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ABSTRACT 

The aim of this study was to determine levels and risks due to inhalation exposure to polycyclic 

aromatic hydrocarbons (PAH) in different educational settings, namely for 3- to 5- year-old and 6- to 10-

year-old children. Eighteen PAH (16 priority designated by US Environmental Protection Agency 

(USEPA) and dibenzo[a,l]pyrene and benzo[j]fluoranthene) were simultaneously collected in indoor and 

outdoor air at two Portuguese preschools (PS1–PS2) and five elementary schools (ES1–ES5) from 

March to May 2014. Indoor concentrations at PS and ES were significantly different, with total levels 

(∑PAHs) 0.721–15.9 ng/m3 at PS1–PS2 and 5.03–23.6 ng/m3 at ES1–ES5. The corresponding 

outdoor concentrations were, respectively, 1.22–32.7 ng/m3 and 2.6–31.5 ng/m3. Polycyclic aromatic 

hydrocarbons with 2–3 aromatic rings were predominantly emitted by indoor sources, while compounds 

with 4–6 aromatic rings were mainly generated by infiltration of ambient PAH pollution to indoors. 

Excess lifetime risks of lung cancer exceeded the World Health Organization (WHO) designated 

guideline of 10–5 in both types of schools (15–42-fold at PS; 15–52-fold at ES). However, total (sum of 

indoor and outdoor exposure) incremental lifetime cancer risks (ILCR) were below the USEPA level of 

10–6 at all studied institutions and thus considered negligible. Finally, ILCR due to indoor exposure 

represented 60–75% and 70–85% of the total ILCR at PS and ES, respectively, thus indicating the 

need for development and implementation of indoor air quality guidelines in educations settings. 
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Introduction 

 

Polycyclic aromatic hydrocarbons (PAH) are organic contaminants containing at least two aromatic 

rings that are ubiquitously found in all environmental matrices (air, soil, and water). Polycyclic aromatic 

hydrocarbons (PAH) are organic contaminants containing at least two aromatic rings that are 

ubiquitously found in all environmental matrices (air, soil, and water). 

These chemicals are produced by incomplete combustion of organic material such as coal, oil, or wood. 

In urban areas, PAH are mostly emitted from vehicle exhausts and other manmade sources such as 

power plants, industrial and waste treatment processes, and from biomass combustions (Ravindra et 

al., 2008; Samburova et al., 2016; Sarigiannis et al., 2015). The relevant indoor sources are tobacco 

smoke, cooking, combustion process (candle, fuels), and infiltration of outdoor emissions (Chen et al., 

2012; Qi et al., 2014; Slezakova et al., 2014a; Shen et al., 2012; Wu et al., 2015). As PAH exhibit 

semivolatile properties, these compounds are distributed between vapor phase and adsorbed onto 

particles predominantly associated with fine fractions such as PM2.5 (aerodynamic diameter below 2.5 

μm) or PM1 (aerodynamic diameter <1 μm) (Mesquita et al., 2014; Sánchez-Soberón et al. 2016; 

Slezakova et al., 2013a, 2013b). The partitioning between both phases then significantly impacts fate, 

removal and transport of PAH in the atmosphere (Dvorská et al., 2012) as well their entry into humans. 

For general population, breathing air (indoor and ambient) and consumption of food containing PAH are 

major routes of PAH exposure (Elabbas et al., 2014; Pampanin et al., 2016). The PAH are highly 

lipophilic such that human bioavailabil- ity is significant  (Sarigiannis et  al., 2015),  and these 

compounds were detected in nearly all internal organs (principally in adipose tissues) (Abdel-Shafy & 

Mansour, 2016). A number of PAH are mutagenic, genotoxic (Annesi- Maesano et al.,  2007;  

Tuntawiroon  et  al., 2007) and considered as endocrine disrupting chemicals (Berg et al., 2016; WHO, 

2013). Cancer is the major disease concern for PAH exposure (Abdel-Shafy & Mansour, 2016; Boström 

et al., 2002) with several individual congeners being designated as carcinogenic (probable and/or 

possible ones) (IARC, 2002, 2010). 

Due to their susceptibility (Burtscher & Schüepp, 2012; Foos et al., 2008), potential PAH health con- 

sequences are especially important for children. The period spent in schools such as preschools and 

kin- dergartens represents on a daily basis approximately 30% of child’s time, which increases the 

interest to better understand exposure–health outcomes rela- tionship (Annesi-Maesano et al., 2007, 

2013; Bae et al., 2010; Madureira et al., 2015). Thus, a number of investigators determined PAH levels 

in schools, but the current understanding is far from compre- hensive. Further, most of the existing 

knowledge originates from the studies conducted in environ- ments for 6–10/11-year-old students (i.e., 

primary/ elementary levels of education) (Alves et al., 2014; Carpenter & Bushkin-Bedient, 2013; Cirillo 

et al., 2006; Jovanović et al., 2014; Jyethi  et al., 2014; Krugly et al., 2014; Moshammer & Neuberger, 

2003; Romagnoli et al., 2014; Ruchirawat et al., 2006, 2007; Tuntawiroon et al., 2007), whereas data 



 

for nurseries, day care centers and PS environments are rather scarce (Eiguren-Fernandez et al., 

2007; Oliveira et al., 2015, 2016a, 2016b). Moreover, chil- dren interact with environment surrounding 

them in a unique way. The activity patterns and behavior of young children and infants are different 

from those of older children and adolescents (Cohen Hubal et al., 2000; Mielgo-Ayuso et al., 2016), and 

thus, the reported data and estimated risks may not be applicable to infants and younger children. 

The aim of this study was to determine levels and risks of 16 PAH designated by US Environmental 

Protection Agency (USEPA) as priority ones, in addi- tion to benzo[j]fluoranthene and 

dibenzo[a,l]pyrene in different educational settings. Levels and composi- tional profiles of PAH in indoor 

and outdoor air of two preschools (3–5 year pupils) and five elementary schools (6- to 10-year-old 

children) were character- ized. The contribution of ambient PAH to indoor levels was assessed. Risks 

for two different age groups of students (3–5 and 6–10 year old) were estimated according to World 

Health Organization (WHO) quantitative risk assessment methodology (WHO, 1987, 2000) and USEPA 

risk approach method (USEPA, 2016). 

 

 

Materials and methods 

Characterization of selected schools 

Particulate matter (PM)2.5–bound PAH were col- lected continuously from March to May 2014 at two 

preschools (3- to 5-year-old children; PS1– PS2) and five elementary schools (6- to 10–year- old 

students; ES1–ES5) situated in Porto, Portugal. All schools were considered as urban sites with traffic 

emissions the predominant pollution source in the respective areas (Pereira et al., 2007; Slezakova et 

al., 2013b).). 

 

Sampling 

At all educational institutes, children daily sche- dules and conducted activities were recorded (Table 

1S of the supplementary material). Indoor PM2.5–bound PAH (n=42) were sampled in class- rooms as 

it was the microenvironment where stu- dents were present most of their time (Table 1S). Sampling 

was conducted daily during three con- secutive weekdays (Tuesday–Thursday); Mondays and Fridays 

were avoided as students’ programs were frequently irregular. Sample collection was performed at 

each school simultaneously at two classrooms; in total, 14 rooms were assessed. Relevant details of 

each room including  layout and materials were also recorded (Table 1S). School personnel reported 

daily information con- cerning any unusual emission source and/or unty- 

pical indoor occurrences. PM2.5 sampling was conducted based upon the USEPA IP–10A method 

(USEPA, 1990). The sampling setup consisted of a personal environmental monitor (PEM™; SKC Ltd.,  

Dorset,  UK),  that  is,  single-stage  impactor (PM2.5)  connected  with  personal  air  sampling pump 

(AirChek® 2000; SKC Ltd., Dorset, UK); samples were collected for a period of 24 hr with flow rate 0.12 



m3/hr. This setup was used as it was appropriate  for  indoor  sampling  (i.e.,  confined 

space with limited air exchange) and was almost noise free. The collection devices were placed 

approximately at 1 m above the surface and mini- mum 1 m from any obstacles (doors, wall, and 

corners), avoiding any  unnecessary  obstructions in the rooms and maintaining all safety precautions. 

Concurrently with indoor sampling, particulate bound PAH were collected outdoors (in ambient air; 

n=21). The sampling equipment (constant-flow sam- plers, model Bravo H2 supplied by TCR TECORA, 

Paris France combined with PM2.5 EN LVS sampling head in agreement with norm EN14907) suitable 

for outdoor meteorological conditions was situated in open zones of school yards using an air flow rate 

of 2.3 m3/hr . 

Polytetrafluoroethylene (PTFE) membrane filters (SKC Ltd., Dorset, UK; 2 μm porosity, Ø37 mm for 

indoor sampling and Ø47 mm for ambient air sampling), which were compatible with the respec- tive 

indoor and outdoor samplers, were used for PM2.5 collection. After gravimetric mass determina- tion 

that was conducted according to Oliveira et al. (2016a, 2016b) and Slezakova et al. (2011), filters were 

stored in PVC containers in freezer (–18°C) for subsequent chemical analysis. 

 

 



 



 
Extraction and quantification of PAH 

Extraction and determination of PAH were conducted in agreement with validated analytical procedures 

(Castro et al., 2009, 2011). Additional information is provided in Supplementary Material (section 1S). 

 

Risk analysis 

Risks due to inhalation exposure to PM2.5–bound PAH were assessed by toxicity equivalent 

concentrations (B[a]Peq) based upon toxicity of benzo[a]pyrene. Values of toxicity equivalency factors 

(TEF) proposed by Nisbet and LaGoy (Boström et al., 2002) were used. Excess lifetime risk of lung 

cancer was then estimated by quantitative risk assessment methodology using unit risk value of 

8.7×10–5 (ng/m3)–1 (WHO, 1987 , 2000). 

 

Calculation of incremental lifetime cancer risks 

(ILCR) was determined based upon USEPA meth- odology (Region III Risk-based Concentration 

Table)  (USEPA,  2016).  USEPA  designates  that 

ILCR  between  10−6   and  10−4   indicate  potential 

risks; values lower than 10−6 are considered  as safe, whereas potentially high risks are denoted by 

values greater than 10−4  (USEPA, 1989). The 

complete methodology and ILCR calculations are described in Oliveira et al. (2016a, 2016b), but for 

reader’s convenience, Table 2S provides an exam- ple of ILCR calculations; default parameters are 

shown in Tables 3S and 4S. 

 

 

Statistical analysis 

Statistical analysis was performed according to Oliveira et al. (2016a, 2016b). SPSS (IBM SPSS 

Statistics 20) and Statistica software (v. 7, StatSoft Inc., USA) were used. Comparison of means was 

conducted      through      nonparametric      Mann −Whitney U-test, since normal distribution was not 

observed by Shapiro−Wilk’s test. The criterion for significance was set at p < 0.05. 

 

Results 

PS and ES characteristics 

The selected schools were constructed between 1940 (PS1) and 1980 (ES1); all were refurbished 

during the last decade (2004–2008). Number of students ranged between 44 and 173 for PS, whereas 

it was between 280 (ES4) and 420 (ES5) for ES. Further information regarding possible emission 

(indoor and outdoor) sources at schools, heating systems, relevant equipment/materials, and cleaning 

schedules is summarized in Table 5S. Regarding the ventilation, all classrooms were naturally 

ventilated by opening doors and windows, as no mechanical systems existed. Overall, the ventilation of 



 

rooms was not frequent. Typically, the windows were rarely opened when classes were in sessions 

(only at ES4 and ES5 for couple of minutes), whereas at ES2, ES4, and ES5 rooms were regularly 

ventilated during recess periods. At both PS, ventilation was always conducted at the beginning (for 

10–15 min) and at the end (15–20 min) of each day. In all schools, windows were always opened when 

rooms were cleaned which was usually at the end of the day; the durations lasted between couple of 

min until half hour at ES5. 

 

PAH levels 

The levels of PM2.5–bound PAH at two PS and five ES are summarized in Table 1. The concentrations 

are presented for groups of congeners according to the number of aromatic rings (2–6 aromatic rings). 

Total levels (i.e., minimal–maximal) of ∑PAH indoors ranged from 0.7 (PS1) to 23.6 ng/m3 (ES3), 

whereas the mean concentrations were between 4.2 (PS2) and 16.4 ng/m3 (ES3). The indoor levels of 

∑PAHs at PS were significantly different from those observed at ES. The highest ∑PAH were detected 

at ES3 3 and fourfold higher than at PS1 and PS2, respectively. Overall, indoor ∑PAH were relatively 

similar at ES1–ES4 with the only exception to ES5 that exhibited 2–3-fold lower concentrations. 

Although no specific reasoning was found for the lower concentrations at ES5, it should be noted that 

classrooms at this school were more frequently ventilated, whereas at the same time, PAH ambient 

pollution levels were similarly low. 

 

The compositional profiles between all institutions characterized in this study were similar to some 

extent. At both PS 5–6 rings, congeners were the predominant groups of PAH indoors (74% of ∑PAHs 

at PS1 and 53% at PS2). However, congeners with three rings (acenaphthylene, acenaphetene, 

fluorene, phenanthrene, and anthracene) accounted for 6% of indoor ∑PAH at PS1, whereas it was 

35% at PS2. Similar to the latter, in indoor air of ES, congeners with three rings were largely abundant 

(ranging between 33% at ES3 and 77% of ∑PAHs at ES2) predominantly due to high levels of 

acenaphthylene which was the greatest (36–62% of ∑PAH), or the second most (22–24% at ES3 and 

ES5) abundant indoor compound. Finally, PAH with two rings (i.e., naphthalene) were the least 

abundant congener in indoor air of both PS and ES (2–3% of ∑PAH at PS1–PS2; ≈2% at ES1–ES5). 

 

The concentration ranges of PAH in outdoor air of ES and PS are also presented in Table 1. The 

results showed that mean indoor versus outdoor ∑PAH of each school were not markedly different with 

the exception to PS1 and ES2 where indoor ∑PAH were approximately twofold higher than outdoors. At 

both these institutions, lunches were directly cooked at the premises (i.e., in school canteen), thus 

potentially leading to overall higher indoor PAH pollution (compared with ambient air). 

 

Compositional profiles of PAH in outdoor air exhibited some similarities between PS and ES with 5–6 



rings compounds representing the most abundant compounds (60% of ∑PAH at both PS1 and PS2; 

mean of 60% at ES: i.e., 45% at ES3—73% at ES4). Indoor to outdoor (I/O) ratios of PAH at all 

educational settings are illustrated in Figure 1. PAH with 2–3 rings exhibited I/O higher than unity (with 

exception to PS1) suggesting predominantly indoor origin (emissions sources and occupants activities). 

I/O ratios for PAH with 4, 5–6 aromatic rings were <1 at all schools (except for ES3) indicating outdoor 

origin. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Indoor to outdoor (I/O) ratios of PM2.5–bound PAHs at preschools (PS1–PS2) and elementary schools (ES1–ES5). Ratios are 
demonstrated for congeners according to their number of aromatic rings, that is, groups of PAHs with 2, 3, 4, 5, and 6 rings. 

 

 

Risk assessment 

Benzo[a]pyrene equivalent concentrations (B[a]Peq) are summarized in Table 2. Overall, the total 

B[a]Peq of 18 PAH (∑B[a]Peq) in indoor air of both PS (4,700–13,030 pg/m3) were up to twofold lower 

than at ES (5 625 pg/m3 at ES2 – 21730 pg/m3 at ES3). The excess lifetime risk of lung cancer was 

estimated considering that 3- to 5-year-old children spent typically 6 hr of their school time indoors (1.5-

hr outdoors), whereas it was 6-hr and 1-hr indoors and outdoors, respectively, for students of ES. Thus, 

the corresponding lung cancer risks were 4.18×10–4 and 1.52×10–4 at two PS (indoors: 3.31×10–4 at 

PS1 and 1.21×10–4 at PS2; outdoors 8.71×10–5 at PS1 and 3.13×10–5 at PS2) and a range of 

1.49×10–4–5.17×10–4 at five ES (indoors: 1.22×10–4 at ES2 – 4.73×10–4 at ES3; outdoors: 2.69×10–

5 at ES2 – 6.45×10–5 at ES1). At all seven institutions evaluated in this study excess lifetime cancer 

risks (calculated with the mean concentrations) surpassed (from 15-fold at PS2/ES2 up to 52-fold at 

ES3) the level of 10–5 designated by WHO (Boström et al., 2002). 

 

PS1 PS2 ES1 ES2 ES3 ES4 ES5 



 

 

 

ILCR due to inhalation exposure to PAH at five ES and two PS were calculated according to USEPA 

methodology (using the mean concentration of each PAH), and the totals (i.e., sums) of ILCR are 

presented in Figure 2. These findings demonstrate that ∑ILCR for 3- to 5-year-old students were 

significant from those of 6- to 10-year-old ones, with total ∑ILCR 1–6-(at PS1) and 1–8 (PS2)-fold lower 

than at 5 ES. Finally, ∑ILCR were below the recommended USEPA level of 10–6 at all seven examined 

institutions and thus are considered negligible. 

 

 

 

Figure 2. Incremental lifetime cancer risks (ILCR) for 3- to 5-year old and 6- to 10-year-old students at two preschools (PS1 and PS2) and five 

elementary schools (ES1–ES5). Values are sums of ILCR values of eight individual PAHs (naphthalene, chrysene, benz[a]anthracene, 

benzo[b]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3–cd]pyrene, benzo[a]pyrene, and dibenz[a,h]anthracene) both indoors and outdoors. 

 

 

Discussion 

The levels and risks due to inhalation exposure to PM2.5–bound PAH were examined at different 

educational settings, namely at two PS (students with 3–5 year old) and five ES (6–10 year old). 



Children regularly spend much of their daytime in nurseries, day care centers, kindergartens, and 

schools, and thus, the respective air indoor quality is important for healthy child development. 

Regarding information on PAH pollution in educational environments in USA or Asia, there is indeed 

much to be done as few investigations were conducted (Eiguren-Fernandez et al., 2007; Jyethi et al., 

2014; Ruchirawat et al., 2006, 2007; Tuntawiroon et al., 2007). Most of the existing data originates from 

European schools (Alves et al., 2014; Carpenter & Bushkin-Bedient, 2013; Cirillo et al., 2006; 

Jovanović et al., 2014; Krugly et al., 2014; Moshammer & Neuberger, 2003; Romagnoli et al., 2014;  

Rufo  et  al.,  2015;  Slezakova  et  al., 2015). Further, dissimilar study designs (in terms of PAH 

congeners and/or PM fractions considered) con- found the reported findings. Specifically, for the PS 

environment, particulate (PM2.5) PAH were in a range of 0.4–1.8 ng/m3 in PS in  Southern California 

(Eiguren-Fernandez et al., 2007). For ES 

(in Europe), the reported data varied between highly polluted indoor air of schools in post-communist 

countries (indoor PM2.5–bound PAHs in range of 20.1–131 ng/m3 in Lithuania; Krugly et al., 2014) to 

lower (and similar to this study) indoor PAH pollu- tion in schools located in Rome (Italy) (1.6–16 ng/ 

m3, Cirillo et al., 2006; 0.3–8.3 ng/m3, Romagnoli et al., 2014). 

From the health point of view, it should be noted that at PS indoor PAH content mostly com- prised of 

congeners with 5–6 rings, in agreement with prior studies on indoor air quality in homes in Porto 

(Castro et al., 2011; Slezakova et al., 2009, 2014a). With the increasing number of the aro- matic rings, 

toxicity of the PAH rises; 5–6 rings PAH are thus among the most health relevant compounds. PAH 

with 5–6 rings included in this investigation (except for benzo[ghi]perylene) are classified as human 

(probable and/or possible) carcinogens (benzo[a]pyrene: class 1; others 2A– 2B) (IARC, 2010). The 

carcinogenic congeners comprised 21–56% of ∑PAH in indoor air of ES (mean of 42%) twofold higher 

(53–78%) at PS. These findings are relevant because behavior pat- terns of younger children differ 

from those of 6–10 year olds. It is well established that younger chil- dren are smaller, and thus, their 

breathing zones are closer to the floors and in higher risk of inhal- ing re-suspended dust from floors 

than elementary students. Secondly, 3- to 5-year-old students spend much of their school time on floor 

(playing, crawl- ing, during classes, during nap) and finally tend to put “everything” into their mouth thus 

enhancing their non-nutritive ingestion of suspended PM (Schüepp & Sly, 2012). 

In a view of health protection, WHO defined the priory indoor pollutants which include PAH, but at this 

moment, there are no guidelines for schools or other type of educational environments (WHO, 2010). 

The only reference exists for naphthalene in indoor air (10 μg/m3) (WHO, 2010).  Naphthalene  levels  

in  seven  educational institutions evaluated in this study ranged from 2.01×10 at PS1 to 0.431 ng/m3 

 at ES4 in accor dance with existing recommendation (WHO, 2010). However, data need to be 

interpreted cau- tiously as the reference value is set as annual guideline, and secondly, naphthalene is 

light mole- cular weight PAH, and therefore in air mostly found in the gas phase (Castro et al., 2011; 

Slezakova et al., 2011). 



 

Dibenz[a,h]anthracene (PAH with five aromatic rings) was the predominant PAH in ambient air at all 

seven institutions assessed in this study (approximately 25% ∑PAH at PS, 20–28% at ES). High 

abundance of this PAH is typically due to emissions from light-duty gasoline motor vehicles (Ravindra 

et al., 2008). Dibenz[a,h]anthracene was the predominant compound in indoor air at two PS and 

typically 2–3rd predominant compound found in indoor air at ES. These observations suggest that 

vehicular emissions might be a rele- 

vant source to contribute to indoor PAH pollution in the examined institutions. In agreement, I/O ratios 

of heavy molecular PAH were shown as an outdoor contributor of these congeners to indoor air, both at 

ES and PS. Further, in some cases, I/O values were lower than 0.5 demonstrating the pre- valence of 

outdoor origin. In contrast, I/O ratios of PAH with 2–3 rings indicated a contribution from indoor   

sources   at   the   studied   ES   and   PS. According to the evidence provided by school, personnel 

possible sources of chemicals might be: utilization of artistic materials (solvents, paints, waxes), 

application and use of various cleaning agents, and use of candles during social gatherings and 

birthdays). Similar findings were reported elsewhere (Derudi et al., 2013; Krugly et al., 2014; Morawska 

et al., 2013). 

Due to its general high abundance and toxicity factor (value of 5), dibenz[a,h]anthracene was by far the 

largest contributor to ∑B[a]Peq, both indoors and in ambient air of both PS (93–94% of ∑B[a]Peq) and 

at all 5 ES (91–95%). In contrast, benzo[a]pyrene, class 1 human carcinogen and the most studied 

PAH, contributed approximately only 4–5% and 3–5% of ∑B[a]Peq at PS and 5 ES respectively. Data 

thus indicate the importance of assessment of dibenz[a,h]anthracene as this com- pound is often 

omitted among health-relevant PAH (Okona-Mensah et al., 2005). 

Lifetime lung cancer risks due to total, indoor and outdoor exposure to PAH at both PS and five ES 

exceeded the recommended guideline of 10 designated by WHO (Boström et al., 2002). Indoor and 

outdoor incremental lifetime cancer risks were below USEPA threshold of 10, both at all 5 ES and two 

PS. ILCR due to indoor exposure were, 

respectively, 3- and 3–6-fold higher than outdoors for 3- to 5-year-old and 6- to 10-year-old students, 

mostly due the respective time patterns with 6-hr indoors versus 1–1.5-hr outdoors. Indoor ILCR 

represented 70–85% of the total risks at ES; these contributions were somewhat lower (60–75%) at PS 

where  students  spent more  time  outdoors. It is noteworthy that during the time of this study 3- to 5-

year-old children spent their time outdoors mostly in the afternoon when exposure to atmospheric pol- 

lutants is often increased (Slezakova et al., 2014b; Wang et al., 2011). In addition, when performing 

intensive physical activities outside such as playing and running inhalation rate of children are 

increased (USEPA, 2008) thus potentially leading to enhanced particle deposition especially in the 

upper respiratory tract (Schüepp & Sly, 2012). Finally, in a view of the high contributions of indoor 

ILCR, development and implementation of air quality  guidelines for schools and educational settings 

are necessary in order to provide a healthy and safe environment for children. 



Thus, at the levels that PM–bound PAH were observed at the five ES and two PS, these might pose 

some risks for the population of students and school personnel. The risk estimations are based upon 

the monitoring and assessment of PAH in classrooms as students spent  most of their school time 

there. However, the risks might be even greater if exposures in other rele- vant school 

microenvironments, potentially pol- luted by PAH such as entrance halls, connecting corridors and 

passages, and canteens, are consid- ered. Finally, exposure to PAH at non-school settings including 

homes, during a travel to/ from a school, or while  playing  outside  may also be relevant for risk 

assessments. 
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