brought to you by CORE

Evidence-based answers from the Family Physicians Inquiries Network

CLINICAL INQUIRIES

Q How effective is spironolactone for treating resistant hypertension?

EVIDENCE-BASED ANSWER

A VERY EFFECTIVE. Spironolactone reduces systolic blood pressure (SBP) by 11 to 17 mm Hg and diastolic blood pressure (DBP) by up to 6 mm Hg in patients with resistant hypertension taking 3 or more medications (strength of recommendation [SOR]: **C**, meta-analysis of randomized controlled trials [RCTs] of disease-oriented evidence).

Evidence summary

A 2017 meta-analysis of 4 RCTs (869 patients) evaluated the effectiveness of prescribing spironolactone for patients with resistant hypertension, defined as abovegoal blood pressure (BP) despite treatment with at least 3 BP-lowering drugs (at least 1 of which was a diuretic).¹ All 4 trials compared spironolactone 25 to 50 mg/d with placebo. Follow-up periods ranged from 8 to 16 weeks. The primary outcomes were systolic and diastolic BPs, which were evaluated in the office, at home, or with an ambulatory monitor.

Spironolactone markedly lowers systolic and diastolic BP

A statistically significant reduction in SBP occurred in the spironolactone group compared with the placebo group (weighted mean difference [WMD] = -16.7 mm Hg; 95% confidence interval [CI], -27.5 to -5.8 mm Hg). DBP also decreased (WMD = -6.11 mm Hg; 95% CI, -9.34 to -2.88 mm Hg).

Because significant heterogeneity was found in the initial pooled results ($I^2 = 96\%$ for SBP; $I^2 = 85\%$ for DBP), investigators performed an analysis that excluded a single study with a small sample size. The re-analysis continued to show significant reductions in SBP and DBP for spironolactone compared with placebo (SBP: WMD = -10.8 mm Hg; 95% CI, -13.16 to -8.43 mm Hg; DBP: WMD = -4.62 mm Hg; 95% CI, -6.05 to -3.2 mm Hg; I² = 35%), confirming that the excluded trial was the source of heterogeneity in the initial analysis and that spironolactone continued to significantly lower BP for the treatment group compared with controls.

Add-on treatment with spironolactone also reduces BP

A 2016 meta-analysis of 5 RCTs with a total of 553 patients examined the effectiveness of add-on treatment with spironolactone (25-50 mg/d) for patients with resistant hypertension, defined as failure to achieve BP < 140/90 mm Hg despite treatment with 3 or more BP-lowering drugs, including one diuretic.² Spironolactone was compared with placebo in 4 trials and with ramipril in the remaining study. The follow-up periods were 8 to 16 weeks. Researchers separated BP outcomes into 24-hour ambulatory systolic/diastolic BPs and office systolic/diastolic BPs.

The 24-hour ambulatory BPs were significantly lower in the spironolactone group compared with the control group (24-hour SBP: WMD = -10.5 mm Hg; 95% CI, -12.3 to -8.71 mm Hg; 24-hour DBP: WMD = -4.09 mm Hg; 95% CI, -5.28 to -2.91 mm Hg). CONTINUED

Corey Lyon, DO; Brigitte Utter, MD

University of Colorado Family Medicine Residency, Denver

Kristen DeSanto, MSLS, MS, RD

University of Colorado Health Sciences Library, Denver

DEPUTY EDITOR

Chicago

Rick Guthmann, MD, MPH Advocate Illinois Masonic Family Medicine Residency, No significant heterogeneity was noted in these analyses.

Office-based BPs also were markedly reduced in spironolactone groups compared with controls (office SBP: WMD = -17 mm Hg; 95% CI, -25 to -8.95 mm Hg); office DBP: WMD = -6.18 mm Hg; 95% CI, -9.3 to -3.05 mm Hg). Because the office-based BP data showed significant heterogeneity ($I^2 = 94\%$ for SBP and 84.2% for DBP), 2 studies determined to be of lower quality caused by lack of detailed methodology were excluded from analysis, yielding continued statistically significant reductions in SBP (WMD = -11.7mm Hg; 95% CI, -14.4 to -8.95 mm Hg) and DBP (WMD = -4.07 mm Hg; 95% CI, -5.6 to -2.54 mm Hg) compared with controls. Heterogeneity also decreased when the 2 studies were excluded ($I^2 = 21\%$ for SBP and $I^2 = 59\%$ for DBP).

How spironolactone compares with alternative drugs

A 2017 meta-analysis of 5 RCTs with 662 patients evaluated the effectiveness of spironolactone (25-50 mg/d) on resistant hypertension in patients taking 3 medications compared with a control group-placebo in 3 trials, placebo or bisoprolol (5-10 mg) in 1 trial, and an alternative treatment (candesartan 8 mg, atenolol 100 mg, or alpha methyldopa 750 mg) in 1 trial.³ Follow-up periods ranged from 4 to 16 weeks. Researchers evaluated changes in office and 24-hour ambulatory or home BP and completed separate analyses of pooled data for spironolactone compared with placebo groups, and spironolactone compared with alternative treatment groups.

Investigators found a statistically significant reduction in office SBP and DBP among patients taking spironolactone compared with control groups (SBP: WMD = -15.7mm Hg; 95% CI, -20.5 to -11 mm Hg; DBP: WMD = -6.21 mm Hg; 95% CI, -8.33 to -4.1 mm Hg). A significant decrease also occurred in 24-hour ambulatory home SBP and DBP (SBP: MD = -8.7 mm Hg; 95% CI, -8.79 to -8.62 mm Hg; DBP: WMD = -4.12mm Hg; 95% CI, -4.48 to -3.75 mm Hg).

Patients treated with spironolactone showed a marked decrease in home SBP

compared with alternative drug groups (WMD = -4.5 mm Hg; 95% CI, -4.63 to -4.37 mm Hg), but alternative drugs reduced home DBP significantly more than spironolactone (WMD = 0.6 mm Hg; 95% CI, 0.55-0.65 mm Hg). Marked heterogeneity was found in these analyses, and the authors also noted that reductions in SBP are more clinically relevant than decreases in DBP.

Recommendations

The 2017 American Heart Association/ American College of Cardiology evidencebased guideline recommends considering adding a mineralocorticoid receptor agonist to treatment regimens for resistant hypertension when: office BP remains $\geq 130/80$ mm Hg; the patient is prescribed at least 3 antihypertensive agents at optimal doses including a diuretic; pseudoresistance (nonadherence, inaccurate measurements) is excluded; reversible lifestyle factors have been addressed; substances that interfere with BP treatment (such as nonsteroidal anti-inflammatory drugs and oral contraceptive pills) are excluded; and screening for secondary causes of hypertension is complete.4

The United Kingdom's National Institute for Health and Care Excellence (NICE) evidence-based guideline recommends considering spironolactone 25 mg/d to treat resistant hypertension if the patient's potassium level is 4.5 mmol/L or lower and BP is higher than 140/90 mm Hg despite treatment with an optimal or best-tolerated dose of an angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker plus a calcium-channel blocker and diuretic.⁵

Editor's takeaway

The evidence from multiple RCTs convincingly shows the effectiveness of spironolactone. Despite the SOR of C because of a diseaseoriented outcome, we do treat to blood pressure goals, and therefore, spironolactone is a good option. JFP

References

Spironolactone reduces systolic blood pressure by 11 to 17 mm Hg and diastolic blood pressure by up to 6 mm Hg in patients with resistant hypertension taking 3 or more medications.

Zhao D, Liu H, Dong P, et al. A meta-analysis of add-on use of spironolactone in patients with resistant hypertension. *Int J Cardiol.* 2017;233:113-117.

- Wang C, Xiong B, Huang J. Efficacy and safety of spironolactone in patients with resistant hypertension: a meta-analysis of randomised controlled trials. *Heart Lung Circ*. 2016;25:1021-1030.
- 3. Liu L, Xu B, Ju Y. Addition of spironolactone in patients with resistant hypertension: a meta-analysis of randomized controlled trials. *Clin Exp Hypertens*. 2017;39:257-263.
- Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high

blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. *Hypertension.* 2017. https://doi.org/10.1161 /HYP.000000000000065. Accessed June 6, 2019.

 National Institute for Health and Care Excellence. Hypertension in adults: diagnosis and management. Clinical guideline [CG127]. August 2011. https://www.nice.org.uk/guidance /cg127/chapter/1-guidance#initiating-and-monitoringantihypertensive-drug-treatment-including-blood-pressuretargets-2. Accessed June 6, 2019.