight,
usual diet (n = 39)

Overweight/obese,
nutritional guidance (n = 68)

4–11 years
(n = 68)

12–17 years (n = 39)

5cx-MEPTP median [μg/L] 3.73 4.19 4.99 3.04 4.03 4.61
p-Value (Mann-Whitney-U) 0.523 0.043* 0.761
5cx-MEPTP Median
[μg/g creatinine]

3.86 3.94 4.74 3.03 4.77 2.51

p-Value (Mann-Whitney-U) 0.509 0.029* 0.024*
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Fig. 2. Urinary concentrations of 5cx-MEPTP graded by gender, study group, and age. Bottom and top of the box represent the first and third quartiles. The band inside the box shows the
median. The whiskers represent the 5th and the 95th percentile. The minimum and maximum values are represented by an x. p-Value from Mann-Whitney-U test. Significant differences
marked with an asterisk.

Table 4
Median daily intakes of DEHTP in μg/kg bw/d graded by gender, study group, and age; significant differences (level of significance α= 0.05) marked with an asterisk.

Gender Study group Age

Boys (n = 52) Girls (n = 55) Normal-/underweight,
usual diet (n = 39)

Overweight/obese,
nutritional guidance (n = 68)

4–11 years
(n = 68)

12–17 years (n = 39)

Daily DEHTP intake
[μg/kg bw/d]

0.62 0.67 1.01 0.40 0.71 0.36

p-Value
(Mann-Whitney-U)

0.622 < 0.001* 0.045*



value describes the concentration of a substance in the body matrix
(e.g. urine) below which no adverse health effect should be expected
(Angerer et al., 2011). Urinary 5cx-MEPTP concentrations in our study
(median 4.19 μg/L; 95th percentile 26.4 μg/L) were considerably below
the HBM-I value of 1800 μg/L indicating that detrimental health effects
caused by DEHTP are unlikely. However, in one urine sample with a
maximum 5cx-MEPTP concentration of 3400 μg/L the HBM-I value was
clearly exceeded. The high 5cx-MEPTP concentration in this sample

was confirmed by high levels of the other DEHTP metabolites (see
Fig. 1), and metabolite ratios were within the range expected from a
human metabolism study. Single exceedances of HBM-I values are no
reason for immediate concern but should spark repeat sampling (of the
respective individual) and verification measurements. If these measure-
ments confirm the initial result an investigation of potential sources of
exposure should be undertaken. In the case of this single child, we were
not able to obtain a repeat sample.

The TDI for DEHTP is 1000 μg/kg bw/d (EFSA, 2008). For compar-
ison of the daily DEHTP intakes of our study with the TDI of EFSA we
calculated the hazard quotient (HQ) defined as the ratio of a daily
intake and the respective TDI. HQ values of> 1 are generally
considered a cause of concern. The median daily DEHTP intake in our
study for children eating usual diet (group with highest DEHTP
exposure) was 1.01 μg/kg bw/d. This daily intake is a factor of 1000
below the TDI, resulting in a HQ of 0.001. At the 95th percentile of
daily intake of about 10 μg/kg bw/d (children eating usual diet) the HQ
was 0.01, again far from the HQ of 1. The highest calculated daily
intake of 690 μg/kg bw/d was also lower than the TDI of 1000 μg/
kg bw/d (HQ = 0.69). Thus, with regard to the TDI of 1000 μg/kg bw/
d, for none of the investigated children the calculated DEHTP burden
poses a toxicological risk. It must be noted that the daily intakes have
been calculated based on metabolite levels determined in first morning
urine voids as the only specimen available in the study. However, for
chemicals like plasticizers with short elimination half-lives and food as
a predominant exposure route, this type of sampling might lead to
slight underestimations (about up to a factor of 2) since exposures
during the day can be missed (Aylward et al., 2011; Lorber et al., 2011;
Koch and Angerer, 2012). Another uncertainty in daily intake calcula-
tions certainly arises from the assumption of a fixed metabolic conver-
sion factor of 0.13 for 5cx-MEPTP. This conversion factor has been
derived from three adult volunteers and reflects the mean of conversion
factors ranging from 0.07 to 0.20 (Lessmann et al., 2016b). While we
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have no indications of metabolic differences between the adults of the
metabolism study and the children of our study (very similar metabolite
ratios), taking account of the variability observed in the metabolism
study, a worst case scenario calculation with the lower end conversion
factor of 0.07 would have led to a maximum daily intake of 1280 μg/
kg bw/d.

4. Conclusion

The results of the present study for the first time document an
omnipresent DEHTP exposure in Portuguese children. Median urinary
metabolite levels in this study are approximately 5 times higher than
levels found in German adults. These differences are in line with
findings for the related plasticizer DEHP, for which children also have
higher exposures than adults and for which exposure in Portugal has
been reported to be slightly higher than in Germany.

As for other high molecular weight plasticizers, diet seems to be the
dominant route of exposure to DEHTP. We could show that children
who received specific nutritional guidance with predominately fresh
and unprocessed food had about 2.5 fold lower daily intakes than
children on a usual diet. Other, child specific sources of exposure might
be DEHTP containing toys or house dust. The complex nature of the
original study design, however, demands caution and adds some
uncertainty to these findings, because body weight status and nutri-
tional characteristics were combined in a manner that is probably
reciprocal to the real-life scenario. Unfortunately, we were not able to
obtain urine samples collected before, or at the onset of the dietary
intervention.

Urinary metabolite data indicate that current exposures to DEHTP
both at the median and the upper bounds (95th percentile) are well
below health based limit values such as the HBM-I value or the TDI
(factor of 1000 at the median and factor of 100 at the 95th percentile).
However, for one child we detected DEHTP exposure close to the TDI
and exceeding the HBM-I value.

DEHTP is the second ortho-phthalate substitute (after DINCH) for
which we could prove the omnipresent exposure of the general
population by means of human biomonitoring. As already shown for
DINCH (Schütze et al., 2014), we also have to expect a rise in exposure
to DEHTP, with predicted consumption numbers doubling from 2012 to
2018. Future studies should therefore closely follow the time course of
DEHTP exposure. Such timely exposure assessments in combination
with risk assessments will enable us to verify a successful substitution of
critical phthalates with alternatives of a preferred toxicological profile.
Such exposure assessments will also enable us to intervene and advise
regulatory measures, if exposures to the alternatives approach limit
values, or if toxicological re-evaluations result in the lowering of these
limit values.
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