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ABSTRACT 
 

Membrane type 1 matrix metalloproteinase (MT1-MMP) is essential to a myriad of 

extracellular activities including tumor cell migration and angiogenesis.  At the cell 

surface, MT1-MMP is a major factor in the proteolysis of receptors, growth factors, 

and collagen. MT1-MMP extracellular domains bind the cell surface which can be 

influential in bringing these complexes together. This study uses new techniques 

to uncover the interactions between MT1-MMP and the cell surface. Described 

here is the development of techniques in protein and lipid preparations, NMR data 

acquisition, and structure determination by molecular dynamics simulations. 

Through these methods, the HPX domain was shown to bind nanodiscs by 

opposing tips of blade II and blade IV. The protruding part of these tips contain an 

EPGYPK sequence that are seen dipping into the membrane surface making 

contact with the lipid head groups. Blade IV membrane binding allows collagen to 

bind unhindered. Both blade II and blade IV membrane binding structures are 

shown to be favorable for homodimerization without disruption of the collagen 

binding site. The catalytic domain is shown to at least transiently bind membranes. 

This study then hypothesizes and discusses how these interactions impact both 

future peripheral protein membrane interaction studies and uncover similarities 

between the MMP family.  
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I.  INTRODUCTION 

 

I:1 THE MATRIX METALLOPROTEINASE FAMILY 

 

I.1.1 Overview 

Matrix metalloproteinases (MMPs) are involved in the degradation of the 

extracellular matrix (ECM) along with proteolysis of ECM related proteins. The 

ECM is important during cell development and morphogenesis (1). Proteolysis of 

the ECM allows for cellular migration and modification of signaling molecules (2). 

MMP substrates, found in the ECM, include, tyrosine kinase receptors, 

chemokines, peptide growth factors, MMPs, fibronection (3-6). 

Although MMPs have proteolytic activity on ECM components, this is not 

their only function (7). Furthermore, all MMP’s contain zinc at their active site and 

can be inhibited by EDTA along with at least one of the tissue inhibitor of  

metalloproteinases (TIMPs) (8,9). MMPs can have additional inhibitors such as 

RECK and alpha2-macroglobulin. MMPs are subdivided into 5 distinct groups: 

stomelysins, matrilysins, gelatinases, collagenases, and membrane-bound MMPs 

in which Membrane Type 1 Matrix Metalloproteinase (MT1-MMP), the focus of this 

study, belongs to (10).   
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I.1.2 Structural Comparison of MMPs 

Matrix metalloproteinases have been studied since the early 1960’s with the 

first biochemical characterization of an MMP from amphibian tissues occurred in 

1962 (11,12). Since then it has been discovered that all MMPs are multidomain 

proteins that start out as zymogens containing at least a zinc dependent catalytic 

and propeptide (PRO) domain. This PRO domain is cleaved upon activation of the 

catalytic domain. Most MMPs also contain a hemopexin-like domain (HPX) used 

in recognition of binding partners. Membrane MMPs have either a single helix 

spanning transmembrane domain or a glycosylphosphatidylinosital (GPI) 

anchored domain that tethers the protein to the plasma membrane (Fig I.1A).  

There are 6 membrane-bound MMPs that are bound to the cell surface 

through either through a GPI anchor (MMP -17, -25) or a single spanning 

transmembrane domain (MMP -14, -15, -16, -24). There is a flexible linker 1 that 

connects the catalytic and HPX domains along with a linker 2 between the HPX 

and Transmembrane domains in membrane bound MMPs (Fig I.1B) (13). The 

transmembrane spanning MMPs share a similar extracellular domain structure as 

MT1-MMP (fig I.1B).  

 

I.1.3 Sequence Similarity 

MMPs share high similarity in their overall structure and primary sequence. 

In regard to both the catalytic and HPX domain, there is high similarity in the fold 

when comparing solved structures. In the catalytic domain there is low sequence 

variability in the active site cleft where the activating zinc atom is coordinated by 
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three histidines in all structures (Fig 1.2). The active site accommodates a side 

chain of the many substrates including collagen. The active site size varies 

between MMPs and helps in substrate specificity (14). While the active site is 

conserved, the flanking regions have higher variability in residue sequence (Fig 

I.2).   

The hemopexin domain, connected to the catalytic domain by a flexible 

linker, is composed of a four-bladed propeller structure (15) (Fig. I.2). The 

hemopexin domain has higher residue variability compared to the catalytic domain 

and therefore has been targeted for therapeutic selection (16-18) (Fig I.2). 

Interactions of the HPX domains of MMP-1 (19), MMP-2 (20), MMP-9 (18), and 

MT1-MMP (21) with the cell surface proteins, such as CD44 or Integrin, indicate a 

possibility for cell surface localization.  MMP-3 (22) and MT1-MMP (23) have also 

been shown to internalize into the cell, making their way to the nucleus as 

transcription factors. These MMPs can potentially use the HPX domain interaction 

with the cell surface as part of the internalization mechanism.  

 

I.2 MT1-MMP 

I.2.1 MT1-MMP Role on the Cell Surface 

Membrane-type 1 Matrix metalloproteinase (MT1-MMP) is highly expressed 

in many cell lines and has been implicated in cancer metastasis, angiogenesis, 

skeletal development and inflammation (24). MT1-MMP drives this cell invasion 

through activation of proteolytic proteins such as CD44, MMP-2, and MMP-9 

(25),(26) (fig I.3). During cell invasion, MT1-MMP is trafficked from late endosomes 
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to the invadopodia by way of association with phospatidic acid,  Phospholipase D2, 

and Kinesin-1 (27).  MT1-MMP localizes in lipid rafts that are required for 

invadopodia formation (28).  In particular, cholesterol depletion leads to a loss of 

lipid rafts along with delocalization of MT1-MMP at the invadopodia (29).  

 

I.2.2 Homodimerization of MT1-MMP 

Homodimerization of the hemopexin-like domain is required for in vivo 

activation, although the dimer is not readily formed in vitro (30).  It has been 

proposed that the transmembrane or cell surface interaction with the cytoplasmic 

domain is required for dimerization (31). Furthermore, MT1-MMP dimerization and 

activity was thought to be controlled by cytoskeleton actin reorganization (32) but 

it is found to be active in exosomes degrading type-1 collagen and activating MMP-

2 (33). Despite the lack of actin skeleton, exosomes have the similar lipid raft 

composition as the lamellipodia (34) where MT1-MMP associates with and is found 

to interact with lipids that induce cell migration (35) suggesting a lipid dependence 

on activation.  Exosomes help in cell communication, ECM degradation, and have 

been implicated in the progression of cancer (36). In these processes, MT1-MMP 

is an integral component degrading the ECM while activating proteins such as 

MMP-2 (Fig I.4). MT1-MMP in exosomes make their way to ECM through 

internalization from the surface, trafficked from the Golgi by VAMP3 trafficking or 

incorporation into late endosomes and released upon binding at the plasma 

membrane (Fig I.4). 
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I.2.3 Hemopexin-Like Domain of MT1-MMP 

The hemopexin domain of MT1-MMP is of particular interest due to its 

interaction with multiple binding partners along with having a higher sequence 

variability among the MMP family compared with the catalytic domain. CD44 has 

been shown to interact with blade 1 (37) while collagen has been more recently 

shown to bind between blades 1 and 2 (38).  Single chain antibody fragments that 

target the hemopexin-like domain have reduced the metastasis rate of the cell 

suggesting a vital role of the hemopexin domain in cancer metastasis (17). 

Identification of binding sites where the hemopexin-like domain binds membranes 

would enhance our understanding of the local environment at the cell surface. To 

study the HPX domain bound to membranes, advanced membrane mimics and 

NMR techniques were implemented.  

 

I.3 MEMBRANE MIMICS 

I.3.1 Overview 

Membrane proteins account for around one-third of the human genome 

code making them an important area of interest (39). These membrane proteins 

are involved a multitude of pathological processes including transient receptor 

potential channels and MT1-MMPs role in cancer (40,41), aquaporin’s role in 

cataracts (42) and the CGRP proteins role in headaches (43) just to name a few. 

For this reason, many membrane-bound and peripherally bound proteins are 

becoming targets for drug design.  
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There are many options in membrane mimetic for structural studies 

including micelles, bilayered micelles (bicelles), nanodiscs, and liposomes (Fig 

I.5). Shape, curvature, thickness and dielectric constant are just a few of the 

conditions that determine a binding orientation during structural data collection 

(44). For example, the dynamics and rigidity of the loops of the integral membrane 

protein OmpX change upon the addition of micelles (45), bicelles (46), or 

nanodiscs (47). Discussed here are the three main types of membrane mimics 

used in the HPX membrane interaction studies.  

 

I.3.2 Small Unilamaller Vesicles 

Small Unilamaller Vesicles (SUVs) are spherical vesicles comprised of one 

or a more combinations of lipids. SUVs have a diameter of up to 100 nm similar to 

exosomes. These are formed by hydration and either sonication or extrusion 

methods. SUVs have been used to determine structural information of protein 

membrane complexes such as cytochrome C membrane interactions (48). SUVs 

are relatively easy to prepare in large quantities compared to other membrane 

mimics. For this reason, they are readily used in biochemical assays to help 

identify binding orientations and affinity of proteins for the membrane (46,49,50).  

 

I.3.3 Bicelles 

Phospholipids assemble into bilayer aggregates but are normally far too 

large for structural studies by NMR. Bicelles consist of long chain phospholipids in 
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combination with lipids that have both hydrophilic head and hydrophrobic tail 

regions (amphiphiles). Together these create a disk like shape more suitable for 

NMR when the ratio of long chain phospholipids to amphiphile (q) factor is below 

0.5. These isotropic bicelles reorient themselves on an NMR timescale due to their 

fast tumbling time. The stability of bicelles in solution is temperature and ionic 

strength dependent. It has been previously found that DMPC/DHPC bicelles are 

stable from pH 4.0 – 7.0 (51,52).   

 

Bicelles have been used extensively to solve structures of membrane bound 

proteins (53-56). Bicelles with very large q-factor magnetically align in the 

presence of an external magnetic field through which a protein’s axis of symmetry 

in relation to the membrane mimic can be found. This can help determine 

orientation angles of the protein inserted in the membrane or bound to the surface. 

Using paramagnetic relaxation enhancement NMR, two peripheral proteins 

structures have been identified using low q-factor bicelles (46,49). These 

structures where determined using a DPPC containing a nitroxide probe 

embedded into a DMPC/DHPC bicelle.  

 

I.3.4 Nanodiscs 

Nanodiscs were first characterized by Atomic Force Microscopy (AFM) in 

the late 1990s (57) and have since then become recognized as highly suitable for 

membrane protein interactions (58-60). Nanodiscs are composed of two copies of 

helical membrane scaffold proteins (MSPs) and one or more lipids (61). After self-
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assembly, higher aggregates of nanodiscs can be easily removed through size-

exclusion. Monodisperse nanodiscs can be made in high enough yields for most 

biochemical approaches (62).  

Nanodiscs can be used in many techniques including electrochemistry, 

single molecule studies (63), X-ray crystallography (64), electron microscopy (65), 

and NMR (66) to name a few. Nanodiscs have an advantage over other techniques 

through their unique MSP protein bound around the edges. This protein is stable 

at higher temperatures keeping the bilayer shape better than bicelles, SUVs, or 

micelles. The nanodisc also removes the use of a detergent as in bicelles leading 

to higher protein stability. The length of the MSP protein directly impacts the 

diameter of the nanodisc (67) and this allows for precise control over the size of 

the experiment. Due to these advantages, the nanodisc is a more robust and 

stabilizing method for protein characterization on the membrane. In particular, 

NMR methods combined with nanodiscs are allowing for better characterization of 

membrane bound proteins (66,68,69). 

NMR is a precise tool to study dynamics and structure for many of these 

membrane protein complexes. As a non-invasive technique, proteins and lipid 

interactions can be probed and understood without perturbing the sample. NMR 

has the power to elucidate structural and dynamic information of these complexes 

but is limited by the membrane mimic and protein complex size. Advances in NMR 

techniques, along with enhancements to membrane mimics have led to more 

precise membrane protein characterization and one of these advances is 

discussed here. 
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I.4 TECHNICAL NMR BACKGROUND 

I.4.1 NMR Basics 

To determine 3D structures at near atomic or atomic resolution there are 

only 3 techniques: Nuclear magnetic resonance (NMR) along with X-ray 

crystallography and cryo-electron microscopy. Since the 1940s NMR has been 

utilized not only for structure determination but for its powerful application in 

dynamic and kinetic studies, including the first few NMR studies of an MMP (70-

72) 

 

I.4.2 NMR signal 

 Nuclei that have an odd number of protons, such as 1H, 13C, 15N, 19F among 

others, produce a non-zero spin that are detected in a magnetic field. In the 

presence of a magnetic field (B0) the energy levels of the nuclei undergo Zeeman 

splitting into high and low energy fields (Fig I.6B) and is described by: 

∆𝐸 =  ℎ𝜐 =  
ℎ𝛾𝐵0

2𝜋
                Equation I-1 

where 𝐵0 is the magnetic field strength, 𝛾 is the gyromagnetic ratio, ℎ is Planck’s 

constant, and 𝜐 is the Larmor precession frequency. Applying a radiofrequency 

magnetic field perpendicular to 𝐵0  and the magnetic dipole moments of spins 

aligned with it, results in the precession of the spins of these nuclei around the 

magnetic field (Fig I.6A). Once the radiofrequency light is turned off, the 

magnetization starts decaying back to zero. This change is recorded on the NMR 

instrumentation and produces a time-dependent sinusoidal free induction decay 
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(FID). This time domain data can be transformed into a signal in the frequency 

domain l through Fourier transformation. This is a procedure where the intensity 

and frequency of each sinusoidal signal is converted into a peak in the NMR 

spectrum (73). This signal contains chemical shift (peak position), line width, and 

peak intensity information (Fig I.6C). 

 

I.4.3 Chemical Shift  

Along with the external B0 field, the local electronic environment creates a 

local magnetic environment that opposes the direction of the applied magnetic 

field. which is known as shielding and is described by equation I.2: 

𝜔𝑜𝑏𝑠 = 𝛾𝐵0(1 −  𝜎)                     Equation I.2 

where 𝜎 describes the amount of shielding. The shift caused by this environment 

is what gives rise to the chemical shift. This measurement is independent of the 

magnetic field and is expressed in parts per million (ppm) relative to a reference 

standard and described by: 

𝛿 =  106 𝜐− 𝜐𝑟𝑒𝑓

𝜐𝑟𝑒𝑓
         Equation I.3 

Chemical shift, 𝛿, is independent of the magnetic field and is represented as a 

dimensionless quantity, i.e. as a ratio. The chemical shift provides useful nucleus-

specific information and can be used as a probe due to its high dependence on the 

local electromagnetic environment. This can be used, for example, to observe 

conformational changes in a protein’s structure upon ligand and biomolecular 

interactions (74,75).  
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I.4.4 Multidimensional NMR 

The peaks of individual nuclei can be resolved and enhanced by using more 

than one dimension. To obtain a 2D spectrum, a transfer from one nucleus to 

another needs to occur. This is accomplished through a mixing period added in the 

pulse sequence. After an initial excitation pulse, there is an evolution period where 

transverse magnetization evolves from both chemical shift and scalar coupling. A 

mixing period precedes the evolution period and allows for a transfer of 

magnetization between spins connected to each other through bond or nearby 

spatially. After the mixing period, an FID is recorded as a function of T2. Repeating 

this at equally spaced time intervals of t1 creates a matrix of FIDs of both the t1 and 

t2 time domains. A Fourier transform of this 2D matrix will correlate the spins in 

mixing times resulting in coordinated spectral peaks in the two dimensions at the 

frequency of each nuclear spin (Fig I.6C).  

 

I.4.5 Spin Relaxation 

There are two types of spin relaxation that occur in NMR. Spin-lattice 

relaxation (T1 or longitudinal relaxation) results from the return to equilibrium at the 

Larmor precession frequency in the direction of the magnetic field.  Transverse 

relaxation (T2 or spin-spin relaxation) is a description of the decay of the excited 

magnetization perpendicular to the applied magnetic field. T2 occurs from 
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molecular motions in transient magnetic fields and also coupling constants or 

chemical shifts from chemical exchange. Any variation in magnetic fields occurring 

from T1 relaxation also affects T2 relaxation but the inverse is not true. This 

relationship can be exploited to determine protein spherical shape through the 

determination of rotational correlation time (𝜏𝒸) (76,77). Relaxation techniques can 

also be used to study protein motions through incorporation of paramagnetic 

compounds causing increased relaxation effects.  

 

I.4.6 Local Environment Changes Upon Macromolecular Associations 

  An interaction of proteins with other molecular structures often changes the 

local environment of residues. Being sensitive to local nuclei changes, NMR can 

be used to understand these interactions through changes in chemical shift or spin 

relaxation alter the peak location and intensities in the spectra. These interactions 

can cause chemical exchange. 

Chemical exchange is the process where a nucleus can exchange between 

different environments resulting in NMR relaxation, scalar coupling and/or 

chemical peak shift (78). This occurs either as a chemical reaction or 

conformational change. This change is dependent on the time scale of chemical 

shift differences, which ranges in the milliseconds. For reactions at equilibrium in 

which the sum of the forward and backward reaction rates is slower than the 

chemical shift difference, the system is seen as slow exchange and two distinct 

peaks in the spectra can be seen. If the opposite is true, this is referred to as fast 

exchange and only one signal will be seen at the average frequency weighted in 
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proportion to the amount of the two states. If the sum of the forward and backward 

reaction rates is similar to the chemical shift difference, spectral line widths 

become larger due to corresponding short t2 values, a situation known as 

intermediate exchange 

 

I.4.7 Paramagnetic Relaxation  

Paramagnetic relaxation occurs from the larger magnetic moments of 

unpaired electrons effects on the local fields of a nuclei through its isotropic g-

tensor (79). Paramagnetic relaxation effects can occur up to 25 Å for nitroxide 

labels and up to 35 or 40 Å for lanthanides such as Gd3+.  The distance r is between 

the unpaired electron and nucleus of interest. The strength of the paramagnetic 

relaxation is inversely proportional in an r6. This is further described by:  

𝑟2 =  
𝐾

𝑟6 (4𝜏𝒸 + 
3𝜏𝒸

1+ 𝜛ℎ
2𝜏𝒸

2)        Equation I.4 

where ϖh is the Larmor frequency, K is a collection of physical constants and 𝜏𝒸 is 

the rotational correlation time (80). This creates an experimental opportunity to 

measure long-range distances. 

Incorporation of a paramagnetic probe can occur from nitroxide spin 

radicals or metal chelators. Previously, a metal chelator (Gd-EDTA) was used to 

broaden away surface exposed residue peaks leaving binding site residues 

unaffected due to their distance from the probe (81). Incorporation of a metal 

chelator with a disulfide bridge to cysteine residues helped uncover dynamic 

motions in a protein structure (82). MTSL, a nitroxide spin radical, helped 
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determine how proteins fold (83). More recently, a nitroxide labeled lipid has been 

used to determine binding orientations of peripheral proteins bound to membrane 

mimics (46,49) through the incorporation of a novel pulse sequence.  

 

I.4.8 Paramagnetic Relaxation Enhancement 

The paramagnetic relaxation rate (Γ2) is a measurement of the difference 

between the T2 rate without and with the paramagnetic probe and can be described 

as: 

Γ2 = R2,para - R2,dia                     Equation I.5 

 Where R2,dia is the diamagnetic state rate and R2,para is the paramagnetic state 

rate.  This equation cancels out all relaxation mechanisms other than the enhanced 

relaxation from the electron magnetic moment.  

PRE-measurements are commonly taken as a method using just the 

diamagnetic and paramagnetic two-time point approach. This required no fitting 

and yielded 4 different NMR peak intensities: Idia(Ta), Idia(Tb), Ipara(Ta), and Ipara(Tb). 

Using these, the paramagnetic rate can be calculated as follows: 

Γ2 =  𝑅2,𝑝𝑎𝑟𝑎 − 𝑅2,𝑑𝑖𝑎 =  
1

𝑇𝑏−𝑇𝑎
𝑙𝑛

𝐼𝑑𝑖𝑎(𝑇𝑏)𝐼𝑝𝑎𝑟𝑎(𝑇𝑎)

𝐼𝑑𝑖𝑎(𝑇𝑎)𝐼𝑝𝑎𝑟𝑎(𝑇𝑏)
        Equation I.6 

and the errors propagated in Γ2 can be calculated by: 

𝜎(Γ2) =  
1

𝑇𝑏−𝑇𝑎
√{

𝜎𝑑𝑖𝑎

𝐼𝑑𝑖𝑎(𝑇𝑎)
}

2
+ {

𝜎𝑑𝑖𝑎

𝐼𝑑𝑖𝑎(𝑇𝑎𝑏)
}

2
+ {

𝜎𝑝𝑎𝑟𝑎

𝐼𝑝𝑎𝑟𝑎(𝑇𝑎)
}

2

 + {
𝜎𝑝𝑎𝑟𝑎

𝐼𝑝𝑎𝑟𝑎(𝑇𝑏)
}

2

        Equation I.7 

where standard deviations from spectral noise in both the diamagnetic and 

paramagnetic spectra are defined as 𝜎𝑑𝑖𝑎  and 𝜎𝑝𝑎𝑟𝑎  respectively (79). 
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Visualization of this enhanced decay can be seen in Fig I.7 where residues close 

to the paramagnetic probe have larger decay rates compared to diamagnetic 

sample (fig I.7A). In residues identified far away from the probe, there is no 

difference in the decay rates of the two samples (fig I.7B).  

A further enhancement to the PRE data acquisition is the Carr-Purcell and 

Meiboom-Gill pulse sequence (CPMG), which is used to measure relaxation times 

effectively. The original Carr-Purcell sequence starts with a polarized 90° pulse 

with refocusing 180° pulses spaced by a time interval. The CPMG sequence was 

built upon the original Carr-Purcell sequence and eliminated the amplitude 

adjustment of the 180° pulses by introducing a 90° phase shift of the first 90° pulse 

(84).  After the refocusing is complete, the signal can be measured (fig I.8). The 

additional acquisition of spectra at multiple time points allows for better accuracy 

in determining the decay rates of residues.  

 

I.5 CONCLUSION 

This CPMG train has helped the NMR community to uncover dynamic and 

distance-dependent information on proteins and complexes with lipids, proteins, 

ligands, and DNA (38,49,85,86). Furthermore, incorporating these techniques into 

the developments in membrane mimic systems has paved the way to uncover 

interactions between proteins and the membrane surface.  
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I.6 FIGURES 

 

Figure I.1 Overall MMP family structure and the structure of MT1-MMP  

 

(A) Overall structural representation of the MMP family grouped by each member’s 
domain similarities. Each member of the MMP family has at least a PRO and 
Catalytic domain. (B) The extracellular structure representation of MT1-MMP. 
Catalytic and HPX domains were obtained from crystal structures and collagen 
binding site is modeled in on the HPX according to previous NMR based 
experiments (38). The transmembrane domain is connected by a linker at the c-
terminal end of the HPX domain. (Panel A used with permission from Parks, W. 
C., Wilson, C. L., & Lopez-Boado, Y. S., 2004) (87). 
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Figure I.2 Evolutionary Trace of both the catalytic and HPX domain of MT1-
MMP.  
 
The Evolutionary Trace was performed through the Litcharge Lab’s online 
ETserver at http://lichtargelab.org/software/ETserver. 202 and 213 sequences 
were used for the evolutionary trace alignment of the HPX and catalytic domains 
of MT1-MMP respectively. The sites of high ET coverage are more unique to MT1-
MMP while the less sequence variability between MMPs is seen at the low ET 
percent coverage.  
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Figure I.3 Various MT1-MMP functions at the cell surface.  

 

MT1-MMP is involved in a multitude of functions on the plasma membrane. 
Interactions include shedding of CD44, Activation of ProMMP-2, proteolysis of 
collagen, and internal cell signaling. All of these interactions help advance cell 
invasion through the ECM. (Figure used with permission from Itoh, Y. and M. Seiki, 
2006) (88).  
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Figure I.4 MT1-MMP’s role in exosomal formation and movement  
 
MT1-MMP is found in exosomal vesicles where it has been seen activating MMP-
2 and cleaving collagen. MT1-MMP is trafficked in exosomes either by VAMP3 
mediated trafficking or incorporation into late endosomes which eventually release 
exosomes into the extracellular matrix environment. (Figure used with permission 
from Shimoda, M. & Khokha, R., 2017) (89) 
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Figure I.5 Overview of membrane mimics used in NMR studies.  
 
Of these 4 variations of membrane mimics, this current study used nanodiscs for 
a majority of the project (90). Liposomes were used in biochemical assays 
throughout this project.  
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Figure I.6 The Principle of NMR   
 
(A) When protons are placed in a high magnetic field, there magnetic poles align 
in relation to the magnetic field (Ho) where a radiofrequency pulse is applied, and 
the resulting pulse is recorded. (B) In the high energy states, they align against the 
magnetic field and in the low energy states they align with the magnetic field and 
this difference along with chemical shifts produce different signals. (C) Using a 
TROSY pulse sequence that applies this radiofrequency pulse along with a 
transfer of magnetization by another pulse results in a complex output signal (FID). 
This complex FID can then be Fourier transformed into a 2D spectrum.  
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Figure I.7 Paramagnetic relaxation enhancement (PRE) distance dependent 
effects  
 
(A) Representative PRE and diamagnetic decay curves for a residue in close 
proximity (X) or distal (Y) from an unpaired electron probe (B) Representation of 
the proximity of a residue to an unpaired electron lipid probe (green and red 
spheres) buried in the membrane (grey sticks).  For a residue in location X there 
is a larger decrease in the paramagnetic decay compared to the diamagnetic 
decay. The opposite is shown where a residue near location Y does not experience 
the unpaired electron’s effects on its decay rate.  
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Figure I.8 Basics of the CPMG pulse train, which is used below for measuring 
PREs  
 

The CPMG pulse sequence is a 90 pulse followed by dephasing period. After this 

period (), a 180 pulse is applied to refocus the signal. After rephrasing (2), the 

NMR signal can be measured. Relaxation delays can be extended by (2) through 

the addition of multiple 180 pulses. Measurement of the residue peak heights of 
each individual experiment at different CPMG pulse train lengths can then be 
plotted to obtain a decay curve of each residue. 
(This figure was used with permission from:  
http://perminc.com/resources/fundamentals-of-fluid-flow-in-porous-
media/chapter-3-molecular-diffusion/diffusion-coefficient/measurement-
techniques/nmr-method/principles-nmr-processing/spin-echo-cpmg-pulse-
sequence/) 
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II. MT1-MMP Binds Membranes by Opposite Tips of its 

β-Propeller to Position it for Pericellular Proteolysis 
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Steven R. Van Doren – In Submission 

 

 

II.1 SUMMARY 

 
Critical to migration of tumor cells and endothelial cells is the proteolytic attack of 

membrane type 1 matrix metalloproteinase (MT1-MMP) upon collagen, growth 

factors, and receptors at cell surfaces. Lipid bilayer interactions of the substrate-

binding hemopexin-like (HPX) domain of MT1-MMP were investigated by 

paramagnetic NMR relaxation enhancements (PREs), fluorescence, and 

mutagenesis. The HPX domain binds bilayers by blades II and IV on opposite sides 

of its β-propeller fold. The EPGYPK sequence protruding from both blades inserts 

among phospholipid head groups in PRE-restrained molecular dynamics 

simulations. Bilayer binding to either blade II or IV exposes the CD44 binding site 

in blade I. Bilayer association with blade IV allows the collagen triple-helix to bind 

without obstruction. Indeed, vesicles enhance proteolysis of collagen triple-helical 

substrates by the ectodomain of MT1-MMP. Hypothesized side-by-side MT1-MMP 

homodimerization would allow binding of bilayers, collagen, CD44, and head-to-

tail oligomerization. 
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Summary Highlights 

• Blades II and IV insert into lipid head groups a loop characteristic of some MT-

MMPs 

• Basic side chains at the bilayer binding sites are drawn to lipid phosphoesters 

• Vesicles enhance digestion of collagen-like substrates by the MT1-MMP 

ectodomain 

• Binding of bilayers, collagen, CD44, and one mode of dimerization are 

compatible 

 
 
 

II.2 INTRODUCTION 

 
Membrane type 1 matrix metalloproteinase (MT1-MMP or MMP-14) was 

discovered as triggering invasion by tumor cells via proteolytic processing of 

proMMP-2 to MMP-2 on cell surfaces (1). MT1-MMP supports cell invasion in 

cancer metastasis, angiogenesis, and skeletal development (2,3). It is the 

pericellular collagenase required for invasion of 3D collagen matrices by tumor 

cells and endothelial cells forming capillary tubes (4-9). Cell motility dependent 

upon epidermal growth factor (EGF) receptor (ErbB) is promoted by MT1-MMP-

catalyzed release of an EGF-like fragment from laminin 5 (10,11) and proteolysis 

of heparin-binding EGF (12). Cell motility is also promoted by MT1-MMP shedding 

of cell adhesion molecules from cell surfaces (3), e.g. hyaluronan receptor CD44 

(13), syndecan-1 (14), αV integrin (15), and intracellular adhesion molecule-1 (16).  
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MT1-MMP can be internalized from the plasma membrane into endosomes 

and then be recycled back to the cell surface or to exosomes released from cells 

(17). CD44 may recruit MT1-MMP to lamellopodia (18). During cell invasion, MT1-

MMP-containing intracellular vesicles are trafficked to invadopodia by kinesin-1 

recruited to the vesicles by its affinity for phosphatidic acid (19).  MT1-MMP 

localizes to cholesterol-containing lipid rafts required for formation of invadopodia 

(20,21). MT1-MMP is exposed on the surface of extracelluar vesicles such as 

exosomes (17,22). Secretion of exosomes promotes development of invadopodia, 

while invadopodia in turn secrete exosomes (23).  

The positioning of MT1-MMP upon membrane bilayers has the potential to 

influence its pivotal proteolytic activities. Its soluble extracellular domains comprise 

the catalytic domain (a zinc hydrolase), flexible linker, and the hemopexin-like 

(HPX) domain which adopts a β-propeller fold with four pseudo-symmetric blades 

(24). MT1-MMP is the only membrane type MMP with a crystal structure available 

for the HPX domain (25). Both the HPX and catalytic domains were shown to bind 

peripherally to membrane mimics (26,27). This suggests that the soluble domains 

may reside on membranes at least transiently, despite widespread depictions of 

them extending away from the membrane. 

The soluble ectodomain of MT1-MMP (sMT1-MMP in which the 

transmembrane helix is removed) is active in collagenolysis and is monomeric, as 

is its HPX domain (26,28-30). PISA analysis of the small interfaces in the 

asymmetric unit of crystals of the HPX domain (25)(PDB: 3C7X) deems it a 

monomer in solution. The HPX domain was dispensable for cellular collagenolysis 
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by MT1-MMP, but membrane anchoring was required (31). Other cellular assays 

implicated symmetric homodimerization about blades II and III in proMMP-2 

activation and collagenolysis (25). However, another study disputed this mode of 

homodimerization (32). The discrepancies in reported requirements for the HPX 

domain in collagenolysis were attributed to differences in the constructs used 

(32,33). The bulges emanating from blades I and IV were implicated in activation 

of proMMP-2, cell migration, lung metastasis, and formation of new blood vessels 

(32). Dimerization of MT1-MMP occurs at the leading edge (invadopodia) but not 

trailing surfaces of migrating cells (34-37). Homodimerization via the 

transmembrane helix supports proMMP-2 activation (38). The intracellular C-

terminus also participates in dimerization (36), potentially by its anchorage to the 

cytoskeleton in invadopodia via palladin (39). Structural analysis of MT1-MMP 

interactions with membranes could provide insight into the modes and probabilities 

of enzyme dimerization and association with other cell surface molecules. 

Careful appraisal of the proximity of MT1-MMP to lipid bilayers is warranted 

by its relevance to the digestion of collagen, pro-growth factors, and receptors on 

cell membranes, and to the sites of action of prospective therapeutics reported to 

target the HPX domain of this protease (32,40,41). We implemented two key tools 

in our investigation. First, nanodiscs have emerged as the gold standard of bilayer 

mimics for structural and biophysical studies of membrane-associated proteins. 

Nanodiscs encircle disk-like bilayers with two chains of molecular scaffolding 

protein (MSP). This confers advantages of long-term stability, homogeneity, 

planarity, and fluidity at high concentrations (42,43). Second, paramagnetic NMR 
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has successfully docked GTPases peripherally to nanodiscs containing a 

paramagnetic ion conjugated to a lipid head group (44,45). NMR has also 

measured soluble protein proximity to bilayer mimics containing the paramagnetic 

spin label on the fatty acyl chains within the bilayer, which provides detailed 

structural orientations upon fluid bilayer assemblies (46-50). We show NMR and 

other lines of evidence that both blades II and IV, on opposite sides of the HPX 

domain, probably insert their protruding loop peptide sequences of EPGYPK in 

among the phospholipid head groups of nanodisc bilayers. With blade IV bound to 

the bilayer, the HPX domain appears free to bind the collagen triple-helix. Indeed, 

we observe that sMT1-MMP proteolysis of collagen-mimicking substrates is 

retained and enhanced in the presence of vesicles. 

 

II.3 RESULTS 

 

II.3.1 Nanodiscs Associate with Blades II and IV of the HPX Domain  

Equimolar mixtures of DMPC nanodiscs with the HPX domain from human 

MT1-MMP display high quality NMR spectra upon addition of NaCl to 300 mM (Fig. 

S1). The HPX domain interacting with the nanodiscs tumbles with a rotational 

correlation time τc around 21 ns at 30°C in 300 mM NaCl. This is almost twice the 

τc of the free state (29) and 3- to 4-fold less than the τc of integral membrane 

proteins in nanodiscs of similar composition (51). These observations and the 

sharpening of NMR peaks upon salt addition suggest that increased salt weakens 

the association of nanodiscs with the HPX domain, presumably by diminishing the 
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electrostatic attraction. High salt may shorten the residence time of the HPX 

domain upon a nanodisc, resulting in faster tumbling and better spectra of the HPX 

domain.  

To locate binding sites for a lipid bilayer on the HPX domain, nanodiscs 

were prepared for paramagnetic NMR measurement of proximity by incorporating 

nitroxide spin-labeled DPPC at a mole fraction of 0.025 of the DMPC. A 5-doxyl 

substituent was positioned on the acyl chain under the phospholipid head groups 

whereas a 10-doxyl substituent was positioned deeper inside the bilayer. The 

resulting paramagnetic relaxation enhancements (PREs given as Γ2) were 

measured on Ile, Leu, and Val methyl groups as exponential  decay curves that 

could differ between paramagnetic (spin-labeled) and diamagnetic (unlabeled) 

nanodiscs (Fig. S1C). The most significant PREs with Γ2 > 30 s-1 localize to the 

blades II and IV of the β-propeller (Fig. 1A,B). The nanodiscs induced small amide 

chemical shift perturbations (CSPs) in blades I, II, and IV (Figs. 1C,D and S1E) 

that agree with the explicit measurements of proximity that the PREs represent. A 

mixture of bilayer binding to opposite sides of the HPX domain agrees with 

negative staining electron microscopy evidence that addition of sMT1-MMP at low 

[NaCl] draws nanodiscs together into stacks (Fig. S2A,C). 

 

 

II.3.2 Nanodisc Docking to Opposite Sides of the HPX Domain  

The PREs and CSPs measured by NMR were separated into groups on 

opposite sides of the domain: one in or near blade II and the other in or near blade 
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IV (Fig. 1B,D). Explicit distances from the PRE-broadened methyl groups to the 

approximate depth of the 5-doxyl or 10-doxyl groups in the nanodisc bilayer level 

were estimated from the Γ2 values (Fig. 1A) and τc using eq. 3. Nanodisc-induced 

peak shifts (CSPs) and broadenings added supplementary but ambiguous 

restraints on proximity to the surface of the nanodisc (Table 1). These were used 

as distance restraints in initial HADDOCK rigid body docking (47,48,52), followed 

by restrained molecular dynamics (MD) simulations using NAMD and the 

CHARMM36 force field (53).  From 4-ns segments of the restrained MD trajectories 

with blade II or IV at the nanodisc interface, 15 snapshots of the complexes of 

lowest energy and full consistency with the distance restraints were collected into 

structural ensembles (Fig. 2A,B,D,E with PDB IDs 6CM1 and 6CLZ). The RMSD 

values to the mean were around 1.18 and 1.24 Å for the backbone atoms (Table 

1).  

 

II.3.3 Protein-Bilayer Interfaces 

In both complexes with nanodiscs, 13 residues contact phospholipid head 

groups throughout each ensemble. Central to the interface in both modes of 

binding is the outer β-strand and β-bulge of that blade with sequence L/VEPGypK, 

where the “yp” is recessed from the interface (Fig. 2). This loop motif exhibits 

similar behavior at the two interfaces. In both cases, the side chain of the central 

proline and the methylene group of the glycine insert far enough to contact fatty 

acyl chains and displace head groups to form a small bowl in the bilayer surface 
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(Fig. 2C,F). The lipids around this bowl in the heart of the interface are more 

ordered in the MD simulations than those lipids that are more distant from protein.  

The net positive charge is greater in the blade IV interface where six side 

chains are positively charged and one negatively charged. In contrast, the blade II 

interface has four basic side chains and two acidic side chains in contact with the 

head groups. The positively charged side chains tend to be drawn into salt bridges 

to phosphoester linkages in the lipid head groups. This is true of three of the four 

basic residues in the blade II interface and five of the six basic residues in the 

blade IV interface (Table S1). The interface centered at blade II includes apparent 

bilayer contacts of Lys362, the sequence 393ASLEPGYgK401 bulging from blade II, 

Glu405 and Arg408 of blade II, and Leu442 and Arg443 at the edge of blade III 

closest to blade II. The interface centered at blade IV includes apparent bilayer 

contacts with Lys454 and G458 at the near edge of blade III, the central bulging 

blade IV sequence 490KLKVEPGypK499, and Lys482, Arg503, and Ser510 also 

from blade IV.  

The overall tilt of each mode of binding appears to differ. The binding mode 

at blade II has the collagen-binding face tilted modestly toward the bilayer, possibly 

due to electrostatic attractions of Arg374 and Lys378 (from the first β-hairpin loop 

of blade II) to phosphoester groups on that side. A loop from each of blades I and 

III each join the two loops of blade II in contact with lipid head groups. In contrast, 

the mode of binding at blade IV tilts in the opposite direction with the collagen-

binding face tipped away from the bilayer and the “exit” side tilting slightly towards 

the bilayer. (The exit side refers to the central channel between blades which binds 
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Cl- and Na+ ions (25)). Electrostatic attractions on the exit side of Lys454 and 

Lys482 to phosphoesters (Table S1) might account for this apparent tilt. The blade 

III β-hairpin that presents Lys454 and the central EPGYPK motif that inserts partly 

into the bilayer have counterparts with the blade II interface. However, the two 

other β-hairpin loops at the blade II interface have no apparent counterparts in the 

blade IV interface. 

 

II.3.4 Fluorescent Lipid Interactions Probed by Mutations 

Due to the pseudo four-fold symmetry of the β-propeller fold and the recent 

proposal that bilayer binding is centered upon blade III (26), we examined bilayer 

binding by independent means.  We sought to perturb bilayer binding by 

introducing site-directed Ser substitutions of basic residues placed strategically in 

the four blades of the β-propeller (Fig. 3A) of the sMT1-MMP (catalytic – linker – 

HPX) construct. We monitored FRET quenching of intrinsic Trp fluorescence by 

Pyrene-PE incorporated into small unilamellar vesicles (SUVs) (54,55). Addition of 

SUVs to wild-type sMT1-MMP attenuated Trp fluorescence emission by nearly 

30% (Fig. 3B). Neither the K414S nor the K434S substitution in blade III interfered 

with fluorescence quenching by pyrene-labeled SUVs (Fig. 3B). Ser substitution 

for the Lys at the end of the EPGYPK motif of either blade II or IV, i.e. K401S or 

K499S, respectively, diminished the quenching of Trp fluorescence emission by 

SUVs containing the Pyrene-PE quencher (Fig. 3B). The R362S variant responded 

similarly, but to a lesser degree. The mutational evidence of electrostatic attraction 
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of Arg362, Lys401, and Lys499 to SUVs corroborates the paramagnetic NMR-

based proposal that lipid bilayers do recognize blades II and IV (Figs. 1, 2). 

Another approach led to a similar conclusion. The HPX domain was 

specifically labeled with a membrane-responsive fluor at single Cys substitutions 

(47,48,56). One site was placed in each of blades I, II, and IV, while three sites 

were selected in blade III (Fig. S3). Each single Cys was condensed with the 

iodoacetamide-substituted NBD fluorescent probe that responds to a hydrophobic 

environment with increased fluorescence emission (56). Addition of SUVs to the 

IANBD conjugate at blade I (at D351C) or blade III (at N424C, N433C, or N446C) 

failed to increase significantly the fluorescence emission from the NBD (Fig. S3).  

Addition of SUVs to the HPX domain with IANBD conjugated to D385C in blade II 

or to D471C in blade IV increased the fluorescence emission significantly by 2.05-

fold and 1.36 fold, respectively (Fig. S3). The greater increase from the label at 

D385C than from D471C is attributable to Asp385 being situated closer to the 

bilayer than is Asp471 in the structural models of Fig. 2. 

 

II.3.5 MT-MMPs Are Distinguished by their EPGYPK/R Loops 

A phylogenetic tree, constructed from each complement of MMP sequences 

obtained from 10 diverse vertebrate species, separates MT-MMPs from soluble 

MMPs (Fig. S4A). Evolutionary Trace analysis (57) of this collection finds that most 

of the MT-MMPs containing a transmembrane helix (MT1-, MT2-, MT3- and MT5-

MMP) also share in blades II and IV the hydrophobic PGYP loop motif flanked by 

polar residues (Figs. 3D, S4B). A majority of MMPs contain the GYP motif in blade 
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II (Figs. 3D, S4B). In blade IV, MT1-MMP and most MT2-MMP sequences widen 

the motif to the full bilayer-binding EPGYPK peptide sequence, which is modified 

in MT3- and MT5-MMP sequences by an Arg replacement of the Lys (Figs. 3D, 

S4B). The crystal structure of the HPX domain of MT1-MMP differs from those of 

soluble MMPs in this loop bulging out from outer β-strand 4 of blade IV (Fig. 3C). 

The membrane-binding EPGYPK/R motif in blade IV appears to be a distinguishing 

characteristic of those MT-MMPs that possess a transmembrane helix. 

 

II.3.6 Vesicles Enhance Digestion of Collagen Triple-Helix  

Streptococcal collagen–like protein 2 (Scl2) was engineered by inserting the 

collagenase-susceptible sequence from the α1 chain human collagen II (Fig. 4A), 

in a similar fashion as a collagen III sequence was inserted previously (58). 

Addition of SUVs increased sMT1-MMP proteolysis of the Scl2-collagen α1(II) by 

30% of the total of this substrate at 6 h and 18 h after initiation of the reactions 

(Fig. 4B,C). For perspective, the coordinates of a collagen triple-helical peptide 

(THP) bound to the HPX domain (29)(PDB: 2MQS) have been superimposed on 

the complexes with nanodiscs. Concurrent binding of the HPX domain to collagen 

triple-helix and membranes appears to be accommodated by blade IV being 

oriented toward the lipid bilayer (Fig. 5A).  

 We tested the effects of collagen-like THP and vesicles upon the 

interactions of each with sMT1-MMP. Addition of SUVs enhanced the initial 

velocity of sMT1-MMP digestion of the THP by 1.4-fold (Fig. S5A). Additions of the 

THP to excess interfered in the proximity of sMT1-MMP to the SUVs, as observed 
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by the FRET assay of quenching of Trp emission by Pyrene-PE in the SUVs (Fig. 

S5B). Perhaps the excess THP out-competed the SUVs for binding blade II where 

steric hindrance is expected (Fig. 5B). 

 

II.3.7 Compatibility of Bilayer and Collagen Binding to Hypothesized HPX 
Dimers  

The pericellular collagen digestion by MT1-MMP, characteristic of tumor cell 

invasion, has been reported to require membrane anchoring (31,59) and could be 

facilitated by dimerization (37). Consequently, we considered the potential dimers 

and their compatibility with bilayer binding and collagen triple-helix binding, or lack 

thereof. For potential modes of dimerization with the largest of the small interfaces 

identified by PISA in the crystallographic asymmetric unit of the HPX domain (PDB: 

3C7X), we considered the possibility of concurrent binding of a membrane to both 

protomers. A symmetric mode of dimerization, shaped like a “V”, is favored by one 

mutagenesis study (25) and disputed by another (32). The prospective “side-by-

side” mode of dimerization appears to be compatible with the mapping of 

interactions by Zarrabi et al. (32) but an evaluation of the possibility of side-by-side 

dimerization has not been reported. We evaluated these two prospective modes 

of dimerization for compatibility with the proximity of the HPX domain to nanodiscs, 

which has been detected by paramagnetic NMR. We subjected each dimer to MD 

simulations with PRE-based distance restraints to a nanodisc (Table 1). We 

restrained one protomer via the PRE-based restraints which drew blade II to the 

bilayer.  We simultaneously restrained the other protomer to the PREs placing 
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blade IV at the bilayer. MD simulations of the symmetric dimer defended by 

Tochowicz et al. (25) using the same PRE-based restraints caused the partial 

unfolding of both blades II and IV (Fig. S6). The binding path of the collagen triple-

helix reported previously (29) also clashes with the bilayer in the simulated 

assembly of the symmetric dimer with the nanodisc (Fig. S6A). Consequently, the 

symmetric dimer is probably not able to bind both collagen and membranes 

simultaneously via the HPX domain. On the other hand, the corresponding PRE-

restrained MD simulation of the potential side-by-side dimer encountered neither 

structural perturbations nor violations of the intermolecular distance restraints from 

Table 1 based on PREs.  In the experimentally restrained simulation of the 

hypothetical side-by-side dimer, the protomer with blade IV at the bilayer presents 

an open binding site for the collagen triple-helix, without obstruction by the 

nanodisc (Fig. 5C and Movie S3). 

 

 

II.4 DISCUSSION 

II.4.1 A New View of MT-MMP HPX Domains Positioning at Membranes 

These and recent measurements assert that the HPX domain of MT1-MMP 

occupies lipid bilayers at least transiently (26,27). The flexible linker-2 sequence 

of 14 residues connecting the HPX domain to the transmembrane helix of MT1-

MMP (3) is long enough to reach the transmembrane helix for either mode of 

bilayer binding by the HPX domain observed herein. The distance from HPX 
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domain to transmembrane helix is noticeably shorter, however, with blade IV 

bound to the membrane. Since the catalytic domain can also bind lipid bilayers 

(27), it may join the HPX domain transiently on bilayers, placing it strategically for 

proteolytic attack upon proteins anchored to plasma membranes or exosomes. 

This suggests that the common portrayal of the soluble domains of MT1-MMP 

radiating away from the membrane (60,61) should be revised. The recent structural 

question has been about the orientations between the soluble domains and 

bilayers, which is relevant to recognition of substrates and partners at plasma 

membranes. 

The HPX domain of MT1-MMP was recently proposed to bind bilayered 

micelles (bicelles) primarily at blade III, based on the broadened NMR peaks of 

blade III but reaching as far as blade IV residues Lys490 and Glu494 (26). The 

results herein confirm that Lys490 and Glu494 lie at an interface with bilayers. 

However, the previously hypothesized docking site does not agree with our new 

results. Instead, the previous model is centering upon blade III, resulting in greater 

steric conflict between the binding of bilayer and collagen. The previous modeling 

appears to rotate the HPX domain at least 50° away from the blade IV-centered 

complex herein (PDB: 6CLZ) and at least 150° from the blade II-centered complex 

herein (PDB: 6CM1). The negatively charged Ser-Glu sequence bulging from 

blade III is also quite unlikely to penetrate the phospholipid bilayer to the region of 

the phosphoesters and fatty acyl chains reached by the Pro-Gly motif from the 

EPGYPK sequence of blades II and IV. Two technical aspects of the previous work 

(26) render it preliminary: 1) The enrichment in CHAPS detergent and less defined 
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morphology of those bicelles introduce complications; they fall short of the integrity 

enjoyed by nanodiscs for structural and biophysical studies (42,43,62).  2) 

Reliance only upon NMR peak perturbations for interface mapping can be subject 

to systematic errors. The perturbations can propagate far beyond the interface 

(63,64). Peak perturbations occasionally are much larger outside the interface 

(65). That literature demonstrated the higher accuracy of direct measures of 

interfacial contact.  

The PRE NMR approach employed here, implicating blades II and IV as the 

interfaces (Figs. 1, 2), provides direct and sensitive measures of intermolecular 

distances in the 12 to 25 Å range (Fig. S1D), even in cases of partial occupation 

of the sites (47,66-68). Site-specific labeling with a membrane-responsive fluor 

provides independent proximity information (47,48,56) ruling an involvement of 

blade III in binding vesicles as unlikely, and corroborating the close proximity of 

blades II and IV to the vesicles (Fig. S3). Site-directed mutants found that 

uncharged replacements of lysine side chains in blades II and IV interfered in 

association with vesicles while those in blade III did not (Fig. 3A,B). This evidence 

for electrostatic attraction corroborates the appearance of multiple salt bridges 

from blade II or IV to lipid phosphoester linkages persisting through the NMR-

restrained MD simulations (Table S1).  

 

II.4.2 Potential Scope of Bilayer Binding by MMP HPX Domains 

The membrane-binding EPGYP peptide motif of blades II of the MT-MMPs 

possessing a transmembrane helix distinguishes them from most other MMPs 
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(Figs. 3D, S4B). The known structures of soluble MMPs lack such a loop bulging 

from blade IV (Fig. 3C), rendering them unlikely as candidates to be able to insert 

blade IV into lipid bilayers.  However, the APGYP motif in blade IV of the GPI-

anchored MT4-MMPs shares sufficient similarity to the EPGYP motif to 

hypothesize that MT4-MMPs may also be able to penetrate membrane surfaces. 

Likewise, the SPGFPK/M motif in blade II of soluble MMP-19s (groups 16 and 17 

in Fig. S4B) might have the ability to insert among phospholipid head groups. The 

EPNYPK motif of blade II of soluble MMP-12 (Fig. 3D) also suggests the capacity 

for membrane association, though its polar Asn is less likely to penetrate as far as 

the acyl chains.  

The MMP-12 HPX domain binds and kills bacteria using its KDEK loop in 

mice (KDDK in humans) located in blade II (69). This β-hairpin loop is in close 

proximity to the EPNYPK loop which we hypothesize to bind bilayers. The 

375KDGK378 peptide sequence of MT1-MMP shares homology with the bactericidal 

KDEK loop in blade II of MMP-12. Lys378 forms a salt bridge with the Glu396 of 

the EPGYP motif throughout the structural ensemble in which blade II of MT1-

MMP is bound to the nanodisc. Asp376 and Lys378 of this loop in MT1-MMP 

approach a choline head group throughout the ensemble. Consequently, the 

corresponding bactericidal KDE/DK loop of MMP-12 can be hypothesized to 

contact bilayer or protein components of bacterial envelopes. 
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II.4.3 Membrane Positioning and Partner Interactions 

Addition of a 20-fold excess of the collagen-mimicking THP competes out 

about 25% of the association of sMT1-MMP with vesicles (Figure S5B). This partial 

competition can be explained by steric interference of bound THP with blade II 

binding of bilayers, along with retention of blade IV binding of bilayers (Fig. 5A,B). 

This suggests the orientation of Fig. 5A to be the more likely during collagenolysis. 

In invadopodia, the anchorage of MT1-MMP to the actin cytoskeleton (39) 

might promote its dimerization or oligomerization there. Considering the lower 

likelihood of HPX domain dimerizing in solution, it is unknown whether addition of 

nanodiscs or vesicles fosters dimerization of the HPX domain. If the HPX domain 

does homodimerize on the surface of model membranes, the side-by-side 

positioning in the crystallographic asymmetric unit is clearly the hypothetical mode 

of homodimerization that is fully compatible with the measured proximity to bilayers 

and with binding of the collagen triple-helix (Fig. 5C). Thus, it appears to be the 

potential mode of homodimerization more plausibly capable of supporting 

collagenolysis very near plasma membranes. If there is side-by-side dimerization, 

it could place blade I of one protomer together with blade III of the next protomer 

in a head-to-tail fashion that could propagate to add more protomers. This could 

potentially offer a mechanism that might explain the homo-oligomerization of MT1-

MMP on cells that was reported (36,70). Such head-to-tail homodimerization via 

blades I and III (Fig. 5C) would provide the accessibility of the outer β-strand and 

bulge of blade I needed for both proMMP-2 activation and homodimerization by 

MT1-MMP (32).  
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 The β-bulges on the surfaces of blades I and IV of MT1-MMP support tumor 

cell migration, invasion, and angiogenesis (32). The β-bulge of blade I is exposed 

to binding partners when bound to bilayers, regardless of homodimerization of the 

HPX domain (Figs. 1B, 2D, 5C, S6A). Blade I is the site of heterodimerization with 

CD44 (32). Since CD44 is a transmembrane proteoglycan and substrate of MT1-

MMP, the positioning of the HPX domain on the plasma membrane by either blade 

II or IV could facilitate the association leading to shedding of CD44 and its reported 

activation of EGFR signaling in cell migration (32). Alteration of the outer strand of 

blade IV interfered with proMMP-2 activation, cell migration, EGFR signaling, and 

metastasis, which was attributed to disruption of homodimerization (32). However, 

the defects do not seem attributable directly to interference in homodimerization 

because the outer strand of blade IV is not part of either dimer interface suggested 

by crystallography. Nonetheless, the outer strand of blade IV now appears to be 

critically for positioning of the HPX domain via its shallow insertion into membranes 

(Figs. 2D-F). This makes binding sites on the HPX domain accessible for 

interaction with key substrates in cell migration and metastasis, i.e. CD44, collagen 

(Fig. 5A), and presumably others such as syndecan-1. 
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II.6 ACCESSION NUMBERS 

Atomic coordinates and restraints were deposited in the PDB under 

accession code 6CLZ for the complex with blade IV bound to the nanodisc and 

6CM1 for the complex with blade II bound to the nanodisc. Chemical shift 

assignments of NMR peaks of these complexes were deposited in the 

BioMagResBank under accession codes 30425 and 30426, respectively.  

 
 

II.7 STAR METHODS 

II.7.1 Preparation of sMT1-MMP and its HPX Domain  

Soluble MT1-MMP constructs were expressed and labeled as described 

(29). Samples for NMR PRE experiments were grown in a 13C/1H-labeled 

deuterated E. coli culture using an established protocol (71). 50 mg/L of α-

ketobutyrate and 100 mg/L of α-ketoisovalerate were added 1 h prior to induction 

for 13C/1H-labeling of isoleucine, valine, and leucine methyl groups in a 2H/15N 

background. The culture was optimized by the addition of 2% 2H/15N rich labeling 
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media (ISOGRO, Sigma-Isotec). Post-induction growth was continued for 8 h and 

then cells were harvested and sonicated to collect the pellet of inclusion bodies.  

Inclusion bodies containing the His-tagged HPX domain or sMT1-MMP 

were dissolved with 6 M GuHCl, dialyzed overnight with 6 M Urea, and spun down 

to remove any precipitates. The His-tagged HPX domain was bound to a nickel-

nitriloacetic acid (NTA) affinity column in 20 mM Tris-HCl (pH 7.2), 1 M NaCl, and 

6 M urea and washed with 20 mM imidazole. Folding occurred while bound to the 

nickel-NTA affinity resin during a linear gradient to change the 6 M urea into a final 

buffer containing 20 mM Tris-HCl, 1 M NaCl, and 20 mM imidazole at pH 7.2. The 

flow rate was 1 ml/min. The HPX domain was eluted with 300 mM imidazole and 

dialyzed overnight to remove imidazole and NaCl.  

His-tagged sMT1-MMP was purified in 6M urea using nickel-NTA affinity 

resin and then folded by stepwise denaturant removal by dialysis in 3 M, 1 M, and 

then 0 M urea containing 20 mM Tris-HCl (pH 7.2), 10 mM CaCl2, and150 mM 

NaCl and later made active by the addition of 5 mM ZnCl2.  

 

II.7.2 Preparation of Nanodiscs for NMR  

Nanodiscs were formed with MSP1D1 scaffolding protein and 1,2-

dimyristoyl-sn-glycero-3-phosphocholine (DMPC, Avanti) as described (72-74). 

When used, 5- or 10-doxyl DPPC was incubated with DMPC prior to forming 

nanodiscs in order to ensure full incorporation of the spin label. Samples were 

prepared for NMR in 20 mM Tris (pH 7.2) and 300 mM NaCl to diminish the affinity 

of HPX domain for nanodiscs. 
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II.7.3 NMR Spectroscopy and Paramagnetic Relaxation Enhancements 

Spectra were recorded using Bruker shaped tubes to optimize sensitivity by 

mitigating the dielectric effects of the high [NaCl]. Spectra were acquired at 30°C 

on a Bruker Avance III 800 MHz Spectrometer with a TCI cryoprobe.  

PREs emanating from nitroxide spin-labels were recorded in the presence 

of 5- or 10-doxy-substituted DPPC. Five relaxation time points were collected at 4 

ms intervals using a CPMG pulse train inserted into a13C HMQC (or 15N TROSY) 

pulse sequences as described (47). The peak heights were normalized to those of 

the diamagnetic control using the signal to noise ratio of each spectrum. Curve 

fitting of the 5-point decays accounted for the 6.8 ms of relaxation delays during 

the HSQC pulse sequence and prior to the CPMG pulse sequence (Fig. S1C). This 

decreased systematic fitting error, thereby increasing apparent accuracy of the 

quantification of the PREs. Exponential decays were measured and compared to 

diamagnetic controls without spin label in order to estimate the PRE as: 

Γ2 = R2, paramag – R2,diamag    (1) 

The amide chemical shift perturbations are expressed as a radius with the 

15N peak shifts normalized to the scale of 1H peak shifts:   

∆𝜔𝐻𝑁 = √∆𝜔𝐻
2 + (∆𝜔𝑁 5⁄ )2       (2) 
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II.7.4 Calculations to Dock the HPX domain to Bilayer Models 

The HPX domain and phospholipids were docked as rigid bodies with 

HADDOCK 2.1 (75) using explicit distance restraints from PREs and ambiguous 

distance restraints from CSPs and line broadenings as done previously (47). That 

is, the apparent averaged distance r between the methyl group detected by NMR 

and the nitroxide spin label generating the PRE was estimated by the approximate 

relationship: 

Γ2 = 4κτc /r6   (3) 

where κ =1.23e-44 m6 s−2 and τc is the rotational correlation time which calibrates 

the relationship of the PRE to the distance r. In order to estimate τc, we measured 

the average of the amide 15N NMR transverse cross-correlation 

rates ηxyhttps://www.nature.com/articles/ncomms6552 - ref60 using the pulse sequence of 

(76) implemented as a exponentially decaying series of 1D spectra which we 

integrated and fitted to ηxy. This ηxy yielded the approximate τc using spectral 

density equations available (77). The uncertainty of each distance restraint was 

set to range from a lower bound of the closest possible contact of hard spheres 

up to an upper bound 10% above the apparent distance plus 2.9 Å of additional 

uncertainties from the depth of the doxyl spin label and ambiguity in proR vs. 

proS methyl groups of the Val and Leu side 

chains.https://www.nature.com/articles/ncomms6552 - ref60 

The best-converged structural models from rigid body docking calculations 

in HADDOCK were used for MD refinement. Nanodiscs were aligned to the 

phospholipids and used as the starting structural model for refinement by 

https://www.nature.com/articles/ncomms6552#ref60
https://www.nature.com/articles/ncomms6552#ref60
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restrained MD simulations using the CHARMMM_GUI website (78) in NAMD (79). 

Restraints were implemented using xy-plane harmonic values and colvar 

distances enforced. 2 ns of minimization and equilibration along with 4 ns of 

production time were run at 310K with rectangular boxed solvent and ions using 

NAMD 2.1 with CUDA GPU processing (79).  The lowest energy structures were 

selected from 1 ns segments of the equilibrated trajectories, provided the frames 

were separated by at least 20 ps. The trajectories were run for another 5 ns without 

restraints for a total of 11 ns at 310 K to verify stability of the assembly. Models of 

hypothetical dimers of the HPX domain docked with nanodiscs were prepared by 

alignment with the lowest energy structural models with blade II and IV at the 

interface. These starting dimer models were minimized and equilibrated for 4 ns. 

Lowest energy structures from the subsequent equilibrated 4 ns of the trajectory 

were used for visualization.  

 

II.7.5 Intrinsic Tryptophan Quenching Assays of Membrane Proximity 

Single site-directed mutations were made in sMT1-MMP via QuikChange 

with PCR master mix (Agilent Technologies).  

Small unilamellar vesicles (SUVs) were prepared by suspending DMPC 

monomers in 20 mM Tris (pH 7.2), with or without addition of lipid probes. After an 

hour of incubation at 37°C, the hydrated lipids were subjected to multiple freeze-

thaw cycles in liquid nitrogen, forming large unilamellar vesicles. Subsequent 

sonication of these large unilamellar vesicles led to the formation of SUVs. Binding 

of sMT1-MMP (1 μM) to SUVs of DMPC was determined through the decrease of 
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the intrinsic tryptophan emission (λex = 285 nm, λem = 315 nm) in the absence and 

presence of a lipid probe. 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(1-

pyrenesulfonyl) lipid (Pyrene-PE, Avanti) was incorporated as a quencher of 

protein intrinsic emission. All experiments were performed on a BioTek Synergy 

MX plate reader. Emission was measured after an incubation period and 

background fluorescence was corrected through subtraction of just Pyrene-PE 

liposomes in buffer.  

 

II.7.6 Site-Directed Fluorescence to Probe Bilayer Proximity 

Site directed cysteine mutations were introduced in sMT1-MMP via 

QuikChange with PCR master mix (Agilent Technologies). Conjugation of the fluor 

sensitive probe IANBD (Invitrogen) to the single Cys proceeded by incubating a 

10-fold excess of IANBD to overnight at 25°C in a vacuum chamber. Unreacted 

IANBD was removed by desalting with Sephadex G-25 resin (GE Healthcare). 

Completion of conjugation was monitored by absorbance.  

The fluorescence assays used 10 nM of the IANBD-conjugated sMT1-MMP 

with SUVs that were 250 μM in DMPC monomers. The fluorochrome was excited 

at 478 nm and detected at 541 nm in a BioTek Synergy MX plate reader.  Emission 

was measured after 1 h of incubation with the SUVs and normalized by the 

emission without SUVs.   
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II.7.7 Preparation and Proteolysis of Bacterial Scl2 Collagen-like Substrate 

The recombinant bacterial collagen with its domain structure of V-CL-CL 

and inserted sequence from type II collagen is illustrated in Figure 4A. The six GXY 

triplets with the sequence GPPGPQG^LAGQRGIVGLP from the human collagen 

α1(II) chain were inserted between two collagen-like (CL) domains of the 

Streptococcal Scl2 protein, with the caret sign denoting the site for hydrolysis by 

collagenolytic MMPs. This six-triplet sequence corresponds to residues 769–786 

of the triple-helical region in human type II collagen α1 chain. An N-terminal octa-

His tag was included for purification. It is followed by the natural trimerization V 

domain of the bacterial collagen. The expression construct was obtained by 

inserting the annealed oligonucleotide encoding the MMP-cleavable collagen α1(II) 

sequence between the DNA sequences of the two CL domains using 

SmaI and ApaI restriction sites. The inserted human MMP-cleavable site is flanked 

by bacterial collagen sequences of GKD-GKD-GQP-GKP on the N-terminal side 

and GPR-GEQ-GPT-GPT on the C-terminus (58). The resulting DNA sequence 

was confirmed by sequencing. Recombinant protein was expressed using the 

cold-shock vector system in the E. coli BL21 strain, as reported (80). 

The sMT1-MMP was activated for use in proteolysis assays by introducing 

the Zn2+ and Ca2+ ions required for activity. 20 nM sMT1-MMP was incubated at 

30°C for 30 min in 20 mM Tris (pH 7.2), 150 mM NaCl, 10 mM CaCl2, and 100 μM 

ZnCl both in the presence and absence of SUVs (250 μM in DMPC monomers). 

The proteolysis reactions were started by adding the aforementiond recombinant 

bacterial Scl II - collagen α1(II) substrate to 20 μM to the activated sMT1-MMP (20 
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nM). Aliquots were removed from the proteolysis mixture at several time points and 

analyzed by SDS-PAGE. Intact bands migrating with similar mobility as the 74 kDa 

marker were analyzed using ImageJ software. Background noise was subtracted 

and the initial time point provided the reference intensity.  

 

II.7.8 Kinetics of sMT1-MMP Hydrolysis of Collagen Triple-Helical Peptide 

The proenyzme form of sMT1-MMP (pro-sMT1-MMP) was obtained from 

R&D Systems (catalog # 918-MP) and activated by incubation with 1 mg/mL of 

activated rhTrypsin-3 (Sigma-Aldrich) for 1 h at 37˚C in TS buffer, i.e., 50 mM Tris 

(pH 7.5), 50 mM NaCl, 10  mM CaCl2, 0.05% Brij-35.  After MT1-MMP activation, 

the remaining trypsin-3 activity was quenched by addition of 1 mM AEBSF (R&D 

Systems) and incubation for 15 min at room temperature. Activated enzyme was 

aliquoted and stored at -80˚C for further use. The triple-helical substrate fTHP-9 

[(Gly-Pro-Hyp)5-Gly-Pro-Lys(Mca)-Gly-Pro-Gln-Gly~Cys(Mob)-Arg-Gly-Gln-

Lys(Dnp)-Gly-Val-Arg-(Gly-Pro-Hyp)5-NH2, where Hyp = 4-hydroxyproline, 

Mca = (7-methoxycoumarin-4-yl) acetyl, Mob = 4-methoxybenzyl, and Dnp = 2,4-

dinitrophenyl] was synthesized as described previously (81,82) 

Enzyme kinetics were measured in a BioTek H1 plate reader running Gen5 

2.09 software using λ excitation = 324 nm and λ emission = 393 nm as described 

previously (83,84). To allow the proper folding of the peptide triple-helix, substrate 

fTHP-9 was diluted in TS Buffer and left overnight at 4 °C.  The next day, 1 mM 

DMPC stock was prepared in TS buffer for the assay and further diluted into 50 µl 

reactions over a series of concentrations. The sMT1-MMP was added to each tube 
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containing DMPC and incubated for 1 h at room temperature.  All enzymatic 

assays were performed in a black, low-volume 384 well plates.  10 µL of activated 

sMT1-MMP + DMPC (or sMT1-MMP + TS buffer as control) was added to each 

well and then 5 µL of substrate fTHP-9 was dispensed into each well.  Final 

enzyme and substrate concentrations were 1.8 nM and 1.7 µM, respectively. The 

assays were performed in the absence and presence of SUVs ranging from 100 

to 800 µM DMPC monomers. The plate was immediately read to obtain 

fluorescence in relative fluorescence units (RFUs).  The fluorescence was 

monitored continuously for 180 min to determine initial reaction rates. The kinetic 

protocol at 25 °C used 30 s of shaking followed by reading each well every 30 s. 

Plates were stored at ambient temperature for 24 h before a final reading. All 

measurements were performed in triplicate.  Kinetic parameters were calculated 

by Lineweaver-Burke linear regression analysis by GraphPad Prism 7.03. 

 

II.7.9 Assays of Competition between THP and SUV Binding to sMT1-MMP 

A similar THP, but without fluor or quencher, was synthesized with the 

sequence of ((Gly-Pro-Hyp)4-Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln-Arg-Gly-Val-Val-

Gly-Leu-Hyp-(Gly-Pro-Hyp)4-Gly-Tyr-NH2)3  as described (85). It is designated 

α1(I)772–786 THP because it corresponds to residues 772–786 of the type I 

collagen α1 chain. 

α1(I)772–786 THP was added to excess (1, 2, or 4 μM) over the sMT1-MMP (200 

nM) used in assays of membrane proximity measured by intrinsic tryptophan 
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quenching by Pyrene-PE, performed as described above. The SUVs had a DMPC 

monomer concentration of 250 μM and the Pyrene-PE quencher present at 5 μM.  

 

II.7.10 Negative Stain Electron Microscopy 

500 nM sMT1-MMP was mixed 1:1 with nanodiscs composed of DMPC and 

MSP1D1 in 20 mM Tris (pH 7.2), 10 mM CaCl2, and 100 μM ZnCl. 5 μl of this 

sample was added to 200 mesh copper carbon film grids. 5 μl Nano-W stain 

(Nanoprobes) was used to affix the samples. These grids were then imaged on a 

JEOL JEM 1400 Transmission Microscope and analyzed further using ImageJ.  

 

II.7.11 Evolutionary Trace Analysis 

Sequences spanning the HPX-like domains of MMPs were acquired and 

aligned from Blastp https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins, using the blastp 

algorithm and spanning 10 diverse species of vertebrates. After the removal of 

redundancies and truncated sequences, 102 aligned sequences were submitted 

to the Evolutionary Trace server at http://mordred.bioc.cam.ac.uk/. The resulting 

phylogenetic tree was subdivided into 15 trace levels that separate the branches 

of the tree by progressively high sequence identity within each branch. Residues 

conserved within a subfamily at a selected trace level were recorded. 

 
 
 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
http://mordred.bioc.cam.ac.uk/
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II.8 FIGURES  

Table II-1 NMR Structural Statistics. 
  Blade II in interface  Blade IV in interface 

PDB accession code 6CM1 6CLZ 

RMSD deviations a 
  

Avg. RMSD (Å) for backbone 1.18 ± 0.28 1.27 ± 0.26 
    
Distance Restraints   
Lipid – protein methyl PREs, explicit 3*7 3*4 
Lipid – amide shifts, broadenings, 
ambiguous  11 3 
    
Restraint violations > 0.5 Å   
Protein-lipid PREs 0 0 
Protein-lipid ambiguous residues 0 0 
    
Structural quality   
Procheck G-factor (all dihedrals) -0.55 -0.53 
Molprobity score b 1.11 1.10 
Most favored Ramachandran plot 
residues (%) c 84.7 85.3 
Allowed Ramachandran plot residues 
(%) c 11.0 12.3 
    
Buried surface area (Å2) d   
  1225 ± 90 1423 ± 68 
    
CH3 groups with PREs from 5-doxyl 
DPPC e   
  357δ, 380γ, 389γ 473γ, 493γ 
  395δ, 442δ  
    
CH3 groups with PREs from 10-doxyl 
DPPC e   
  357δ, 380γ, 389γ 473γ, 493γ 
    
Amide groups perturbed by 
Nanodiscs    

  
330 f, 342, 377, 
379, 386, 387 f, 459, 489, 499 

  396, 422, 428  
 
a calculated from the ensemble of 15 lowest energy structures 
b Combines the clash score, rotamers, and Ramachandran evaluation into a single score 
c  From Procheck-NMR 
d Average buried surface area from the ensemble of 15 structures 
e Leu methyl groups are denoted δ and Val methyl groups γ 
f  amide NMR peak undergoes both a shift and broadening  
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Figure II.1: MT1-MMP Associates with Nanodiscs on Opposite Sides of the 
HPX Domain 

 
(A) Bilayer proximities of Ile/Leu/Val side chains were measured to DMPC 
nanodiscs encircled by MSP1D1 (72) doped with an average of two nitroxide spin-
labeled phosphatidylcholine (PC) molecules per leaflet. The resulting PREs were 
plotted as Γ2 = R2, paramag – R2,diamag, the difference between methyl proton 
relaxation rates with and without doxyl-substituted DPPC. Γ2 values resulting from 
addition of 10-doxyl PC or 5-doxyl PC are plotted in pink triangles and green 
spheres, respectively. The symbols are filled where Γ2 > 30/s.  
(B) Ile/Leu/Val side chains with Γ2 > 30/s are marked on the crystal structure of the 
HPX domain (PDB: 3C7X) with spheres which are pink for proximity to 10-doxyl 
PC and green to 5-doxyl PC. The blades of the β-propeller are colored blue for I, 
green for II, yellow for III, and pink IV, respectively, and throughout this article. 
(C) Addition of the nanodiscs to the HPX domain in a 1:1 molar ratio induced the 
radial chemical shift perturbations (CSPs), quantified using eq. 2. CSPs exceeding 
0.03 ppm are highlighted in orange.  
(D) Sites of the larger CSPs (∆ωHN > 0.03 ppm) are plotted as spheres on the 
backbone. 
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Figure II.2: Modes of Nanodisc Binding to Blades II and IV 

  
 (A, B) An ensemble of 15 HPX structural models positioning blade II upon a 
nanodisc model was drawn from a 4-ns MD trajectory restrained by NMR PRE-
based distances and shown in Movie S1. The structures were selected for lowest 
energy and minimal violation of the NMR restraints. The viewing angle differs by 
90° between panels. The inset displays HPX residues in contact with the 
nanodiscs, with polar residues purple and hydrophobic residues green. 
(C) Partial insertion of the EPGYPK loop of blade II among the phospholipid head 
groups is shown, with lipid oxygen atoms pink and carbon white.  
(D, E) The PRE distance-restrained ensemble of 15 HPX structural models 
positioning blade IV on a nanodisc model was selected from another 4-ns MD 
trajectory shown in Movie S2. 
(F) Insertion of the EPGYPK loop of blade IV among the phospholipid head groups 
is shown. See also Table S1 cataloguing protein contacts with the bilayer. 
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Figure II.3: Basic Residues at the Bulges from Blades II and IV that Support 
Binding of Soluble MT1-MMP to Membrane Vesicles  

 
(A) Orange spheres identify the locations of Ser substitutions for Lys or Arg in the 
four blades.  
(B) Quenching of Trp fluorescence from sMT1-MMP (orange with addition of doped 
SUVs and purple without) by addition SUVs composed of DMPC doped with 
Pyrene PE depends upon the point mutation. The background fluorescence from 
SUVs only was subtracted from the fluorescence of the mixtures as described (54). 
(C) The crystallographic structures of HPX domains of MMPs are superposed. 
Blade IV of MT1-MMP (green) is distinctive in projecting the EPGYPK loop that is 
missing from the structures of soluble MMP-1 (red), MMP-2 (yellow), MMP-9 
(pink), MMP-13 (purple), and MMP-12 (orange).  
(D) Alignment of all human MMP sequences finds that the blade IV loop 
characteristic of membrane type MMPs is missing from the soluble MMPs. Parts 
of the corresponding loop from blade II can, however, be found in all MMPs.  
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Figure II.4: Vesicles Enhance Digestion of Engineered Streptococcus 
Collagen–Like Protein by the Ectodomain of MT1-MMP 

 
(A) The collagen mimic Scl2 comprises the trimerization domain V at the N-
terminus and two S. pyogenes collagen-like CL domains. Six triplets from the α1 
chain of human collagen II harboring the MMP-cleavable peptide bond (marked by 
∧) were inserted between the CL domains. 
(B) The time course of the digestion of Scl2-collagen α1(II) substrate (20 μM) by 
sMT1-MMP (20 nM) in the presence of SUVs (with 250 μM DMPC monomers) at 
30°C was monitored by SDS-PAGE.  
(C) The percentage of the Scl2-collagen α1(II) hydrolyzed in the absence or 
presence of the SUVs is plotted over time using open circles or triangles, 
respectively.  
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Figure II.5: Potential Assemblies of the HPX domain with Both the Collagen 
Triple-Helix and Lipid Bilayers 

 
The solution structural model of the complex of a collagen triple-helical peptide 
with the HPX domain of MT1-MMP (29) is superimposed on the PRE-based 
structural models presented in Fig. 2 that have blade IV in contact with the bilayer. 
The compatibility of bilayer and triple-helix binding favor this type of “ternary” 
complex. 
The superposition with experimental model with blade II in contact with the bilayer 
is plotted. The steric clash between bilayer and triple-helix disfavor formation of 
this type of “ternary” complex. 
(C)  Binding of triple-helix to blade IV and bilayers to both the blade II and IV 
interfaces appears compatible with the “side-by-side” dimer in the crystallographic 
asymmetric unit of 3C7X.pdb. This compatibility could favor this as a potentially 
functional dimer and complex. Green dots mark locations of outermost motifs of 
blades I and IV required for cell migration and proMMP-2 activation (32). 
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Figure II.6: Graphical Abstract 
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II.9 SUPPORTING FIGURES 

 

 

Figure II.7 (S1) NMR Spectra, PREs, and Spectral Changes of the HPX 
Domain of MT1-MMP with Nanodiscs 

 
(A,B) The Leu/Val methyl region of the 13C HMQC spectrum of the HPX domain of 
human MT1-MMP is shown after addition of nanodiscs of DMPC and MSP1Da 
without (A) or with paramagnetic spin-label of 5-doxyl DPPC (B). Methyl peaks that 
experience broadening from the 5-doxyl DPPC are enclosed in dashed boxes.  
(C) The raw data defining Γ2 (the PRE) at Val493 are illustrated. The exponential 
decay of a methyl NMR peak of Val493 are shown in the presence of paramagnetic 
and diamagnetic nanodiscs. (The peak heights are measured as a function of the 
length of the CPMG portion of the NMR pulse sequence.)  
(D) The exponential dependence of Γ2 (the PRE) upon the distance r between the 
hydrogen atom detected and the unpaired electron is illustrated for globular 
assemblies with rotational correlation times of 10, 21 and 30 ns. See equation 3.  
E) 15N TROSY spectra in the absence (blue) and presence (red) of nanodiscs. 
CSPs with largest changes identified with arrows in orange dashed boxes.  
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Figure II.8 (S2) Spectroscopy and Negative Staining Electron Microscopy 
Imply Two Peripheral Membrane Binding Surfaces on Soluble MT1-MMP. 

  
 
(A) Both modes of peripheral membrane binding by the HPX domain discovered 
by paramagnetic NMR and fluorescence proximity assays are superimposed. The 
blade II-proximal association colors lipids in green. The blade IV-proximal 
association colors lipids in pink.  (B) The recent proposal of binding instead at 
blade III (26)(yellow) is plotted with the HPX domain in the same orientation in 
order to illustrate the difference in orientations evident from direct measurements 
of proximity to nanodiscs. (C) An image from electron microscopy is shown of 
mixtures of sMT1-MMP with nanodiscs negatively stained with methylamine 
tungstate (Nano-W®). Representative single nanodiscs are outlined in blue, 
stacked nanodiscs in pink, and higher order stacking in red.  
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Figure II.9 (S3) Site-directed fluor labeling confirms the proximity to DMPC 
vesicles of blades II and IV and disputes the proximity of blades I and III  

 
The polarity-sensitive fluorophore IANBD was conjugated to a single cysteine 
substitution at each of six sites on the HPX domain of MT1-MMP.  
(A) The fluorescence emission of IANBD in the presence of SUVs is normalized by 

that in the absence.  Increases of fluorescence emission of 1.3-fold or greater 
are considered evidence of the exposed NBD groups dipping into a 
hydrophobic phase such as the acyl chains of a lipid bilayer. 

(B) The sites of single cysteine substitutions are marked by spheres on the crystal 
structure (PDB: 3C7X). 
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Figure II.10 (S4) Evolutionary Trace Analysis of MMP HPX Domains Reveals 
that MT MMPs with Transmembrane Helices Conserve the PGyP Sequence 
Motif in Blades II and IV.  

 
 
This includes the EPGYPK loops of MT1-MMP that insert into Nanodisc bilayers. 
(A) The phylogenetic tree of aligned sequences from MMPs spanning 10 species 
of vertebrates.  
(B) “Consensus sequences” conserved within subfamilies of MMPs are listed. The 
sequences are divided into subfamilies at the sequence identity cutoff named 
Trace level 12 which is pointed out by the arrow in panel A to the 12th vertical line 
from the left.  
(C) Coloration of the conservation on the HPX structure from MT1-MMP indicates 
the second proline in the EPGYPK loop of blade II (pink) to be conserved over 
almost all MMPs. 
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Figure II.11 (S5) Interplay between Vesicle and Collagen Triple-Helical 
Peptide Interactions with sMT1-MMP 

 
 
 (A) Additions of SUVs enhance hydrolysis of the fTHP-9 substrate. The amount 
of DMPC monomers present is given in the legend. 
(B) Excess THP competes with SUVs for binding sMT1-MMP.  Trp fluorescence 
emission is plotted on the ordinate and all measurements are normalized to free 
sMT1-MMP emission. The mole ratio of triple-helical peptide, α1(I)772–786 THP, 
to sMT1-MMP is indicated.  Higher emission at 315 nm indicates less proximity to 
the pyrene quencher placed in the SUVs. The SUVs present throughout were 
composed of DMPC monomers at 250 μM with the addition of Pyrene-PE at 5 μM 
to quench the Trp fluorescence emission. 
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Figure II.12 (S6) Restrained MD Attempts to Satisfy the PRE-Based Distance 
Restraints of Nanodiscs to Both Blades II and IV of the symmetric (V-shaped) 
Dimer Distort Both EPGYPK Membrane-Binding Loops. 

 
 
(A) The lowest energy structure generated by 3 ns of minimization and equilibration 

with the PRE NMR-based distance restraints is plotted. Residues mutated in 
one study (25) are highlighted with orange dots. Epitopes targeted by peptide 
inhibitors in another study are colored bright green (32). The path of collagen 
triple-helix binding to the HPX domain alone (29) is indicated by the triple-helix 
plotted with red ribbon.  

(B) The distortion of blade II by the restrained MD is shown by the overlay of the 
structural model from (A; blade II in light green) with the crystallographic 
starting coordinates (PDB: 3C7X) in magenta.  

(C) The distortion of blade IV is shown by the overlay of the outcome of the same 
restrained MD simulation (blade IV in light pink) with the crystal structure 
(magenta). 
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Table II-2 (S1) Polar Contacts of HPX Domain with Lipid Head Groups, 
Conservatively Listing Minimum Frequencies in Each Ensemble 
 

 
Blade 2 interface H-bonds to DMPC   Salt bridge to DMPC 

ARG 362  HE  O12 (214) 7% 
      HH1  O32^(204) 20% 

     
HH2 

 

O12 (214) 33% 
 

SER 394 NH O13 (214) 40%  
      HG O12 (218) 47%  
 
LYS 401  

 
HZ1  O13 (213) 53% 

    HZ1  O13 (215) 13% 
 
ARG 443  

 
HH2  O14 (215) 80% 

    
Blade 4 interface   

LYS454  HZ1  O11/13/14 (195) 33% 
 
LYS 482  

 
HZ1  O14 (212) 47% 

      HZ1  O14 (217) 80% 
 
LYS 490  

 
HZ1  O13/14 (201) 27% 

 HZ2  O13/22^ (213) 66% 
 
GLY 496  

 
NH O14 (215) 60%  

 
LYS 499  

 
NZ1  O11/13 (216) 54% 

 
ARG 503 

 
HH1  O12/13 (218) 80% 

 
SER 510 

 
HG O14 (214) 60%  

 

¢ Phosphate oxygen, except where noted. The number of the lipid molecule is listed 

in parentheses. 

^Ester carbonyl oxygen 
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III.1 ABSTRACT 

Peripheral binding of proteins to lipid bilayers is critical not only in 

intracellular signaling but also in metalloproteinase shedding of signaling proteins 

from cell surfaces. Assessment of how proteins recognize fluid bilayers 

peripherally using crystallography or structure-based predictions has been 

important but incomplete. Assay of dynamic protein-bilayer interactions in solution 

has become feasible and reliable using paramagnetic NMR and site-directed fluor 

labeling. Details of preparations and assay protocols for these spectroscopic 

measurements of bilayer proximity or contact, respectively, are described.  

 

III.2 INTRODUCTION 

Protein-mediated membrane-proximal events are critical in cell biology. The 

best characterized peripheral membrane interactions involve intracellular signaling 

proteins, and include many studies of proteins that bind phosphoinositides or head 

groups of phospholipids (1). Fewer studies have examined proteins that bind 

peripherally to the cell surface and the extracellular leaflet of plasma membranes. 

The matrix metalloproteinases (MMPs) have important proteolytic targets on the 

cell surface such as receptors, growth factors, growth factor binding proteins, and 

cell adhesion molecules (2) while the ectodomains of some of these proteins may 

be shed from the cell surface by MMPs (2,3). Related ADAM proteases (a 

disintegrin and metalloproteinase) are prominent as sheddases (3-5) while soluble 

MMP-2, -7, -8, -9, and -12 have been observed in compartments at or near cell 
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surfaces (6-12) and may also be involved in cleavage of these cell surface 

proteins.  

Paramagnetic NMR and fluorescence studies have revealed the dual modes of 

peripheral binding of MMP-12 and -7 to model membranes and cellular 

membranes (13,14). Comparison of four methods for mapping the interfaces of 

these proteins with membranes (and interfaces of other proteins under study), 

suggests the following relative reliability and priority of the mapping methods: 

paramagnetic NMR (section 3.6) > site-directed fluor labeling (section 3.8) > 

bilayer-induced shifts or broadening of NMR peaks (section 3.6) ≥ predictions from 

structural coordinates (section 3.1). The approaches developed for studying 

bilayer interactions for soluble MMP-7 and -12 (13,14) should be applicable for 

other soluble MMPs and potential peripheral membrane-binding proteins. The 

methodology we propose for studying peripheral membrane interactions involves 

the following steps. 

1) Anticipate potential sites for peripheral binding to membranes using recently 

reported predictive methods that use high-resolution structural coordinates 

for the protein of interest. 

2) Isotopically-label the protein and assign NMR spectral peaks. 

3) Prepare spin-labeled membrane bilayer mimics. 

4) Localize and quantify paramagnetic NMR line broadening resulting from 

proximity to the spin-labeled lipid. 
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5) Use site-directed fluor labeling (SDFL) to verify the NMR-mapped binding 

sites for recognition of (A) liposomes and (B) cells, as well as (C) effects of 

lipid composition. 

 

The cornerstone of this strategy for accurately determining membrane binding 

sites and orientation is to measure strongly distance-dependent NMR line 

broadening emanating from mobile electron spin-labeled phospholipids placed in 

the membrane (13-16). Our experience in mapping protein-protein and other 

protein-macromolecular interfaces is that paramagnetic NMR line broadening is 

superior in accuracy and interpretability to more conventional mapping of shifted 

NMR peaks onto the structure of the protein (17-23). Paramagnetic relaxation 

enhancements (PREs) provide insightful assessment of dynamic, transient and 

light occupation of binding modes (24-28), including with bilayer-like partners 

(13,14). SDFL can be used to confirm modes of binding determined by NMR 

methods (13,14). Alternatively, other investigators have utilized site-directed 

mutagenesis to confirm these NMR-derived phospholipid binding interfaces (29). 

Two types of disk-like mimics of lipid bilayers are promising for NMR studies in 

solution: (a) a class of small bicelles and (b) nanodiscs. Bilayered micelles or 

bicelles form disks containing an interior long-chain phospholipid bilayer 

circumscribed by an annulus of short-chain phospholipids (30). Bicelles are well-

suited to solution NMR studies of membrane-associated proteins (31-34). The 

bicelles are discoidal, tumble rapidly and isotropically, and have a low critical 

micelle concentration (CMC) (33).  
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Nanodiscs are disks of lipid bilayers encircled by two belts of molecular 

scaffolding proteins, which define their size and planarity (35). There are several 

reasons why nanodiscs are well suited for biophysical studies of membrane 

proteins. These include: (i) a diameter near 10 nm that is large enough to 

accommodate two interacting proteins, (ii) homogeneity, (iii) long-term stability, 

and (iv) high fluidity at the high concentrations needed for NMR experiments (36). 

A marked disadvantage for solution NMR of proteins embedded in nanodiscs is 

their high molecular weight, resulting in slow tumbling, rapid decay of NMR signals, 

and spectra with broad peaks (37-40). This led to efforts to decrease their size by 

engineering shorter molecular scaffolding proteins which has in turn resulted in 

enhanced NMR spectra (40). The peripheral binding of proteins to nanodiscs is 

transient or dynamic so their NMR spectra are usually less affected by slow 

tumbling associated with embedded membrane proteins. The solubility limit of 

nanodiscs is ~500 μM which constrains mixtures and titrations with proteins 

binding them peripherally to concentrations that are comparatively low for NMR 

studies. To summarize, se nanodiscs benefit NMR in solution with enough space 

and a stabilizing environment for a membrane protein assembly. However, these 

advantages come at the cost of weakening the NMR spectra by slowing the 

tumbling. 
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III.3 MATERIALS  

III.3.1 Protein expression and purification   

1. Beckman ultracentrifuge, and an ultracentrifuge rotor such as a Ti 70 

2. Bath sonicator (Laboratory Supplies Co., Hicksville, NY) 

3. Sorvall or other centrifuge 

4. Cell homogenizer such as a motor-driven Potter-Elvehjem tissue grinder 

5. Bacterial cell disruptor such as a French press 

6. Low to medium-pressure chromatography system 

7. Column for gel permeation chromatography such as Superdex 200 10/300 

GL 

8. Ni-NTA column. 

9. Trace minerals (41) (5000X stock) 

10. MEM vitamin solution (100X stock; HyClone) 

11. Minimal growth medium: 50 mM Na2HPO4, 50 mM KH2PO4, 5 mM Na2SO4, 

2 mM MgSO4, 50 mM NH4HCl, 0.5% (w/v) glucose, and 0.2x trace metals. 

(see Note 1) 

12.  Isopropyl β-D-1-thiogalactopyranoside (IPTG, Sigma-Aldrich).  

13. Lysis Buffer: 20 mM Tris∙HCl, 10 mM EDTA, pH 7.5.  

14. 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) (Avanti Polar Lipids) 

15. 1,2-diheptanoyl-sn-glycero-3-phosphocholine (D7PC) (Avanti Polar Lipids).  

16. Dipalmitoylphosphatidylcholine (DPPC) variants with doxyl spin-label at 5, 

10, or 14 position in one acyl chain (i.e. 1-palmitoyl-2-stearoyl-(X-doxyl)-sn-
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glycero-3-phosphocholine, where X is 5, 10, or 14). (Sigma-Aldrich) Store 

lipids at 20 oC in a tightly sealed container.  

17. Chloroform (ACS-grade) (Sigma-Aldrich).  

18. Sodium cholate (Sigma-Aldrich).  

19. Bio-Beads SM2 (BioRad). 

20. NMR buffer for MMPs: 20 mM imidazole (pH 6.6), 10 mM CaCl2, 20 μM 

ZnCl2, 0.02% NaN3, and 5% 2H2O. 

21. Molecular scaffolding protein MSP1D1 (Sigma-Aldrich). See ref (42) and 

section 3.5.1.  

22. MSP buffer: 20 mM Tris-HCl (pH 7.4), 0.1 M NaCl, 0.5 mM EDTA, 0.01% 

NaN3. 

23. TEV protease (Sigma-Aldrich).  

24. Tris buffer: 20 mM Tris-HCl (pH 7.2) 

25. TNC buffer: 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 10 mM CaCl2 

 

III.3.2 Fluorescence spectroscopy 

1. Freshly prepared 10 mM N,N′-dimethyl-N-(iodoacetyl)-N′-(7-nitrobenz-2-

oxa-1,3-diazol-4-yl) ethylenediamine (IANBD) (ThermoFisher),  

2. Dimethylsulfoxide (DMSO; Sigma-Aldrich),  

3. G-25 desalting resin (Sigma-Aldrich). 

4. Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum, 

supplemented with L-glutamine and Non-Essential Amino Acid (NEAA).  

5. Cell lines (ATCC) 
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6. Biotek Synergy MX plate reader (see Note 2) 

7. Zeiss LSM 510 Meta confocal microscope for imaging live cells (13,14) 

 

III.3.3 NMR spectroscopy 

1.  NMR spectrometer operating at a 1H frequency of 600 MHz or higher. (see 

Note 3) 

2. 5 mm NMR tubes (Norell) (see Note 4) 

 

III.4  METHODS 

III.4.1 Navigating Servers for predicting Protein Binding Peripherally to 

Membranes 

Two excellent servers are available to predict the atomic structural 

coordinates of proteins that peripherally bind to membranes: Membrane Optimal 

Docking Area (MODA) (43) and Positioning of Proteins in Membranes (PPM) (44). 

MODA is designed for predicting membrane binding sites of peripheral membrane 

proteins (43). PPM is designed for predicting the positioning of both peripheral and 

integral membrane proteins with respect to bilayers (44). PPM was preceded by 

the well-developed OPM database of predictions of positions and orientations of 

proteins in and on membranes (44-47). The predictions may be used to determine 

whether it is worthwhile undertaking experimental testing of membrane 

interactions. For example, a comparison of a PPM prediction for the catalytic 
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domain of MMP-12 with results of experimental docking studies using 

paramagnetic NMR (13) is shown in Figure 1. The PPM prediction failed to predict 

the α-interface (Figure 1A). However, it did predict one of the three experimentally 

determined loops (the II-III loop) of the β-interface (13). This prediction bears 

resemblance to the measured orientation, but approaches the bilayer at a different 

angle (Figure 1B). While MODA predicted residues for the other two 

experimentally defined loops (III-IV and IV-V loops) within the β-interface (13). 

 

III.4.2 MODA and PPM predictions: 

1. First obtain the PDB file containing the structural coordinates for the protein 

of interest from the Protein Data Bank (www.rcsb.org).  

2. MODA predictions (http://molsoft.com/~eugene/moda/modamain.cgi) 

a. Enter the PDB accession code or upload the PDB coordinate file. If 

the PDB file contains multiple chains, indicate which chain should be 

used for the prediction, e.g., A, B, C. Select “Predict” and wait for the 

results. (see Note 5) 

b. After the server identifies potential sites of membrane binding, it 

outputs a tabulated list of MODA scores for each of the amino acid 

residues in the sequence. The plain MODA score is scaled down by 

curvIndex to the more conservative curvMODA score. 

c. If the curvMODA score for a residue is above 40 (48) and it has one 

or more neighbors (in sequence or space) with a high curvMODA 

score, that patch of residues is likely to interact with membrane 

http://www.rcsb.org/
http://molsoft.com/~eugene/moda/modamain.cgi
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bilayers. Residues with curvMODA score between 20 and 40 that 

cluster with other high-scoring residues possibly also interact with 

lipid bilayers.  

d. Download the spreadsheet readable text file in .CSV format. One 

should either manually mark high scoring residues on the protein 

structure with a molecular graphics software such as Pymol. 

Alternately, residues predicted to interact with membranes can be 

semi-automatically denoted by opening the ICB file in the program 

MolSoft.  

3. PPM predictions (http://opm.phar.umich.edu/server.php),  

e. Upload the PDB file of interest.   

f. Specify the topology of the protein (N-terminus being in or out of the 

membrane) and whether you wish to include non-standard residues 

or atoms in the prediction. Submit and wait for the results to appear 

on a fresh webpage.  

g. The calculated predictions include the depth that the protein 

penetrates into the membrane, the water-to-membrane transfer free 

energy (ΔGtrans in kcal/mol), and the tilt angle (°) of the protein in the 

membrane.  

h. To display the predicted model of the protein-membrane interaction 

select the “jmol” link under the heading “Image of the protein in 

membrane”. This model is best viewed using a web browser that 

supports Java applets, such as Firefox. 

http://opm.phar.umich.edu/server.php
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i. Download the PDB file generated for the predicted model to examine 

the hypothetical protein-membrane interface in a molecular graphics 

software package like PyMol or Chimera. The projected location of 

the membrane bilayer in the predicted protein-membrane model is 

defined by a grid of dummy atoms.  

 

III.4.3 Preparation of E. coli inclusion bodies harboring recombinant 

isotopically labeled MMP (or other eukaryotic protein) for NMR studies 

1. Prepare at least 100 ml of unlabeled PG medium (41) and at least 250 ml 

of PG medium using 99% D2O in lieu of H2O, as well as 15NH4Cl (Sigma-

Isotec or Cambridge Isotope Laboratories) as the sole nitrogen source. (see 

Note 6). 

2. Transform competent E.coli BL21(DE3) Gold cells with the expression 

plasmid and plate 20 to 50 μl of the mixture onto a PG medium agar plate 

containing an appropriate antibiotic.  

3. After incubating at 37 ºC overnight, pick a few colonies from the plate and 

add to 1 ml of PG medium containing the antibiotic and incubate for 8 h at 

37 ºC on a shaker operating at 250 rpm. 

4. Transfer the entire 1 ml of culture into 50 ml of PG medium containing 

antibiotics in a 250 ml flask. Incubate overnight at 37 ºC in the shaker at 250 

rpm. 
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5. Subculture 1 to 2% of the overnight culture into 250 ml of labeled PG 

medium containing antibiotic in a 2-liter shake flask.  

6. When A600 reaches 0.4 to 0.8, add 0.5 mM IPTG to induce protein 

expression and incubated overnight at 37 ºC in a shaking incubator at 250 

rpm. 

7. Collect the bacterial cell pellet by centrifugation and store at -20 ºC until 

needed. 

8. Resuspend the cell pellet with lysis buffer and homogenize the suspension 

with a motor-driven Potter-Elvehjem tissue grinder.  

9. Rupture the cell suspension, preferably by two slow passes through a 

French pressure cell, until the milky suspension darkens due to breakage 

of the cells.  

10. Centrifuge at 20,000 x g for 40 min at 4 ºC. Discard the supernatant as the 

MMP construct should be in the pellet in inclusion bodies. This pellet may 

optionally be washed by resuspension in lysis buffer containing 0.01% 

Triton X-100 and centrifuging again. 

11. The inclusion bodies are dissolved in concentrated urea or 

guanidinium∙HCl, centrifuged to remove insoluble debris, refolded, 

chromatographically purified, and concentrated in a centrifugal filter unit 

(Millipore). Optimal procedures for the purification and refolding of the 

protein are specific to the construct and have been described for MMP-1 

(49,50), MMP-3 (51), MMP-7 (52), MMP-12 (21,53,54), MMP-13 (55), and 

MMP-14 (56,57). 
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III.4.4 Assignment of NMR spectral peaks 

1. Initially check to determine whether the assignments for the backbone 

amide NMR peaks are not available in the literature or in the 

BioMagResBank database (http://www.bmrb.wisc.edu/). 

2. If de novo NMR peak assignments are required, prepare the 15N/13C labeled 

protein at a concentration of at least 150 µM using the procedure outlined 

in section 3.2 (see Notes 7 and 8).   

3. Acquire standard NMR spectra for spectral peak assignments (including 

HNCA, HN(CO)CA, CBCA(CO)NH and HNCACB triple resonance spectra) 

(see Note 9).  

4. Semi-automated assignments for a majority of the backbone resonance 

peaks can be readily determined by non-specialists using the program 

PINE, a downloadable, integrated software environment which comes with 

a set of explanatory tutorials (58). The software relies heavily upon NMR 

spectral analysis software NMRFAM-Sparky for visualizing the spectra (59) 

and PONDEROSA for automation of peak assignments (60,61). 

5. Assignments of methyl peaks for hydrophobic side chains are optional, but 

are desirable in order to provide additional distance constraints between 

protein residues and atoms within the lipid bilayer. This typically involves 

selective “ILV” labeling of isoleucine, leucine, and valine residues in a 

perdeuterated medium supplemented with α-ketoacids containing 1H/13C-

labeled methyl group(s) and optional deuteration (62) (see Note 10).  

http://www.bmrb.wisc.edu/
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6. Methyl peaks can be assigned for smaller proteins using HMCM[CG]CBCA 

(HMCACB) (63) and CC(CO)NH or HNCACB triple resonance spectra, 

supplemented with NOESY-derived NOEs to the backbone (64) and 

methyl-amides (56).  This strategy works well for single domain proteins. To 

extend assignments of methyl peaks to multiple domain protein constructs 

such as MMPs, the assignments of methyl peaks from the single domains 

can simply be combined and then revised using NOEs among methyl 

groups in the large construct (64,65). Software designed to aid in the 

determination of methyl peak assignments that utilizes additional 

experimental data such as structural coordinates, methyl-methyl NOEs, and 

PREs is also available (66). 

 

III.4.5 Preparation of small bicelles for NMR studies 

  Bilayered micelles or bicelles that are small, discoidal, and isotropic in 

tumbling are preferred for solution NMR (30,32,33,67). These are composed of 

two to three equivalents of detergent-like short chain lipids per equivalent of long 

chain phospholipid, which are designated q = 0.5 to q = 0.33 (ratio of long to short 

chains), respectively. Short chain lipids are amendable to forming curved surfaces, 

in this case, the rims of the bicelle disks (30) (Figure 2B). Long chain 

phospholipids, such as DMPC, form the planar bilayers in the interior of the disks 

(Figure 2B). Dihexanoylphosphatidylcholine (D6PC) with its 6-carbon acyl chains 

has dominated biophysical studies (30) but suffers the limitation of not aggregating 

into micelles or bicelles until reaching a critical micelle concentration (CMC) as 
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high 14 mM in monomers (33). D7PC with its 7-carbon acyl chains has the much 

lower and more favorable CMC of 1.2 mM allowing D7PC-DMPC bicelles (q ≤ 0.5) 

to form at much lower lipid concentrations with only 1.2 mM monomers in solution 

(33). Preparation of bicelles incorporating the latter and using our recommended 

formulation is outlined below. 

 

1. Weigh 20 mg of the powder form of D7PC into a clean 5 ml glass tube and 

dissolve in 1.5 ml of chloroform. 

2. Blow a gentle stream of argon or nitrogen gas into the glass tube for 30 to 

45 min to evaporate the chloroform. Disturbance of the liquid by the nitrogen 

(or argon) stream should be slight and barely visible, with no splashing of 

liquid. Upon drying, a solid lipid film will form at the bottom of the glass tube. 

Dried lipids should be white in appearance. If the film appears glassy, it 

means that some residual chloroform remains in the lipid film. 

3. Cover the glass tube with a piece of parafilm and pierce this several times. 

Place the covered tube in a jar containing desiccant or under vacuum for 

drying overnight.  

4. To the dried D7PC, add 35 μl of NMR buffer. Cover with parafilm and 

hydrate at 42 ºC for 1 h. Frequently and gently centrifuge using either a 

hand-cranked centrifuge or a microfuge on its slowest setting in order to 

collect the micelles from the sides of the tube. 

5. Dissolve 20 mg of DMPC in 2 ml of Tris buffer. Hydrate at 42 ºC for 2 h. 

Vortex occasionally to ensure an even suspension. 
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6. Place the glass tube in a bath sonicator. Adjust the glass tube so that the 

water barely covers the liposome dispersion.  

7. Sonicate for 10 min. (see Note 11) The solution will turn from milky white to 

translucent. (see Note 12) Incubate at 42 ºC for 1 h. 

8. Ultracentrifuge the DMPC liposomes in a Ti 70 rotor for 1 h at ~64,000 x g 

and 20 ºC. Decant the supernatant which contains the small unilamellar 

vesicles (SUVs), freeze and store at -80 ºC for later use in fluorescence 

assays. The nearly white flocculent material at the bottom of the centrifuge 

tube contains large unilamellar vesicles (LUVs) and medium-sized 

unilamellar vesicles (MUVs) which will be used for preparing bicelles in the 

next step. 

9. Resuspend the DMPC liposomes (LUVs and MUVs) with the solution 

containing the D7PC micelles. Incubate at 42 ºC until an even suspension 

is achieved. Be careful to minimize frothing. 

10. Plunge the suspension into liquid nitrogen and freeze. Thaw at 42 ºC. 

11. Transfer to a 500 μl microfuge tube and bring the volume up to 100 μl with 

NMR buffer. Freeze in liquid nitrogen again and thaw at 42 ºC. 

12. Transfer 25 μl aliquots to a fresh tube and freeze in liquid nitrogen. Store at 

-80 ºC until needed. 

 

III.4.6 Preparation of nanodiscs for NMR or fluorescence assays 

This is a synopsis of the previously reported protocol for preparing nanodiscs 

(42,68,69). This protocol uses the MSP1D1 variant of the molecular scaffolding 
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protein to encircle a DMPC phospholipid disc. Other lipids and MSP variants may 

also be assembled into nanodiscs. 

 

1. MSP1D1 (42) may be purchased from Sigma-Aldrich or the His-tagged 

protein can be expressed from a plasmid (Addgene) and purified by affinity 

chromatography on Ni-NTA agarose in a buffer containing sodium cholate 

(68). 

2. Pool fractions containing the His-tagged MSP1D1 and dialysis against MSP 

buffer 

3. Treat with TEV protease to release the His-tag. Remove the peptide 

containing the His tag by capturing it on the Ni-NTA column. Measure the 

concentration of the cleaved protein using an molar extinction coefficient 

(ε280) of 18,200 M-1cm-1 (69). 

4. Dissolve sodium cholate in MSP1D1 or NMR buffer to make a solution that 

is 20 to 40 mM in sodium cholate monomers. (see Note 13). Add this 

solution to 40 mg of dry DMPC at a molar ratio of two detergent molecules 

per phospholipid molecule. Vortex and heat in a water bath at 60 oC for 1 

hour. Then sonicate in a bath sonicator until clear. 

5. Add the MSP1D1 to the cholate-solublized DMPC solution to achieve a final 

ratio of 1:80, while keeping the concentration of sodium cholate above 20 

mM. Then mix. (see Note 14) 

6. Incubate with 0.5 to 0.8 g of damp BioBeads SM2  per ml of sample for 2 to 

3 hours to remove the detergent micelles. 
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7. Wash the BioBeads with an excess of MSP or NMR buffer in order to 

release more nanodiscs. 

8. If turbidity or precipitation is present, pellet the particles by briefly spinning 

in a microcentrifuge. Inject the clarified solution of nanodiscs onto a gel 

filtration column such as Superdex 200 10/300 GL and run with a flow rate 

of ~0.5 ml/min. Collect 1 ml fractions. The elution profile for a preparation of 

nanodiscs composed of DMPC and MSP1D1 superimposed with that for 

several molecular weight standards is shown in Figure 3. 

 

III.4.7 NMR to measure proximity to mimics of membrane bilayers 

The main idea here is to estimate distances from protein amide and methyl 

groups to doxyl spin labelled DPPC, with around one or two such DPPC added per 

leaflet of the bilayer mimetic. PRE (paramagnetic relaxation enhancement) 

measurements from the unpaired electron of the doxyl group to the amide or 

methyl proton of the protein depends strongly (α r-6) on the distance r between 

them and less strongly on the time constant τc of their rotational diffusion. The 

PREs are measured from the increased paramagnetic relaxation rate 

enhancement Γ2 resulting from the addition of an unpaired electron.  

 

1. Prepare a 15N-2H labeled protein sample according to section 3.1.1 and 

concentrate to between 200 and 600 µM in NMR buffer in a volume of at 

least 400 µl, typically using a centrifugal membrane concentrator (Millipore 

or Vivaspin).  
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2. Titrate the protein sample with the bicelles, nanodiscs, or liposomes. 

Record 1H-15N TROSY NMR spectra of the protein amide spectral region at 

each lipid concentration in the titration. If protein methyl groups are 

specifically labeled, also collect 13C HMQC spectra of the methyl spectral 

region at each concentration. Titrate the membrane mimic to at least half of 

the molar equivalents of the discoidal bilayer assembly per equivalent of 

protein, in order to provide at least one discoidal leaflet as a potential 

binding site for every protein molecule (expecting instances of two protein 

molecules per disc).  

3. Continue the titration to a ratio of 1:1 and beyond, in order to maximize the 

number of assemblies harboring one protein bound per disc-like bilayer. 

(see Note 15 and 16).  

4. Estimate the rotational correlation time τc to confirm bilayer-protein 

association and calibrate distance estimates. 15N NMR relaxation indicative 

of τc is measured, preferably at each concentration point in the titration of 

section 3.4.1. (see Note 17) Acquire a 1D relaxation series with at least 

five increments of constant-time relaxation using an appropriate  pulse 

sequence for measuring 15N NMR transverse dipole-dipole/CSA cross-

correlated relaxation (70) . Set the longest relaxation period to attenuate 

peak heights to around 35 to 50% of the initial intensity.  

5. Integrate the 1D spectral envelope at each relaxation time, while omitting 

the central region from 7.6 to 8.4 ppm which is enriched in signal from 

unstructured loops. An exponential relaxation rate constant is fitted to these 
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integrals. This constant is known as the transverse cross-correlated 

relaxation rate, or ηxy.  

6. Use ηxy to estimate τc. The relationship between ηxy and τc is given by the 

following equations of ref (71): 

 

η𝑥𝑦 = 𝑝𝛿𝑁(4𝐽(0) + 3𝐽(𝜔𝑁))(3𝑐𝑜𝑠2𝜃 − 1)    equation 1 

where p is the dipole-dipole coupling between the 1H and 15N of the amide 

group 

𝑝 = 𝜇0𝛾𝐻𝛾𝑁ℎ (16𝜋2√2𝑟𝐻𝑁
3 )⁄       equation 2 

δN is the chemical shift anisotropy of the 15N nucleus defined as 

𝛿𝑁 = 𝛾𝑁𝐵0∆𝛿𝑁 (3√2)⁄      equation 3 

where γH are γN are the respective 1H and 15N gyromagnetic ratios, h is 

Planck’s constant, rHN is the distance between amide 1H and 15N nuclei, ∆δN 

is the difference between the two main components of the 15N chemical shift 

tensor, and J(ω) is the spectral density function that depends on frequency 

ω 

𝐽(𝜔) = 0.4𝜏𝐶 [1 +⁄ (𝜔𝜏𝐶)2]     equation 4 

These equations, the constants, and the 15N resonance frequency of an 800 

MHz spectrometer define the relationship of ηxy and τc as: 

ηxy = 9.075e8 * 0.4*τc*(4 + 3/(1+ τc * 5.0948e8)2))       equation 5 
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Using Eq. 5, ηxy is plotted versus τc and is almost linear. At the measured 

ηxy rate, the τc value corresponding to this point on the line is read from this 

plot. This estimate of τc represents the hydrodynamics. It can be monitored 

throughout the titration. An increase in τc during the titration indicates the 

binding of protein to the membrane and slower tumbling of the protein due 

to its association with the membrane.  

7. Measure the 1H NMR transverse (R2) relaxation rate constants of the 

diamagnetic state of the lipid-protein mixture. (These exponential rate 

constants will be used as the reference values to which the distance-

dependent Γ2 values increase relaxation). Use an NMR pulse sequence 

modified to include a PROJECT-CPMG train that suppresses proton-proton 

J-couplings (72). For amide 1H relaxation, either a 15N TROSY sequence 

with a prepended PROJECT-CPMG train or an 15N HSQC with the 

PROJECT-CPMG train appended are recommended (13,14,56). For methyl 

1H relaxation, use a 13C HMQC incorporating PROJECT-CPMG (13,56). Set 

the 1H transmitter frequency offset to the water resonance peak near 4.7 

ppm. Determine and set the 1H 90º pulse length at high power. Attenuate 

the 1H power level for the PROJECT-CPMG train by 3 dB and set its 

constituent 90º pulse widths √2-fold longer than the high power pulse width. 

Acquire trial 1D spectra as a series of 4 ms steps for the length of the CPMG 

train in order to monitor the degree of exponential reduction in overall peak 

height. Use this spectral series to determine the CPMG periods (multiples 

of 4 ms) to use for acquiring a series of 2D spectra. For relaxation of amide 
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peaks, try CPMG periods from 0 to 32 ms. For methyl relaxation, try CPMG 

periods out to 40 or 48 ms. Choose a maximum CPMG period in which the 

spectrum has decayed to 35 to 50% of the intensity with a CPMG period of 

0 ms.  

8. Copy the optimized parameters into a number of 2D experiments with 

increasing the value of the CPMG period by a multiple of 4 msec for each 

successive experiment. Increase the number of transients acquired to 

achieve a S/N ≥ 20 for the spectrum with the longest CPMG period. 

Measure the 1H NMR transverse relaxation with a series of five or six 

relaxation delays (13,14,56).  

9. To prepare the paramagnetic lipid DPPC (modified with the doxyl spin label 

at the 5, 10, or 14-position) dissolve 1 mg of doxyl-substituted DPPC in 250 

µl of methanol to make a stock solution of 4.6 mM. Store at 4 ºC.  

10. Estimate the volume of this solution needed to incorporate an average of 

one (possibly two) doxyl-DPPC molecules per leaflet of the bicelles or 

nanodiscs. Transfer this volume of solution to a fresh tube and evaporate 

using a gentle stream of nitrogen or argon gas. Add the sample of labeled 

protein with bicelles or nanodiscs to the dried doxyl-DPPC and incubate for 

10 to 15 min. to incorporate the spin label in the bilayers. (see Note 18). 

The incorporation of the doxyl-DPPC introduces its unpaired electron to the 

membrane bilayer. This broadens the 1H NMR peaks of nearby hydrogen 

atoms. The breadth of the NMR peak is measured in the time domain as 

relaxation rate constant R2, which decays exponentially with the length of 
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the CPMG time period used in the NMR pulse sequence. The acceleration 

of the 1H R2 relaxation by the unpaired electron in the vicinity is Γ2, the 

distance-dependent PRE needed. Γ2 values may be measureable on 

protons on the protein as far as 25 Å from the doxyl group.  

11. Repeat the series of CPMG experiments for the paramagnetic doxyl-DPPC 

incorporated membrane. Use the same buffer, temperature and membrane 

mimic to protein ratio as used for the diamagnetic sample. (see Notes 19 

and 20). Fit an exponential decay function and rate constant of decay to 

each resolved and confidently assigned peak. The exponential decay rate 

in the paramagnetic sample minus the exponential decay rate of the 

diamagnetic sample is equal to Γ2, the rate constant of the paramagnetic 

relaxation for a given NMR resonance peak. 

12. These experiments should be repeated using other DPPC analogues, 

where the doxyl label is incorporated at different positions along the acyl 

chain, in order to sample varying depths and magnitudes of PREs (Fig. 4). 

This provides additional information about the depth (or lack of) penetration 

of the protein into the membrane. These experiments provide additional 

distance constraints that can be used for structural modeling of the 

peripheral membrane binding. 

13. Estimate the distance r from the mobile doxyl spin label to each amide or 

methyl resonance peak using the expression: 

r = 4Kτc/ Γ2     equation 6 
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Here K = 1.23x10-44 m6s-2 and τc is the rotational correlation time. These 

estimates can then be used as distance constraints in rigid body structural 

calculations using a docking program, such as HADDOCK (13,29), to define 

areas of interaction between the protein and the membrane mimic, and in 

subsequent restrained molecular dynamics calculations. Computational 

details of the docking calculations are complex and beyond this chapter’s 

scope, but have been introduced previously (13,14). 

 

III.4.8 Preparation of liposomes for fluorescence assays 

Fluorescence assays are recommended to confirm modes of bilayer binding 

determined by the paramagnetic NMR measurements described in section 3.6 

(13,14). These fluorescence assays can be undertaken using classic liposomes. 

Small unilamellar vesicles (SUVs) are recommended over larger vesicles in order 

to decrease light scattering that adds unwanted background to the detected 

fluorescence signal. Overall, the protocol outlined below involves preparing a stock 

suspension of SUVs of DMPC that is 10 mM in lipid monomers. SUVs may be also 

prepared from other lipids.   

 

1. Dissolve 3.4 mg of DMPC (MW 677.94) in 500 µl of assay buffer. (see Note 

21). 

2. Hydrate the lipids by placing the solution in a 42 ºC water bath for 2 h. Vortex 

every 30 min in order to suspend them. 



 

116 

3. Sonicate the suspension until it is clear. This should take 10 to 15 min. If it 

does not become clear or if the concentration of lipid is low, use freeze-thaw 

cycles in a plastic tube with liquid nitrogen as described for preparing 

bicelles in section 3.4. That is, incubate the plastic tube for 3 min in liquid 

nitrogen followed by 6 min in a 42 ºC water bath. Remove MUVs by spinning 

for 1 to 2 min in a microcentrifuge at 10,000 rpm. The SUVs can be stored 

in the 42 ºC water bath. It is best to use them within one to two days of 

preparation, but they may be useable for up to a week. SUVs stored at 4 oC 

will form MUVs or aggregates. (see Note 22 and 23)  

 

III.4.9 Site-Directed Fluor Labeling (SDFL) to Interrogate Binding to 

Liposomes 

Preparation of fluorescently-labeled protein 

A fluorophore that exhibits enhanced fluorescence upon insertion into lipid 

bilayers has proven useful to experimentally determine the site and orientation 

of interaction of peripheral proteins with membrane bilayers of both liposomes 

and cells (13,14,73,74) (Figure 5). We recommend using site-directed fluor 

labeling (SDFL) to confirm peripheral membrane binding sites determined by 

paramagnetic NMR. Alternately, SDFL can be utilized as the primary method 

for mapping the membrane-protein binding interface when it is not feasible to 

use paramagnetic NMR. The general approach for using SDFL to define the 
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interaction of peripheral binding protein with membrane bilayers is outlined 

below: 

 

1. To confirm membrane-binding sites identified by paramagnetic NMR, a 

number of single cysteine residue protein mutants need to be prepared 

containing cysteine residues located at positions corresponding to the 

interfacial binding site and one or more distant locations to serve as 

negative control(s) (Figures 5). (see Notes 24 and 25) The substituted 

cysteine residues should be placed at a surface-accessible site, typically in 

a loop, inside or outside the proposed interface (see Note 26) 

2. Reduce the single reactive Cys residue of the mutated protein (typically ≥ 1 

µM) with at least a 10-fold molar excess of thiol reductant , e.g. 1 mM β-

mercaptoethanol (BME). (see Note 27) 

3. Dialyze against TNC buffer to remove excess reductant. (see Note 28)  

4. To a solution containing 1 µM protein add a 10-fold molar excess of IANBD. 

(see Note 29 and Figure 6)  

5. Let the conjugation reaction proceed for 2 h at room temperature or 

overnight at 4 ºC. Perform this in an anaerobic chamber under argon. 

6. Add excess BME or glutathione to consume excess thiol-reactive IANBD. 

7. Concentrate the reaction mixture before loading onto a G-25 desalting 

column equilibrated in 10 column volumes of Tris buffer containing between 

5 and 10 mM CaCl2. 
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8. Collect the eluted conjugated protein and determine the extent of the 

conjugation reaction as follows. Determine the protein concentration using 

a protein assay such as a Bradford assay or absorbance at 280 nm. 

Determine the concentration of IANBD groups by measuring the maximum 

absorbance between 472 and 480 nm and using an extinction coefficient of 

23700 M-1cm-1 (75). The ratio of the concentration of protein to that of the 

fluorphore (IANBD) equals the apparent percentage labeling, which 

typically appears to be ~85 to 105%. The excess over 100% could suggest 

incomplete removal of free IANBD. 

 

Fluorescent binding-assay 

1. In a 96-well plate prepare a series of 200 µl solutions (in quadruplicate) 

containing 10 to 100 nM fluorophore-conjugated protein. Measure 

fluorescence at 541 nm using an excitation wavelength of 478 nm to 

establish sensitivity and fluorescence linearity; (see Note 30).  

2. x Each 200 µl  solution should containi 250 to 300 µM liposome monomers, 

typically prepared by diluting 5 to 6 µl from a 10 mM stock solution. Measure 

fluorescence intensity every 10 to 30 min for two to three hours in order to 

allow the protein time to equilibrate in inserting into liposomes, before 

photobleaching takes a toll on emission from the IANBD. Normalize the 

fluorescence intensity in the presence of the liposomes (FSUV) values by 

dividing it by the fluorescence in the absence of membranes (F0),i.e. F0/FSUV. 
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Bilayer insertion of the NBD moiety is accompanied by an increase in 

fluorescence intensity with FSUV/F0 ≥ 1.5 (13,73). (see Note 31) 

    

Confocal imaging of binding to live cells 

1. The IANBD-tagged protein may also be used to investigate interactions with 

cell membranes and their compartments. We have used human HeLa cells 

or Raw264.7 murine macrophages grown in suspension (13,14), 

(Macrophages secrete several MMPs). Like the assays with liposomes, the 

degree of association with cell membranes is quantified using the plate 

reader measurements of the fluorescence emission with cells present (Fcells) 

divided by the emission in their absence, i.e. Fcells/F0. Use of three to 5 

million cells per well has been effective in our experiments (13). 

2. The mammalian cell line is seeded on sterile MatTek glass bottom culture 

dishes and grown overnight at 37 ºC in a 5% CO2 incubator until reaching 

about 60 to 80% confluency.  

3. The cells are washed three times with DMEM without phenol red and 

incubated with media containing a fluorescent staining reagents specific for 

the membrane compartment of interest and nuclei for 10 min at 37 ºC in a 

5% CO2 incubator.  

4. The cells are then washed three times with 20 mM Tris, pH 7.2, 5 mM CaCl2, 

0.1 mM ZnCl.  

5. The culture dish is then placed on the stage of a confocal microscope (in 

our case a Leica TCP SP8 MP equipped with 405 nm and tunable white 
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light lasers). The excitation / emission bandpass wavelengths used to detect 

IANBD, Hoechst 33342, and Alexa Fluor 594 WGA are set to 472/485-525, 

405/415-470, and 594/610-680 nm, respectively.  

6. Confocal fluorescence images are taken immediately (control images). 

IANBD-labeled protein is then added to the dish and images are collected 

every 90s for 15 to 30 min. 

 

III.5 NOTES 

1. This minimal growth medium for high-level expression in E. coli is Studier's 

non-inducing PG medium (P-0.5G) (41), with the addition of vitamins and 

use of an alternative choice of ammonium salts.  

2. The authors used a Biotek Synergy MX plate reader, an instrument with the 

advantage of monochromator selection of excitation and detections 

wavelengths 478 and 541 nm, respectively. With a number of other plate 

readers, an appropriate set of filters are used instead on the excitation and 

emission channels. 

3. A cryogenic probe is highly recommended for the sensitivity needed given 

the dilution and line broadening accompanying association with a slowly 

tumbling bilayer disc, and the quantitative nature of measurements of 

paramagnetic NMR relaxation. The authors have used a Bruker Avance III 

800 MHz NMR spectrometer with TCI cryoprobe for proteins of 20 kDa and 

greater, and a Bruker Avance HD 600 MHz system with TCI/F cryoprobe for 

proteins < 20 kDa 
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4. Five millimeter NMR tubes are recommended for sufficient sample volume 

to accommodate the dilution of the protein sample upon mixing with a 

discoidal membrane mimic. 

5. The option to incorporate electrostatics appears to be inconsequential. The 

option of clustering spreads the scores across more residues, without filling 

in the omissions of binding modes that we have observed anecdotally; we 

do not recommend clustering. 

6. To prepare double-labelled protein for assignment of NMR chemical shift 

peaks also substitute 0.3% (w/v) 13C6-glucose as the sole carbon source. In 

some circumstances (e.g. severe spectral overlap) it is possible to 

selectively label specific amino acids by α-keto acids or other precursors 

(62) 

7. Some assignment projects may be especially challenging due to line 

broadening caused by the slow tumbling of the membrane-associated 

protein, low protein concentration, or overlapped peaks. In these cases, 

combinatorial or selective labeling strategies for partial assignment of 

specific amino acid residues or protein segments can be worthwhile (76-

78). If insect cells are required for high-level expression and proper folding, 

media for insects can now be labeled affordably by supplementing with 

15N/13C/2H-labeled yeast extracts (79). 

8. Proteins exceeding 20 kDa in mass should be fractionally deuterated to at 

least 60% (preferably 99%) by inclusion of D2O in the growth medium (79) 

in order to achieve narrower linewidths and increased sensitivity (80).  
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9. For proteins greater than 20 kDa, TROSY versions of these and other triple 

resonance spectra are recommended (81,82). For proteins less than 20 kDa 

with sharper line widths, rapid acquisition BEST versions of triple resonance 

spectra are recommended (83,84). 

10. Selective labeling of the methyl groups of alanine, methionine, and 

threonine is also feasible (62,85).  

11. While using the bath sonicator, monitor the temperature of the water to 

ensure that it does not rise above about 40 oC. Turning the sonicator off for 

a while will allow it to cool toward room temperature. 

12. A translucent, blue tinted solution is a clear sign of the formation of 

liposomes. If the suspension has not clarified, then liposomes have not yet 

formed adequately. Continue sonicating for a further 5 to 10 min. 

13. This forms detergent micelles since the CMC of sodium cholate is 3 mM 

(86).  

14. The optimal molar ratio of MSP1D1 to DMPC is 1:80. 

15. The 1:1 assemblies should tumble faster and have sharper NMR peaks than 

2:1 assemblies. 

16. Note residues with NMR peaks broadened or shifted by addition of the 

membrane mimics. Such spectral perturbations suggest that the protein is 

binding to the membrane mimic and the general location of binding or 

conformational perturbations linked to binding. 

17. This is performed before doping the bilayers with doxyl-substituted DPPC, 

which is paramagnetic. 
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18. We have had success with D7PC/DMPC (q = 0.5) bicelles at 300 μM 

discoidal aggregates, corresponding to 100 mM in total lipid monomers. 

These conditions require addition of the doxyl-DPPC to 600 μM for an 

average of one per leaflet. 

19. The R2 1H NMR relaxation rate constants fitted to the series should be 

insensitive to experimental choices of length of signal averaging, spectral 

window, and exact concentrations.  

20. The R2 values do depend on the hydrodynamics, which are sensitive to 

temperature and degree of molecular association, which should be kept 

uniform for making comparisons. Using similar protein and lipid 

concentrations for the diamagnetic (control) and paramagnetic experiments 

ensures similar degrees of molecular association are obtained in both 

experiments. 

21. Minimize exposure to air while weighing the dry lipids. Weigh out a 10% 

excess of DMPC in order to obtain with desired concentration of SUVs since 

~10% of the DMPC will form MUVs which will subsequently be removed by 

microcentrifugation. 

22. Lipids dissolved in chloroform can be used to prepare the SUVs, provided 

an additional day is allowed to evaporate the chloroform and dry the lipids 

overnight under vacuum. 

23. The aggregates could be sonicated to recover SUVs, but it is not 

recommended. 
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24. If one or more such cysteine already exists in the protein at an 

experimentally undesirable location, it should first be removed by site-

directed mutagenesis. 

25. If mapping by NMR (preferably paramagnetic NMR) is not available, the 

interfaces predicted by MODA and PPM should be regarded as the 

hypotheses to test, realizing that these algorithms have each missed one of 

the dual membrane-binding sites that we located experimentally (13,14) 

(Figure 1A). 

26. Since basic and hydrophobic residues are frequently found within peripheral 

membrane interfaces, care should be taken not to substitute Arg, Lys, Phe, 

Tyr, Leu, and Ile residues within this region as this could disrupt binding at 

the protein-membrane interface. 

27. We recommend performing these steps in an anaerobic or semi-anaerobic 

environment in order to prevent oxidation of thiols to disulfides. All buffers 

should be deoxygenated, e.g. by bubbling through argon and reactions 

should be carried out under an inert atmosphere of argon. 

28. Constructs containing an MMP catalytic domain require 5 to 10 mM CaCl2 

to stabilize the catalytic domain. 

29. Use a fresh 10 mM stock solution of IANBD. 

30. Linearity of fluorescence deteriorates as the sum of the absorbance at the 

excitation and emission wavelengths exceeds 0.08 (87). 

31. Examination of other lipids that are found in cell membranes is also 

recommended in order to get a explore biological specificity. These may 
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include anionic lipids like phosphatidylserine (88), signaling lipids potentially 

relevant to your target protein (e.g. phosphoinositides) (1), unsaturated 

lipids, sterols, sphingholipids, glycolipids, etc. 

32. Our studies have been utilyzing the Image-It™ kit (Life Technologies) 

containing the Alexa Fluor 594 conjugate of wheat germ agglutinin (WGA) 

at 5 μg/ml to dye the glycosylation red on the outer face of the plasma 

membranes and 2 μM of Hoechst 33342 to label chromatin and nuclei blue. 
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III.7 FIGURES 

Figure III.1 Comparison of the PPM predicted and experimentally determined 
mode of bilayer binding by MMP-12.  
 

The protein backbone shown is used both to illustrate the experimental dockings 
and the predicted docking. The lipid chains plotted are from the experimental 
docking. The blue grid indicates the predicted location of bilayer head groups 
where the bilayer contacts the II-III loop of MMP-12. . (A) The experimental 
structural model bound to the membrane via the α-interface (PDB: 2MLR, with lipid 
chains) is superposed with predicted interfaced marked by the blue grid. Molecules 
comprising the bilayer are shown and phosphorous atoms of the DMPC head 
groups are illustrated as orange spheres. The protein chain is rainbow colored from 
blue at the N-terminus to red at the C-terminus. (B) The experimental structural 
model bound to the membrane via the β-interface (PDB: 2MLS, with lipid chains) 
which includes not only the II-III loop but also the III-IV and IV-V loops, resulting in 
a different tilt angle than predicted by PPM (blue grid).  
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Figure III.2 Phosphatidylcholine molecules with 7- and 14-carbon acyl chains 
 
(A) form the annulus and center, respectively, of disk-like bicelles (B). 
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Figure III.3 Gel permeation chromatography of the assembled nanodiscs 
comprised of DMPC and MSP1D1.  
 
The elution profiles for several hydrodynamic standards are superimposed onto 
the chromatogram for the nanodiscs. The nanodiscs migrated with an apparent 
molecular weight that was less than that of γ-globulin (158 kDa) on a Superdex 
200 10/300 GL column. The major peaks comprised uniformly assembled 
nanodiscs while a significantly smaller peak corresponding to incomplete 
assemblies was also observed. 
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Figure III.4 Options for the location of doxyl substitution on 
phosphatidylcholine (PC) inserted into the membrane bilayer.   
 
Doxyl substitution at the 5-position is the closest choice in the acyl chain to the 
head group. It introduces more numerous PREs to the protein interacting 
peripherally. Doxyl substitution at the 14-position deep in the bilayer results in 
fewer PREs in the protein, but which are more likely to be central to the interface. 
The blue ribbon depicts MMP-12. Interfacial residues are plotted by ball-and-stick. 
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Figure III.5 The site-directed fluor labeling (SDFL) approach for defining 
peripheral membrane binding-sites for a protein.  
 
When the IANBD (red) conjugated to the protein (blue) inserts in a hydrophobic 
compartment such as the bilayer, its fluorescence emission increases.  
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Figure III.6 IANBD Conjugation 

 
 Conjugation of the iodoacetamide-containing, environment-sensitive NBD 
fluorochrome (IANBD) to a single surface-exposed, reactive cysteine thiol. 
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IV. MT1-MMP Family Interactions: Finding Insights 

From The Other Members 

 

IV.1 INTRODUCTION 

IV.1.1 MMP-1 and MT1-MMP: A Structural Comparison 

MMP-1 (collagenase-1) was the first studied enzyme from the MMP family 

and has many similarities to MT1-MMP including activation of MMP-2, MMP-9 

(1,2). MMP-1 is one of four members of the MMP family (along with MT1-MMP, 

MMP-8, and MMP-13) that degrade fibrillary collagens, leaving them unstable and 

prone to degradation by other MMPs (3). MMP-1 is a soluble MMP. Proteolysis of 

the PRO domain is required for activation of the enzyme. Although the linker 

between MMP-1 catalytic and HPX domains is among the shortest in the family, it 

has a large degree of flexibility suggesting that all MMPs have sizable 

conformational freedom between domains (4).  Overall, the structure of the 

productive complex of MMP-1 has been seen as a model for other collagenase 

productive complexes (5).  

Previously it was shown that the HPX blade I of MMP-1 was implicated in 

collagen binding by hydrogen-deuterium exchange (6) even though the HPX 

domain lacks binding pockets or clefts for a  peptide substrate (7). Later it was 

discovered that MMP-1’s catalytic and HPX domains adopt a compact productive 

complex where collagen binds (8). The crystal structure of this complex was 

uncovered a year later (5) showing the HPX domain binding 10 residues from the 
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site of collagenolysis (scissile bond). Further work on the MMP-1 compact complex 

showed multiple conformations between the catalytic and HPX domains (9). 

Although the HPX and catalytic domain interactions are somewhat transient, they 

lead to conformations that position the HPX collagen binding site to the solvent.  

The HPX domain of MT1-MMP binds collagen in a very similar trajectory as 

MMP-1 (10). The difference between the two structures is the position where the 

HPX domains bind the strands of the collagen mimic. MT1-MMP HPX domain 

binds alongside the scissile bond of collagen whereas MMP-1 HPX domain binds 

10 residues upstream from the site of collagenolysis. To explain this difference, 

two models of interdomain collagen binding where proposed for MT1-MMP. One 

model posits that the HPX domain undergoes a sliding motion axial to the collagen 

allowing the catalytic domain to slide towards the scissile bond. The other is a 

clasping model where the catalytic domain reaches above the HPX domain and 

cuts at the scissile bond sandwiching the two domains with the collagen in between 

(10).  Discussed here is the possibility of MT1-MMP adopting a similar compact 

conformation as MMP-1 during the proposed sliding model allowing for 

collagenolysis on the membrane.  

Another similarity of these two enzymes is the GYPK loop in blade II of the 

HPX domain that is described in Marcink et al (submitted); see chapter 2 (11). 

While no work has been done on MMP-1’s interactions with membranes, this loop 

could be implicated in binding the membrane surface in MMP-1. Furthermore, it 

has been shown that the catalytic domain of MT1-MMP binds membranes (12). 

Shown here is the preliminary NMR results of the catalytic domain interaction with 
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bicelles and nanodiscs along with a proposal that the compact conformation of 

MMP-1 might play a part in a productive complex of MT1-MMP with a collagen 

triple-helix on the cell surface.  

 

IV.1.2 MT1-MMP Structural Comparison with MMP-12 and its Antimicrobial 

Loop 

The HPX domain is required for collagenolysis by the true collagenases of 

the MMP family (13,14), but this does not include MMP-12. Membrane interactions 

of MMP-12 catalytic domain were already reported (15). Recent work discussed 

below shows NMR peak broadenings of MMP-12 HPX domain induced by the 

addition of nanodiscs (12,15). 

The HPX domain of MMP-12 plays a bactericidal role in phagolysosomes 

of macrophages (16). While the catalytic domain is likely to be unfolded by the low 

pH of phagolysosomes, the HPX domain remains intact and was shown to disrupt 

bacterial membranes by a specific KDDK loop motif (12,16). It was proposed that 

MMP-12 antimicrobial properties could occur through a cell disruption at the 

membrane surface (12). This loop motif is adjacent to a proposed blade II 

membrane binding loop discovered by Marcink et al (submitted); see chapter 2 

(11). While MT1-MMP has not been shown to have antimicrobial properties 

(16,17), it has a similar loop motif (KDEK) as MMP-12 (KDDK). Understanding how 

these two important loops and how their proximity impact each other could 
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increase understanding of the mechanism of bacterial killing by the HPX domain 

of MMP-12.  

 

IV.2 MATERIAL AND METHODS 

IV.2.1 Catalytic and HPX Sample Preparation 

The MT1-MMP HPX domain and MMP-12 were both expressed and purified 

as previously described (10,18). For the catalytic domain, cells were sonicated, 

and the resulting inclusion bodies were dissolved in 6 M urea and centrifuged to 

remove precipitate. An NTA affinity column was used to purify the catalytic domain 

with a buffer of 20 mM Tris (pH 7.2), 6 M urea, and 500 mM NaCl. After 5 column 

volumes a 20 mM imidazole wash, protein was eluted with 3 column volumes of 

300 mM imidazole. The eluate was diluted to 0.05 mg/ml with 20 mM Tris (pH 7.2), 

150 mM NaCl, and 3M urea. The resulting solution was dialyzed once against 10 

column volumes of 1M urea and then twice against 0 M urea to remove all excess 

salt and denaturant. The final sample was concentrated and stored with 0.02% 

sodium azide.  

 

IV.2.2 Ultracentrifugation Membrane Interaction Assay 

Large unilamellar vesicles (LUVs) were formed by suspending DMPC 

monomers in 20 mM Tris (pH 7.2). After an hour at 37°C for the hydration of lipids, 

the solution was subjected to multiple freeze-thaw cycles in liquid nitrogen. The 

resulting LUVs were incubated at concentration of 1 mM in DMPC monomers for 
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1 hour at 25 °C with both the HPX and catalytic domains of MT1-MMP. The 

resulting mixtures were pelleted through ultracentrifugation at 180,000 x g at 4 °C 

for 20 min (12). Pellets were resuspended in 1/8 of the original volume. The 

resuspended pellets and supernatant were both run on SDS-PAGE and analyzed 

using imageJ.  

 

IV.2.3 Assay of Membrane Interactions using Intrinsic Tryptophan 
Fluorescence 

SUVs were made by same protocol used in Chapter II (11).  

 

IV.2.4 Mapping of Interface for Bilayers using NMR Peak Broadenings 

TROSY NMR spectra of the catalytic domain of MT1-MMP were recorded 

in the absence and presence of an equimolar concentration of nanodiscs or 

bicelles. This was performed in 20 mM Tris (pH 7.2), 150 mM NaCl, and 10 mM 

CaCl2. Peak heights were analyzed through CCPNMR software. The largest peak 

intensity decreases upon the addition of the membrane mimics (> 20%) were 

plotted upon the crystal structure of the MT1-MMP catalytic domain (2bqq).  

 

IV.2.5 Full Length MMP-12 And E. coli Induced NMR Peak Broadenings 

TROSY spectra were recorded with additions of 0, 100, 1,000 and 10,000  

E. coli bacterial cells  (measured by OD600) added to 200 μM MMP-12 in 20 mM 

Tris, 150 mM NaCl, 10 mM CaCl2, 100 μM ZnCl at pH 7.2. Peak heights were 
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analyzed with CCPNMR Analysis and the largest addition of bacteria was used for 

subsequent broadening results. Largest peak height decreases (> 20%) upon the 

addition of bacteria where plotted on the crystal structure of full-length MMP-12 

(PDB ID: 3BA0).  

 

IV.3 RESULTS 

IV.3.1 Membrane Interactions with the HPX And Catalytic Domains of MT1-

MMP  

Utilizing intrinsic tryptophan fluorescence along with high speed 

centrifugation  assays (Fig. 1A,B),  it has been shown the catalytic domain and 

HPX domain of MT1-MMP has an affinity for the membrane and at least is 

transiently bound (12).  Furthermore, using MODA membrane interaction 

prediction software, there are many residues on the catalytic domain that may be 

favorable for membrane binding (Fig. 2).  

NMR studies have measured regions of membrane interactions. Bicelles 

and nanodiscs both introduced broadenings to residues on the catalytic domain. 

Most of these residues centered around the active site. Nanodisc -induced 

broadenings were more concentrated near the active site and towards α-helices B 

and C (Fig 2). Broadenings induced by DMPC/DHPC bicelles (q=0.5) were for the 

most part located in the loop opposite of the α-helices above the beta sheet (Fig 

2).  
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IV.3.2 Similarities of MT1-MMP and MMP-1’s Compact Conformation 

It has been previously shown that MMP-1 adopts a compact formation 

wherein the catalytic domain positions itself up against blade one of the HPX 

domain (Fig. 3A) (8). Two of these residues on the HPX domain of MMP-1 jut out 

to make contact with the catalytic domain (Fig.3B). They are conserved in MT1-

MMP Superposition of the MT1-MMP catalytic domain on the HPX domain showed 

a similar structure to the MMP-1 compact orientation.  

To understand how this compact orientation could be possible on the 

surface of the plasma membrane, this compact structure was compared to 

previous HPX:nanodisc binding orientations discussed earlier. Aligned with blade 

IV at the membrane surface, the compact conformation allowed for the catalytic 

domain residues broadened by membranes to come in contact with membranes 

(Fig. 4A). However, if TIMP were bound, the TIMP would clash with the membrane 

(Fig. 4B). When docked with blade II at the bilayer surface, the residues of peaks 

broadened away by the membrane mimics face away from the membrane and 

towards the solvent (Fig 4c). This orientation on the membrane allows TIMP 

binding the catalytic and HPX domains packed with the ball-and-socket 

arrangement proposed in MMP-1 by Arnold et al. (8). Some of the residues near 

the active site potentially involved in membrane binding (Fig. 2) may be covered 

by the TIMP.  
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IV.3.3 Interactions of E. coli with MMP-12 Detected By NMR 

To understand the effects that MMP-12 has on bacterial cells, NMR was 

used.  There was a broadening of NMR peak heights upon the addition of 

increasing E. coli BL21 DE3 cells in both the catalytic and HPX domains (Fig. 5A). 

In the catalytic domain these broadenings were scattered throughout (Fig. 5A). In 

the HPX domain, the greatest broadenings (> 20% reduction from original peak 

height) occurred mainly in blades 1 and 2 (Fig. 5B). Many of these broadenings 

are near the bactericidal KDDK loop, as well as near the blade II loop that was 

discovered to bind membranes in MT1-MMP.  

 

IV.3.4 Potential Membrane Binding Interface of MMP-12 Based on MT1-MMP 

Results 

MMP-12 has the sequence EPNYPK bulging from blade II which is very 

similar to the membrane binding sequence EPGYPK in the MT1-MMP HPX 

domain (Fig. 6A). Overlay of the two models show high structural similarities in this 

loop region (Fig. 6B).  The microbial KDDK loop can be seen interacting with the 

membrane surface in the MMP-12 overlay (Fig. 6C). Further structural data is 

needed to further understand these interactions.   
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IV.4 DISCUSSION 

IV.4.1 Membrane Interactions with the MT1-MMP Catalytic Domain 

The catalytic domain of MT1-MMP binds bilayers (Figs. 1, 2), in contrast to 

cartoons in the literature that portray it as distant from the membrane. Both bicelles 

and nanodiscs induce broadenings of NMR peaks of residues in similar areas. 

These residues overlap with some of the sites predicted by MODA to bind bilayers 

(Fig 2). These results suggest that the catalytic domain is at least transiently in 

contact with the membrane.  

This result, along with the previous insights into membrane binding by the 

HPX domain, calls into question the idea that MT1-MMP branches straight out into 

the extracellular space (19,20). There should be periods of time both domains are 

bound to the membrane. The question remains if this membrane interaction is 

biologically significant? Results from chapter II show an increase in collagenolysis 

upon the addition of lipids indicated the membrane plays a role in collagen 

degradation. Earlier work on the HPX domain and collagen raised the question of 

side-by-side vs. clasping modes of collagen binding in collagenolysis (10). The 

membrane might play an important role in determining which is correct. The active 

site is where most of the bilayer-induced peak broadenings occur in the catalytic 

domain. HPX membrane binding could induce a conformational change that flips 

the catalytic domain off the membrane, exposing the active site. This 

conformational change could favor the clasping model. Further in-depth analysis 

is required to understand the interactions of MT1-MMP on the membrane.  
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Little is known on the interactions between the HPX and catalytic domains 

of MT1-MMP. Work shown here proposes a similar compact orientation between 

the two domains as found in MMP-1 with the ball and socket model (8,21,22). This 

model had two main residues that protrude from the MMP-1 HPX domain (Arg300 

and Phe301) which are similar to MT1-MMP residues Arg339 and Trp340 (Fig 3). 

When the MT1-MMP domains are oriented in similar fashion as the MMP-1 

domains, there are no steric clashes between expected at the surface of the bilayer 

(Fig 4A). Moreover, this hypothesis positions the catalytic domain where it can 

easily reach the bilayer surface via surfaces suggested by NMR to bind surfaces 

(Fig. 4A). 

It can be hypothesized that this close positioning of the two domains of MT1-

MMP accommodates its binding bilayers by either of its interfaces at blade II or 

blade IV of the HPX domain. With blade IV bound to the membrane, the TIMP 

inhibitor of MT1-MMP is unlikely to bind due to the steric clash with the membrane 

surface (Fig 4B). Collagen binding to the HPX domain could potentially disrupt the 

close association of HPX and catalytic domains to allow the catalytic domain to 

reposition its active site to cleave collagen in a clasping orientation. Binding of 

blade II to the membrane could turn the membrane binding surfaces of the catalytic 

domain away from the bilayer when the catalytic domain is closely associated in 

the orientation hypothesized (Fig 4C). This orientation might be less favorable in 

that it exposes hydrophobic residues to the extracellular space. Interestingly, this 

orientation allows for TIMP-2 binding which covers these hydrophobic areas when 

it inactivates the enzyme (Fig. 4C). Furthermore, this orientation could promote the 
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capture of proMMP-2, for which TIMP-2 is required (23). The trimeric proMMP-

2:TIMP-2:MT1-MMP complex initiates the activation of MMP-2 (24,25). These 

predictions gained from peak broadenings and structural comparisons with MMP-

1 suggest hypothesis for testing by future experiments to explore these complex 

interactions on membrane surfaces.  

 

IV.4.2 Bacterial-Induced Broadenings of NMR Peaks of Full-length MMP-12 

The MMP-12 HPX domain was shown to bind and kill bacteria in 

phagolysozomes of macrophages (16). This activity by MMP-12’s HPX domain 

could occur at the membrane protein interface since most antimicrobial peptides 

disturb the bacterial membrane (16,26,27). NMR line broadening studies with 

MMP-12 and nanodiscs have shown the highest density of affected residues 

around blades III and IV (12). Peak broadenings induced by bacterial cells show a 

concentration of affected residues in blades I and II (Fig 5). These results seem in 

conflict with each other. However, the recent results on membrane binding by MT1-

MMP and sequence similarities can offer some preliminary guidance.   

MMP-12 has in blade II a highly similar membrane binding loop motif 

(EPNYPK) as MT1-MMP (EPGYPK). This loop motif sits adjacent to the 

antimicrobial KDDK motif. MT1-MMP has a very similar motif (KDEK) (fig 6A) and 

when these two structures are overlaid the MMP-12 KDDK motif makes contact 

with the phospholipid head groups on the membrane surface (Fig. 6B,C). Could 

MMP-12 use this same membrane loop as MT1-MMP and make contact with the 

bacterial cell membrane surface? The membrane and protein interface could play 
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a large role in the bactericidal activity of MMP-12. Further studies still need to be 

done to confirm which orientation MMP-12 binds membranes and this preliminary 

work is a step forward in the experimental design to uncover these important 

interactions.  
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IV.5 FIGURES 

Figure IV.1 Soluble domains of MT1-MMP bind vesicles.  
 
(A) SDS-PAGE gels of the catalytic and (C) HPX domains of MT1-MMP that 
sedimented with large unilamellar vesicles during high speed centrifugation. Pellet 
fractions were reconstituted in 1/8 the original sample volume. (B,D) Intrinsic 
tryptophan quenching assays of the catalytic (B) and HPX (D) domains upon the 
addition of small unilamellar vesicles with 2% PyPE, a tryptophan quencher. 
(Figure taken with permission from Van Doren et al., 2010) (12) 
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Figure IV.2 Membrane interactions of MT1-MMP catalytic domain.  
 
(A) The catalytic domain of MMP was predicted to bind membranes by MODA with 
the contacts shown in orange dots. Residues whose intensity decreased upon the 
addition of a 1:1 complex of protein with bicelles (blue spheres) or nanodiscs (pink 
spheres) surround the active site cleft. (B) This 90-degree rotation of panel A also 
shows the overlap of MODA-predicted sites with bicelle-induced broadenings. 
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Figure IV.3 The ball and socket model of MMP-1 might apply to MT1-MMP.  
 
(A) MMP-1 ball and socket model where the catalytic domain (green) interacts with 
the HPX domain (blue) in a compact orientation. (B) MT1-MMP HPX domain has 
a similarly charged binding ball on the HPX where the catalytic domain can bind. 
(Panel A used with permission from Arnold, L.H. et al., 2011) (8) 
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Figure IV.4 Proposed functional orientations of both MT1-MMPsoluble 
domains in relation to the membrane.  
 
(A,B) Proposed binding orientation of the catalytic (cartoon) and HPX (grey 
surface) domains without (A) and with (B) TIMP-2 (yellow) bound according to the 
crystal structure (1BQQ)(28). Both of these structures were overlaid with the blade 
IV of the HPX domain bound to the nanodisc. This shows TIMP clashing with the 
membrane surface (B). (C,D) Same proposed compact orientation without (C) and 
with (D) TIMP. However, the blade II side is bound to the nanodiscs in the structural 
overlay. There is no clash of TIMP with the membrane surface in this orientation 
(D).  
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Figure IV.5 Bacterial induced NMR peak broadenings of the full length MMP-
12.  
 
(A) Relative peak intensities upon addition of 10,000 E. coli cells with MMP-12. 
Peak heights reduced by 20% or more are considered significant. Those in the 
HPX domain region colored in purple. (B) Peak heights of significance in the HPX 
domain plotted on the crystal structure as purple spheres.  Thanks to Rama 
Koppisetti for expression and purification of the full length MMP-12 along with 
collecting the NMR data.  
 

 

 

 



 

160 

Figure IV.6 Overlay of both the bilayer-binding and antimicrobial loops of 
MT1-MMP and MMP-12.  
 
(A) MT1-MMP bound to nanodiscs with the membrane binding loop shown in 
purple (PDB ID 6CM1). The peptide sequence corresponding to the antimicrobial 
peptide fragment from MMP-12 is colored teal with the antimicrobial loop at the 
magenta surface. (B,C) Overlay of MMP-12 with the experimental model of the 
MT1-MMP HPX domain bound to a DMPC bilayer by blade II. The magenta 
surface suggests the proximity of the KDDK loop to the membrane.  
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V. APPENDIX 1: Molecular Dynamics Protocol for 

Membrane Binding 

 

A.1 INTRODUCTION 

 
Peripheral protein-membrane structural simulations have been developed 

recently including discussions in this work (1-3). My purpose in using molecular 

dynamics simulations was to test the cellular feasibility of an interaction between 

a protein and its partner and gain structural insights of this interaction. There is 

currently no established method for executing molecular dynamics simulations of 

peripheral protein interactions with membranes. 

Presented here is a strategy that relies upon distance restraints based upon 

PREs measured by NMR of spin-labeled assemblies of nanodiscs with a 

peripherally bound protein. Initial docking is performed with the HADDOCK 

program designed for rigid body docking of proteins, originally with other proteins 

or nuclei acids (4,5). However, HADDOCK rigid body docking does not have an 

adequate force field for understanding molecular interactions. In fact, steric 

clashes can remain in its structural results. In order to obtain a highly refined 

structural model, the strategy proceeds to novel incorporation of PRE-based 

distance restraints on the subsequent refinement step using molecular dynamics 
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with an atomistic model of a nanodisc.  After initial docking with HADDOCK (1,2), 

one can transpose their findings into molecular dynamics through NAMD (6) using 

the CHARMM36 force field (7,8). This full atomistic force field can help refine the 

structural rigid body docking presenting a more accurate representation of the 

peripheral proteins interaction with the membrane surface. Through the use of 

these new developments, one can now undertake peripheral membrane 

simulations with more ease of use. Presented here is a protocol for successfully 

running such a molecular dynamics simulation using NAMD. It is outlined in Figure 

1. 

 

A.2 METHODS 

A2.1 Detailed Outline of steps for obtaining lowest energy structures of 

peripheral membrane proteins  

1. Setup for HADDOCK using NMR restraints (see Figure 2) 

a. PREs are set as restraints to resname SPIN lipids 

i. All distances based on PREs or other distance 

measurements (NOEs, line broadenings, etc.) are restrained 

to the appropriate lipid carbon. 

ii. For  PREs, the Γ2 values are used to estimate the distance 

from the spin label to the residue of interest by the following 

equation: Γ2 = 4κτc /r6  where κ =1.23e-44 m6 s−2 and τc is the 
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rotational correlation time determined from an amide 15N 

NMR transverse cross-correlation rate experiment (8,9). 

iii. For PREs, raise the upper bound to at 10% greater than the 

estimated distance, plus an estimated fluctuation of the 

relevant depth of the spin label and ambiguity in proS vs 

proR methyl groups. (2.9 Å) 

b. CSPs and line broadenings are set up as ambiguous restraints per 

HADDOCK guidelines. 

c. 6 Å Repulsive restraints are added to the lower leaflet distal to the 

cage. 

d. 10 Å repulsive restraints were added to the edges of the membrane 

cage. These restrict the protein to the middle within the cage on the 

correct side of the membrane.  

e. Edit the CNS file using www.bonvinlab.org/software/haddock2.2/haddock-

start 

i. Replace topology, linkage, and energy parameter files with 

those files at the end of this chapter 

ii. Calculate at least 300 structures 

2. Analysis of HADDOCK structures after simulations 

a. Structures are analyzed for violations of distance restraints via 

PyMOL 

b. All structures with no violations were aligned and hand selected for 

further analysis 

http://www.bonvinlab.org/software/haddock2.2/haddock-start
http://www.bonvinlab.org/software/haddock2.2/haddock-start
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Note that variations in the angle of insertion into the bilayer in 

the structural models are expected since MD will allow for 

variations 

3. Uses of the CHARMM-GUI software 

a. Generate empty nanodiscs via the CHARMM-GUI Membrane 

Builder 

b. Align the lipids of the empty nanodisc with the lipids of the 

HADDOCK-derived structural model of the assembly 

c. Input final protein and membrane assembly PDB in the CHARMM-

GUI Quick MD Simulator 

d. Output files for NAMD with Charmm36 force field 

4. Molecular dynamics in NAMD  

a. NAMD restraint parameter setup  

i. Colvar restraints set up as xy-distance plane restraints  

1. Distance restraint values are the same as used in 

HADDOCK 

2.  Identify peripheral lipid atoms around the nanodiscs 

at the same depth used in HADDOCK. Through this 

process of using multiple lipids around the periphery, 

an XY plane will be created for which the restraints 

are tethered to.  

ii.  harmonic force restraints  

1. Force constant for unambiguous restraints = 1.0 
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2. Force constant for ambiguous restraints = 0.1 

b. NAMD run (see Figure 3) 

i. Minimize the HADDOCK-docked models using at least 

10,000 steps.  In the case of hand-docked starting 

structures, use 100,000 steps of minimization. 

ii. Equilibration until misc (restraint) energies level out. Misc 

energies will jump up significantly now that minimization has 

completed, and restraints are introduced. Use at least 2 ns 

for HADDOCK docked structures and 4 ns for hand-docked 

structures 

iii. Restrained refinement (production) run with a minimum of 4 

ns  

iv. Unrestrained production run for a similar length as the 

restrained portion of the simulation 

5. Final Structure Analysis 

a. Quality checks via the VMD suite 

i. RMSD  

ii. Lowest energy structures determined through log files and 

misc (restraint) energies.  

iii. Alignment of structures by the membrane 
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A.3 FIGURES 

 
Figure A.1 Flowchart from HADDOCK to NAMD  
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Figure A.2 HADDOCK Peripheral Protein Set-up  
 
(A) Lipid membrane cage (LMC) that confines protein of interest within the 
boundaries. (B) Overview of the LMC. (C) HPX of MT1-MMP after HADDOCK 
calculations docked with LMC. (D) Close-up view of the HPX domain of MT1-MMP 
showing insertion depth of protein 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  



 

 172 

Figure A.3 NAMD Setup and Execution  
 
(A) Cut away view of a box of water and ion molecules surrounding the MT1-MMP 
HPX domain peripherally bound to a nanodisc. (B) Steps involved in a NAMD 
production run.  The assembly is prepared for MD by minimization for ≥ 2 ps, 
followed by ≥ 2 ns of equilibration where restrained are turned on.  Next there is a 
section of NMR-based restraints used during the production run. Finally, a 
production run without NMR restraints is used to determine whether or not the 
structural model persists without the restraints.  
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A1.5 PARAMETER FILES FOR HADDOCK 

 

File 1: Lipid Linkage File 

 
 
!Linker file for DMPC+SPIN 
!filename=SPIN.linker 
 
REMARKS  dpc.cns.linker - macro for linking dpc molecules 
SET ECHO=FALSE END 
 
! link  DL2  head - *   tail + CEN end 
! link  DL1  head - *   tail + *   end 
 
! evaluate ($counter=1) 
! evaluate ($dpcm=54) 
! while ( $counter <= $dpcm ) loop dpcm 
!  patch DPCL 
!    reference=1=(segid B and resid $counter) 
!    reference=2=(segid B and resid $dpcm+1) 
!  end 
!  evaluate ($counter=$counter+1) 
! end loop dpcm 
 
SET ECHO=TRUE END 
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File 2: Lipid Energy Parameter File 

 
!Parameter file for DMPC 
!filename=SPIN.param 
! 
   BOND CH3p NL   899.7   1.470 
   BOND CH3p NL   899.7   1.470 
   BOND CH3p NL   899.7   1.470 
   BOND NL   CH2  899.7   1.470 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  OA   799.6   1.430 
   BOND OA   P,SI 599.7   1.610 
   BOND P,SI OM   900.4   1.480 
   BOND P,SI OM   900.4   1.480 
   BOND P,SI OA   599.7   1.610 
   BOND OA   CH2  799.6   1.430 
   BOND CH2  CH1  800.0   1.530 
   BOND CH1  OE   799.6   1.430 
   BOND CH1  CH2  800.0   1.530 
   BOND OE   C    997.7   1.330 
   BOND C    O    1200.5  1.230 
   BOND C    CH2  799.9   1.480 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH3  800.0   1.530 
   BOND CH2  OE   799.6   1.430 
   BOND OE   C    997.7   1.330 
   BOND C    O    1200.5  1.230 
   BOND C    CH2  799.9   1.480 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH2  800.0   1.530 
   BOND CH2  CH3  800.0   1.530 
   BOND CH3  DUM    0.0   1.530 
   BOND DUM  DUM    0.0   1.530 
 
   ANGLe CH3p NL   CH3p 124.3   109.5 
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   ANGLe CH3p NL   CH3p 124.3   109.5 
   ANGLe CH3p NL   CH2  124.3   109.5 
   ANGLe CH3p NL   CH3p 124.3   109.5 
   ANGLe CH3p NL   CH2  124.3   109.5 
   ANGLe CH3p NL   CH2  124.3   109.5 
   ANGLe NL   CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  OA   126.7   111.0 
   ANGLe CH2  OA   P,SI 126.7   120.0 
   ANGLe OA   P,SI OM   107.6   109.6 
   ANGLe OA   P,SI OM   107.6   109.6 
   ANGLe OA   P,SI OA   100.4   103.0 
   ANGLe P,SI OA   CH2  126.7   120.0 
   ANGLe OM   P,SI OM   186.4   120.0 
   ANGLe OM   P,SI OA   107.6   109.6 
   ANGLe OM   P,SI OA   107.6   109.6 
   ANGLe OA   CH2  CH1  126.7   111.0 
   ANGLe CH2  CH1  OE   124.3   109.5 
   ANGLe CH2  CH1  CH2  124.3   109.5 
   ANGLe CH1  OE   C    151.8   117.0 
   ANGLe CH1  CH2  OE   126.7   111.0 
   ANGLe OE   CH1  CH2  124.3   109.5 
   ANGLe OE   C    O    167.3   122.0 
   ANGLe OE   C    CH2  130.3   113.0 
   ANGLe C    CH2  CH2  126.7   111.0 
   ANGLe O    C    CH2  179.3   125.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH3  126.7   111.0 
   ANGLe CH2  OE   C    151.8   117.0 
   ANGLe OE   C    O    167.3   122.0 
   ANGLe OE   C    CH2  130.3   113.0 
   ANGLe C    CH2  CH2  126.7   111.0 
   ANGLe O    C    CH2  179.3   125.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH2  126.7   111.0 
   ANGLe CH2  CH2  CH3  126.7   111.0 
   ANGLe CH2  CH3  DUM    0.0   111.0 
   ANGLe CH3  DUM  DUM    0.0   111.0 
   ANGLe DUM  DUM  DUM    0.0   111.0 
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   DIHEdral CH3p NL   CH2  CH2  0.9     1  43.4 
   DIHEdral NL   CH2  CH2  OA   1.4     1  61.6 
   DIHEdral NL   CH2  CH2  OA   2.1     1  61.6 
   DIHEdral CH2  CH2  OA   P,SI 0.9     1  173.6 
   DIHEdral CH2  OA   P,SI OA   1.2     1  162.1 
   DIHEdral CH2  OA   P,SI OA   0.8     1  162.1 
   DIHEdral OA   P,SI OA   CH2  1.2     1  60.8 
   DIHEdral OA   P,SI OA   CH2  0.8     1  60.8 
   DIHEdral P,SI OA   CH2  CH1  0.9     1  168.7 
   DIHEdral OA   CH2  CH1  CH2  1.4     1  75.2 
   DIHEdral CH2  CH1  OE   C    0.9     1  143.8 
   DIHEdral CH2  CH1  CH2  OE   1.4     1  54.3 
   DIHEdral CH1  OE   C    CH2  5.7     1  156.7 
   DIHEdral CH1  CH2  OE   C    0.9     1  112.9 
   DIHEdral OE   C    CH2  CH2  0.2     1  141.9 
   DIHEdral C    CH2  CH2  CH2  1.4     1  177.9 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  145.7 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  16.7 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  176.4 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  66.8 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  153.8 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  156.5 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  140.9 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  164.0 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  162.6 
   DIHEdral CH2  CH2  CH2  CH3  1.4     1  165.6 
   DIHEdral CH2  OE   C    CH2  5.7     1  178.2 
   DIHEdral OE   C    CH2  CH2  0.2     1  178.0 
   DIHEdral C    CH2  CH2  CH2  1.4     1  72.1 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  82.0 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  142.5 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  83.9 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  90.9 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  96.0 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  144.5 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  162.2 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  120.5 
   DIHEdral CH2  CH2  CH2  CH2  1.4     1  177.1 
   DIHEdral CH2  CH2  CH2  CH3  1.4     1  174.2 
!   DIHEdral CH2  CH2  CH3  DUM  1.4     1  174.2 
!   DIHEdral CH2  CH3  DUM  DUM  1.4     1  174.2 
!   DIHEdral CH3  DUM  DUM  DUM  1.4     1  174.2 
!   DIHEdral DUM  DUM  DUM  DUM  1.4     1  174.2 
 
   IMPRoper CH1  OE   CH2  CH2  0.0     0  35.3 
   IMPRoper C    OE   O    CH2  0.0     0  0.0 
   IMPRoper C    OE   O    CH2  0.0     0  0.0 
 
   NONBONDED C 0.06935 0.36 0.06935 0.36 
   NONBONDED NL 0.1599 0.31 0.1599 0.31 
   NONBONDED OE 0.2643 0.28 0.2643 0.28 
   NONBONDED OM 0.4313 0.26 0.4313 0.26 
   NONBONDED OA 0.2643 0.28 0.2643 0.28 
   NONBONDED CH1 0.02372 0.5 0.02372 0.5 
   NONBONDED CH2 0.1026 0.41 0.1026 0.41 
   NONBONDED CH3 0.2168 0.37 0.2168 0.37 
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   NONBONDED O 0.3198 0.28 0.3198 0.28 
   NONBONDED P,SI 0.6117 0.34 0.6117 0.34 
   NONBONDED CH3p 0.2168 0.37 0.2168 0.37 
   NONBONDED DUM  0.0000 0.00 0.0000 0.00 
 
!SEGMent 
!   name=DMPC 
!   molecule number=1 name=DMPC end 
!END 
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File 3: Lipid Topology File 

 
!DMPC Topology File 
!Filename=SPIN.top 
! 
! Parameters for DMPC (1,2-dimyristoyl-sn-glycero3-phosphocholine) 
! To be used in conjunction with the GROMOS 54a7 forcefield files. 
! Please cite the following references when using this topology: 
! Poger D, van Gunsteren WF & Mark AE (2010) J. Comput. Chem. 31(6), 1117-1125 
! Poger D & Mark AE (2010) J. Chem. Theory Comput. 6(1), 325-336 
! Topology file created by lipidATB at 23:48 on 2010-07-07 
! 
!TOPOLOGY 
!      GROUP 
   RESIdue SPIN 
      ATOM CN1  TYPE=CH3p CHARge=0.400    MASS=15.0350  END 
      ATOM CN3  TYPE=CH3p CHARge=0.400    MASS=15.0350  END 
      ATOM CN2  TYPE=CH3p CHARge=0.400    MASS=15.0350  END 
      ATOM NTM  TYPE=NL   CHARge=-0.500   MASS=14.0067  END 
      ATOM CA   TYPE=CH2  CHARge=0.300    MASS=14.0270  END 
      ATOM CB   TYPE=CH2  CHARge=0.400    MASS=14.0270  END 
      ATOM OA   TYPE=OA   CHARge=-0.800   MASS=15.9994  END 
      ATOM P    TYPE=P,SI CHARge=1.700    MASS=30.9738  END 
      ATOM OC   TYPE=OM   CHARge=-0.800   MASS=15.9994  END 
      ATOM OB   TYPE=OM   CHARge=-0.800   MASS=15.9994  END 
      ATOM OD   TYPE=OA   CHARge=-0.700   MASS=15.9994  END 
      ATOM CC   TYPE=CH2  CHARge=0.400    MASS=14.0270  END 
      ATOM CD   TYPE=CH1  CHARge=0.300    MASS=13.0190  END 
      ATOM OE   TYPE=OE   CHARge=-0.700   MASS=15.9994  END 
      ATOM C1A  TYPE=C    CHARge=0.700    MASS=12.0110  END 
      ATOM OF   TYPE=O    CHARge=-0.700   MASS=15.9994  END 
      ATOM C1B  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1C  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1D  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1E  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1F  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1G  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1H  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1I  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1J  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1K  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1L  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1M  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1N  TYPE=CH3  CHARge=0.000    MASS=15.0350  END 
      ATOM CE   TYPE=CH2  CHARge=0.500    MASS=14.0270  END 
      ATOM OG   TYPE=OE   CHARge=-0.700   MASS=15.9994  END 
      ATOM C2A  TYPE=C    CHARge=0.800    MASS=12.0110  END 
      ATOM OH   TYPE=O    CHARge=-0.600   MASS=15.9994  END 
      ATOM C2B  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2C  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2D  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2E  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2F  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2G  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
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      ATOM C2H  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2I  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2J  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2K  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2L  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2M  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2N  TYPE=CH3  CHARge=0.000    MASS=15.0350  END 
      ATOM XAA  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XAB  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XAC  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XAD  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XBA  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XBB  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XBC  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XBD  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XCA  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XCB  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XCC  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XCD  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XDA  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XDB  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XDC  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM XDD  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YAA  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YAB  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YAC  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YAD  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YBA  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YBB  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YBC  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YBD  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YCA  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YCB  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YCC  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YCD  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YDA  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YDB  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YDC  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM YDD  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZAA  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZAB  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZAC  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZAD  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZBA  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZBB  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZBC  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZBD  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZCA  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZCB  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZCC  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZCD  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZDA  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZDB  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZDC  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
      ATOM ZDD  TYPE=DUM  CHARge=0.000    MASS=15.0350  END 
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      BOND CN1  NTM  
      BOND CN3  NTM  
      BOND CN2  NTM  
      BOND NTM  CA   
      BOND CA   CB   
      BOND CB   OA   
      BOND OA   P    
      BOND P    OC   
      BOND P    OB   
      BOND P    OD   
      BOND OD   CC   
      BOND CC   CD   
      BOND CD   OE   
      BOND CD   CE   
      BOND OE   C1A  
      BOND C1A  OF   
      BOND C1A  C1B  
      BOND C1B  C1C  
      BOND C1C  C1D  
      BOND C1D  C1E  
      BOND C1E  C1F  
      BOND C1F  C1G  
      BOND C1G  C1H  
      BOND C1H  C1I  
      BOND C1I  C1J  
      BOND C1J  C1K  
      BOND C1K  C1L  
      BOND C1L  C1M  
      BOND C1M  C1N  
      BOND CE   OG   
      BOND OG   C2A  
      BOND C2A  OH   
      BOND C2A  C2B  
      BOND C2B  C2C  
      BOND C2C  C2D  
      BOND C2D  C2E  
      BOND C2E  C2F  
      BOND C2F  C2G  
      BOND C2G  C2H  
      BOND C2H  C2I  
      BOND C2I  C2J  
      BOND C2J  C2K  
      BOND C2K  C2L  
      BOND C2L  C2M  
      BOND C2M  C2N  
      BOND C2N  XAA 
      BOND XAA  XAB 
      BOND XAB  XAC 
      BOND XAC  XAD 
      BOND XAD  XBA 
      BOND XBA  XBB 
      BOND XBB  XBC 
      BOND XBC  XBD 
      BOND XBD  XCA 
      BOND XCA  XCB 
      BOND XCB  XCC 
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      BOND XCC  XCD 
      BOND XCD  XDA 
      BOND XDA  XDB 
      BOND XDB  XDC 
      BOND XDC  XDD 
      BOND XDD  YAA 
      BOND YAA  YAB 
      BOND YAB  YAC 
      BOND YAC  YAD 
      BOND YAD  YBA 
      BOND YBA  YBB 
      BOND YBB  YBC 
      BOND YBC  YBD 
      BOND YBD  YCA 
      BOND YCA  YCB 
      BOND YCB  YCC 
      BOND YCC  YCD 
      BOND YCD  YDA 
      BOND YDA  YDB 
      BOND YDB  YDC 
      BOND YDC  YDD 
      BOND YDD  ZAA 
      BOND ZAA  ZAB 
      BOND ZAB  ZAC 
      BOND ZAC  ZAD 
      BOND ZAD  ZBA 
      BOND ZBA  ZBB 
      BOND ZBB  ZBC 
      BOND ZBC  ZBD 
      BOND ZBD  ZCA 
      BOND ZCA  ZCB 
      BOND ZCB  ZCC 
      BOND ZCC  ZCD 
      BOND ZCD  ZDA 
      BOND ZDA  ZDB 
      BOND ZDB  ZDC 
      BOND ZDC  ZDD 
 
      ANGLe CN1  NTM  CN3  
      ANGLe CN1  NTM  CN2  
      ANGLe CN1  NTM  CA   
      ANGLe CN3  NTM  CN2  
      ANGLe CN3  NTM  CA   
      ANGLe CN2  NTM  CA   
      ANGLe NTM  CA   CB   
      ANGLe CA   CB   OA   
      ANGLe CB   OA   P    
      ANGLe OA   P    OC   
      ANGLe OA   P    OB   
      ANGLe OA   P    OD   
      ANGLe P    OD   CC   
      ANGLe OC   P    OB   
      ANGLe OC   P    OD   
      ANGLe OB   P    OD   
      ANGLe OD   CC   CD   
      ANGLe CC   CD   OE   
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      ANGLe CC   CD   CE   
      ANGLe CD   OE   C1A  
      ANGLe CD   CE   OG   
      ANGLe OE   CD   CE   
      ANGLe OE   C1A  OF   
      ANGLe OE   C1A  C1B  
      ANGLe C1A  C1B  C1C  
      ANGLe OF   C1A  C1B  
      ANGLe C1B  C1C  C1D  
      ANGLe C1C  C1D  C1E  
      ANGLe C1D  C1E  C1F  
      ANGLe C1E  C1F  C1G  
      ANGLe C1F  C1G  C1H  
      ANGLe C1G  C1H  C1I  
      ANGLe C1H  C1I  C1J  
      ANGLe C1I  C1J  C1K  
      ANGLe C1J  C1K  C1L  
      ANGLe C1K  C1L  C1M  
      ANGLe C1L  C1M  C1N  
      ANGLe CE   OG   C2A  
      ANGLe OG   C2A  OH   
      ANGLe OG   C2A  C2B  
      ANGLe C2A  C2B  C2C  
      ANGLe OH   C2A  C2B  
      ANGLe C2B  C2C  C2D  
      ANGLe C2C  C2D  C2E  
      ANGLe C2D  C2E  C2F  
      ANGLe C2E  C2F  C2G  
      ANGLe C2F  C2G  C2H  
      ANGLe C2G  C2H  C2I  
      ANGLe C2H  C2I  C2J  
      ANGLe C2I  C2J  C2K  
      ANGLe C2J  C2K  C2L  
      ANGLe C2K  C2L  C2M  
      ANGLe C2L  C2M  C2N  
      ANGLE C2M  C2N  XAA 
      ANGLE C2N  XAA  XAB 
      ANGLE XAA  XAB  XAC 
      ANGLE XAB  XAC  XAD 
      ANGLE XAC  XAD  XBA 
      ANGLE XAH  XBA  XBB 
      ANGLE XBA  XBB  XBC 
      ANGLE XBB  XBC  XBD 
      ANGLE XBC  XBD  XCA 
      ANGLE XBH  XCA  XCB 
      ANGLE XCA  XCB  XCC 
      ANGLE XCB  XCC  XCD 
      ANGLE XCC  XCD  XDA 
      ANGLE XCH  XDA  XDB 
      ANGLE XDA  XDB  XDC 
      ANGLE XDB  XDC  XDD 
      ANGLE XDC  XDD  YAA 
      ANGLE XHH  YAA  YAB 
      ANGLE YAA  YAB  YAC 
      ANGLE YAB  YAC  YAD 
      ANGLE YAC  YAD  YBA 
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      ANGLE YAH  YBA  YBB 
      ANGLE YBA  YBB  YBC 
      ANGLE YBB  YBC  YBD 
      ANGLE YBC  YBD  YCA 
      ANGLE YBH  YCA  YCB 
      ANGLE YCA  YCB  YCC 
      ANGLE YCB  YCC  YCD 
      ANGLE YCC  YCD  YDA 
      ANGLE YCH  YDA  YDB 
      ANGLE YDA  YDB  YDC 
      ANGLE YDB  YDC  YDD 
      ANGLE YDC  YDD  ZAA 
      ANGLE YHH  ZAA  ZAB 
      ANGLE ZAA  ZAB  ZAC 
      ANGLE ZAB  ZAC  ZAD 
      ANGLE ZAC  ZAD  ZBA 
      ANGLE ZAH  ZBA  ZBB 
      ANGLE ZBA  ZBB  ZBC 
      ANGLE ZBB  ZBC  ZBD 
      ANGLE ZBC  ZBD  ZCA 
      ANGLE ZBH  ZCA  ZCB 
      ANGLE ZCA  ZCB  ZCC 
      ANGLE ZCB  ZCC  ZCD 
      ANGLE ZCC  ZCD  ZDA 
      ANGLE ZCH  ZDA  ZDB 
      ANGLE ZDA  ZDB  ZDC 
      ANGLE ZDB  ZDC  ZDD 
 
      DIHEdral CN2  NTM  CA   CB   
      DIHEdral NTM  CA   CB   OA   
      DIHEdral NTM  CA   CB   OA   
      DIHEdral CA   CB   OA   P    
      DIHEdral CB   OA   P    OD   
      DIHEdral CB   OA   P    OD   
      DIHEdral OA   P    OD   CC   
      DIHEdral OA   P    OD   CC   
      DIHEdral P    OD   CC   CD   
      DIHEdral OD   CC   CD   CE   
      DIHEdral CC   CD   OE   C1A  
      DIHEdral CC   CD   CE   OG   
      DIHEdral CD   OE   C1A  C1B  
      DIHEdral CD   CE   OG   C2A  
      DIHEdral OE   C1A  C1B  C1C  
      DIHEdral C1A  C1B  C1C  C1D  
      DIHEdral C1B  C1C  C1D  C1E  
      DIHEdral C1C  C1D  C1E  C1F  
      DIHEdral C1D  C1E  C1F  C1G  
      DIHEdral C1E  C1F  C1G  C1H  
      DIHEdral C1F  C1G  C1H  C1I  
      DIHEdral C1G  C1H  C1I  C1J  
      DIHEdral C1H  C1I  C1J  C1K  
      DIHEdral C1I  C1J  C1K  C1L  
      DIHEdral C1J  C1K  C1L  C1M  
      DIHEdral C1K  C1L  C1M  C1N  
      DIHEdral CE   OG   C2A  C2B  
      DIHEdral OG   C2A  C2B  C2C  
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      DIHEdral C2A  C2B  C2C  C2D  
      DIHEdral C2B  C2C  C2D  C2E  
      DIHEdral C2C  C2D  C2E  C2F  
      DIHEdral C2D  C2E  C2F  C2G  
      DIHEdral C2E  C2F  C2G  C2H  
      DIHEdral C2F  C2G  C2H  C2I  
      DIHEdral C2G  C2H  C2I  C2J  
      DIHEdral C2H  C2I  C2J  C2K  
      DIHEdral C2I  C2J  C2K  C2L  
      DIHEdral C2J  C2K  C2L  C2M  
      DIHEdral C2K  C2L  C2M  C2N  
 
      IMPRoper CD   OE   CE   CC   
      IMPRoper C1A  OE   OF   C1B  
      IMPRoper C2A  OG   OH   C2B  
   END 
 
   RESIdue DMPC 
      ATOM CN1  TYPE=CH3p CHARge=0.400    MASS=15.0350  END 
      ATOM CN3  TYPE=CH3p CHARge=0.400    MASS=15.0350  END 
      ATOM CN2  TYPE=CH3p CHARge=0.400    MASS=15.0350  END 
      ATOM NTM  TYPE=NL   CHARge=-0.500   MASS=14.0067  END 
      ATOM CA   TYPE=CH2  CHARge=0.300    MASS=14.0270  END 
      ATOM CB   TYPE=CH2  CHARge=0.400    MASS=14.0270  END 
      ATOM OA   TYPE=OA   CHARge=-0.800   MASS=15.9994  END 
      ATOM P    TYPE=P,SI CHARge=1.700    MASS=30.9738  END 
      ATOM OC   TYPE=OM   CHARge=-0.800   MASS=15.9994  END 
      ATOM OB   TYPE=OM   CHARge=-0.800   MASS=15.9994  END 
      ATOM OD   TYPE=OA   CHARge=-0.700   MASS=15.9994  END 
      ATOM CC   TYPE=CH2  CHARge=0.400    MASS=14.0270  END 
      ATOM CD   TYPE=CH1  CHARge=0.300    MASS=13.0190  END 
      ATOM OE   TYPE=OE   CHARge=-0.700   MASS=15.9994  END 
      ATOM C1A  TYPE=C    CHARge=0.700    MASS=12.0110  END 
      ATOM OF   TYPE=O    CHARge=-0.700   MASS=15.9994  END 
      ATOM C1B  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1C  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1D  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1E  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1F  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1G  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1H  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1I  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1J  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1K  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1L  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1M  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C1N  TYPE=CH3  CHARge=0.000    MASS=15.0350  END 
      ATOM CE   TYPE=CH2  CHARge=0.500    MASS=14.0270  END 
      ATOM OG   TYPE=OE   CHARge=-0.700   MASS=15.9994  END 
      ATOM C2A  TYPE=C    CHARge=0.800    MASS=12.0110  END 
      ATOM OH   TYPE=O    CHARge=-0.600   MASS=15.9994  END 
      ATOM C2B  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2C  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2D  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2E  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2F  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
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      ATOM C2G  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2H  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2I  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2J  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2K  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2L  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2M  TYPE=CH2  CHARge=0.000    MASS=14.0270  END 
      ATOM C2N  TYPE=CH3  CHARge=0.000    MASS=15.0350  END 
 
      BOND CN1  NTM  
      BOND CN3  NTM  
      BOND CN2  NTM  
      BOND NTM  CA   
      BOND CA   CB   
      BOND CB   OA   
      BOND OA   P    
      BOND P    OC   
      BOND P    OB   
      BOND P    OD   
      BOND OD   CC   
      BOND CC   CD   
      BOND CD   OE   
      BOND CD   CE   
      BOND OE   C1A  
      BOND C1A  OF   
      BOND C1A  C1B  
      BOND C1B  C1C  
      BOND C1C  C1D  
      BOND C1D  C1E  
      BOND C1E  C1F  
      BOND C1F  C1G  
      BOND C1G  C1H  
      BOND C1H  C1I  
      BOND C1I  C1J  
      BOND C1J  C1K  
      BOND C1K  C1L  
      BOND C1L  C1M  
      BOND C1M  C1N  
      BOND CE   OG   
      BOND OG   C2A  
      BOND C2A  OH   
      BOND C2A  C2B  
      BOND C2B  C2C  
      BOND C2C  C2D  
      BOND C2D  C2E  
      BOND C2E  C2F  
      BOND C2F  C2G  
      BOND C2G  C2H  
      BOND C2H  C2I  
      BOND C2I  C2J  
      BOND C2J  C2K  
      BOND C2K  C2L  
      BOND C2L  C2M  
      BOND C2M  C2N  
 
      ANGLe CN1  NTM  CN3  
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      ANGLe CN1  NTM  CN2  
      ANGLe CN1  NTM  CA   
      ANGLe CN3  NTM  CN2  
      ANGLe CN3  NTM  CA   
      ANGLe CN2  NTM  CA   
      ANGLe NTM  CA   CB   
      ANGLe CA   CB   OA   
      ANGLe CB   OA   P    
      ANGLe OA   P    OC   
      ANGLe OA   P    OB   
      ANGLe OA   P    OD   
      ANGLe P    OD   CC   
      ANGLe OC   P    OB   
      ANGLe OC   P    OD   
      ANGLe OB   P    OD   
      ANGLe OD   CC   CD   
      ANGLe CC   CD   OE   
      ANGLe CC   CD   CE   
      ANGLe CD   OE   C1A  
      ANGLe CD   CE   OG   
      ANGLe OE   CD   CE   
      ANGLe OE   C1A  OF   
      ANGLe OE   C1A  C1B  
      ANGLe C1A  C1B  C1C  
      ANGLe OF   C1A  C1B  
      ANGLe C1B  C1C  C1D  
      ANGLe C1C  C1D  C1E  
      ANGLe C1D  C1E  C1F  
      ANGLe C1E  C1F  C1G  
      ANGLe C1F  C1G  C1H  
      ANGLe C1G  C1H  C1I  
      ANGLe C1H  C1I  C1J  
      ANGLe C1I  C1J  C1K  
      ANGLe C1J  C1K  C1L  
      ANGLe C1K  C1L  C1M  
      ANGLe C1L  C1M  C1N  
      ANGLe CE   OG   C2A  
      ANGLe OG   C2A  OH   
      ANGLe OG   C2A  C2B  
      ANGLe C2A  C2B  C2C  
      ANGLe OH   C2A  C2B  
      ANGLe C2B  C2C  C2D  
      ANGLe C2C  C2D  C2E  
      ANGLe C2D  C2E  C2F  
      ANGLe C2E  C2F  C2G  
      ANGLe C2F  C2G  C2H  
      ANGLe C2G  C2H  C2I  
      ANGLe C2H  C2I  C2J  
      ANGLe C2I  C2J  C2K  
      ANGLe C2J  C2K  C2L  
      ANGLe C2K  C2L  C2M  
      ANGLe C2L  C2M  C2N  
 
      DIHEdral CN2  NTM  CA   CB   
      DIHEdral NTM  CA   CB   OA   
      DIHEdral NTM  CA   CB   OA   
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      DIHEdral CA   CB   OA   P    
      DIHEdral CB   OA   P    OD   
      DIHEdral CB   OA   P    OD   
      DIHEdral OA   P    OD   CC   
      DIHEdral OA   P    OD   CC   
      DIHEdral P    OD   CC   CD   
      DIHEdral OD   CC   CD   CE   
      DIHEdral CC   CD   OE   C1A  
      DIHEdral CC   CD   CE   OG   
      DIHEdral CD   OE   C1A  C1B  
      DIHEdral CD   CE   OG   C2A  
      DIHEdral OE   C1A  C1B  C1C  
      DIHEdral C1A  C1B  C1C  C1D  
      DIHEdral C1B  C1C  C1D  C1E  
      DIHEdral C1C  C1D  C1E  C1F  
      DIHEdral C1D  C1E  C1F  C1G  
      DIHEdral C1E  C1F  C1G  C1H  
      DIHEdral C1F  C1G  C1H  C1I  
      DIHEdral C1G  C1H  C1I  C1J  
      DIHEdral C1H  C1I  C1J  C1K  
      DIHEdral C1I  C1J  C1K  C1L  
      DIHEdral C1J  C1K  C1L  C1M  
      DIHEdral C1K  C1L  C1M  C1N  
      DIHEdral CE   OG   C2A  C2B  
      DIHEdral OG   C2A  C2B  C2C  
      DIHEdral C2A  C2B  C2C  C2D  
      DIHEdral C2B  C2C  C2D  C2E  
      DIHEdral C2C  C2D  C2E  C2F  
      DIHEdral C2D  C2E  C2F  C2G  
      DIHEdral C2E  C2F  C2G  C2H  
      DIHEdral C2F  C2G  C2H  C2I  
      DIHEdral C2G  C2H  C2I  C2J  
      DIHEdral C2H  C2I  C2J  C2K  
      DIHEdral C2I  C2J  C2K  C2L  
      DIHEdral C2J  C2K  C2L  C2M  
      DIHEdral C2K  C2L  C2M  C2N  
 
      IMPRoper CD   OE   CE   CC   
      IMPRoper C1A  OE   OF   C1B  
      IMPRoper C2A  OG   OH   C2B  
   END 
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