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Resumo 

 

O interesse em monitorizar os condutores dos veículos durante a sua condução tem 

vindo a aumentar ao longo dos anos, com o objectivo de tornar as estradas mais seguras 

para condutores e peões. Com este pensamento, surgiu a ideia de desenvolver um sistema 

capaz de monitorizar a fadiga e a sonolência do condutor e, se necessário, alertá-lo sobre o 

seu estado físico e psicológico. O ADAS, conhecido como sendo um sistema de assistência 

avançada para os condutores, é um sistema que monitoriza o desempenho e o 

comportamento do automóvel, bem como as condições físicas e psicológicas do condutor.  

Este sistema pode ter um comportamento passivo, alertando os condutores para 

situações de perigo eminente para que o condutor consiga evitar esses perigos. O LDW, ou 

aviso de mudança de faixa, é capaz de alertar o condutor de uma saída involuntária de faixa 

e o FCW, ou aviso de colisão frontal, consegue alertar o condutor de uma colisão eminente, 

tendo em conta o veículo frontal. 

Por outro lado, o ADAS consegue concretizar acções de forma assegurar a segurança 

dos passageiros e dos peões. O AEB, ou travagem de emergência automática, identifica 

uma colisão eminente e trava sem intervenção do conduto e o LKA, ou assistente de 

manutenção de faixa, que movimenta o veículo para que este não saia da faixa de rodagem. 

Esta dissertação é baseada no projecto CardioWheel, desenvolvido pela empresa 

CardioID, e consiste na monitorização do sinal cardíaco do condutor e na gravação dos 

movimentos realizados pelo volante do veículo durante a condução. O sinal cardíaco, 

conhecido como ECG, é extraído através de eléctrodos secos fixados numa capa em pele 

colocada no volante, que conseguem captar o sinal eléctrico provocado pelo batimento 

cardíaco enquanto o condutor estiver com as mãos no volante. O controlo dos movimentos 

do volante, ou SWA, é conseguido através de um acelerómetro de 3 eixos colocado no 

centro do volante que grava as variações da aceleração instantânea enquanto o condutor 

movimenta o volante. Através dessas acelerações é possível calcular-se o ângulo de 

rotação do volante durante todo o percurso. 

Os dados adquiridos de ECG e SWA geram uma enorme quantidade de informação que 

tem que ser codificada de forma a reduzir a largura de banda necessária à transmissão. 

Técnicas no domínio do tempo, como o AZTEC, TP e o CORTES, estão bem documentadas 

como boas técnicas para compressão de sinal ECG onde o principal objectivo é a obtenção 

da pulsação cardíaca. Dadas as exigências do projecto, concluiu-se que estes métodos não 

seriam os melhores para preservar as características principais do sinal de forma a obter-se 

padrões de fadiga e sonolência. Outros métodos de codificação com e sem perdas foram 

testados tanto para compressão de sinal ECG como para SWA e pode-se concluir que o 
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método híbrido de Codificação Linear Preditiva com a técnica Lempel-Ziv-Welch é o método 

sem perdas em que se obteve maior rácio de compressão. Por outro lado, outro método 

hibrido utilizando escalamento de amplitude com DWT, provou ser o método com perdas 

com maior rácio de compressão onde o erro quadrático médio é reduzido. 

A transmissão da informação comprimida é assegurada através de um módulo BLE, 

presente no CardioWheel, no entanto, foi possível concluir que outras tecnologias como 

ZigBee ou ANT seriam igualmente compatíveis com o propósito do projecto. Foi 

desenvolvido especificamente para este projecto um perfil BLE com a capacidade de 

transmitir a informação do sinal ECG e do acelerómetro em tempo real. 

Para detectar se o condutor está a apresentar sinais de fadiga ou sonolência, foram 

testados vários algoritmos de aprendizagem automática que, de acordo com a informação 

ECG e do acelerómetro enviada pelo volante, conseguem detectar esses padrões. A escala 

KSS, é uma escala subjectiva que identifica o nível de sonolência de uma pessoa e que 

permite a classificação do nível de sonolência do condutor. 

Para construir um algoritmo de inteligência artificial é necessário extrair-se 

características dos sinais a interpretar. Essas características têm que descrever o sinal de 

forma precisa para que os algoritmos de aprendizagem automática consigam interpretar e 

classificar cada sinal da forma adequada. Características como ritmo cardíaco ou amplitude 

da onda R são exemplos de características utilizadas para descrever o sinal ECG. 

Características como tempo com o volante estático e aceleração média são exemplos de 

características utilizadas para descrever o sinal de SWA. 

Para além das características, um algoritmo de aprendizagem automática necessita de 

uma base de dados que consiga cobrir todas as situações possíveis para que o algoritmo, 

olhando para os dados inseridos, consiga detectar os padrões nas características para cada 

resultado final possível. 

Métodos de regressão foram implementados de forma e testar o seu desempenho para 

um problema de classificação, no entanto, não provaram ser os melhores métodos para 

essa abordagem. De todas as técnicas de classificação testadas, o método de SVM, ou 

máquina de vectores de suporte, provou ser o que obtém melhores resultados de 

classificação. 

Com os resultados obtidos será possível implementar-se um sistema de alarmística que 

consiga avisar o condutor sobre o seu estado físico e psicológico, aumentando assim a 

segurança rodoviária. 

 

Palavras-chave: 

 ECG, Acelerómetro, Sonolência, Fadiga, Compressão, BLE, Aprendizagem 

automática.  
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Abstract 

 

The interest in monitoring a driver’s performance has increased in the past years in order 

to make the roads safer both for drivers and pedestrians. With this thinking in mind, it arises 

the idea of developing a system to monitor driver’s fatigue and drowsiness to alert him, if 

needed, about his psychological and physical states. 

 This dissertation is based on the CardioWheel system, developed by CardioID, and 

consists in monitoring the person’s ECG signal and to record the motion of the steering 

wheel during the journey. The ECG signal is extracted with dry-electrodes placed in a 

conductive leather covering the steering wheel that can sense the electrical signal caused by 

the heartbeat of the person while having the hands on the wheel. The steering wheel 

movement monitoring is performed with the help of a three-axis accelerometer placed in the 

middle of the steering wheel that records the proper acceleration variations while moving the 

steering wheel. With those accelerations it is possible to calculate the steering wheel rotation 

angle during all the journey. 

 The amount of data acquired with this system undergoes a compression stage for 

transmission with the goal of reducing the necessary bandwidth. From the evaluated 

techniques for data compression, it was possible to conclude that the hybrid method using 

Linear Predictive Coding and Lempel-Ziv-Welch is the lossless technique with the highest 

Compression Ratio. However, the hybrid technique using amplitude scaling e DWT is the 

lossy method with the highest Compression Ratio and a reduced RMSE. 

 The transmission of the compressed data is done via Bluetooth® Low Energy, available in 

the CardioWheel system, with an exclusive profile developed for this dissertation. This profile 

has the ability to transmit the ECG and accelerometer data in real time. 

To detect if the driver is becoming drowsy, were evaluated machine learning algorithms 

to detect fatigue and drowsiness patterns according to the received ECG and accelerometer 

data from the steering wheel. Many features were extracted to describe the main 

characteristics from both signals and, from all the tested techniques, the Support Vector 

Machine technique proved to be the best classification method with the higher accuracy in 

classification. 

With these tested results, it could be possible to implement an alarmistic system, to warn 

the driver about his psychological and physical states, increasing the safety in the roads. 

 

Keywords:  

 ECG, Accelerometer, Drowsiness, Fatigue, Compression, BLE, Machine learning. 
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Chapter 1  

Introduction 

 

1.1 Motivation 

 

Fatigue and drowsiness are two factors that affect the driving abilities of each person. 

There is an increasing interest in the development of Advanced Driver Assistance Systems 

(ADAS) [1], which monitors the vehicle performance and behaviour, as well as the physical 

and psychological conditions of the driver. 

Acting as a passive system, ADAS alerts drivers of a potentially dangerous situation so 

that a driver can take action to correct it. For example, Lane Departure Warning (LDW) alerts 

the driver of unintended lane departure, and Forward Collision Warning (FCW) indicates that 

under the current dynamics relative to the vehicle ahead, a collision is imminent. 

In contrast, ADAS can take action to ensure the safety of the passengers and 

pedestrians. For example, Automatic Emergency Braking (AEB) identifies the imminent 

collision and brakes without any driver intervention, and Lane Keeping Assist (LKA) 

automatically steers the vehicle to stay within the lane boundaries. 

To find patterns in the driving style of each person, there are several sensors in the 

market that enable the monitorisation of the driver’s condition. Accelerometers, for example, 

are inertial sensors that measure the proper acceleration applied to an object, called g force. 

They can be placed on the automobile’s steering wheel to monitor their movements.  

In addition to the use of inertial signals, physiological signals can be monitored, such as, 

the electrocardiogram (ECG) signal. The cardiac signal can be obtained with the aid of dry-

electrodes placed on the vehicle’s steering wheel, such that, in contact with the human skin, 

it detects the electrical signals caused by the heartbeat.  

The fatigue and drowsiness detection could be achieved with techniques from a subset of 

artificial intelligence, named machine learning. Machine learning algorithms use statistical 

techniques to give computers the ability to learn data, without being explicitly programmed 

for that purpose. With these methods, it is possible to identify the sleepiness characteristics 

in both ECG and accelerometer data and to predict if the driver is having some sights of 

sleepiness. 
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1.2 The proposed approach 

 

The global approach for this dissertation is composed by two main parts: the acquisition 

system and the gateway solution. The acquisition system is responsible for all data 

collection, pre-processing, and transmission. The gateway solution is responsible for data 

reception, classification, and alarm activation. 

Figure 1 illustrates the proposed system approach. 

 

 

 

In the acquisition system, the accelerometer and the ECG system will work for the entire 

driving period, which can last several hours. So, with the amount of acquired data, it is 

expected a significant volume of information to store and thereby, it is necessary to 

compress the data in order to require less storage space.  

There is a lot of research in this area in which different compression methods such as 

Amplitude Zone Time Epoch Coding (AZTEC), Turning Point (TP), Coordinate Reduction 

Time Encoding Scheme (CORTES), Discrete Cosine Transform (DCT), Discrete Wavelet 

Transform (DWT), Huffman, Lempel-Ziv-Welch (LZW), Differential Pulse Code Modulation 

(DPCM), Linear Predictive Coding (LPC) or Run-Length Encoding (RLE), were tested for 

ECG signal compression, in the way to find the algorithm that gets the best compression 

ratio without introducing a significant error. It will be necessary to evaluate whether the 

methods used for ECG signal compression are equally valid for the compression of the 

inertial signals obtained with the aid of the accelerometer. 

Figure 1 – Illustration of the system to be implemented. 
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In addition to the compression, a way of not having to store large amounts of bits is to 

transmit that information via wireless to databases not physically attached to the acquisition 

system. Technologies such as Bluetooth® Low Energy (BLE), ZigBee or ANT may be the 

solution to this problem and it is necessary to know which of these wireless technologies best 

suits to the problem of transmitting the compressed data to a processing unit outside the 

acquisition system.  

The CardioWheel [2] system, developed by CardioID, allows the acquisition of ECG and 

accelerometer signals in a non-intrusive way, with a BLE module for wireless transmission 

purposes. 

In the gateway solution, upon receiving the transmitted data it is required a trained 

machine learning algorithm to classify the incoming data and to predict if the driver is in a 

capable state to keep driving. Random Forest (RF), Artificial Neural Networks (ANN) and 

Support Vector Machines (SVM) were tested for ECG and accelerometer data classification 

in a way to identify the patterns of sleepiness in both signals to get a high accuracy in 

classification. 

The gateway solution will be responsible for the activation of an alarmistic system that 

can warn the driver in case it was detected fatigue and drowsiness patterns in the extracted 

signals. 

 

1.3 Document organisation 

 

The remainder of this dissertation is composed by seven chapters, described as follows: 

 

• Chapter 2, Monitoring Systems, Sensors and Biological Signals, where the 

theoretical concepts of the accelerometer and ECG signals are discussed, giving 

an overview of the techniques to acquire and to measure these signals; 

 

• Chapter 3, Data Pre-processing and Compression, that describes the basic 

concepts for data processing, and also explains some of the data compression 

algorithms for lossy and lossless encoding. 

 

• Chapter 4, Wireless Technologies, where some of the low-power wireless 

transmission methods are introduced and compared to assess which one best 

suits for transmitting compressed data at short distances. 
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• Chapter 5, Learning from Data, outlines the process for data classification, 

including the feature extraction, the operation of some machine learning 

algorithms and their performance assessment.  

 

• Chapter 6, Proposed Solution, defines the practical problem addressed in this 

dissertation and the possible solutions, with an initial analysis of what will be 

tested and could be implemented. 

 

• Chapter 7, Experimental Evaluation, describes the implementations and all the 

simulated tests that were carried out, for compression and classification, with a 

comparison based on metrics.  

 

• Chapter 8, Conclusion, summarises all the conclusions taken from the 

experiments and what could be done to improve and to finish the overall project’s 

global approach. 
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Chapter 2  

Monitoring Systems, Sensors and Biological 

Signals 

 

Monitoring systems are sensors or devices that measure parameters for a given purpose. 

There are two main types of monitoring: direct monitoring and indirect monitoring. Fatigue 

and drowsiness lead to a modification in the person’s biological signals, and these types of 

monitoring are used to get information about the person’s physical and psychological 

behaviour for medical, fitness or safety purposes. 

This chapter is composed by three main folds. The monitoring systems fold contains 

section 2.1, Direct and indirect monitoring systems, where it is described the advantages and 

disadvantages of those two types of monitoring. Section 2.1.1, Integrated monitoring 

systems, addresses a specific type of indirect monitoring that is implemented in the vehicles 

nowadays.  

The sensors fold, that includes section 2.2, Accelerometers, explains how an 

accelerometer operates and the importance of this sensor on the daily basis. The last main 

fold, the biological signals fold, includes section 2.3, ECG signal, that explains the theoretical 

aspects of an ECG signal and how its analysis is carried out, section 2.3.1, ECG signal 

acquisition methods, that shows two different ways to collect ECG data, and section 2.4, 

Fatigue and drowsiness, that explains the differences between these two words and how it is 

classified.  

 

2.1 Direct and indirect monitoring systems 

 

Nowadays, the monitorisation of human behaviour is increasing, whether for health care 

purposes in a medical basis or for the person’s well-being, like in fitness or safety. It is 

possible to perform these monitoring with direct or indirect monitoring systems. 

Direct monitoring systems deal with physiological signals or with a person’s behaviour, for 

example, facial expressions, yawning, eye tracking and blinking, electrooculogram (EOG) 

electroencephalogram (EEG), electrocardiogram (ECG) and heart rate, body temperature, 

among others. The main advantages of these methods are [3]: 

• Accuracy – measurements are under medical investigation and supervision; 

• Universality – the results are valid or are directly linked with scientific or 

commercial domains; 



 

6 
 

• Versatility – the experiments can be tested in a laboratory environment since it is 

simple to reproduce good real conditions for the task of interest. 

 

However, using this kind of monitoring, there are some disadvantages such as [3]:  

• Privacy invasion – measurements can describe a lot of physical and psychological 

conditions of the individual; 

• High sensitive – light, weather, dress or accessories, actual health conditions can 

decrease the precision of the measures. 

 

Indirect monitoring systems interact with the objects controlled by the individual, for 

example, in an automobile, it is possible to monitor the steering wheel movements, pedal 

acceleration (gas or break), sitting position, as well as other indicators. Unlike direct 

monitoring systems, the main advantages of this kind of monitoring are [3]: 

• Robustness – the influence caused by external sources like weather, cannot 

nullify the measurement; 

• Privacy – the methods are non-intrusive to the individual; 

 

On the other hand, these systems have the following disadvantages [3]: 

• Experimental rigorous – to achieve significant results, the tests should be done 

using real conditions to best suit the measurements to the real environment; 

• Low applicability – even the promising results usually cannot be reused in other 

research domains and are focused on a specific problem. 

 

The best choice between these methods depends on the application. 

 

 Integrated monitoring systems 

 

There are several electrical systems implemented in vehicles nowadays that make 

possible the motion control of the steering wheel, in an indirect way. One of these systems is 

the rotary encoder and it can be built in different ways [4]. 

An optical rotary encoder has a glass disc, with some opaque concentric rings with gaps 

in each other. In one side of the disc there is a light source that illuminates the disc and the 

light that passes through the glass disc is caught by an array of photodetectors that reads the 

combination of non-opaque areas.  

Figure 2 illustrates how an optical rotary encoder system operates. 
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A mechanical rotary encoder is composed by a metal disc, containing a set of concentric 

rings with gaps in each other. Attached to this metal ring, there is a stationary object with a 

set of electrical sensors holding as much sensors as the number of concentric rings. As the 

metal disc rotates, the electrical sensors will read a combination of electrical current. There is 

other interesting technique under the mechanical rotary encoder that allows the electrical 

connection between a stationary object with a rotational one – the slip ring. 

The slip ring is composed by a set of brushes for each concentric ring which rubs on the 

rotating metal rings. As the disc rotates, the electric current is conducted through the 

stationary brushes. 

Figure 3 represents an example of a pancake slip ring. 

 

 

 

Figure 3 – Example of a pancake slip ring that can be used in a mechanical rotary encoder. 

Figure 2 – Illustration of an optical rotary encoder. 
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It is considered an absolute rotary technique when the output of these two encoding 

methods is a binary value that represents a unique steering wheel angle. However, it is 

possible to create an incremental rotary encoder where the disc has interpolated stripes and 

the angle calculation is done by the number of stripes counted during the motion. It 

increments or decrements the angle value with the number of stripes counted, depending if it 

performs a clockwise or counter clockwise move. 

There are several other ways to implement this rotary encoder, but all are based in these 

main principles. Figure 4 illustrates an example of metal/glass disc of an absolute 

combination and an example of a two-track incremental disc. 

 

 

 

2.2 Accelerometers 

 

An accelerometer is an inertial sensor that measures the proper acceleration of an object, 

named as 𝑔 force [5]. This acceleration is different from the acceleration as the time rate of 

the speed variation and is measured according to an axial complex present in the device. 

There are accelerometers with only three axes (x, y, and z) and others with six axes that 

are designated as gyroscopes. These more complex accelerometers have the ability to 

detect rotations on each of the three axes (x, y, and z), and it is possible to monitor rotational 

movements on the accelerometer besides the axial acceleration. 

Based on Newton's laws, when an object suffers acceleration, the mass, by the effect of 

inertia, tends to conserve its velocity, moving in the direction of an axis. This situation can be 

exemplified through a half-full glass of water. As we push the glass, causing acceleration, the 

water will move relative to the glass. The intensity of this movement gives a measure of 

acceleration that will be read by the accelerometer. The mechanical accelerometers operate 

Figure 4 – Example of an absolute disc combination (left) and a two-track 
incremental disc (right). 
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in a similar way. They are composed by a moving mass between fixed masses. As the 

moving mass comes near or moves away from the fixed masses, the capacitance measured 

in each fixed mass changes with the distance to the moving mass, making possible the 

measurement of the proper acceleration. 

Figure 5 represents a model for the measurement of the proper acceleration in one axis. 

 

 

 

A free fall accelerometer cannot get any reading, however it is known that the 

acceleration caused by gravity is 1 𝑔, meaning 9.81 𝑚/𝑠2. On the other hand, if the 

accelerometer is in a flat surface it will measure 1 𝑔 of acceleration on an axis that is parallel 

to the vector of the gravitational acceleration. 

Nowadays, accelerometers are used in a wide range of applications, such as in 

seismographs, impact measurement systems, motion sensors used in some gaming 

controllers, tilt sensors found in almost all smartphones as well as in automobile steering 

wheel for motion monitoring. 

 

2.3 ECG signal 

 

The electrocardiogram (ECG) signal is the electrical signal that the heart emits through 

successive contractions and distensions of the heart muscle, named myocardium [6] [7]. This 

signal is easily distinguished from other electrical signals by having a distinctive format where 

it is possible to identify five types of wave – P, Q, R, S, and T. In some cases, it is possible to 

identify a sixth wave called U.  

Figure 5 – Mechanical model of an accelerometer. 
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Figure 6 – Representation of an ECG signal and its waves [5]. 

Figure 6 shows the typical form of an ECG signal and its waves. 

 

 

 

The medical analysis of an ECG signal focuses mainly on the QRS wave complex. 

However, the P and T waves also have a high clinical value. Cardiac abnormalities are 

detected by considering the mean amplitude of each wave as well as the time intervals 

between them. Typically, the signal voltage values may range from 1 to 10 mV, with signal 

frequency values ranging from 0.05 to 100 Hz and a heart rate oscillating from 60 to 100 

beats per minute [7]. 

Table 1 shows the mean voltage and duration values for each wave. 

 

Table 1 – Amplitude and duration of the various ECG waves [7].  

Amplitude [mV] 

P wave 0.25 

R wave 1.60 

Q wave 25% of the R wave 

T wave Between 0.1 and 0.5 

Duration [s] 

P-R interval Between 0.12 and 0.2 

Q-T interval Between 0.35 and 0.44 

S-T interval Between 0.05 and 0.15 

P wave 0.11 

QRS complex 0.09 
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 ECG signal acquisition methods 

 

The acquisition of ECG signals can be done in two different ways: using intrusive or non-

intrusive methods [8]. These acquisition methods have their own advantages/disadvantages 

and proper situations to use.  

Intrusive methods are used in clinical settings where biological signals are extracted 

using devices placed in the human skin. These components are placed on the surface of the 

human body using a gel or a conductive paste that enables a better contact with the skin 

and, consequently, a better capture of the cardiac signals. These clinical methods may 

require the placement of, for example, up to twelve electrodes on the surface of the body to 

extract a good ECG signal and are limited to a small physical space of use, such as an 

ambulance, or a treatment room. 

Non-intrusive methods allow the acquisition of signals where sensors do not have to be 

placed in the body, but in objects of everyday use. The purpose of these methods is to make 

the acquisition of signals almost involuntarily, without having an impact on the person’s daily 

actions. The components used in this method are called dry-electrodes as they do not 

require the use of any conductive gels or pastes, taking advantage of human perspiration to 

improve contact with the individual's skin. These electrodes can be placed on any equipment, 

such as, for example, computer mice, keyboards, mobile phones, watches and cars’ steering 

wheels. To obtain an acceptable biometric signal using this method only two electrodes are 

required, however this method becomes much less resistant to noise, making the signal 

processing more complex and harder to implement. After signal processing it is possible to 

achieve the very same performance as with hospital systems.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 
 

Figure 7 illustrates the differences between these two ways for acquiring an ECG signal.  

 

 

Figure 7 – Difference between an intrusive (green) and non-intrusive (blue) ECG signal 
acquisition. 

 

 

2.4 Fatigue and drowsiness 

 

Sometimes, fatigue and drowsiness are used to describe the same situation. These two 

words are quite related however they have a distinctive meaning [9]. 

Fatigue is a physical or psychological exhaustion. A person feels fatigued when, for 

example, goes to gyms and have worked his muscles and heart rate for a reasonable 

amount of time or when it has solved a large amount of complex mathematical problems. 

Fatigue, usually outcomes from doing the same task repeatedly or in an exhaustive way and 

it’s the feeling of “I don’t want to do this any longer”. When the fatigue requires a rest, it could 

cause a person to fall in a drowsiness state. 

Drowsiness is defined by the state before sleep. When a person is drowsy, he requires to 

sleep, and his body is fighting to stay awake. Drowsiness can interfere more actively than 

fatigue in the daily basis affecting concentration, reaction time, productivity and safety. Some 

medications induce drowsiness, but it is mostly related with sleeping habits, as people that 

have a good quality and a good quantity of sleep have more resistance of being in 

drowsiness state, for a longer period. 
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To classify the drowsiness state, there is a metric named Karolinska Sleepiness Scale 

(KSS) [10]. This is a subjective method, using a 10-point Likert scale [11], where the person 

classifies his sleepiness in periods of 5 minutes. Table 2 describes the KSS scale. 

 

Table 2 – KSS scale value description [10]. 

Value Description 

1 Extremely alert 

2 Very alert 

3 Alert 

4 Rather alert 

5 Neither alert nor sleepy 

6 Some signs of sleepiness  

7 Sleepy, but no effort to keep awake 

8 Sleepy, but some effort to keep awake 

9 Very sleepy, great effort to keep awake, fighting sleep 

10 Extremely sleepy, can’t keep awake 
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Chapter 3  

Data Pre-processing and Compression 

 

Acquiring data from various sensors usually implies that a large amount of data needs to 

be stored locally or sent to other devices. A good compression technique can save a large 

amount of disk space or bandwidth, depending on the purpose. 

This chapter describes pre-processing and compression techniques. First, section 3.1, 

Pre-processing the data, addresses simple techniques to modify data according the needs, 

such as filtering and amplitude scaling. Section 3.2, ECG data direct time-domain 

techniques, gives an overview of direct time-domain methods that were tested for ECG data 

compression, such as Amplitude Zone Time Epoch Coding (AZTEC), Turning Point (TP) and 

Coordinate Reduction Time Encoding Scheme (CORTES). Section 3.3, Lossless encoding 

techniques, mentions entropy coding methods, such as Huffman coding, dictionary coding 

methods, such as Lempel-Ziv-Welch (LZW) coding and the DEFLATE algorithm, basic 

modulation techniques, such as Differential Pulse Code Modulation (DPCM), predictive 

coding techniques, such as Linear Predictive Coding (LPC) and “AD-HOC” techniques, such 

as Run-Length Encoding (RLE). Section 3.4, Lossy encoding techniques, describes 

transform-based methods are discussed, such as Discrete Cosine Transform (DCT) and 

Discrete Wavelet Transform (DWT). Section 3.5, Compression and distortion metrics, 

enumerates the metrics used to evaluate the compression techniques in terms of 

compression and distortion. Finally, with the existence of two types of encoding, lossless and 

lossy, comes the need to select the appropriate situations to apply each technique, as 

explained, in section 3.6, Comparison between lossless and lossy compression. 

 

3.1 Pre-processing the data 

 

Digital signals, right after being acquired, are not clearly understandable for humans or 

machines, having high amplitudes, noise, offsets, among other deformities. This raw data 

could be difficult to work with as these factors could be amplified, degrading the signal and 

making impossible to understand the data. Before carrying out signal processing, it is 

necessary to perform some simple actions that can help to analyse the signal. 
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 Filtering 

 

Filtering is the action of removing some band of frequencies from the signal. For low 

frequency signals, like biological signals, there is a great concern about low frequency 

noises. 

There are four types of filters, according to their cut-off band [12]: Low-Pass, High-Pass, 

Band-Pass and Band-Reject filters. Low-Pass Filters (LPF) and High-Pass Filters (HPF) cut 

the bands, above and below the cut-off frequency (𝑓𝑐), respectively. Band-Pass Filters (BPF) 

have two cut-off frequencies. These two cut-off frequencies define the lower and upper limits 

of the filter, keeping only the frequencies between these two. Band-Reject Filters (BRF) are 

the opposite of Band-Pass Filters, cutting a specific frequency band – the rejection band. 

Figure 8 represents the frequency responses of the mentioned filters. 

 

 

 

 

Figure 8 – Representation of an LPF (top left), HPF (top right), BPF (bottom left) 
and BRF (bottom right) filters’ frequency responses. 
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Besides the filtering type, the filtering can be done using two types of digital filters [12] 

[13] [14]: Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) filters. FIR filters 

are non-recursive filters, as the output only depends on the present input and on a delayed 

input, characterised for having a linear phase response across the frequency spectrum. IIR 

filters have the output depending on the present input, on a delayed input and on a delayed 

output, being a recursive filter and having a non-linear phase response. This introduces 

distortion in the output signal but, on the other hand, IIR filters are better in computational 

cost, being more efficient, and being able to have lower filter order to obtain the same 

frequency response as a FIR filter. 

The order of the filter is related to the number of the delayed samples used to compute 

the output. As the number of delayed samples used increases, the order of the filter 

increases as well, making the filter with sharper transitions. 

Figure 9 and Figure 10 represent, respectively, the block diagrams and the phase 

responses of FIR and IIR filters. 

 

 

Figure 9 – Block diagram of a FIR filter (left) and an IIR filter (right). 

Figure 10 – Examples of FIR (red) and IIR (blue) filters’ phase responses [14]. 
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The alternating electric current, which provides energy to the equipment, has an 

associated frequency of 60 Hz, in most of the American continent, and 50 Hz, for the rest of 

the world. It can be said that the signal acquisition devices, when connected to this current, 

end up being over its influence. Since the ECG signal is a low-frequency signal, this means 

that these 50 Hz or 60 Hz frequency components will be present in the acquired signals [15]. 

 

 Amplitude scaling 

 

The amplitude scaling is a technique that significantly reduces the amplitude of a signal in 

a simple way. This technique consists in dividing a signal, analogue or digital, by a scaling 

factor. This factor must be greater than 1 in order to have a reduction in the maximum and 

minimum amplitudes of the signal, reducing its dynamic range. For a digital signal, the 

scaling coefficient can be calculated by: 

𝑪𝒔𝒄𝒂𝒍𝒊𝒏𝒈 =
𝟐𝑵𝒃𝒊𝒕𝒔𝒒

𝟐𝑵𝒃𝒊𝒕𝒔𝒕
                    (1) 

 

where 𝑁𝑏𝑖𝑡𝑠𝑞 is the number of bits of the input quantised signal and 𝑁𝑏𝑖𝑡𝑠𝑡 is the number 

of the desired bits per sample. 

This technique could be used for compression, since reducing the signal’s amplitude, 

reduces the data bit-range, reducing the storage space needed. However, when dividing a 

digital signal by a coefficient, the new scaled samples could have a decimal part, that may be 

discarded by the processors, disabling the opportunity to rescale the signal to its original 

amplitude. 

 

 

3.2 Direct time-domain techniques 

 

Some of the studied compression methods in ECG data are the direct time-domain 

techniques. These methods are often used in heartbeat detection and counting, achieving 

good compression ratios but failing in the reconstruction of the signals, introducing distortion 

to the ECG signal.  

 

 Amplitude Zone Time Epoch Coding 

 

The Amplitude Zone Time Epoch Coding (AZTEC) [16] [17] algorithm converts raw ECG 

samples into plateaus and slopes. The AZTEC plateaus are produced by utilising Zero-Order 
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Interpolators (ZOI) [17]. The stored values for each plateau are the amplitude and length 

values of the line. The length value is the number of samples that can be interpolated within 

an aperture. 

The production of an AZTEC slope starts when the number of samples needed to form a 

plateau is less than 3. The slope is saved whenever a plateau of 3 samples or more can be 

formed. The stored values for the slope are the duration (number of samples of the slope) 

and the final elevation (amplitude of the last sample point). 

The signal reconstruction is achieved by expanding the AZTEC plateaus and slopes into 

a discrete sequence of data points. 

 

 Turning Point 

 

The main purpose of the Turning Point (TP) [16] [17] data reduction algorithm is to reduce 

the sampling frequency of an ECG signal from 200 to 100 Hz, without weakening the 

elevation of large amplitudes, given by the QRS complex. 

The algorithm processes 3 data points at a time: a reference point (𝑋0) and two 

consecutive data points (𝑋1 and 𝑋2). Only the reference point (𝑋0) and one data point, 𝑋1 or 

𝑋2, is preserved, depending on which point best conserves the slope of the original 3 points.  

 

 Coordinate Reduction Time Encoding Scheme 

 

The Coordinate Reduction Time Encoding Scheme (CORTES) [16] [17] algorithm is a 

hybrid of AZTEC and TP. CORTES applies TP to high frequency regions, such as QRS 

complexes, while applies AZTEC to the isoelectric regions of the ECG signal. The AZTEC 

and TP are applied in parallel to the incoming sampled ECG data. Whenever an AZTEC line 

is produced, a decision based on the length of the line is used to determinate whether the 

AZTEC data or the TP data is to be saved. If the line is longer than an empirically determined 

threshold, the AZTEC line is saved, otherwise, the TP data are saved. Only AZTEC plateaus 

are generated, AZTEC slopes are not produced. 

The reconstruction is achieved by expanding the AZTEC plateaus into discrete data point 

and interpolating between each pair of the TP data. 
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3.3 Lossless encoding techniques 

 

Lossless encoding techniques are often named source coding techniques. The primary 

objective of source coding is to represent a signal with a reduced number of binary symbols 

without distortion and can be classified in two major groups: entropy coding and dictionary-

based coding. The lossless compression is achieved by removing the redundancy often 

found in raw data. 

 

 Huffman coding 

 

The Huffman [18] [19] [20] [21] coding is an entropy source coding method that produces 

a variable length code. This coding is based on the probabilities of occurrence of each 

sample, where the most likely sample is encoded with fewer bits. 

The Huffman encoding consists in a construction of a tree where the symbols to be coded 

represent the branches and are arranged by probability in descending order, from the top to 

the bottom, as illustrated by Figure 11.  

 

 

 

The method consists in successively adding up the two lowest probabilities by creating a 

new symbol with a probability equal to the sum of the two. These two symbols are assigned 

with the binary value of "0" and "1" to the one with less and greater occurrence, respectively. 

This methodology ends when the sum of the two lowest probabilities is 100%, creating a 

node called the root node. After this procedure is finished, each symbol is represented by the 

Figure 11 - Example of a Huffman coding tree. 
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set of "0" or "1" from the root node to the symbol to be encoded, as exemplified in Figure 11 

with the red line.  

To perform the decoding, it is necessary that the receiver has the same tree used for 

encoding. The encoder matches the binary symbol received with the respective coded 

symbol. Without the coding tree it becomes impossible to reconstruct the original signal, 

offering some security to the information since only the receivers with the encoding tree are 

capable to decode the data. 

 

 Lempel-Ziv-Welch coding 

 

The Lempel-Ziv-Welch (LZW) [18] [19] [20] [22] algorithm derives from the Lempel-Ziv 78 

(LZ78) [23] algorithm, used in the compression of GIF image files, known as a dictionary-

based method. The LZW dictionary is initially created with a set of code-words of 𝑛 bits and, 

as the encoding is done, new entries will be added to the dictionary with combined sets of 

the 𝑛-bit code-words. Whenever a pair of symbols is read, the algorithm tries to find it in the 

dictionary, if the pair is not in the dictionary, the algorithm adds it for a future use. As the 

dictionary holds more entries, the algorithm becomes faster and with better compression 

ratio. 

The decoder builds the same dictionary created by the encoder, having only the same 𝑛-

bit initial inputs as in the encoder. The decoder reads a pair of encoded symbols, if the 

second encoded symbol is in the dictionary, it translates it to the original value, if not, it adds 

the pair of the two symbols to the dictionary as a new entry and reads a new symbol. This 

way, the new entries of the dictionary are added in the same way that was done by the 

encoder, making the data decoding possible.  

With the amount of data that could be encoded, and with a limited dictionary size, it is 

expected that the dictionary could be filled up before all the data is encoded. This means that 

after the dictionary becomes full, the new entries cannot be added to the dictionary, limiting 

the compression performance of the algorithm. To overcome this, the algorithm replaces the 

oldest entry in the dictionary by the new one, never stopping the process of adding new 

entries. 

Figure 12 represents the flowcharts that describe the various steps of compression and 

decompression performed by the LZW algorithm. The variable CHAR represents a 𝑛-bit 

code-word and the variable STRING is a sequence of CHARs.  
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 DEFLATE algorithm 

 

The DEFLATE [24] compression algorithm is based on the Lempel-Ziv 77 (LZ77) [23] 

algorithm, for duplicate string elimination, followed by Huffman coding, for bit reduction. 

This compression method is used when compressing files into a ZIP file extension.  

The DEFLATE algorithm consists in dividing all the input data into blocks. For each 

block, the LZ77 algorithm finds repeated substrings and replaces the next occurrence of 

that substring by a pointer to the previous substring, with a pair of coordinates – distance 

and length. If a substring does not occur again it is not compressed, and the original 

sequence is kept. The original sequences and the match lengths are compressed with 

one Huffman tree and the match distances are compressed with another tree. 

The Huffman trees created are encoded to go along with the rest of the data, so the 

receiver does not need to build the Huffman tree to decode the data. The Huffman trees 

Figure 12 – Flowcharts of LZW compression (left) and decompression algorithms (right) [19]. 
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are transmitted by their code-lengths. These code-lengths are put all together into a 

sequence of numbers between 0 and 8 and once they are assembled they are 

compressed with Run-Length Encoding (RLE). 

Once the receiver gets this encoded message it decompresses by doing the inverse 

actions by the reverse order. It decodes the Huffman trees, so it can get the match 

lengths and distances and the original sequences.  

 

 Differential Pulse Code Modulation 

 

Pulse Code Modulation (PCM) [25] is the method used to convert an analogue signal to 

digital. This process consists in three steps – Sampling, Quantisation and Encoding. 

Differential Pulse Code Modulation (DPCM) [18] [25] is a PCM technique that takes 

advantage of the resemblance between consecutive samples of a low-frequency signal. With 

this coding method, it is possible to represent a sample knowing the previous one, only being 

required to transmit the difference between two consecutive samples. 

This technique can be used for signal compression if applied to a low-frequency signal, 

once the differences between consecutive samples have smaller values than the original 

amplitude of the signal. In high-frequency signals, this difference between consecutive 

samples could be greater than the original amplitude of the signal, not having any advantage 

for compression. 

Figure 13 shows the block diagrams of the DPCM encoder and decoder. 

Figure 13 – Block diagrams of a DPCM encoder (top) and 
decoder (bottom). [Adapted from 32] 
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 Linear Predictive Coding 

 

Linear Predictive Coding (LPC) [26] [27] is a type of predictive encoding used to process 

audio and speech signals. This type of coding is characterised by being an Auto-Regressive 

(AR) model [27], that is, a sample is linearly dependent on the previous samples. 

The main idea of LPC is the transmission of an error 𝑒[𝑛], which results from the 

subtraction between the original signal 𝑚[𝑛] and the predicted signal 𝑝[𝑛]. The predicted 

signal is calculated by multiplying each original sample by a coefficient 𝑎𝑖. These coefficients 

are extracted by the autocorrelation of the signal, and the number of coefficients 𝑐 to 

estimate the predicted signal depends on the purpose. Both signals mentioned above can be 

represented by: 

𝒑[𝒏] = 𝒂𝟏𝒎[𝒏 − 𝟏] − 𝒂𝟐𝒎[𝒏 − 𝟐] −⋯− 𝒂𝒄𝒎[𝒏 − 𝒄]         (2) 
 

𝒆[𝒏] = 𝒎[𝒏] − 𝒑[𝒏]                   (3) 
 

where 𝑛 represents the sample to be encoded. With this method, instead of transmitting a 

signal with a dynamic range equal to 𝑚[𝑛], the error 𝑒[𝑛] is transmitted, which will have a 

dynamic range significantly lower than 𝑚[𝑛]. 

The decoding is done considering the error 𝑒[𝑛], the coefficients 𝑎𝑖, and the first 𝑐 

samples of the original signal. With this, 𝑝[𝑛] is calculated with the same equation as in the 

transmitter and the 𝑝[𝑛 + 𝑖] is calculated with the previous predicted samples. The signal 

𝑚[𝑛] is reconstructed with the following expression: 

𝒎[𝒏] = 𝒑[𝒏] + 𝒆[𝒏]                   (4) 
 

LPC and DPCM are two techniques that are quite related. It can be said that the LPC is 

equivalent to DPCM technique when there is only one coefficient 𝑎1 and that coefficient is 

equal to 1. 

 

 Run-Length Encoding 

 

The Run-Length Encoding (RLE) [18] [20] technique is a very simple method used to 

compress simple image files such as in the Bitmap (BMP) format, such as icons and 

animations. This technique consists in replacing the sets of repeated successive samples by 

the repeated sample value attached to the number of times that sample is successively 

repeated.Given the following set of samples: 

35,35,35,35,35,47,47,12,12,12,12,12,12,12,12,96,51,51,51,51,51,47,47,47,47 
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this set of samples can be written this way after RLE: 

35,4,47,1,12,7,96,0,51,4,47,3 

 

where the even samples represent the number of times the odd sample that precedes it 

is repeated successively in the original set. If an even sample is equal to 0, it means that the 

previous sample was not successively repeated in the set of samples.  

 

3.4  Lossy encoding techniques 

 

Transformation-based methods are the most used techniques to perform lossy encoding 

of audio and image data. The transformation methods are lossless, but they are usually 

applied to enable better coefficient quantisation, introducing loss, which results in a lower 

quality output with high compression ratios. These techniques consist in discarding less 

significant information, which tends to be irrelevant to the human perception of the 

multimedia content. 

Figure 14 represents the block diagram of the lossy encoding techniques. 

 

 

 

 Discrete Cosine Transform 

 

The Discrete Cosine Transform (DCT) [18] [19] [28] is the representation of a set of finite 

points through the summation of several cosine functions. The DCT method is used in 

various applications such as in lossy compression of audio signals, such as the MP3 format, 

where high frequencies are discarded.  

The DCT is a technique similar to the Discrete Fourier Transform (DFT) [18] [29] with the 

exception that it uses only real values and projects the input signal on a cosine basis. 

The DCT coefficients for a one-dimensional signal are computed by: 

𝑪(𝒖) = 𝒂(𝒖)∑ 𝒇(𝒙) 𝐜𝐨𝐬 [
𝝅(𝟐𝒙+𝟏)𝒖

𝟐𝑵
]𝑵−𝟏

𝒙=𝟎               (5) 

 

 where 𝑓(𝑥) is the input sample to be transformed, 𝑁 represents the total number of 

samples and 𝑎(𝑢) is expressed as: 

Figure 14 – Block diagram of the lossy encoding techniques. 
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𝒂(𝒖) =

{
 

 √
𝟏

𝑵
        , 𝒖 = 𝟎

√
𝟐

𝑵
        , 𝒖 > 𝟎

                 (6) 

 

The reconstructed signal can be defined by: 

𝒇(𝒙) = ∑ 𝒂(𝒖) 𝑪(𝒖) 𝐜𝐨𝐬 [
𝝅(𝟐𝒙+𝟏)𝒖

𝟐𝑵
]𝑵−𝟏

𝒖=𝟎               (7) 

 

There are other types of DCT adapted for each purpose [18], for example, for the 

compression of JPEG images, where there is a signal matrix, it is used a two-dimensional 

DCT. 

  

 Discrete Wavelet Transform 

 

The Discrete Wavelet Transform (DWT) [7] [18] [21] [26] is the decomposition of a signal 

when passed through an HPF and an LPF. With these filtering operations, two sets of 

coefficients are generated: approximation coefficients and detail coefficients 

The approximation coefficients (cA) are generated by convolving the signal with the LPF’s 

impulse response 𝑔[𝑛], and the detail coefficients (cD) are generated by convolving the 

signal with the HPF’s impulse response ℎ[𝑛], both followed by a dyadic decimation [30], 

usually called down-sampling.  

The wavelet function provides a multi-resolution representation of signals with a collection 

of these two types of coefficients, each of them provides information about signal 

characteristics like location in time and frequency. 

The advantage of DWT over Fast Fourier Transform (FFT) [28] [29] is that it performs 

multi-resolution analysis of signals with localisation. As a result, the DWT decomposes a 

digital signal into different sub-bands so that the lower frequency sub-bands will have a finer 

frequency resolution and a coarser time resolution compared to the higher frequency sub-

bands. 

Figure 15 represents a flowchart of the usage of DWT to extract level 3 coefficients. 
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3.5 Compression and distortion metrics 

 

The signal transformations and encoding to require less storing space or bandwidth, can 

be evaluated in terms of compression and introduced error, as compared to the original 

signal. These errors can be classified by measuring parameters such as distortion, amplitude 

or noise differences. There are two types of metrics: compression metrics that include the 

Compression Ratio (CR) and the distortion metrics that are only applied to lossy techniques 

such as Root-Mean-Squared Error (RMSE) or Signal-to-Noise Ratio (SNR). 

 

 Compression Ratio 

 

Compression algorithms reduce the number of bits to be stored or transmitted, by 

removing redundancies or discarding not so relevant data from the signals. 

The Compression Ratio (CR) [28] [31] is one of the most used metrics in signal 

compression and measures the data reduction achieved by a given compression method. 

When testing a compression method, it is intended to obtain high CR while maintaining 

acceptable signal quality. The CR is the ratio between the length of the original signal and 

the length of the compression signal, in bits, expressed as follows: 

𝑪𝑹 =
𝑶𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝒔𝒊𝒈𝒏𝒂𝒍 𝒍𝒆𝒏𝒈𝒕𝒉[𝒃𝒊𝒕𝒔]

𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒆𝒅 𝒔𝒊𝒈𝒏𝒂𝒍 𝒍𝒆𝒏𝒈𝒕𝒉[𝒃𝒊𝒕𝒔]
: 𝟏               (8) 

 

Figure 15 – Flowchart of forward DWT (top) and inverse DWT (bottom) [21]. 
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 Root-Mean-Squared Error 

 

The Root-Mean-Squared Error (RMSE) [28] [31] is one of the most used distortion 

metrics to measure differences between values, representing the differences between input 

samples and output samples. It represents how far the output samples are from the input and 

it is calculated by the squared root of the summation of the mean of the squared differences 

between original samples and compressed samples. The lower the RMSE, the closer are the 

input and output samples. The RMSE expression can be defined as follows: 

𝑹𝑴𝑺𝑬(𝑺𝒐, 𝑺𝒓) = √∑
(𝑺𝒐(𝒌)−𝑺𝒓(𝒌))

𝟐

𝑵
𝑵
𝒌=𝟏               (9) 

 

where 𝑆𝑜(𝑘) is the original 𝑘 sample, 𝑆𝑟(𝑘) is the reconstructed 𝑘 sample and 𝑁 is the 

signal length in samples. 

 

 Signal-to-Noise Ratio 

 

The Signal-to-Noise Ratio (SNR) [31] [32] measures the quality of a signal affected by 

noise. Quantisation is the process of converting an analogue signal to digital and the output 

digital signal comes out with distortion, called quantisation noise. The ratio from the signal to 

the quantisation noise is called quantisation SNR (𝑆𝑁𝑅𝑞) and is defined as: 

𝑺𝑵𝑹𝒒[𝒅𝑩]
= 𝟔, 𝟎𝟐𝑹[𝒃𝒊𝒕𝒔] + 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎 (

𝟑𝑷[𝑾]

𝑽[𝑽]
𝟐 )             (10) 

 

where 𝑅 is the number of quantisation bits, 𝑃 is the normalised power of the signal and 𝑉 

the maximum quantisation value in Volts [𝑉]. 

In a simulation environment, once the signal is transmitted, it is possible to calculate the 

difference between the signal present at the receiver and the original quantised signal. This 

difference between the two signals is the encoding noise. The power of the signal (𝑃) divided 

by the power of that noise (𝑁) represents the transmission SNR (𝑆𝑁𝑅𝑡): 

𝑺𝑵𝑹𝒕[𝒅𝑩] = 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎 (
𝑷[𝑾]

𝑵[𝑾]
)                 (11) 
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3.6 Comparison between lossless and lossy 

techniques 

 

Compression methods can be classified in terms of the presence of loss, the amount of 

loss and time spent for data processing. The decision of the most suitable compression 

method to solve the problem may depend on this characteristic. 

Lossless compression methods are the adequate choice to compress the signal without 

changing the original samples.  These compression techniques are only applicable in a 

minority of the cases. 

On the other hand, lossy methods can be applied in most cases and are recommended in 

situations in which some loss can be introduced on the data. However, the associated loss 

may not be tolerated, depending on the purpose of application, meaning that the loss level 

introduced by the encoding process must be controlled. Table 3 summarises the discussed 

compression methods according to their type.  

 

Table 3 – Type overview of the discussed compression methods. 

Technique Group Coding Name Losses 

Direct time-domain techniques 

AZTEC Lossy 

TP Lossy 

CORTES Lossy 

Source coding techniques 

Huffman Lossless 

LZW Lossless 

DEFLATE Lossless 

DPCM Lossless 

LPC Lossless 

RLE Lossless 

Transform coding techniques 
DCT Lossy 

DWT Lossy 
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Chapter 4  

Wireless Technologies 

 

Nowadays, there is a wide range of wireless technologies that allow communication to a 

large diversity of applications. For small applications, with small data rates and small working 

radius, there is a main concern about the power consumption. 

This chapter is composed by three sections, each one explaining the basic concepts, 

protocols and characteristics for three different technologies, and the fourth section 

compares these three technologies. Firstly, in section 4.1, Bluetooth® Low Energy, it is 

described the Bluetooth protocol designed for low-power applications. Section 4.2, ZigBee, 

addresses some technologies that developed for Wireless Personal Area Networks (WPAN). 

Section 4.3, ANT, describes the protocol that enables devices to run for years with a single 

battery cycle. Lastly, Section 4.4, A comparison on wireless technologies, summarises the 

main characteristics of these three technologies. 

 

4.1 Bluetooth® Low Energy 

 

The Bluetooth® technology [33] has emerged as a way to replace wired communications 

from computer peripherals such as mice, keyboards and headsets. At this time, Bluetooth is 

used in a wide range of health applications, such as blood pressure monitors and blood 

glucose meters, or in the fitness area, such as speed sensors or heart-rate meters. 

Considering that most of the Bluetooth devices are battery-powered there is a growing 

need to reduce the energy consumption of this technology. The Bluetooth Low Energy (BLE) 

[34] [35] [36] technique addresses this issue. 

BLE stack can be represented by three independent layers: 

• Link layer – master-slave relationship; 

• GAP (Generic Access Profile) layer – central-peripheral relationship; 

• GATT (Generic Attribute) layer – client-server relationship. 

 

At the Link layer, the master acts as a Scanner and the slave as an Advertiser. The 

Advertiser continuously sends basic information about itself and once the Scanner receives 

the information it needs, it tries to connect to the Advertiser. When the Advertiser accepts, 

the connection is established. 
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In the GAP layer, the central is the one initiating a connection, establishing connection 

intervals and other connection parameters. Almost everything is initiated by the central, for 

example, a connection pairing or parameter update. Although a peripheral can request the 

central to perform these actions, it is always up to the central to decide what to do. 

The roles of the GATT layer come into play once a connection has been established. The 

GATT Server can, in general, be described as the device sitting on information or data, while 

the GATT Client is the one seeking this data. The GATT Client sends requests for 

information to the GATT Servers, which respond with the information requested by the GATT 

Client. 

BLE allows communications up to 100 meters, theoretically, in the 2.4 GHz frequency 

band where transmission rates can go up to 2 Mbit/s but, for most applications, the required 

bit rate is usually around 0.3 Mbit/s. The average power consumption with this technology is 

around 15 mA of current, reducing the power consumption to about half as compared to 

standard Bluetooth. 

 

4.2 ZigBee 

 

ZigBee® [35] [36] [37] is a technology specially built for control and sensor networks on 

the IEEE 802.15.4 standard for Wireless Personal Area Networks (WPANs), and it is a 

product from the ZigBee Alliance. This communication standard defines Physical and MAC 

layers to handle many devices at low-data rates. 

ZigBee’s WPANs operate mostly in the 2.4 GHz frequency band at a maximum bit rate of 

250 kbit/s for a periodic two-way transmission of data between sensors and controllers. 

This technology supports different network configurations for master to master or master 

to slave communications and different topologies as mesh, star, and cluster tree. The system 

structure consists of three different types of devices such as ZigBee coordinator, Router and 

End device. Every ZigBee network must have at least one coordinator which acts as a root 

and bridge of a network. The coordinator is responsible for handling and storing the 

information while receiving and transmitting data. ZigBee routers act as intermediary devices 

that allow data to pass through them to other devices. End devices have limited functionality 

to communicate with the parent nodes to preserve battery power. 

The two-way data transmission of ZigBee can be transferred in two modes: beacon and 

non-beacon modes. In a non-beacon mode, the coordinators and routers are continuously 

waiting for incoming data, having more power consumption. The access control uses a non-

slotted Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) [38], which means 

that nodes must sense the radio channel before starting any transmission. If the channel is 
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busy, the transmitting device must wait a random time before listening to the radio channel 

again.  In a beacon mode, when there is no data communication from end devices, the 

routers and coordinators enter into a sleep state. On a periodical basis, the coordinator 

wakes and broadcasts a special frame, called beacon, in intervals that can vary from 15 

milliseconds to 252 seconds, to check if new data is available at the end devices. In this 

mode, the coordinator can reserve timeslots to a particular node to guarantee the quality of 

the service. 

ZigBee offers a low-cost and a low-powered network widely deployed for controlling and 

monitoring applications with a range up to 100 meters. This communication system is less 

expensive and simpler than the other proprietary short-range wireless sensor networks. 

 

4.3 ANT 

 

ANT™ [35] [36] [39] is an ultra-low power wireless networking protocol which enables 

objects from everyday life to connect with each other easily in practical and valuable ways. In 

millions of consumer devices today, the ANT protocol is a proved solution for rapidly evolving 

applications in the Internet of Things (IoT) paradigm. 

Enabling connected devices to run for years with 24 hours per day operation cycles on a 

coin cell battery, ANT pioneered the reliable ultra-low power wireless solution of choice for 

personal sport and fitness products. The ANT protocol is the base technology that powers 

the active ANT+ sport, fitness, and wellness product ecosystem. 

The ANT protocol's ability to easily connect devices in flexible ways serves a broad range 

of applications. Use cases including simple device-to-device links, large numbers of smart 

objects linked wirelessly, and many more can be built with ANT. 

This protocol is set up to use a single 1 MHz channel for multiple nodes thanks to a Time-

Division Multiplexing (TDM) [40] technique. Each node transmits in its own time slot. Basic 

message length is 150 µs, while the message rate, or the time between transmissions, will 

range from 5 milliseconds to 2 seconds with an 8-byte payload per message. A 16-bit Cyclic 

Redundancy Check (CRC) [32] is used for error detection. Up to 65,536 timeslots can be 

accommodated per channel. If interference is encountered, the node transceivers can switch 

channels. 

ANT accommodates three types of messaging: broadcast, acknowledged, and burst. 

Broadcast is a one-way communication from one node to many nodes. The receiving nodes 

transmit no acknowledgment but may still send messages back to the transmitting node. This 

technique is suited to sensor applications and is the most economical method of operation. In 

acknowledged messaging, the receiver confirms the reception of data packets. Although the 
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transmitter is informed about success or failure, it does not perform any retransmission. This 

technique is suited to control applications. The burst messaging is a complete multi-message 

transmission technique that uses the full data bandwidth. The receiving node acknowledges 

receipt and informs the existence of any corrupted packets and, if any, the transmitter should 

retransmit those corrupted packets. This technique is suited to data block transfer where the 

integrity of the data is crucial. 

Companies like Nike®, Adidas®, Garmin® and Geonaute® are using ANT for heart rate 

monitors, cycling power meters as well as distance and speed monitors. 

 

4.4 A comparison on wireless technologies  

 

The outside market has a large variety of technologies and devices with specific 

characteristics that makes one more suitable than other for a given application. Looking at 

the various characteristics of the three wireless technologies discussed is possible to 

conclude that the choice between each technology focuses more in the type of the topology 

to be used in the application and in the number of devices. 

Usually, low-power applications don’t require high data rates neither large coverage 

radius. The channel bandwidth of each technology limits the number of simultaneous devices 

in the network. 

ANT can have more linked devices, so it is more used in large network topologies, while 

ZigBee is used for small and low-cost networks. BLE can be used in network topologies, 

in which there is a Client requesting information from numerous Servers, but it can be 

used in a Peer-to-Peer (P2P) topology. Table 4 summarises some of the characteristics 

for the above-mentioned technologies.  

 

Table 4 – Comparison of some characteristics of BLE, ZigBee, and ANT. 

Technology BLE ZigBee ANT 

Theoretically coverage radius [m] 100 100 100 

Frequency Bands [GHz] 2.4 to 2.483 2.4 to 2.483 2.4 to 2.483 

Channel bandwidth [MHz] 2 5 (2 MHz used) 1 

Number of channels 40 16 78 

Topology types 
Scatter net, 

P2P 
Mesh, Star, 

Tree 
Mesh, Star, 
Tree, P2P 

Maximum Bit Rate [kbit/s] 2000 250 1000 

Power per bit [µW/bit] 0.153 185.9 0.71 
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Chapter 5  

Learning from Data 

 

Machine learning is a term that is spoken more widely nowadays, and it is used in most of 

daily-use applications, like Google search, e-mail SPAM filters, product recommendations on 

online stores, among others. 

Teaching a machine to learn how to correctly classify data demands a large dataset and 

good learning algorithm. This chapter explains the steps to create good learning algorithms 

and how they operate. Section 5.1, Feature engineering, describes the importance to 

machine learning of extracting features from a large dataset and how to do it in a correct 

way. Section 5.2, Classification problems, discusses some of the problems that should be 

taken into account while building a machine learning algorithm. Section 5.3, Machine 

learning algorithms, enumerates some machine learning techniques applied to ECG and 

accelerometer data classification, and how they operate. Lastly, section 5.4, Performance 

evaluation, describes the methods to appraise the performance of a machine learning 

technique and the techniques to improve the results.   

 

5.1 Feature engineering 

 

Machine learning algorithms usually do not interpret raw data but use features as a way 

to describe the data. A feature is a descriptor taken from the data. 

Features are the input of machine learning algorithms and depend on the type of data to 

classify. It is necessary to realise the most influent topics, so the algorithms can predict an 

output based on those specific topics. There are some generic features, that can be used in 

most type of data, like standard deviation or entropy, but usually there are specific features 

that describe specific characteristics of a type of data.  

To give an algorithm some features, it is necessary three phases [41] [42]: feature 

extraction, feature transformation, and feature selection. Feature extraction is when you 

define the features that could possibly describe data, having a considerable influence in the 

output classes. When you have collected enough features, it could be useful doing a feature 

transformation. Feature transformation consists in transforming the feature’s value, so they 

can have a similar order of impact on the output doing, for example, feature normalisation or 

Principal Component Analysis (PCA) [42]. Since a large number of features could lead to a 
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non-generalised solution, it could be useful to discard some of the features with less impact 

in the output, called feature selection. 

With an adequate subset of features it is possible to run any machine learning algorithms 

to classify the incoming data automatically. There is not a perfect way to get enough or 

relevant features so many tests should be done to acquire the best solutions. 

 

5.2 Classification problems 

 

Handling a large dataset to teach a machine learning from that dataset is not always 

simple. Sometimes, it is needed some caution when working with features or a dataset that is 

not balanced, since it can end up influencing the performance of the classifier, turning the 

results unreliable or even meaningless. 

 

 Over-fitting and Under-fitting 

 

The output of a machine learning algorithm depends on the chosen features and when 

the feature selection is not done properly it could lead to two main problems [43] [44]: over-fit 

and under-fit.  

Over-fit takes place when the model is very dependent on the training data, fluctuating 

according to each data small variation. Under-fit is the opposite situation of over-fit, and it 

happens when the model ignores the relationships between the input and the output of the 

data.  

An over-fitted model usually has high variance and low bias, and an under-fitted model, 

has low variance and high bias. Variance is how much the model changes in response to the 

training data, having a low capability to classify correctly the data that are not equal to the 

training set. Bias is the flip side of variance, and represents the assumptions made by the 

model that lead to ignore the training data. In any model, it is necessary to ensure a trade-off 

between bias and variance to achieve the best balance and performance. Figure 16 shows 

three examples of predicted outputs, each with a different type of fitting. 
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 Class imbalance 

 

Many learning systems assume that training sets used for learning are balanced, thus, 

the patterns from the output classes have nearly the same number of examples in the 

dataset. However, this is not always the case and one class can be represented by a large 

number of examples, while the other is represented by a few. This problem is known as class 

imbalance [43] [45]. 

Class imbalance can be exemplified in a medical context, when trying to teach a machine 

to classify if somebody has a particular rare disease. The number of patients without that 

disease will be wider than the number of patients that will have it. If the classifier predicts all 

the patients as without disease, it will have a large success in prediction, however, that 

success is meaningless due to the imbalance in the dataset. 

There are two simple way to fix the imbalance: oversampling the minority class or under-

sampling the majority class. Oversampling is the technique to introduce new samples in the 

dataset. Those samples can be duplicated from the existing ones or synthesised by 

combinations of different minority samples with a method called Synthetic Minority Over-

sampling Technique (SMOTE) [45]. Under-sampling is the technique to remove samples 

from the majority class, however, this can end up leaving out important samples that provide 

important differences between classes. 

These techniques could seem not so worthy but, in most cases, they can solve the class 

imbalance problem, making the classifier more reliable, when applied in the correct way. 

 

 

 

 

Figure 16 – Example of models with under-fitting (left), good fitting (middle) and 
over-fitting (right) [44]. 
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5.3 Machine learning algorithms 

 

There are two types of machine learning [43] [46]: supervised machine learning and 

unsupervised machine learning. Each type of learning uses different approaches and 

depends on the type of dataset used to training the algorithm. 

Supervised learning is when you have input variables and an output variable, and the 

algorithm learns the mapping function from the input to the output. The objective is to 

estimate the mapping function so when new input data that arrives, the algorithm can predict 

the output for it. There are two types of problems using supervised learning: regression and 

classification. Regression is when the output is a continuous value, like a price or a weight. 

Classification is when the output is a tag, like drowsy or awake. 

Unsupervised learning is when you only have input variables and the output classification 

is only left to the classifier that does not have any sense about the output. Unsupervised 

learning problems can be resolved using two techniques: clustering and association. 

Clustering is when the classifier tries to discover isolate groups in the data. Association is 

when it is intended to discover rules that describe a large amount of data. 

For each type of dataset, there is a different way to interpret and treat the data to get the 

desired result. 

 

 Linear Regression 

 

Linear Regression [43] [47] is one of the simplest ways to implement a supervised 

machine learning algorithm. This technique is also used by statisticians to predict some 

events. 

The model representation of the linear regression is composed by a specific set of input 

𝑗 features (𝑥𝑗
𝑖) and a set of well-known output values (𝑦𝑖) for each 𝑖𝑡ℎ training example. This 

model assigns a scale factor for each input feature, named coefficient (𝜃𝑗), and an 

independent coefficient that gives some freedom for adjustments, named bias coefficient 

(𝜃0).  

The prediction of the Linear Regression model, named hypothesis ℎ𝜃(𝑥), is written as 

follows: 

𝒉𝜽(𝒙) = 𝜽𝟎 + 𝜽𝟏𝒙𝟏 +⋯+𝜽𝒋𝒙𝒋               (12) 

 

The objective of linear regression is to compute various values of 𝜃 so the Mean-Squared 

Error (MSE), usually called Cost Function 𝐽(𝜃) [43], between the hypothesis and the known 
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output is minimum. This technique is named Gradient Descent [43] and can be represented 

as follows: 

𝜽𝒋 = {
𝜽𝒋 −

𝜶

𝒎
∑ (𝒉𝜽(𝒙

𝒊) − 𝒚𝒊)               ,   𝒋 = 𝟎𝒎
𝒊=𝟏

𝜽𝒋 −
𝜶

𝒎
∑ (𝒉𝜽(𝒙

𝒊) − 𝒚𝒊) 𝒙𝒋
𝒊𝒎

𝒊=𝟏           ,   𝒋 > 𝟎
            (13)  

 

 where 𝛼 represents the magnitude of each step and 𝑚 the number of training examples. 

The Gradient Descent should be applied a set of times, called iterations, and stopped when 

the values of 𝜃 do not change significantly for each iteration. Having higher 𝛼 means that, for 

each iteration, the value of 𝜃 changes more significantly, pushing the algorithm in the 

direction of the optimal value of 𝜃. However, if 𝛼 is too high, the algorithm may never reach 

the optimal value of 𝜃, hopping it several times. 

Linear Regression is usually used when the output is a continuous value, but it can be 

used in classification problems as well. However, it has a low reliability for being very 

sensitive to outliers, affecting the decision boundary of the classifier, degrading its 

performance. 

 

 Logistic Regression 

 

Logistic Regression [43] [47] is based on the sigmoid function, created by statisticians to 

describe properties of population growth in ecology, rising quickly and maxing out at the 

carrying capacity of the environment.  

The sigmoid function is an S-shaped curve that can convert any real number to a range 

between 0 and 1, but never reaching those limits. The hypothesis of the logistic function can 

be represented as follows: 

𝒉𝜽(𝒙) =
𝟏

𝟏+𝒆
−(𝜽𝟎+𝜽𝟏𝒙𝟏+⋯+𝜽𝒋𝒙𝒋)

                 (14) 

 

Logistic Regression is a supervised machine learning algorithm, usually used to estimate 

probabilities but can be used to solve classification problems, defining a decision boundary 

for classification, usually 0.5. If the hypothesis is higher than 0.5 is classified as “1” and if 

less than 0.5 is classified as “0”. 

 The values of 𝜃 can be calculated as with the gradient descent expression as in (13) but 

with the logistic regression hypothesis.  
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 Random Forest 

 

Random Forest (RF) [48] is a supervised learning algorithm that can be applied to 

regression or classification problems. The algorithm builds several classification trees and 

the output is the combination of the results of each classification tree. 

 Each classification tree is a weak learner but, considering the trees used, the classifier 

can be a strong learner. The whole dataset is randomly divided in different subsets, each 

subset will have a different associated classification tree. In each classification tree, a 

specific number of features are selected, and the output of that tree will be the one that 

provides the best binary split. This is done for all the classification trees and, at the end, the 

output of each classification tree is combined to have the best decision for each case. 

This technique is very popular since it is fast and robust against over-fitting and 

imbalanced datasets. Its randomness helps to make the model more robust than with a 

single decision tree. The number of trees and the number of variables considered in each 

node should be defined according to the needs. Figure 17 represents the architecture of a 

Random Forest classifier. 

 

 

 

 Artificial Neural Network 

 

Artificial Neural Network (ANN) [43] [49] is an information processing model based on the 

way the biological nervous system operates. It is composed by a large number of 

interconnected processing elements, named neurons, working together to solve specific 

problems. 

Figure 17 – Architecture of a Random Forest classifier [48]. 
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The neurons in an ANN, named units, build complex networks that are remarkable for 

their ability to find a meaning from complicated or imprecise data, extracting patterns or 

detecting trends that are too complex to be noticed by humans or other computer techniques. 

This can be achieved with: 

• Adaptive learning – the ability to learn based on data given for training; 

• Self-organisation – it can create its own representation of the information during 

the training; 

• Real time operation – computations can be carried out in parallel and hardware is 

being manufactured to take advantage of this capability; 

• Fault tolerance – some network capabilities may be retained even with the partial 

destruction of the network. 

 

ANN are a supervised learning technique composed by tree types of layers: input layer, 

hidden layers and output layer. Input layer is the initial point of the network, containing the 

training dataset. There are as many input units as features. The hidden layers are layers 

created by the ANN algorithm, that link the input layer to the output layer. There could be 

more than one hidden layer, but usually, one hidden layer is enough to solve most of 

problems, and the number of units in the hidden layer depends on the type of data. Each 

hidden unit takes in the input signals, works on them in different ways, and converts them 

into the corresponding output. The output layer, is the termination of network, where each 

unit represents an output class, defined by the summation of the weighted units of the 

previous hidden layer. For a binary output it could only be necessary one output unit. 

Figure 18 represents a diagram of an ANN with two hidden layers. 

 

Figure 18 – Representation of an Artificial Neural Network and its layers [49]. 
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 Support Vector Machine 

 

A Support Vector Machine (SVM) [43] [50] is a supervised machine learning algorithm 

used for both regression and classification problems. The SVM consists in calculating a 

decision boundary that best separates the various output classes from each other. The 

nearest points of each class to the decision boundary are the support vectors and the 

objective is to draw a decision boundary equally distant from the support vectors of each 

class. This distance is named margin, and it is intended to be maximum, so the classifier can 

be more robust to classify the various classes.  

Figure 19 represents a decision boundary for a bi-dimensional data, with its support 

vectors. 

 

 

 

For large datasets, it is expected that the data is not linearly separable, having more 

disperse data and increasing the classifier’s error. In this situation, using more features could 

be a way to try to separate the data, but sometimes features are hard to extract from the 

dataset. The SVM have a method to get these new features automatically, named kernels. 

Kernels are functions that transform non-linear spaces into linear ones, so data can be 

linearly separable as well.  

There are several types of kernels but the most known are the Polynomial kernel, 

Gaussian kernel and Sigmoid kernel described in Table 5. 

 

 

Figure 19 – Illustration of a decision boundary and its support vectors. 
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Table 5 – Type of Kernel and its inner product [50]. 

Type of Kernel Inner product Comments 

Polynomial Kernel 𝐾(𝑥⃗, 𝑥⃗𝑖) = (𝑥⃗
𝑇𝑥⃗𝑖 + 𝜃)

𝑝 
Power 𝑝 and threshold 𝜃 are 

specified by the user 

Gaussian Kernel 𝐾(𝑥⃗, 𝑥⃗𝑖) = 𝑒
−
||𝑥⃗−𝑥𝑖||

2

2𝜎2  Width 𝜎2 is specified by the user 

Sigmoid Kernel 𝐾(𝑥⃗, 𝑥⃗𝑖) = tanh(𝜂𝑥⃗𝑥⃗𝑖 + 𝜃) 
Mercer’s Theorem [50] is satisfied 
only for some values of 𝜂 and 𝜃 

 

 

5.4 Performance evaluation 

 

In a machine learning context, the performance could be validated by how far the 

predicted value is from reality. In a binary classification problem there are four situations to 

express the classifier throughput [52]:  

• true positives (𝑡𝑝) – data points classified as positive that are actually positive; 

• true negatives (𝑡𝑛) – data points classified as negative that are actually negative; 

• false positives (𝑓𝑝) – data points classified as positive that are actually negative; 

• false negatives (𝑓𝑛) – data points classified as negative that are actually positive. 

 

 Classification metrics 

 

These four attributes are used to get more intuitive and comparable measurements such 

as accuracy, specificity, recall or precision [52].  

Accuracy is the measurement that is used in most cases which represents the rate of 

data points correctly classified and it is calculated as follows: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝒕𝒑+𝒕𝒏

𝒕𝒑+𝒕𝒏+𝒇𝒑+𝒇𝒏
                  (15) 

  

This measurement is not so useful in a class imbalance situation where the number of 

positives and negatives is not equally distributed. Imagining that the number of positives in 

the dataset is large comparing to the number of negatives, if the algorithm classifies all 

output as positives the accuracy will be high, however it does not mean that the algorithm is 

reliable. 
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 Specificity can handle this problem. It gives the rate of the predicted negatives that are 

actually negative, according to the total number of actual negatives, and is described as 

follows: 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝒕𝒏

𝒕𝒏+𝒇𝒑
                   (16) 

 

However, it could happen the same imbalance in an inverse way. If the number of 

negatives in the dataset is large comparing to the number of positives and the classifier 

predicts all data points as negatives, the accuracy will be high, the specificity will be high, 

although it is not possible to infer about the performance of the method. 

Recall is the inverse of sensitivity. Recall gives the rate of the predicted positives that are 

actually positive, according to the total number of actual positives, and is defined as follows: 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝒕𝒑

𝒕𝒑+𝒇𝒏
                    (17) 

 

For a reliable decision about the classification, there is another metric, named precision. 

Precision is defined as the rate of the predicted positives that are actually positive, according 

to the total number of predicted positives, and is calculated as follows: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝒕𝒑

𝒕𝒑+𝒇𝒑
                   (18) 

 

It is possible to combine the recall and precision in one single metric, named 𝐹1 Score. 

This metric is the harmonic average [53] of both metrics, representing the average rate 

between these two measurements, and is defined as follows: 

𝑭𝟏 = 𝟐 ∗
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
                  (19) 

 
 

These various measurements are needed to evaluate the reliability of a classification 

method and can help on choosing the right classifier for a specified purpose. 

 

 Reliable evaluation 

 

To have a trusty data evaluation, it is not recommended to test the classification method 

on the same dataset that was used to train the classifier. 

The dataset is usually divided in two sets [43] [54]: training set and test set. The training 

set is the dataset used to train the classifier. It represents the majority of the entire dataset, 

containing 60% to 80% of the data points, depending on the size of the entire dataset. The 

test set is a dataset used to test the classifier’s performance after being trained by the 

training dataset. It simulates the new incoming data to be classified, without putting the 
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classifier at real working conditions. When there are several classification methods involved, 

is common to split the training set in another dataset [43] [54]: the validation set. This 

validation set is used to adjust the performance of a classification method before testing its 

performance, avoiding over-fitting and under-fitting in the data classification.  

Figure 20 illustrates a split of a dataset in its subsets of data.  

 

 

 

To achieve a consistent performance test, it is needed to test the performance more than 

once, with different test sets. Although, collecting a large dataset is very difficult and 

sometimes it is necessary to spend years collecting data. Cross-validation methods [54] are 

used to enhance the test results by dividing the dataset into different training and test sets 

combinations. This way, the classifier is trained and tested with different subsets of data, for 

the same complete dataset.  

The ultimate cross-validation method is named exhaustive cross-validation and is meant 

to train and test the classifier in all the possible ways of combinations in the training and test 

sets. This can achieve the most reliable tests for a certain classifier, however it demands a 

considerable data processing to do so. There are simpler cross-validation methods, like 𝑘-

fold cross-validation [54], that does not require so much data processing and it can achieve 

reliable results. The 𝑘-fold cross-validation consists in having completely different test sets, 

for the entire dataset. This means that the data points used for testing the classifier are used 

only once, and the new test set should have completely different data points from the 

previous test sets. 𝑘 is the number of folds that will create the results. 

Figure 21 represents a diagram with the 𝑘-fold cross-validation method. 

 

Figure 20 – Example of a dataset splitting according to its training, validation 
and test sets. 
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The final result is the mean of the performance achieved with all the 𝑘 different tests done 

plus or minus the standard deviation of the performance for all 𝑘 different tests, expressed as 

follows: 

𝑷𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓 =
𝑷𝟏+𝑷𝟐+⋯+𝑷𝒌

𝒌
± 𝝈               (20) 

 

 where 𝑃𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 is the result of the classifier’s performance, 𝑃𝑖 is the performance of 

the classifier for the 𝑖𝑡ℎ fold, and 𝜎 the standard deviation of the tests done. 𝑃 is a metric to 

evaluate the performance; it could be accuracy, specificity, recall, or precision. 

For considering the classifier as adequate it is necessary to consider different metrics, as 

explained in the previous section, and it is needed to have a small standard deviation for 

each metric. A small standard deviation means that the results are stable, and the values for 

new incoming data will not diverge too much from the average of the tests. If the standard 

deviation is high, the new incoming values to classify could diverge a lot, meaning that the 

classifier cannot be trusted. 

 

 Classifier combination 

 

When making a decision, the results can be improved if they not rely only on a single 

classifier, but in many classifiers. Classifier combination [48] [55] is a technique that consists 

in combining the results of several classifiers to form a unique opinion. 

If the classification results of different classifiers can be fused in an efficient way, then the 

outcome of such classifier combinations can have superior results. There are two 

approaches for combining classifiers [55]: sequential and parallel combination. In sequential 

Figure 21 – Representation of a 𝑘-fold cross-validation technique. 
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combination, the result of one classifier is used as input to another classifier. The sequential 

order of the classifiers is important and if it is changed, the final result can be different. 

Parallel combination consists in merging the results of several tested classification 

algorithms. As opposed to the sequential combination, the classifiers can be tested in any 

order.  

There are many methods to apply parallel combination, but the simplest method is the 

majority voting. In majority voting, the outcome from the classifier combination are the most 

voted results from all the classifiers. Imagining three classifiers, 𝐶1, 𝐶2 and 𝐶3, for the first test 

sample, if 𝐶1 and 𝐶3 classified that sample as “0” and 𝐶2 classified that sample as “1”, the 

outcome of the classifier combination will be “0”. 
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Chapter 6  

Proposed Solution 

 

This project will be focused in the acquisition device that will transmit the data to the 

gateway and in the classification algorithm that classifies the data and determinates if the 

driver is drowsy or not. To accomplish this, a dataset was provided by the Swedish National 

Road and Transport Research Institute [56] with samples of eighteen different people, tested 

in awake and drowsy condition states for the same car and track. This dataset is composed 

by ECG, EEG and EOG biometric signals, and car’s movement signals such as velocity, 

lateral and longitudinal acceleration, Steering Wheel Angle (SWA) and yaw rate. In the 

experiment, each person was classifying his sleepiness according to the Karolinska 

Sleepiness Scale (KSS) test while driving, adding a KSS value to each data sample. 

 Figure 22 represents the block diagram of the proposed solution. 

 

 
 

This chapter clarifies the steps to implement an acquisition device, covering a BLE 

solution for transmission, and describes the experimental tests required to implement 

compression and classification algorithms. Section 6.1, ECG and SWA data acquisition, 

explains how the ECG and SWA data could be acquired. Section 6.2, Steering wheel motion 

monitoring, shows how it is possible to monitor steering wheel movements with an 

Figure 22 – Block diagram of the proposed system. 
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accelerometer. Section 6.3, Compressing the data, gives an overview of the methods to 

compress both types of data. Section 6.4, Wireless data transmission, describes how the 

BLE solution could be implemented to transmit the data. Lastly, section 6.5, Features and 

classification, describes the ECG and SWA features that could be used as inputs for 

classification algorithms and the dataset classes distribution. 

 

6.1 ECG and SWA data acquisition 

 

The CardioWheel [2] is a system that encompasses all the blocks of an acquisition 

system solution. This system can collect, in a non-intrusive way, the driver’s ECG signal, 

using dry-electrodes placed in a conductive leather cover, and the SWA signal, using an 

accelerometer placed in the centre of the steering wheel. 

The dry-electrodes can sense the heartbeat, by its electrical impulses, while the person 

places the hands on the steering wheel. This electrical continuous signal is converted from 

analogue to digital with an Analogue-to-Digital Converter (ADC) and the resulting samples 

are read by a microcontroller. The dry-electrodes are placed in a steering wheel leather 

cover that can fit into any automobile. 

Figure 23 shows a picture of a leather cover for steering wheels with the electrodes 

attached to it. 

 

 

Figure 23 – Conductive leather cover for the steering wheel with the electrodes placed on it. 
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The SWA signal is recorded by a three-axis accelerometer, placed in the centre of the 

steering-wheel behind the airbag. The driver, while moving the steering wheel, causes a 

variation in each accelerometer axis, and with it, is possible to estimate the rotational angle 

of the steering wheel. 

 

 shows where the CardioWheel mainboard is placed in the steering wheel. 

 

 

 

This device has a ST® ARM® Cortex® STM32F446RE [57] microcontroller that acquires 

ECG and accelerometer data with, respectively, off-board dry-electrodes and an on-board 

ST® LSM6DSL [58] accelerometer. It also incorporates an on-board Nordic® nRF52832 [59] 

BLE module for wireless communication. Figure 25 shows pictures of the CardioWheel 

mainboard. 

 

 

 

 

 

 

 

 

Figure 24 – Location of the mainboard in the steering wheel. 
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6.2 Steering wheel motion monitoring 

 

To estimate the steering wheel’s rotation angle, it is necessary to know how the 

accelerometer is oriented [59]. This means that, depending on the orientation of the 

accelerometer, the data could be understood in different ways. The main characteristic that 

can be recorded with the accelerometer is the rotation angle of the steering wheel (𝜃), 

usually called Steering Wheel Angle (SWA). 

 Figure 26 illustrates a front view of a steering wheel with the axial orientation of the 

accelerometer.  

 

Figure 25 – Top side (left) and bottom side (right) of the CardioWheel mainboard. 

Figure 26 – Front view of a steering wheel with the rotational angle 𝜃 and the 
accelerometer’s axial orientation. 
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Given this accelerometer’s axial orientation, the rotation angle of the steering wheel (𝜃) is 

measured by the following expression: 

𝐭𝐚𝐧(𝜽) =
𝑨𝒙

𝑨𝒚
 ⇔  𝜽 = 𝐚𝐫𝐜𝐭𝐚𝐧(

𝑨𝒙

𝑨𝒚
)                (21) 

 

where 𝐴𝑥 and 𝐴𝑦 represent the measured accelerations with the same direction as  𝑥 and 

y axes, respectively.  

Assuming that there are four quadrants, as represented in Figure 26, it is possible to 

describe the instantaneous 𝑔 force range for each quadrant. 

Table 6 summarises those instantaneous 𝑔 force range for each quadrant. 

 

Table 6 – Rotation angle (𝜃) for each quadrant and its axis 𝑔 force range [60]. 

Quadrant: Rotation angle Accelerations 

Q1: 𝟎º ≤ 𝜽 < 𝟗𝟎º 
0 𝑔 ≥ 𝐴𝑥 > −1 𝑔 

−1 𝑔 ≤ 𝐴𝑦 < 0 𝑔 

Q2: 𝟗𝟎º ≤ 𝜽 < 𝟏𝟖𝟎º 
−1 𝑔 ≤ 𝐴𝑥 < 0 𝑔 

0 𝑔 ≤ 𝐴𝑦 < 1 𝑔 

Q3: 𝟏𝟖𝟎º ≤ 𝜽 < 𝟐𝟕𝟎º 
0 𝑔 ≤ 𝐴𝑥 < 1 𝑔 

1 𝑔 ≥ 𝐴𝑦 > 0 𝑔 

Q4:  𝟐𝟕𝟎º ≤ 𝜽 < 𝟑𝟔𝟎º 
1 𝑔 ≥ 𝐴𝑥 > 0 𝑔 

0 𝑔 ≥ 𝐴𝑦 > −1 𝑔 

 

 

Another important parameter to consider is the inclination angle of the steering wheel (𝛾). 

Depending on the vehicle and on the driver, the steering wheel could be adjusted to different 

inclinations to suit the driver’s body structure. In each case, the instantaneous 𝑔 force will be 

distributed by the three axes in different way according to the inclination angle. Besides this, 

the car can also be in an inclined plane, therefore this inclination angle is relevant to calibrate 

the axial system of the accelerometer relative to the car’s direction, making more accurate 

the estimation of the SWA.  
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Figure 27 illustrates a steering wheel side view with the accelerometer’s axial system. 

 

  

  

Given this accelerometer’s axial orientation, the inclination angle (𝛾) can be written as 

follows: 

𝐭𝐚𝐧(𝜸) =
𝑨𝒛

𝑨𝒚
 ⇔  𝜸 = 𝐚𝐫𝐜𝐭𝐚𝐧(

𝑨𝒛

𝑨𝒚
)               (22) 

 

where 𝐴𝑦 and 𝐴𝑧 represent the measured accelerations with the same direction as  𝑦 and 

𝑧 axes, respectively.  

With these two angles, rotation (𝜃) and inclination (𝛾), it is possible to get accurate 

measurements for monitoring the behaviour of the steering wheel while driving. 

 

6.3 Compressing the data 

 

With the amount of data collected, it is necessary to have a good and reasonable 

compression method for data transmission. 

The direct time-domain techniques are tested in the literature and have their performance 

well documented [16] [17] so it’s possible to know, beforehand, that they are not the best 

solution for this project. Compression is an opposite of signal quality and it is privileged a 

good signal quality at the receiver for purposes of good ECG pattern recognition. If the 

application was to count heart-rate, it could be possible to have more compression ratio in 

detriment of signal quality. 

Figure 27 – Side view of a steering wheel with the inclination angle 𝛾 and the 
accelerometer’s axial orientation. 
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The Amplitude Zone Time Epoch Coding (AZTEC) provides high data compression 

ratios, nearly 10:1 [16], but, due to the discontinuity that occurs in the reconstructed ECG 

waveform, the fidelity of the reconstructed signal is not acceptable by cardiologists, and for 

the project purpose, it is needed a signal with almost zero distortion to easily detect the ECG 

patterns. There is a modified AZTEC method that can improve the signal fidelity by 50% but 

it still may not be a good solution. 

The Turning Point (TP) method has as its main purpose to reduce the sample frequency 

of a signal by a half and it was tested with a 200 Hz signal. This method produces a fixed 

compression ratio of 2:1 [16] where the reconstructed signal raises some distortion, since the 

saved points do not have the same space time intervals. The TP method makes hard to 

detect the ECG patterns in the reconstructed signal.  

Since Coordinate Reduction Time Encoding Scheme (CORTES) applies a combination of 

AZTEC and TP, the distortion in the reconstructed signal is acceptable for ECG pattern 

recognition. The compression ratios achieved with CORTES are nearly 4.8:1 [16], and 

although the hybrid method reduces significantly the distortion, it is not enough for the target 

of the project. 

The transform coding and source coding techniques are documented as good 

compression methods for ECG signals [18] [19] [21] and it is intended to test these methods 

and prove their performance.  

Accelerometer signals can have waves similar to ones found in ECG signals and it is also 

intended to test the compression methods in the SWA data. For performance evaluation, the 

𝑆𝑁𝑅𝑞 will be the reference for comparing to the 𝑆𝑁𝑅𝑡 measure to qualitatively evaluate the 

distortion of the compression methods tested.  

 

6.4 Wireless data transmission 

 

Since CardioWheel has a Bluetooth® Low Energy (BLE) module, it is necessary to create 

a custom profile to handle this data, transmitting it to a gateway. This device works as a BLE 

Server while the gateway works as a BLE Client that will request ECG and SWA data from 

the Server. The Generic Attribute (GATT) [61] protocol states that a BLE Profile is structured 

in three components: Services, Characteristics, and Descriptors. 

A Service is the part of the profile that encapsulates a specific behaviour. These Services 

are composed by Characteristics. A Characteristic is a value that defines each action for a 

specific behaviour and it is composed by Descriptors. Descriptors are attributes that define 

the Characteristic value, and could be, for example, read/write permissions, security roles, 

among others. 
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There are a lot of predeveloped Services that could be integrated in each BLE Profile, 

according to the needs. In this project, was included the Battery Service, for battery analysis 

purposes, and the Device Information Service, for specific device related information. 

Nevertheless, it is necessary to create a two custom Services to handle the ECG data and 

the SWA data in distinctive ways. 

Since CardioWheel acts as BLE Server, the two custom Services for the BLE Profile 

created are composed by one single characteristic that is responsible to load the ECG or 

SWA data from the memory. This characteristic is composed by two descriptors: Read 

Descriptor and Notify Descriptor. The Read Descriptor is responsible to provide the data to 

the BLE Client requests. Whenever the BLE Client wants data, it searches for the to Read 

Descriptor identifier and asks for data. However, searching for the Read Descriptor without 

synchronisation could end up in getting repeated data, as the BLE Server may not have new 

data to deliver. For this situation, the BLE Client is continually searching for the Notify 

Descriptor identifier. Each time the BLE Server has new data, it updates the Notify 

Descriptor, and the BLE Client, only searches for the Read Descriptor if it has an update in 

the Notify Descriptor. 

Figure 28 represents the hierarchy of the custom BLE profile created. 

 

 

 

6.5 Dataset for classification 

 

Figure 28 – Hierarchy of the custom Bluetooth Low Energy Profile. 
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To achieve the goal of fatigue and drowsiness detection, it is necessary a good data 

classifier to predict the driver’s state according to the acquired data. Using the two types of 

data, ECG and SWA, it is possible to teach a machine to make that prediction.  

Different machine learning algorithms need to be tested in order to conclude which can 

predict the driver’s state and which has the best performance in that prediction. 

It is indispensable a good dataset, containing various ECG and SWA for different driver’s 

states, to train machine learning algorithms. The dataset provided by the Swedish National 

Road and Transport Research Institute contains signals from 18 different people, including 

ECG and SWA, for the same car and track, in both awake and drowsy states, as well as the 

KSS values for each data sample. The features from those signals will be the input and the 

KSS values will be the output to train the classifier.  

Figure 29 represents a pie chart with the distribution of the KSS values in the given 

dataset. 

 

 

 

To simplify this 9-class output, it is better to transform this into a binary classification 

problem, where “0” represents the awake state and “1” the drowsy state. According to the 

KSS scale, from the value 6, the driver is showing some signs of sleepiness, although they 

are not so significant. The most credible approach for a binary classification is considering 

the KSS values above 7 as a drowsy state [48], however, the approach in which the dataset 

becomes more balanced is using KSS values above 6 for classifying a drowsy person. To 

overcome the class imbalance for the first scenario it will be used the oversampling method 

to synthesise more drowsy samples. 

3%
9%

14%

21%

16%

20%

12%

5%

1 2 3 4 5 6 7 8 9

Figure 29 – Pie chart with the distribution of the different KSS classes in 
the dataset. 
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Figure 30 represents a pie chart with the different dataset balancing using binary 

classification for both approaches. 

 

To evaluate the performance of the classifier for a binary problem, it is required to 

consider the four possible situations, according to the actual and predicted values., Since “0” 

represents the awake state and “1” the drowsy state, the true positives (𝑡𝑝), true negatives 

(𝑡𝑛), false positives (𝑓𝑝) and false negatives (𝑓𝑛) can be represented in a confusion matrix [52] 

as in Table 7. 

 

Table 7 – Classification confusion matrix. 

  Actual 

  Alert Drowsy 

Predicted 
Alert 𝑡𝑛 𝑓𝑛 

Drowsy 𝑓𝑝 𝑡𝑝 

 

 

The dataset is composed by pairs, each pair representing the same person but in 

different sleepiness states. To apply cross-validation with a good reliability, each awake-

drowsy pair will be used as a test set, reaching 33 results for each tested algorithm. It will be 

tested each pair, in order to reduce the standard deviation of the results. 

Regarding the current problem, the consequence of misclassifying a drowsy driver as 

awake has potentially more risk than the opposite case. This means that, after cross-

validating the performance of the algorithm, it is crucial to minimise the number of false 

negatives. If a person is driving in a drowsy state, it is fundamental that the vehicle warns the 

Figure 30 – Awake and drowsy state distribution for a KSS 7 and above (left) 
and KSS 6 and above (right). 

64%

36%

Non sleepy Sleepy

47%

53%

Non sleepy Sleepy
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driver, however, if the vehicle warns the driver when he is awake, the driver could simply 

ignore the alarm.  
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Chapter 7  

Experimental Evaluation 

 

With the indicators and experimental tests defined, a solution should arise. A Matlab® [62] 

program was used to test all the scenarios for compression and classification and an 

Arduino® ATMega 2560 [63] development board was used to test the accelerometer 

capabilities to estimate the Steering Wheel Angle (SWA). 

This chapter reports all the tests and results of the experimental evaluation that was 

done. Section 7.1, ECG signal pre-processing, describes the first steps for ECG signal 

processing. Section 7.2, Accelerometer protocol and data acquisition, explains what is 

necessary to do to put the accelerometer working and the corresponding experimental 

results. Section 7.3, Compression assessment, enumerates the results obtained with 

compression algorithms. Section 7.4, Building the classifier, shows the results obtained with 

the machine learning algorithms. 

 

7.1  ECG signal pre-processing 

 

As mentioned in the previous chapters, the non-intrusive signal acquisition leads to the 

existence of high level of noise, making the signal less perceptible for humans and 

machines. Before start to analyse the signal, it is mandatory to have a signal pre-processing 

to prepare the signal for future analysis. 

 

 Filtering 

 

When working with alternating electric current, the 50/60 Hz noise is always present. This 

noise is more relevant when working with low-frequency signals and demands an initial 

signal filtering in order to extract only the desired ECG signal. 

A FIR filter is recommended since the objective is to preserve the greatest number of 

characteristics of the biometric signal and, using a filter with a linear phase response, it is 

possible to estimate the distortion that the filter will introduce and compensate it on the 

receiver, whereas with the IIR filter it could not be done. 

The main frequency components of the ECG signal are below the 40 Hz and in 

consideration of this, a Hamming-window Low-Pass Filter with a cut-off frequency (𝑓𝑐) of 40 
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Hz and an order of 2000 was implemented in order to remove the frequency of the electric 

current of 50 Hz and, at the same time, preserve the main characteristics of the signal. 

Figure 31 illustrates the frequency response of the designed filter and Figure 32 

represents an ECG signal, with and without filter. 

 

 

 

 

Figure 31 – Frequency response of a Hamming-window Low-Pass FIR filter, 
with order 2000 (𝑓𝑐 = 40 𝐻𝑧). 

Figure 32 – ECG signal without filtering (blue) and with Hamming-window Low-Pass FIR 
filtering (red), with order 2000 (𝑓𝑐 = 40 𝐻𝑧).   
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7.2 Accelerometer protocol and data acquisition 

 

Every sensor requires a master to retrieve the measures performed and the way to do 

that task depends on the manufacturer and the purpose of the device. The inertial sensor 

used is a ST® LSM6DSL [58]. This component includes an accelerometer and a gyroscope 

and is capable to link it with a magnetic sensor to provide more accurate measures. 

 

 Accelerometer operation mode 

 

There are three modes of operation in this component, accelerometer only, gyroscope 

only, and both operational. In section 6.2 it was concluded that the accelerometer data was 

enough to fulfil the objective of retrieving the car’s SWA. The axes orientation in the steering 

wheel depends on the position of the mainboard in relation to the steering wheel and is 

crucial to regulate the equations (21) and (22) before starting the measurements. 

The axes of the mentioned accelerometer are oriented as illustrated by Figure 33. 

 

 

 

This accelerometer has four scales of operation, 2, 4, 8 or 16 𝑔. For the application it was 

chosen the 2 𝑔 full-scale mode since it is relevant the instant of gravitational acceleration for 

each axis and not the variation of the acceleration. This smaller full-scale mode brings some 

advantages as the device is less susceptible to variations, acting like an internal High-Pass 

Filter (HPF).  

About battery consumption concerns, this component has three modes: high 

performance, normal, and low-power modes. This allows the user to adjust the Output Data 

Rate (ODR) in order to reduce the battery consumption. It is only necessary that the ODR is 

higher than the sample frequency at the master. Since the human reaction time is about 200 

milliseconds, corresponding to 5 Hz, it is needed a sampling frequency higher than that value 

and, for this reason, it was chosen an ODR of 208 Hz. This value is higher enough to sample 

Figure 33 – Accelerometer’s three axes orientation [58]. 



 

63 
 

human movements with a large margin, does not create too much data samples and can 

reduce the battery consumption if needed. 

Figure 34 shows all possible values for ODR and its power modes. 

 

 

 

 Selecting between I2C and SPI 

 

This accelerometer has two modes of serial communication: Serial-to-Peripheral Interface 

(SPI) or Inter-Integrated Circuit (I2C). Depending on the application, one mode could be 

better than another. 

SPI is mostly used for low-power applications using a four-wire communication that 

enables a full-duplex bus. This allows data to flow simultaneously to and from the master, 

with rates of up to 10 Mbit/s.  

I2C is an official standard serial communication protocol, with 8-bit data packets, that was 

designed for communications between chips in the same board. This protocol demands only 

two wires for communication and can reach up to 3.4 Mbit/s, with new data transmission 

modes, and 100 kbit/s for the original designed mode. I2C can have multiple devices in the 

same bus through device addressing. 

Figure 34 – ODR frequency values according to its power modes [58]. 
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Since I2C is an official data protocol, it is preferable for avoiding compatibility issues, and 

since it is not needed high speed communications, the I2C data transmission protocol is the 

one that best suits this application. 

Table 8 describes the SPI and I2C pinouts. 

 
Table 8 – SPI and I2C pinout. 

 

 

 Accelerometer protocol  

 

Every device that works as a slave has a specific way to enable communications with the 

master, called handshake, and specific ways to read/write data from/to the device, according 

to the used protocol. 

For an I2C communication, the handshake of this accelerometer is composed by a Start 

(ST) condition followed by a 7-bit Slave Address (SAD) with the 8th bit set to “0”. The Start 

condition is done by transiting SDA from HIGH to LOW while keeping SCL HIGH and the 8th 

bit of the handshake is always set to “0”, meaning write. The 8th bit after the SAD is used to 

designate the Read (R) or Write (W) intention of the master, “1” or “0”, respectively. 

For each received byte, it is needed to send an acknowledge back, so the accelerometer 

sends a Slave Acknowledge (SAK) to confirm the handshake. After that, the master sends 

new packets with the 8-bit Sub-address (SUB) of the register which it intends to read or write. 

A new Slave Acknowledge is sent and, if it is intended to write, the master could send the 

data to write to the register, if it is intended to read, the master issues a Start Repeated (SR) 

condition followed by the 7-bit SAD with the 8th bit set to “1”. The accelerometer sends a SAK 

followed by the data located in that register. If the master wants more data, it replies with a 

Master Acknowledge (MAK), or, if the master wants to terminate the communication, a No 

Master Acknowledge (NMAK) followed by a Stop (SP) condition. The Stop condition is done 

by a LOW to HIGH transition on SDA line while the SCL line is HIGH.   

Figure 35 represents the read and write communications with the accelerometer. 

Serial type Pinout Description 

SPI 

MISO (Master in Slave Out) The Slave line for sending data to Master 

MOSI (Master out Slave In) 
The Master line for sending data to the 

Slaves 

SCK (Serial Clock) 
Clock pulses for data synchronisation 

generated by Master 

SS (Slave Select) 
The Master line for enabling or disabling 

Slaves 

I2C 

SDA (Serial Data) Serial bus to send data packets 

SCL (Serial Clock) 
Clock pulses for data synchronisation 

generated by Master 
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 Initial calibration 

  

The measurements done by an accelerometer are largely dependent from its axes 

orientation. It is hard to hold the accelerometer in the same position for every vehicle and, to 

do an accurate measurement, it is necessary that the accelerometer could calibrate itself. 

Depending on the car, the accelerometer could be fixed in different ways. This implies 

that the accelerometer’s axes could have different orientations than those exemplified in 

section 6.2, and the rotation degrees could be measured wrongly. To avoid this, an initial 

calibration process should be done. The driver, before start driving, should rotate the steering 

wheel to its limits, right and left. This allows the accelerometer to get the maximum values of 

the rotational angle 𝜃 and, since the rotation of the steering wheel is symmetrical, it can 

stipulate an offset to adjust these angles, defined as follows: 

𝜽𝒐𝒇𝒇𝒔𝒆𝒕 =
𝐦𝐚𝐱𝒍𝒆𝒇𝒕+𝐦𝐚𝐱𝒓𝒊𝒈𝒉𝒕

𝟐
                  (23) 

 

 

where max𝑙𝑒𝑓𝑡 and max𝑟𝑖𝑔ℎ𝑡 are the rotational limits of the steering wheel for both sides. 

The calibrated value of 𝜃, can be written as follows: 

𝜽𝒏𝒆𝒘 = 𝜽𝒐𝒍𝒅 − 𝜽𝒐𝒇𝒇𝒔𝒆𝒕                  (24) 

 

Figure 35 – I2C accelerometer read/write communications [58]. 
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Figure 36 illustrates the initial calibration movement. 

 

Figure 36 – Representation of the initial calibration movement. 
 

 

 Acceleration data comparison 

 

The final assessment for the accelerometer can be done when the measures for steering 

wheel motion monitoring are working as expected. To test the accuracy of the device, the 

accelerometer was fixed, with the same orientation as in Figure 26, on a gaming steering 

wheel. The steering wheel, in turn, was linked to a PC that is running the driving simulator 

rFactor™ 2 [64] with the MoTec [65] plugin, that enables data analysis. The acquisition 

system was composed by an Arduino® ATMega 2560 that was sampling the accelerometer 

with a rate of 100 Hz and sending the data via Serial Port. The simulator was getting the 

SWA using the potentiometer inside the gaming steering wheel, with a sampling frequency of 

10.24Hz. 

The accelerometer and potentiometer sampling were done at the same time with the 

recording of one lap in a racing track. For the obtained results, it is possible to notice that the 

accelerometer data and the potentiometer data are very similar, meaning that the 

accelerometer is getting a correct real-time SWA.  

Figure 37 illustrates the results obtained for the Estoril Circuit [66]. 
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7.3  Compression assessment 

 

Algorithms in Matlab® were developed to test source and transform compression methods 

and compare the various metrics with the goal of verifying the method that best suits this 

application. 

As mentioned in section 3.5.3, there are two Signal-to-Noise (SNR) metrics. The 

quantisation SNR (𝑆𝑁𝑅𝑞) will serve as the basis for comparing transmission SNR (𝑆𝑁𝑅𝑡). 

Considering that the number of bits per symbol after quantisation (𝑅) is 12 for ECG signal 

and 8 for SWA signal, the supply voltage of the microcontroller (𝑉) is 5 V and the power of 

the signal (𝑃), the expression of the 𝑆𝑁𝑅𝑞 can be written as follows: 

𝑆𝑁𝑅𝑞𝐸𝐶𝐺 = 6.02𝑅 + 10 log10 (
3𝑃

𝑉2
) = 6.02 ∗ 12 + 10 log10 (

3𝑃

52
) 

𝑆𝑁𝑅𝑞𝑆𝑊𝐴
= 6.02𝑅 + 10 log10 (

3𝑃

𝑉2
) = 6.02 ∗ 8 + 10 log10 (

3𝑃

52
) 

 

The ECG and SWA signals used to test the compression methods are the ones 

represented by Figure 32 and Figure 37, respectively, having a mean power per cycle of 

6.2468 W for ECG signal and 6.6596 W for SWA signal. The quantisation SNR are the 

follows: 

𝑆𝑁𝑅𝑞𝐸𝐶𝐺 = 70.9884 𝑑𝐵 

𝑆𝑁𝑅𝑞𝑆𝑊𝐴
= 47.1863 𝑑𝐵 

 

Figure 37 – Accelerometer (red) and potentiometer (blue) angles in degrees at Estoril Circuit. 
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 DPCM + Huffman coding 

 

Huffman is a good technique for compression as it offers some data protection, since 

both transmitter and receiver should have the same Huffman tree to decode the information. 

The compression that Huffman offers is due to its variable length code-words. Each code-

word has a variable length depending on the probability of occurrence of the corresponding 

symbol. It is needed a 12 to 8-bit compression before Huffman coding, so the output of it 

could fit in the BLE frame.   

The DPCM compression method, which retrieves the difference between samples of the 

ECG signal, can obtain values between the 8-bit range of values ([-128, 127]), turning the 

signal quantised with 8 bits instead of 12. This binary reduction results in a CR of 1.5:1 

obtaining an infinite 𝑆𝑁𝑅𝑡. This means that all the DPCM samples fit in the 8-bit range, being 

a lossless compression method. If any DPCM sample is outside the 8-bit range, the samples 

are truncated at that limit to be sent via BLE, introducing error in the transmitted signal. 

These results are reasonable taking into account that this is a simple computational 

process but, should be noted that, the DPCM technique depends on the sampling frequency 

of the signal so, if the sampling frequency is reduced, the samples will be further distanced 

and the values of the difference between samples may be outside the range obtained with a 

sampling frequency of 1000 Hz. 

 However, with Huffman the CR could increase slightly since, Huffman’s algorithm 

outputs variable length codes with less than 8 bits. For transmission purposes, the codes 

generated by Huffman will be transmitted with frames of 8 bits, making Huffman useful only 

for data protection. 

The SWA data has less amplitude, so it is not needed the initial DPCM coding to change 

the signal’s bit range. With the SWA data, this method also achieved an infinite 𝑆𝑁𝑅𝑡, 

meaning that it can be applied for both types of signal. 

 

 Amplitude scaling + RLE 

 

The amplitude scaling is the simplest method of signal compression tested, however, a 

division by a coefficient always introduces a small associated error because, when the 

quantised samples are divided by a coefficient, they get decimal values, which for future 

wireless transmission, they cannot exist, always having the need to round the values of the 

new scaled signal. 

The RLE coding method does not appear to be the best method for compression since 

the biometric signal has large variances in the samples. However, when scaling is applied, 
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the samples will have to be rounded for wireless transmission and, after rounding the 

samples, the signal will have several successively repeated samples. 

In order to achieve a CR higher than DPCM, it was concluded that the number of bits at 

the output of amplitude scaling must be equal to or greater than 6. Values smaller than 6 bits 

would cause the signal to have low-power levels and, as soon as samples are rounded for 

transmission, the signal loses much of its content. 

The results of the performed tests for ECG signal are shown in Table 9. 

 
Table 9 – CR, RMSE and 𝑆𝑁𝑅𝑡 for the different output lengths for ECG signal. 

Amplitude Scaling 
output length [bits] 

CR RMSE 𝑺𝑵𝑹𝒕 [dB] 

8 1.76:1 4.66 31.92 

7 3.67:1 9.40 25.83 

6 7.95:1 19.09 19.68 

 

 

Using amplitude scaling and RLE it is possible to achieve high CRs, however, the 𝑆𝑁𝑅𝑡 is 

not acceptable, being almost a quarter of the initial 𝑆𝑁𝑅𝑞. 

Since the SWA data has an 8-bit range, there is no need to apply amplitude scaling. 

However, since SWA has high variability, the RLE cannot be applied because the SWA 

signal does not have a lot of successive repeated samples. 

 

 DCT 

 

Another method of compression is based on the use of DCT. The DCT is similar to DFT 

with the exception that it uses only real values and projects the input signal on a cosine 

basis. The DCT can achieve a good performance in signal compression if there are no 

concerns with the signal amplitude, but only with sample reduction. When applying DCT, the 

ECG signal is transformed into the one illustrated by Figure 38.  

The signal has high amplitudes at the beginning, however, from the sample 4800 and 

beyond there are no significant amplitude variations, and from sample 11000 until the end, 

the amplitude is so low that can be discarded. Considering the first 11000 samples, this 

method can achieve a CR of 5.36:1, and the reconstructed signal has a 𝑆𝑁𝑅𝑡 of 54.94 dB. 

These results are very reasonable, however, after compression, the signal should be 

transmitted via BLE using 8-bit frames and the amplitudes that the DCT method generates 

are incompatible with that transmission, making the DCT not suitable to apply to ECG signal 

compression. 
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For the SWA, the behaviour is the same as with the ECG signal, achieving a CR of 

11.10:1 and an 𝑆𝑁𝑅𝑡 of 32.46 dB, but, in the same way, the signal amplitudes generated by 

the DCT make it impossible to transmit in 8-bit frames. 

 

 

 

 Amplitude scaling + DWT 

 

The DWT is the decomposition of a signal when passed through an HPF and an LPF 

creating two sets of coefficients. The compression in the DWT is achieved by only 

transmitting the approximation coefficients while the detail coefficients are discarded due to 

its low amplitude. As long as the coefficient level increases, the number of approximation 

coefficients reduces, but their amplitudes increase. To avoid having high amplitudes in the 

approximation coefficients, it is possible to reduce the signal amplitude at the beginning of 

the DWT algorithm with amplitude scaling. For this case, it was applied the amplitude 

scaling, from 12 to 8 bits before applying the DWT. 

The most commonly set of wavelets applied to ECG data is the Daubechies wavelets [7] 

[21] [26]. These wavelets are known for having the highest number of vanishing moments for 

a given width. Vanishing moments are the sudden amplitude changes of the signal. Since the 

Figure 38 – ECG signal after applying DCT compression. 
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ECG signal has a lot of vanishing moments, the Daubechies are the best to apply DWT, 

specifically the ‘db10’ wavelet. 

Applying this technique to ECG signal, it is possible to achieve the results summarised by 

Table 10. 

 

Table 10 – CR, RMSE and 𝑆𝑁𝑅𝑡 for the different coefficient levels for ECG signal. 

Coefficient Level [bits] CR RMSE 𝑺𝑵𝑹𝒕 [dB] 

1 3.00:1 3.29 34.96 

2 5.99:1 3.56 34.26 

3 11.97:1 17.80 20.29 

 

 

For SWA signal, it was applied the same technique, without the initial amplitude scaling, 

and using the same Daubechies wavelets. Table 11 summarises the results obtained for 

SWA compression. 

 

Table 11 – CR, RMSE and 𝑆𝑁𝑅𝑡 for the different coefficient levels for SWA signal. 

Coefficient Level [bits] CR RMSE 𝑺𝑵𝑹𝒕 [dB] 

1 2.99:1 0.87 28.46 

2 5.97:1 0.70 30.31 

3 11.86:1 3.08 17.43 

 

 

 LPC + LZW coding 

 

The Linear Predictive Coding (LPC) is a predictive technique that consists in transmitting 

the error between the original signal and the predicted one. If the predictor is well 

dimensioned, the error between the two signals is very small, so a small number of bits is 

used to represent this error.  

According to the LPC method, it is necessary to have 𝑛 − 1 samples of the original signal 

at the receiver and the 𝑎𝑖 coefficients for transmission, so the receiver can predict the next 

samples of the signal and correct them with the transmitted error. Considering that the signal 

to be transmitted is an ECG signal, it is needed to have a model with 𝑎 + 1 samples of an 

ECG signal and the 𝑎 coefficients to create the predictor. 
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To create that model, it was used the mean of the first 𝑎 + 1 samples of three ECG 

signals. The initial coefficients of the LPC predictor both at the transmitter and receiver are 

the mean of the 𝑎 coefficients calculated for each ECG signal. 

The LZW algorithm is applied to the low entropy error from the LPC encoder. To transmit 

the in 8-bit frames of the BLE, the LZW dictionary should have a maximum of 256 entries. 

The initial dictionary size depends on the entropy of the error. For the tested ECG, the error 

after LPC is represented by the histogram of Figure 39. 

 

 

 

The entropy of the error is between [-4; 4], so an initial dictionary with 32 entries is 

adequate to handle the prediction for new ECG signals. However, only 224 entries are not 

enough to encode the entire signal so the LZW’s algorithm starts refilling the dictionary, 

replacing the oldest entry for the new one. With this technique, more new entries are created 

to improve the compression ratio of the algorithm. 

Table 12 summarises the performance of the hybrid technique, using LPC and LZW, for 

ECG signal. 

 

Table 12 – CR, RMSE and 𝑆𝑁𝑅𝑡 for the different number of coefficients for ECG signal. 

Number of coefficients CR RMSE 𝑺𝑵𝑹𝒕 [dB] 

5 4.29:1 10.64 24.76 

10 4.57:1 21.94 18.47 

20 4.99:1 39.18 13.43 

 

Figure 39 – Histogram of the error after LPC using 10 coefficients. 
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For the entire signal, the performance using this technique is not the best, having poor 

values for RMSE and 𝑆𝑁𝑅𝑡, however, this is only at the beginning of the decoding. On a few 

iterations, the algorithm improves its performance, correcting the error by itself, matching 

perfectly the original signal, having an infinite 𝑆𝑁𝑅𝑡 and no error. 

Figure 40 illustrates the initial differences between the original ECG and the predicted 

one. 

 

 

  

For SWA, this hybrid method can be applied, as well, obtaining the results summarised 

by Table 13. 

 

Table 13 – CR, RMSE and 𝑆𝑁𝑅𝑡 for the different number coefficients for SWA signal. 

Number of coefficients CR RMSE 𝑺𝑵𝑹𝒕 [dB] 

5 5.64:1 3.92 15.34 

10 5.78:1 1.46 23.90 

20 5.77:1 0.64 31.10 

 

 

From the results obtained for ECG and SWA, it is possible to conclude that having a large 

number of coefficients does not mean better performance. In the ECG signal, using more 

coefficients causes the algorithm to be slower in correcting the prediction error. In the SWA 

Figure 40 – Differences between the original ECG (blue) and the predicted ECG (red) 
signals. 
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signal, using more coefficients lead to a decrease in the CR. For these reasons, it was 

concluded that 10 coefficients is the best option to apply for the LPC with LZW technique. 

 

 LPC + DEFLATE algorithm 

 

The DEFLATE technique, known to be used in the ZIP file compression, is based on the 

LZ77 algorithm with Huffman coding. As with other techniques, for transmission purposes, 

the 12-bit ECG signal should be compressed to an 8-bit signal. For a lossless initial 

compression, it was used the LPC. 

In the same way as with the LZW algorithm, it was used 10 coefficients to apply the LPC 

technique for the DEFLATE algorithm. With this, it was possible to achieve a CR of 3.45:1 for 

the same values of RMSE and transmission SNR. For SWA it was achieved a CR of 4.02:1 

of the same values of RMSE and transmission SNR. 

 

 Discussion of the compression results 

 

With all the compression tests done, it is possible to compare them in order to establish 

the best solution for ECG and SWA signal compression. According to the CR values 

obtained, the technique using Amplitude Scaling with DWT proved to be the technique which 

attains higher compression and lower RMSE. However, this is a lossy technique introduces 

some distortion in the signal, that cannot be acceptable for precise analysis, like medical 

analysis.  

For lossless compression, the technique using LPC and LZW is the one with the best CR, 

taking into account that this algorithm needs some time to correct the prediction error and to 

be effectively a lossless method. 

Both techniques are proved to be efficient when compressing the SWA data as well, 

being compatible for the compression of ECG and SWA signals. 

Table 14 and Table 15 summarise all the results obtained with the tested compression 

topologies for ECG and SWA signals, respectively. 

 

 

 

 

 

 

 



 

75 
 

Table 14 – CR, RMSE and 𝑆𝑁𝑅𝑡 values achieved with each method for ECG signals. 

Method CR RMSE 𝑺𝑵𝑹𝒕 [dB] 

DPCM + Huffman 1.5:1 0 infinite 

Amplitude Scaling + RLE (8 bits) 1.76:1 4.66 31.92 

DCT (no amplitude reduction) 5.36:1 0.33 54.94 

Amplitude Scaling + DWT (Level 2) 5.99:1 3.56 34.26 

LPC + LZW (10 coefficients) 4.57:1 21.94 18.47 

LPC + DEFLATE 3.45:1 21.94 18.47 

 

 

Table 15 – CR, RMSE and 𝑆𝑁𝑅𝑡 values achieved with each method for SWA signals. 

Method CR RMSE 𝑺𝑵𝑹𝒕 [dB] 

DPCM + Huffman 1.5:1 0 infinite 

Amplitude Scaling + RLE (8 bits) N/A N/A N/A 

DCT (no amplitude reduction) 11.10:1 0.55 32.46 

Amplitude Scaling + DWT (Level 2) 5.97:1 0.70 30.31 

LPC + LZW (10 coefficients) 5.78:1 1.46 23.90 

LPC + DEFLATE 4.02:1 1.46 23.90 

 

 

7.4 Building the classifier 

 

Matlab® was used to build and train a classifier for fatigue and drowsiness detection. A 

good dataset is important to train the classifier and performance will be dependent on the 

type of dataset used.  

As mentioned in section 6.5, the dataset used to train the classifier is not balanced for the 

KSS values that define the drowsy or fatigue states. The oversampling technique can 

synthesise more minority samples making the performance of the classifiers more reliable.  

A relationship between the ECG and the SWA signals, and the KSS scale, should be 

defined with features that will be used as an input to the classifier. In the literature some 

features were tested as adequate to describe the relationship between ECG or SWA signals 

with the KSS scales [48] [67].  Table 16 enumerates the features for both signals that were 

used to train the classifier. 
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Table 16 – Features used to train the classifier for both types of signal [48] [67]. 

Signal Feature Description 

ECG + SWA 

SDV Standard deviation 

ENT Shannon entropy 

RMS Root-Mean-Square 

ECG 

NRP Number of R peaks per window 

DBR Mean difference between R peaks 

MAR Mean amplitude of R peaks 

ADR Amplitude deviation of R peaks 

VLF Very-Low Frequency power [0, 0.04] Hz 

LFP Low Frequency power [0.04, 0.15] Hz 

HFP High Frequency power [0.15, 0.4] Hz 

LHR Low-High frequency Ratio 

SWA 

ZCR Zero-Crossing Rate 

HTR Holding time below ± 3 degrees 

MAS Mean acceleration applied to the steering wheel 

ASD Angular Speed Deviation 

EXT Number of extremes 

 

 

 Linear Regression 

 

Linear Regression is the simplest machine learning algorithm and it is most applied for 

regression problems.  

For a classification problem, this method can be easily influenced by outliers so usually it 

is preferable using a more complex algorithm. However, the fatigue and drowsiness can be 

linearly described, so it is interesting to test its performance. 

Since Linear Regression uses Gradient Descent, it was used a step 𝛼 of 0.01 and a 

maximum of 400 iterations to discover the optimal value of 𝜃. 

Table 17 shows the obtained values with this method. 

 

Table 17 – Confusion matrix for Linear Regression. 

  Actual 
Signal 

  Alert Drowsy 

Predicted 

Alert 0.2610 ± 01288 0.2322 ± 0.1664 
ECG 

Drowsy 0.2390 ± 0.1288 0.2678 ± 0.1664 

Alert 𝟎. 𝟑𝟐𝟔𝟕 ± 𝟎. 𝟎𝟓𝟓𝟒 𝟎. 𝟐𝟔𝟔𝟓 ±  𝟎. 𝟏𝟐𝟔𝟎 
SWA 

Drowsy 𝟎. 𝟏𝟕𝟑𝟑 ± 𝟎. 𝟎𝟓𝟓𝟒 𝟎. 𝟐𝟑𝟑𝟓 ± 𝟎. 𝟏𝟐𝟔𝟎 

Alert 0.2948 ± 0.0976 0.2388 ± 0.1320 
ECG + SWA 

Drowsy 0.2052 ±  0.0976 0.2612 ± 0.1320 
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The values obtained using only the SWA signal are more consistent, having lower 

standard deviation and better results for the alert states. 

 

 Logistic Regression 

 

Logistic Regression can be seen as a solution for non-linear problems. Although it is 

mostly used for regression problems, it is more reliable for classification than Linear 

Regression. 

This technique uses Gradient Descent to discover the optimal value for 𝜃 and it was used 

a step 𝛼 of 0.01 with a maximum number of iterations of 400. 

Table 18 shows the obtained values with this method. 

 

Table 18 – Confusion matrix for Logistic Regression. 

  Actual 
Signal 

  Alert Drowsy 

Predicted 

Alert 0.2051 ± 0.1166 0.1718 ± 0.1500 
ECG 

Drowsy 0.2949 ± 0.1166 0.3282 ± 0.1500 

Alert 0.2710 ± 0.0375 0.2602 ± 0.0543 
SWA 

Drowsy 0.2290 ± 0.0375 0.2398 ± 0.0543 

Alert 𝟎. 𝟑𝟎𝟒𝟔 ± 𝟎. 𝟎𝟕𝟓𝟐 𝟎. 𝟐𝟓𝟐𝟑 ± 𝟎. 𝟏𝟎𝟐𝟗 
ECG + SWA 

Drowsy 𝟎. 𝟏𝟗𝟓𝟒 ± 𝟎. 𝟎𝟕𝟓𝟐 𝟎. 𝟐𝟒𝟕𝟕 ± 𝟎. 𝟏𝟎𝟐𝟗 

 

 

The values obtained using the ECG and SWA signals are more consistent, having an 

acceptable standard deviation and better results of accuracy. 

 

 Artificial Neural Network 

 

Artificial Neural Network (ANN) is a more complex algorithm for data classification. It is 

based on the biological neuronal system and each unit in the ANN is similar to a biological 

neuron. 

There are as many input units as features and, from Table 16, it is possible to notice that 

there will be 11 input units for ECG signal and 8 input units for SWA signal. The number of 

hidden units can influence the output performance, so it was tested the performance using 

different number of hidden units, for one hidden layer.  
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Table 19 shows the performance values using different number of hidden units. 

 

Table 19 – Performance for ANN for different number of Hidden Units (HU). 

HU Accuracy Specificity Recall Precision F1 Score Signal 

3 

0.4655 ± 0.1046 0.4972 ± 0.2454 0.4338 ± 0.2223 0.4667 ± 0.1217 0.4274 ± 0.1422 ECG 

0.5635 ± 0.0524 0.4173 ± 0.1431 0.7097 ± 0.1708 0.5492 ± 0.0428 0.6113 ± 0.0778 SWA 

0.5396 ± 0.0813 0.5581 ± 0.1948 0.5212 ± 0.2295 0.5410 ± 0.1026 0.5072 ± 0.1497 ECG+SWA 

5 

0.4638 ± 0.1014 0.5581 ± 0.2594 0.3696 ± 0.2575 0.4494 ± 0.1538 0.3698 ± 0.1829 ECG 

𝟎. 𝟓𝟔𝟎𝟔 ± 𝟎. 𝟎𝟓𝟖𝟔 𝟎. 𝟒𝟒𝟔𝟓 ± 𝟎. 𝟏𝟎𝟓𝟐 𝟎. 𝟔𝟕𝟒𝟕 ± 𝟎. 𝟏𝟔𝟎𝟔 𝟎. 𝟓𝟒𝟔𝟎 ± 𝟎. 𝟎𝟒𝟖𝟔 𝟎. 𝟓𝟗𝟖𝟎 ± 𝟎. 𝟎𝟖𝟕𝟐 SWA 

0.5426 ± 0.0732 0.5521 ± 0.2009 0.5331 ± 0.2443 0.5405 ± 0.0950 0.5087 ± 0.1621 ECG+SWA 

10 

0.4898 ± 0.1086 0.5256 ± 0.2570 0.4540 ± 0.2527 0.4936 ± 0.1359 0.4431 ± 0.1651 ECG 

0.5562 ± 0.0646 0.4671 ± 0.1060 0.6452 ± 0.1783 0.5419 ± 0.0595 0.5827 ± 0.1013 SWA 

0.5375 ± 0.0790 0.5615 ± 0.1959 0.5135 ± 0.2436 0.5202 ± 0.1349 0.5104 ± 0.1832 ECG+SWA 

 

  

With the obtained values it is possible to conclude that the number of hidden units does 

not have much influence in the output results. However, the results using only SWA signal 

and using 5 hidden units were the best for the ANN learning algorithm. 

 

 Support Vector Machine 

 

Support Vector Machine is another more complex machine learning algorithm. The 

support vectors are the nearest points of each class to a decision boundary, that is equally 

distant from each support vector. 

The Gaussian Kernel was chosen to test the SVM learning algorithm. Table 20 shows the 

obtained results for this method. 

 

 

Table 20 – Confusion matrix for Support Vector Machine. 

  Actual 
Signal 

  Alert Drowsy 

Predicted 

Alert 0.2736 ± 0.1507 0.1293 ± 0.1158 
ECG 

Drowsy 0.2264 ± 0.1507 0.3707 ± 0.1158 

Alert 0.2607 ± 0.0789 0.1312 ± 0.0601 
SWA 

Drowsy 0.2392 ± 0.0789 0.3688 ± 0.0601 

Alert 𝟎. 𝟐𝟖𝟑𝟓 ± 𝟎. 𝟎𝟓𝟗𝟓 𝟎. 𝟏𝟓𝟗𝟓 ± 𝟎. 𝟎𝟓𝟒𝟎 
ECG + SWA 

Drowsy 𝟎. 𝟐𝟏𝟔𝟓 ± 𝟎. 𝟎𝟓𝟗𝟓 𝟎. 𝟑𝟒𝟎𝟓 ± 𝟎. 𝟎𝟓𝟒𝟎 
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For SVM, it is possible to conclude that using the ECG and SWA signals the learning 

algorithm had better performance, with the best accuracy and the lowest standard deviation. 

 

 Discussion of the classification results 

 

With all the classification tests done, it is possible to compare them in order to define the 

best solution for fatigue and drowsiness detection. 

According to the performance values obtained, the SVM learning algorithm proved to be 

the technique which obtained a better performance in classification. For the applied method, 

it is possible to notice that using both signal, the number of false negatives is 15.95 ± 5.4% 

meaning it will fail from 10 to 20% of the times in classifying that the person is falling asleep. 

For ANN, it was possible to conclude that the hidden unit number does not have 

significant influence in the output results. 

In all the tests done, the ECG signal standard deviation was higher than 10% while with 

SWA the standard deviation values are around 6%. This means that the algorithms applied 

are most effective in classifying the SWA data than ECG data, being less susceptible to 

variations. 

Table 21 summarises the results obtained with the different classification algorithms. 

 

Table 21 – Summary of the performance achieved using both signals for each method. 

Method Accuracy Specificity Recall Precision F1 Score 

LinReg 0.5560 ± 0.0858 0.5895 ± 0.1951 0.5224 ± 0.2640 0.5506 ± 0.1072 0.5057 ± 0.1838 

LogReg 0.5523 ± 0.0754 0.6091 ± 0.1593 0.4954 ± 0.2058 0.5553 ± 0.1005 0.5053 ± 0.1427 

ANN 0.5426 ± 0.0732 0.5521 ± 0.2009 0.5331 ± 0.2443 0.5405 ± 0.0950 0.5087 ± 0.1621 

SVM 𝟎. 𝟔𝟐𝟒𝟏 ± 𝟎. 𝟎𝟒𝟗𝟎 𝟎. 𝟓𝟔𝟕𝟎 ± 𝟎. 𝟏𝟏𝟖𝟗 𝟎. 𝟔𝟖𝟏𝟏 ± 𝟎. 𝟏𝟎𝟖𝟏 𝟎. 𝟔𝟏𝟔𝟕 ± 𝟎. 𝟎𝟓𝟓𝟗 𝟎. 𝟔𝟒𝟏𝟓 ± 𝟎. 𝟎𝟓𝟔𝟓 
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Chapter 8  

Conclusion 

 

In order to prevent car accidents and to improve road safety, monitoring systems capable 

of detecting drowsiness patterns and warning the driver about his physical and psychological 

condition are extremely needed.  

In this dissertation, a complete model for a monitoring system was studied, based on the 

CardioWheel system, developed by CardioID. This model consists in ECG and steering 

wheel movement data acquisition, compression, transmission and classification for detection 

drowsiness and fatigue patterns. 

From the CardioWheel model, the ECG data acquisition is done using dry-electrodes in a 

conductive leather that is covering the steering wheel. While the driver has his hands on the 

steering wheel, the electrodes can sense the electrical impulses caused by the heartbeat, 

creating a continuous electrical signal.  

The steering wheel motion monitoring is possible to be done by a three-axis 

accelerometer placed in the centre of the steering wheel. When the driver moves the steering 

wheel, it changes the acceleration felt in each axis of the accelerometer. Using an Arduino® 

ATMega 2560, the SWA was extracted by applying trigonometry expressions with the 

magnitudes of the 𝑔 force felt in each axis. 

To compress all this amount of data, transform and source coding techniques were tested 

using Matlab® and the method that achieved better compression is the lossy hybrid method 

using Amplitude Scaling and DWT with a CR of 5.99:1. However, the lossless hybrid method 

using LPC and LZW obtained a good CR as well – 4.56:1. The choice of which method best 

suits varies with the type of application and for ECG pattern recognition it is best to preserve 

the signal than reduce the amount of data. 

Since the CardioWheel has a BLE module, the transmission could be ensured by BLE 

technology with the Profile that was created for the transmission of ECG and SWA. The 

Profile enables a gateway for getting the ECG and SWA data from the acquisition system. 

Also using Matlab, the fatigue and drowsiness detection was accomplished by testing 

different machine learning algorithms in a two-class problem. The algorithm that reached the 

best accuracy was the SVM, with an accuracy of 0.6241 ± 0.0490. The percentage of false 

positives is 15.95 ± 5.4 % meaning that from 10% to 20% of the times, the classifier can’t 

predict that the driver is drowsy. 

It is crucial to take into account that the KSS scale, used as output in the supervised 

learning task, is a subjective scale and subjective measures are based in self-rating scores 



 

81 
 

given by the drivers and, although they are helpful in understanding the driver’s condition, 

they are highly depended on the personal evaluation and interpretation.  

With these results it is possible to conclude that it is possible to implement the system 

defined in this dissertation. However, the results are not persistent since they not account for 

all the possible conditions.  

 

8.1 Future work 

 

This dissertation was more focused in the compression and the classification methods, 

however, to fulfil all the proposed approach there are some topics that should be investigated 

more deeply. 

In the acquisition device, more efficient compression algorithms can be implemented, that 

can enable higher compression ratios with a tolerant loss in the signal quality. 

The BLE Profile that was created for the transmission of ECG and SWA was not tested 

but its conception was studied, in order to guarantee a good structure for a future 

implementation. After testing the BLE Profile, more characteristics may be useful and can be 

added. 

The results for data classification are very dependent from the dataset used to train the 

classifier. The tested conditions are the same for the entire dataset and this influences the 

data. For more reliable results this should be tested with a more complete dataset that 

contains different circuits, different vehicles or different weather conditions. 

Also, in the dataset, the ECG signal was extracted in an intrusive way, so when testing 

machine learning algorithms with signals acquired in a non-intrusive way, it is expected that 

the quality of the signal decreases and the extracted features could not be relevant enough 

to describe the signal differences. Besides this, more features could be defined in order to 

improve the results for intrusive or non-intrusive ECG data. 

Since the SVM method proved to be the best of the tested algorithms, it is necessary to 

test different kernels in order to find if it is possible to improve the algorithm results. Besides 

this, different classifier combinations could be done, sequential or parallel combination, in 

order to test, as well, if there is any improvement in the obtained results. 
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