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ABSTRACT

Developing accurate channel models is paramount in designing efficient mobile com-

munication systems. The focus of this dissertation is to understand the small-scale

fading characteristics, develop mathematical tools that accurately capture these

characteristics and utilize them in three different applications - diversity receivers,

scheduling, packet duplication in dual connectivity scenarios.

This dissertation develops multivariate stochastic models for Rayleigh fading

channels that incorporate factors such as the velocity of the users, angle of arrival

distribution of signals, and carrier frequency. The developed models are more com-

prehensive than the existing ones. They capture the correlation characteristics of

signals more accurately and are applicable to more practical scenarios. The devel-

oped models are the only ones that incorporate the spatial correlation structure

suggested by 3GPP.

The models are used to derive analytical expressions for the output SNR of

certain diversity receivers. Owing to our expressions, the output SNR performances

of these receivers are now studied through their moments. The moments provide

insight about the nature of these receivers’ output SNR distribution, which is very

useful in their reliability analysis.

Secondly, the models are used to capture the temporal evolution of the received
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SNR. Temporal correlation characteristics of the SNR are exploited to decrease the

number of variables in the downlink scheduling problem. This is achieved by making

scheduling decisions less frequently for users with relatively higher coherence time.

The results illustrate that the number of operations it takes to make scheduling

decisions can be reduced by 33% with confidence probability of 0.7 and by 58% with

confidence probability of 0.4.

Finally, fade duration and non-fade duration characteristics of a Rayleigh fading

channel are used to partially and randomly duplicate some packets when connected

to multiple base stations. This is performed based on the small-scale fading statistics

rather than the large-scale fading. Duplication based on large time scales can be

wasteful and unnecessary, so it is shown using matrix exponential distributions how

with low complexity to duplicate only when necessary. The results indicate that

up to 50% of the resources at the duplicating base station can be liberated whilst

meeting the target reliability measure.
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CHAPTER 1

INTRODUCTION

Stochastic wireless channel modeling deals with the problem of developing math-

ematical tools that relate the behavior of the received signals to environmental fac-

tors and system parameters. There are many environmental factors. Some of them

are geographic location (urban, rural, etc.), height, and velocity of the base sta-

tion (BS) and the user equipment (UE). The system parameters include carrier

frequency, transmit power and waveform of the signals, geometric structures of the

multiple-input-multiple-output (MIMO) receiver and transmitter, bandwidth (BW)

of the channel, length of the error-correction codes, and size of the allocated time

and frequency resources.

Mathematical tools are then utilized to study the behavior of the signals at the

transmitter and the receiver. With an objective in mind, the system parameter

values are then chosen accordingly for a given environment. This is very useful

because this process can be repeated for different scenarios on a computer instead

of relying on trial and error methods using field tests. In short, we need these

mathematical tools (channel models) for the design, simulation and planning of

wireless systems [1].

The most notable work laying down the foundations of stochastic channel mod-

eling and statistical communications analysis is the work of Stephen O. Rice of the

Bell Laboratories in the mid 1940s [2]. The pioneering works of Rice can be found

in [3–5] where he develops a theory of random noise. Ossana and Clarke apply

this work to a wireless communications system where they incorporate mobility and
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environmental factors [6, 7]. Gans develops a spectral density analysis for Clarke’s

model [8]. Jakes introduces the spatial diversity concept to avoid deep fades [9].

Bello extends the one dimensional models and explains the behavior of the signals

using 2-D time-frequency statistical functions [10].

The aforementioned works describe the characteristics of the received signals;

specifically the variation of the instantaneous received envelope in time-frequency-

space. They describe the instantaneous received envelope by the Rayleigh distribu-

tion. Molisch summarizes the reasons why Rayleigh distribution is widely used in

wireless communications [1]:

• It provides an excellent approximation in a large number of practical scenarios,

as confirmed by a multitude of measurements.

• It describes a worst case scenario where there is no line of light sight between

the transmitter and the receiver. This is very useful in designing robust sys-

tems.

• It depends only on a single parameter, the mean received power. The entire

signal statistics are known if this parameter is known.

• It is mathematically convenient.

In summary, the received signals are characterized as Rayleigh distributed stochas-

tic processes. These models have been very successful in describing the radio waves

in a statistical manner and have helped system designers to architect very efficient

systems.

Having said that, there is still room for improvement in describing the received

signals. There are two main arguments.

First, the inter-dependencies and intra-dependencies of time-frequency-space can

be explained better by developing more sophisticated models [1, 11, 12]. This is the

problem we address in this dissertation. Intra-dependencies focus on the dependen-

cies across time (or frequency, or space) using 1-D correlation (or other statistical)
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functions. Inter-dependencies focus on the dependencies between time and frequency

and space which require multi-dimensional correlation functions.

Secondly, capturing the influence of the third dimension (elevation) is still lacking

as the current models are only azimuth based [13,14].

The essential reason to build new models is to move closer to the reality; more

specifically, to the reality we can understand. This helps the researchers understand

the existing systems more in depth and develop better ones for the future.

1.1 Goals

In this dissertation, we address the first argument that was mentioned above.

Our goals are to:

1. Develop new channel models that capture the statistical variation in time-

frequency-space more accurately.

2. Illustrate the significance of accurate wireless channel modeling through vari-

ous applications.

The models we build rely on the Rayleigh distribution and stochastic processes.

We define Rayleigh random variables (RVs) that are separated in time-frequency-

space. The dependencies between the RVs are quantified by correlation values. We

build three different models that are more accurate than the existing ones and utilize

them in three different applications.

1.2 Contributions

Here we highlight the dissertation contributions:

1. Derive the most comprehensive results regarding the quadrivariate Rayleigh

distribution. Our model is the only one that can incorporate the Third Gen-

eration Partnership Project (3GPP) suggested spatial correlation structure.
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Also, any four-branch receiver set-up regardless of the geometric arrangements

(linear, circular. . . etc.) and the angle of arrival distribution can be studied.

2. Derive closed form expressions for the moments of the four-branch equal gain

combiner’s (EGC) and maximal ratio combiner’s (MRC) output signal-to-noise

ratio (SNR). The discrepancy between the independence assumption and our

results goes up to 9% for the EGC receiver and 19% for the MRC receiver in

terms of the mean output SNR. The discrepancy between the independence

assumption and our results goes up to 16% for the EGC receiver and 57% for

the MRC receiver in terms of the standard deviation of the output SNR. We

show how inaccurate the independence assumption is up to first four moments.

Our results enable one to carry out reliability analysis of these receivers.

3. Develop a novel bivariate SNR distribution that captures the temporal vari-

ation in the received SNR more accurately. This is utilized to decrease the

number of computations a generic wireless scheduler requires. The results il-

lustrate that the number of operations it takes to make scheduling decisions

can be reduced by 33% with confidence probability of 0.7 and by 58% with

confidence probability of 0.4.

4. Develop a Markov chain model that describes the fade and non-fade durations

of a Rayleigh fading channel. This is applied to the packet duplication (PD)

feature in fifth generation (5G) cellular networks. We show that efficiency

of the resource usage can be improved compared to existing works. The re-

sults indicate that up to 50% of the resources at the duplicating base station

can be liberated whilst meeting the target reliability measure. This work is

achieved by using matrix exponential (ME) distributions where residence times

of Markov states as a group are studied rather than individual states.

In the rest of the dissertation we discuss the three applications each with their

own motivation, problem, related work, results, conclusion and future work. Then

we finalize with a more broad view of conclusions and future work.
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CHAPTER 2

MOMENTS OF THE QUADRIVARIATE RAYLEIGH DISTRIBUTION WITH

APPLICATIONS FOR DIVERSITY RECEIVERS

2.1 Motivation

In wireless communications, the received signal amplitude can statistically be

described by the Rayleigh distribution in urban and suburban environments where

there are no line-of-sight paths [9]. Naturally, the signal samples are correlated

in space, time, and frequency. Bandwidth of the signal, power azimuth spectrum

(PAS), and relative motion of the UE are some key factors that influence the degree

of the correlation. Therefore, the received signals at antennas of a four-branch

diversity receiver can be modeled as Rayleigh random variables with some kind of

spatial correlation model in between.

The correlation models in the literature make assumptions such as independence,

constant correlation, exponential correlation or some other kind between received

signals at each antenna. However, this limits the scenarios one can accurately model.

For example, for a linear array of antennas, the constant correlation model would not

be accurate as it assumes the correlation between all pairs of antennas are the same.

This is not a very good assumption because the spatial correlation decreases as

the distance between antennas increases. Therefore, a more accurate model should

have less correlation between a farther pair of antennas compared to closer ones.

One can easily provide other examples where the existing models would not be as

realistic. As a result, an arbitrary correlation model without any assumptions is

needed. In this way any receiver set-up can accurately be modeled regardless of the
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geometric arrangements of them (linear, circular. . . etc.) or the PAS distribution. Li

and Zhang [15] and the 3GPP [16] suggest a spatial correlation model for a diversity

receiver at the UE. The suggested correlation model can be incorporated only into

our expressions we derive here. The expressions in the literature would not be able

to because of the assumptions they make.

It is often the case that a four-branch diversity receiver is studied through its

outage probability and mean output SNR. The probability that the output SNR of

the receiver is below a certain threshold is defined as outage probability. One needs

to ideally obtain the joint cumulative distribution function (CDF) of the output

SNR to analyze these properties1. A way of obtaining (or approximating) the CDF

of the output SNR of a four-branch diversity receiver is by using the moments of

the output SNR. This is referred to as the classical moment problem [17]. The

higher the order of the moments, the more accurate the approximation to the CDF

becomes. This also means qualitative properties of the output SNR such as skewness

from the third moment and kurtosis, κ, from the fourth moment can be found. In a

simplistic manner, these properties are measures of “asymmetry” and “tailedness”

of the probability density function (PDF).

One motivation we have for finding higher order moments comes in the adap-

tation of Long Term Evolution (LTE) by public security entities. It is envisioned

that the international market for this will surpass 2 billion Euros in 2019 [18]. Since

dependable service is very important, the choice of a diversity receiver for public

safety networks, we believe, will depend on not only the mean output SNR but also

its variability and outage probability. How tailed the PDF is and which way the

tail is (“left” or “right”) are key properties that might help to study the reliability

of a diversity receiver. Eggers et al. argue that tail statistics is very important in

reliability analysis [19].

In addition to our specific interests and motivation for studying quadrivariate

1It is not in the scope of this dissertation to attempt to approximate the CDF of the output
SNR of the investigated diversity receivers.
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Rayleigh RVs we mention above, there are other applications for them. An im-

portant one is a resource scheduler that exploits the time and frequency domain

behaviors of the channel. Moments for four random variables capture the combined

effects of frequency and time correlation (samples in a two dimensional plane).

2.2 Related Work

The PDF of the bivariate Rayleigh distribution is derived by Rice [3]. The

corresponding cumulative distribution function is derived by Tan and Beaulieu [20].

A common method to derive the joint distribution for a higher number of Rayleigh

RVs is to represent each random variable by an underlying complex Gaussian RV.

The trivariate probability density function of Rayleigh RVs is derived by Miller [21]

using this method. We also derived this distribution independently and reached the

same result. Miller and Blumenson [22] provide an expression for the joint PDF

of N Rayleigh RVs, however, it is only valid when the inverse of the covariance

matrix of the complex Gaussian RVs is tridiagonal. This type of correlation model

is referred to as the exponential correlation model in the literature. Chen and

Tellambura [23] extend the work of Miller and Blumenson for the quadrivariate case

by relaxing the tridiagonal structure restriction on the inverse of the covariance

matrix. Their method is limited to cases where the inverse of the aforementioned

covariance matrix has zero values for the entries (1,4) and (4,1). Nadarajah and

Kotz [24] provide simpler forms of the expressions derived by Chen and Tellambura.

Le [25] shows that for the exponentially correlated case, the seven-nested infinite

summation form derived by Chen and Tellambura can be reduced to a three-nested

summation form.

The results in the discussed works so far are some form of an infinite series of

either the modified Bessel functions, incomplete Gamma functions, or exponential

functions.

There are also integral expressions in comparison to infinite series. These forms
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of results are generally in terms of an integrand that is a function of magnitude

(Rayleigh distributed) and phase random variables. Mallik [26] presents N -tuple

integral expressions for the N -variate Rayleigh RVs with various correlation models.

Beaulieu and Hemachandra [27] derive a single integral expression for the N -variate

PDF with a limited correlation model. Beaulieu and Zhang [28], in a very recent

work, derive a double integral form PDF of the quadrivariate Rayleigh distribution

with arbitrary correlation model.

2.3 Contributions

To the best of our knowledge the results for the quadrivariate Rayleigh distri-

bution in the literature either make assumptions such as independence, constant

correlation, exponential correlation or some other kind between the RVs (signals at

antennas), that results in a limited correlation model.

The only result with an arbitrary correlation model is a double integral form PDF

given by Beaulieu and Zhang [28]. We derive the PDF in infinite series form. Owing

to the infinite series form of our result, we obtain analytical expressions for the

cumulative distribution function, joint moments, and moment generating function

(MGF) with an arbitrary correlation model which we believe are not available in

the literature.

Our results are novel and extend previous work by having no restrictions on the

covariance matrix (as opposed to models in [22], [23] and [24]), being in infinite series

forms (as opposed to integral forms in [26] and [28]) and providing expressions for

the CDF, MGF and joint moments in addition to the PDF.

Furthermore, we derive all of the possible expressions for the PDF, joint moments

and MGF where it can be reduced to simpler forms. We provide the corresponding

correlation structure for each case. These cases represent different scenarios where

the partial correlations between certain RVs are zero. We believe that only some of

these reduced forms are available in the literature.
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Using our results, we study performances of different diversity schemes. We uti-

lize the CDF to compute the outage probability values for the four-branch selection

combining receiver in different scenarios. We derive an analytical expression for

the moments of the output SNR of the four-branch equal gain and maximal ratio

combining receivers. We utilize them to compute the first, second, third and fourth

moments of the output SNR in different scenarios. Our expressions consist of well

known functions which make them readily available for computations. We believe

that our findings regarding the aforementioned diversity receivers are new.

To sum up the contributions of the chapter, we develop a novel channel model

that is the first to capture the 3GPP suggested spatial correlation structure. In

other words, our model is the only one that can incorporate the 3GPP suggested

spatial correlation values between RVs.

The rest of the chapter is organized as follows: List of notations regarding this

chapter is given in Section 2.4. Representation of the correlated Rayleigh RVs is

introduced in Section 2.5. In Section 2.6, the new results and analytical expressions

are given. Section 2.7 presents applications where the results can be utilized. In

Section 2.8, performance analysis of various diversity schemes in different scenarios

are presented. Concluding remarks and future work are provided in Section 2.9.

Derivations of the results are given in Appendices A-C.

2.4 List of Notations

dmin distance between closest pair of antennas

Dk(·) parabolic cylinder function

E[·] expectation operator

fX(x) probability density function of X

FX(x) cumulative distribution function of X

Ik(·) kth order modified Bessel function of the first kind
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Jk(·) kth order Bessel function of the first kind

MX(s) moment generating function of X

No additive white Gaussian noise power spectral density at each

branch

Pout outage probability

r Rayleigh random variable

(·)T transpose operator

z zero-mean Gaussian random variable

Z row vector of Gaussian random variables

γk instantaneous SNR at the kth branch

γk, γ average SNR at the kth branch

γth threshold SNR for outage probability

γ(·) lower incomplete gamma function

Γ(·) gamma function

ζ variance of Gaussian random variables

κ kurtosis coefficient of output SNR

λ wavelength

µ mean of power azimuth spectrum

ρ|i−j| correlation coefficient between ith and jth Gaussian RV

σ standard deviation of output SNR

φ conditional covariance between Gaussian RVs

Φ inverse covariance matrix of Gaussian RVs

Ψ covariance matrix of Gaussian RVs

10



2.5 Representation of Correlated Random Variables

We define random variables zI1 , zQ1 , . . . , zI4 , zQ4 as equal variance, ζ, zero-mean

Gaussian distributions (without loss of generality, i.e., zIi , zQi
pair and zIj , zQj

pair

may have different variances in between for i 6= j). Their well-known joint PDF is

given by [29] (7.18a):

fZ(zI1 , zQ1 . . . , zI4 , zQ4) =
exp

(
−ZΨ−1Z

T

2

)
(2π)4(det Ψ)(1/2)

(2.1)

where (·)T denotes the transpose operator, Z = [zI1 , zQ1 , . . . , zI4 , zQ4 ] and Ψ

is a positive definite covariance matrix. We define Rayleigh random variables as

ri = (zIi
2 + zQi

2)1/2 for i ∈ {1 . . . 4}. Elements of the covariance matrix are defined

as ψ11 = E[zI1zI1 ], ψ12 = E[zI1zQ1 ], ψ13 = E[zI1zI2 ] . . . ψ88 = E[zQ4zQ4 ] where

E[·] denotes the expectation operator. Cross-covariance between the in-phase and

quadrature components for all pairs are zero. In other words, E[zIizQj
] = 0 (hence,

independent identically distributed) for i, j ∈ {1, . . . , 4}.

The correlation coefficient between ith and jth RV is defined as

ρ|i−j| =
E[zIizIj ]

ζ
=
E[zQi

zQj
]

ζ
, i, j ∈ {1, . . . , 4} (2.2)

Therefore, ρ0 = 1. An illustration of this correlation structure for a linear array of

antennas is shown in Fig. 2.1.

ρ1 ρ1 ρ1

ρ2 ρ2

ρ3

Antenna 2 Antenna 3 Antenna 4Antenna 1

Figure 2.1: Correlation structure between antennas.
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2.6 Statement of Results

2.6.1 Joint Density and Joint Cumulative Distribution Functions

Given a positive definite covariance matrix, Ψ, (see previous section) the inverse

covariance matrix, Φ has the following form

Φ = Ψ−1 =
1

ζ



φ1 0 φ3 0 φ4 0 φ5 0

0 φ1 0 φ3 0 φ4 0 φ5

φ3 0 φ2 0 φ6 0 φ4 0

0 φ3 0 φ2 0 φ6 0 φ4

φ4 0 φ6 0 φ2 0 φ3 0

0 φ4 0 φ6 0 φ2 0 φ3

φ5 0 φ4 0 φ3 0 φ1 0

0 φ5 0 φ4 0 φ3 0 φ1



(2.3)

where φ denotes the conditional covariance between Gaussian RVs. Specific entries

of the inverse covariance matrix denote the conditional covariance between the cor-

responding RVs. For instance, φ3 denotes the conditional covariance between zI1

and zI2 , zQ1 and zQ2 , zI3 and zI4 , zQ3 and zQ4 random variables. The conditional

covariance between zI1 and zI4 , zQ1 and zQ4 is denoted by φ5. The joint PDF and

CDF of N Rayleigh random variables are derived by Miller and Blumenson [22]

given that the inverse covariance matrix of the underlying complex Gaussian RVs

is tridiagonal. That is to say, φ4 = φ5 = 0 corresponding to Φ. This form repre-

sents the well known exponential correlation model. The joint PDF and CDF of the

quadrivariate Rayleigh distribution are derived by Chen and Tellambura [23] given

that φ5 = 0.

Here we provide a more general result where there are no such restrictions on

the inverse covariance matrix. In other words, our expression is valid when φi 6= 0

for all i. This is significant because the spatial correlation matrix suggested by the

12



3GPP has non-zero for all φi values.

We derive the joint PDF of four Rayleigh random variables as (see Appendix A)

fR(r1, r2, r3, r4)

= (det Ψ)−(1/2)r1r2r3r4e
−
(
φ1
2ζ (r21+r24)+

φ2
2ζ (r22+r23)

)

×
∞∑

l=−∞

∞∑
j=−∞

∞∑
m=−∞

Il

(
−φ3
ζ
r1r2

)
Ij

(
−φ4
ζ
r1r3

)
× Il+j

(
−φ5
ζ
r1r4

)
Il+m

(
−φ6
ζ
r2r3

)
Il+j+m

(
−φ3
ζ
r3r4

)
Im

(
−φ4
ζ
r2r4

)
(2.4)

where Ik(·) denotes the kth order modified Bessel function of the first kind. We

believe that this is a novel result and the most general result regarding the PDF

of the quadrivariate Rayleigh distribution. Please note that the structure of this

expression is valid for any given positive definite covariance matrix.

We derive the joint CDF of four Rayleigh random variables as (see Appendix B)

FR(r1, r2, r3, r4)

= η3

∞∑
l,m,j=−∞

∞∑
b,q,b′,h,f,h′=0

(−2φ3η)|l|+|l+j+m|+2b′+2b

2
(ν1+ν2+ν3+ν4)

2

× (−2φ4η)|j|+|m|+2h′+2h (−2φ5η)|l+j|+2f (−2φ6η)|l+m|+2q

(φ1η)
ν1+ν4+4

2 (φ2η)
ν2+ν3+4

2 b!f !h!(b+ |l|)!(h+ |j|)!

×
γ
(
ν1+2

2
, φ1

2ζ
r2

1

)
(f + |j + l|)!q!

γ
(
ν2+2

2
, φ2

2ζ
r2

2

)
b′!(q + |l +m|)!

γ
(
ν3+2

2
, φ2

2ζ
r2

3

)
(b′ + |l +m+ j|)!

γ
(
ν4+2

2
, φ1

2ζ
r2

4

)
(h′ + |m|)!h′!

(2.5)

where η = (det Ψ)(1/2)

ζ4
, ζ denotes the variance of the Gaussian RVs, γ(·) denotes the

lower incomplete gamma function, ν1 = |l| + |j| + |j + l| + 2b + 2h + 2f , ν2 =

|l| + |m| + |l + m| + 2b + 2q + 2h′, ν3 = |j| + |l + m| + |j + l + m| + 2h + 2q + 2b′,

ν4 = |m| + |j + l| + |j + l + m| + 2f + 2b′ + 2h′. We believe that this is a new

result and the most general result regarding the CDF of the quadrivariate Rayleigh

distribution.
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2.6.2 Joint Moments and Joint Moment Generating Function

To study the performance of diversity receivers we derive moments and moment

generating functions. Using (2.4), we derive the joint moments of four Rayleigh RVs

as

E
[
rβ11 r

β2
2 r

β3
3 r

β4
4

]
= η3 (ηζ)β/2

∞∑
l,m,j=−∞

∞∑
b,q,b′,h,f,h′=0

(−2φ5η)|l+j|+2f

2
ν1+ν2+ν3+ν4−β

2

× (−2φ4η)|j|+|m|+2h′+2h (−2φ3η)|l|+|l+j+m|+2b′+2b (−2φ6η)|l+m|+2q

(φ1η)
ν1+ν4+4+β1+β4

2 (φ2η)
ν2+ν3+4+β2+β3

2 b!h!h′!(b+ |l|)!(h+ |j|)!f !

×
Γ
(
ν1+β1+2

2

)
q!b′!(f + |j + l|)!

Γ
(
ν2+β2+2

2

)
(q + |l +m|)!

Γ
(
ν3+β3+2

2

)
(b′ + |l +m+ j|)!

Γ
(
ν4+β4+2

2

)
(h′ + |m|)!

,

β1, β2, β3, β4 ≥ −1

(2.6)

where β = β1 + β2 + β3 + β4 and Γ(·) denotes the gamma function. The deriva-

tion is very similar to what is presented in Appendix B. We utilize the integral

representation of gamma function as given in [30] (6.1.1).

Using (2.4), we derive the joint moment generating function of the quadrivariate

Rayleigh distribution as (see Appendix C)

MR(s1, s2, s3, s4) = E[es1r1+s2r2+s3r3+s4r4 ]

= η3e

(
ζ

4φ1
(s21+s24)+

ζ
4φ2

(s22+s23)
)

×
∞∑

l,m,j=−∞

∞∑
b,q,b′,h,f,h′=0

(−2φ3η)|l|+|l+j+m|+2b′+2b

2(ν1+ν2+ν3+ν4) (φ1η)
ν1+ν4+4

2

× (−2φ4η)|j|+|m|+2h′+2h (−2φ5η)|l+j|+2f (−2φ6η)|l+m|+2q

(φ2η)
ν2+ν3+4

2 b!h!f !(b+ |l|)!(h+ |j|)!b′!h′!q!

× Γ (ν1 + 2)

(f + |j + l|)!
Γ (ν2 + 2)

(q + |l +m|)!
Γ (ν3 + 2)

(b′ + |l +m+ j|)!
Γ (ν4 + 2)

(h′ + |m|)!

×D−(ν1+2)

(
−s1√
φ1/ζ

)
D−(ν2+2)

(
−s2√
φ2/ζ

)
D−(ν3+2)

(
−s3√
φ2/ζ

)
×D−(ν4+2)

(
−s4√
φ1/ζ

)

(2.7)
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where Dk(·) denotes the parabolic cylinder function [31] (9.240).

2.6.3 Reduced Forms

The results we provide for the joint PDF, CDF, moments and MGF in (2.4)

- (2.7) represent the most general case. That is, φi 6= 0 for all i. φi values are

the entry values in the inverse covariance matrix (equation in (2.3)). This is the

significance of our work.

However, if the underlying covariance matrix has a special structure, then the

expressions will be reduced to simpler forms. Please note that the structure of

the covariance matrix relies on the physical scenario one is interested in. As a

result, if the correlation at the antennas can accurately be modeled by these special

structures we provide in this section, the results will be simplified in terms of number

of operations (number of infinite series terms).

There are a total of five cases where the expressions in (2.4) - (2.7) reduce to

simpler forms. We present the joint PDF, moments, and MGF for each case. We

also present the corresponding restriction on the correlation values (ρ) between the

underlying Gaussian RVs for each case. They are shown in (2.8) - (2.27).

To the best of our knowledge only two of these cases are previously analyzed.

They can be found in [22] and [23]. Thus, we believe that the results in (2.8) - (2.27)

are new except for (2.20), (2.24) and (2.27).

Case When φ3 = 0

This case is applicable to a scenario where the first (r1) and second (r2) and

the third (r3) and fourth (r4) Rayleigh RVs are conditionally independent (i.e.,

zero partial correlation in between). We derive the joint PDF of the quadrivariate
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Rayleigh distribution for this case as

fR(r1, r2, r3, r4)

= (det Ψ)−(1/2)r1r2r3r4e
−
(
φ1
2ζ (r21+r24)+

φ2
2ζ (r22+r23)

)

×
∞∑

l=−∞

Il

(
−φ4
ζ
r1r3

)
Il

(
−φ5
ζ
r1r4

)
Il

(
−φ6
ζ
r2r3

)
Il

(
−φ4
ζ
r2r4

) (2.8)

We derive the joint moments of the quadrivariate Rayleigh distribution for this case

as

E
[
rβ11 r

β2
2 r

β3
3 r

β4
4

]
= η3 (ηζ)β/2

∞∑
l=−∞

∞∑
h,f,h′,q=0

(−2φ5η)|l|+2f

2
ν′1+ν′2+ν′3+ν′4−β

2

× (−2φ4η)|2l|+2h′+2h (−2φ6η)|l|+2q

(φ1η)
ν′1+ν′4+4+β1+β4

2 (φ2η)
ν′2+ν′3+4+β2+β3

2

Γ
(
ν′1+β1+2

2

)
h!f !(h+ |l|)!h′!

×
Γ
(
ν′2+β2+2

2

)
(f + |l|)!q!

Γ
(
ν′3+β3+2

2

)
(q + |l|)!

Γ
(
ν′4+β4+2

2

)
(h′ + |l|)!

, β1, β2, β3, β4 ≥ −1

(2.9)

where β = β1 + β2 + β3 + β4 and ν ′1 = |2l| + 2h + 2f , ν ′2 = |2l| + 2q + 2h′, ν ′3 =

|2l|+ 2h+ 2q, ν ′4 = |2l|+ 2f + 2h′. We derive the joint moment generating function

of the quadrivariate Rayleigh distribution for this case as

MR(s1, s2, s3, s4) = E[es1r1+s2r2+s3r3+s4r4 ]

= η3e

(
ζ

4φ1
(s21+s24)+

ζ
4φ2

(s22+s23)
)

×
∞∑

l=−∞

∞∑
h,h′,q,f=0

(−2φ5η)|l|+2f

2(ν′1+ν′2+ν′3+ν′4) (φ1η)
ν′1+ν′4+4

2

× (−2φ4η)|2l|+2h′+2h (−2φ6η)|l|+2q

(φ2η)
ν′2+ν′3+4

2 h!f !h′!q!

Γ (ν ′1 + 2)

(q + |l|)!

× Γ (ν ′2 + 2)

(f + |l|)!
Γ (ν ′3 + 2)

(h+ |l|)!
Γ (ν ′4 + 2)

(h′ + |l|)!
D−(ν′1+2)

(
−s1√
φ1/ζ

)
×D−(ν′2+2)

(
−s2√
φ2/ζ

)
D−(ν′3+2)

(
−s3√
φ2/ζ

)
D−(ν′4+2)

(
−s4√
φ1/ζ

)

(2.10)
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where ν ′1 = |2l|+2h+2f , ν ′2 = |2l|+2q+2h′, ν ′3 = |2l|+2h+2q, ν ′4 = |2l|+2f+2h′.

The joint PDF for this case is easily derived by substituting φ3 = 0 in (2.4)

and algebraic manipulation. The joint moments and MGF, similarly, are obtained

using (2.8). Please notice that the expressions presented here have less number of

infinite series compared to the general case. This can be thought of as a trade-

off between the comprehensiveness (ability to capture more practical scenarios) of

the model and the complexity. Similar argument can also be when results for the

quadrivariate distribution are compared with the trivariate or bivariate distributions.

The expressions for this case are only valid when

ρ3 =
ρ1 − ρ3

1 − ρ1ρ2 + ρ1ρ
2
2

ρ2 − ρ2
1

(2.11)

where ρ|i−j| = E[zIizIj ]/ζ = E[zQi
zQj

]/ζ.

Case When φ4 = 0

This case is applicable to a scenario where the first (r1) and third (r3) and

the second (r2) and fourth (r4) Rayleigh RVs are conditionally independent (i.e.,

zero partial correlation in between). We derive the joint PDF of the quadrivariate

Rayleigh distribution for this case as

fR(r1, r2, r3, r4)

= (det Ψ)−(1/2)r1r2r3r4e
−
(
φ1
2ζ (r21+r24)+

φ2
2ζ (r22+r23)

)

×
∞∑

l=−∞

Il

(
−φ3
ζ
r1r2

)
Il

(
−φ5
ζ
r1r4

)
Il

(
−φ6
ζ
r2r3

)
Il

(
−φ3
ζ
r3r4

) (2.12)
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We derive the joint moments of four Rayleigh RVs for this case as

E
[
rβ11 r

β2
2 r

β3
3 r

β4
4

]
= η3 (ηζ)β/2

∞∑
l=−∞

∞∑
b,b′,q,f=0

(−2φ5η)|l|+2f

2
ν′1+ν′2+ν′3+ν′4−β

2

× (−2φ3η)|2l|+2b′+2b (−2φ6η)|l|+2q

(φ1η)
ν′1+ν′4+4+β1+β4

2 (φ2η)
ν′2+ν′3+4+β2+β3

2

Γ
(
ν′1+β1+2

2

)
b!b′!(b+ |l|)!f !

×
Γ
(
ν′2+β2+2

2

)
(f + |l|)!q!

Γ
(
ν′3+β3+2

2

)
(q + |l|)!

Γ
(
ν′4+β4+2

2

)
(b′ + |l|)!

, β1, β2, β3, β4 ≥ −1

(2.13)

where β = β1 + β2 + β3 + β4 and ν ′1 = |2l| + 2b + 2f , ν ′2 = |2l| + 2q + 2b, ν ′3 =

|2l|+ 2b′+ 2q, ν ′4 = |2l|+ 2f + 2b′. We derive the joint moment generating function

of the quadrivariate Rayleigh distribution for this case as

MR(s1, s2, s3, s4) = E[es1r1+s2r2+s3r3+s4r4 ]

= η3e

(
ζ

4φ1
(s21+s24)+

ζ
4φ2

(s22+s23)
)

×
∞∑

l=−∞

∞∑
b,b′,q,f=0

(−2φ5η)|l|+2f

2(ν′1+ν′2+ν′3+ν′4) (φ1η)
ν′1+ν′4+4

2

× (−2φ3η)|2l|+2b′+2b (−2φ6η)|l|+2q

(φ2η)
ν′2+ν′3+4

2 b!f !b′!q!

Γ (ν ′1 + 2)

(f + |l|)!

× Γ (ν ′2 + 2)

(q + |l|)!
Γ (ν ′3 + 2)

(b′ + |l|)!
Γ (ν ′4 + 2)

(b+ |l|)!
D−(ν′1+2)

(
−s1√
φ1/ζ

)
×D−(ν′2+2)

(
−s2√
φ2/ζ

)
D−(ν′3+2)

(
−s3√
φ2/ζ

)
D−(ν′4+2)

(
−s4√
φ1/ζ

)

(2.14)

where ν ′1 = |2l|+ 2b+ 2f , ν ′2 = |2l|+ 2q+ 2b, ν ′3 = |2l|+ 2b′+ 2q, ν ′4 = |2l|+ 2f + 2b′.

The joint PDF for this case is easily derived by substituting φ4 = 0 in (2.4)

and algebraic manipulation. The joint moments and MGF, similarly, are obtained

using (2.12). Please notice that the expressions presented here have less number

of infinite series compared to the general case. This can be thought of as a trade-

off between the comprehensiveness (ability to capture more practical scenarios) of
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the model and the complexity. Similar argument can also be when results for the

quadrivariate distribution are compared with the trivariate or bivariate distributions.

The expressions for this case are only valid when

ρ3 =
−ρ2

1 + ρ2 + ρ2
1ρ2 − ρ3

2

ρ1 − ρ1ρ2

(2.15)

where ρ|i−j| = E[zIizIj ]/ζ = E[zQi
zQj

]/ζ.

Case When φ6 = 0

This case is applicable to a scenario where the second (r2) and third (r3) Rayleigh

RVs are conditionally independent (i.e., zero partial correlation in between). We

derive the joint PDF of the quadrivariate Rayleigh distribution for this case as

fR(r1, r2, r3, r4)

= (det Ψ)−(1/2)r1r2r3r4e
−
(
φ1
2ζ (r21+r24)+

φ2
2ζ (r22+r23)

)

×
∞∑
l=0

∞∑
j=−∞

αlIl

(
−φ3
ζ
r1r2

)
Ij

(
−φ4
ζ
r1r3

)
× Il+j

(
−φ5
ζ
r1r4

)
Ij

(
−φ3
ζ
r3r4

)
Il

(
−φ4
ζ
r2r4

)
(2.16)

where α0 = 1 and αl = 2 for l ∈ Z+. We derive the joint moments of four Rayleigh

RVs for this case as

E
[
rβ11 r

β2
2 r

β3
3 r

β4
4

]
= η3 (ηζ)β/2

∞∑
j=−∞

∞∑
l,f,b,h,h′,b′=0

αl (−2φ5η)|l+j|+2f

2
ν′1+ν′2+ν′3+ν′4−β

2

× (−2φ3η)|l|+|j|+2b′+2b (−2φ4η)|l|+|j|+2h+2h′

(φ1η)
ν′1+ν′4+4+β1+β4

2 (φ2η)
ν′2+ν′3+4+β2+β3

2

Γ
(
ν′1+β1+2

2

)
h!(b+ |l|)!f !b!(h′ + |l|)!

×
Γ
(
ν′2+β2+2

2

)
b′!(h+ |j|)!

Γ
(
ν′3+β3+2

2

)
(f + |l + j|)!

Γ
(
ν′4+β4+2

2

)
(b′ + |j|)!h′!

, β1, β2, β3, β4 ≥ −1

(2.17)
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where β = β1 + β2 + β3 + β4 and ν ′1 = l+ |j|+ |j+l|+2b+2h+2f , ν ′2 = 2l+2h′+2b,

ν ′3 = |2j|+2b′+2h, ν ′4 = l+ |j|+ |l+ j|+2f +2b′+2h′. We derive the joint moment

generating function of the quadrivariate Rayleigh distribution for this case as

MR(s1, s2, s3, s4) = E[es1r1+s2r2+s3r3+s4r4 ]

= η3e

(
ζ

4φ1
(s21+s24)+

ζ
4φ2

(s22+s23)
)

×
∞∑

j=−∞

∞∑
f,l,b,h,b′,h′=0

αl (−2φ5η)|j+l|+2f

2(ν′1+ν′2+ν′3+ν′4) (φ1η)
ν′1+ν′4+4

2

× (−2φ3η)|l|+|j|+2b′+2b (−2φ4η)|l|+|j|+2h+2h′

(φ2η)
ν′2+ν′3+4

2 b!b′!h′!(h′ + |l|)!f !h!

Γ (ν ′1 + 2)

(f + |l + j|)!

× Γ (ν ′2 + 2)

(b+ |l|)!
Γ (ν ′3 + 2)

(b′ + |j|)!
Γ (ν ′4 + 2)

(h+ |j|)!
D−(ν′1+2)

(
−s1√
φ1/ζ

)
×D−(ν′2+2)

(
−s2√
φ2/ζ

)
D−(ν′3+2)

(
−s3√
φ2/ζ

)
D−(ν′4+2)

(
−s4√
φ1/ζ

)

(2.18)

where ν ′1 = l + |j|+ |j + l|+ 2b + 2h + 2f , ν ′2 = 2l + 2h′ + 2b, ν ′3 = |2j|+ 2b′ + 2h,

ν ′4 = l + |j|+ |l + j|+ 2f + 2b′ + 2h′.

The joint PDF for this case is easily derived by substituting φ6 = 0 in (2.4)

and algebraic manipulation. The joint moments and MGF, similarly, are obtained

using (2.16). Please notice that the expressions presented here have less number

of infinite series compared to the general case. This can be thought of as a trade-

off between the comprehensiveness (ability to capture more practical scenarios) of

the model and the complexity. Similar argument can also be when results for the

quadrivariate distribution are compared with the trivariate or bivariate distributions.

The expressions for this case are only valid when

ρ3 =
ρ2

1 + ρ2
2 ±

√
4ρ2

1 + ρ4
1 − 8ρ2

1ρ2 + 2ρ2
1ρ

2
2 + ρ4

2

2ρ1

(2.19)

where ρ|i−j| = E[zIizIj ]/ζ = E[zQi
zQj

]/ζ.
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Case When φ5 = 0

This case is applicable to a scenario where the first (r1) and fourth (r4) Rayleigh

RVs are conditionally independent (i.e., zero partial correlation in between). We

derive the joint PDF of the quadrivariate Rayleigh distribution for this case as

fR(r1, r2, r3, r4)

= (det Ψ)−(1/2)r1r2r3r4e
−
(
φ1
2ζ (r21+r24)+

φ2
2ζ (r22+r23)

)

×
∞∑
l=0

∞∑
j=−∞

αlIl

(
−φ3
ζ
r1r2

)
Il

(
−φ4
ζ
r1r3

)
× Il+j

(
−φ6
ζ
r2r3

)
Ij

(
−φ3
ζ
r3r4

)
Ij

(
−φ4
ζ
r2r4

)
(2.20)

where α0 = 1 and αl = 2 for l ∈ Z+. We derive the joint moments of four Rayleigh

RVs for this case as

E
[
rβ11 r

β2
2 r

β3
3 r

β4
4

]
= η3 (ηζ)β/2

∞∑
j=−∞

∞∑
q,l,h′,b′,h,b=0

αl (−2φ6η)|l+j|+2q

2
ν′1+ν′2+ν′3+ν′4−β

2

× (−2φ3η)|l|+|j|+2b′+2b (−2φ4η)|l|+|j|+2h+2h′

(φ1η)
ν′1+ν′4+4+β1+β4

2 (φ2η)
ν′2+ν′3+4+β2+β3

2

Γ
(
ν′1+β1+2

2

)
q!(b+ |l|)!h!b!(h′ + |j|)!

×
Γ
(
ν′2+β2+2

2

)
(h+ |l|)!b′!

Γ
(
ν′3+β3+2

2

)
(q + |l + j|)!

Γ
(
ν′4+β4+2

2

)
(b′ + |j|)!h′!

, β1, β2, β3, β4 ≥ −1

(2.21)

where β = β1 + β2 + β3 + β4 and ν ′1 = 2l+2b+2h, ν ′2 = l+ |j|+ |l+j|+2q+2b+2h′,

ν ′3 = |l|+ |j|+ |l+j|+2q+2h+2b′, ν ′4 = |2j|+2q+2h′. We derive the joint moment
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generating function of the quadrivariate Rayleigh distribution for this case as

MR(s1, s2, s3, s4) = E[es1r1+s2r2+s3r3+s4r4 ]

= η3e

(
ζ

4φ1
(s21+s24)+

ζ
4φ2

(s22+s23)
)

×
∞∑

j=−∞

∞∑
q,l,b′,h,b,h′=0

αl (−2φ6η)|l+j|+2q

2(ν′1+ν′2+ν′3+ν′4) (φ1η)
ν′1+ν′4+4

2

× (−2φ3η)|l|+|j|+2b′+2b (−2φ4η)|l|+|j|+2h+2h′

(φ2η)
ν′2+ν′3+4

2 b!b′!h!!(h′ + |j|)!q!h′

Γ (ν ′1 + 2)

(q + |l + j|)!

× Γ (ν ′2 + 2)

(h+ |l|)!
Γ (ν ′3 + 2)

(b′ + |j|)!
Γ (ν ′4 + 2)

(b+ |l|)!
D−(ν′1+2)

(
−s1√
φ1/ζ

)
×D−(ν′2+2)

(
−s2√
φ2/ζ

)
D−(ν′3+2)

(
−s3√
φ2/ζ

)
D−(ν′4+2)

(
−s4√
φ1/ζ

)

(2.22)

where ν ′1 = 2l+ 2b+ 2h, ν ′2 = l+ |j|+ |l+ j|+ 2q+ 2b+ 2h′, ν ′3 = |l|+ |j|+ |l+ j|+

2q + 2h+ 2b′, ν ′4 = |2j|+ 2q + 2h′.

The joint PDF for this case is easily derived by substituting φ5 = 0 in (2.4)

and algebraic manipulation. The joint moments and MGF, similarly, are obtained

using (2.20). Please notice that the expressions presented here have less number

of infinite series compared to the general case. This can be thought of as a trade-

off between the comprehensiveness (ability to capture more practical scenarios) of

the model and the complexity. Similar argument can also be when results for the

quadrivariate distribution are compared with the trivariate or bivariate distributions.

The expressions for this case are only valid when

ρ3 =
ρ3

1 − 2ρ1ρ2 + ρ1ρ
2
2

ρ2
1 − 1

(2.23)

where ρ|i−j| = E[zIizIj ]/ζ = E[zQi
zQj

]/ζ.

Chen and Tellambura [23] derive the PDF for this correlation model. Our ex-

22



pression is in agreement with theirs.

Case When φ4 = φ5 = 0

This case is applicable to a scenario where both the first (r1) and third (r3),

the first (r1) and fourth (r4) and the second (r2) and fourth (r4) Rayleigh RVs are

conditionally independent (i.e., zero partial correlation in between). We derive the

joint PDF of the quadrivariate Rayleigh distribution for this case as

fR(r1, r2, r3, r4)

= (det Ψ)−(1/2)r1r2r3r4e
−
(
φ1
2ζ (r21+r24)+

φ2
2ζ (r22+r23)

)

× I0

(
−φ3
ζ
r1r2

)
I0

(
−φ6
ζ
r2r3

)
I0

(
−φ3
ζ
r3r4

) (2.24)

We derive the joint moments of four Rayleigh RVs for this case as

E
[
rβ11 r

β2
2 r

β3
3 r

β4
4

]
= η3 (ηζ)β/2

∞∑
b,q,b′=0

(−2φ3η)2b+2b′ (−2φ6η)2q

2
ν′1+ν′2+ν′3+ν′4−β

2 (φ1η)
ν′1+ν′4+4+β1+β4

2

×
Γ
(
ν′1+β1+2

2

)
(φ2η)

ν′2+ν′3+4+β2+β3
2

Γ
(
ν′2+β2+2

2

)
b!b!

Γ
(
ν′3+β3+2

2

)
b′!b′!

Γ
(
ν′4+β4+2

2

)
q!q!

,

β1, β2, β3, β4 ≥ −1

(2.25)

where β = β1 + β2 + β3 + β4 and ν ′1 = 2b, ν ′2 = 2b + 2q′, ν ′3 = 2q + 2b′, ν ′4 =

2b′. We derive the joint moment generating function of the quadrivariate Rayleigh
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distribution for this case as

MR(s1, s2, s3, s4) = E[es1r1+s2r2+s3r3+s4r4 ]

= η3e

(
ζ

4φ1
(s21+s24)+

ζ
4φ2

(s22+s23)
)

×
∞∑

b,q,b′=0

(−2φ3η)2b+2b′ (−2φ6η)2q Γ (ν ′1 + 2)

2(ν′1+ν′2+ν′3+ν′4) (φ1η)
ν′1+ν′4+4

2

× Γ (ν ′2 + 2) Γ (ν ′3 + 2) Γ (ν ′4 + 2)

(φ2η)
ν′2+ν′3+4

2 b!b!b′!b′!q!q!

D−(ν′1+2)

(
−s1√
φ1/ζ

)

×D−(ν′2+2)

(
−s2√
φ2/ζ

)
D−(ν′3+2)

(
−s3√
φ2/ζ

)
D−(ν′4+2)

(
−s4√
φ1/ζ

)
(2.26)

where ν ′1 = 2b, ν ′2 = 2b+ 2q′, ν ′3 = 2q + 2b′, ν ′4 = 2b′.

The joint PDF for this case is easily derived by substituting φ4 = φ5 = 0 in (2.4)

and algebraic manipulation. The joint moments and MGF, similarly, are obtained

using (2.24). Please notice that the expressions presented here have less number

of infinite series compared to the general case. This can be thought of as a trade-

off between the comprehensiveness (ability to capture more practical scenarios) of

the model and the complexity. Similar argument can also be when results for the

quadrivariate distribution are compared with the trivariate or bivariate distributions.

The expressions for this case are only valid when

ρ2 = ρ2
1, ρ3 = ρ3

1 (2.27)

where ρ|i−j| = E[zIizIj ]/ζ = E[zQi
zQj

]/ζ.

This is the well known exponentially correlated case (φ3 = φ6). Our expression

for the joint PDF is in agreement with the one shown in [22].
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2.7 Applications

2.7.1 Outage Probability of the Four-Branch Selection Combiner

The selection combiner (SC) outputs the signal of the branch that has the highest

SNR. Thus, the K-branch selection combiner’s output SNR can be given as [32]

γSC = max{γ1, γ2, . . . , γK} (2.28)

where γk denotes the kth branch’s instantaneous SNR and is given as

γk =
r2
k

No

(2.29)

where No denotes the additive white Gaussian noise (AWGN) power spectral density

at each branch. The average SNR at the kth branch can be given as

γk = γ =
E[r2

k]

No

=
2ζ

No

(2.30)

Please note that E[r2
k] denotes the expected value of the received signal energy per

symbol and is directly proportional to the transmitted symbol energy.

The probability that the output SNR is less than a threshold value, γth, is defined

as the outage probability. Thus, for the four-branch SC it can be given as

Pout(γ
th) = Pr(0 ≤ γSC ≤ γth)

= FR

(√
γth2ζ

γ1

,

√
γth2ζ

γ2

,

√
γth2ζ

γ3

,

√
γth2ζ

γ4

) (2.31)

where FR is given by (2.5).
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2.7.2 Moments of the Four-Branch Equal Gain Combiner’s Output

Signal-to-Noise Ratio

The equal gain combiner essentially adds up the signals at the branches with

equal weights (after co-phasing) in order to produce the output signal. The K-

branch equal gain combiner’s output SNR is given as [32]

γEGC =
1

KNo

(
K∑
k=1

rk

)2

(2.32)

Accordingly, the moments of the output SNR can be given as

E [γnEGC ] =
1

(KNo)n
E

( K∑
k=1

rk

)2n
 (2.33)

For the four-branch EGC, the moments of the output SNR can therefore be given

as

E [γnEGC ] =
1

(4No)n
E
[
(r1 + r2 + r3 + r4)2n]

=
1

(4No)n

∑
β1,β2,β3,β4=0

β1+β2+β3+β4=2n

(2n)!

β1!β2!β3!β4!
E
[
rβ11 r

β2
2 r

β3
3 r

β4
4

] (2.34)

where E
[
rβ11 r

β2
2 r

β3
3 r

β4
4

]
is given by (2.6). Similar formulation for the three-branch

EGC (using the trivariate Rayleigh distribution) is presented in [23]. Higher order

moments provide useful information about the nature of the distribution of a RV.

Therefore, (2.34) can be used to study the outage probability, bit error rate and

variability of the output SNR of the four-branch EGC in a more rigorous manner.
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2.7.3 Moments of the Four-Branch Maximal Ratio Combiner’s Output

Signal-to-Noise Ratio

The maximal ratio combiner’s output is a weighted (co-phased) sum of all branches.

The K-branch MRC’s output SNR is given as [32]

γMRC =
1

No

(∑K
k=1 ωkrk

)2

∑K
k=1 ω

2
k

(2.35)

where ωk denotes the weight of the kth branch. It can be shown that solving for the

optimal weights to maximize the output SNR yields

ω2
k =

r2
k

No

(2.36)

By substituting (2.36) into (2.35), it can be shown that the resulting output SNR

becomes

γMRC =

∑K
k=1 r

2
k

No

=
K∑
k=1

γk (2.37)

Thus, the moments of the output SNR can be given as

E [γnMRC ] =
1

Nn
o

E

[(
K∑
k=1

r2
k

)n]
(2.38)

Accordingly, the moments of the four-branch MRC’s output SNR can be given as

E [γnMRC ] =
1

Nn
o

E
[(
r2

1 + r2
2 + r2

3 + r2
4

)n]
=

1

Nn
o

∑
β1,β2,β3,β4=0

β1+β2+β3+β4=n

n!

β1!β2!β3!β4!
E
[
r2β1

1 r2β2
2 r2β3

3 r2β4
4

] (2.39)

where E
[
r2β1

1 r2β2
2 r2β3

3 r2β4
4

]
can be computed using (2.6). The result in (2.39) can

be used to study the performance of the four-branch MRC in depth as it provides

valuable information about the distribution of the output SNR.
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2.8 Numerical Results

As illustrated in Fig. 2.2, we consider four equally spaced antennas in a linear

arrangement where the closest pair is dmin apart. The 3GPP suggests that the PAS

at the UE can be modeled as a uniform distribution or a Laplacian distribution with

standard deviation (SD) of 35◦ [15], [16].

ρ1 ρ1 ρ1

ρ2 ρ2

ρ3

dmin dmin dmin

Antenna 2 Antenna 3 Antenna 4Antenna 1

Figure 2.2: Distance and correlation structure between antennas.

We adopt four different scenarios, namely; independent, uniform PAS, Laplacian

PAS with µ = 60◦, SD= 35◦ and Laplacian PAS with µ = 90◦, SD= 35◦. As the

name suggests, the independent case represents a scenario where all the correlation

coefficients are equal to zero.

In the case of the uniform PAS, the correlation coefficient between ith and jth

antenna element is ρ|i−j| = E[zIizIj ]/ζ = E[zQi
zQj

]/ζ = J0(2π|i− j|dmin/λ) as given

in [32] and [15] where λ and J0(·) denote the wavelength and the 0th order Bessel

function of the first kind.

The Laplacian PAS with µ and SD describes a scenario where the received PAS

is distributed according to Laplacian distribution with mean µ and standard devia-

tion, SD. The mean represents the angle relative to the plane of antenna elements.

Hence, µ = 0◦ and µ = 90◦ represent the cases where the mean PAS is parallel and

perpendicular to the direction of the plane of antenna elements respectively. For a

given standard deviation, µ = 90◦ represents the case where the antenna elements

are maximally correlated. The correlation coefficient values are obtained from [15]

for the Laplacian PAS cases. Table 2.1 presents the correlation values for each of
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the four scenarios

Table 2.1: Correlation Values for Different Scenarios

Scenario Correlation values

Independent ρi = 0, ∀i
Uniform PAS ρ|i−j| = J0(2π|i− j|dmin/λ)

Laplacian PAS, µ = 60◦ ρ|i−j| = ξ(|i− j|dmin, 60)

Laplacian PAS, µ = 90◦ ρ|i−j| = ξ(|i− j|dmin, 90)

where ξ(·) denotes equation (27) in [15].

We use our results given in (2.4) - (2.7) for all of these scenarios (except indepen-

dent). Please note that these correlation structures can only be incorporated into

our results because none of the RVs are conditionally independent of each other.

In other words, the resulting inverse covariance matrix for all of these scenarios are

such that all entries, φi 6= 0, ∀i. All of the existing models assume that there is at

least one φi that is equal to zero.

The outage probability values versus the normalized threshold SNR for the four-

branch SC are illustrated in Fig. 2.3. These values are obtained by using (2.31).

The distance, dmin, between the closest pair of antennas is 0.6λ. As it can be seen,
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Figure 2.3: Outage probability of the four-branch selection combiner, dmin = 0.6λ.

the outage probability values increase as the correlation between antenna elements
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increase. This is a well-known result and is due to decrease in the individual vari-

ability of the random variables. There is an approximate 3 dB gap in SNR between

the best (independent) and the worst case (Laplacian, µ = 90◦) at an outage prob-

ability of 10−4. The Laplacian PAS with µ = 60◦ causes more correlation between

antenna elements than the uniform due to its mean and smaller spread.

Fig. 2.4 shows the four-branch EGC’s and MRC’s normalized mean output SNR,

γ/γ. These values are obtained by using (2.34) and (2.39) respectively. Please note

that for the independent scenario, the values do not change when the distance be-

tween antennas change because the signals at antennas are assumed to be indepen-

dent of each other. The values for the independent case are plotted as reference val-

ues. Higher correlation among antenna elements achieves higher mean SNR for the

EGC. It is shown in [33] that any non-zero correlation coefficient, E[zIizIj ], E[zQi
zQj

],

between the Gaussian RVs yields a positive correlation coefficient between the re-

sulting Rayleigh RVs. This is simply because the RV in interest is the magnitude of

the two Gaussian RVs. Therefore, the Rayleigh RVs are positively correlated in all

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

3.4

3.5

3.6

3.7

3.8

3.9

4

Figure 2.4: Four-branch EGC and MRC normalized mean output SNR.

cases. As a result, E[rirj] > E[ri]E[rj] for any non-independent case. This explains

why higher correlation causes higher mean SNR for the EGC (refer to (2.34)). The

MRC’s normalized mean output SNR is 4 (refer to (2.38)) as there are four branches.
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The value does not change for the MRC because it adapts the weights to maximize

the SNR. The upper bound of the EGC’s mean output SNR is that of MRC’s. This

is because E[rirj] = E[r2
i ] as |ρij| → 1. As one can see the mean output SNR values

start increasing more drastically as the distance between the closest pair of anten-

nas becomes smaller than 2λ. The difference between the best and worst of EGC’s

mean output SNR can be as high as 0.23 depending on the PAS distribution (when

dmin = 0.6λ). PAS is very closely related to angle of arrival distribution of the sig-

nals. Therefore, for the EGC diversity receiver, the output SNR is dependent on the

angle of arrivals assuming there is no beam-forming. The discrepancy between the

independence assumption and our results goes up to 9% for the EGC receiver and

19% for the MRC receiver. The MRC can achieve up to 18% higher mean output

SNR than the EGC when dmin = 0.6λ.

Fig. 2.5 shows the standard deviation of the four-branch EGC (σEGC) and MRC

(σMRC) output SNR. Again, please note that the values for the independent case are

plotted as reference values. The signals at antennas are assumed to be independent

regardless of the distance in between. Any non-independent case causes higher stan-
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(a) Standard deviation of the four-branch
EGC output SNR.
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1.8

2

2.2

2.4

2.6

2.8

3

3.2

(b) Standard deviation of the four-
branch MRC output SNR.

Figure 2.5: Standard deviation of the four-branch EGC and MRC output SNR.

dard deviation than the independent one because the inequality E[r2
i r

2
j ] > E[r2

i ]E[r2
j ]

holds when |ρij| > 0. The higher the correlation, the higher the increase is in SD.

The output SNR for the MRC has larger spread about its mean than for the EGC.
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The values for both receivers start changing more significantly when the distance

between nearest pair of antennas becomes smaller than 2λ. The discrepancy be-

tween the independence assumption and our results goes up to 16% for the EGC

receiver and 57% for the MRC receiver.

Fig. 2.6 shows the moment coefficients of skewness and kurtosis for the output

SNR. They are respectively given by E[(γ −E[γ])3]/σ3 and E[(γ −E[γ])4]/σ4. The

distance, dmin, between the closest pair of antennas is 3.6λ. Higher correlation causes

higher skewness and higher kurtosis. This can be explained using a similar reasoning

as the ones given above for the first and the second moments. Higher correlation

expectedly increases the likelihood of extreme deviation (branches have either all

high or all low SNR at any given time) events happening and this contributes to

the higher skewness and kurtosis coefficients. The MRC’s output SNR PDF has

EGC MRC
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2.5

(a) Skewness coefficient of the output
SNR.

EGC MRC
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(b) Kurtosis coefficient of the output
SNR.

Figure 2.6: Skewness and kurtosis coefficients of the output SNR, dmin = 3.6λ.

lower skewness and kurtosis coefficients than the EGC’s. This can be explained by

the ability of the MRC to output a higher SNR for a given probability compared

to the EGC. An interesting point to mention is that the MRC’s output SNR PDF

(compared to the EGC’s) has a higher SD but loosely speaking is less dispersed

beyond the one standard deviation range from its mean (less widespread values for

the output SNR in this range). All of the scenarios have higher kurtosis than a

normal distribution (κ = 3).
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To sum up, MRC’s output SNR PDF has higher mean and spread but the con-

tribution to the spread comes more from the values close to the mean compared to

the EGC’s. From a pictorial point of view the MRC’s PDF looks more symmetrical

and has a fatter main lobe around a higher mean than the EGC’s.

2.9 Conclusion and Future Work

This chapter provides novel analytical expressions for the joint PDF, CDF, mo-

ments and MGF of the quadrivariate Rayleigh distribution with an arbitrary cor-

relation model. The significance of our results is that one can use them to study

any four-branch receiver set-up regardless of the geometric arrangements of them

(linear, circular. . . etc.) or the PAS distribution. The existing models are not ca-

pable of this. For instance, our framework is the only one that can incorporate

the spatial correlation model suggested by the 3GPP [16]. Moreover, we provide a

comprehensive overview of the possible cases where the PDF, moments, and MGF

can have simplified representations. Some of the works in the literature are found

to be special cases of our results.

The performances of the EGC and MRC diversity receivers are studied through

their output SNR moments. We show how inaccurate the independence assumption

is up to first four moments. Our results show that higher the correlation between

signals at the antennas, higher the moments for both receivers. The MRC can

achieve up to 18% higher mean output SNR than the EGC. The discrepancy between

the independence assumption and our results goes up to 9% for the EGC receiver

and 19% for the MRC receiver in terms of the mean output SNR. The discrepancy

between the independence assumption and our results goes up to 16% for the EGC

receiver and 57% for the MRC receiver in terms of the standard deviation of the

output SNR.

From a pictorial point of view the MRC’s PDF looks more symmetrical and has

a fatter main lobe around a higher mean than the EGC’s. Higher correlation causes
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higher spread and measure of “tailedness” for both receivers.

The performance analysis on the four-branch EGC and MRC diversity receivers

we present in this chapter is the first analytical analysis in a 3GPP suggested cor-

relation environment.

We hope that our findings on the higher moments will be useful in constructing

approximate PDFs or CDFs of the output SNR distributions of EGC and MRC.

This way, performances of these diversity receivers can be studied more in depth.

Obtaining the PDF and CDF of the output SNR of these receivers will allow one

to study the reliability of these receivers. This has not beed carried out yet in the

literature.

The results provided here can also be utilized to study the time-frequency channel

behavior more accurately because one does not have to assume conditional indepen-

dence between the time and frequency samples of the received signal. Four RVs can

be used to represent 4 RVs that are apart in time and frequency. Specifically, the

first and second RV can be used to represent the time correlation, the first and third

can be used to represent the frequency correlation, and finally the first and fourth

can be used to represent the time and frequency correlation. Through this model,

we will not lose serious amount of information anymore as was the case with 1-D

correlation models [1].
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CHAPTER 3

REDUCING COMPUTATION TIME OF A WIRELESS RESOURCE

SCHEDULER BY EXPLOITING TEMPORAL CHANNEL

CHARACTERISTICS

3.1 Motivation

The task of a wireless downlink scheduler is to allocate the limited amount of

BW and power to UEs according to a predefined resource management scheme. The

specific goal of a resource management scheme can vary. The most common ones are

to maximize the total sum throughput of the system, maximize efficiency, maximize

a fairness measure, etc. A scheduler also needs to consider the special requirements

of the UEs, such as minimum throughput, maximum delay, etc. In LTE, the re-

sources in the frequency domain are defined as 180 kHz wide. Frequency selectivity

across these resources adds another dimension to the scheduling problem. Moreover,

the dependency between the allocated power and achievable throughput makes the

problem substantially harder to solve. Hence, providing an optimal solution to the

LTE downlink resource allocation problem generally yields a high computation time.

Many optimal proposed scheduling schemes are not implemented due to this and the

fact that the decisions need to be made in real time [34]. A scheduler that wastes

energy, money and does not satisfy the UEs is not a good option.

As a result, obtaining smart downlink scheduling schemes with low computation

times is still a problem [35–40]. The 3GPP introduced mini-slots in 5G New Radio

for the purpose of Ultra-Reliable and Low-Latency Communications (URLLC) fur-

ther shrinking the time to make scheduling decisions from 1 ms (in LTE) to 0.125
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ms [41]. This makes the problem of computation time even more relevant moving

forward.

3.2 Related Work

In an LTE downlink scheduler, there are total of N resource units (RUs) that are

each defined as 180 kHz wide and 1 ms long in frequency and time domain respec-

tively. The scheduling decisions are made according to a predefined resource man-

agement scheme to allocate these RUs to users with corresponding power amounts.

This process is repeated every 1 ms. Many analytical approaches have been pro-

posed to address the computation time problem of an LTE downlink scheduler. They

mainly rely on computational complexity theory.

Perhaps the simplest way to reduce the computation time of the scheduler is

to assign equal power to all RUs. This clearly reduces the number of variables.

Assuming that the problem is formulated as an optimization problem, this also

achieves a linear objective function in many schedulers which is very favorable. The

drawback of this type of scheduler is the low efficiency. Ning et al. [42] propose

to share the power equally to achieve polynomial time complexity at the cost of

optimality of the solution. The same approach is taken by Zhang et al. [43] and

it is shown that equal power allocation achieves almost as good as the water-filling

algorithm especially when the number of users in the cell are high. Katoozian

et al. [44] introduces individual power constraints for all RUs as opposed to total

power constraint for the system. They achieve lower computation time because this

essentially shrinks the state space of the problem.

Kwan et al. [45] assume that the channel is flat across all RUs. This consider-

ably simplifies the problem since the frequency diversity is ignored. Their solution

approaches the optimal one when the number of users in the cell grows.

Decoupling the RU and power allocation is another key method to significantly

reduce the complexity [46–48]. The schedulers typically have two stages. The es-
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timate of the number of RUs per user is first calculated considering that there are

minimum throughput requirements. Then the RUs are allocated to users. This

completes the first step. In the second step, optimal power allocations are carried

out. However, these types of schedulers do not provide optimal solutions.

The integer variables of the RU allocation problem notoriously make the prob-

lem harder. Relaxation of these variables is a well-known way of simplifying the

problem [49–51]. Schwarz et al. [52] utilize this method for their proportional fair

scheduler. They show that their results suffer from 5% throughput reduction be-

cause of this relaxation. Wong et al. [53] achieve even lower time complexity for their

proportional fair scheduler by relaxing the fairness measure. Their results indicate

that their normalized fairness measure can be slightly different (less than 0.01) from

the optimal value. Aggarwal et al. [54] investigate the effect of this relaxation in

depth and find that the integer and continuous (relaxed) cases coincide under some

scenarios.

Lagrangian relaxation methods are also adopted to tackle the computation time

problem. Xiao et al. [55] achieve polynomial time complexity for their scheduler

using this method. The key point in their work is the removal of coupling among

RUs. Their solution approaches the optimal one when the number of RUs grow.

A similar approach is taken to convert the optimization problem into a dual form

where the optimal solution can be reached with less computation time [56].

Madan et al. [57] exploit the convexity of the problem and devise a faster compu-

tation algorithm than a conventional subgradient method. Zhang et al. [58] propose

to schedule every user in a sequential manner and limit them to a single RU.

3.3 Contributions

The majority of the ideas discussed in the previous section arise from the com-

putational complexity theory. Namely, the problem formulations are converted into

more favorable forms at the cost of optimality. These solutions generally achieve
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lower time complexity. Here, we do not seek to lower the time complexity but

rather tackle the problem from a practical point of view and decrease the quantity

of variables in the problem.

In this chapter, differently from the papers discussed in the previous section,

we propose to take advantage of the physical characteristics of wireless channels.

LTE performs scheduling at every 1 ms. To some UEs, we suggest to allocate

resources that last for longer time durations than 1 ms. We derive and demonstrate

that the duration of this time depends on the mean received SNR and Doppler

shift experienced by the aforementioned UE. Higher mean received SNR and lower

Doppler shift both lead to a higher probability that the instantaneous received SNR

will stay relatively the same over time. In other words, the instantaneous received

SNR of a UE is less likely to change over time when the mean received SNR is higher

and the Doppler shift is lower. We assume that the scheduler has full knowledge

of the estimated Doppler shift values for UEs. This can easily be achieved using

reference signals designated for demodulation in LTE [59]. Our idea is illustrated in

Fig. 3.1.

180 kHz

1 ms

N	  

to

Regular

Time-windowed

Resource Unit

Figure 3.1: An example of resource allocations where decisions are made at t0.

We call our approach time-windowed scheduling. It is clear that adopting this

type of time-windowed scheduling reduces the number of RUs and users in the

scheduling problem over a given time. Referring to Fig. 3.1, some UEs are allocated
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at every 2 or 3 ms as opposed to 1 ms. This lowers the number of RUs and users in

the problem at t0 +1 and t0 +2 ms when compared to a conventional LTE scheduler.

This results in a fewer number of operations reducing the time it takes to perform

scheduling decisions. The key question we ask here is: What is the likelihood that

a UE receives relatively the same instantaneous SNR after 1 ms has elapsed? We

develop a stochastic framework to answer this question since there is certainly no

deterministic way to predict the future in a practical macro cell environment.

We need to define what relatively the same SNR means in this context before we

proceed. As far as an LTE scheduler is concerned, relatively the same SNR indicates

that there is not a change large enough to select a different Adaptive Modulation

and Coding (AMC) mode. The range of received SNR values corresponds to a

channel quality indicator (CQI) value which in turn corresponds to an AMC mode.

Therefore, we are interested in a stochastic framework that answers the question:

What is the probability that a UE will stay in the same AMC mode after a given

time?

The scheduler only should consider UEs with high probability of staying in the

same AMC mode for time-windowed scheduling. If the scheduler does allocate re-

sources longer than 1 ms and the UE’s received SNR changes drastically during this

time, then it might cause inefficient usage of resources. This is simply because this

allocation might not be the optimal solution for this time duration. For instance,

if a high mean SNR UE is allocated resources at time t0 that last 5 ms, but its

SNR lowers drastically at time t0 + 2 ms, the already scheduled resources from time

t0 + 2 to t0 + 5 ms might be wasted or could have been utilized more efficiently. The

scheduler takes this risk when it performs time-windowed scheduling. We define a

parameter, called confidence probability, that is related to this risk. Therefore, our

novel stochastic framework, namely, correlated bivariate SNR distribution, helps to

assess our scheduling idea. Please note that the time-windowed approach of reducing

computation time can be incorporated into any resource management scheme.

The rest of the chapter is organized as follows. List of notations regarding this
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chapter is given in the next section. Section 3.5 discusses how we construct our

novel stochastic framework. In Section 3.6, we use this framework to assess the

performance of our proposed scheduling method in a sample scenario. Section 3.7

concludes the chapter.

3.4 List of Notations

At(∆t) autocorrelation function

b2 joint PDF of two Rayleigh RVs for the noise

c speed of light

c̃m(t) minimum throughput requirement for UE m in a sub-frame

duration at time t

cnm(t) achievable data rate for UE m on RU n at time t

d distance between the BS and the UE (km)

d2 joint PDF of desired signal and noise Rayleigh RVs

E[·] expectation operator

E0 real amplitude of the local average E-field

fc carrier frequency

fD Doppler spread

fg Doppler shift of the gth arriving wave

F−1{·} inverse Fourier transform operator

G total number of arriving waves

hb BS antenna height

hg amplitude of the gth arriving wave

hm UE antenna height

Ik(·) kth order modified Bessel function of the first kind
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Jk(·) kth order Bessel function of the first kind

k correlation coefficient between Gaussian RVs

K covariance matrix of Gaussian RVs

M number of UEs in the cell

n Rayleigh RV, the envelope of the noise

N number of resource units in the scheduling problem

PL path loss, average received desired signal

PN average received noise

r Rayleigh RV, envelope of the desired signal

<{·} real part of a complex number

s2 joint PDF of the ratio of the desired signal amplitude and

noise amplitude

(·)T transpose operator

v velocity of the UE

w2 joint PDF of two Rayleigh RVs for the desired signal

xnm(t) binary variable which is 1 if UE m is allocated RU n at time t,

otherwise 0

z received desired signal

zI , zQ zero-mean Gaussian random variable

Z column vector of Gaussian RVs

αg angle of arrival of the gth wave

γ average received SNR

Γ(·) gamma function

ζ, ζr variance of Gaussian RVs for the desired signal

ζn variance of Gaussian RVs for the noise
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λ wavelength

ξ2 bivariate PDF of the received SNR

Ξ2 bivariate CDF of the received SNR

φ phase of the gth arriving wave

Ψt(∆f) Doppler power spectrum

ωg initial phase shift of the gth arriving wave

3.5 Stochastic Framework

We claim that not all of the UEs are likely to jump from one AMC mode to

another every 1 ms due to their channel characteristics. Our goal here is to derive a

probability distribution that allows us to associate probability values for temporal

transitions of AMC modes depending on channel characteristics. To the best of our

knowledge, such distribution does not exist in literature.

We start our derivation by defining the received signal distribution at a given

instant in time. Then we provide the time correlation model we adopt. We finalize

our derivation by developing a bivariate correlated SNR distribution. Note that we

are deriving the distribution of the received SNR instead of just the received signal

as the AMC mode selection depends on the received SNR.

3.5.1 Channel Model

The received signal at time t for each tap (for an unmodulated carrier) is given

by:

z(t) = <

{(
G∑
g=0

hg(t)e
−jφg(t)

)
ej2πfct

}
(3.1)

where G represents total number of arriving waves (for one tap) and
∑G

g=0 hg(t)

e−jφg(t) represents the complex envelope of the received signal.
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Based on the analysis by Clarke [6] and Rice [4], the E-field of the channel at a

given instant in time, t, can be expressed as:

z(t) = E(t) = E0

G∑
g=1

cos(2πfct− φg) (3.2)

in the presence of scatterers and in the absence of a direct line of sight between the

transmitter and the receiver where E0 =
∑

g E[hg] represents the real amplitude of

the local average E-field1, fc represents the carrier frequency and φg represents the

random phase of the gth arriving wave. The random phase φg = 2πfgt + ωg where

fg represents the Doppler shift. The Doppler shift fg = υ cosαg

λ
where υ represents

the velocity of the mobile, αg represents the angle of arrival, and λ represents the

wavelength of the arriving wave. E-field can be expressed as:

z(t) = E(t) = zI(t) cos(2πfct) + zQ(t) sin(2πfct) (3.3)

where

zI(t) = E0

G∑
g=0

cos(2πfgt+ ωg)

zQ(t) = E0

G∑
g=0

sin(2πfgt+ ωg)

(3.4)

Assuming that G is large enough and phases ωg are independent of each other and

angles of arrival αg are uniform over the interval2 (0,2π], Central Limit Theorem can

be invoked to show that random variables zI and zQ can be approximated with a zero-

mean Gaussian distribution with equal variance E2
0/2 [60]. Therefore, the envelope

of the received E-field can be shown as: |z(t)| = |E(t)| =
√
z2
l (t) + z2

Q(t) = r(t)

and is Rayleigh distributed [61] (for a flat fading channel) as given in equation (3.5)

1E2
0/2 is the average power received without small scale fading (based on path loss and shad-

owing alone).
2Angles of arrival do not have to be uniformly distributed as long as they are random for the

zero-mean Gaussian approximation to hold.
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where ζ = E2
0/2 represents average received power3.

fr(x) =


x
ζ
e−x

2/2ζ 0 ≤ x

0 x < 0

(3.5)

Time Correlation

The two dimensional autocorrelation function of the Wide Sense Stationary Un-

correlated Scattering channel is defined as [62]:

A(∆τ,∆t) =E [h (τ1, t1)h∗ (τ2, t2)]

=E [h (τ, t)h∗ (τ + ∆τ, t+ ∆t)]

(3.6)

We inspect each dimension separately, by definingAτ (∆τ) , A (∆τ, 0) andAt (∆t) ,

A (0,∆t). The Doppler power spectrum of the channel is by definition given as:

Ψt (∆f) =
∫∞
−∞At (∆t) e−j∆f ·∆td∆t and is strictly non-zero for ∆f ∈ (−fD, fD)

where fD is the Doppler spread. Doppler spread is fD = vfc/c where c represents

the speed of light.

Gans developed a spectral analysis for Clarke’s model providing a representation

of channel frequency spectrum in terms of Doppler shift [8]. Assuming that angle of

arrivals are uniform over the interval (0,2π], power spectral density of the received

signal is given by:

Ψt (∆f) =


E2

0

4πfD

√
1−(∆f/fD)2

|∆f | ≤ fD

0 otherwise

(3.7)

Equation (3.7) provides a band-limited description of the correlation in time domain.

Plot of an example Doppler power spectrum is shown in Fig. 3.2. The inverse Fourier

transform of the Doppler power spectrum is the well known 0th order Bessel function

3The received signal power follows an exponential distribution.
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Figure 3.2: Doppler power spectrum (fc=700 MHz, v=20 m/s, fD=46.6 Hz) based
on equation (3.7).

of the first kind (J0(·)) [30] (9.1.18). Therefore, the autocorrelation function of the

received signal is given by:

E[z(t)z(t+ ∆t)] = F−1 {Ψt (∆f)}

=
E2

0

2
J0(2πfD∆t) cos(2πfc∆t)

(3.8)

where

J0(x) =
1

π

∫ π

0

cos(x cos(θ))dθ (3.9)

Fig. 3.3 depicts the autocorrelation function (J0(2πfD∆t)) and corresponding signal

fading of two mobiles at different speeds with the same carrier frequency. One can

easily notice that higher the speed, the faster the channel variations.
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Figure 3.3: Temporal behavior of received signal at different speeds.

Correlated Received SNR

We are interested in finding the probability of a UE staying in the same AMC

mode over some time. Therefore, we need to derive the joint distribution of received
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SNR random variables over time since AMC mode selection depends on received

SNR. Specifically, we derive a bivariate correlated received SNR distribution where

the random variables represent two samples of received SNR separated by some

time.

We start by deriving the joint distribution of two received signals (envelope)

separated by time. We define the random variables zI1 , zQ1 , zI2 and zQ2 as equal

variance (ζ) zero-mean Gaussian distributions. They represent the in-phase and

quadrature parts of the received signal sampled at different time or frequency. The

joint probability density function of them is given by equation (3.10) [29]:

w2(zI1 , zQ1 , zI2 , zQ2) =
exp

(
−ZT K−1Z

2

)
(2π)2(det K)(1/2)

(3.10)

where (.)T is the transpose operator, Z and K are given as:

Z =



zI1

zQ1

zI2

zQ2


K = ζ



1 0 k 0

0 1 0 k

k 0 1 0

0 k 0 1


(3.11)

assuming that cross-correlation values between in-phase and quadrature parts are

zero. This is accurate if the angle distribution of arriving signal components are uni-

form [32]. Correlation value 0 ≤ |k| ≤ 1 comes from function depicted in Fig. 3.3a.

Plugging equations shown in (3.11) back to (3.10) and changing coordinates to polar

with zI1 = r1 cos(θ1), zQ1 = r1 sin(θ1), zI2 = r2 cos(θ2), zQ2 = r2 sin(θ2) yields the

distribution density in terms of magnitude and phase:

w2(r1, r2, θ1, θ2) =
r1r2

(2πζr)2(1− k2)
exp

(
−r

2
1 + r2

2 − 2kr1r2 cos(θ2 − θ1)

2ζr(1− k2)

)
,

0 ≤ r1, r2 ≤ ∞, 0 ≤ θ1, θ2 ≤ 2π

(3.12)
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One can show that

w2(r1, r2) =

∫ 2π

0

∫ 2π

0

w2(r1, r2, θ1, θ2)dθ1dθ2 =

r1r2 exp

(
−(r21+r22)
2ζr(1−k2)

)
ζ2
r (1− k2)

× I0

(
kr1r2

ζr(1− k2)

)
, 0 ≤ r1, r2 ≤ ∞

(3.13)

where I0(·) represents the 0th order modified Bessel function of the first kind and is

given by [30] (9.6.16):

I0(x) =
1

π

∫ π

0

e±x cos(θ)dθ (3.14)

Note that as k → 0, w2(r1, r2) can be expressed as multiplication of two independent

Rayleigh distribution densities (equation (3.5)).

The envelope of the received (band-limited) noise (assuming that it is measured

successfully at the BS and white) is Rayleigh distributed since in-phase and quadra-

ture components are assumed to have independent Gaussian distributions with equal

variance, ζn, [63]. The samples of noise are assumed to have zero correlation; there-

fore joint distribution density of two noise random variables can be given by:

b2(n1, n2) =
n1n2

ζ2
n

e−(n2
1+n2

2)/2ζn , 0 ≤ n1, n2 ≤ ∞ (3.15)

The joint distribution density of received signal and noise (no correlation in between)

is given by:

d2(r1, r2, n1, n2)

= w2(r1, r2)b2(n1, n2)

=

r1r2n1n2 exp

(
−(r21+r22)
2ζr(1−k2)

)
exp

(
−(n2

1+n2
2)

2ζn

)
ζ2
r ζ

2
n(1− k2)

I0

(
kr1r2

ζr(1− k2)

)
,

0 ≤ r1, r2, n1, n2 ≤ ∞

(3.16)

Next we make a change of variables, β1 = r1
n1

, β2 = r2
n2

, µ1 = n1, and µ2 = n2. The
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Jacobian is:

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ1 0 β1 0

0 µ2 0 β2

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= µ1µ2 (3.17)

After the change of variables the bivariate received signal to noise amplitude distri-

bution density can be given as d2(β1µ1, β2µ2, µ1, µ2)× |J | =

β1β2µ
3
1µ

3
2 exp

(
−((β1µ1)2+(β2µ2)2)

2ζr(1−k2)

)
exp

(
−(µ21+µ22)

2ζn

)
ζ2
r ζ

2
n(1− k2)

I0

(
kβ1µ1β2µ2

ζr(1− k2)

)
,

0 ≤ β1, β2, µ1, µ2 ≤ ∞

(3.18)

Next, we integrate over µ1. The modified Bessel function can be replaced by an

infinite series [31] (8.447.1):

I0(x) =
∞∑
l=0

(
x
2

)2l 1
(l!)2

(3.19)

The expression becomes:

β1β2µ
3
2 exp

(
−((β2µ2)2)
2ζr(1−k2)

)
exp

(
−(µ22)

2ζn

)∑∞
l=0

(
kβ1β2µ2

2ζr(1−k2)

)2l

ζ2
r ζ

2
n(1− k2)(l!)2

×
∫ ∞

0

µ2l+3
1 exp

(
−µ2

1(β2
1ζn + ζr(1− k2))

2ζrζn(1− k2)

)
dµ1

(3.20)

The integrand can be put in a form, where κ represents the constant coefficient in

the exponent:

∫ ∞
0

µ2l+3
1 e−κµ

2
1dµ1

λ = κµ2
1 dλ = 2κµ1dµ1∫ ∞

0

(√
λ/κ

)2l+3

e−λ

2(
√
λ/κ)κ

dλ =
1

2κl+2

∫ ∞
0

λl+1e−λdλ =
Γ(l + 2)

2κl+2

(3.21)
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where Γ(·) represents the Gamma function [30] (6.1.1) and is given by:

Γ(x) =

∫ ∞
0

ax−1e−ada, <(x) > 0 (3.22)

Next, we integrate over µ2:

β1β2

∑∞
l=0

(
kβ1β2

2ζr(1−k2)

)2l

Γ(l + 2)

2ζ2
r ζ

2
n(1− k2)(l!)2κl+2

∫ ∞
0

µ2l+3
2 exp

(
−µ2

2(β2
2ζn + ζr(1− k2))

2ζrζn(1− k2)

)
dµ2

(3.23)

We can do the same substitution we did in (3.21) since the integrand is of the same

form. We now have the expression for signal amplitude to noise amplitude ratio

distribution density, s2(β1, β2)=

β1β2

∑∞
l=0

(
kβ1β2

2ζr(1−k2)

)2l

Γ2(l + 2)

4ζ2
r ζ

2
n(1− k2)(l!)2

(
β2
1ζn+ζr(1−k2)

2ζrζn(1−k2)

)2+l (
β2
2ζn+ζr(1−k2)

2ζrζn(1−k2)

)2+l
(3.24)

After simplification, the density s2(β1, β2) becomes:

∞∑
l=0

4β1β2Γ2(l + 2)(kβ1β2)2lζ2
r ζ

2+2l
n (1− k2)3

(β2
1ζ

2
nβ

2
2 + ζnβ2

1ζr(1− k2)+ζrζnβ2
2(1− k2) + ζ2

r (1− k2)2)2+l(l!)2
(3.25)

Next, we make a change of variables, ϕ1 = β2
1 and ϕ2 = β2

2 to derive the signal to

noise ratio density. The Jacobian of the transformation is:

|J | =

∣∣∣∣∣∣∣
1

2
√
ϕ1

0

0 1
2
√
ϕ2

∣∣∣∣∣∣∣ =
1

4
√
ϕ1ϕ2

(3.26)

The SNR distribution density, ξ2(ϕ1, ϕ2) can then be given by:

∞∑
l=0

Γ2(l + 2)
(
k
√
ϕ1
√
ϕ2

)2l
ζ2
r ζ

2+2l
n (1− k2)3

(ϕ1ϕ2ζ2
n + ζnζrϕ1(1− k2)+ζnζrϕ2(1− k2) + ζ2

r (1− k2)2)2+l(l!)2
,

0 ≤ ϕ1, ϕ2 ≤ ∞

(3.27)

We provide a contour plot of this density for two UEs with different speeds in
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Fig. 3.4. For the UE with higher correlation coefficient i.e., a slower moving user,

the density is focused more towards the center of the plot illustrating that it is likely

to have SNR values close to each other and not as likely to be toward another AMC

mode. However, for the other UE, the density is spread out over all pairs of values

illustrating that it is more likely for the SNR values to not be close to each other.
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Figure 3.4: Bivariate received SNR density function (13 dB average), samples 10 ms
apart.

We derived the received SNR distribution density (equations (3.16)-(3.27)) from

received amplitude distribution densities. Specifically, we first transform joint am-

plitude density to signal to noise amplitude density, then transform that to SNR. In

other words, the SNR density is obtained mathematically:

ξ2(ϕ1, ϕ2) =
(
(r1/n1)2 , (r2/n2)2) (3.28)

We also provide the derivation of the SNR density by changing the order of the trans-

formations. This yields the same result. The derivation can be found in Appendix

D.

We now show that the expression in (3.27) is indeed a probability distribution
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density. We integrate over ϕ1 followed by ϕ2 values:

∫ ∞
0

ϕl1
(ϕ1ϕ2ζ

2
n + ζnζrϕ1(1− k2)+

ζnζrϕ2(1− k2) + ζ2
r (1− k2)2)2+l

dϕ1

=
ζ
−(l+1)
n (ϕ2ζn + ζr(1− k2))

−(2+l)

(1− k2)(l + 1)ζr
, ζr > 0, k < 1

(3.29)

∫ ∞
0

ϕl2

(ϕ2ζn + ζr(1− k2))2+l
dϕ2 =

ζ
−(l+1)
n

(1− k2)(1 + l)ζr
, ζr > 0, k < 1 (3.30)

After simplification, expression becomes:

∞∑
l=0

Γ2(l + 2)k2l(1− k2)

(l!)2(l + 1)2 (3.31)

Since Γ(x) = (x− 1)! [30] (6.1.6) for integer values,

∞∑
l=0

((l + 1)!)2k2l(1− k2)

(l!)2(l + 1)2
=
∞∑
l=0

k2l(1− k2) = 1 (3.32)

We continue by finding the cumulative distribution:

∫ υ1

0

ϕl1
(ϕ1ϕ2ζ

2
n + ζnζrϕ1(1− k2)+

ζnζrϕ2(1− k2) + ζ2
r (1− k2)2)2+l

dϕ1

=

(
υ1

υ1ζn+ζr(1−k2)

)l+1

(ζnϕ2 + ζr(1− k2))
−(2+l)

(1− k2)(l + 1)ζr

(3.33)

∫ υ2

0

ϕl2

(ϕ2ζn + ζr(1− k2))2+l
dϕ2

=

(
υ2

υ2ζn+ζr(1−k2)

)l+1

(1− k2)(l + 1)ζr
, ζr > 0, k < 1

(3.34)
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After simplification, cumulative distribution function of received SNR becomes:

Ξ2(υ1, υ2) =

∑∞
l=0 Γ2(l + 2)k2lζ2+2l

n (1− k2)(υ1υ2)l+1

(l!)2(l + 1)2 (υ1ζn + ζr(1− k2))l+1 (υ2ζn + ζr(1− k2))l+1
(3.35)

So far, we have derived probability density (equation (3.27)) and cumulative dis-

tribution (equation (3.35)) of bivariate received SNR where ζr, ζn, k represent mean

signal power, mean noise power, and normalized correlation coefficient respectively.

Please note that this distribution can be utilized in spatial correlation or frequency

correlation models as well.

Moreover, even though we state that this represents the bivariate received SNR,

the same distribution can be thought of as bivariate received SIR since the noise is

Rayleigh distributed in our model. This makes our model applicable to a multi-cell

environment.

As a side product of our research, we have independently derived the distribution

density of three Rayleigh random variables adopting the same methodology. Our

result is consistent with the one given in [23]. We provide our derivation in Appendix

E. This can be used to improve the accuracy of our model.

3.5.2 Probability of Staying in the Same Adaptive Modulation and Coding

Mode

Now we are ready to answer the question we posed in the Contributions section.

The 3GPP-LTE standard defines 15 AMC modes with different constellation sizes

and coding rates [62]. The downlink scheduler adopts one of these modes according

to CQI that the UE reports. The UE picks the CQI index that indicates the highest

AMC mode that achieves 10% block error rate. There is no common way of picking

the CQI value for UEs since it depends on user specific antenna configurations,

codes, and methods of effective SNR calculation. In order to provide consistency

among users, we refer to the work of Mehlführer et al. [64] for the LTE specific

relationship between received SNR and CQI values for a single-input single-output
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(SISO) additive white Gaussian noise (AWGN) channel. Table 3.1 presents the

relationship between the received SNR and the AMC mode.

Table 3.1: Received SNR and AMC mode Relationship

AMC mode SNR (dB)

0 x < −6.5

1 −6.5 ≤ x < −4.5

2 −4.5 ≤ x < −2.5

3 −2.5 ≤ x < −0.5

4 −0.5 ≤ x < 1

5 1 ≤ x < 2.5

6 2.5 ≤ x < 5

7 5 ≤ x < 7.5

8 7.5 ≤ x < 9.5

9 9.5 ≤ x < 10.5

10 10.5 ≤ x < 12

11 12 ≤ x < 14

12 14 ≤ x < 16

13 16 ≤ x < 18

14 18 ≤ x < 20.5

15 20.5 ≤ x

We define the probability of a UE staying in the same AMC mode as:

P (X < υ2 ≤ Y |X < υ1 ≤ Y ) =
Ξ2(Y, Y )− Ξ2(X, Y )− Ξ2(Y,X) + Ξ2(X,X)

Ξ1(Y )− Ξ1(X)

(3.36)

where Ξ2 is the bivariate cumulative received SNR distribution given in (3.35), υ1

and υ2 represent the received SNR at different times, Ξ1(υ) represents the marginal

SNR distribution, and X, Y represent the cut-off values for AMC modes as given

in Table 3.1.

Utilizing (3.36) we define the probability of staying in the same AMC mode

regardless of the current AMC mode as:

15∑
k=1

P (Xk < υ2 ≤ Yk+1|Xk < υ1 ≤ Yk+1)× P (Xk < υ1 ≤ Yk+1) (3.37)

Please note that Xk and Yk represent the cut-off SNR values in Table 3.1.
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3.6 Performance Evaluation

3.6.1 Sample Scheduling Problem

To illustrate the benefits of our ideas, we adopt a common formulation for the

scheduling problem. It is given in (3.38). This is typical a binary integer program-

ming problem.

maximize
x

N∑
n=1

M∑
m=1

cnm(t0) · xnm(t0) (3.38a)

subject to

N∑
n=1

cnm(t0) · xnm(t0) ≥ c̃m(t0), ∀m (3.38b)

M∑
m=1

xnm(t0) = 1, ∀n (3.38c)

xnm(t0) ∈ {0, 1}, ∀n,∀m (3.38d)

where N denotes the number of RUs, M denotes the number of UEs in the cell, t0

denotes time, cnm(t0) denotes the achievable data rate for UE m on RU n at time

t0, c̃m(t0) denotes the minimum throughput requirement for UE m in a sub-frame

duration at time t0 and xnm(t0) denotes the binary variables which are 1 if UE m

is allocated RU n at time t0, otherwise 0. Constraint (4b) indicates that every UE

has a minimum throughput requirement and constraint (4c) indicates that only one

UE can be allocated on a RU at a given time. Minimum throughput constraints are

assumed to be non-negative and constant for all t. In short, the problem maximizes

the total downlink throughput with UEs having minimum throughput constraints.

Please note that we are assuming equal power allocation. The reason for this is

twofold. First, this is a very common problem formulation. Secondly, the work

in [43] suggests that equal power allocation in an orthogonal frequency division

multiple access setting achieves nearly as good as an optimal solution especially
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when the total number of users in the system is high. The formulation of the

problem is not very critical for this work because we are investigating the effect of

the time-windowed scheduling effect on the computation time. Similar study can be

done for other types of scheduling formulations.

The parameters for our sample scenario is presented in Table 3.2. They are

obtained from [62].

Table 3.2: Sample Scenario Parameters

BW 1.4 MHz

Number of RUs 6

Total number of UEs 6

Speed of UEs 1.25 m/s

BS height 60 m

UE height 2 m

Transmit power 1 W

Antenna gain 0 dB

Carrier frequency, fc 700 MHz

Average noise power -115 dB

For the large scale path loss, we adopt the Hata model for medium sized cities

[62]:

PL(dB) =(44.9− 6.55 log10(hb)) log10(d) + 69.55 + 26.16 log10(fc)

− 13.82 log10(hb) + 0.8 + (1.1 log10(fc)− 0.7)hm − 1.56 log10(fc)

(3.39)

where hb is the BS antenna height (m), d is the distance between the BS and the

UE (km), fc is the carrier frequency (MHz), hm is the UE antenna height (m). The

average received SNR is then given by γ(dB) = PL(dB)− PN(dB) where PN is the

average noise power received.

The distances between the UEs and the BS are {6.5, 5, 3.5, 3, 2.2, 1.5} km yielding

{0.23, 4, 9.17, 11.4, 15.9, 21.4} dB of mean SNR after plugging in equation (3.39).

Therefore, User 1 has a mean SNR of 0.23 dB, User 2 has a mean SNR of 4 dB,

etc. These distance values are picked so that we have a uniform distribution of UEs

across AMC modes. We compute time correlation coefficients, k, from equation
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(3.8) with 700 MHz carrier frequency for different ∆t values assuming all have a

constant 1.25 m/s speed.

3.6.2 Numerical Results

Temporal Transitions of AMC Modes

We start by calculating the probability values for UEs to stay in the same AMC

mode (refer to Section 3.4.2 for details on how we compute these probabilities.).

They are presented in Fig. 3.5a for a time lag of 1 ms. As one can see, users with

relatively lower mean SNR values (Users 1 and 2), have non-significantly different

values for modes 1-9. They tend to have smaller probability values for the modes

above 9 because it is not very likely that these users will stay in a good channel

condition since they have low mean SNRs. In fact User 1 has the highest probability

of staying in AMC mode 1 at time t0 +1 ms given that it is at AMC mode 1 at time

t0.

Users with relatively higher mean SNRs (Users 5 and 6) have drastically different

values for the AMC mode 15. This is due to the nature of the AMC modes. Any

SNR value that is higher than the cut-off level for AMC mode 15 still results in AMC

mode 15 selection. This phenomena is explained by the tail of the SNR distribution.

They are very likely to stay in the mode 15 but not as much in the lower AMC mode

because they are more likely to land on AMC mode 15 regardless of the current AMC

mode.
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Figure 3.5: Comparison of maintaining the mode or achieving higher, time lag is 1
ms.
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Figure 3.6: Comparison of maintaining the mode or achieving higher (avg values).

Next, we compute the probability of staying in the same AMC mode regardless

of the current (t0) AMC mode (refer to Section 2.2 for details on how we compute

these probabilities.). We are interested in the the behavior of the probability of

staying in the same mode vs time lag. These values are depicted in Fig. 3.6a.

There are several deductions to make. The probability of staying in the same

AMC mode diminishes for all UEs as the time lag increases. This is due to the

decrease in correlation coefficient as the time lag increases. Secondly, UEs with

higher mean SNRs have higher probability values overall. Due to the 1.25 m/s

mobility of users, the correlation coefficient values range from 0.95 to 0.85. The slow

linear decline in probability values advances all the way down to zero correlation

in a similar fashion. Therefore, this brings us to our last deduction, which is that

mean SNR has a higher impact than the correlation coefficient values. Even for a

zero correlation coefficient (fast fading), the high mean SNR UEs are more likely

to stay in the same channel condition than a low mean SNR UE with a very high

correlation coefficient.

In our computations, we do not include the probabilities of staying in Mode

0. This is because UEs are not allowed to transmit in this mode and we are only

interested in UEs that can transmit for scheduling purposes. The probability values

presented would be higher if we had not omitted them.

Next, we focus on the probabilities where UEs either stay in same or achieve

higher AMC mode. Our reasoning to make this decision is two-fold. Due to the fact
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that we adopt an environment where UEs have minimum throughput requirement,

we are only interested if the channel changes to a worse AMC mode potentially not

satisfying aforementioned UE. Secondly, a channel changing to a higher AMC mode

does not harm the overall throughput of the system. We depict individual AMC

mode probability values in Fig. 3.5b. The values are decreasing as the AMC modes

are increasing because it is less likely to change to a higher AMC mode once already

in a relatively high AMC mode.

Similarly, probability of staying in the same or changing to a higher AMC mode

regardless of the current AMC mode for UEs are depicted in Fig. 3.6b. The overall

picture looks very similar; however, the probability values are significantly higher

for every user compared to Fig. 3.6a.

Computation Time Analysis

Now, we are ready to evaluate the performance of time-windowed scheduling.

Recall that we propose to allocate slow varying SNR UEs resources that last longer

than 1 ms (Refer to Fig. 3.1). We assess our idea in terms of number of operations

it takes for the scheduler to perform allocation decisions.

Eisenbrand [65] showed that for a fixed number of constraints, x, binary coded

at most of length y, the computational complexity can be given by: x + log (x)y.

Relying on their work, the scheduling problem given in (3.38), can be solved with

(M +N) + log (M +N)MN (3.40)

operations assuming that there are a maximum number of users, M and N . For the

scenario we adopt (refer to Table 3.2), the number of operations during 2 ms for the

conventional program is

2× ((12) + log(12)36) = 203 (3.41)
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because we have 6 UEs and 6 RUs. For the case where we schedule only UE 6

at a periodicity of 2 ms (time-window=2 ms), the proposed method’s number of

operations will be

12 + log(12)36 + 10 + log(10)25 = 169 (3.42)

for 2 ms period. This reduction is related to a probability value where UE 6 will

stay in the same mode or higher. We define this probability value as confidence

probability. Looking at Fig. 3.6b, we see that 0.73 is the probability it will stay

constant or achieve better. Therefore, we can then say that with a probability of

0.73, the number of operations can be reduced from 203 to 169.

We carry out similar analysis for different UEs and for different durations of

time windows. Fig. 3.7 illustrates the trade-off between the number of operations

and probability of UEs staying either in the same or achieving a higher AMC mode.

The confidence probability values 0.73 - 0.7 represent the cases where only UE 6

is considered for time-windowed scheduling. The values 0.44 - 0.4 represent the

cases where both UE 6 and UE 5 are considered. It is clear that there is a positive

relationship between the confidence probability and number of operations. This can

also be interpreted as higher is the risk of potential non-optimal usage of resources,

higher is the improvement in computation time. The number of operations can be

UE 6&5

50 ms

0.4

UE 6&5

35 ms

0.41

UE 6&5

2 ms

0.44

UE 6

50 ms

0.7

UE 6

35 ms

0.71

UE 6

2 ms

0.73
0

20

40

60

80

100

Confidence probability

N
um
be
r
of
op
er
at
io
ns

Conventional
Time-windowed

Figure 3.7: Comparison between the conventional and the proposed scheme (avg.
per 1 ms).

decreased from 101 to 68 by considering UE 6 for 50 ms windowed scheduling with

a confidence probability of 0.7. It can further be reduced to 42 by considering both

UE 6 and 5 for 50 ms scheduling. This reduces the confidence probability to 0.4.
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Interestingly, the case where UE 6 & 5 are considered for 2 ms scheduling is

a worse option than the one where only UE 6 is considered for 35 ms. Thus, we

conclude that it is a better idea to include small number of very high mean SNR

UEs in the scheme for a relatively long time-window than to have large number

of relatively high mean SNR UEs for a smaller time-window. This idea can be

generalized to higher numbers of UEs and RUs. For a cell with 100 UEs where 10

of them have SNR around 30 dB and speed of 1.25 m/s, the number of operations

can be reduced from 25200 to 17804 operations with confidence probability of 0.4.

3.7 Conclusion and Future Work

We argue that the computation time can be lowered by exploiting the temporal

behavior of wireless channels. We show that this is achieved by scheduling slow

varying SNR UEs (not likely to transition between AMC modes) less frequently for

longer durations than others. This results in a lower number of variables for the

scheduling problem over a given time. This in turn yields less number of operations

the scheduler needs to perform for allocation decisions compared to a conventional

LTE scheduler. The necessary input values are the mean SNR and Doppler shift

estimations which suffice for the scheduler to perform time-windowed allocations.

Essentially, higher mean SNR and lower speeds of UEs yield larger reduction

in the number of operations. The contribution of the mean SNR towards the im-

provement in the computation time is higher than the speed. Using more UEs for

time-windowed scheduling, increases the likelihood of non-optimal usage of resources.

The results illustrate that the number of operations it takes to make scheduling de-

cisions can be reduced by 33% with confidence probability of 0.7 and by 58% with

confidence probability of 0.4.

Lowering the computation time of an LTE scheduler is important because many

of the optimal allocation schemes are not suitable for implementation due to their

high computation times. We believe that even more studies on wireless channel
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characteristics should be carried out in attempt to lower the computation time of a

downlink LTE scheduler. Perhaps, a similar study can be done exploiting frequency

correlation among RUs. Various other aspects of a wireless system can be studied

using the bivariate SNR distribution derived here. The time and frequency intervals

of pilot signals can be investigated more in depth. The distribution can also be used

in 2 by 2 MIMO system where the RVs can represent the signals at the antennas.

The performances of diversity receivers can be studied.
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CHAPTER 4

PARTIAL PACKET DUPLICATION IN 5G: CONTROL OF FADE AND

NON-FADE DURATION OUTAGES USING MATRIX EXPONENTIAL

DISTRIBUTIONS

4.1 Motivation, Related Work and Contributions

5G wireless communication systems are expected to host a wide range of new ap-

plications and technologies. The tactile Internet, vehicle-to-vehicle communication,

professional audio, smart grid, and industrial automation are some examples [66–68].

In order to meet the strict requirements of these applications, the 3GPP has recently

introduced the concept of URLLC [69]. Motivated by this, they are incorporating

so called PD functionality into the existing networks [70].

A thorough overview of packet duplication implementation in 5G is presented

in [71]. There are ongoing discussions on how the specific implementation should

be. The main idea is to transmit redundant packets over two independent channels

to decrease packet error ratio (PER). The UE has connections to two access points,

namely; master evolved node B (MeNB) and secondary evolved node B (SeNB). The

MeNB transmits at all times where the SeNB might not.

There are several works that study the performance of PD in LTE. Simulation

based study in [72] finds that PD improves the latency by 80% for 0.1 PER. The work

in [73] shows that the outage probability can be improved from 10−2 to 10−4 at -6 dB

signal-to-interference-plus-noise ratio (SINR) [73]. [41]. Resource utilization analysis

is carried out in [41]. The study focuses on the relationship between modulation

and coding levels and average error ratio.
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The mentioned papers study the performance of PD by observing how much

improvement it brings in terms of reliability, latency and efficiency. The underlying

assumption is that PD is either active or not at all times depending on the link

SINRs.

Our aim is different. Instead of duplicating at all times, we try to find out

when to activate and when to deactivate PD to satisfy a given target reliability.

The motivation comes from the possibility that secondary link might be providing

higher reliability than needed. Our approach achieves (probabilistic) optimal packet

duplication preventing waste of resources at the SeNB. Our model incorporates

tunable parameters for activation and deactivation. We call this operation partial

packet duplication (PPD) because we propose to switch between duplication and

no-duplication modes even with relatively stable link SINRs. This can be thought

as semi-dual connectivity.

Secondly, existing works use the average PER as a reliability measure. Here,

we build a model where we study time dynamics of the fading signal using ME

distributions. This allows us to examine the distribution of the packet errors in

addition to the average PER. The continuous duration of the erroneous time (fade

duration) is more significant quality of experience measure than the average error

ratio [74, 75]. The fade duration outage is investigated for two selection combined

links in [76]. However, this is different than the PPD case we introduce here because

it assumes duplication at all times. The continuous duration of the error-free time

(non-fade duration) is also of interest; especially in professional live audio use cases

in 5G [75].

The contributions of this chapter are as follows. It provides solution to the

question: How long should PD stay active and not active to meet a given target

reliability measure? It extends previous works by considering fade and non-fade

duration outages in the context of partial packet duplication.

The rest of the chapter is organized as follows. List of notations regarding

this chapter is given in the next section. Section 4.3 describes the system model.
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Performance analysis of the proposed method is discussed in Section 4.4. Section

4.5 concludes the chapter.

4.2 List of Notations

B bad state and no duplication

B′ bad state and duplication

B sub-generator matrix

BFF transition matrix for failure state

BSS transition matrix for success state

c speed of light

e′ column vector of ones

fc carrier frequency

fm maximum Doppler frequency

f(t) probability density function

F failure state

F (t) cumulative distribution function

G good state and no duplication

G′ good state and duplication

LFS transition matrix from failure state to success state

LSF transition matrix from success state to failure state

NR level crossing rate

p initial state row vector

(·)′ transpose operator

Q generator matrix

R threshold value
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S success state

v velocity of the UE

λ1 transition rate from good state to bad state for link 1

λ2 transition rate from good state to bad state for link 2

λD transition rate from no-duplication mode to duplication mode

λND transition rate from duplication mode to no-duplication mode

µ1 transition rate from bad state to good state for link 1

µ2 transition rate from bad state to good state for link 2

π steady state solution row vector

ρ normalized threshold value

τ tolerable continuous erroneous and error-free time

τ f average fade duration

τnf average non-fade duration

4.3 System Model

The received signal amplitude can statistically be well described by the Rayleigh

distribution where there are no line-of-sight paths [9]. The quality of a wireless link

is typically characterized by the received SINR. It is shown in [74] that with a very

large number of interferers and a relatively large fade margin1, the quality of the

link can be characterized by the desired Rayleigh fading signal.

When the signal level is above some predefined threshold value, we assume that

the information is received successfully. We call this state the good (G) state.

Similarly, when the signal level is below this threshold value, we assume that an

error occurs. We call this state the bad (B) state. We utilize a two-state Markov

1Fade margin is defined as the difference between the average SINR and the level of SINR where
signal quality is not acceptable (threshold).
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chain to model the transitions between the G and B states. Öhmann and Fetweiss

show that this is an accurate model for moderate fading margin values in a Rayleigh

fading environment [76]. This relies on the result Rice derives where he shows that

the fade duration distribution becomes exponential when the threshold value tends

to infinity [5]. Please note that fade duration represents the time duration signal

stays below this threshold. Similarly, non-fade duration represents the time duration

signal stays above this threshold.

The Markov chain model for partial packet duplication is shown in Fig. 4.1

where λ1 and λ2 denote the transition rates from state G to B for link 1 and link

2 respectively. The transition rates from state B to G for link 1 and 2 are denoted

by µ1 and µ2 respectively. Rates µ and λ are inversely related to average fade and

non-fade durations. The average fade duration, τ f , and level crossing rate, NR, for

Rayleigh fading are given in [60]. Using these two expressions, one can find the

average non-fade duration, τnf , by using the relationship τnf = (1/NR) − τ f . The

rates are expressed as

λ =
1

τnf
=
√

2πfmρ (4.1)

µ =
1

τ f
=

√
2πfmρ

eρ2 − 1
(4.2)

where fm denotes the maximum Doppler frequency and ρ = R/Rrms denotes the

B,G

G,G G,B

B,B

B′,G′

G′,G′ G′,B′

B′,B′

λD λND

µ1

λ1

λD λND

µ1

λ1

λD λND

µ1

λ1

λD λND

µ1

λ1

λ2

µ2

λ2

µ2

λ2

µ2

λ2

µ2

Figure 4.1: Markov chain model for the partial packet duplication.
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specified threshold value R, normalized to the local rms amplitude of the fading

envelope. The maximum Doppler frequency can be expressed as fm = vfc/c where

v denotes the velocity difference between the receiver and the transmitter, fc denotes

the carrier frequency, and c denotes the speed of light.

Rates λD and λND denote the transition rates into duplication mode and no-

duplication mode respectively. Therefore, state G,B represents the case where link

1 is in a good state (above threshold), link 2 is in a bad state (below threshold) and

link 2 is not duplicating. Similarly, state G′,B′ represents the case where link 1 is in

a G state, link 2 is in a B state and link 2 is duplicating.

We are interested in the continuous erroneous time and error-free time for the

UE. Hence, we group the states accordingly. The grey colored states represent the

erroneous states. We define failure, F, and success, S, states as

F = {BG, BB, B′B′} (4.3)

S = {GG, GB, G′G′, G′B′, B′G′} (4.4)

We are not showing the steady state solution, π, due to space limitation. Bold-

face lowercase letters denote row vectors and boldface uppercase letters denote ma-

trices throughout this correspondence. The steady state probabilities for failure

states (4.3) can be added up to find the average error ratio.

By definition, fade duration outage occurs when the continuous erroneous time

exceeds some value. Non-fade duration outage occurs when the continuous error-

free time is less than some value. Thus, in terms of our model, staying in the F

state longer than some value causes a fade duration outage. Similar reasoning can

be formed for a non-fade duration outage.

To study the fade duration and non-fade duration outages, we construct the

residence time distributions for failure and success states. Please note that the

residence times of the individual states within the state F and S do not concern us.

We are only interested in the total time spent in state F and total time spent in
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state S.

We employ matrix exponential distributions. A matrix exponential distribution

is represented by the notation ME(p,B). The probability density function, f(t),

and the cumulative distribution function, F (t), for an ME are given as [77]

f(t) = p exp (Bt) b′ (4.5)

F (t) = 1− p exp (Bt) e′ (4.6)

where b′ = −Be′ and e′ is a column vector of ones. Vector p is called the initial

state vector. Matrix B is called the sub-generator matrix. We refer the reader

to [77] and [78] for more information on ME distributions.

The Markov model in Fig. 4.1 can be described by the following generator matrix.

Q =

BSS LSF

LFS BFF

 (4.7)

where BFF describes the internal transition rates in F and LFS describes the tran-

sition rates from F to S. Same reasoning applies to BSS and LSF . The initial state

vector p (as in (4.5)) for failure and success processes are as follows.

pF =
πSLSF
πSLSFe′F

, pS =
πFLFS
πFLFSe′S

, (4.8)

where π = [πS,πF ] and e′ is a column vector of ones. Please note that π denotes

the steady state solution.

Consequently, the distribution of residence time in F and S states are given as

FF (t) = 1− pF exp (BFF t) e
′
F (4.9)

FS(t) = 1− pS exp (BSSt) e
′
S (4.10)
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4.4 Control of Fade and Non-Fade Duration Outages

We define two separate reliability measures:

P(failure duration > τ) = 1− FF (τ) (4.11)

P(success duration ≤ τ) = FS(τ) (4.12)

We illustrate their behavior with respect to λD and λND in Fig. 4.2 and Fig. 4.3.

Please note that the plots do not depict the cumulative distribution function with

respect to τ . The tolerable duration of erroneous time (τ in (4.11)) is fixed to 30

ms. The minimum needed duration of error-free time (τ in (4.12)) is fixed to 100

ms. These values are obtained for the use case of professional live audio in 5G [75].
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Figure 4.2: Failure duration outage probability. ρ1 = 0.13 (fading margin = 18 dB),
ρ2 = 0.16 (fading margin = 16 dB). τ = 0.03 sec, v = 1.45 m/s, fc = 700 MHz.

The distribution of residence time in F, tends to an exponential distribution with

parameter µ1 around point B in Fig. 4.2.

lim
λD→0
λND→∞

FF (t) = 1− e−µ1t (4.13)

Similarly, the distribution tends to an exponential distribution with parameter µ1 +
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µ2 around point D.

lim
λD→∞
λND→0

FF (t) = 1− e−(µ1+µ2)t (4.14)

The distribution around point A tends to hyperexponential which is mixture of

distributions around point B and D.

lim
λD→0
λND→0

FF (t) = 1− α1e
−µ1t − α2e

−(µ1+µ2)t (4.15)

where

α1 =
πGGλ1 + πGBλ1

πGGλ1 + πGBλ1 + πG′B′λ1 + πB′G′λ2

, α2 = 1− α1 (4.16)

Through results in (4.13) - (4.15), it is evident that duplicating at all times (point D)

provides lower failure duration outage probability than not duplication at all times

(point B). The distribution tends to exponential with parameter λD when both λD

and λND become relatively high.

lim
λD,λND�λ1,λ2,µ1,µ2

FF (t) = 1− e−λDt (4.17)

In this case, the transitions between B,G and B′,G′ states dominate. This transi-
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Figure 4.3: Success duration outage probability. ρ1 = 0.13 (fading margin = 18 dB),
ρ2 = 0.16 (fading margin = 16 dB). τ = 0.1 sec, v = 1.45 m/s, fc = 700 MHz.
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tion represents switching duplication on and off when the primary link is bad and

secondary link is good2. This means that turning duplication on and off at high

rates provides more reliability than duplicating at all times. It is interesting to note

that the outage probability does not only depend on λD
λND

but the actual values of

the λD and λND.

We reach to a couple of approximation results regarding the residence time dis-

tribution in S:

lim
λD→0
λND→∞

FS(t) = 1− e−λ1t (4.18)

lim
λD,λND�λ1,λ2,µ1,µ2

FS(t) = 1− e−λNDt (4.19)

These results represent the cases near point E and G in Fig. 4.3 respectively. As

is the case with the failure duration outages, duplicating all times performs better

than not duplicating all times. In contrast to failure duration outages, decreasing

the average times spent in each mode (maintaining λD
λND

= 1) increases the success

duration outage probability.

Our goal is to find range of values for λD and λND to satisfy target reliability

criteria for both failure and success duration outages. We pick the target reliability

criteria as 0.1 for both outage cases. Therefore, we search for values where both

plots in Fig. 4.2 and Fig. 4.3 are below -1. This region is depicted in Fig. 4.4.

No duplication at all does not meet the target reliability of 0.1 for both outage

cases. Duplicating at all times meets target reliability for both cases. However, it

wastes resources at the SeNB. The reliability is also met where λD = λND = 101.12 =

13.18. This means that duplication is active for 76 ms on average before deactivation

and vice versa. Compared to conventional packet duplication where the secondary

link duplicates all times, this utilizes the resources at the SeNB only half of the

time. Proposed PPD liberates 50% of the resources at the SeNB whilst meeting

the reliability target. Fig. 4.5 depicts the reliable region for a different case where

2Note that the duplication is turned on and off proactively; without knowing the instantaneous
quality of the links. This is the main premise of the packet duplication to limit packet loss.
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the fading margin for links are lower compared to the case in Fig. 4.4. This either

implies that the threshold value is higher or the average received power is lower.

In this case, duplicating at all times does not satisfy the reliability criterion for the
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Figure 4.5: Ranges of λD and λND to satisfy 0.1 outage probability. ρ1 = 0.16
(fading margin=16 dB), ρ2 = 0.25 (fading margin=12 dB). τ = 0.03 sec for failure
outage, τ = 0.1 sec for success outage, v = 1.25 m/s, fc = 700 MHz.

failure duration outages. This is because of the lower fading margins. PPD satisfies

the target reliability of 0.1 when λD = 101.54 = 34.67 and λND = 100.79 = 6.17. This
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means that reliability target is satisfied with 15% of the time not duplicating.

4.5 Conclusion and Future Work

Packet duplication using dual connectivity has recently been introduced to in-

crease reliability of wireless systems. We propose partial packet packet duplication

for professional live audio use case in 5G. PPD satisfies the reliability target with

less resource utilization than a common packet duplication method.

In the case of professional live audio, the continuous duration of packet errors and

error-free time are of interest. We develop a framework where time distribution of

continuous erroneous duration and continuous error-free duration are characterized

with ME distributions. This allows us to investigate the temporal distribution of

packet errors in addition to the PER. This framework is not limited to live audio

case and is applicable to other use cases as well.

The results indicate that up to 50% of the resources at the duplicating base

station can be liberated whilst meeting the target reliability measure.

There are many variables that influence the PPD’s performance such as Doppler

shift, average received SNR, threshold value, and the number of SeNBs. As a future

work, a more in depth sensitivity analysis of PPD should be carried out. A more

rigorous numerical analysis can reveal different performance improvements under

different scenarios.

In this work, we model the fade and non-fade distributions of a Rayleigh faded

signal with exponential distributions. However, our preliminary simulation based

study shows that these distributions can be more accurately modeled with different

distributions than exponential depending on the threshold value3. Rice derives the

closed form expressions for the distributions when the threshold value approached

zero and infinity [5]. We study how the distribution functions change with respect to

the threshold value. We are working on deriving expressions for these distributions

3We are not showing these results in the dissertation because they are preliminary and we have
not found a mathematical framework that fits them.
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such that they can easily be incorporated into our models. A promising method is

to tabulate all of the moments of these distributions from simulation and try to fit

them with ME moment matching theory [79]. This way, instead of having scalar

values, λ and µ, to describe the fade and non-fade duration distributions, one would

have matrices. This will capture the fade and non-fade behavior of signals more

accurately without costing minimal mathematical inconvenience.

We also hope that this chapter’s work exemplifies an application of ME distri-

butions in the field wireless communications. We believe that ME distributions can

be and should be used to describe the fading statistics of signals.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Developing accurate wireless channels and understanding how the signals behave

over time-frequency-space leads to smarter and more efficient systems. In the case of

deriving the most comprehensive quadrivariate Rayleigh distribution, we show that

the performances of certain diversity receivers can now be better understood. This

is because this model is the only distribution that can model the 3GPP suggested

spatial correlation structure. In the case of the SC receiver, our model shows that the

existing models are optimistic and inaccurate in terms of reliability. The discrepancy

between the independence assumption and our results goes up to 9% for the EGC

receiver and 19% for the MRC receiver in terms of the mean output SNR. The

discrepancy between the independence assumption and our results goes up to 16% for

the EGC receiver and 57% for the MRC receiver in terms of the standard deviation

of the output SNR. We show how inaccurate the independence assumption is up to

first four moments. Our results enable one to carry out reliability analysis of these

receivers. Our results can be used to better study the behavior of signals in time

and frequency without loss of information. In other words, one does not have to

shrink 2-D correlation functions into two 1-D functions.

Secondly, we show that understanding how the Doppler shift and average SNR

influence the AMC mode selection can be very useful. This is achieved by deriving

a novel bivariate SNR distribution. We find out that higher average SNR and lower

Doppler shift values yield less frequent variations in the received SNR over time. A

wireless scheduler can use this information to allocate larger resource blocks (i.e.,
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longer in time duration) to mentioned users, hence reducing the computation time of

the scheduling process. The results illustrate that the number of operations it takes

to make scheduling decisions can be reduced by 33% with confidence probability of

0.7 and by 58% with confidence probability of 0.4. A similar exploitation can be

studied in the frequency domain. Various other investigations can be carried out

using our bivariate SNR distribution. For example, analysis of time or frequency

intervals between pilot signals can be carried out.

In the case of packet duplication in 5G, we have shown that efficiency of re-

source usage can be increased by up to 50% for a live audio application. This was

achieved by building a Markov chain model to capture fade and non-fade statistics

of a Rayleigh faded signal. Switching duplication on and off based on a small-scale

fading statistics is carried out. As future work, these statistics can be better mod-

eled by ME distributions rather than scalar based exponential distributions. There

is a very good case for this because based on our simulation work, we observed that

these distributions show different behavior than exponential distributions. Using

the theory of ME moment matching, more accurate models can be developed. The

usefulness of ME distributions is that they are very easy to incorporate into the ex-

isting Markov chain models. The framework developed also is applicable to different

use cases and is not limited to live audio case.

To sum up, this dissertation illustrated the significance of understanding and

developing mathematical tools for wireless signals through three different applica-

tions. We show that the performances of four-branch diversity receivers can be

studied more accurately and more in depth, computation time of a scheduler can

be decreased, and efficiency of resource usage in dual connectivity scenarios can be

increased by using partial packet duplication.
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APPENDIX A

DERIVATION OF THE PDF OF THE QUADRIVARIATE RAYLEIGH

DISTRIBUTION

The joint PDF of zero-mean equal variance (ζ) Gaussian RVs Z = {zI1 , zQ1 , . . . ,

zI4 , zQ4}, is given by (2.1) where (·)T denotes the transpose operator, Z = [zI1 , zQ1 ,

. . . , zI4 , zQ4 ]
T and Ψ is a positive definite covariance matrix [29] (7.18a). We define

ρ|i−j| = E[zIizIj ]/ζ = E[zQi
zQj

]/ζ for i, j ∈ {1, . . . , 4}. Substituting zIk = rk cos(θk),

zQk
= rk sin(θk) yields the joint PDF of R = {r1, r2, r3, r4} and Θ = {θ1, θ2, θ3, θ4}:

fR,Θ(r1, θ1, . . . , r4, θ4)

=
r1r2r3r4

(2π)4(det Ψ)(1/2)
e
−
(
φ1
2ζ (r21+r24)+

φ2
2ζ (r22+r23)

)

× e
−
(
φ3
ζ
r1r2 cos(θ1−θ2)+

φ4
ζ
r1r3 cos(θ1−θ3)

)

× e
−
(
φ5
ζ
r1r4 cos(θ1−θ4)+

φ6
ζ
r2r3 cos(θ2−θ3)

)

× e
−
(
φ4
ζ
r2r4 cos(θ2−θ4)+

φ3
ζ
r3r4 cos(θ3−θ4)

)

(A.1)

We substitute eA cos(x) = I0(A) + 2
∑∞

a=1 Ia(A) cos(ax) as given in [30] (9.6.34) and

integrate over phases, Θ. After algebraic manipulation we reach (2.4).
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APPENDIX B

DERIVATION OF THE CDF OF THE QUADRIVARIATE RAYLEIGH

DISTRIBUTION

We expand Il(x) =
(
x
2

)l∑∞
k=0

(x2/4)
k

k!Γ(l+k+1)
as given in [30] (9.6.10) where Γ(·) denotes

the gamma function and integrate (2.4). We start with r1:

∫ r′1

0

e
−
φ1r21
2ζ rν1+1

1 dr1 (B.1)

We make substitution u =
φ1r21
2ζ

.

=
1

2

(
2ζ

φ1

)ν1+2
2
∫ φ1(r′1)

2

2ζ

0

e−uu
ν1
2 du

=
1

2

(
2ζ

φ1

)ν1+2
2

γ

(
ν1+2

2
,
φ1(r′1)

2

2ζ

) (B.2)

where ν1 = |l|+ |j|+ |j+ l|+ 2b+ 2h+ 2f . We rely on the integral representation of

lower incomplete gamma function as given in [30] (6.5.2) reaching the final expression

in (B.2). We repeat the same integration process for r2, r3, r4. After algebraic

manipulation we reach (2.5).
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APPENDIX C

DERIVATION OF THE MGF OF THE QUADRIVARIATE RAYLEIGH

DISTRIBUTION

By definition,

MR(s1, s2, s3, s4) = E[es1r1+s2r2+s3r3+s4r4 ]

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

es1r1+s2r2+s3r3+s4r4fR(r1, r2, r3, r4) dr1dr2dr3dr4

(C.1)

Using (2.4) and substituting modified Bessel function of the first kind with its infinite

series representation, as given in [30] (9.6.10), we proceed:

∫ ∞
0

e
−
φ1r21
2ζ

+s1r1rν+1
1 dr1

=
(
φ1
ζ

)−ν1+2
2

Γ(ν1 + 2)e

(
s21ζ

4φ1

)
D−(ν1+2)

(
−s1√
φ1/ζ

) (C.2)

where ν1 = |l|+ |j|+ |j + l|+ 2b+ 2h+ 2f and Dk(·) denotes the parabolic cylinder

function [31] (9.240). We rely on the equation given in [31] (3.462.1) reaching the

final expression in (C.2). We repeat the same integration process for r2, r3, r4. After

algebraic manipulation we reach (2.7).
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APPENDIX D

DERIVATION OF BIVARIATE SNR DENSITY

Here, we derive bivariate SNR density by first converting joint amplitude density

distribution to joint power density distribution before concluding with ratio of signal

to noise. We start by joint signal and noise amplitude distribution density, equation

(3.16), d2(r1, r2, n1, n2) =

r1r2n1n2 exp

(
−(r21+r22)
2ζr(1−k2)

)
exp

(
−(n2

1+n2
2)

2ζn

)
ζ2
r ζ

2
n(1− k2)

I0

(
kr1r2

ζr(1− k2)

)
,

0 ≤ r1, r2, n1, n2 ≤ ∞

(D.1)

β1 = r2
1, β2 = r2

2, β3 = n2
1, β4 = n2

2

|J | = 1/
(

16
√
β1β2β3β4

) (D.2)

I0(x) =
∞∑
l=0

(
x
2

)2l 1
(l!)2

(D.3)

=
exp

(
−(β1+β2)
2ζr(1−k2)

)
exp

(
−(β3+β4)

2ζn

)∑∞
l=0

(
k
√
β1
√
β2

2ζr(1−k2)

)2l

16ζ2
r ζ

2
n(1− k2)(l!)2

(D.4)

ϕ1 =
β1

β3

, ϕ2 =
β2

β4

, ϕ3 = β3, ϕ4 = β4, |J | = ϕ3ϕ4 (D.5)

=
ϕ3ϕ4 exp

(
−(ϕ1ϕ3+ϕ2ϕ4)

2ζr(1−k2)

)
exp

(
−(ϕ3+ϕ4)

2ζn

)
16ζ2

r ζ
2
n(1− k2)(l!)2

∞∑
l=0

(
k
√
ϕ1ϕ3

√
ϕ2ϕ4

2ζr(1− k2)

)2l

(D.6)
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Integrate over ϕ3:

∫ ∞
0

ϕl+1
3 exp

(
−ϕ1ϕ3

2ζr(1− k2)

)
exp

(
−ϕ3

2ζn

)
dϕ3 =

22+lΓ(2 + l)(
1
ζn

+ ϕ1

(1−k2)ζr

)2+l (D.7)

Integration over ϕ4 yields similar expression. The SNR distribution density, ξ(ϕ1, ϕ2),

becomes:

=
∞∑
l=0

k2lϕl1ϕ
l
222l+4Γ2(2 + l)

22l16ζ2l
r (1− k2)2lζ2

r ζ
2
n(1− k2)(l!)2

(
1
ζn

+ ϕ1

(1−k2)ζr

)2+l (
1
ζn

+ ϕ2

(1−k2)ζr

)2+l

(D.8)

=
∞∑
l=0

Γ2(2 + l)
(
k
√
ϕ1
√
ϕ2

)2l
ζ2
r ζ

2+2l
n (1− k2)3

(ϕ1ϕ2ζ2
n + ζnζrϕ1(1− k2)+ζnζrϕ2(1− k2) + ζ2

r (1− k2)2)2+l(l!)2
,

0 ≤ ϕ1, ϕ2 ≤ ∞

(D.9)
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APPENDIX E

DERIVATION OF TRIVARIATE DISTRIBUTION DENSITY OF RAYLEIGH

RANDOM VARIABLES

Joint density function, w2(zI1 , zQ1 , zI2 , zQ2 , zI3 , zQ3) is given by

=
exp

(
−ZT K−1Z

2

)
(2π)3(det K)(1/2)

(E.1)

where

Z =



zI1

zQ1

zI2

zQ2

zI3

zQ3


K = ζ



1 0 k1 0 k2 0

0 1 0 k1 0 k2

k1 0 1 0 k1 0

0 k1 0 1 0 k1

k2 0 k1 0 1 0

0 k2 0 k1 0 1


(E.2)

We change coordinates to polar, zI1 = r1 cos(θ1), zQ1 = r1 sin(θ1), zI2 = r2 cos(θ2),

zQ2 = r2 sin(θ2), zI3 = r3 cos(θ3), zQ3 = r3 sin(θ3), |J | = r1r2r3.

Density, w3(r1, r2, r3, θ1, θ2, θ3) =

r1r2r3 exp−
(
r21σ1+r22σ4+r23σ1+2r1r2σ2 cos(θ1−θ2)+2r1r3σ3 cos(θ1−θ3)+2r2r3σ2 cos(θ2−θ3)

2ζ(k2−1)(2k21−k2−1)

)
(2π)3ζ3(k2 − 1)(2k2

1 − k2 − 1)
(E.3)

where σ1 = 1 − k2
1, σ2 = k1(k2 − 1), σ3 = k2

1 − k2, σ4 = 1 − k2
2. Next, we make a

change of variables x1 = θ1 − θ2, x2 = θ2 − θ3, and x3 = (θ1 + θ2 + θ3)/3. |J |=1.
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Integration over xi’s would yield the density in terms of magnitude. Therefore,

∫ 2π

0

∫ 2π

0

∫ 2π

0

e−(A cos(x1)+B cos(x2)+C cos(x1+x2))dx1dx2dx3

= 2π

∫ 2π

0

∫ 2π

0

(
I0(A) + 2

∞∑
k=1

Ik(A) cos(kx1)

)(
I0(B) + 2

∞∑
l=1

Il(B) cos(lx2)

)

×

(
I0(C) + 2

∞∑
j=1

Ij(C) cos(j(x1 + x2))

)
dx1dx2

(E.4)

where

e−(A cos(x1)) = I0(A) + 2
∞∑
k=1

Ik(A) cos(kx1) (E.5)

as given in [30] (9.6.34) and Ik(A) represents the modified Bessel function. We are

not providing all of the steps due to space limitations here. Since the region of

integration is periodic, all terms integrate to zero but of this form:

∞∑
k=1

∞∑
j=1

Ik(A)Ij(C)

∫ 2π

0

cos(kx1) cos(jx1)dx1 = π
∞∑
k=1

Ik(A)Ik(C) (E.6)

The solution to equation (E.4) and the density are given in equations. (E.7) and

(E.8) respectively.

(2π)3

(
I0(A)I0(B)I0(C) + 2

∞∑
k=1

Ik(A)Ik(B)Ik(C)

)
(E.7)

w3(r1, r2, r3) =
r1r2r3 exp−

(
r21σ1+r22σ4+r23σ1

2Dζ

)
ζ3D

×

(
I0(A)I0(B)I0(C) + 2

∞∑
k=1

Ik(A)Ik(B)Ik(C)

) (E.8)

where A = 2r1r2σ2/2ζD, B = 2r2r3σ2/2ζD, C = 2r1r3σ3/2ζD, D = (k2 − 1)(2k2
1 −

k2 − 1).
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[76] D. Öhmann and G. P. Fettweis, “Minimum duration outage of wireless

Rayleigh-fading links using selection combining,” in IEEE Wireless Commu-

nications and Networking Conference, Mar. 2015, pp. 681–686.

[77] M. Bladt and M. F. Neuts, “Matrix-exponential distributions: Calculus and

interpretations via flows,” Stochastic Models, vol. 19, no. 1, pp. 113–124, 2003.

[78] M. Bladt, “A review on phase-type distributions and their use in risk theory,”

ASTIN Bulletin, vol. 35, no. 1, pp. 145–161, 2005.

[79] K. Mitchell and A. van de Liefvoort, “Approximation models of feed-forward

G/G/1/N queueing networks with correlated arrivals,” Performance Evalua-

tion, vol. 51, no. 2-4, pp. 137–152, 2003.

92



VITA

Mustafa Tekinay received the Bachelor of Science degree in Electrical and Com-

puter Engineering at the University of Missouri - Kansas City and the Master of

Science degree in Communications and Signal Processing at Imperial College London

in 2010 and 2012 respectively. He is currently pursuing his Ph.D. in Computer Net-

working and Communication Systems at the University of Missouri - Kansas City.

His current research interests include physical layer modeling and its applications in

wireless communication systems.

93


