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Investigation of the Performance of an Automatic Arterial Oxygen 

Controller 

AKRAM AHMAD A. FAQEEH 

Dr. Roger Fales 

Dr. Isabella Zaniletti 

ABSTRACT 

Premature infants often require respiratory support with a varying concentration of 

the fraction of inspired oxygen (FiO2) to keep the arterial oxygen saturation (SpO2) within 

the desired range to avoid both hypoxemia and hyperoxemia. Currently, manual adjustment 

of FiO2 is the common practice in neonatal intensive care units (NICUs). The automation 

of this adjustment is a topic of interest. The research team, at University of Missouri-

Columbia (UMC), has developed a novel automatic arterial oxygen saturation controller. 

In this study, a systematic approach has been developed to investigate both non-clinical 

and clinical performance of this device.  

The non-clinical investigation of the performance was performed using a neonatal 

respiratory model (hardware-in-the-loop test). A factorial experimental design was utilized 

to generate challenging model responses of SpO2, which were addressed by the controllers. 

With this study, we demonstrate the stability and ability of the adaptive PI-controller to 

improve oxygen saturation control over manual control by increasing the proportion of 

time where SpO2 of the neonatal respiratory model was within the desired range and by 

minimizing the variability of the SpO2. In addition, the controller ability to significantly 

reduce the number of hypoxemic events of the neonatal respiratory model was reported. 

Results of this investigation show the competence of the controller estimation system for 
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estimating neonatal respiratory model parameters while the adaptive PI-controller was in 

use. Also, the functionality of the controller with no mechanical or communication failure 

was validated non-clinically before heading forward to the clinical trial.  

The clinical investigation of the performance was performed by conducting a 

clinical trial at the NICU of the MU Women’s and Children’s Hospital. The crossover 

design was used for the clinical trial to allow within-subject comparison and to eliminate 

interpatient variability. Two human subjects, with two different target ranges of SpO2, 

were enrolled in the study. The adaptive automatic PI-controller shows clinical feasibility 

to improve the maintenance of SpO2  within the intended range. With this study, we 

demonstrate the potential of the automatic controller to minimize the variability of SpO2. 

In addition, the controller shows the ability to reduce the bradycardia and the hypoxemia. 

Moreover, the hardware and software of the controller show an ability to transition from 

manual to automatic mode, and vice versa with no pronounced “bump” or step variation in 

the control signal, and stability and performance were not adversely affected during the 

transitions. 
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Chapter 1 : Introduction 

 In this chapter, the background and motivation of the current research are first 

introduced. The literature review is discussed in the second section of this chapter. Then, 

the research objectives are highlighted and followed by the dissertation outline. 

1.1 Background and Motivation 

Respiratory support is essential for newborn infants, particularly in those born 

prematurely. Premature infants commonly experience breathing disorder, which is called 

respiratory distress syndrome (RDS), formally known as hyaline membrane disease [1]. 

The tiny air-exchanging sacs of the lungs that is known as alveoli are coated by pulmonary 

surfactant, which reduces surface tension so that collapse is avoided and the required 

pressure to re-inflate it with next inspiration becomes less [1-3]. The production of 

pulmonary surfactant is sufficient in healthy full-term infants so that in rare cases RDS 

develops in full-term infants [1, 2]. On the other hand, premature infants are prone to RDS 

due to the inadequacy of surfactant production.  

The treatment of the neonatal respiratory disease such as RDS is respiratory 

support, where the infant is supplied with a mixture of air and oxygen. Regardless of the 

mode of respiratory delivery (hood, nasal cannula or prongs, endotracheal tube, bag, or 

mask), the mixture should be humidified, warmed, and has an optimal concentration of 

fraction of inspired oxygen (FiO2) [3]. The adjustment of the FiO2 aims to keep arterial 

oxygen saturation (SpO2) within the desired range to avoid both low oxygen saturation 

(hypoxemia) and high oxygen saturation (hyperoxemia), which are associated with the 

following risks: mortality, retinopathy of prematurity (ROP), chronic lung disease (CLD), 

and brain damage [4, 5].  
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At present, the manual adjustment of FiO2 is the common approach to maintaining 

SpO2 within the prescribed range. A pulse oximeter is used to measure SpO2 via skin probe 

so that a nurse applies the appropriate adjustment of FiO2. It is everyday routine in neonatal 

care; however, the efficacy of this method is questionable and varies greatly depending on 

nursing staff and activity in the NICU [6-10]. Reference [9] concluded that maintaining 

the  SpO2  within the target range manually is a difficult task, as a consequence, a 

considerable percentage of time spent outside the target range. a contemporary study 

highlighted that about half of the time spent outside the prescribed range of SpO2 [9]. A 

protocol has been developed by the Vermont Oxford Neonatal Network to increase the 

percentage of time spent within the target range of SpO2, the percentage increased from 

20% to an average of 35% [8]. In contrast, another study shows that the implementation 

of the developed protocol has no significance at improving the time spent within the SpO2 

target range [10]. It is apparent that the improvement in the manual adjustment of FiO2 is 

limited and associated with a high workload [11]. Thus, researchers are moving toward the 

automation of FiO2 adjustment. 

1.2 Literature Review 

The studies towards the automation of FiO2 were initiated in 1979 [12, 13]. Since 

that date, multiple studies have been published to automate the adjustment of FiO2. The 

automated algorithms simply command adjustments to the FiO2, which are actuated 

accordingly, based on the measured deviation of SpO2 from a selected set point or range. 

Regarding this subject, some reviews have highlighted the necessity, rationale, benefits, 

feasibility, effectiveness, limitations, and further improvements [14-22]. These papers 

emphasized the need for automatic SpO2 controller, especially, for premature infants who 



3 

 

experience frequent and severe fluctuations in oxygenation. Also, they show evidence of 

the superiority of the automatic control of FiO2 over manual care with available clinical 

studies when applied to premature infants. However, these studies recommended 

evaluating the effectiveness and safety of using the automatic controllers by employing 

extensive clinical trials and considering long-term outcomes. The review [21] mainly aims 

to summarize and classify the used algorithms for automating FiO2 adjustment in the 

neonate. In this paper, the control algorithms are classified into four major categories: rule-

based (non-fuzzy and fuzzy), proportional-integral-derivative (PID), adaptive, and robust 

controller. This classification is used to plan the current literature review and is followed 

by reviewing researching efforts of the research team at University of Missouri-Columbia 

(UMC); also, the chronology of the studies is considered. 

The rule-based controller is simple if-then loop that is developed based on expert's 

knowledge to control FiO2 [21]. Collins et al. [12] had developed an apparatus to automate 

the regulation of the oxygen supply to premature infants based on the measured partial 

pressure of arterial oxygen (PaO2). The apparatus is merely a hard-wired servo-system 

with using umbilical arterial oxygen catheter-tip electrode as sensor and simple rule-based 

as control algorithm. After setting the target range for PaO2, the servo-controller adjusted 

FiO2 by a single step of 5% increment or decrement at one-minute sampling interval when 

PaO2  is out of the predefined limits. Beddis et al. [13] experimentally show that the 

apparatus successfully minimized the time where the PaO2 spent outside the prescribed 

range of twelve preterm infants, receiving supplemental oxygen via head-box, continuous 

positive airway pressure (CPAP), or intermittent positive pressure ventilation (IPPV), by 
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more than 15%. However, the paper highlighted the observation that the PaO2 was above 

the prescribed target range more frequent while using servo-control than manual-control. 

 After the general clinical acceptance of the pulse oximeter which is able to monitor 

oxygenation noninvasively by determining SpO2  instead of PaO2  [23, 24], researchers 

started to considered pulse oximeter as a feedback sensor to FiO2 auto-control systems. 

Morozoff et al. [25] developed a state machine controller which is considered as rule-based 

in 1993. In this study, a pulse oximeter is used as a sensor to measure SpO2 to be fed into 

the state machine controller which adjusts FiO2 . The authors used the sign of the 

magnitude, velocity, and acceleration as inputs into a state machine. Accordingly, the trend 

of the error can be determined to define the next state of the state machine where each state 

has an independent adjustment of FiO2 and delay, and the state machine was updated one 

time every second. The developed controller was clinically tested on eight patients that 

were intubated and required assisted ventilation. The study concluded that the automatic 

controller positively increased the proportion of time when SpO2 within the target range.  

The high volumes of data with high error-rate that is a visible problem in neonatal 

intensive care units (NICUs) [26]. This problem is produced by the online monitoring such 

as a high volume of inaccurate SpO2 values, which might be generated by pulse oximeter 

because of the small movements of the patient. It directs Miksch et al. [26] to present a 

time-oriented data-abstraction method which can derive qualitative description, spreads 

and deducting intervals, from oscillating high-frequency data such as SpO2 values. The 

basic three steps of this method are eliminating data errors, clarifying the curve, and 

qualifying the curve. By applying such a method, better visualization of patients’ condition 

is possible, which lead to a more accurate suggestion to be applied. Seyfang et al. [27] 
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utilized the time-oriented data-abstraction method to optimize the adjustment of FiO2 for 

newborns based on the clinical expert knowledge to keep the SpO2 within the prescribed 

range with minimum adjustments. In the more recent paper, additional description of this 

algorithm had been presented where the clinical test of the automatic control was 

performed [28]. However, the authors mentioned that the controller was not designed to 

respond to acute severe hypoxemic events. The algorithm made the FiO2  adjustment 

depends on the two analyses of SpO2: state analysis and trend analysis which are 180 and 

60 seconds moving time-window followed by wait mode where no action is applied. There 

were five qualitative abstraction values of the state analysis (substantially above, above, 

normal range, below, substantially below), accordingly, one of five possible 

FiO2 adjustments were suggested (−0.02,−0.01,±0,+0.01, +0.02).  There were three 

qualitative abstraction values of trend analysis (increasing, stable, decreasing), which is 

able to postpone suggested FiO2 adjustment. For the clinical evaluation, twelve preterm 

infants who are less than 34 weeks of gestational age at birth and receiving supplemental 

oxygen via nasal continuous positive air pressure considered to be assigned to this study. 

The study demonstrated statistical conclusions while comparing between closed-loop, 

routine manual, and dedicated manual control. In short, the closed-loop control 

significantly increased the percentage of time where SpO2  within prescribed range 

comparing to routine manual control only. Further, a more recent and a larger scale of the 

clinical trial was performed with 34 preterm infants receiving supplemental oxygen 

through mechanical ventilation or CPAP using the same algorithm [29], and it ends up with 

a similar conclusion as previous clinical evolution [28]. 
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For fuzzy logic-rule based controller, Fathabadi et al. [21] mentioned that "The 

application of fuzzy logic controller to neonatal inspired oxygen control was first reported 

by Sun et al. [30], paralleling the efforts of Morzoff [31]." In addition to what simple rule-

based controller can perform; fuzzy logic controller enables a specific set of inputs to be 

associated with a number of rules with variable range. The advantages of fuzzy logic 

control over classical control as following: (a) allowable to deal with difficult systems such 

as non-linear, (b) able to utilize an expert's knowledge about specific problem, (c) capable 

to build linguistic representation based on continuous variable, (d) less sensitive to noise 

and (d) parameter change, and faster computation for real-time application [30, 32, 33]. 

Sun et al. [30] employs a fuzzy logic approach to design a microprocessor-based system to 

assist controlling FiO2 to maintain SpO2 within the desired range. The generated "rules" of 

the fuzzy logic controller were based on the neonatologists' knowledge and experience. 

The 35 if-then developed fuzzy rules constructed by using a weighted-mean method of 

seven ∆SpO2 and five SpO2 slope as input parameters. The system is an open-loop system 

where the suggestions for adjusting FiO2  were displayed to be executed by the nurse 

according to his/her best medical judgment. The clinical evaluation of this system designed 

to be an experimental period of open-loop computer adjustment FiO2 (2-hour), preceded 

and followed by a control period of the traditional routine manual control of FiO2 (2-hour 

each). In this paper, clinical trials of two patients requiring mechanical ventilation were 

reported, and the results were promising as the author described it. Further clinical trials 

implemented on 16 newborns using identical study design and procedure that had been 

used previously [34]. The study emphasized the less variability of SpO2  while using 
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computer-assisted FiO2 control, and highlighted the potential of automating such a system 

in the future.  

More recently, a fuzzy logic controller integrated with a medical auto-mixer device 

was presented by Lopez et al. [35]. Unlike the previous study, the 35 if-then developed 

fuzzy rules constructed by using five ∆SpO2 and seven SpO2 slope as input parameters 

where the output is 11  possible values for an adjustment 

(−5%,−4%,−3%,−2%,−1%, 0%,+1%,+2%,+3%,+4%,+5).  Three tests 

performed to evaluate the performance of the developed system: simulation in Matlab, 

pulse oximeter simulation, and clinical test. A Matlab simulation and pulse oximeter 

simulation was performed to ensure the functionality of the control system. However, the 

pulse oximeter was simply sending data every 2 seconds by the serial port simulating SpO2 

received through a pulse oximeter. Subsequently, a clinical trial was performed on 40 

preterm newborns requiring supplemental oxygen. They were randomly divided into 

control and experimental group with 12 hour periods for the manual control and automated 

control. The study showed that the percentage of the time, where SpO2 values within the 

target range, was 58% for automatic controller compared to 33.7% of manual control. 

However, the SpO2  was under the prescribed target range more frequent while using 

automatic control. 

PID is a second category controller that is to be discussed in this literature review. 

PID-control, consist of proportional (𝐾𝑝), integral (𝐾𝑖) , and derivative (𝐾𝑑)  term. 𝐾𝑝 

coefficient is responsible for present system error, 𝐾𝑖 coefficient for eliminating bias offset 

by accumulating previous errors over time, and 𝐾𝑑 coefficient for future trend error based 

on the derivative (rate of change) [36]. One of the first attempts of applying PID-controller 
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to automate oxygen control in preterm infants had been performed by Tehrani et al. [37], 

and it was updated in 1994 and 2001, respectively [38, 39]. These controllers were tested 

by using the advantage of computerized simulation of a mathematical model [40, 41]. In 

the earliest version controller [37], the SpO2 is fed into a microcomputer controller where 

the PaO2 to be computed by using the specific mathematical equation, then the error signal 

of the set point is calculated. Subsequently, the error signal is applied to a PID controller 

to apply the proper adjustment of FiO2. In the later version of the controller [39], a stepwise 

control loop was integrated to respond faster to very abrupt reduction in SpO2 . The 

simulated results, which were under different designed conditions, shows stable and 

acceptable performance for the controllers. In 2009, three closed-loop controller of FiO2 

(state machine, adaptive, and PID) has been evaluated by being applied to seven ventilated 

low birth weight infants [42]. The developed PID algorithm was required manual tuning of 

the gain coefficients. The study revealed that the three automatic algorithms improved the 

oxygen therapy for targeting the desired range and minimizing the need for manual 

adjustments.  

Turn the literature review into the application of adaptive controller. In the case of 

changeable parameters of the dynamic plant model, adaptive control is able to provide an 

approach for automatic adjustment of controllers in the real-time [43]. The advantage and 

applicability of using an adaptive controller to automate the adjustment of FiO2 was early 

noticeable by many researchers. As it was described by Fathabadi et al. [21], "One of the 

earliest and most significant contributions was made by Sano and Kikucki [44]." Since this 

study was performed before the general clinical acceptance to the pulse oximeter, the 

transcutaneous oxygen sensor had used to monitor PaO2  of newborn infants under 
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incubator oxygen therapy. Their algorithm, a model reference adaptive control, includes 

two feedback loops: adaptive compensator and digital controller. The optimum digital 

controller that suggests the optimal adjustment of FiO2 to control the assumed nominal 

model output. By using an analytical model of neonatal respiratory systems developed by 

Grodins et al. [45], the developed adaptive controller was tested. Also, animal experiments' 

tests were reported by considering dogs under different low-ventilation conditions. Both 

applied tests show the potential of the automation using the adaptive algorithm.  

A multiple-model adaptive controller (MMAC) developed to regulate oxygen 

saturation by automatic adjustment of FiO2 [46, 47]. The MMAC controller consists of a 

model bank (finite number of models) and controller bank (designed number of controllers) 

where each of the models associated with the designed controller that provides zero steady-

state error and reasonable transient response. The controller output adaptively computed 

according to the corresponding between the plant and the model, which is associated with 

the controller in the controller bank. The MMAC controller had been tested to control a 

finite number of plant models as an initial evaluation, and then it was tested on animals. 

The MMAC was found to be able to regulate oxygen saturation in both simulations and 

animal experiments effectively. Another group of researchers studied the applicability and 

effectiveness of adaptive PID controller to control FiO2 for infants receiving supplemental 

oxygen by using hood [48-50]. The ratio between PaO2  and FiO2  is calculated using 

mathematical relationship where PaO2 is found by using measured SpO2, this ratio used in 

the specific equation to find the tuning parameters. The validation of these studies was 

performed by using simulation, animal trials, and human trials. The authors emphasized 

the feasibility of using such control algorithm for automating FiO2 adjustment. 
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Recently, Dargaville et al. [51] designed a PID adaptive controller for automating 

the control of FiO2 in NICU. In their study, the error is the numerical difference between 

the average of prescribed SpO2  range and the receiving values of SpO2 . The error, its 

integral, and its derivative with their coefficient are proportional to the signal output. For 

the accommodation of some peculiarities of the system under control, some modifications 

were applied to the PID controller (error attenuation within target range at values < 80%, 

compensation for the nonlinearity of SpO2 − PaO2  at high values). Because of the 

observed inverse proportion between gain and severity of dysfunctional lung [52, 53], the 

adaptive controller was considered to allow the proportional gain to be modified 

accordingly. Computerized simulation of oxygenation was used as a non-clinical test to 

assess the performance of the control algorithm. The study shows the developed algorithm 

performance was promising and deserves clinical evaluation. Thus, a clinical evaluation 

was carried on twenty preterm infants on non-invasive respiratory support in 2016 [54]. 

The study procedure was a prospective interventional of 4-hour period of automated 

oxygen control, which come in between 4-hour periods of manual control (four hours 

before and after automated control). The study emphasized the effectiveness of the 

automated oxygen control since it shows better performance in targeting the prescribed 

range and significantly reduced hypoxemia and hyperoxemia events. 

Before discussing the robust controller, it is appropriate to discuss the unique hybrid 

algorithm of differential feedback and rule-based that has been developed by Claure et al. 

[55]. This controller designed to automate FiO2 adjustment in premature infants who are 

receiving supplemental oxygen through the mechanical ventilator. The hybrid controller is 

activated to increase or decrease FiO2  whenever the SpO2  travel above or below the 
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prescribed range. The timely adjustment of FiO depends on the value of SpO2, its derivate 

(direction and rate of change), and its duration while it is out the target range. The 

integrated control rules allow the controller to adapt its response to the need for changing 

conditions in SpO2. This hybrid algorithm was tested by assigning 14 very low birth weight 

infants, the finding was that closed-loop hybrid algorithm control more effective than 

routine care, and it was comparable to dedicated nurse. This algorithm was clinically 

evaluated by considering a larger number of patients, different modes of respiratory 

support, and different target range [56-60]. The closed-loop controller shows superiority 

performance regarding the percentage of time spent while SpO2 within the target range for 

every used condition. 

A robust controller aims to control a system with uncertainties at some level of 

control performance within predefined ranges [61]. There were only two used algorithms 

for controlling oxygen saturation in infants classified as robust control [21]. One of these 

two studies was published in 1988 [62]. In this early study, the authors used indwelling 

umbilical artery electrode as the input of PaO2 to a robust controller. This robust control 

algorithm required two control parameters: gain (b) and time delay (T). A pilot study of 

five infants was performed to characterize control parameters for stability purposes. The 

used control algorithm in this study was proposed by Astrom et al. [63], T was used as 

sampling interval while the input to the system equal to the previous input plus the ratio of 

the output error to b. After evaluating the closed-loop controller in seven preterm newborns 

receiving supplemental oxygen via a head-box, the study highlighted the noticeable 

improvement of the closed-loop controller over the manual care at spending time within 

the predefined range. The second robust algorithm was performed by a research team at 
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UMC [64]. This study is discussed in the following part of this literature review 

accompanying the other researching efforts that were accomplished at the same university.  

The research team at UMC has considered the automation of FiO2 adjustment as 

one of the main researching project since their first published works regarding the topic 

[64-66]. Three graduate students presented their theses, which were at the core of 

developing a controller for automating the adjustment of FiO2  in NICU [67-69]. The 

researching efforts were about modeling the respiratory system of preterm infants, 

developing proper control algorithm, and constructing an applicable prototype. 

Keim [67] contributions were in modeling neonatal respiratory model, finding the 

relationship between FiO2 (input) and SpO2 (output) for estimating purposes, developing 

control algorithms, and constructing a prototype. Based on the previous modeling studies 

[41, 70-72], a nonlinear respiratory model was developed by including time-varying 

parameters. The developed nonlinear and linear model compared using small and large step 

input, then both compared to the collected clinical data [65, 67]. For the interest of 

modeling the relationship between FiO2 and SpO2 to be used in the area of control design, 

dynamic fuzzy logic system (DFLS), continuous parameter-estimating extended Kalman 

filter (CP-EEKF), and discrete parameter-estimating extended Kalman filter (DP-EEKF) 

were evaluated. A discrete disturbance estimator was utilized to estimate the unknown 

disturbance, which is then used to modify the control signal to the DP-EEKF. Therefore, 

the disturbance estimator and DP-EEKF could estimate both disturbances and system 

parameters. Both the DFLS and DP-EEKF was found to accurately estimate the 

parameters, yet the DP-EEKF was more efficient at estimation and more applicable to be 

used in linear control theory.  
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Robust controller was designed to control automatically FiO2 adjustments [64, 67]. 

For robust control, the nominal model and multiplicative uncertainty error model were 

created. For the performance weights, 5% was an allowable error at low frequency and 

300% allowable error at high frequency. A µ-analysis (structured singular value analysis) 

was used to find the robust performance of the controller. Both robust stability and 

performance, for a given set of known plant uncertainties, was found for the robust 

controller with a low bandwidth frequency. Further, adaptive controller based on 

disturbance and DP-EEKF estimator system was developed [67, 73]. At each iteration, the 

DP-EEKF estimates the plant gain while the disturbance estimator estimates the 

disturbance, and they feed into the controller. Both the robust and adaptive controller are 

compared to a static PI-controller; the adaptive controller was performing the best in the 

simulation. Subsequently, the first prototype is constructed, which is simply a mechatronic 

device consisting of electrical and mechanical components, and it is allowable to perform 

the required FiO2 adjustments. 

Krone [68] investigated the biological system of the infants to model the 

relationship between SpO2 and the other measurable parameters: FiO2, heart rate (HR), and 

respiratory rate (RR). Fuzzy logic, neural network, and transfer function model were used 

to develop models that have inputs of FiO2, HR, and RR. These models were tested, in a 

simulation environment, to observe which one of those models was performing the best in 

representing the future SpO2 (from clinical measurements) for the longest time [66, 68]. 

After the simulated tests, the transfer function model represents the best future SpO2. 

Linear quadratic regulator PI-controller (LQR-PI) was developed where it controls 

only FiO2, and HR and RR were considered as disturbances [68]. Nominal and robust 
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stability were found in the closed-loop system. The study mentioned that the closed-loop 

system is stable whenever the gain was positive. A robust controller was designed, where 

the uncertainty of FiO2, HR and RR took into the account and found using multiplicative 

uncertainty. A µ-synthesis controller was developed for six ranges of FiO2. The nominal 

stability, nominal performance, robust stability, and robust performance were evaluated to 

ensure the ability of each controller to perform over the uncertain range successfully. Also, 

an adaptive controller with feedforward disturbance rejection was developed. This system 

consisted of a feedback controller for FiO2 and a feedforward disturbance rejection for HR 

and RR. The estimated parameters were found by using dynamic transfer function model, 

and they were updated every 5 seconds. The author highlighted the ability of all developed 

controllers to reject the disturbances and maintain SpO2  within the target range in a 

simulation.  

Quigley [69] used a genetic algorithm (GA) to locate the most accurate nominal 

model at representing SpO2 based on that appropriate robust controller is selected. The 

working procedure started with sending model FiO2 − SpO2 relationship to GA, which 

selects the proper robust controller based on the estimating parameters. This iterative 

procedure has a period of 5-seconds. In this study, some modification of the control 

performance specifications was applied to allow the automatic controller to adjust the FiO2 

as the manual protocol used in NICU. Some additional performance weight was applied to 

the controller such as the weight used to limit the changing rate of FiO2 adjustments. The 

study shows some simulated results of the modified controller. Also, the prototype was 

modified to be more applicable to perform the automatic adjustment of FiO2.  



15 

 

Ultimately, many researchers put considerable efforts into studying the automation 

of FiO2. However, the automated control has not substituted or reduced the use of manual 

control yet. It is noticeable that many of the studies included in this literature were 

following similar studying stages; designing control algorithm or improving existing one, 

testing the functionality and performance using computer simulation, and finally 

performing a clinical trial. As mentioned above, several control algorithms have been 

developed and tested in simulation environment by the research team at UMC. None of 

these developed control algorithms was experimentally investigated thoroughly. The 

applicable software of the adaptive controller based on discrete disturbance and DP-EEKF 

estimator, incorporated with the suitable hardware were structured for automating the 

adjustment of FiO2 . The experimental non-clinical and clinical, investigation of the 

performance of the developed controller has not been executed prior to the work that is 

presented here.  

1.3 Research Objectives 

In this research, a systematic approach has been developed to investigate both 

clinical and non-clinical the performance of the automatic SpO2 controller. In the non-

clinical study, the neonatal simulation of oxygenation was used as an input for the adaptive 

controller (hardware-in-the-loop test). The aim was to assess the performance of the 

controller in (a) maintaining SpO2 within a prescribed range and showing the stability of 

the system’s response, (b) estimating neonatal respiratory model parameters, and (c) 

functioning with no mechanical or communication failure. In the clinical study, the primary 

objective was demonstrating the clinical feasibility of the controller in a study with two 

human subjects at two different target ranges of SpO2. The analyses were applied to the 
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data that was collected in NICU to show (a) the ability of the device to performs better or 

at least similar to the manual care at targeting the SpO2 prescribed range, (b) the stability 

of the system’s response and reducing both hypoxemic and hyperoxaemic episodes, and 

(c) the ability to transition smoothly from automatic to manual mode and vice versa. 

1.4 Dissertation Outline 

This dissertation is organized into five chapters as follows: 

• Chapter 1 includes background and motivation, literature review, and research 

objectives of the current study. 

• Chapter 2 introduces the neonatal respiratory model, the automatic SpO2 controller, 

and the utilized statistical analysis. 

• Chapter 3 presents the non-clinical study including experiment setup, manual 

control algorithm, experimental design and procedure, data collection and analysis, 

results, and discussion. 

• Chapter 4 presents the clinical study including experiment setup of the clinical trial, 

study settings and subjects, study protocol, data collection and analysis, results, and 

discussion. 

• Chapter 5 presents the conclusion and future work. 
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Chapter 2 : Overview of the Neonatal Respiratory Model, 

the Automatic Arterial Oxygen Controller, and the Utilized 

Statistical Analysis 

In this chapter, an overview of the neonatal respiratory model is presented. Further 

details and discussion of this respiratory model can be found in these references [65-68]. 

Then, an overview of the automatic controller is discussed in three sections. Elaborated 

details and description of this controller can be found in these references [67, 73]. Finally, 

the background of the statistical analyses that are used in this research to investigate the 

performance of the device is introduced. 

2.1 Overview Neonatal Respiratory Model 

  The neonatal respiratory model, to simulate SpO2 responses due to adjustments of 

FiO2, is a first-order transfer function (TF) [65-68]. This TF was developed based on earlier 

studies [41, 70-72]. The TF was evaluated by using clinical data that was collected in the 

NICU at MU Women's and Children's Hospital. The study that includes the collection of 

the clinical data was approved by the local institutional review boards (IRB). It is noted 

that a lag (time delay) between the FiO2  and the SpO2  was indicated and due to the 

dynamics of the pulse oximeter, transport delay (due to equipment) and the oxygenation 

time (due to physiology). The lag was not constant; however, a method involving a search 

window was used to determine the time delay between the FiO2 and SpO2. The delay was 

removed from the data to fit model parameters (for the part of the model that excludes time 

delay) to maximize the accuracy of FiO2 event modeling process. The studies confirmed 

and validated the ability to use the first-order transfer function to model the relationship 
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between FiO2 and SpO2 using clinical data. Also, some other studies obtained similar and 

supportive results [52, 74]. The first-order transfer function is 

 𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

𝐺FiO2

𝜏FiO2
𝑠 + 1

 ,  (2.1) 

where s is the Laplace variable, 𝑌(𝑠) is the output SpO2, U(s) is the input FiO2, and 𝐺FiO2
and 

𝜏FiO2
 are the gain and time constant associated with the input of FiO2 and the output SpO2. 

Therefore, using different combinations of the two parameters allows the model to have a 

response that closely resembles the collected clinical data for premature infants. In 

addition, there is an “unknown” disturbance to the infant response which results in the 

desaturation events. By unknown, we mean that the cause of the disturbance is not 

measured directly.  

The dynamic response of the infant model is 

 𝑌(𝑠) = 𝐺(𝑆)[(𝑈(𝑠) − 𝑢0) + (𝐷(𝑆) − 𝑑0)] + 𝑦0 , (2.2) 

Where 𝐷(𝑠) is the disturbance, and the nominal values are denoted by the subscript 0. Fig.  

2-1 represents the block diagram of the neonatal respiratory model. In addition, there is a 

delay included at the input which may cause the instability behavior in model responses. 

 

Fig.  2-1 Block diagram of the neonatal respiratory model 

 



19 

 

2.2 Overview Automatic Arterial Oxygen Controller 

The closed-loop control device was developed to automate the control of FiO2 in 

premature infants, however, the device can be used for any patient requiring respiratory 

support [67, 73]. Concisely, the system is a microcontroller that attaches to monitoring 

devices, such as an oxygen sensor and a pulse oximeter, which send signals of clinical 

measurements of a patient. Based on the signals that are received, the microcontroller 

dynamically and adaptively runs its control algorithm to determine the proper percentage 

of oxygen concentration. Subsequently, the error signal is amplified and used to direct a 

DC motor that controls the blend (or mixing) valve (connected to oxygen and medical air 

gas). Then the mixed air is delivered to the infant through a proper respiratory support 

mode such as heated and humidified high flow nasal cannula. Fig.  2-2 shows the diagram 

of the automated respiratory support system [67, 73]. 

 

Fig.  2-2: Diagram of the automated respiratory support system [67, 73] 

2.2.1 Control Algorithm   

The control algorithm is classified as an adaptive, which is based on a discrete 

disturbance estimator and discrete parameter-estimating extended Kalman filter estimator 
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(DP-EEKF) [67, 73]. Fig.  2-3 shows the block diagram of the essential elements of the 

control system. The control algorithm is fundamentally based on estimators, which are the 

disturbance estimator and the PE-EKF. The estimated parameters are used to determine 

control gains for the adaptive control which is used to determine the control effort (FiO2). 

Unknown disturbances act as a signal which adversely affects the SpO2. To counteract the 

disturbance, the feed-forward disturbance compensator is utilized. The total control effort 

of FiO2 is the sum of the adaptive control output and the feed-forward disturbance 

compensator output. The total control effort is sent to the electrical, mechanical, and 

medical components to produce the proper FiO2 input to the premature infant. The 

reference SpO2 is the average value of the target range that is prescribed. 

 

Fig.  2-3: Block diagram of the control system 

The adaptive gain for the P-control system is calculated by 

 𝐾𝑝 =

1
𝑒𝑠𝑠

− 1

�̂�3(𝑡)
 , (2.3) 
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where ess is the maximum allowable steady-state error, and �̂�3(𝑡) is the estimated 𝐺FiO2
 

which is computed by DP-EEKF. 

The adaptive gains for the PI-controller are calculated by 

 𝐾𝑝 =
0.4 × �̅�FiO2

�̂�3(𝑡)
 , (2.4) 

 𝐾𝑖 =
0.01 × �̅�FiO2

�̂�3(𝑡)
 . (2.5) 

The control gains in the case of PI control were designed (using a Ziegler-Nichols 

method) for a model with a nominal value of 𝐺FiO2
, �̅�FiO2

= 3.5, and then scaled as shown 

in Eqs. (2.4) and (2.5). The estimated disturbance (�̂�(𝑡)) , which is computed by 

disturbance estimator, is multiplied by an additional feed-forward control gain (𝐾𝐷) to 

produce the total control effort. Using a trial and error method, 𝐾𝐷 is found to be a constant 

of value 0.4 for stability and good disturbance rejection.  

The total control effort for the P-controller with a disturbance canceling feed-

forward term is 

 𝑢(𝑡) = �̂�(𝑡)𝐾𝐷 + (𝑦𝑑(𝑡) − 𝑦(𝑡))𝐾𝑝 , (2.6) 

where 𝑦𝑑(𝑡) is the average value of the desired target range and 𝑦(𝑡) is the feedback value 

of SpO2. The total control effort PI-control with a disturbance canceling feedforward term 

is 

 𝑢(𝑡) = �̂�(𝑡)𝐾𝐷 + (𝑦𝑑(𝑡) − 𝑦(𝑡))𝐾𝑝 + 𝐾𝑖 ∫ (𝑦𝑑(𝑡) − 𝑦(𝑡))𝑑𝑡
𝑡

0

 . (2.7) 

The controller is enhanced with anti-integral windup design, to avoid the integral 

saturation phenomenon while switching from manual to automatic mode and vice versa 

and while under conditions with extreme disturbance levels, sensor failure, disablement of 
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the DC motor during manual control, and approaching signal limitations such as the 

minimum FiO2 (21% on an absolute scale) and the maximum SpO2 (100% on an absolute 

scale). Also, a time-delay compensator is used to compensate for process and transport 

delays inherent in the equipment and the human subject. 

The Kalman filter is used to minimize the estimation error by using a first order 

model and applying the Kalman gain, K. The error covariance matrix, P, is the 

quantification of the error estimation. The state vector, �̂� , and P are updated at each 

iteration. The authors applied CP-EEKF for estimating SpO2, 𝐺FiO2
, and 𝜏FiO2

. For a better 

performance of the CP-EEKF, it was converted to DP-EEKF. Fig.  2-4 show the diagram 

of the process of the DP-EEKF update for each iteration [67, 73]. 

 

Fig.  2-4: Diagram of the DP-EEKF update process for each iteration [64, 70] 

 

 The used F, L, H, and M matrices in the controller are given as 
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𝐹𝑘−1 = [
1 − �̂̃�2(𝑡)∆𝑡 ∆𝑡(−�̂�1(𝑡) + �̂�3(𝑡)𝑢𝐸𝐾𝐹) ∆𝑡�̂̃�2(𝑡)𝑢𝐸𝐾𝐹

0 1 − 2�̂̃�2(𝑡)𝑤𝑝∆𝑡 0

0 0 1

]|

�̂�𝑘
+

 , 

𝐿𝑘−1 = [
∆𝑡 0 0
0 −�̃�2

2(𝑡)∆𝑡 0
0 0 ∆𝑡

]|

�̂�𝑘
+

 , 

𝐻𝑘 = [1 0 0] , 

𝑀𝑘 = 1 , 

(2.8) 

where �̂�1(𝑡) is the estimated SpO2 difference from the average value of the desired target 

range, �̂�2 (t) is the estimated 𝜏𝐹𝑖𝑂2
, �̂̃�2(𝑡)  is the inverted value of �̂�2(𝑡) , 𝑢𝐸𝐾𝐹  is the 

modified control signal, and 𝑤𝑝 is an added artificial noise [67, 73]. At each time step, the 

F, L matrices are updated with the previous state estimate, as shown in Fig. 2-3, while the 

H and M matrices remain constant.  

The discrete disturbance estimator is applied to the input FiO2  and the output 

SpO2to reject unmodeled dynamics. The used discrete estimator equation is 

 

�̂�𝑘+1 
= [Φ − 𝐿𝑝𝐻]�̂�𝑘 + [Γ − 𝐿𝑝𝐽, 𝐿𝑝]𝑢𝑘 , 

𝑦𝑑𝑘
= [𝐼 − 𝐿𝑐𝐻]�̂�𝑘 + [−𝐿𝑐𝐽, 𝐿𝑐]𝑢𝑘 , 

(2.9) 

where 𝛷, Г, 𝐻, and 𝐽 are the discretized coefficients that are found by using the continuous 

state space system model [67, 75, 76]. 𝑢𝑘 is the combined input of the control signal and 

measurement. 𝐿𝑐is the estimator vector gain, which is determined by 

 

𝐿𝑐 =

[
 
 
 
 

1 − 𝛽2

1 − 𝑄

(𝛽 − 1)2

�̂�3𝑄 ]
 
 
 
 

 , 

𝛽 = 𝑒−𝜔0𝑇 , 

(2.10) 
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𝑄 =
(𝑇�̂̃�2)

3

6
−

(𝑇�̂̃�2)
2

2
+ 𝑇�̂̃�2 , 

where 𝜔0 is disturbance estimator pole location in the continuous time domain, 𝛽 is the 

discrete time (z-domain) poles of the estimator, and 𝑇 is the discrete sample time. 

 Half of the frequency of the discrete time step, 𝑇, is used as the upper bound on the 

pole location. Because of the stability issues, a faster pole is not practical for discrete time 

implementation. Therefore, the upper bound is 75 𝑟𝑎𝑑/𝑠𝑒𝑐 . To avoid the disturbance 

estimator to be slower than the baby’s response, the lower bound chose to be 

0.02 𝑟𝑎𝑑/𝑠𝑒𝑐. The gain 𝐿𝑝 is given by 

 𝐿𝑝 = 𝛷𝐿𝑐 . (2.11) 

A modification of the control signal is taken place by using the output of the 

disturbance estimator. By using the modified signal, DP-EEKF estimates the system 

parameter more accurate and remain the system gain in the positive range. 

2.2.2 Prototype Hardware and Construction 

The porotype consists of both mechanical and electrical components, which is 

known as mechatronic device [67, 69]. The mechanical components such as blender valve, 

shaft attached to a heliacal coupler, and miter gears allow transmitting the control signals 

to the required adjustment of FiO2. The National Instruments microcontroller which has 

serial adapters, motor drivers, and a ribbon cable module for analog input and output, 

receiving the clinical measurements from Spacelabs® patient monitor and the FiO2 

percentage from the oxygen analyzer. This microcontroller sent control signal after being 

processed by the developed software through a computer. Fig.  2-5 shows the block 

diagram of the device and connections [67], however, some of these control signals are 
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possible but not being activated yet in the controller. Fig.  2-6 shows the essential 

mechanical components of the developed porotype.   

 

Fig.  2-5: Block diagram of the device and connections [67] 
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Fig.  2-6: The mechanical component of the porotype [66] 

2.2.3 Prototype Software  

A graphical programming language (LabVIEW®) was used to develop the software 

for the current prototype [67]. The software includes Field-Programmable Gate Array 

module (FPGA) of the microcontroller and Virtual Instrument (VI). In the memory side of 

the microcontroller, five programs run to treat the received data before sending back the 

control signal. A block diagram of the process where data flow through the porotype 

software is shown in Fig.  2-7 [67]. 

As shown, the SpO2 and FiO2 are sent to FPGA VI to be ready for reading by the 

serial communication VI. Then data processing VI received the serial signal in the form of 

a string variable. At the point that SpO2 and FiO2 percentage is recognized in the string; 

they sent to data filtering VI. By using discrete low pass filter, the values of SpO2  is 
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filtered. Once data filtering is completed, estimation and control VI receives the arrays of 

SpO2  and FiO2  percentage where the estimation system is taken place. Based on this 

estimation, the control signal of adjusting FiO2 is sent to another signal communication VI 

which communicates with FPGA VI. An error signal is created at FPGA VI by subtracting 

the encoder setpoint from the current encoder position VI. The adjustment of FiO2 

transferred to proper encoder tics and sent back to the mechanical components of the 

prototype.  

 

Fig.  2-7: A block diagram of the process where data flow through the porotype software [64]  

2.3 Background of the Utilized Statistical Analysis 

 Descriptive statistics briefly summarizes the collected data. Therefore, the reader 

can easily understand the nature of the dataset by using the descriptive statistics such 

measuring the central tendency and variability. However, descriptive statistics are not able 

to draw a significant conclusion about the collected data. At the point of comparing two or 
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more data sets, statistical analysis can provide a significant methodical conclusion about 

the collected data. Background of the statistical analysis methods that are used in this 

research is provided in the following subsections. 

2.3.1 Normal Probability Plot and Shapiro-Wilk Test 

Statistical analysis’ tests have specific assumptions that need to be met before 

running them such as normality for parametric tests. Normal or Gaussian distribution is a 

continuous probability distribution, which is bell-curved and symmetric with a mean (𝜇) 

that describes the center of the curve of a set of data and with standard deviation (𝜎) that 

describes the dispersion of this data around the center [77]. Before the use of any parametric 

test, a verification of the normality assumption is essential. A variety of graphical methods 

and statistical tests are available for testing normality. However, the graphical method has 

no guarantee that the distribution is normal [78]. Therefore, the normality tests should be 

supplemented to the graphical methods [79]. Normal probability plot and Shapiro-Wilk 

test were used to verify the assumption normality for the collected data, which was 

considered to be analyzed in the current research. 

The normal probability plot is a graphical method to assess whether the collected 

data is approximately normal or not [80]. The normal distributed data should form an 

approximate straight line when they plotted versus a theoretical normal distribution with 

no departures. Shapiro-Wilk test has been considered as the most powerful test of normality 

[78]. Hence, Shapiro-Wilk test was used to test the normality of the data in addition to the 

normal probability plot. The Shapiro-Wilk test count on the correlation of the data and their 

corresponding normal scores. The hypotheses of testing the normality of specific data and 

statistical test as follows: 
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H0: The data is normally distributed  

Ha: The data is not normally distributed 

 The Shapiro-Wilk test formula is 

 𝑆𝑊 − 𝑊 =
(∑ 𝑎𝑖𝑥𝑖

𝑛
𝑖=1 )2

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

 , (2.12) 

where 𝑥𝑖 is the data values, �̅� is the sample mean, 𝑛 is number of observations, and 𝑎𝑖 is 

weight values.  

Based on the 𝑆𝑊 − 𝑊 and corresponding to sample size, the p-value can be found. 

In this research 𝛼 of 0.05 is chosen to reject or not the null hypothesis. For the case, the 

test not rejecting the null hypothesis, p-value> 0.05, the parametric test can be used; 

otherwise, an alternative nonparametric test is suggested to be employed. 

2.3.2 Paired T-Test 

At the point that the primary objective is to assess the effect before and after the 

treatment or the method of treating (Clinical trial), a paired t-test is advantageous for such 

comparison [77, 81]. The hypotheses as follows: 

H0: μd = 0 

Ha: μd ≠ 0 

where 

 𝜇𝑑 = 𝜇1 − 𝜇2 . (2.13) 

The null hypothesis indicating no difference between means and the alternative 

hypothesis states that there is a difference. The paired t-test was used for comparing the 

normally distributed variables of frequency episodes where SpO2 outside the target range 
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and mean duration of those episodes. The test statistic for the paired t-test of the introduced 

hypotheses is 

 

𝑡 =
�̅�𝑑

𝑆𝐸
 , 

𝑆𝐸 =
𝑠𝑑

√𝑛
 , 

𝑑𝑓 = 𝑛 − 1 , 

(2.14) 

where 𝑛 is the number of observations, �̅�𝑑 is the mean, 𝑆𝐸 is the standard error of the mean 

difference, 𝑠𝑑 is the standard deviation, and 𝑑𝑓 is the degrees of freedom. Based on the 

value of 𝑡 and 𝑑𝑓, the p-value is found. The null hypothesis is rejected when p-value < 

0.05. 

2.3.3 Wilcoxon (Matched Pairs) Signed Rank Test 

 Wilcoxon signed rank test is an appropriate alternative nonparametric test to the 

paired t-test when its assumption such as normality is not valid [82, 83]. It is relatively 

liberal; the assumptions required to be met for using this nonparametric test are that the 

data be continuous and paired [83]. In the current research, this test was used when 

normality assumption was not valid, for any comparison that was mentioned in the previous 

section. The only difference is that the hypotheses are identified if there is a difference 

based on the medians, for example: 

H0: 𝑀𝑑 = 0 

Ha: 𝑀𝑑 ≠ 0 

where 

 𝑀𝑑 = 𝑀1 − 𝑀2 . (2.15) 
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The null hypothesis is stating no difference between the two medians while the 

alternative hypothesis is indicating that there is a difference. The test statistic for the 

Wilcoxon signed rank test of the introduced sets of hypotheses is 

 𝑧 =
𝑇+ − [

𝑛(𝑛 + 1)
4 ]

√𝑛(𝑛 + 1)(2𝑛 + 1)
24

 , (2.16) 

where 𝑇+  is the sum of positive ranks 𝑛 is the number of positive and negative ranks 

excluding ties.  

The null hypothesis is rejected, p-value < 0.05, where the differences in positive 

and negative ranks are sufficiently large.  

2.3.4 Friedman Test with Post-Hoc Comparison 

Friedman test is the nonparametric alternative of the one-way ANOVA. It is like 

the Wilcoxon signed rank test with an advantage of being able to be used with more than 

two matched subjects [83]. The post-hoc test was used to locate the differences among the 

groups. In the non-clinical investigation of this study, Friedman test with post-hoc 

comparison was used to determine the differences in frequency episodes where SpO2 

outside the target range and mean duration of that episodes when manual routine control, 

adaptive P-controller, and adaptive PI-controller were used. The hypotheses that were 

considered at running this test for comparison among the mentioned variables as follows: 

H0: There are no differences among the medians of the used control algorithms for 

one of the considered variables at nonclinical test   

Ha: There is at least one difference among the medians of the used control 

algorithms for one of the considered variables at nonclinical test   

The Friedman evaluate the rank totals of each considered group by 
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𝐹𝑟 =
12

𝑁𝑘(𝑘 + 1)
[∑𝑅𝑗

2

𝑘

𝑗−1

] − [3𝑁(𝑘 + 1)] , 

𝑑𝑓 = 𝑘 − 1 , 

(2.17) 

where 𝑅𝑗  is the sum of the ranks for group 𝑗, 𝑁 is the number of subjects, and 𝑘 is the 

number of groups (three in ours case) [83, 84].  

Based on 𝐹𝑟  and 𝑑𝑓, the p-value is found and compare to 𝛼 , which is 0.05, to 

decide to reject or not the null hypothesis. The approach that was used to apply post-hoc 

comparison is using Wilcoxon signed rank test in between the considered groups [83, 85]. 

Only 𝛼 value is needed to be adjusted using Bonferroni’s inequality; 𝛼 is divided by 𝑘 to 

get 𝛼𝑎𝑑𝑗. The adjusted critical value, 𝛼𝑎𝑑𝑗, is 0.017 for 𝑘 = 3. Another approach that was 

used is examining the following condition if it is true then there is a significant difference 

between the considered groups as  

 |�̅�1 − �̅�2| ≥ 𝑍𝛼/[𝑘(𝑘−1)]√
𝑘(𝑘 + 1)

(6𝑁)
  , (2.17) 

where �̅�1 and �̅�2 are the mean ranks for the two considered groups. 𝑍𝛼/[𝑘(𝑘−1)] is the 

critical z value for 𝛼′ = 𝛼/[𝑘(𝑘 − 1)] [83, 86, 87].  

2.3.5 Statistical Power 

 The statistical power of a test is the probability of leading to a correct conclusion 

about the null hypothesis [88]. In other words, statistical power is the probability of 

avoiding type II error. A type II error occurs when it is concluded that not rejecting the null 

hypothesis, when in fact it must be rejected. The statistical power is 

 𝑃𝑜𝑤𝑒𝑟 = 1 − 𝛽 = 1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦[𝑧𝑝𝑜𝑤𝑒𝑟 ≤ (𝑡 − 𝑡1)] , (2.19) 
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where 𝑧𝑝𝑜𝑤𝑒𝑟 is a position on the x-axis of the z-distribution, 𝑡1 is the level of t for degrees 

of freedom, and 𝑡 is the calculated 𝑡 from the data. Also, the probability of making type II 

error is 𝛽 [89]. 

For both planning and diagnosis, statistical power analysis is possible to be used 

[88]. Statistical power was used in this study to identify the sample size at a selected power 

level and determine whether the study has acceptable power.  

An estimation of the number of subjects that are required for a power of > 85%, 

for a paired t-test, was calculated. For determining the sample size of a test, there are three 

variables need to be known or assumed: statistical power level, mean difference, and 

variance of the data as SD [89]. The formula for calculating is 

 𝑛 = 2 (
𝑆𝐷

𝑚𝑒𝑎𝑛
)
2

(𝑧𝛼 + 𝑧𝛽)
2
 , (2.20) 

 where (𝑧𝛼 + 𝑧𝛽)
2
 is the power index, which express the relationship between the standard 

deviation and the sample size.  
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Chapter 3 : Non-clinical Investigation of the Performance of an 

Automatic Arterial Oxygen Controller 

In this chapter, the non-clinical investigation is introduced. The experimental 

design with the procedure and data collection with analysis of the non-clinical study are 

presented. Finally, the results and discussion of the non-clinical investigation are presented.  

3.1 Nonclinical Investigation of the Performance 

The non-clinical or preclinical investigation is essential study stage to evaluate the 

controller, which is considered to be clinically evaluated. The primary goals of this 

investigation are to assess the controller in (a) maintaining SpO2 within a prescribed range 

and showing the stability of the system’s response, (b) estimating neonatal respiratory 

model parameters, and (c) functioning with no mechanical or communication failure. 

3.2 Experiment Setup of the Nonclinical Test 

The experimental setup of the non-clinical study (hardware-in-the-loop test) is 

shown in Fig.  3-1. The medical air and oxygen gas cylinders are connected to the air-

oxygen blender valve. The mixed air, from the air-oxygen blender, flows through an 

adjustable flow meter to oxygen sensor that is attached to heater humidifier. The oxygen 

sensor sends the measured percentage of FiO2 to the computer that is running the neonatal 

oxygenation response model simulator implemented using LabVIEW®. The output 

response, SpO2 , is transmitted to the microcontroller which is running the controller 

algorithm code that was developed by using both LabVIEW® and MATLAB®. Based on 

the received data, the control algorithm, a control signal is sent to the amplifier and then to 

the DC motor which is connected by a shaft to a miter gear. Miter gears control a shaft, 

which is attached to the control knob and helical shaft coupler, in a way that the air-oxygen 
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blender supplies the mixed air with the desired level of FiO2. Manual override is possible 

by switching to manual control mode. Automated adjustments are enabled only when the 

switch is used to select automatic mode. The FiO2 developed by the blend valve is received 

through an oxygen analyzer and recorded along with other measurements. 

 

Fig.  3-1: Schematic of the experimental setup of the non-clinical test 

3.3 Manual Control Algorithm 

The manual control algorithm was developed to be followed for a nonclinical lab 

test to be compared to the automated control algorithms. This algorithm was developed to 

demonstrate the capability of using the closed-loop control device in manual mode by the 

simple transition between automatic and manual modes and generating data from the 

mathematical model while manual control was used for comparison. To closely treat the 

neonatal respiratory model as a premature infant being treated in a NICU, the manual 

algorithm for the non-clinical test has been developed based on the policy stated in [90] 

and the developed protocol in [91]. In addition, the restriction that has been considered for 

the automatic control algorithms such as the FiO2 adjustment limitation of 2% and the 

allowance of 10 seconds in between adjustments are also considered in the following 

manual control algorithm: 
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1. Monitor model’s SpO2 every minute at maximum. 

2. Reduce FiO2 by about 2% as SpO2 level exceeds the upper limit of SpO2 target 

range.  

3. Increase FiO2  by about 2% as SpO2  level when under the lower limit of SpO2 

target range. 

4. Allow about 10 seconds for assessment at each applied adjustment. 

Fig.  3-2 shows the flow diagram for the developed manual control algorithm. 

 

Fig.  3-2: The flow diagram of the developed manual algorithm 
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3.4 Design of Experiment and Experimental Procedure  

To assess the performance of the control algorithm, the design of experiments and 

experimental procedure need to be comprehensive, efficient, and analyzable. As introduced 

previously in Sec 2.1, the neonatal respiratory model can have a response as a result of 

adjusting FiO2  that is similar to the response of collected clinical data by using an 

appropriate combination of 𝐺𝐹𝑖𝑂2
, 𝜏𝐹𝑖𝑂2

, and a set of disturbances. The different 

combinations of these parameters found by analyzing clinical data allow for representation 

of a wide range of response characteristics and different severities of lung disease which 

affect stability and the relationship between FiO2 and SpO2 [64]. Hence, the experimental 

design of the current test has 3  controllable factors and 3  levels for each factor are 

considered. The levels of 𝐺𝐹𝑖𝑂2
 and 𝜏𝐹𝑖𝑂2

 are selected by searching the average values of 

the three-most frequent 𝐺𝐹𝑖𝑂2
 and 𝜏𝐹𝑖𝑂2

 within a numerical category of fitted transfer 

functions, which was calculated in previous study [68]. Therefore, the selected levels of 

the 𝐺𝐹𝑖𝑂2
 are (2.5, 4.5, 6.5) and 𝜏𝐹𝑖𝑂2

 are (45, 65, 75); Fig.  3-3 and Fig.  3-4 show the 

observation frequency of both parameters based on the collected clinical data. The three 

sets of disturbances (levels: I, II, and III) are purposely designed to generate frequent and 

diverse fluctuations of the SpO2 , which challenges the control algorithms. Each set of 

disturbances includes different frequencies of disturbances, which allows the control 

algorithm to show the ability responding to different types of patients. Fig.  3-5 shows the 

three different sets of disturbances. 
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Fig.  3-3: The gains frequency of fitted transfer function 
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Fig.  3-4: The time constants frequency of fitted transfer function 
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Fig.  3-5: The three different sets of disturbances (I, II, III) 

By using a factorial design for the current experiment, we allow all possible 

combinations of the selected levels of factors, which guarantees the highest diversity of the 

model’s oxygenation response [92, 93]. Therefore, there were 27 different experimental 

conditions that the controllers address to maintain the SpO2 within the prescribed range 

(87% − 93%). The target range of SpO2 varies depending on the particular NICU or 

clinician’s judgment [94, 95]. The selected target range for the current preclinical study is 

typical for many patients [96].The effect of factors was not the purpose of the current study; 

however, the factors were employed to generate several behaviors of neonatal respiratory 

model response while receiving the FiO2, so the test is more inclusive of all observed 

dynamics. Therefore, one inclusive experiment that includes the 27 -experimental 

conditions is appropriate for testing and comparing several control algorithms. This 

experiment was a 3-hour period, for each control algorithm, where each experimental 
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condition persists for about 400  seconds. Thus, the experiment of 27  different 

experimental conditions with their periods is shown in Table 3-1. 

The experimental procedure that was used for both manual and automatic control for 

the nonclinical test is as follows: 

1. Ensure the power supply, cables, gas hoses are appropriately connected. 

2. Ensure the respiratory model settings correspond to the experimental conditions. 

3. The flow meter is fixed at 3 L/min. 

4. Turn the control knob of Air-Oxygen blender to 21% and wait until around 21% 

of FiO2 shows on the oxygen sensor. 

5. Set the microcontroller onto the proper mode (manual or automatic). 

6. Run the experiment using the user interface for a 3-hour period. 

7. Save the experimental data. 

8. Repeat steps 1-7 for each control algorithm.  
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Table 3-1: Experiment with 27 experimental conditions 

Run Gain 

Time 

Constant Disturbance Time (s) 

1 2.5 45 I 400 

2 2.5 45 II 400 

3 2.5 45 III 400 

4 2.5 65 I 400 

5 2.5 65 II 400 

6 2.5 65 III 400 

7 2.5 75 I 400 

8 2.5 75 II 400 

9 2.5 75 III 400 

10 4.5 45 I 400 

11 4.5 45 II 400 

12 4.5 45 III 400 

13 4.5 65 I 400 

14 4.5 65 II 400 

15 4.5 65 III 400 

16 4.5 75 I 400 

17 4.5 75 II 400 

18 4.5 75 III 400 

19 6.5 45 I 400 

20 6.5 45 II 400 

21 6.5 45 III 400 

22 6.5 65 I 400 

23 6.5 65 II 400 

24 6.5 65 III 400 

25 6.5 75 I 400 

26 6.5 75 II 400 

27 6.5 75 III 400 

      Total 10800 

3.5 Data Collection and Analysis   

The SpO2 model response and FiO2 input are recorded every 5 seconds during the 

running of test for both manual algorithm and automated algorithms. For the automated 

algorithms, the estimated parameters such as gain, time constant, and disturbance are also 

recorded. The observed and desired encoder position are recorded every one second. The 

analysis of these measuring allowed for the evaluation of the closed-loop oxygen control 
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device to maintain SpO2 of the neonatal model within a target range, estimating neonatal 

respiratory model parameters, and functioning with no mechanical or communication 

failure. 

 Graphical and numerical analysis are used to describe and compare the collected 

data of SpO2 for each control algorithm during the hardware-in-the-loop test. [77]. The 

percentages of time in the following oxygenation states are calculated and displayed in the 

histogram for the implemented control algorithms: SpO2 within the target range (87% ≤

SpO2 ≤ 93%), below the target range (SpO2 < 87%), and above target range (SpO2 >

93%). Moreover, the variability and ability to maintain the response within the target range 

of SpO2 are evaluated by calculating the following: (a) coefficient of variation (CV) over 

the 3-hour period, (b) frequency of episodes where SpO2 is outside the target range per 10-

minute (the number of episodes of any duration over a 10-minute window), (c) mean 

duration of those episodes in seconds, and (d) frequency of episodes of hypoxemia (SpO2 

< 80%), prolonged hypoxemia (SpO2 < 80% for ≥ 60 seconds), hyperoxemia (SpO2 > 

95%), prolonged hyperoxemia (SpO2 > 95% for ≥ 60 seconds), and SpO2 overshoot (SpO2 

> 95% lasting for at least 60 seconds and occurring within 120 seconds following a 

hypoxemic event) per 30-minute were calculated for each used control algorithm [51, 55, 

57, 95, 97]. Small values of these parameters for the control algorithm indicate better 

effectiveness at targeting the SpO2 range with lower fluctuation. Since the calculated data 

(b, c, and d) do not meet the assumption of normality for at least one of the used algorithms, 

the performance of the three algorithms is assessed by using Friedman non-parametric 

repeated measures analysis of variance (𝛼 =  0.05) with the post-hoc test (𝛼𝑎𝑑𝑗 = 0.017) 

or with the other approach that was introduced in Sec. 2.3.4. The compared data are 
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reported as median and interquartile (IQR). The normal probability plots combined with 

Shapiro-Wilk test results of the calculated data (b, c, and d) are located in Appendix A. 

For the two automated control algorithms, evaluation of the estimation system is 

required. The differences between estimated SpO2 values and the desired value of SpO2 

(90%) are graphically compared to the differences between the observed SpO2  of the 

model and the desired value during the experiment. Similarly, the estimated and observed 

disturbances are graphically displayed to evaluate the performance of the disturbance 

estimator. To measure the performance of the DP-EEKF, the percentage of time that the 

observed SpO2  was within the target range is calculated and graphically displayed. 

Moreover, the percentage of time the estimated gain and time constant are within limits of 

a difference of 0.5 and 5, respectively, were compared to the selected TF parameters. For 

the identification of any functional failure between desired and observed encoder position, 

their measuring were recorded and plotted in figures.  

3.6 Results 

The experiment setup was successfully applied as described in Sec. 3.2. The 

developed manual control was used for the non-clinical hardware-in-the-loop test as 

introduced in Sec. 3.3. This non-clinical hardware-in-the-loop test was applied to evaluate 

the performance of the automatic controller, which was developed to automate the 

adjustment of FiO2  in the NICU. The parameters’ levels were selected based on their 

frequencies of observation as discussed in Sec. 3.4. For a comprehensive assessment of the 

performance of the controller, the neonatal respiratory model’s adjustable parameters were 

set by using full factorial design along the 3-hour period. The SpO2 data of the neonatal 

respiratory model during the hardware-in-the-loop test were collected for three different 
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control algorithms. A typical experimental test was completed in a 3-hour period for each 

control algorithm. Fig.  3-6, Fig.  3-7, and Fig.  3-8 show the recording of SpO2 and FiO2 

for the 3-hour period while using the three control algorithms. 

 

Fig.  3-6:The recording of SpO2 and FiO2 for the 3-hour period while using Manual Control 

 

Fig.  3-7: The recording of SpO2 and FiO2 for the 3-hour period while using P-Controller with 

Estimation System 
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Fig.  3-8: The recording of SpO2 and FiO2 for the 3-hour period while using PI-Controller with 

Estimation System 

The adaptive PI-controller shows the highest performance at maintaining the SpO2 

of the neonatal respiratory model within the target range; 75% of the proportion of time 

was spent within the prescribed range. On the other hand, both the manual control and 

adaptive P-control failed to achieve performance up to 50% of the proportion time where 

SpO2 was within the target range. For the manual control, 48% of the proportion of time 

was spent within the target range. For the adaptive P-Controller, 39% of the proportion of 

time was spent within the target range. 

The proportions of the time while the values of SpO2 were below the lower target 

range or above the target range were varied between the applied algorithms. For the PI-

control, SpO2 values were below than the lower target range limit for 15% and above the 

upper target range limit for only 10% of the proportion of time. For the P-control, SpO2 

values were below than the lower target range limit for 43% and above the upper target 

range limit for 18% of the proportion of time. For the manual control, SpO2 values were 
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below the lower target range limit for 27% and above the upper target range limit for 25% 

of the percentage of the time. Fig.  3-9 graphically summarizes the performance of the 

control algorithms for targeting SpO2.  

 

Fig.  3-9: Histogram of the proportion of time of SpO2 within, below, and above the target range (87-

93) during 3-hour period 

Table 3-2 demonstrates the significant differences in the variability of SpO2 values 

of the three used control algorithms. CVs of SpO2 were 6.19 for manual control, 7.77 for 

P-controller, and 4.17  for PI-controller. There were significant differences among the 

control modes’ desaturation episodes with SpO2 < 87. The least frequency of episodes 

with the minimum mean duration of time with SpO2 < 87 was detected while using the 

PI-control. The episodes above the target range where SpO2 > 93  occurred similarly 

during the utilization of both manual control and the P-controller; however, the PI-control 



47 

 

significantly differed with the least frequent episodes. No significant differences were 

found in the mean duration of episodes where SpO2 > 93.  

Table 3-2: SpO2 variability of the three control algorithms 

 Manual 

Control 

Adaptive P-

Controller  

Adaptive PI- 

Controller  

𝑷

− 𝐕𝐚𝐥𝐮𝐞 

𝐒𝐩𝐎𝟐 CV (%) 6.19 7.77 4.17 𝑁𝐴 

𝐒𝐩𝐎𝟐 < 𝟖𝟕% 

(episodes/10-min) 

3(2 − 4)a 5(4 − 6)b 1(1 − 3)c < 0.05 

𝐒𝐩𝐎𝟐 < 𝟖𝟕% 

(episode duration, s) 

53.75(46.25

− 57.75)d 

48.71(38.5

− 54.4)e 

30.085(5

− 40)f 

< 0.05 

𝐒𝐩𝐎𝟐 > 𝟗𝟑% 

(episodes/10-min) 

3(2 − 4)g 3(2 − 4)h 1(1 − 2)i < 0.05 

𝐒𝐩𝐎𝟐 > 𝟗𝟑% 

(episode duration, s) 

46.04(32.75

− 55.25) 

30.25(23.33

− 46.25) 

25.165(10

− 52.25) 

𝑁𝑆 

Post-Hoc Comparison: 𝐚 and 𝐜 differ from 𝐛; 𝐞 differs from 𝐟; 𝐠 and 𝐡 differ from 𝐢. 

Median (IQR) 

 

 

Table 3-3 demonstrates the significant differences in the frequency of hypoxemic 

events while using the three control algorithms. The reported results show the potential of 

the PI-controller with estimation system at reducing the number of hypoxemic events. 

However, the P-controller shows poor performance comparing to both manual and PI-

controller. No significant differences were indicated for the prolonged hypoxemic, 

hyperoxaemic, prolonged hyperoxaemic, and overshoot. 
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Table 3-3: Hypoxemia, hyperoxemia, and overshoot episodes 

 

 

Manual 

Control 

Adaptive P-

Controller  

Adaptive PI- 

Controller 

𝑷

− 𝐕𝐚𝐥𝐮𝐞 

SpO2 ≤ 𝟖𝟎% 

(episodes < 𝟔𝟎 s 

duration/30-min) 

2(0 − 4)a 3.5(1 − 11)b 0(0 − 0)c < 0.05 

SpO2 ≤ 𝟖𝟎% 

(episodes ≥ 𝟔𝟎 s 

duration/30-min) 

0(0 − 0) 0.5(0 − 2) 0(0 − 0) 𝑁𝑆 

SpO2 ≥ 𝟗𝟓% 

(episodes < 𝟔𝟎 s 

duration/30-min) 

5(3 − 7) 4.5(2 − 9) 1.5(1 − 3) 𝑁𝑆 

SpO2 ≥ 𝟗𝟓% 

(episodes ≥ 𝟔𝟎 s 

duration/30-min) 

1.5(1 − 2) 0(0 − 2) 0.5(0 − 1) 𝑁𝑆 

Overshoot 
(episodes/30-min) 

1(0 − 1) 0(0 − 2) 0(0 − 0) 𝑁𝑆 

Post-Hoc Comparison: 𝐚, b, and 𝐜 differ from each other. 

Median (IQR) 

 

The histogram of FiO2  (Fig.  3-10) illustrate that the model was supplied with 

varied levels of FiO2 for each control algorithm. The model was supplied with the range of 

FiO2 (31% − 35%) for the proportion of time equal 64% for manual control, 42% for P-

controller, and 87% for PI-controller. The range of FiO2 (26% − 30%) was supplied for 

the proportion of time equal 27% for manual control, 41% for P-controller, and 9% for PI-

controller. The range of FiO2 equal (36% − 40%) was supplied for the proportion of time 

equal 9%  for manual control, 16% for  P-controller , and 2%  for PI-controller. Finally, 

range of FiO2 (21% − 25%) and for any values larger than 40% were supplied similarly 

for the proportion of time of all controllers. 
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Fig.  3-10: Histogram of FiO2 during 3-hour period for each control algorithm 

For the two automated control algorithms, the difference between the estimated 

SpO2  values and the desired value of SpO2  (90%)  are graphically compared to the 

difference between the observed SpO2 of the TF and the desired value. It is evident, from 

Fig.  3-11 and Fig.  3-12, that the estimation of the SpO2 difference during the use of both 

automated control algorithms shows good estimation performance. On the other hand, the 

disturbance estimator performances were different during the test of each automatic 

controller. The estimated disturbances were closer to the applied disturbances while using 

the PI-control. Fig.  3-13 and Fig.  3-14 show the applied disturbance versus estimated 

disturbance for the P-controller and PI-controller with the estimation system, respectively.  
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Fig.  3-11: Estimated versus Observed SpO2 for P-Controller with Estimation System 

 

Fig.  3-12: Estimated versus Observed SpO2 for PI-Controller with Estimation System 
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Fig.  3-13: Estimated disturbance versus applied disturbance while using P-Controller with 

Estimation System 

 

Fig.  3-14: : Estimated disturbance versus applied disturbance while using PI-Controller with 

Estimation System 

The percentages of time, where the estimated gain was within 0.5 error limit, were 

calculated for both automated algorithms. The DP-EEKF estimated 55% of the time where 

the gain was within 0.5 error limit during the use of PI-controller. In contrast, it estimated 
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within the limit of 33% of the time during the use of the P-Controller. The performances 

of DP-EEKF at estimating the gain while using both automated algorithms are shown in 

Fig.  3-15 and Fig.  3-16. The DP-EEKF was slightly better at estimating the time constant 

while using the P-control. Fig.  3-17 and Fig.  3-18 show the performances of DP-EEKF at 

estimating the time constant for both used automated algorithms. Finally, the graphical 

comparison of the desired encoder position to the observed encoder position shows no 

functional failure since they were almost the same in Fig.  3-19 and Fig.  3-20. 

 

Fig.  3-15: The estimated gain during the use of P-Controller with Estimation System 
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Fig.  3-16: The estimated gain during the use of PI-Controller with Estimation System 

 

Fig.  3-17: The estimated time constant during the use of P-Controller with Estimation System 
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Fig.  3-18: The estimated time constant during the use of PI-Controller with Estimation System 

 

 

Fig.  3-19: Desired versus Observed encoder position during the use P-Controller with Estimation 

System 
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Fig.  3-20: Desired versus Observed encoder position during the use of PI-Controller with Estimation 

System 

3.7 Discussion 

 The functional automatic arterial oxygen controller requires an algorithm that is 

capable of responding promptly to the variations of SpO2 with minimal fluctuation. Also, 

the software and the hardware of the controller must function with no mechanical or 

communication failure. By the implementation of the non-clinical hard-ware-in-the-loop 

evaluation, we found that the adaptive PI-controller could make timely responses to SpO2 

variations and could improve the proportion of time while SpO2 of the neonatal respiratory 

model within the desired target range. 

Comparing the adaptive PI-controller and P-controller in addition to the manual 

control, the minimum CV of SpO2 (4.17) was found while using the PI-controller. This 

finding distinctly shows the ability to reduce the fluctuation level of the SpO2 while PI-

controller in use. The CV of SpO2 was (7.77) for P-controller and (6.19) for developed 

manual control. As a result of this, the PI-controller was more successful at minimizing the 
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frequency and duration of episodes of SpO2 outside of the target range comparing to the 

other two control algorithms. Also, we found that the PI-controller significantly reduced 

the episodes of hypoxemia. However, the P-controller significantly increased these 

episodes compared to the other two control algorithms. Further, the other episodes of 

prolonged hypoxemia, hyperoxemia, prolonged hyperoxemia, and overshoot were not 

significantly reduced. However, the reported descriptive statistics (median and IQR) show 

the lowest values while using the PI-controller. 

It is noticeable from the results section that PI-controller and manual control were 

supplying the model with more appropriate FiO2  range (31% − 35%)  for the larger 

period. Therefore, their overall performance at targeting the desired range was better than 

the P-controller. Also, the low supplying level of FiO2 (21% − 30%) was found while 

using P-controller and manual control which resulted in the greater proportion of time 

where SpO2  was below the lower target range limit (SpO2 < 87) with higher frequent 

episodes and longer period. Similarly, the supplying higher level of FiO2 range (36% −

40%) was responsible for generating more episodes and a longer period where SpO2 was 

above the upper target range limit (SpO2 > 93) which is directly related to the increasing 

of the proportion of time where SpO2 was above the upper limit. 

In this non-clinical hardware-in-the-loop test, the PI-controller shows better 

performance, compared to the P-controller and manual control, in mitigation of the 

episodes where SpO2 values were not within the target range. The possible reason is that 

the PI-controller can reduce the steady-state error by using 𝐾𝑖, which is the proportional 

gain on the integral of the history of the error. On the other hand, increasing 𝐾𝑃 while using 

P-controller is the possible way to decrease steady-state error, which might stimulate 
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system instability especially in the presense of a time delay due to the sample rate of the 

sensors and other factors. The difficulty of promptly response to the variations of SpO2 is 

the most likely reason for manual control.  

 Further, the utilized estimation system was more compatible with PI-controller. The 

disturbance estimator was much more accurate in estimating the applied disturbances while 

using the PI-controller than during use of the P-controller. Therefore, the DP-EEKF shows 

a clear trend and better performance at estimating the designed gains. While during the use 

of P-controller, DP-EEKF was insufficient to develop a short trend of gain estimation. In 

the current automatic control algorithms, both disturbance and gain estimator were actively 

used to develop the control signal of the controller. As a result of this compatibility between 

the PI-controller and the estimation system, the overall performance of PI-controller was 

superior in this evaluation.  

 The poor estimation of the time constant did not affect the performance of either of 

the used automatic control algorithms since the estimated time constant is not used in the 

current automated control algorithms. However, it is considered for further research 

purposes and future improvements to this work in the area of control design. It is worth 

mentioning that the extended Kalman filter estimation is based on a linearization about the 

current estimate [98]. Thus, the indicated poor performance while using the P-controller 

with its fast-varying dynamic response might be related to the principle that a poor prior or 

later estimation leads to movement of the filter off the linear region, which generates the 

inaccurate estimations. 

 The developed manual control was used for comparison purposes and for 

examining the capability of the device to switch safely to manual control and efficiently 
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operate. There was no functional failure while operating under automatic modes or manual 

mode. During the automatic controller operation, the desired position of the encoder (which 

is based on the control signal) was compared to the observed encoder position (which is 

measured through an encoder on the DC motor). This comparison highlighted the ability 

of the device to function with no mechanical or communication failure.  

 At least in this hardware-in-the-loop test, the PI-controller with the estimation 

system was effective in maximizing the proportion of time where SpO2 of the neonatal 

respiratory model is within the prescribed target range. The significant difference in 

minimizing the number of episodes where SpO2  is out of the target range and their 

durations were indicated. The neonatal respiratory model used to evaluate the performance 

of the closed-loop respiratory device provides the advantage of comparing different control 

algorithms by using typical, challenging, and comprehensive model behavior. To the best 

of our knowledge, no other automatic controller based on a discrete disturbance estimator 

and DP-EEKF has ever been experimentally non-clinically or clinically evaluated. Based 

on the performance investigation in this study, the adaptive PI-controller deserved to be 

evaluated clinically.  
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Chapter 4 : Clinical Investigation of the Performance of an Automatic 

Arterial Oxygen Controller 

In this chapter, the clinical investigation of the performance of the automatic 

controller is introduced. The study settings, protocol, and data collection and analysis of 

the clinical study are presented. Finally, the results and discussion of the clinical 

investigation are presented. 

4.1 Clinical Investigation of the Performance 

The clinical investigation is crucial study stage for such an automatic controller to 

be evaluated in NICU. The primary objective was demonstrating the clinical feasibility of 

the controller in NICU in a study with two human subjects at two different target range of 

SpO2. The analyses were applied to the data that was collected in NICU to show (a) the 

ability of the automatic device to performs better or at least similar to the manual care at 

targeting the SpO2 prescribed range, (b) the stability of the system’s response and avoiding 

both hypoxemic and hyperoxaemic episodes, and (c) the ability to transition smoothly from 

automatic to manual mode and vice versa. 

4.2 Experiment Setup of the Clinical Trial 

The experimental setup of the clinical trial is shown in Fig.  4-1. The medical air 

and oxygen gas cylinders are connected to the Air-Oxygen blender. The mixed air, from 

Air-Oxygen blender, flow through both adjustable flow meter to the oxygen sensor that 

attached to heater humidifier. Through high flow nasal cannula, the preterm infant received 

FiO2. The computer with microcontroller and data acquisition system, which is running the 

algorithm code that was developed by using LabVIEW®. and MATLAB®, can collect 
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SpO2 from the baby through a pulse oximeter. Based on the received data and control 

algorithm, a control signal is sent to the amplifier, and then to the DC motor that deriving 

the shaft by mean of the miter gears. The shaft is attached to the control knob and helical 

shaft coupler, in a way that the Air-Oxygen blender supply the mixed air with adjusted 

percentage of FiO2 to maintain SpO2 within the prescribed range. The manual override is 

possible to be switched to manual control. The FiO2 developed by the blend valve is 

received through an oxygen analyzer and recorded along with other measurements. 

 

Fig.  4-1: Schematic of the experimental setup of the clinical trial 

4.3 Study Settings and Subjects 

The study was conducted at the NICU of the MU Women’s and Children’s 

Hospital. The study was approved by the local institutional review board (IRB), and the 

control device was inspected by the clinical engineering department of the hospital. 

 Preterm infants with RDS and requiring supplemental oxygen through high flow 

nasal cannula and gestational age <  31 weeks or less than 1500 g at birth with no heart 

defects were eligible for the study. A written informed parental consent was obtained for 

enrollment in the study. Two human subjects, who met the inclusion criteria, were enrolled 

in the study. However, the enrolled subjects were requiring supplemental oxygen through 
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high flow nasal cannula at two different target ranges and two different flow rates. The 

human subject I was set at a lower target range (87% − 94%) with a flow rate of 4 L/min. 

The human subject II was set at a higher target range (91% − 99%) with a flow rate of 2 

L/min.  

4.4 Study Protocol 

This study was designed as crossover clinical trial in NICU at Women’s and 

Children’s’ Hospital. The two major advantages of the crossover design are that it 

eliminates the interpatient variability and allows within-subject comparison between 

treatments [81, 89]. The timeline of this study consisted of 4 consecutive periods. A 3-hour 

period of routine manual oxygen control followed by a 3-hour period of automated control, 

and then the cycle was repeated totaling a 12-hour period. The carryover effects were not 

considered in this crossover clinical trial because of the low possibility of the result to be 

contaminated with the previous control algorithm [22].  

Before starting the clinical trial, NICU team members at MU Women’s and 

Children’s Hospital was informed of the study objectives and procedures including but not 

limited to the intended SpO2  ranges of both manual and automated control and the 

procedure of transitions from automatic to manual control and vice versa before starting 

the trial. The manual care providers (nurses) were instructed to use their everyday routine 

approach during the manual mode. While the study was taking place at NICU, the 

nurse/infant ratio was about 1: 3 in the NICU at MU Women’s and Children’s Hospital. 

During the clinical trial, two or three members of the research team were available for 

ensuring the functionality of the automatic controller and for consultation about the device 

if needed. 
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4.5 Data Collection and Analysis 

Monitor variables including SpO2, FiO2, and heart rate (HR) was recorded every 5 

seconds during both manual and automatic control. The offline analysis allowed for 

comparison of clinical feasibility of the automatic controller, to manual care, at maintaining 

SpO2 of the enrolled subject within a target range and minimizing its variability. 

 The proportion of recorded time in the following oxygenation states was calculated 

and displayed in the histogram for both manual and automated control for subject I: SpO2 

within the target range (87% ≤ SpO2 ≤ 94%), below the lower limit of the target range 

(SpO2 < 87%), above the lower limit of the target range (SpO2 > 94%), in hypoxia 

(SpO2 < 75%), and in hyperoxia (SpO2 > 98%) [56]. For subject II, SpO2  within the 

target range (91% ≤ SpO2 ≤ 99%), below the lower limit of the target range (SpO2 <

91%), above the lower limit of the target range (SpO2 > 99%). 

 Further, the variability of SpO2 was evaluated by calculating the following for both 

manual and automated control of the enrolled subjects: (a) coefficient of variation (CV) 

over the 6-hour period of each control mode, (b) frequency episodes where SpO2 outside 

the target range per 1-hour, (c) mean duration of that episodes in seconds, and (d) frequency 

of episodes of hypoxemia (SpO2 < 80%), prolonged hypoxemia (SpO2 < 80% for ≥ 60 

seconds), hyperoxemia (SpO2 > 95%), prolonged hyperoxemia (SpO2 > 95% for ≥ 60 

seconds), and SpO2 overshoot (SpO2 > 95% lasting for at least 60 seconds and occurring 

within 120 seconds following a hypoxemic event) per 30-minute were calculated for each 

used control algorithm [51, 55, 57, 95, 97]. Small values of these calculated variables for 

the control algorithm indicate better performance at targeting the SpO2 range with lower 

variability. Calculated data (b and c), of both subjects, meet the assumption of normality 
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except for the frequency episodes where SpO2 > 94% and SpO2 ≤ 80% for the duration 

longer than 60 seconds for subject I. Also, episodes duration where SpO2 > 99%, SpO2 ≤

80%, and SpO2 = 100% for the duration longer than 60 seconds for subject II did not 

meet the assumption of normality. Therefore, the performance of the two control modes 

was assessed by using paired t-test (normally distributed data) and Wilcoxon signed ranked 

test (not normally distributed data). These normally distributed compared data are reported 

as mean ± SD. For not normal compared data, the results are reported as median and 

interquartile (IQR).  

The power of avoiding type II error was calculated with considering normality for 

the considered variables. The episodes of bradycardia (HR < 100  beats/min, period ≥

10 seconds) were detected for each control mode period [56]. Based on a collected data, 

an estimation of the number of subjects that are required for a power of > 85%  is 

calculated. The histogram of FiO2  levels in the 6-hour periods of both manual and 

automated mode were calculated. The normal probability plots combined with Shapiro-

Wilk test results of SpO2  frequency and mean duration where SpO2  outside the target 

range are located in Appendix B. 

4.6 Results  

The subjects were enrolled for the study in the NICU at MU Women’s and 

Children’s Hospital. The experiment setup was successfully applied as described in Sec. 

4.2. The study settings, subject, and protocol, as introduced in Sec. 4.3 and 4.4, were 

thoroughly followed. For minimizing interpatient variability and allowing within-subject 

comparison, the study was designed as crossover clinical trial. The 12-hour period of the 

clinical trial was completed with a total of 6-hour period of automatic and manual mode. 
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Fig.  4-2 and Fig.  4-3 show the recording of SpO2 and FiO2 for the 12-hour period while 

using both manual and automatic control for subject I and II. As shown, the clinical trial 

started with a 3-hour period while applying manual control then switched to automatic 

control for a 3-hour period and then the cycle was repeated for a 12-hour period in total.  

 

Fig.  4-2: The recording of SpO2 and FiO2 for the 12-hour period while using both manual and 

automatic control (Subject I) 
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Fig.  4-3: The recording of SpO2 and FiO2 for the 12-hour period while using both manual and 

automatic control (Subject II) 

The histogram of SpO2  data of subject I (Fig.  4-4) shows an increase in the 

proportion of time within the target range while using automated control; 53% of the 

proportion of time was spent within the desired range. For the everyday manual routine 

care, 45% of the proportion of time was spent within the target range. Also, the automatic 

controller minimizes the proportion of time where the SpO2 was above the upper limit of 

the target range (23%), in hyperoxia (1%), and hypoxia (2%). For the manual control, 

SpO2 values were above the upper limit of the target range for 34%, and in hyperoxia and 

hypoxia for 3% of the proportion of time. However, manual control shows a smaller 

proportion of time when SpO2 was below the lower limit of the target range (15%). For 

the automatic controller, SpO2 values were below the lower limit of the target range for 

21%. 
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Fig.  4-4: Histogram of the proportion of time of SpO2 within, below, and above the target range 

(87%-94%) for manual and automated control (Subject I) 

The histogram of SpO2  data of subject II (Fig.  4-5) shows an increase in the 

proportion of time within the target range while using automated control; 88% of the 

proportion of time was spent within the desired range. For the everyday manual routine 

care, 78%  of the proportion of time was spent within the target range. However, the 

automatic controller failed to decrease the proportion of time where the SpO2 was above 

the upper limit of the target range (7%). For the manual control, SpO2 values were above 

the upper limit of the target range for only 2% of the proportion of time. The manual 

control shows a larger proportion of time when SpO2 was below the lower limit of the 

target range (20%). For the automatic controller, SpO2 values were below the lower limit 

of the target range for 5%. 
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Fig.  4-5: Histogram of the proportion of time of SpO2 within, below, and above the target range 

(91%-99%) for manual and automated control (Subject II) 

 

Table 4-1 demonstrates the SpO2 variability and heart rate of subject I. For the 

comparable calculated variables, no significant difference has been detected. However, the 

calculated power was less than 35% for all compared variables. For the frequency of the 

episodes (SpO2 < 87%)  and (SpO2 > 94%) , the calculated powers were 34.1% 

and 8.4%. For the mean duration of the episodes (SpO2 < 87%) and (SpO2 > 94%), the 

calculated powers were about 15%  and 30% . The calculated CV for the automatic 

controller (6.24) slightly smaller than for manual control (6.72). The bradycardia events 

were detected twice while manual and one time during automatic control.   
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Table 4-1: SpO2 variability and Heart Rate (Subject I) 

 Manual 

Control 

Automated 

Control 

P-

Value 

Power 

𝐒𝐩𝐎𝟐 CV (%) 6.72 6.24 NA NA 

𝐒𝐩𝐎𝟐 < 𝟖𝟕% 

(episodes/1-hour) 

9.67
± 5.35 

14.83
± 4.49 

0.13 34.1% 

𝐒𝐩𝐎𝟐 < 𝟖𝟕% 

(episode duration, 

s) 

69.45
± 37.4 

50.53
± 20.09 

0.39 15.44% 

𝐒𝐩𝐎𝟐 > 𝟗𝟒% 

(episodes/1-hour) 

18(12
− 26) 

11.5(11
− 14) 

0.46 8.4%1 

𝐒𝐩𝐎𝟐 > 𝟗𝟒% 

(episode duration, 

s) 

111.43
± 84.01 

53.48
± 18.49 

0.13 27.9% 

Bradycardia 

(episodes/6-hour) 

2 1 NA NA 

Normal Data: Mean±SD 

Non-Normal: Median(IQR) 

 

Table 4-2 demonstrates the SpO2 variability and heart rate of subject II. For the 

comparable calculated variables, no significant difference has been detected. However, the 

calculated power was less than 66% for all compared variables. For the frequency of the 

episodes (SpO2 < 91%)  and (SpO2 > 99%) , the calculated powers were 24.65% 

and 21.07%. For the mean duration of the episodes (SpO2 < 91%) and (SpO2 > 99%), 

the calculated powers were about 66% and 9%. The calculated CV for the automatic 

controller (3.13) smaller than for manual control (5.34). The bradycardia events were 

detected twice while manual in use and none while automatic control in use.  

  

                                                 
1 Calculated with normality assumption where Mean±SD was 17.17 ± 9.87 (Manual mode) and 14.17 ±
6.43 (Automatic mode). 
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Table 4-3 demonstrates that there are no significant differences in the frequency of 

hypoxemic, prolonged hypoxemic, hyperoxaemic, prolonged hyperoxaemic, and 

overshoot events while using the manual and automatic control for subject I. Table 4-4 

shows that there is only significant difference in the frequency of hypoxemic events 

between the two control modes for subject II. 

Table 4-2: SpO2 variability and Heart Rate (Subject II) 

 Manual 

Control 

Automated 

Control 

P-

Value 

Power 

𝐒𝐩𝐎𝟐 CV 

(%) 

5.34 3.13 NA NA 

𝐒𝐩𝐎𝟐 < 𝟗𝟏% 

(episodes/1-hour) 

9.83
± 5.04 

6.17 ± 3.31 0.089 24.65% 

𝐒𝐩𝐎𝟐 < 𝟗𝟏% 

(episode duration, 

s) 

58.74
± 26.33 

24.84
± 12.94 

0.063 65.79% 

𝐒𝐩𝐎𝟐 > 𝟗𝟗% 

(episodes/1-hour) 

2.17
± 1.72 

7.17 ± 8.68 0.16 21.07% 

𝐒𝐩𝐎𝟐 > 𝟗𝟗% 

(episode duration, 

s) 

18.09(10
− 31.5) 

17.38(8.67
− 34.82) 

0.89 8.72%2 

Bradycardia 

(episodes/6-hour) 

2 0 NA NA 

Normal Data: Mean±SD 

Non-Normal: Median(IQR) 

  

                                                 
2 Calculated with normality assumption where Mean±SD was 31.45 ± 40.43 (Manual mode) and 19.71 ±
15.9 (Automatic mode). 
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Table 4-3: Hypoxemia, hyperoxemia, and overshoot episodes (Subject I) 

 Manual 

Control 

Automated 

Control 

P-

Value 

Power 

𝐒𝐩𝐎𝟐 ≤ 𝟖𝟎%  
(episodes < 60 s 

duration/1-hr) 

6 ± 4.43 5 ± 3.79 𝑁𝑆 6% 

𝐒𝐩𝐎𝟐 ≤ 𝟖𝟎% 

(episodes ≥ 60 s 

duration/1-hr) 

1(1 − 1) 0(0 − 2) 𝑁𝑆 8.86%3 

𝐒𝐩𝐎𝟐 ≥ 𝟗𝟓% 

(episodes < 60 s 

duration/1-hr) 

11.33
± 8.52 

9.17 ± 3.76 𝑁𝑆 7.75% 

𝐒𝐩𝐎𝟐 ≥ 𝟗𝟓% 

(episodes ≥ 60 s 

duration/1-hr) 

5.33
± 2.88 

5.5 ± 3.67 𝑁𝑆 5% 

Overshoot 

(episode duration, s) 

1 ± 0.89 2.16 ± 2.64 𝑁𝑆 13.87% 

Normal Data: Mean±SD 

Non-Normal: Median(IQR) 
Table 4-4: Hypoxemia, hyperoxemia, and overshoot episodes (Subject II) 

 Manual 

Control 

Automated 

Control 

P-

Value 

Power 

𝐒𝐩𝐎𝟐 ≤ 𝟖𝟎%  
(episodes < 60 s 

duration/1-hr) 

2.5(2
− 4) 

0(0 − 1) < 0.05 NA 

𝐒𝐩𝐎𝟐 ≤ 𝟖𝟎% 

(episodes ≥ 60 s 

duration/1-hr) 

𝑁𝐴 𝑁𝐴 𝑁𝐴 𝑁𝐴 

𝐒𝐩𝐎𝟐 ≥ 𝟗𝟓% 

(episodes < 60 s 

duration/1-hr) 

1.83
± 1.72 

5.33 ± 5.99 𝑁𝑆 21.13% 

𝐒𝐩𝐎𝟐 ≥ 𝟗𝟓% 

(episodes ≥ 60 s 

duration/1-hr) 

0(0
− 1) 

0(0 − 2) 0.16 21.07%4 

Overshoot 

(episode duration, s) 

𝑁𝐴 𝑁𝐴 𝑁𝐴 𝑁𝐴 

Normal Data: Mean±SD 

Non-Normal: Median(IQR) 

                                                 
3 Calculated with normality assumption where Mean±SD was 1 ± 0.63 (Manual mode) and 0.67 ± 1.03 

(Automatic mode). 
4 Calculated with normality assumption where Mean±SD was 0.33 ± 0.52 (Manual mode) and 1.67 ±
2.04 (Automatic mode). 
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Table 4-5 shows the required sample size and the estimated number of human 

subjects for power goal higher than 85% based on the analysis of the clinical data for 

subject I. For the frequency of the episodes (SpO2 < 87%), enrolling three preterm infants 

were estimated to evaluate the significant difference. While the frequency of the episodes 

(SpO2 > 94%), a number of twenty-two preterm infants was estimated. For the mean 

duration of the episodes (SpO2 < 87%), eight preterm infants were estimated for assessing 

the significant difference. While the mean duration of the episodes (SpO2 > 94%), four 

preterm infants were estimated. Charts of the required sample size versus the power goal 

for the compared variables of subject I are in Appendix C.  

Table 4-5: Calculated Sample Size at 85% of power and Estimated Number of Required Subjects for 

Power >85% (Subject I) 

 Sample Size at 𝟖𝟓% 

of Power 

Estimation Number of 

required Subjects for 

Power > 𝟖𝟓%  

𝐒𝐩𝐎𝟐 < 𝟖𝟕% 

(episodes/1-hour) 

17 3 

𝐒𝐩𝐎𝟐 < 𝟖𝟕% 

(episode duration, s) 

44 8 

𝐒𝐩𝐎𝟐 > 𝟗𝟒% 

(episodes/1-hour) 

128 22 

𝐒𝐩𝐎𝟐 > 𝟗𝟒% 

(episode duration, s) 

21 4 

 

Table 4-6 shows the required sample size and the estimated number of human 

subjects for power goal higher than 85% based on the analysis of the clinical data for 

subject II. For the frequency of the episodes (SpO2 < 91%), enrolling five preterm infants 

were estimated to evaluate the significant difference. While the frequency of the episodes 

(SpO2 > 99%), a number of six preterm infants was estimated. For the mean duration of 

the episodes (SpO2 < 91%) , two preterm infants were estimated for assessing the 
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significant difference. While the mean duration of the episodes (SpO2 > 99%), eighteen 

preterm infants were estimated. Charts of the required sample size versus the power goal 

for the compared variables of subject II are in Appendix D.  

Table 4-6: Calculated Sample Size at 85% of power and Estimated Number of Required Subjects for 

Power >85% (Subject II) 

 Sample Size at 

𝟖𝟓% of Power 

Estimation Number of 

required Subjects for 

Power > 𝟖𝟓%  

𝐒𝐩𝐎𝟐 < 𝟗𝟏% 

(episodes/1-hour) 

25 5 

𝐒𝐩𝐎𝟐 < 𝟗𝟏% 

(episode duration, s) 

9 2 

𝐒𝐩𝐎𝟐 > 𝟗𝟗% 

(episodes/1-hour) 

31 6 

𝐒𝐩𝐎𝟐 > 𝟗𝟗% 

(episode duration, s) 

107 18 

 

The histogram of FiO2 for subject I (Fig.  4-6) illustrate the infant was supplied 

with the range of FiO2 (21% − 25%) for the proportion of time equal 39% for automatic 

control and 27% for manual control. The range of FiO2 (26% − 30%) was supplied for 

the proportion of time equal 30% for automatic control and 19% for manual control. The 

range (31% − 35%) was supplied for the proportion of time equal 18% for the automatic 

controller and 14% for the manual control. The range of FiO2 (36% − 40%) was supplied 

for the proportion of time equal 8% for automatic control and 35% for manual control. For 

any value of FiO2 larger than 40% was supplied for the proportion of time was 5% for 

both control modes. 
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Fig.  4-6: Histogram of FiO2 during the 6-hour manual and automated control (Subject I) 

The histogram of FiO2 for subject II (Fig.  4-7) illustrate that the infant was supplied 

with the range of FiO2 (21% − 25%) for the proportion of time equal 52% for automatic 

control and 89% for manual control. The range of FiO2 (26% − 30%) was supplied for 

the proportion of time equal to 32% for automatic control and 10% for manual control. 

The range (31% − 35%) was supplied for the proportion of time equal to 13% for the 

automatic controller and 0% for the manual control. For any value of FiO2 larger than 

35% was supplied for the proportion of time was 4% for the automatic control while no 

such a value detected while manual control. 
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Fig.  4-7: Histogram of FiO2 during the 6-hour manual and automated control (Subject II) 

4.7 Discussion  

The two human subjects were considered for a crossover clinical trial at the NICU 

of the Women’s and Children’s Hospital. The design and algorithm of the controller were 

successfully shown to have the ability to transition from automatic to manual control, and 

vice versa. The transition feature allows the controller to be utilized for assisting clinicians 

in NICUs since fully substituting manual care with any automatic control is not likely to 

be accepted for all cases [14, 15, 17, 21]. The data in Fig.  4-2 and Fig.  4-3 show that there 

is no pronounced “bump” or step variation in the control signal and stability and 

performance are not adversely affected during the transitions between manual mode and 

automatic mode at hours 3, 6, and 9.  

The automatic arterial oxygen controller shows the possibility of more effectively 

targeting the prescribed range of SpO2 with lower exposure to FiO2 for the saturation target 
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of 87%  to 94%  (subject I). For the saturation target of 91%  to 99%  (subject II), the 

automatic controller shows the possibility of improving the process of targeting the desired 

range but with higher exposure to FiO2 . The higher exposure to FiO2  resulted in an 

insignificant higher number of (SpO2 > 99)  episodes for subject II. The automatic 

controller showed prompt responses to the variations in the SpO2. Conversely, the manual 

care showed slow responses to these variations. An apparent high step adjustment was 

indicated during the second period of manual mode (Fig.  4-2), for subject I, as a response 

to very low level of SpO2. The reason for that severe very low level of the infant SpO2 was 

the manual late response when the reduction was initiated. The slow response of the manual 

care might be because of the lower nurse to patient ratio which was highlighted previously 

[11].  

The automatic controller increased the proportion of time spent within the 

prescribed range by 8% for subject I and by 10% for subject II compared to manual care. 

As a result, it decreased the proportion of time spent outside the desired range. Regardless 

of the calculated P-value and by purely considering the mean ± SD  for normally 

distributed data and median (IQR) for not normally distributed data, we can notice the 

performance for both control algorithms at minimizing the unfavorable episodes. For 

subject I where the target range was 87% − 94%, the SpO2 values were lower than the 

target range more frequent in automatic mode but with shorter durations. The shorter 

duration of the episodes, while in automatic mode, indicates that the recovery of these 

episodes was faster in automatic mode than in the manual mode. This finding is similar to 

the results discussed in another study that had a larger number of human subjects and had 

applied different automatic control algorithms [15, 57]. For subject II where the target 
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range was 91% − 99%, the controller successfully decreased the number and duration of 

the episodes where the SpO2 was below the lower limit of the target range. 

 Further, the automatic controller was able to reduce the frequency and period of 

episodes where SpO2 values were above the target range for subject I. These reductions 

during the automatic mode were because of the lower exposure to FiO2 , which is 

demonstrated in Fig.  4-6, such reductions help avoid serious lung, brain, and retinal 

damage [4, 5]. Conversely, the SpO2  values were higher than the target range more 

frequently in automatic mode for the higher target range (subject II). The duration of these 

episodes was sort of similar while using both manual and automatic control modes. The 

insignificant increase for these episodes because of the higher exposure to FiO2while using 

the automatic controller. However, the manual control was supplying a lower range of FiO2 

which decreased the proportion of time for the SpO2  to be above the target range but 

seemingly increased the proportion of time for the SpO2 to be below the lower limit of the 

target range which is reported as a reason for mortality [4, 15]. Also, the reduction of the 

hypoxemia was noticed for both subjects, and it was significant for subject II. However, 

the mean and the standard deviation of the overshoot for subject I suggest consideration of 

enhancing the current control algorithm to more quickly reduce FiO2 after desaturation 

event recovery. 

It is noticeable that the human subject with the lower target range was experiencing 

more severe RDS and was in need of more frequent adjustments of FiO2. The higher 

variability of SpO2 and the higher risk of mortality for preterm infants who are set at a 

lower target range of SpO2 has been reported previously[22, 58, 99]. The episodes of 

bradycardia were more frequent while manual control was in use, for both enrolled human 
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subjects, compared to the automatic control. The slow response to the variation where SpO2 

was below the target range may be a factor in the detected number of bradycardia events 

during manual control because it was noticed, for both target ranges, that the bradycardia 

events existed while SpO2 was much lower than the target range for a considerable amount 

of time [97]. 

The applied statistical tests show no significant difference between manual and 

automated control within one-subject comparison, which indicated that both control 

algorithms had a similar performance at minimizing undesirable episodes. However, the 

calculated power shows that there is a high possibility of type II as a result of a small 

number of sample size. Type II is failing to reject the null hypothesis when in fact it must 

be rejected [88]. In this study, the null hypothesis indicates similar performance between 

the manual and the automatic control. At least with these calculated power levels, the 

controller shows similar performance to the manual control.  

To increase the power level up to 85% and to detect any significant difference in 

targeting SpO2 range and reducing its variability, the required sample size was calculated. 

Based on the calculated sample size of subject I and subject II, an estimation of the number 

of human subjects was provided. The inclusion of 22 human subjects would be able to 

detect any significance or insignificance at a power level higher than 85% for the lower 

target range. The inclusion of 18 human subjects would be able to detect any significance 

or insignificance at a power level higher than 85% for the higher target range. However, 

the calculated sample size in this study was based only on the variability’s variables that 

shown in Table 4-1 and Table 4-2. The inclusion of more human subjects allows further 
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power analysis with a consideration of the proportion time within the target range, the CV, 

and bradycardia. 

At least in these clinical trials where the automatic arterial oxygen controller was 

applied to two human subjects, the clinical feasibility of the device was demonstrated. The 

crossover clinical trial provided the advantage of comparing within one-subject and of 

observing the transition from manual to automatic and vice versa. Based on the results, it 

is possible to conclude that the current automatic controller can improve the maintenance 

of targeting SpO2 with lower exposure to FiO2 for the low target range (subject I). Also, it 

can improve the maintenance of targeting SpO2 with higher exposure to FiO2 for the high 

target range. However, the 12-hour period of the clinical trials may not be representative 

of the number of days and weeks that most preterm infants require respiratory support in 

NICUs. To the best of our knowledge, no other automatic controller with same control 

algorithm or using parameter estimation has ever been clinically evaluated. 

    



79 

 

Chapter 5 : Conclusion and Future Work 

5.1 Conclusion of the Non-Clinical Investigation  

The results obtained from the current non-clinical study are restricted to the used 

neonatal respiratory model and the developed experimental design and procedure which 

are introduced in Sec. 3.4. The main conclusions drawn from the non-clinical study are as 

follows: 

• The closed-loop respiratory support device based on the adaptive PI-controller was 

very efficient at targeting the desired SpO2  range by applying automated 

adjustments of FiO2, and deserves clinical evaluation. 

• The PI-controller with the estimation system shows capability to make timely 

responses to the variations in SpO2 with minimal instability as was shown in the 

variability table. 

• The PI-controller with the estimation system was able to significantly reduce the 

number of hypoxemic events of the neonatal model. 

• The estimation system based on the discrete disturbance estimator and the DP-

EEKF was more compatible with the PI-controller compared to the P-controller and 

shows acceptable performance at estimating model gain and disturbance. 

• The study demonstrates the functionality of the developed closed-loop device while 

applying the three used control algorithms. 

• The results demonstrated the abilities to transition from automatic to manual and 

vice versa and to operate in a manual mode with no conflict to the other integrated 

electrical, mechanical, and medical components. 
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5.2 Conclusion of the Clinical Investigation 

The results obtained from the current clinical trial are limited to the study setting, 

subject, and protocol which are introduced in Sec 4.3 and 4.4. The main conclusions drawn 

from the clinical study are as follows: 

• The developed adaptive PI-controller shows clinical feasibility to improve the 

maintenance of SpO2 within the intended target range with lower exposure to FiO2 

for the low target range and higher exposure to FiO2 for the high target range and 

deserves more clinical evaluation. 

• The statistical analysis shows the performance of the automatic controller was 

similar to the manual care. 

• The descriptive statistic shows the potential of the oxygen controller to improve the 

maintenance of SpO2 within the intended target range and to minimize the number 

of undesirable episodes and their periods. 

•  The results show the ability to transition smoothly from automatic to manual mode 

and vice versa which allows the device to assist the clinicians not fully substituting 

them.  

• The power analysis recommends larger sample size to identify the significance at 

the higher power level. 

5.3 Future Work 

The present study provides further recommended research in investigating the 

performance of the closed-loop control device: 

• The results and findings of the clinical trial part of this study with the inclusion of 

four human subjects allow developing a pilot clinical study that demonstrates the 
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clinical feasibility of the device at a higher power level and with consideration of 

more variables such as the proportion of time where SpO2 is below, above, and 

within the target range. 

• The calculated sample size provides researchers with a required number of human 

subjects to identify the significance of the performance at a power level higher than 

85%. 

• The experimental crossover design might be considered for a longer period for each 

control mode to be more representative of the actual case in the NICUs. 

• The study shows the potential of the automatic controller to be considered for 

reliability analysis.  

• A consideration of enhancing the control algorithm is recommended to improve the 

controller performance for the overshoot episodes. 
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Appendices 

Appendix A: Normal Probability Plots with Shapiro-Wilk Test Results of 

Non-Clinical Investigation 

Appendix A1: normal probability plots with Shapiro-Wilk Test Results of the frequency 

where SpO2 < 87% per 10 minutes 
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Appendix A2: normal probability plots with Shapiro-Wilk Test Results of the mean 

duration of the episodes where SpO2 < 87% per 10 minutes 
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Appendix A3: normal probability plots with Shapiro-Wilk Test Results of the frequency 

where SpO2 > 93% per 10 minutes 
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Appendix A4: normal probability plots with Shapiro-Wilk Test Results of the mean 

duration of the episodes where SpO2 > 93% per 10 minutes 
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PI-Controller with Estimation System
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Appendix A5: normal probability plots with Shapiro-Wilk Test Results of the hypoxemic 

episodes (duration < 60 s) per 30-minute 
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PI-Controller with Estimation System

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Observed Value

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
x
p
e
c
te

d
 N

o
rm

a
l 
V

a
lu

e

SW-W=0.4961, p=0.00002  

  



99 

 

Appendix A6: normal probability plots with Shapiro-Wilk Test Results of the hypoxemic 

episodes (duration ≥ 60 s) per 30-minute 
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Appendix A7: normal probability plots with Shapiro-Wilk Test Results of the 

hyperoxaemic episodes (duration < 60 s) per 30-minute 
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PI-Controller with Estimation System
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Appendix A8: normal probability plots with Shapiro-Wilk Test Results of the 

hyperoxaemic episodes (duration ≥ 60 s) per 30-minute 
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Appendix A9: normal probability plots with Shapiro-Wilk Test Results of the overshoot 

episodes per 30-minute 
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Appendix B: Normal Probability Plots with Shapiro-Wilk Test Results of 

Clinical Investigation 

Appendix B1: normal probability plots with Shapiro-Wilk Test Results of the frequency 

where SpO2 < 87% per 1-hour (Subject I) 
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Appendix B2: normal probability plots with Shapiro-Wilk Test Results of the mean 

duration of episodes where SpO2 < 87% per 1-hour (Subject I) 
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Appendix B3: normal probability plots with Shapiro-Wilk Test Results of the frequency 

of episodes where SpO2 > 94% per 1-hour (Subject I) 

Manual Mode

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Observed Value

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
x
p
e
c
te

d
 N

o
rm

a
l 
V

a
lu

e

SW-W=0.9466, p=0.7124  

Automatic Mode

8 10 12 14 16 18 20 22 24 26 28

Observed Value

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
x
p
e
c
te

d
 N

o
rm

a
l 
V

a
lu

e

SW-W=0.6802, p=0.0038   



110 

 

Appendix B4: normal probability plots with Shapiro-Wilk Test Results of the mean 

duration of episodes where SpO2 > 94% per 1-hour (Subject I) 
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Appendix B5: normal probability plots with Shapiro-Wilk Test Results of the frequency 

where SpO2 < 91% per 1-hour (Subject II) 
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Appendix B6: normal probability plots with Shapiro-Wilk Test Results of the mean 

duration of episodes where SpO2 < 91% per 1-hour (Subject II) 
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Appendix B7: normal probability plots with Shapiro-Wilk Test Results of the frequency 

of episodes where SpO2 > 99% per 1-hour (Subject II) 

Manual Mode
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Appendix B8: normal probability plots with Shapiro-Wilk Test Results of the mean 

duration of episodes where SpO2 > 99% per 1-hour (Subject II) 
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Appendix B9: normal probability plots with Shapiro-Wilk Test Results of the hypoxemic 

episodes (duration < 60 s) per 1-hr (Subject I) 
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Appendix B10: normal probability plots with Shapiro-Wilk Test Results of the 

hypoxemic episodes (duration ≥ 60 s) per 1-hr (Subject I) 

Manual Mode
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Appendix B11: normal probability plots with Shapiro-Wilk Test Results of the 

hyperoxaemic episodes (duration < 60 s) per 1-hr (Subject I) 
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Appendix B12: normal probability plots with Shapiro-Wilk Test Results of the 

hyperoxaemic episodes (duration ≥ 60 s) per 1-hr (Subject I) 
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Appendix B13: normal probability plots with Shapiro-Wilk Test Results of the overshoot 

episodes per 1-hr (Subject I) 
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Appendix B14: normal probability plots with Shapiro-Wilk Test Results of the 

hypoxemic episodes (duration < 60 s) per 1-hr (Subject II) 
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Appendix B15: normal probability plots with Shapiro-Wilk Test Results of the 

hypoxemic episodes (duration ≥ 60 s) per 1-hr (Subject II) 
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Appendix B16: normal probability plots with Shapiro-Wilk Test Results of the 

hyperoxaemic episodes (duration < 60 s) per 1-hr (Subject II) 
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Appendix B17: normal probability plots with Shapiro-Wilk Test Results of the 

hyperoxaemic episodes (duration ≥ 60 s) per 1-hr (Subject II) 
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Appendix B18: normal probability plots with Shapiro-Wilk Test Results of the overshoot 

episodes per 1-hr (Subject II) 
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Appendix C: Chart of Required Sample Size (N) versus Power Goal 

(Subject I) 
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SpO2 >94% (episodes/1-hour)
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Appendix D: Chart of Required Sample Size (N) versus Power Goal 

(Subject II) 
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SpO2<99 (episodes/1-hour)
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