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AUTOMATED DETECTION OF AMPEROMETRIC SPIKES RESULTING FROM 
QUANTAL EXOCYTOSIS AND ESTIMATION OF SPIKE AND PRE-SPIKE FOOT 

SIGNAL PARAMETERS 

Supriya Balaji Ramachandran 

Dr. Kevin D. Gillis Dissertation Supervisor 

ABSTRACT 

Electrochemical microelectrodes can detect single-vesicle release events as “spikes” of 

amperometric current. We developed a template based “matched-filter” approach that 

performs least squares fit of a library of templates to the data and identifies a spike when a 

detection criterion score given by the ratio of amplitude to the standard error exceeds a 

minimum threshold. This method outperformed existing approaches and detected >95% of 

true spikes for a mere 2% false positive rate as evidenced by receiver operating characteristic 

plots of sensitivity vs specificity. The next step is estimation of spike parameters like peak 

amplitude (Imax), half-maximal width (t50) and area under the curve (Q) which inform 

maximal flux, flux duration and charge respectively. Closely successive overlapping spikes 

are ambiguous to estimate as they may not decay back to baseline and should be rejected. 

Matched filter approach not only provided robust spike detection but also parameter seed 

values to reject overlapping spikes and also perform iterative curve fitting of spikes. The 

remaining well-separated spikes were iteratively fit in two phases, first by fitting rising and 

decaying phases separately and second by fitting the entire time course using seed values 

from the matched filter template parameters. Using curve-fit parameters, Imax, t50 and Q were 

calculated. Histograms of these parameters had bi-modal Gaussian distributions with centers 

and spreads within 12% and 4% of histograms created using manually analyzed data. The 

pre-spike baseline was estimated using a novel application of the matched-filter criterion 

scores and the estimation of pre-spike foot signal parameters such as charge (Qfoot) and 

duration (tfoot) yielded means, and medians within 10% of manually computed parameters.
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Chapter 1 

1. INTRODUCTION

1.1. Exocytosis 

Exocytosis is the fusion of intracellular vesicles with the plasma membrane, 

leading to extrusion of vesicle contents to the extracellular space. Vesicles are 

structures found within the cell and are composed of a lipid bilayer membrane 

enclosing cargo to be transported outside the cell. The extruded vesicular contents 

perform various vital functions. Cargo carried by these vesicles include 

neuropeptides (e.g., neuropeptide Y) (Thureson-Klein A Fau - Klein et al.), 

neurotransmitters (e.g., catecholamines such as dopamine, epinephrine, 

norepinephrine) (Biermann et al.) , and hormones (e.g., vasopressin, oxytocin 

(Tobin et al., 2012), insulin (Jewell et al., 2010)) . Exocytosis is categorized into 

 

Reproduced from the “Molecular biology of the cell” (3rd 
edition) (Alberts B) with copyright permission from John 
Wiley and sons. 

Reproduced from the “Molecular biology of the cell” (3rd

edition)(Alberts B) with copyright permission from John 
Wiley and sons.

Reproduced from the “Molecular biology of the cell” (3rd

edition)(Alberts B) with copyright permission from John 
Wiley and sons.

Fig.  1.1. Cargo laden vesicles at two different stages of 
fusion at the cell membrane 



 2 

two types based on whether a stimulus is required to trigger the process (Alberts 

B, 2002). These types are (a) constitutive exocytosis – a stimulus-independent 

process that typically involves transport of proteins that are to be integrated with 

the plasma membrane and (b) regulated exocytosis – a calcium stimulus-

dependent process that involves release of hormones, neurotransmitters and 

cytokines among other small signaling molecules. The release of catecholamines 

from vesicles in adrenal chromaffin cells was evidenced through electron 

microscopy and biochemical analysis (Banks and Helle, 1965) of the released 

substances. In the following year, it was reported that catecholamines residing 

inside intracellular vesicles were extruded by a process called “reverse 

pinocytosis”(Kirshner et al., 1966), where pinocytosis (Doherty and McMahon, 

2009) is the intake of extracellular fluid into the cell via vesicles. In 1963, De 

Duve (de Duve, 1963) coined the term “exocytosis” to describe the fusion 

mechanism. Early electron micrographs (Birks et al., 1960) did not strongly 

demonstrate the actual fusion of the vesicle with the cell membrane because there 

was no evidence of whether static images of vesicles represented vesicles exiting 

the cell or of new vesicles forming. Through intra-cellular micro-electrode 

recordings at the frog neuromuscular junction, of end plate potentials (EPP) 

elicited by acetylcholine release, and statistical analysis of EPP amplitudes, 

Bernard Katz (Fatt and Katz, 1952; Fatt and Katz, 1951) and 

colleagues concluded that the EPP consists of multiple quanta of cargo thereby 

formulating a “quantal hypothesis” of neurotransmitter release. It was later 

demonstrated through freeze fracture microscopy combined with 
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electrophysiological recordings (Heuser et al., 1979) that vesicles indeed fuse 

with the cell membrane, releasing cargo in “quanta” or packets (Heuser et al., 

1979). Such membrane fusion is facilitated via a complex mechanism of 

interaction between vesicular and membrane proteins.  

1.1.1. Steps leading to vesicle fusion  

During exocytosis, the vesicular bi-lipid membrane fuses with the plasma 

membrane, and then forms a fusion-pore, starting with a nanometer-scale (Chow 

et al., 1992a; de Toledo et al., 1993b) connection to the extra-cellular space, 

through which cargo is released. Furthermore, the fusion pore expands to rapidly 

release the vesicle contents. The entire fusion process at the release site occurs in 

a multi-step manner (Jahn and Fasshauer, 2012; Südhof, 1995), that is highly 

dependent on interactions between vesicle and membrane Soluble N-

ethylmaleimide-sensitive factor Attachment protein Receptor (SNARE) proteins 

(Davis et al., 1999; Zhou et al., 2015) as well as calcium sensitive (de Wit et al.; 

Man et al., 2015; Mohrmann et al., 2013) and chaperone proteins (Toonen and 

Verhage, 2007). The steps leading to release are: (a) docking – alignment and 

tethering of vesicle and plasma membranes in a fusion-ready state (Oheim et al., 

1998; Rizo and Rosenmund, 2008; Verhage and Sørensen Jakob, 2008).  (b) 

priming – priming makes the vesicle “fusion competent” (Liu et al., 2010; Voets 

et al.; Walter et al., 2013) in order to ensure that a calcium influx will lead to fast 

cargo release (Imig et al.; Jung et al., 2016). (c) fusion – a calcium binding 

vesicle-protein, synaptotagmin (Rizo et al.) regulates SNARE-dependent fusion of 

vesicle and plasma membranes and formation of a fusion pore, leading to the 
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release of contained cargo. Release of the entire vesicle contents may occur, or, 

alternatively, the fusion pore may re-close rapidly during endocytosis (Heuser and 

Reese, 1973). Modes of fusion are described in section 1.2.4.  

1.1.2. Role of exocytosis in diseases 

Early studies in pituitary adenomas reported the spatial misplacement of 

exocytosis sites (Horvath and Kovacs, 1974) in tumorous cells, hence potentiating 

diagnosis of the disease. Proteins implicated in exocytosis have been reported at 

lower levels in schizophrenics (Davidsson et al.). The drug Botox (Botulinum 

neurotoxin type-A) acts by inhibiting exocytosis and is in used clinically to treat 

numerous conditions (Aoki, 2004) such as gastrointestinal spasms (Brisinda et al., 

2004) and post-stroke muscle over-activity (Esquenazi and Mayer) as well as 

cosmetic treatment of glabellar frown lines (Frampton and Easthope). Migraine 

prophylaxis has been attributed to drug induced blockade of exocytosis (Ruiz-

Nuño et al., 2003). The role of a fusion protein, amisyn (Constable et al., 2005) 

has been recently attributed in the narrowing of fusion pore diameter, leading to 

reduced insulin secretion in Type II diabetics (Hastoy et al., 2017). Thus, the 

study of exocytosis offers the potential for advancing the medical treatment of 

various diseases.  

1.2. Resolving quantal exocytosis  

The fusion of a single vesicle and extrusion of its contents is referred to as an 

exocytotic event. Important features of an exocytotic event are (a) the time 

courses of membrane fusion and content release and (b) the amount (quanta) of 

cargo released during the release. Studying the variations in the aforementioned 
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parameters upon perturbation of the cell with a pharmacological agent or genetic 

manipulation provides clues about how the drug or protein target affects 

exocytosis (Borges et al., 2006). Quantal secretion of electroactive transmitter 

from single vesicles can be resolved through electrochemical detection. 

1.2.1. Electrochemical detection using amperometric measurements 

Electro-chemical detection of transmitter molecules can be carried out using 

amperometric micro-electrodes (Chow; Chow et al., 1992a; Leszczyszyn et al.). 

A class of vesicle cargo called catecholamines (epinephrine, norepinephrine, 

dopamine) are readily oxidized by electrochemical electrodes. Detection of 

catecholamines from single cells using electrochemical electrodes was pioneered 

in the Wightman lab (Chow et al., 1992a; Finnegan and Wightman, 1995; 

Wightman et al., 1991). In this approach a microelectrode is placed immediately 

adjacent to a single cell and held at a potential sufficient to oxidize 

catecholamines released from a single vesicle while recording the faradaic 

 
 

 
 

 
 

 

 
(a) oxidation reaction of a typical catecholamine (Westerink et al., 2006). 
Reproduced with copyright permission from John Wiley and sons.  
 

Fig.  1.2. Experimental set-up of carbon fiber amperometry 
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current (amperometry). Typically, two electrons are transferred for each 

catecholamine molecule that is oxidized on the electrode surface, therefore 

quantification of the faradaic current allows the time course and amount of 

catecholamine released from individual vesicles to be measured (Finnegan and 

Wightman, 1995; Travis and Wightman, 1998; Wightman et al., 1991). The 

earliest amperometric experiments were performed using carbon fiber electrodes 

(Chow et al., 1992a; Leszczyszyn et al.) pressed firmly on the surface of a cell 

that was stimulated to release neurotransmitter. Fig. 1.2. shows the experimental 

setup of single-cell amperometry using a carbon fiber electrode. Calcium 

signaling triggers exocytosis, the carbon fiber electrode is pressed against the cell 

membrane and records transmitter released from a single vesicle. Fig. 1.2. (a) 

shows the oxidation reaction of a catecholamine molecule.  Owing to the high 

signal-to-noise ratio and high temporal resolution of amperometry, it is possible 

to resolve a very small number (as low as 600) of neurotransmitter molecules 

released (Wightman, 2015) with millisecond time resolution. 

1.2.2. Temporal dynamics of a single-cell exocytotic event  

In a typical amperometric recording, the electrode current assumes a 

baseline value until transmitter oxidizes on the electrode, following which, a rise 

in amperometric current can be observed as a “spike”. Three distinct stages 

(depicted in Fig. 1.3.)  have been reported within an exocytotic event recorded 

electrochemically from a single-vesicle, using carbon fiber electrodes  (Finnegan 

and Wightman, 1995; Schroeder et al., 1996), (a) a small increase in current 

amplitude, corresponding to flux of transmitter via the fusion pore (pre-spike foot 



 7 

signal),  (b) a rapid rise to a peak amplitude, corresponding to flux increase 

through an expanded fusion pore; (c) an exponentially decaying  phase, attributed 

to depletion of transmitter from the vesicle.  The rate of decay also depends on the 

rate of dissociation of catecholamine from the tightly packed intra-vesicular 

matrix or gel (Schroeder et al., 1996). 

Common parameters measured from an amperometric spike include the time to  

peak (tpeak) and full-width-half-maximum (t50). These temporal parameters signify 

the duration of the fusion pore expansion (tpeak) and the duration of spike 

amplitude exceeding 50% of its maximum amplitude (t50). Other important 

parameters of interest are, charge (Q) which relates to amount of cargo released 

and can be computed as the area under the amperometric spike, and Imax or peak 

amplitude, which is the maximal flux through the fusion pore. Qfoot, cargo 

(a) small rise in current(foot-signal) (b) rapid rise in current to a peak Imax (c) 
exponential decay of current. Full-width-half-maximum(t50) is shown. The time to peak 
tpeak is the duration of the rising phase (b).  
 
(a) small rise in current(foot-signal) (b) rapid rise in current to a peak Imax (c) 
exponential decay of current. Full-width-half-maximum(t50) is shown. The time to peak 
tpeak is the duration of the rising phase (b).  
 
(a) small rise in current(foot-signal) (b) rapid rise in current to a peak Imax (c) 
exponential decay of current. Full-width-half-maximum(t50) is shown. The time to peak 
tpeak is the duration of the rising phase (b).  
 
(a) small rise in current(foot-signal) (b) rapid rise in current to a peak Imax (c) 
exponential decay of current. Full-width-half-maximum(t50) is shown. The time to peak 
tpeak is the duration of the rising phase (b).  
 
(a) small rise in current(foot-signal) (b) rapid rise in current to a peak Imax (c) 
exponential decay of current. Full-width-half-maximum(t50) is shown. The time to peak 
tpeak is the duration of the rising phase (b).  
 
(a) small rise in current(foot-signal) (b) rapid rise in current to a peak Imax (c) 
exponential decay of current. Full-width-half-maximum(t50) is shown. The time to peak 
tpeak is the duration of the rising phase (b).  
 
(a) small rise in current(foot-signal) (b) rapid rise in current to a peak Imax (c) 
exponential decay of current. Full-width-half-maximum(t50) is shown. The time to peak 

a 
 
 

b 
 
 

c 
 
 

 
 
 
 
 
 

Imax 
 

 t50 
 

Fig.  1.3. Three distinct phases in an exocytotic event 
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released via the narrow fusion pore and tfoot, the duration of the narrow fusion 

pore can also be inferred from the foot-signal in the amperometric recording. 

1.2.3. Micro-electrode arrays  

1.2.3.1. Limitations of Carbon Fiber amperometry 

Carbon was the first choice of electrode material to measure catecholamine 

release owing to its excellent electrochemical properties (Chow et al., 1992a; 

Wightman et al., 1991) (Finnegan and Wightman, 1995). In this method, carbon 

fibers are pressed onto the plasma membrane and held at a positive potential 

sufficient to oxidize released catecholamine molecules. CFEs have limitations in 

their capabilities for high-throughput measurements because CFEs can only be 

used to record amperometric currents from one cell at a time. Moreover, a micro-

manipulator is required in order to co-localize the electrode tip and the plasma 

membrane, requiring fine manipulation and considerable time consumption. Cell-

cell variability in quantal exocytosis necessitates repetition of CFE experiments 

for a large number of cells (Colliver et al., 2000), making it cumbersome and 

slow. Another disadvantage is that, CFEs only record from a fraction of the cell 

surface (12-15%) (Chen et al., 2003) whereas exocytosis occurs over a significant 

fraction of the cell surface for chromaffin cells. Additionally, it is not possible to 

combine Total Internal Reflection (TIRF) microscopic imaging of individual 

vesicles with carbon fiber amperometric recording from the imaged vesicles since 

the electrodes are opaque and interfere with the imaging. 
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1.2.3.2. Advantages of Micro-electrode arrays 

Micro-electrode arrays provide several advantages over traditional CFE 

amperometry. Recordings can be made from several cells at the same time in a 

convenient manner hence enabling high-throughput measurement. 

 In order to account for cell-cell variability, each electrode should record from a 

single cell. To this effect, micro-fluidic cell chambers that trap single cells can be 

integrated onto micro-electrode arrays. For example,  pico-liter sized wells to trap 

cells over working electrodes were implemented by the Gillis group (Liu et al., 

2011). Another example, to automate the targeting of single cells to working 

electrodes, is a micro-fluidic trap designed and  implemented by Gillis and 

Gangopadhyay groups using micro-systems fabrication techniques (Gao et al., 

2009). In this device (Gao et al., 2009), cell solution was loaded through an inlet 

reservoir and allowed to exit through a parallel exit reservoir only after trapping 

cells in a narrow  passage, orthogonal to both reservoirs, consisting of active 

docking sites where quantal release was measured on platinum micro-electrodes.  

In a typical amperometric spike, the maximal flux (Imax) decreases with distance 

of the electrode from the cell. This is attributed to diffusional delay of transmitter 

reaching the electrode, and hence necessitates a reduction in electrode-cell 

distance. In traditional CFE amperometry, the electrode is pressed onto the cell 

membrane. In MEAs, the cell is localized to the electrodes and the cell-electrode 

adhesion can be further improved using surface-modification techniques. For 

example, the Gillis (Barizuddin et al., 2010) and Gangopadhyay (Liu et al., 2011) 

groups employed cytophilic materials to promote cell-adhesion to electrodes. 
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Other advantages of MEAs are the fabrication of transparent electrodes to 

facilitate simultaneous Total Internal Reflection fluorescence(TIRF) microscopic 

imaging of individual vesicles tagged with fluorophores and multi-site detection 

on a single-cell for spatial localization of vesicle release sites.  

1.2.3.3. Micro-electrode materials  

One of the powerful features of micro-electrode arrays is the large choice of 

electrode-materials. Table 1 summarizes a comparison of various electrode 

materials including gold (Au), Indium-Tin-Oxide (ITO), Boron-doped-diamond 

(BDD) and Nitrogen doped Diamond-like-Carbon (DLC: N) (Gillis et al., 2017). 

Desirable properties of electrode materials include, polarizability, low background 

current, high sensitivity, transmittance and ease of fabrication (Gillis et al., 2017). 

Polarizability, or the ability of an electrode material to redistribute  

charges when placed in an electrolyte solution, in such a manner as to create a  

strong electric field at the interface of the electrode and the solution, is important  

for amperometry. A lower background current that signifies better polarizability       

is observed in ITO, BDD (Kiran et al., 2012) and CFEs  (Chow et al., 1992a) 

than in Au. Sensitivity, measured by the number of electrons transferred per 

catecholamine molecule is lower in ITO than the Au, BDD, and CFE electrodes 

(Kisler et al., 2012). CFEs have several good electrochemical features including 

sensitivity and low background current but carbon is not compatible with multi- 
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Table 1.1. Comparison of four electrode materials for micro-electrode fabrication 

 

array batch processing techniques even when attempted with forms like carbon 

paste (Martin et al., 2001) (Rossier Joël et al., 1999) or screen printed carbon  

(Wang and Pumera, 2002) (Wang et al., 2001b). Moreover, carbon electrodes are  

Property Au ITO 
 

BDD 
 

DLC:N CFE 

Background 
current 

~ 0.1– 0.3 
pA/µm2 
 

~ 0.01– 0.03 
pA/µm2 
 

~ 0.01–
0.03 
pA/µm2 
(Kiran et 
al., 2012) 

∼0.02–
0.16 
pA/µm2  
(Gao et al., 
2008) 

~ 0.01–
0.03 
pA/µm2 
(Chow et 
al., 1992a) 

Sensitivity 
(number of 
electrons 
transferred per 
catecholamine 
molecule) 
(Kisler et al., 
2012) 

2.0-2.7 ~1.5 1 2.0-2.7 2.0-2.7 

Transmittance 
(Kisler et al., 
2012) 

50–70% was 
at 400 nm for 
a 13-nm-
thick Au film 

~ 80% at 360 
nm and 
> 90% for 
wavelengths 
above 400 
nm for a 100-
nm-thick 
ITO film 

~50% at 
350nm for 
a 200nm 
thick film 

~ 70% at 
400 nm for 
a 40nm 
thick DLC 
on top of a 
100nm 
ITO film 

Not 
transparent 

Ease of micro-
electrode array 
fabrication 

Straightforw
ard through 
photolithogra
phy 

Straightforw
ard through 
photolithogra
phy 

Specialize
d 
equipment 
to deposit 
via hot 
filament or 
microwave 
plasma 
chemical 
vapor 
deposition 
(Macphers
on, 2015) 

Care 
required to 
avoid 
removal of 
DLC layer 
by plasma 
etching 
(Gao et al., 
2008) 

Typically, 
incompati
ble with 
batch 
processing
. 
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 not transparent. Indium tin oxide (ITO) and nitrogen doped diamond like carbon 

(DLC:N) deposited on ITO electrodes exhibit excellent transmittance (Kisler et 

al., 2012) and are hence suitable for combination with fluorescence imaging 

experiments (Amatore et al., 2006. Gold electrodes can also be transparent when 

fabricated as thin layers. However, such thin fabrication would compromise the 

robustness of the electrode. Another advantage of MEAs is the capability to 

surround cells with four or more electrodes(Andrew et al., 2002), in order to 

spatially localize the release site. This technique, when combined with 

fluorescence imaging experiments (Amatore et al., 2006; Zhao et al., 2013), can 

enable exact correlation of an amperometric event with a single vesicle release.  

1.2.4. Different modes of fusion resolved in amperometry   

Different modes of fusion (van Kempen et al., 2011) have been reported in 

bovine, pc-12 and mice chromaffin cells through amperometry, patch-clamp and 

fluorescence experiments, namely (a) full fusion (Albillos et al., 1997; de Toledo 

et al., 1993a; Perrais et al., 2004; Taraska et al., 2003) – where the vesicle 

membrane fuses with the cell membrane and releases the entire cargo observable 

as a typical tall spike in amperometry (b) kiss-and-run exocytosis (1985; 

Ceccarelli et al., 1973; Fesce et al., 1994; Klyachko and Jackson, 2002) – a type 

of partial fusion involving brief fusion followed by abrupt endocytosis, 

observable as small and fast flickers in amperometric currents. (c) kiss-and-stay 

exocytosis – In this mode, the vesicle fuses and stays open at a narrow diameter, 

slowly releasing its contents until it decays without further expansion. The 

observation of almost rectangular shaped, small amplitude long duration “stand-



 13 

alone foot” signals is attributed to kiss-and-stay exocytosis. Fig. 1.4. Illustrates 

the three major modes of exocytosis and the corresponding signals. Some cells 

exhibit a phenomenon known as compound exocytosis (1990; Ichikawa, 1965; 

Pickett and Edwardson, 2006; Scepek and Lindau, 1993) wherein vesicles fuse 

 with each other to release a larger cargo to the extracellular space. These events 

have been reported as large amplitude amperometric spikes (Bokvist et al., 2000) 

in mouse pancreatic β cells.  

1.2.5. Stages of fusion pore resolved in amperometry 

A typical amperometric recording consists of a wavering baseline current 

interspersed with “spikes” of current corresponding to “bursts” or quanta of 

neurotransmitter released. Exocytosis occurs in steps such as (a) docking (b) 

priming and (c) fusion. During docking and priming only a baseline current is 

observed in amperometry. When fusion of vesicle and cell membranes occurs, 

two distinct stages are observed (i) fusion pore formation- when a nano-metric 

 
 
 
 
 

Fig.  1.4. Three distinct modes of fusion, full-fusion, kiss-and-run and kiss-
and-stay 

Reproduced from (van Kempen et al., 2011) with copyright permission 
from Elseiver 
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channel connecting the vesicular contents to the extracellular region, is formed. 

When the fusion pore begins to form, a small current increase is observed, which 

can plateau for the duration the pore diameter stays narrow. (ii) fusion pore 

expansion – when the fusion pore expands, to release the cargo quickly. During 

fusion and release of neurotransmitter, a typical spike consisting of a fast 

exponential rise in the current followed by a slower exponential decay.  In fast 

rising, tall spikes, the exponential decay sometimes follows a double exponential 

course (Wang et al., 2001a). Fig. 1.5. Shows the amperometric traces 

corresponding to different stages of fusion. 

 

Bovine chromaffin cells have an abundance of secretory vesicles (Winkler et al., 

2006) and were hence chosen for amperometry experiments in this study. A 

secretagogue such as high concentration of K+ solution (Yang et al., 2007) was 

perfused into the cells to depolarize cells and induce exocytosis and gold 

microelectrode arrays were used to measure the amperometric current.  

The corresponding amperometric currents are shown below. Image reproduced 
from (Evanko, 2005) with copyright permission from Nature Methods  

Fig.  1.5. Different stages of fusion and corresponding amperometric 
trace (from left to right) 

 
 
 
 
 
 
The corresponding amperometric currents are shown below. Image reproduced 
from (Evanko, 2005) with copyright permission from Nature Methods  
 
 
Fig. 1.1:Amperometry, from left to right shows the various stages of fusion such 
as docking, fusion pore formation, expansion, full fusion and closure 
 
The corresponding amperometric currents are shown below. Image reproduced 
from (Evanko, 2005) with copyright permission from Nature Methods  
 
 
 
 
The corresponding amperometric currents are shown below. Image reproduced 
from (Evanko, 2005) with copyright permission from Nature Methods  
 
 
 
 
 
 
 
 
The corresponding amperometric currents are shown below. Image reproduced 
from (Evanko, 2005) with copyright permission from Nature Methods  
 
 
Fig. 1.2:Amperometry, from left to right shows the various stages of fusion such 
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1.3. Automated analysis of amperometric signals † 

1.3.1. Need for automated analysis 

Spike frequency, which corresponds to the rate of exocytosis, is a useful metric 

that can be determined by analyzing amperometric recordings. Manual analysis of 

amperometric currents is the gold standard for locating spikes but is time 

consuming and subjective. Automated detection of exocytotic spikes is hence 

necessary for improved speed and accuracy. There are four challenges in the 

automated temporal identification of exocytotic spikes (a) exocytotic spikes 

exhibit variation in the rise and decay time constants that depend upon the rate of 

fusion pore expansion and rate of dissociation of neurotransmitter from the intra-

vesicular matrix respectively; (b) the spikes also exhibit diverse amplitudes, 

which are governed by the flux of the neurotransmitter traversing the fusion pore; 

(c) the baseline current is not steady, and tends to increase when secretagogues 

are perfused into the cells; (d) Successive spikes occurring closely in time, known 

as “overlapping” spikes are ambiguous to resolve. 

1.3.2. Existing approaches 

The most widely used automated spike detection algorithms for this application 

detect an event when the derivative of the trace exceeds a set threshold (Mosharov 

and Sulzer, 2005; Segura et al., 2000). This classical approach is quick and 

computationally efficient. However, there are two main disadvantages in such an 

approach. Firstly, data smoothing is required both before and 
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 after computing the derivative in order to prevent spurious detection. Excessive 

smoothing may lead to spikes being undetected whereas insufficient smoothing 

can result in detection of noisy transients as spikes (false positives). The onus is 

on the user to determine optimal filtering parameters. Secondly, the derivative 

threshold method is biased against slowly rising spikes, which can go undetected 

in this approach. Moreover, this method only uses information from a brief 

interval in the spike, the rapidly rising phase, and does not exploit information 

from the bulk of the spike time course when the amplitude is declining. An 

alternative approach to detect exocytotic spikes is to subtract the time-varying 

baseline from the signal and then detect spikes that exceed amplitude thresholds 

(Friedrich and Ashery, 2010) . However, tracking the time-varying baseline with 

pA precision requires that the baseline be stable over the averaging time window 

and relies on user input of the noise level. Also, in an amplitude-based algorithm 

small-amplitude flickers may be 

mistaken as spikes (Friedrich and 

Ashery, 2010), whereas MF 

approach rejects such flickers 

because their time courses do not 

match the templates.  Avoiding false 

positives inevitably makes 

amplitude-based algorithms more 

biased against small-amplitude 

events than template-based 

 (A) Two spontaneous mini events (B) 
corresponding detection criterion. Reproduced 
from Clement and Bekkers (Clements and 
Bekkers, 1997) with copyright permission 
from Elseiver. 
 

Fig.  1.6. Detection criterion for mini-synaptic 
events 
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algorithms.  

1.3.3. Matched filter approach  

Event detection is a common problem in signal processing with a rich literature 

(Bell, 1993b; Poor, 2013). A powerful approach to detect events in a noisy 

background is to exploit a priori knowledge about the event time course through 

use of an idealized event template.  Matched filtering refers to the process of 

correlating the measured signal with the idealized event template in order to 

detect events when the correlation exceeds a threshold. Whereas matched filtering 

has been used in detection applications such as radar (Bell, 1993a) and seismic 

detection (Shearer, 1994) for many years, its use for detecting quantal exocytosis 

via amperometry has not been systematically studied. Examples of biological 

signals that have been detected using template-based approaches are extracellular 

action potentials (Kim and McNames, 2007; Nakamura et al., 2005; Szymanska et 

al., 2014), electroencephalograph (EEG) signals (Stamoulis and Chang, 2009) 

 
Foot signal (between the blue circles). Spike parameters t50, Imax, Qspike  and foot parameters of 
tfoot and Qfoot are shown 

Fig.  1.7. A typical amperometric trace preceded by a pre-spike foot signal 
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(Mesbah et al., 2007; Stamoulis and Chang, 2009) and spontaneous post-synaptic 

electrophysiological events (“minis”) (Clements and Bekkers, 1997). In the 

approach described by Clement and Bekkers, a template is used that represents an 

ideal postsynaptic mini event. The template is correlated point-by-point 

throughout the recording and a score is calculated for each time point. Events are 

detected when the score exceeds a threshold value. Fig. 1.6. Shows a trace 

containing mini-synaptic events and the corresponding criterion scores. However, 

detection of amperometric spikes is a more challenging problem than minis 

because amperometric spikes vary widely in amplitude and time course.  

This study describes the application of matched-filtering(MF) approach to detect 

amperometric spikes.  

1.3.4. Estimation of spike parameters 

Another objective of this study was to estimate spike parameters that describe the 

physiological nature of the release mechanism. The area under the spike(Q) 

can be used to determine the amount of neurotransmitter released, full width at 

half maximum(t50) can be used to determine flux-duration and the 

peak current(Imax) corresponds to the maximum flux through the fusion pore 

(Jankowski et al., 1993; Wightman et al., 1991). Fig. 1.7. Shows an amperometric 

spike with parameters denoted.  

1.3.5. Overlap rejection 

The first step in spike estimation is the rejection of closely successive, 

overlapping spikes (shown in Fig. 1.8.) which do not decay to baseline and hence 

their start and end points are ambiguous to estimate. Existing approaches either 
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rely on the user to determine the extent of overlap tolerable (Mosharov and 

Sulzer, 2005) or use arbitrary thresholds on the ratio between amplitudes of  

adjacent spikes (Friedrich and Ashery, 2010) to determine if a spike is well-

separated or overlapping. We demonstrate a user-independent algorithm to 

analyze pairs of adjacent spikes and accept or reject them based on a two-

condition approach. The first condition rejects the second spike if it occurs prior 

to the decay of the first spike to a minimum amplitude. 

 The second condition rejects the first spike if it did not decay to 3 decay time 

constants. MF template parameters provide accurate seed values for the decay 

time constants, to help reject overlapping spikes.  

1.3.6. Multi-step curve-fitting 

The next step in spike estimation is curve-fitting of spikes so as to obtain “good-

fits” to spikes that can be used to calculate spike parameters. Linear least squares 

curve fitting performed in the MF approach provided excellent spike detection, 

but for accurate spike estimation, finely tuned non-linear curve fits are required. 

Fig.  1.8. Overlapping spikes 
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Iterative non-linear curve fitting is highly sensitive to the initial guesses of 

parameters. Existing spike estimation algorithms rely on line-fitting to an 

arbitrary segment of the rising phase and auto-seeded non-linear curve fitting of 

the decaying phase of the spike. We demonstrate that MF template parameters  

provide good initial seed values for non-linear curve fitting of spikes to an 

exponential rise followed by multi-exponential decay spike function. Moreover, 

in order ascertain a high accuracy of curve-fits, we first performed MF-parameter-

seeded exponential rise fits to the rising phase of the spike and MF-seeded 

double/single exponential decay fits 

to the decaying phase of the spike. 

The parameters obtained from these 

two fits were then fed into an overall 

spike function to obtain “good fits” to 

spikes. Using spike fit parameters like 

tr (rise time constant), td (decay time 

constant), a1,2 (amplitudes of two 

decays), t0 (spike offset time) and b 

(baseline) spike parameters including 

Q, t50 and Imax were calculated. 

Histogram of spike parameters were 

compared against those computed using existing and manual approaches to 

determine the performance of the algorithm.  

 

 
 
 
(Amatore et al., 2009) show, ramp and a ramp 
+ plateau. Reproduced with copyright 
permission from Elseiver. 

Fig.  1.9. Two types of feet 
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1.3.7. Pre-spike foot signal analysis 

 Some exocytotic events exhibit a small pre-spike feature (Amatore et al.; 

Amatore et al., 2007; Chang et al., 2017; Chow et al., 1992a; de Toledo et al., 

1993a) termed as “foot signal”. It appears as a small increase in the current which 

could then take on the shape of a ramp, a plateau or a ramp followed by a plateau 

(Amatore et al., 2009). 

Through patch-amperometry (Albillos et al., 1997) (combining patch-clamp with 

amperometry) experiments Chow et al. correlated the occurrence of foot signals to 

a slow leak of molecules through the narrow fusion pore in the early stages of 

exocytosis (Chow et al., 1992a).  

1.3.8. Baseline detection 

In order to analyze pre-spike foot signals, the pre-spike baseline current should 

first be established. Existing approaches (Mosharov and Sulzer, 2005) determine 

the baseline by performing a steady state search on a filtered amperometric trace 

and then apply an amplitude threshold of 2.5 times standard deviation of 

background noise to detect foot beginning points, where the background noise is 

determined using a “spike-free” segment of the data, indicated by the user. We 

demonstrate an algorithm that uses two pieces of information obtained from MF 

spike detection namely (a) spike start time and (b) criterion score to analyze pre-

spike activity. The MF detection approach provided accurate spike start times, 

which was useful for location and analysis of the pre-spike segment. For spike 

detection, the MF approach provided a criterion score to describe the extent of 
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template-data match. However, this score reaches zero when the least squares 

amplitude is zero. Hence, the criterion score zero can be used to determine the 

region of baseline in every pre-spike segment. Once baseline was determined, an 

amplitude threshold was then applied to detect the beginning of pre-spike foot 

signal. The point t=t0 of the exponentially rising spike was identified to be the end 

of the pre-spike foot signal. The area under the foot and lifetime of the foot are 

measures of charge and lifetime of narrow fusion pore and were determined using 

the above detected foot signal. Mean and median foot-signal parameters were 

compared with those computed by existing and manual approaches to measure 

performance. 

1.4. Dissertation objectives and overview 

The three objectives of this study are (a) automated detection of amperometric 

spikes (b) estimation of spike parameters (c) detection and estimation of foot 

signals.   

This dissertation is composed of five chapters 

Chapter 1 provides an introduction to exocytosis mechanisms, electrochemical 

methods of detection, existing algorithms that analyze amperometric signals and 

an overview of the new approaches developed in order to study amperometric 

signals.  

Chapter 2 describes the materials and methods used for this study, including 

bovine chromaffin cell preparation, microelectrode array fabrication, 

amperometry, matched filter, least squares fitting, receiver operating 
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characteristics, overlap rejection, multi-step non-linear spike fitting, baseline 

detection and pre-spike foot analysis. 

Chapter 3 consists of the results of matched filtering for spike detection. ROCs 

comparing the MF approach to existing algorithms such as derivative threshold 

and other commercial applications are presented. The MF approach outperforms 

existing approaches by detecting 40% more events than traditional approaches 

(Balaji Ramachandran and Gillis, 2018)  and >95% of the events for <5% false 

positive rate.  

Chapter 4 describes the approaches undertaken to estimate spike parameters such 

as t50, Imax and Q. Histograms of manual and algorithmic estimates are compared. 

The analysis and estimation of foot signals, foot parameters such as lifetime(tfoot) 

and charge(Qfoot) are presented. 

Chapter 5 discusses the outcomes of the MF Detection and Estimation algorithms. 

Future directions include machine learning approaches to automatically design a 

template library, analysis of stand-alone foot signals and post-spike foot signals. 

†Partially reproduced from Balaji Ramachandran et al(Balaji Ramachandran and Gillis, 2018)     
 
† Reproduced from (Balaji Ramachandran and Gillis, 2018)†Partially reproduced 
from Balaji Ramachandran et al(Balaji Ramachandran and Gillis, 2018)     
 
†Partially reproduced from Balaji Ramachandran et al(Balaji Ramachandran and Gillis, 2018)     
 
† Reproduced from (Balaji Ramachandran and Gillis, 2018)†Partially reproduced 
from Balaji Ramachandran et al(Balaji Ramachandran and Gillis, 2018)     
 
†Partially reproduced from Balaji Ramachandran et al(Balaji Ramachandran and Gillis, 2018)     
 
† Reproduced from (Balaji Ramachandran and Gillis, 2018)†Partially reproduced 
from Balaji Ramachandran et al(Balaji Ramachandran and Gillis, 2018)     
 
†Partially reproduced from Balaji Ramachandran et al(Balaji Ramachandran and Gillis, 2018)     
 
† Reproduced from (Balaji Ramachandran and Gillis, 2018)†Partially reproduced 
from Balaji Ramachandran et al(Balaji Ramachandran and Gillis, 2018)     
 
†Partially reproduced from Balaji Ramachandran et al(Balaji Ramachandran and Gillis, 2018)     
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from Balaji Ramachandran et al(Balaji Ramachandran and Gillis, 2018)     
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Chapter 2  
 

2. MATERIALS AND METHODS 

2.1. Fabrication of micro-electrode arrays 

As discussed in Chapter 1 (Section 1.2.1), single-cell amperometry is a powerful 

technique for measuring quantal exocytosis. In this study, amperometric 

measurements were carried out using gold multi-electrode arrays. The following 

sections describe the fabrication and testing of gold micro-electrode arrays.  

2.1.1. Electrode array Fabrication steps 

Gold, a  polarizable electrode material with fast electron-transfer kinetics (Zachek 

et al., 2008) and was used for electrode fabrication. The following were the steps 

for fabricating a device consisting of 16 electrodes (Liu et al., 2011). 

2.1.1.1. Sputter coating 

Microscope slides (25 X 75 X 1) mm, (Fisher brand, Fisher Scientific, Pittsburgh, 

PA, USA (Martin et al., 2001)) were cleaned in four steps a) soaked in acetone for 

5 min b) washed with methanol c) washed with isopropanol d) washed with DI 

water. The cleaned slides were air dried. A 2nm Ti layer was first sputter 

deposited on the slides following which ~30nm thick gold film was sputter 

deposited. The Ti layer acts as an adhesion film for the Au layer. 

2.1.1.2.   Gold Patterning 

The Au film was patterned using photo-etching processes with S1813 photoresist 

(Rohm and Haas electronic materials, Philadelphia, PA, USA (Rohm)) as a 

masking layer. First, the conductor-coated slides were cleaned by sonication in 

acetone for 10 min followed by exposure to air plasma (PDC-32G, Harrick 
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Scientific Corp., 

Pleasantville, NY, 

USA (HarrickSci)) 

for 1 min at medium 

RF power level. 

S1813 photoresist 

was then spin coated 

(Laurell 

Technologies Corp., 

North Wales, PA, 

USA (Laurell)) onto 

the coated slide at 

2500 rpm for 60 s to 

give a thickness of 

~2 mm. The coated 

glass slide was then 

baked on a hot plate 

at 115 °C for 2 min. 

Then it was exposed 

to UV light through 

a high resolution (20 000 dpi) transparency mask (CAD/Art services, Inc. 

Bandon, OR (CAD)) for 2.6s (1000 W metal halide lamp) and then developed in 

M351 solution(Rohm and Haas electronic materials (Rohm)) for ~1 min. Since 

 
A) Gold film sputter deposited on glass substrate. S1813 
layer spin coated on gold film and exposed to UV through 
photomask 1 (B) Patterned photo-resist layer C) Etching 
of the gold pattern D) SU8 layer spin coated on the 
sample. UV exposure through Photomask 2 E) A well for 
trapping the cell is patterned and developed.  Reproduced 
from (Gillis et al., 2017) with copyright permission from 
Springer Berlin Heidelberg 
 

Fig.  2.1. Microelectrode array fabrication steps 

A 
 
A 
B 
 

C 
 

D 
 

E 
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S1813 is a negative photoresist, the development step resulted in removal of this 

layer from regions exposed to the UV light.  

2.1.1.3. Insulation of gold film 

At the end of the first UV exposure described above, S1813 layer covering the 16-

electrode pattern (50µm widths) and corresponding 2X2 mm2 bonding pads was 

retained. Au/Ti films were wet etched using an Au etching reagent (Aqua regia 

HNO3:Hcl, 1:4) purchased from Sigma-Aldrich for ~5 s. The etched sample was 

then shaken in PRS3000 (PRS 3000 from Avantor performance materials 

(Avantor)) stripping solution to strip away the S1813 layer covering the metal-

film pattern. SU8 2025 photoresist spin coated onto the device at 4000 rpm for 1 

min to give a thickness of ~16 mm. Then it was baked on a hot plate at 65°C for 3 

min and then at 95°C for 5 min. 

2.1.1.4. Opening of working electrodes 

A second mask was used to create 20 µm diameter openings in the SU8 insulation 

that define working electrodes / cell trapping sites and allow electrical 

connections to bonding pads arranged around the circumference of the chip. The 

exposed sample was baked for 3 minutes at 75 °C and 5 minutes at 95 °C and then 

left to cool for 30 minutes. The cooled sample was developed for 6-8 minutes 

using a small quantity of SU8 developer (MicroChem Corp, Newton, MA, USA 

(Microchem)) in slow perturbation mode in order to remove residual SU8 

covering the wells. Since SU8 is a positive photoresist, areas unexposed to light 

were etched in the developing solution. The developed sample was then baked at 

200 °C for 10 minutes in order to harden the film and seal cracks on the SU8 
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layer. The sample was treated by exposure to air plasma (PDC-32G, Harrick 

Scientific Corp., Pleasantville, NY, USA (HarrickSci)) for 5 mins at medium RF 

power level. This step enabled the removal of any residual organic matter or SU8 

layer residing on the electrodes. 

2.1.2. Packaging steps 

The glass chips containing electrode arrays need to be packaged to facilitate 

electrical connection to amplifiers and containment of the cell-containing solution 

placed on top of the array. A small printed circuit board was used to facilitate 

electrical connection of the electrodes to the potentiostats. Electrical connections 

between the bonding pads on the circumference of the electrode array chip and 

connection pads on the PCB were made with conductive silver epoxy. Since the 

working surface of the electrode array chip faces the PCB, a 7mm diameter hole 

was fabricated on the PCB to allow access of cells and solution to the array in a 

“flip-chip” configuration. A 3D printed solution chamber was bonded to the glass 

chip using a cyanoacrylate adhesive to ensure that the cell bath solution does not 

contact the PCB nor electrical connections on the chip.  Electrical connections 

between the PCB and the amplifier array “head-stage” were made using a header 

array soldered to the PCB.  The entire assembly was then packaged in a 3D 

printed cassette enclosure. 

2.1.3. Cyclic voltammetry 

Cyclic voltammetry(CV) (Elgrishi et al., 2018; Mabbott, 1983) is the technique of 

ramping the holding potential of the electrode between two values in order to 

cyclically reduce and oxidize the analyte and thereby observe the resulting 
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 cathodic and anodic currents, respectively Cyclic voltammetry with a well-

behaved redox analyte such as ferricyanide is used to confirm the electrochemical 

sensitivity of fabricated electrodes. 

For   instance, an electrode partially covered with photoresist residue would 

exhibit a shallow current increase in response to the ramping voltage whereas an 

electrode with a clean surface exhibits steep current changes.  Fig. 11. Shows CV 

plots for a few electrodes on a gold micro-electrode array device. 

 
Shows the Cyclic voltammograms of a few electrodes using Ferricyanide as the test analyte 
(1 mM K3Fe (CN)6 in 0.1 M KCl, pH = 3, scan rate of 10 mV/s), demonstrating steep 
current changes in response to voltage ramps. Each color corresponds to a CV curve from an 
electrode in the device 

 
 
 
 
 
 
 

Fig.  2.2. Cyclic voltammograms 
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2.2. Experimental recordings 

Chromaffin cells were isolated from bovine adrenal glands and cultured as 

described previously (Yang et al., 2007). The cell bath solution consisted of (in 

mM): 150 NaCl, 5 KCl, 2 CaCl2, 1.2 MgCl2, 10 HEPES, and 11 glucose, pH 7.2. 

A solution with an elevated potassium concentration was used to depolarize cells 

and induce exocytosis (in mM): 55 NaCl, 100 KCl, 5 CaCl2, 2 MgCl2, 10 

HEPES, and 10 glucose, titrated to pH 7.2 with KOH. Amperometric recordings 

from bovine chromaffin cells were made with either carbon fiber microelectrodes 

(ALA Scientific, East Farmingdale, NY, USA (van Kempen et al., 2011)(van 

Kempen et al., 2011)(van Kempen et al., 2011)(van Kempen et al., 2011)(van 

Kempen et al., 2011) (Liu et al., 2011) or self-made micro-fabricated Au electrode 

arrays (Chen et al., 2003; Kisler et al., 2012; Liu et al., 2011).  Recordings were 

filtered at 3 kHz and sampled at 10k samples/s.  In most recordings, every 10 

 
Amperometric trace obtained from a bovine chromaffin cell using a gold microelectrode array 
device. Each spike is a result of a single-vesicle release event 

Fig.  2.3. Amperometric trace obtained from an electrode 
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points were averaged to result in a “decimated” sampling rate of 1k samples/s and 

a -3dB bandwidth of ~220 Hz. The decimated sampling rate of 1kHz is sufficient 

to resolve fast events in chromaffin cells and results in faster computational 

speed. Recordings made from mouse chromaffin cells were kindly provided by 

the laboratory of Kevin Currie (Vanderbilt Univ.) and obtained as previously 

described (Jewell et al., 2011). Recordings were filtered at 2 kHz and sampled at 

10k samples/s. 

2.3.       Matched filter detection of amperometric spikes † 

Linear regression is a familiar technique whereby a set of data points is fitted by a 

line with slope a and intercept b to minimize the sum of squared errors between 

the data and the fit Fig. 2.4.(A) A straightforward extension of this Least Squares 

approach is to fit a set of data y(t) consisting of N points with a template function 

(f(t)) to yield an amplitude a and offset b given by Fig. 2.4.(B): 

𝑦#(𝑡) = 𝑎𝑓(𝑡) + 𝑏 (Equation 1) 

where a and b are the least-squares values given by: 

𝑎 = ∑-(.)/(.)0∑-(.)∑/(.)/2
∑-3(.)0∑-(.) ∑ -(.)/2

  (Equation 2) 

𝑏 = ∑𝑦(𝑡) − 𝑎∑𝑓(𝑡)  (Equation 3) 

The standard error of the least-squares fit is given by: 

𝑆𝐸 = 	8
∑9/(.)0/#(.):3

20;
	

  (Equation 4) 

A criterion score for the fit is calculated as the ratio (Clements and Bekkers, 

1997) 

criterion	score = 		a/SE (Equation 5) 
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and thus, is a measure of the “signal-to-noise” ratio of the fit, or how strongly the 

segment of the data is represented by the template. This is repeated by moving the 

template point-by-point along the data trace in order to produce a criterion score 

for every possible data segment. A spike is detected each time the criterion score 

exceeds a threshold, and the time when the criterion score reaches a peak value is 

the most likely starting time for the spike. It should be noted that even when the 

least-squares fit appears poor by visual inspection, it can produce a criterion score 

sufficiently large to detect the spike with high confidence. 

2.3.1.  Template waveform † 

Amperometric spikes can often be adequately fit by a function consisting of an 

exponential rise with time constant tr followed by an exponential decline with a 

much slower time constant (td) of the form: 

𝑓(𝑡) = G1 − exp G− .
KL
MM ∗ exp G− .

KO
M (Equation 6) 

; 		𝑡 > 0 

The template contains a brief pedestal before the exponential rise (Clements and 

Bekkers, 1997), which helps produce a more accurate determination of the 

baseline b, and, more importantly, helps to ensure that a high criterion score (good 

fit) is only obtained when the template is precisely aligned in time with the spike 

found in the data. 

A pedestal of duration tp is defined as: 

𝑓(𝑡) = 0	;			−𝑡S < 𝑡 < 0 

 

2.3.2. Selection of template waveforms † 
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Four templates are sufficient to detect essentially all amperometric spikes in both 

bovine and mouse chromaffin cells (see Chapter 3).  The rising and falling time 

constants were selected by looking for clustering of time constants found by 

fitting spikes from representative recordings. Template 1 has a slow rise (tr = 50 

ms for bovine, 70 ms for mice) and slow decay (td = 150 ms for bovine, 350 ms 

for mice). Template 2 has a slow rise (tr = 30 ms for bovine, 70 ms for mice) and 

an intermediate decay time (td = 80 ms for bovine, 180 ms for mice). Template 3 

has a fast rise (tr = 3 ms for bovine, 10 ms for mice) and fast decay (td = 8 ms for 

bovine, 20 ms for mice) and template 4 has a fast rise (tr = 3 ms for bovine, 10 ms 

for mice) and a slow decay (td = 80 ms for both bovine and mice). All templates 

are normalized to unit peak amplitude and have 20 ms pedestals.  For bovine 

chromaffin cells, templates are 200 ms in duration, whereas mice spike templates 

are either 250 ms or 380 ms in duration. Reducing the template duration to 200 

ms did not adversely affect performance (data not shown). 

2.3.3. Comparison with other software † 

Software developed by Eugene Mosharov (Mosharov and Sulzer, 2005) was used 

as the default derivative-threshold (DT) approach to detecting spikes. This 

software requires user-specified smoothing frequency, background region and 

peak threshold. A spike-free region in the amperometric trace was input to be the 

background region. The spike detection program was run at thresholds ranging 

from 0-80 pA/ms. ClampFit (Molecular Devices, Sunnyvale, CA, USA) 

(ClampFit) (ClampFit) (ClampFit) (ClampFit) (ClampFit) a commercial spike 

detection application, uses templates selected by the user to detect spikes. The 
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input templates applied were the same as those used for MF approach. The 

detection threshold was varied from 0 to 20 and the detection performance was 

measured at each threshold.  MiniAnalysis (Synaptosoft) Fort Lee, NJ, USA, is 

another commercial spike detection application that uses a  derivative threshold 

approach. This spike detection routine was run at thresholds ranging from 0 to 20 

pA/ms. 

2.3.4. Quantification of detection performance using receiver 

operating characteristic plots † 

The performance of various spike-detection algorithms was measured using 

Receiver Operating Characteristic (ROC) plots. The two important indicators of 

performance are the ability to detect actual spikes (high sensitivity) while 

minimizing false positives (high specificity).   Sensitivity is quantified by the 

detected fraction, defined as:  

Detected Fraction = (Num. of true spikes detected) /(Total num. of actual 

spikes in the recording) (Equation 7) 

Lack of specificity is quantified by the false-positive fraction, defined as: 

False-positive fraction = (Num. of false positives detected) /(Num. of true 

spikes detected + Num. of false positives detected) (Equation 8) 

As the threshold value for detection is increased, the false-positive fraction 

decreases (higher specificity), however, the detected fraction also decreases 

(lower sensitivity). Therefore, the tradeoff between specificity and sensitivity is  
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 (A) Least squares fit of a line (red) to sample data (black) to yield the 
slope (a) and y intercept (b). (B) Least-squares fit of a function f(t) to an 
amperometric spike to yield the spike amplitude (a) and offset/baseline 
(b). (C) A receiver operating characteristic is a plot of sensitivity vs 
specificity as the threshold for detection varies from low to high. A 
higher threshold tends to reduce false positives at the expense of missing 
events (lower sensitivity). An ideal detection algorithm (dotted gray) 
detects 100% of spikes with 0% false positives when a proper threshold is 
used; a poor performing test will resemble the solid black curve because 
detecting a large fraction of the events with a lower threshold invariably 
leads to many false positives; a good test will resemble the solid blue 
curve. 

Fig.  2.4. Least squares can fit an amperometric spike with a template 
function and a receiving operator characteristic plot can quantify the 
performance of detection algorithms 
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quantified by plotting the detected fraction versus the false-positive fraction as the 

threshold value is increased from a low to a high value (Receiver Operating 

Characteristic, Fig. 2.4(C). An ideal detection algorithm will resemble the dashed 

curve in Fig. 2.4(C) and detect 100% of events with 0% false positives (upper left 

corner of ROC) when an appropriate threshold is used. A spike detected by an 

algorithm is considered “true” if the rising edge is within a defined time tolerance 

of the rising edge inevitably accompany detection of a large fraction of events. In 

order to quantify the detected fraction and false-positive fraction, one must define 

the true condition, i.e., identify all the actual spikes recordings as the “gold 

standard” for identifying spikes. Cases where it is ambiguous whether a signal is a 

pre-spike foot or in the recording. We used manual analysis of an independent 

spike were determined manually.  The tolerance was set to be the duration of the 

template. Algorithms were implemented using Igor Pro software (Wavemetrics, 

Lake Oswego, OR, USA). 

2.3.5. Estimation algorithm 

Fig. 2.5(A) presents a typical amperometric spike recorded from a bovine adrenal 

chromaffin cell and common parameters to be estimated such as full width half 

maximum duration (t50), peak amplitude (Imax) and area (Q).  Pre-spike foot area 

(Qfoot) and duration (tfoot) are also indicated.  

Fig. 2.5(B) depicts the overall process flow of the parameter-estimation approach. 

The first step in spike estimation is the identification of a spike. Our previously 

described matched-filtering algorithm uses four prototype spike templates that 

vary in time course.  Each template is least-squares fit to all possible segments of  
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data in a recording and the 

amplitude of the fit of each 

template is divided by the 

standard error of the fit to 

determine a criterion score at 

each time point.  A spike is 

detected when the criterion 

score exceeds a threshold, 

and the template and start 

time (t0) with the highest 

criterion scores for the spike 

are identified. If the sum of 

two templates produces a 

higher criterion score and the smaller template amplitude is at least 10% the size 

of the larger template amplitude, the event is classified as “double exponential” 

A 
 
 

B 

 
(A) An amperometric spike preceded by a 
pre-spike foot. Spike parameters Q, Imax, t50 
and foot parameters tfoot, Qfoot are indicated. 
(B) Overall schematic of estimation 
algorithm. EMF template parameters were 
seeded into an overlap rejection algorithm. 
Well-separated spikes were fit with a (i) 
rising phase function (ii) decaying phase 
function. Parameters from the rising and 
decaying phase fits seeded a combined 
function that fit both phases of spikes. Q, 
Imax and t50 were computed for spikes. Pre-
spike foot signals were estimated to 
calculate tfoot and Qfoot 

Fig.  2.5. Spike and pre-spike estimation 
algorithm 
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for parameter identification. Note that fits of templates to the data is by least-

squares, similar to linear regression, and is therefore a closed-form solution 

without iteration.  

The matched-filter detection process yields a set of initial parameter values for the 

spike including start time (t0), rise time constant (τr), decay time constant(s) 

(τd1,2), amplitudes of the exponential decay(s) (a1, a2) and baseline (b). Next, 

these template parameters are passed onto our overlap rejection algorithm 

described in detail in section 2.2.1. If adjacent spikes are found to be overlapping, 

they are rejected for estimation. If adjacent spikes are not overlapping, spike 

parameters are passed to a two-step curve fitting algorithm. In the first step two 

iterative curve fits are performed, (i) the rising phase, the interval between the 

start time and the peak, is fitted by an exponential seeded by detection parameters 

t0, τr,, amplitude (a1+a2) and baseline (b) (ii) the decaying phase of the spike, 

starting at its peak, is fit by a single or double-exponential decay seeded by 

determine the baseline and pre-spike foot signals are identified and analyzed to 

compute tfoot and Qfoot. 

2.3.6. Rejection of overlapping spikes using EMF template 

parameters 

When a high rate of release is recorded, it is common to have spikes overlapping 

in time (Wightman et al., 1991). Overlapping spikes are poor candidates for 

parametric analysis since their time courses and areas cannot readily be resolved. 
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The first step in spike 

estimation is the 

identification and rejection of 

overlapping spikes. 

Traditional approaches to 

rejecting overlaps rely on 

user intervention to define the 

acceptable extent of overlap, 

and, in our experience, often 

fail to identify two spikes 

located close together in time. 

Here we describe a user-

independent algorithm that 

detects overlapping spikes 

using two criteria.  

 Criterion 1: For every pair of successive spikes, the second spike (S2) is rejected 

for analysis if it occurs prior to when the decay of the first spike (S1) is predicted 

to fall below a minimum current (Imin, typically 1 pA). The rationale for this 

criterion is that the first spike has not decayed sufficiently to avoid disrupting the 

baseline for the second spike. The least-squares fit of the template(s) is used to 

predict the decay of S1. In the case of a single-exponential decay, the falling 

phase of a spike is approximately given by, 

A 
 

B 
 

P 

O 

O 

O 
O 

 
(A) A second spike occurred within a time window set by 
twindow=tImax + τd*ln(Imax/Imin) and was hence rejected. The 
first spike decayed to 3*τd indicated by the blue star and 
was retained for further analysis. 
(B) A second spike occurred within the time window set by 
twindow=tImax + τd*ln(Imax/Imin) and was hence rejected. The 
first spike did not decay to 3*τd indicated by the blue star 
and was rejected.  
 

Fig.  2.6. Overlapping spikes rejection criteria 
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𝑓(𝑡) = 	𝐼𝑚𝑎𝑥 exp X−
𝑡
𝜏Z
[ 

where, Imax is the peak amplitude determined from the amperometric spike. By 

setting this function to Imin, the minimum acceptable interval until S2 is given by:  

𝑡\]^Z_\ = 𝜏Zln	(
abcd
ab]^

) (Equation 9) 

For events classified as double exponential, the slower time constant τd2 was used 

to compute twindow. An Imin of 1 pA was found to be sufficient for rejecting 

overlaps. Fig. 2.6.(A) and Fig. 2.6.(B) show examples where the second spike is 

rejected because it falls within twindow of the peak time of the first spike. 

Criterion 2: The first spike is rejected for analysis if the second spike occurs less 

than three times the slower decay time constant (3τd2) from the time of the peak 

of the first spike. The rationale for this criterion is that a duration of three-time 

constants is sufficient to ensure that the spike time course can be fit with high 

confidence. In Fig. 2.6.(A) the first spike is accepted because the 3τd2 time point  

(blue asterisk) occurs before the second spike started. However, in Fig 2.6. (B) the 

first spike is rejected because another spike occurs before the first spike decays to 

3τd2. 

2.3.7. Iterative curve fitting of spikes  

The next step in spike estimation is curve fitting to a spike model. The templates 

used to detect spikes are a function consisting of a fast-exponential rise followed 

by a slower exponential decay: 
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𝑓(𝑡) = G1 − exp G− .
KL
MM exp G− .

KO
M       (Equation 10) 

  Where, τr is the rise time constant and τd, is the decay time constants that are 

selected as representative of “typical” spike time courses. This least-squares fit of 

the template to the data (y(t)) is of the form, 

𝑦#(𝑡) = 𝑎𝑓(𝑡) + 𝑏				(Equation 11) 

 Where the amplitude a and baseline / offset b are found using the (non-iterative) 

least-squares algorithm (Balaji Ramachandran and Gillis, 2018). Our extended 

𝜏
d1,2,	

a
1,2,	
b		

	
𝜏
r
,	a1,

	
t
0
		

	

	𝜏i,	𝜏Z;,	𝜏Zj,	𝑎;,	𝑎2, 𝑏,t0	
	

 
Top Left: Rising phases of well separated spikes are fit using 
the function a1*(1-exp(-(t-t0)/τr)) + b, Right: Decaying phases of 
well separated spikes are fit using the function a1*exp(-(t-t0)/τd1) 
+ a2*exp(-(t-t0)/τd2) + b. Bottom Parameters obtained from fits in 
the Top Fig.s seed the function,  (1-exp(-(t-t0)/τr)) *(a1*exp(-(t-

t0)/τd1) + a2*exp(-(t-t0)/τd2) + b to fit entire spikes 

Fig.  2.7. EMF template parameters provide seed values for a 
two-step non-linear curve fitting routine 
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matched filtering approach fits spikes to a sum of templates with different 

decaying time constants in the form: 

𝑦#(𝑡) = 	𝑎;𝑓;(𝑡) +	𝑎j𝑓j(𝑡) + 𝑏; 		𝑡 > 0									(Equation 12) 

Whereas least-square fits of templates to spikes enables excellent spike 

identification, adjustments of the time constants are necessary to enable 

estimation of spike parameters based on precise fits to the data.  Since the 

function has a non-linear dependence on the time constants, an iterative curve-

fitting approach is needed, and appropriate convergence of the fit is highly 

sensitive to initial parameter estimates (seed values). Parameters obtained from 

the least-square template fits were used as seed values in an iterative curve fitting 

routine (Levenberg, 1944; Marquardt, 1963). The first step was to fit the rising 

phase of spikes to a function of the form, 

𝑦#(𝑡)i]kl = 	𝑎 G1 − exp G− (.0.m)
KL

MM + 𝑏 (Equation 13) 

; t0 < t < tpeak 

Subsequently, the decaying phase of the spike is fit to a single or double 

exponential, depending on the classification.  For a double-exponential fit the 

decaying phase is of the form 

𝑦#(𝑡)nopqr = 𝑎;exp G−
(.0.m)
KOs

M + 𝑎jexp G−
(.0.m)
KO3

M + 	𝑏 (Equation 14) 

; t > tpeak  

Examples of fits to the rising and decaying phases are shown in the top of Fig. 

2.7. In the final fitting step, entire spikes are fit by seeding output parameters 

from the separate rising and decaying fits to the function described as (for the 

double-exponential case): 
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𝑦#(𝑡) = 	t1 − expt−
(𝑡 − 𝑡0)
𝜏i

uut𝑎;exp t−
(𝑡 − 𝑡0)
𝜏Z;

u + 𝑎jexpt−
(𝑡 − 𝑡0)
𝜏Zj

uu + 𝑏					 

	(Equation 15) 

; t0 < t < tpeak + 3*τd2 

Seed values for τr, and t0 are from the rising phase fit whereas a1,2, b, and τd1,2 are 

from the decaying phase fit. Fig. 2.7. Bottom depicts typical examples where 

excellent fits to the entire spike are obtained. 

After the fit, the entire time course, amplitude and area of each spike is reduced to 

either three parameters (single exponential decay: τr, a, τd) or five parameters  

(double exponential decay: τr, a1, a2, τd1, τd2). These parameters are then used to 

calculate the traditional spike parameters including the area under the curve or 

charge (Q), full width half maximum (t50) and peak amplitude (Imax). An idealized 

spike is reconstructed using time course parameters, and roots of the spike 

function for a y value of Imax/2 are located on either side of the peak and the time 

difference between these roots is calculated as t50. The peak of the idealized spike 

is computed as Imax. The spike function is integrated to compute Q.  In addition, 

arbitrary measures of the spike rising phase such as the 25% to 75% rise time can 

be calculated.  
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2.3.8. Baseline identification and pre-spike foot analysis 

The next step of the algorithm is to estimate parameters describing the pre-spike 

foot. Accurately identifying and analyzing pre-spike foot signals is dependent on 

the accurate determination of pre-spike baseline current. We devised an algorithm 

to compute pre-spike baseline current as an extension of our template-based 

matched filtering approach used for spike detection.  As templates are least-

squares fit to each segment of data, a criterion score is created at each time point 

that is the ratio of the amplitude of the template fit divided by the standard error 

of the fit to the data segment 

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛	𝑠𝑐𝑜𝑟𝑒 = 	 c
}~

   (Equation 16) 

 In the case of fits to a sum of two templates with fast and slow decay time 

constants, the criterion score is given by:  

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛	𝑠𝑐𝑜𝑟𝑒 = 	 (cs�c3)
}~

	  (Equation 17) 

where a1 and a2 are the least-squares amplitudes found for the two decaying 

phases. Peaks in the criterion score that exceed a threshold identify spikes during 

the detection phase.  On the other hand, a criterion score of zero occurs when the 

data segment is flat, i.e., the amplitude of a spike fit is zero, indicating a potential 

baseline segment. Fig. 2.8. depicts a typical 
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 amperometric spike 

with corresponding 

criterion scores. Starting 

from the peak of the 

criterion score 

(beginning of spike), the 

algorithm searches 

backwards in time until 

the first zero crossing is 

detected (green circle in 

Fig. 2.8.). This zero 

crossing occurs as the 

template and the data first 

begin to align. This is 

preceded in time by a 

negative criterion score 

where the template decaying phase aligns with the spike rising phase, leading to a 

negative correlation. The algorithm continues to search backward in time until the 

second zero crossing of the criterion score occurs (red circle in Fig. 2.8), which 

normally indicates the region where the baseline is flat. In order to test for a stable 

baseline, the algorithm determines the standard deviation of the criterion score for 

a segment of data preceding the second zero crossing with a duration equal to that 

of the template (line segment in Fig. 2.8.).  If the standard deviation of this 

C
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Stable region of criterion score 
 
Stable region of criterion score 

Baseline 
 
Baseline 

 
Top shows an amperometric trace (black). Bottom shows 
the corresponding MF criterion score trace(blue). In the 
region preceding the criterion score peak (spike start time), 
first zero is shown by a green circle, positive zero crossing 
of the criterion score (second zero) is shown by the red 
circle. The criterion score is stable in the region enclosed 
by the red and black circles. The top trace shows that the 
baseline is computed in the stable region preceding the 
second zero, in between the corresponding two blue circles.   
 

Fig.  2.8. Mf criterion scores can be used to determine 
baseline 
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segment is less than or equal to 0.05, this segment of the amperometric data is 

averaged to give the baseline value.  If the standard deviation is greater to 0.05 the 

segment is moved backward in time point by point until a stable baseline is 

identified.  This procedure for determining the pre-spike baseline is repeated for 

each spike. The start time for a pre-spike foot is identified as when the signal rises 

two standard deviations above the baseline value (Mosharov and Sulzer, 2005; 

Zhao et al., 2013) with the current standard deviation measured from the baseline 

data segment. The end of the foot signal is defined as t0 determined from the 

iterative curve fit of the corresponding spike. This is the point where the 

exponential rise of the spike begins (maximum slope), and hence signifies the end 

of the foot signal. 

  

† Reproduced from (Balaji Ramachandran and Gillis, 2018) 
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Chapter 3  
 

3. A MATCHED-FILTER ALGORITHM TO DETECT 

AMPEROMETRIC SPIKES RESULTING FROM 

QUANTAL SECRETION † 

3.1. Automated detection of amperometric spikes  

As discussed in Chapter 1 (section 1.4), manual detection of amperometric 

spikes is time-consuming and error prone. Hence there is a need for 

automation to reliably locate amperometric events. The major considerations 

in amperometric spike detection are (a) diverse amplitudes (b) variable time 

constants (c) a wavering baseline and (d) closely successive overlapping 

spikes are ambiguous to resolve. Existing approaches (Friedrich and Ashery, 

2010; Mosharov and Sulzer, 2005; Segura et al., 2000) have several problems 

including bias against smaller/slower spikes, misidentification of two 

overlapping spikes as one and reliance on user-input parameters for filter 

settings. As described in Chapter 2 (section 2.3), we demonstrated a matched-

filter algorithm to detect spikes without using any traditional filters and 

minimal user-intervention. In brief, a library of spike templates is used to 

perform least-squares fitting on the data using variable time constants,  a two-

threshold approach is applied to the detection criterion scores to identify 

spikes, receiver operating characteristic (ROC) plots are used to quantify 

detection performance and spike parameters including offset time (t0) , rise 

time constant (τr) , decay time 
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 constants (τd1, τd2), decay 

amplitudes (a1,a2), and 

baselines (b) are extracted 

for use as initial seed values 

to iteratively fit and 

estimate spikes in Chapter 

4. The following sections 

describe the results of the 

matched-filter spike 

detection approach. 

3.1.1. Multiple 

templates are required to 

detect exocytotic spikes 

with varying time courses 

As illustrated in Fig. 3.1.A, 

B, exocytotic spikes in 

chromaffin cells vary 

considerably in time course, 

therefore a single template 

is insufficient to detect both 

slow and fast spikes. We 

therefore chose four templates that represent a range of spike dynamics found in 

chromaffin cells (Fig 3.1.C, left). Template 1 has a slow rise and slow decay,  

 
 
(A) A sample amperometric recording (B) Samples of 
amperometric spikes illustrating the heterogeneity of time 
courses and amplitudes. (C) Solid black trace: sample data 
segment with spikes.  Blue traces: criterion scores for each 
of the templates depicted on the left. The red stars indicate 
the template with the highest criterion score for each spike.  
The black stars represent the highest-scoring template when 
using only single exponentially decaying templates, but 
where the sum of two templates (T3 + T4) approach resulted 
in a higher score (red stars). 
 

Fig.  3.1. The heterogeneity of spike time courses 
necessitates the use of multiple templates for detection 
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 (A) Top: Amperometric 
trace sampled at 10 kHz 
(gray) and decimated to 1 
kHz (blue). Black arrows 
point to true spikes. 
Bottom: Criterion scores 
corresponding to the 
unfiltered (dashed gray) 
and the decimated (dashed 
blue) data. Inset expanded 
single spike shows the 
original traces (top) and the 
criterion scores (bottom). 
Red dotted line is the 
criterion threshold of 2.6.  
 
 
 
 
 
 
 
 
 
(B) Top: Original 
amperometric trace (red) 
and trace with a baseline 
slope of -10pA/s (black). 
All the arrows point to true 
spikes. Green arrows point 
to overlapping spikes. 
Bottom: Criterion scores 
for original trace (dashed 
red) and trace with -10pA/s 
baseline slope (dashed 
black). Blue dotted line is 
the criterion threshold of 
2.6.  
 
 
 
 
 
 
 
 
 
 
(B) Top: Original 
amperometric trace (red) 
and trace with a baseline 
slope of -10pA/s (black). 
All the arrows point to true 

Fig.  3.2. Filtering and 
baseline drift do not affect 
detection performance 
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template 2 has a slow rise and intermediate decay time, template 3 has a fast rise  

and fast decay and template 4 has a fast rise and a slow decay. Finally, a sum of 

templates was used to fit spikes with double exponential decays. Fig 13C (blue 

traces) presents criterion scores for the four templates calculated from a sample 

trace.  Note that, in contrast to detection of spontaneous post-synaptic events 

(Clements and Bekkers, 1997), no individual template produces criterion score 

peaks that enable resolution of all of the spikes. The red star indicates the 

template with the highest criterion score for each spike. Thus use of multiple 

templates is not only essential for exocytotic spike detection, but also leads to 

classification of spikes into broad categories defined by the best-match template 

(van Kempen et al., 2011).  

3.1.2. Use of two thresholds reduces false-positives 

A spike is detected when the criterion score exceeds a threshold, and the time 

when the score reaches a peak identifies the start time of the detected spike.  The 

criterion score then declines as the template is moved past the start-time of the 

spike, subsequently rising again as it approaches the next spike. Therefore, the 

algorithm needs to reset the search for a new spike upon a decline in the criterion 

score. The simplest approach is to reset the search when the criterion score drops 

below the same threshold used to detect the spike (Clements and Bekkers, 1997). 

However, this can lead to false positives.  
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Fig. 20(A) shows an 

example trace containing a 

single spike, yet two 

additional spurious spikes 

are detected (red traces) as 

the criterion score fluctuates 

around the threshold value 

as the template is moved 

across the declining phase of 

the exocytotic spike. In 

order to reduce false 

positives, we used two 

thresholds. A higher 

threshold is applied to detect 

a spike, but then the criterion 

score must decline below a 

lower threshold before the 

search for a new spike is 

initiated. Fig. 20(B) shows 

the same spike from Fig. 20(A) where use of the second lower threshold prevents 

the detection of spurious spikes because the criterion score does not drop below 

the lower threshold and then rise above the higher threshold until the next spike is 

 
(A) A single threshold algorithm can produce false 
positives as the criterion score fluctuates above and 
below the threshold on the falling phase of a spike. (B) 
False positives are avoided if the criterion score must fall 
below a second, lower threshold before initiating a search 
for the next spike. Black: data trace. Red: least-squares 
fits determined at the peaks of the criterion scores Blue: 
Criterion scores 
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below the threshold on the falling phase of a spike. (B) 
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for the next spike. Black: data trace. Red: least-squares 
fits determined at the peaks of the criterion scores Blue: 
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Fig. 3.3: A two-threshold approach reduces false 
positives 
(A) A single threshold algorithm can produce false 
positives as the criterion score fluctuates above and 
below the threshold on the falling phase of a spike. (B) 
False positives are avoided if the criterion score must fall 
below a second, lower threshold before initiating a search 
for the next spike. Black: data trace. Red: least-squares 

Fig.  3.3. A two-threshold approach reduces false 
positives 
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encountered. We found that setting the lower threshold to 50% of the value of the 

higher threshold was sufficient to avoid false positives.  

3.1.3. The 

matched-filter approach 

is not very sensitive to 

filtering and can detect 

spikes with a sloping 

baseline.  

The matched filter 

approach uses hundreds of 

recorded data values to 

calculate each criterion 

score and is therefore not 

highly sensitive to random 

noise fluctuations resulting 

from insufficient filtering 

of the data. Fig. 

3.2.(A) presents 

criterion scores for 

template 3 applied to a 

raw data trace compared to the same data trace after the 10:1 decimation filtering 

that we normally use. Note that each of the five amperometric spikes have 

clearly defined criterion-score peaks even for a ~10-fold increase in bandwidth 

 (A) Top: Amperometric trace (black) preceded by a ramp 
+ plateau type foot signal with the MF fit (red dotted). 
Bottom: Criterion scores of four templates (varying shades 
of blue). (B) Top: Amperometric trace (black) preceded by 
a ramp type foot signal with the MF fit (red dotted). 
Bottom: Criterion scores of four templates (varying shades 
of blue). 
 
 
 
 (A) Top: Amperometric trace (black) preceded by a ramp 
+ plateau type foot signal with the MF fit (red dotted). 
Bottom: Criterion scores of four templates (varying shades 
of blue). (B) Top: Amperometric trace (black) preceded by 
a ramp type foot signal with the MF fit (red dotted). 
Bottom: Criterion scores of four templates (varying shades 
of blue). 
 
 

Fig.  3.4. Foot signals do not affect detection of spikes 
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above the minimum necessary to resolve fast spikes.  Nevertheless, it is 

recommended that traces be filtered at a cutoff frequency no higher than 

necessary to preserve spike dynamics in order to minimize noise and potential 

false positives.  In addition, using a lower sampling rate speeds the detection 

algorithm because fewer points are used in the calculation. The matched filter 

approach is also not very sensitive to a sloping baseline because, unlike 

amplitude-threshold algorithms, it does not rely on precise identification of 

baseline values. Fig. 3.2.(B) presents criterion scores for a data trace before and 

after adding a sloping offset to simulate an extreme case of a sloping baseline. 

Note this trace also shows an example where both spikes in an overlapping pair 

are clearly detected. 

3.1.4.  The matched-filter approach detects amperometric spikes 

with pre-spike features. 

Spike events resulting from exocytosis are often preceded by small-amplitude 

features that result from efflux of transmitter through a narrow fusion pore 

(Alvarez de Toledo et al., 1993; Chow et al., 1992b).  Fig. 3.4. presents examples 

demonstrating successful identification of spikes preceded by either plateauing 

(Fig. 3.4(A)) or ramping (Fig. 3.4(B)) pre-spike features.  Note that the pre-spike 

features themselves are not incorrectly identified as “false positive” spikes 

because they do not have the characteristic shapes represented in the spike 

template library. 
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However, if a pre-spike event 

displays both a rising and falling 

phase preceding a second larger 

spike event, the first event may 

be identified as a separate spike.  

In these cases, it is often unclear 

whether the first event is a foot 

signal or a small, independent 

spike.     

 

                                
(A) ROC plot for a recording comparing the 
DT algorithm with several filter settings with 
the MF and EMF approaches. Several 
criterion scores (CS) are indicated by arrows 
on the plot. (B) ROC plot for five recordings 
comparing the performance of spike 
detection algorithms. Blue: DT, red: MF, 
black: EMF. Each data set is represented by 
a unique symbol. Inset: expanded view near 
the ideal corner. (C) Examples of missed 
events and false positives using the DT 
approach. Black traces: section of 
amperometric data showing missed spike 
(left) and false positive (right), Red trace: 
MF fit to spike detected by MF algorithm, 
green trace: current derivative (dI/dt) 
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DT algorithm with several filter settings with 
the MF and EMF approaches. Several 
criterion scores (CS) are indicated by arrows 
on the plot. (B) ROC plot for five recordings 
comparing the performance of spike 
detection algorithms. Blue: DT, red: MF, 
black: EMF. Each data set is represented by 
a unique symbol. Inset: expanded view near 
the ideal corner. (C) Examples of missed 
events and false positives using the DT 
approach. Black traces: section of 
amperometric data showing missed spike 
(left) and false positive (right), Red trace: 
MF fit to spike detected by MF algorithm, 
green trace: current derivative (dI/dt) 
 
 
 
                                
(A) ROC plot for a recording comparing the 
DT algorithm with several filter settings with 
the MF and EMF approaches. Several 
criterion scores (CS) are indicated by arrows 
on the plot. (B) ROC plot for five recordings 

 Fig. 3.5. The MF algorithm outperforms the DT 
approach in bovine chromaffin cell recordings 
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3.1.5.  Extending 

the matched-filtering 

approach to detect spikes 

with a sum of two 

templates 

Some exocytotic spikes 

decay in a double 

exponential fashion, having a 

first fast decay followed by a 

second slower decay (Segura 

et al., 2000).We extended the 

matched-filter algorithm to 

produce least-square fits 

with a sum of two templates: 

f1(t) and f2(t). The fit is 

therefore of the form:  

𝑦#(𝑡) = 	𝑎;𝑓;(𝑡)

+	𝑎j𝑓j(𝑡)

+ 𝑏

= X ∗ β 

 
 
 
(A) Amperometric trace (B) Receiver Operating 
Characteristic plots comparing the performance of spike 
detection algorithms for five recordings. Blue: DT, red: MF, 
black: EMF.  Each data set is represented by a unique 
symbol. Inset: expanded view near the ideal corner. (C) 
Examples of missed events and false positives using the DT 
approach. Black traces: section of amperometric data 
showing a missed spike (left) and a false positive (right), 
Red trace: MF fit to spike detected by MF algorithm, green 
trace: current derivative (dI/dt). 
 
 
 
(A) Amperometric trace (B) Receiver Operating 
Characteristic plots comparing the performance of spike 
detection algorithms for five recordings. Blue: DT, red: MF, 

Fig.  3.6. The MF algorithm outperforms the DT approach 
in bovine chromaffin cell recordings 



 55 

where X is the template matrix given by: 

𝑋 = [𝑓;(𝑡)|	𝑓j(𝑡)|𝟏] 

and β is the parameter vector given by: 

𝛽 = �
𝑎;
𝑎j
𝑏
� 

The Least Squares solution for the parameter vector is therefore given by: 

𝛽� = 	 [𝑋�𝑋]0;𝑋�𝑦 

Thus, the LS fits to a sum of two templates are calculated for each possible 

starting point of a segment of data in the same manner that fits are calculated for 

each individual template.  The criterion score for a double-template fit is 

calculated as: 

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛	𝑠𝑐𝑜𝑟𝑒 = 	
(𝑎; + 𝑎j)

𝑆𝐸  

Note that fitting data with a sum of two templates is preferable to creating a new 

template with a double-exponential decay, because it allows the relative 

amplitudes of the two exponential components to be freely adjusted to obtain a 

better fit to the spike. As noted by the red stars in Fig. 3.1(C), the double-template 

fit can often produce higher criterion scores (better fits) than use of a single 

template.  The double-template fit was accepted as the best fit, and thus classifies 

the spike in the double-exponential category, only if 1) neither amplitude is 
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negative, and 2) the smaller amplitude is at least 10% as large as the larger 

amplitude. 

3.1.6. The matched-filter approach outperforms the derivative-

threshold approach 

Amperometric recordings from bovine and mouse chromaffin cells were analyzed 

to compare the Matched Filter (MF) and Extended Matched Filter (EMF, double-

template) approaches with the Derivative Threshold (DT) approach. The 

performance of these approaches for detecting spikes was measured using 

Receiver Operating Characteristic plots described in the Methods section. In brief, 

reducing the threshold for detection (criterion score for MF and EMF, derivative 

in pA/ms for DT) results in detection of more spikes (thus higher sensitivity), but 

will eventually result in a greater number of false positives (thus lower 

specificity). An optimal algorithm using an ideal threshold will result in 100% 

detection with 0% false positives, i.e., the upper left corner of an ROC plot. Fig. 

3.5(A) presents a representative ROC plot for a recording from a bovine 

chromaffin cell containing 80 spikes.  The performance of the MF (red) and EMF 

(black) approaches are similar and are contrasted to that of the DT approach with 

several different settings of low-pass filtering. The MF approach detects 100% of 

the spikes for 2% false positive fraction (criterion score = 2.6). The performance 

of the DT approach depends on the filtering cutoff frequency (Fig. 3.5(A)).   
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Nevertheless, even at the best cutoff frequency (20 Hz), DT detects only 60% of 

the spikes for a 2% false positive fraction (criterion score = 30 pA/ms). 

Amperometric events are missed with DT even when the threshold was lowered 

to the point where the false-positive fraction exceeds 10%.  Missed events tend to 

be smaller and slower, as shown in examples in Fig. 3.5.(C). On the other hand, 

 
For bovine (A) and mouse (B) chromaffin cells. Receiver Operating Characteristic plots comparing the 
performance of spike detection algorithms for five amperometric recordings. MF (red), EMF (black), 
ClampFit (yellow) and MiniAnalysis (green) are shown. Each data set is represented by a unique symbol 
Inset: Expanded view of ideal corner. Spikes missed, and false positives detected by ClampFit and 
MiniAnalysis are shown for bovine (C) and mouse (D) chromaffin cell data. Red trace: MF fit to spike 
detected by MF algorithm and mouse (D) chromaffin cell data. Red trace: MF fit to spike detected by 
MF algorithm 
 

Fig.  3.7. Mf outperforms clampfit and minianalysis 
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rapid fluctuations in the signal are sometimes misclassified as spikes using DT. 

Fig. 3.5(B) presents ROC plots for five bovine chromaffin cell recordings that 

demonstrate similar characteristics. In mouse chromaffin cells (Fig. 3.6) MF and 

EMF could detect 100% of the spikes for 0% false positive detection (criterion 

score = 1.7) whereas DT could detect 60% of the spikes for the same false 

positive fraction (filter setting, DT= 21 pA/s). 

3.1.7. The matched-filter approach outperforms commercial event-

detection software 

A similar ROC analysis was employed to compare the performance of MF 

algorithm to commercial applications primarily intended for analysis of 

spontaneous post-synaptic events: MiniAnalysis (Synaptosoft, Fort Lee, NJ, 

USA) and ClampFit (Molecular Devices, Sunnyvale, CA, USA).  

When the threshold for these methods is set to a value that results in ~2% false 

positives, the MiniAnalysis and ClampFit applications only detect 45% (at 

threshold = 3) and 70% (at threshold = 4), respectively, of the spikes in bovine 

chromaffin cells (Fig. 3.7(A)). In contrast, the MF or EMF approaches are able to 

detect 100% of the spikes for 0% false positives (threshold = 2.6). In mouse cells, 

MiniAnalysis and ClampFit detect 70% (at threshold = 3) and 75% (at threshold = 

3) of the spikes for zero false positives (Fig. 3.7 (B)). Thus, the MF approach 

emerged as the superior method among all available detection applications.  

Examples of missed spikes and false positives for MiniAnalysis and ClampFit are 

depicted in Fig. 3.7(C, D). 
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The conditions for detection such as filtering, and detection threshold for each 

software program were chosen to ensure that the detection performance was 

optimal. For example, the Derivative Threshold approach was tested at the 

optimal smoothing frequency; The same template library was used to apply 

ClampFit software as the MF algorithm. However, the experimenter did not have 

access to all controls in commercial software and this affects the scope of the 

ROC plot performance comparison. 

3.2. Discussion 

A MF approach was applied for the detection of exocytotic events in 

amperometric recordings. The performance of this method is superior to existing 

commercial and user-community applications, as demonstrated by ROC plots. 

The MF technique provides two main advantages. First, it eliminates the need for 

low pass filtering the data for noise reduction. DT approaches rely on data 

smoothing both before and after computing the derivative of the original 

recording and the best choice of filter setting depends on the signal-to-noise ratio 

of the recording (Gómez et al., 2002; Mosharov and Sulzer, 2005). Excessive 

low-pass filtering of data can cause the algorithm to overlook actual spikes 

whereas inadequate smoothing can increase false positive detection due to noisy 

transients (Fig. 3.4.).  In addition, the setting of the derivative threshold that 

maximizes sensitivity and selectivity depends on the low-pass filter setting. Hence 

it is not straightforward to choose low pass filter settings.  
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A second advantage of the MF technique is that detection bias is explicit in the 

choice of the templates to be included in the library. The MF method uses 

information from both the rising and falling phases of the spike to enable 

detection that is rationally biased by the choices made in constructing the template 

library. In contrast, the DT approach relies on a rapidly rising phase of the spike 

to enable detection, and therefore introduces a bias against detecting slowly rising 

spikes.  

An alternative approach to detect exocytotic spikes is to subtract the time-varying 

baseline from the signal and then detect spikes that exceed amplitude thresholds 

(Friedrich and Ashery, 2010). However, tracking the time-varying baseline with 

pA precision requires that the baseline be stable over the averaging time window 

and relies on user input of the noise level. Also, in an amplitude-based algorithm 

small-amplitude flickers may be mistaken as spikes (Friedrich and Ashery, 2010) 

whereas our approach rejects such flickers because their time courses do not 

match the templates.  Avoiding false positives inevitably makes amplitude-based 

algorithms more biased against small-amplitude events than template-based 

algorithms. 

All reasonable efforts were made to reduce bias in comparing algorithms. Events 

were classified as “hits” or “misses” (false positives) using automated criteria 

described in Methods. User-adjustable parameters were selected for each 

algorithm that maximized performance. Nevertheless, there is the possibility that 
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bias can be introduced by the user in the application of the various software 

packages. 

Selection of an appropriate template duration is important for the algorithm to 

function appropriately. Use of a long-duration template makes it difficult to 

resolve spikes closely spaced in time whereas a brief template poses the risk of 

increasing the false positive fraction. We found that a template size of ~200 ms is 

optimal for bovine and mouse chromaffin cell recordings. The short pedestal that 

precedes the template is also critical for high-performance detection, and we 

found a 20 ms pedestal works well. 

Template libraries need to be chosen for the specific biological preparation and 

the type of event one wants to detect. We selected the time constants for the rising 

and falling phases for bovine versus mouse chromaffin cells after looking for 

clusters of time constants in exponential fits to sample data sets. Development of 

semi-automated methods for creating template libraries would be a useful 

extension of the approach but is beyond the scope of this study.  

The identification of the template that produces the highest criterion score (Fig. 

3.1(C) can be used to classify events into categories that describe the nature of the 

fusion event (e.g., fast versus slow opening of the fusion pore).  Addition of new 

templates may be useful to identify and classify other types of fusion events such 

as kiss and run (stand-alone feet). 
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It should be noted that the Least Squares fitting that is central to this approach is 

computationally efficient because it is a closed-form solution, unlike iterative 

curve fitting which is necessary to solve for fitting parameters that are not linearly 

related to the signal, such as the exponential time constants.  

This work concentrates on computationally efficient detection of spikes; however, 

this is usually followed by estimation of relevant spike parameters such as charge 

(area), duration (FWHM) and the duration and charge of the “foot signal” that 

often precedes the spike. One approach to quantify a spike is to fit it with an 

exponential time course similar to the templates we used but allow the time 

constants to vary during an iterative fitting process. The MF approach is well 

suited to provide “seed” values from the LS fit template with the highest criterion 

score for iterative curve fitting, including the start time, amplitude and time 

constants.  

The EMF approach to fit data to a sum of two templates did not perform 

substantially better to detect spikes than the simpler approach based on a single 

template.  Nevertheless, this approach performed equal to MF approach for 

detection and also provides excellent seed values enable efficient fitting of spikes 

with double-exponential decays during the parameter estimation phase (data not 

shown). 
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3.3. Conclusions 

Our implementation of the MF algorithm is a highly specific and sensitive 

amperometric spike detection approach. MF outperforms the classic approach of 

Derivative Threshold (DT) as well as other commercial and user-community 

applications such as ClampFit and MiniAnalysis. We thank Dr. Kevin Currie at 

Vanderbilt for providing amperometric recordings from mouse chromaffin cells. 
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Chapter 4  
 

4. ESTIMATING AMPEROMETRIC SPIKE PARAMETERS 

RESULTING FROM QUANTAL EXOCYTOSIS USING 

CURVE FITTING SEEDED BY A MATCHED-FILTER 

ALGORITHM 

4.1. Need for spike and pre-spike foot signal estimation 

Single-cell amperometry is a powerful technique for studying exocytosis. In this method, 

electrochemical microelectrodes placed directly adjacent to the cell membrane measure 

neurotransmitter released from individual vesicles as “spikes” or bursts of amperometric 

current as the transmitter is oxidized on the surfact of the electrode (Wightman et al., 

1991). Close examination of these events reveals that slow release of transmitter through 

a nanometer-scale fusion pore produces a pre-spike foot signal (Chow et al., 1992a; de 

Toledo et al., 1993a) that is followed by a rapid rising phase as the fusion pore expands.  

The spike decays in a single or double-exponential manner as the contents of the vesicle 

or emptied or as release is terminated upon reclosure of the release pathway. Therefore, 

the temporal dynamics of amperometric spikes can be used to understand the release 

process from individual vesicles in great detail and to determine how the release process 

is modified by drugs, second messengers, and perturbation of proteins that participate in 

the fusion and release process (Borges et al., 2006) for a review). 

 The first step in amperometric recording analysis is spike detection, which is followed 

by estimation of parameters. In our earlier work, we described a matched filter (MF) 

template-based spike-detection algorithm that detected ~97% of manually identified 

spikes for a mere ~2% false positive rate (Balaji Ramachandran and Gillis, 2018). In 
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brief, this algorithm uses a least-squares approach to fit prototypical spike templates 

consisting of a fast exponential rise and a slower exponential decay to each segment of 

data in a recording. The amplitude of the fit of each template is divided by the standard 

error of the fit to determine a criterion score at each possible data segment.  A spike is 

detected when the criterion score exceeds a threshold, and the template with the highest 

criterion score for the spike is selected as a first-pass representation of the spike. We also 

described an extension of the matched-filter algorithm that finds the least-squares fit of 

data segments to the sum of two templates as a better representation of spikes that contain 

double-exponential decays. The superior performance of the detection algorithms 

compared to existing approaches was demonstrated using receiver operating 

characteristic plots. 

The next step is estimation of spike parameters such as peak amplitude Imax, and charge Q 

(Jankowski et al., 1993; Schroeder et al., 1992). Imax indicates the maximal transmitter 

eflux rate and Q indicates the total amount of transmitter released. The kinetics of 

transmitter release have been described using the slope of a line fitted to two arbitrary 

points on the rising phase as a measure of release speed and the full-width-half-maximal 

time (t50) as a measure of release duration. Whereas these two parameters provide basic 

information about release kinetics, they do not fully describe the spike time course, which 

is often multi-exponential (Wang et al., 2001a). Fitting a function consisting of an 

exponential rise and a sum of one or two exponential decays can, in principle, fully 

describe the kinetics of typical spikes, but fitting exponential time constants is 

complicated in that the time course is a non-linear function of the time constants, 

therefore an iterative fitting routine must be applied. Iterative curve fitting is highly 

sensitive to seed values (initial parameter estimates), therefore a priori estimates of 

parameters are required to produce reliable fits to spikes.  Here we describe an approach 
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to use our previously described template-based match-filtering algorithm to provide seed 

values for the start time, amplitude and time constants to enable reliable curve fitting to 

spikes that vary considerably in time course.  

Estimating parameters from spikes that overlap in time is problematic because they do 

not decay back to baseline and it is ambiguous to locate their start and end points. 

Previous algorithms sometimes fail to identify overlapping spikes, either incorrectly 

identifying two closely occuring spikes as a single spike and consequent skew estimates 

of spike parameters, or the mis-identifying the first of two overlapping spikes as a foot 

signal. Here we describe a user-independent automated overlap-identification algorithm 

that uses information about the time constant of decay from our matched-filter detection 

algorithm to reject spikes that are spaced too close in time to allow reliable parameter 

estimation. 

Pre-spike foot signals provide information about the amount of neurotransmitter released 

through a narrow fusion pore prior to expansion and also the lifetime of the fusion pore. 

Determining the pre-spike baseline is critical for accurately identifying the starting time 

of the pre-spike foot. Here we present a novel extension of our template-based detection 

algorithm that looks backwards from identified spikes to identify the flat baseline 

immediately preceding the pre-spike feature.  The following sections describe the results 

of the estimation algorithm 

4.2. A two-criterion approach based on template fits successfully 

determines if successive spikes are overlapping 

Detecting and rejecting overlapping spikes is a necessary first step to make accurate 

estimates of spike parameters. Our recently described template-based detection algorithm 
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generates estimates of 

the decay time 

constant(s) based on the 

templates that produce 

the highest criterion 

score. In order to detect 

overlapping spikes, the 

decay time constant (or 

slower time constant in 

the case of spikes that 

decay with two 

exponentials), together 

with the peak 

amplitude Imax, are used 

to set the time window 

within which a second 

spike will be rejected 

(Criterion 1 defined in 

section 3.2.1). A second 

spike is rejected if it 

occurs within this time window because the first spike has not decayed sufficiently to 

avoid disrupting the baseline of the second spike. 4.1(A) demonstrates that application of 

Criterion 1 allows retention of well separated for analysis whereas overlapping spikes are 

rejected. 4.1(B), (C) show that the a commonly used overlap rejection algorithm 

(Mosharov and Sulzer, 2005) fails to reliably reject overlapping spikes. In the Mosharov 

algorithm, the user sets the extent of allowable overlap, defined as the percentage ratio of 
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(A) Amperometric trace with many overlapping spikes. Green 
arrows indicate the three sufficiently separated spikes according 
to the dual-criteria algorithm whereas the red Xs indicate 
detected spikes that failed the test. The gray bars indicate the 
spike intervals determined by the algorithm. The end time of the 
spike is taken as three times the slower time constant determined 
following iterative fits to equation 12.   (B) The same segment of 
amperometric trace with blue arrows indicating spikes accepted 
using a commonly used algorithm with an overlap threshold of 
50%. Note from the gray bars that the spike end times are 
misidentified by the algorithm. (C) Same as (B) using an overlap 
threshold of 0.5%. 
 
 
  
 
 
 
 
 
 
 
 
 
 
(A) Amperometric trace with many overlapping spikes. Green 
arrows indicate the three sufficiently separated spikes according 
to the dual-criteria algorithm whereas the red Xs indicate 
detected spikes that failed the test. The gray bars indicate the 
spike intervals determined by the algorithm. The end time of the 
spike is taken as three times the slower time constant determined 
following iterative fits to equation 1.   (B) The same segment of 
amperometric trace with blue arrows indicating spikes accepted 
using a commonly used algorithm with an overlap threshold of 
50%. Note from the gray bars that the spike end times are 

Fig.  4.1. A two-criteria approach successfully rejects 
overlapping spikes for parameter analyses 
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the minima between 

adjacent spikes and the 

maximal height of the 

taller spike.  Spikes 

accepted using an overlap 

setting of 50% (a typical 

level, (Mosharov and 

Sulzer, 2005)) are shown 

in Fig. 20(B), whereas 

4.1(C) show that clearly 

overlapping spikes are 

accepted even for an 

overlap setting as low as 

0.5%. The inability to 

reject overlaps 

primarily results from 

misidentification of the 

ending time of a spike 

(4.1(B), (C) gray bars) 

whereas our algorithm, following iterative fitting, correctly identifies the end time of 

spikes (4.1(A)). An alternative approach to separate overlapping spikes described by 

Friedrich and Ashery (Friedrich and Ashery, 2010) is to smooth the data and then apply 

thresholds on minima to maxima ratios. Such an approach requires significant user-

intervention and filtering of data whereas our approach does not require filtering nor 

user-intervention.  

 (A) Red traces are fits to the rising phases of well-separated 
spikes (indicated by arrows). (B) Next, fits are made to the falling 
phase of spikes (red traces). (C) Finally, fits of equation 12 to the 
entire time course are made using seed parameters resulting from 
the fits to the rising and decaying phases.  Insets demonstrate fits 
on an expanded time scale.  Scale bars in light gray insets are 20 
pA and 60 ms and scale bars are 10 pA and 5 ms for dark gray 
insets. 
  
 
 
 
 
 
 
 
 
 (A) Red traces are fits to the rising phases of well-separated 
spikes (indicated by arrows). (B) Next, fits are made to the falling 
phase of spikes (red traces). (C) Finally, fits of equation 1 to the 
entire time course are made using seed parameters resulting from 
the fits to the rising and decaying phases.  Insets demonstrate fits 
on an expanded time scale.  Scale bars in light gray insets are 20 
pA and 60 ms and scale bars are 10 pA and 5 ms for dark gray 
insets. 
  
 
 
 

A 
 
A 
 
A 
 
A 
 
A 
 
A 
 
A 
 
A 

B 
 

C 
 
C 
 
Fig. 
4.3: 
A 
sequ
enti
al 
fitti
ng 
proc
ess 
resu
lts 
in 
exce
llent 
fits 
of 
equa
tion 
1 to 
well
-
sepa
rate
d 
spik
esC 
 
C 
 
C 
 
C 
 
Fig. 
4.4: 
A 
sequ
enti
al 

Fig.  4.2. A sequential fitting process results in excellent 
fits of equation 12 to well-separated spikes 
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4.3. Matched filtering template parameters can reliably seed an iterative 

curve fit of the entire spike time course by equation 12.  

Curve-fitting is an desirable means to extract spike parameters because it smooths 

random fluctations found in the raw data. Current approaches typically fit a line to an 

arbitrary segment of the rising phase (e.g., 25% - 75% Imax,(Mosharov and Sulzer, 2005)) 

as a measure of the rate that a fusion pore dilates to allow rapid release. In contrast, our 

algorithm fits an exponentially rising function to the rising phase of the spike, which 

provides a good fit to many spikes with less sensitivity to the selection of start and end 

points of a linear fit. On the other hand, iterative curve fitting is highly sensitive to the 

accuracy of initial seed values, however, the template fits that are obtained during 

matched filtering detection can aid in seeding an iterative fitting process. Our approach 

first fits the rising and decaying phases separately to improve the quality of seed values 

provided to the combined spike fit function, which contains up to seven free parameters 

(equation 12). 4.2(A), (B) and (C) show the fitting of the rising phase, decaying phase 

and entire spike, respectively, which produces excellent fits to typical spikes determined 

by visual inspection. 

4.4. Iterative curve fits provide accurate parameters for computing Q, 

Imax and t50 

Iterative curve fitting provides values for each spike (τr, τd1,2, a1,2) for each spike which 

are used to compute traditional measures of spike amplitude and time course such as Q 

(charge), t50 (half-maximal width) and Imax (peak amplitude). Data from bovine( Fig. 4.3) 

and mouse chromaffin cells (Fig. 4.4) were 

 analyzed using both the new matched filter algorithm and that of Mosharov and Seltzer 

(Mosharov and Sulzer, 2005) to allow comparison of spike parameters.  These were then  
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Fig.  4.4. Means of (a) Q, (b) Imax and (c) t50 calculated using MF, Manual and M/S (mosharov and sulzer, 
2005) methods for amperometric recordings from bovine chromaffin cells 

 

compared with manual parameter     estimates performed blindly with regard to the 

results of the other analyses. Median values obtained from the fully automated MF 

algorithm are generally within ~10% of values obtained through laborious manual 

analyses (Table 4.1.) for both bovine and mouse chromaffin cell recordings, whereas the 

M/S algorithm generally give poorer results. 4.5 presents histograms of the values for 

bovine (left column) and mouse (right column) chromaffin cells. It is typical to present 

histograms of Q raised to the one third 
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Fig.  4.3. Means of (a) Q, (b) Imax and (c) t50 calculated using MF, Manual and M/S (mosharov and sulzer, 
2005) methods for amperometric recordings from mouse chromaffin cells 
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Medians 

Statistic Bovine Mice 

Method MF 

(n=358) 

Manual 

(n=352) 

M/S 

(n=444) 

MF 

(n=212) 

Manual 

(n=219) 

M/S 

(n=294) 

Q (pC) 1.27 1.21 1.40 0.0891 0.110 0.0742 

Imax (pA) 14.8 14.6 8.95 1.59 1.74 1.23 

t50 (ms) 108 100 97.7 60.0 64.1 42.1 

 
 
Amperometric data from five bovine chromaffin cells (352 spikes, left column) and five 
mouse chromaffin cells (219 spikes, right column) were analyzed. In each histogram data 
from manual analysis are blue, the new MF algorithm is in red, and the M/S algorithm is 
black. Curves represent double Gaussian fits to the data. (A), (D) Histograms of Q1/3. (B), 
(E) Histograms of log transformed Imax values. (C), (F) Histograms of log transformed t50 
values. 
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Fig.  4.5. Histograms of spike parameters indicate the excellent performance of the new 
MF  parameter-estimation algorithm 

Table 4.1. Medians of Q, Imax, and t50 computed for bovine and mouse chromaffin cell recordings 
using the new matched-filter based algorithm (MF), manual analysis, and the algorithm from 
(Mosharov and Sulzer, 2005) (M/S).  
 
Fig. 4.6. Means of (a) Q, (b) Imax and (c) t50 calculated using MF, Manual and M/S 
(mosharov and sulzer, 2005) methods for amperometric recordings from mouse 
chromaffin cellsTable 4.2. Medians of Q, Imax, and t50 computed for bovine and mouse chromaffin 
cell recordings using the new matched-filter based algorithm (MF), manual analysis, and the algorithm 
from (Mosharov and Sulzer, 2005) (M/S).  
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power (4.5(A), (D)) because charge is proportional to vesicle volume and vesicle radius 

typically has a Gaussian distribution or consists of two Gaussians representing two 

populations of vesicles (Jankowski et al., 1993; Schroeder et al., 1996). Log transformed 

parameters t50 and Imax also exhibit double Gaussian distributions (van Kempen et al., 

2011).  Gaussian fits for the fully automated MF algorithm are in good agreement with 

those obtained using manual analysis.  Table 4.2. presents the Gaussian fit centers µ1,2 

and spreads σ1,2 for Q, Imax and t50 demonstrating good agreement between the MF 

algorithm and manual fits. 

 
 Table 4.2. Comparison of centers (µ1,2) and spreads (σ1,2) of bi-modal gaussian 

distributions 
 
 
 

 
 
 
 
 
 
 
 

 Bi-modal Gaussian fit parameters 

  Bovine chromaffin cells Mouse chromaffin cells 

Statistic µ1 σ 1 µ1 σ 1 

Method MF Manual M/S MF Manual M/S MF Manual M/S MF Manual M/S 

Q(pC)  0.718  0.674  0.132  0.148  0.149 0.111 51.6 74.4 32.4 12.9 12.2 23.6 

Imax(pA) 9.47  9.65 0.189 3.65 3.71 1.95 0.866 1.22 0.545 4.47 4.98 6.62 

t50(ms) 468 408 95.5 1.76 1.76 2.86 62.1 62.8 143 4.79 4.21 1.92 

 µ2 σ 2 µ2 σ 2 

Method MF Manual M/S MF Manual M/S MF Manual M/S MF Manual M/S 

Q(pC)  3.51  3.52 1.33 0.161  0.166 0.166 457 542 950 12.1 14.3 2.23 

Imax(pA) 114 103 8.91 2.45 2.43 84.5 12.8 12.8 7.54 1.99 2.09 2.25 

t50(ms) 94.3 97.7 24.7 3.92 2.86 1.62 7.26 8.51 18.1 1.63 1.63 3.25 
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4.5. Use of the criterion score from matched filtering can accurately 

identify pre-spike baseline for foot-signal analysis 

In the matched-filtering 

based foot detection 

approach, the positive 

criterion zero crossing 

was used to determine 

the baseline. Then the 

first point that exceeded 

two standard deviations 

above the baseline was 

identified as the start of 

the foot signal and the 

end of the foot signal is 

determined from t0 of 

the iterative curve fit to 

the spike. Fig. 4.6 

presents several types of 

foot signals with the 

green circles denoting 

the start and end points 

detected using the 

automated matched-

filtering based approach.  

 
 
The start and end times determined from the MF 
algorithm are indicated as green circles and the red 
circles indicate start and end times for the M/S 
algorithm. (A) Plateau-type foot signal (B) Ramp type 
foot signal (C) Sigmoidal foot signal. The blue traces 
are criterion scores. The orange circles denote 
positive zero crossing of the criterion score. The 
brown circles denote the beginning of the stable 
region of the criterion score used to determine the 
baseline.  
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Fig.  4.6. The matched-filter based algorithm can 
accurately measure pre-spike foot signals with varying 

time courses 
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Table 4.3. presents the median values of foot charge and duration computed by the MF, 

manual and Mosharov and Sulzer approaches for amperometric recordings from five 

bovine chromaffin cells. Fig. 4.7 shows the mean values for foot parameters. The fully 

automated MF-based approach gives better agreement with manual measurements of the 

foot signal charge and duration than the M/S approach. 

4.6. Discussion 

The template-based matched filtering detection algorithm we recently described 

accurately detects spikes with few false positives (Balaji Ramachandran and Gillis, 

2018).  Here we show that the approach also generates initial parameter estimates useful 

information about the spike time course. 

to detect overlapping spikes and seed iterative curve fitting to extract complete  
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Fig.  4.7. Foot parameters of charge (Qfoot) and duration(tfoot) are shown as calculated by 
manual, mf and m/s methods 
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Table 4.3. Medians of foot parameters tfoot and Qfoot computed for bovine chromaffin cell 

recordings 
 Bovine chromaffin cells 

Statistic Median 

Method MF 

(n=128) 

Manual 

(n=105) 

M/S 

(n=333) 

Qfoot (fC) 53.0 62.9 84.5 

tfoot (ms)  6.50    9.00     14.2 

Overlapping spikes were reliably detected and eliminated from analyses using a dual- 

criteria approach.  Note that this approach applies separate criteria for the first and second 

spike in a pair where the principle concern of accepting the first spike is that it has 

sufficient time to decay so that accurate decay time constants can be fit to the data.  On 

the other hand, a more stringent criterion is applied to accept the second spike in a pair 

because the first spike must nearly completely decay to avoid disrupting the baseline for 

the second spike and allow foot analysis to proceed. Also note that the detection phase of 

analysis identifies essentially all spikes to allow accurate estimation of the frequency of 

exocytosis events near the electrode (Balaji Ramachandran and Gillis, 2018).  However, 

only a subset of spikes can proceed to the analysis phase when events are detected at a 

high frequency because of overlap. This potentially introduces a bias in spike analysis if 

spike parameters are different at high release rates. 

Our approach fits equation 12 to spikes to describe the complete amplitude and time 

course (not including the pre-spike foot) with either three (single exponential) or five 

(double exponential) parameters. This parameterization is a more complete description of 

typical spikes that parameters such as Imax, Q, and t50.  For example, two spikes may have 

the same t50 but substantially different double-exponential decays.  Thus, the 

parametrization by equation 12 can support different post-analyses of spike time course 

according to the wishes of the user.   
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We find that equation 12  provides excellent fits to typical spikes in bovine and mouse 

chromaffin cells, but some events, e.g., “stand-alone feet” [ (Wang et al., 2003)] are not 

adequately described by equation 12. In principle, templates can be created for other 

event waveforms and different fit functions can be devised to allow analysis of these 

events to proceed in a similar fashion to what is described in this work.   

Whereas template fits during the detection phase provide reasonable seed values to allow 

iterative fitting of equation 12 to the data, we found that first fitting the rising and falling 

phases separately produces better results by allowing refinement of seed parameters 

before fitting equation 12  to the data. Visually good fits were obtained and the finely 

resolved parameter values are used to compute Q, t50 and Imax. Parameter histograms 

have centers and spreads within 12% and 4% of manually computed parameter 

histograms with an overall performance significantly better than the M/S algorithms.  

Finally, we show that the matched filtering criterion score-based baseline detection 

algorithm resulted in mean and median values of foot signal charge and duration within 

3% and 11% of manually computed values. Developing algorithms to reliably determine 

baseline values within a fraction of a Pico-amp is more difficult than it might appear 

from visual examination of records. Use of the criterion score for this is novel, and has 

the advantage that scores are unit-less, so the method does not require prior knowledge 

of the noise standard deviation to find a stable region of the signal.  

4.7. Conclusions 

Our matched filtering-based spike and foot estimation algorithm effectively 

determines spike parameters in a fully automated manner and outperforms previous 

approaches.   
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Chapter 5  
 

5. CONCLUSIONS AND FUTURE DIRECTIONS 

5.1. Conclusions 

The goal of this study was to develop a technique to automatically detect and 

estimate spike and pre-spike signals in amperometric recordings. Through such 

automated analysis, amperometric events can be completely described in a few 

critical parameters. Since amperometric spikes are diverse in amplitudes and time 

courses, it is important that a detection algorithm accounts for this diversity. 

Existing algorithms either apply a derivative-threshold (Borges et al., 2008; 

Mosharov and Sulzer, 2005), template search approach (ClampFit) or amplitude 

threshold (Friedrich and Ashery, 2010) to detect spikes. Such approaches have 

disadvantages including the need for user-intervened data smoothing, bias against 

smaller/slower spikes and spurious detection. This dissertation showed that a 

template-library based “matched filter”(Balaji Ramachandran and Gillis, 2018) 

algorithm was efficient in amperometric spike detection, detecting >97% of true 

spikes for a minimal false positive rate of 2%. In order to estimate spikes, existing 

algorithms incorrectly estimate two overlapping spikes as one, rely on arbitrarily 

determined line-fits to the rising phase and auto-guessed decay phase fits leading 

to inaccurate parameter estimates. We demonstrated that parameters extracted 

from the MF detection were accurate enough to seed a non-linear curve fitting 

spike function that resulted in “good fits” to detected spikes. The good fits were 

then used to calculate critical spike parameters of Q, t50 and Imax. Histograms of 

these parameters compared favorably against manually computer parameter 
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histograms. The next step was pre-spike foot signal analysis. Accurate pre-spike 

baseline estimation is important for foot signal analysis. While existing 

algorithms relied on steady-state searches on filtered amperometric traces to 

determine baseline, the MF algorithm used the criterion score to estimate pre-

spike baseline. Once the baseline was determined, an amplitude threshold was 

applied in order to locate pre-spike foot signal start times and MF non-linear 

curve fits to spikes were used to set the foot signal end times. 

5.2. Spike detection 

Existing spike detection approaches such as derivative threshold (Borges et al., 

2008; Gómez et al., 2002; Mosharov and Sulzer, 2005; Segura et al., 2000) rely 

heavily on low pass filtering of the amperometric recordings. As discussed in 

Chapter 4, filtering has disadvantages including loss of small signals in smoothing 

or increase in false positives due to inadequate smoothing. Such a tradeoff 

situation demands intricate filter setting decisions to be made by the user of the 

algorithm. The MF detection approach does not require any low pass filtering 

since it relies on locating regions of maximum signal to noise ratio (criterion 

score) rather than mere signal maxima. Derivative threshold approach lays 

emphasis on the fastest rising region of the spike, tending to ignore the equally 

important decaying phase, leading to a bias against smaller and slower spikes. In 

contrast, the MF approach uses spike template functions that emphasize the 

decaying phase of the spike as much as the rising phase, in order to detect spikes. 

Manual curve fitting of all true spikes with an exponential rise and decay function 

was used to design the template library, consisting of 4 templates, that was used in 
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the MF detection approach. The application of two thresholds, a higher threshold 

to capture criterion score maxima and a lower threshold to commence a next 

search for maxima ensured the rejection of spurious small signals. This is in 

contrast with existing template based approaches like ClampFit (ClampFit) which 

merely average user-identified spikes to form templates and apply a single 

threshold on a detection criterion to identify spikes. Detection applications using 

baseline subtraction and amplitude thresholds (Friedrich and Ashery, 2010) fail 

due to the wavering nature of amperometric baseline and also detect spurious 

small-amplitude flickers as spikes. Plotting receiver operating characteristics was 

a rigorous method to measure the sensitivity vs specificity of detection 

algorithms. At criterion score thresholds between 2 and 3, >95% of spikes were 

detected for <5% false positives, by the MF algorithm which also outperformed 

existing commercial and freeware applications. 

5.3. Estimation of spike parameters 

In order to estimate amperometric spikes, we first identified and reject 

overlapping spikes. Derivative threshold (Mosharov and Sulzer, 2005) based 

algorithm relies on the user to decide the extent of overlapping spikes to be 

allowed. Such user-settings are extensive and not straightforward, often leading to 

incorrect identification of two overlapping spikes as one, or the identification of 

the first of two overlapping spikes as a foot-signal. This dissertation demonstrated 

a two-condition based overlap rejection algorithm that rejected the second of 

adjacent spikes it occurred prior to the decay of the first spike to a minimum 

amplitude and then rejected the first spike if it did not decay to 3 times the decay 
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time constant extracted from the MF-template parameters. Such an approach 

ensured that overlapping spikes could be rejected without user-intervention. 

Traditional DT based algorithm performed the estimation of spikes by line fitting 

to arbitrary segments of rising phases of spikes and auto-guessed non-linear curve 

fitting to the decaying phase. 

This dissertation showed that an exponential-rise and exponential decay template 

could accurately fit spikes based on initial seed values provided by MF template 

parameters. By employing a two-step fitting approach of first fitting the rising and 

decaying phases of the spike with separate non-linear exponential functions, and 

then fitting the complete spike function based on seed values from the first step, 

the MF estimation approach ensured that output spike parameters improved in 

accuracy with each fitting step. Using non-linear curve fit spike information like 

rise time constant (tr), decay time constants (td1,2), amplitudes (a1,2), baseline (b), 

key spike parameters of t50 , Imax and Q were calculated.  Histograms of 

parameters showed bi-modal Gaussian populations that compare more favorably 

against manual computations than existing derivative threshold-based estimation 

algorithms (Mosharov and Sulzer, 2005). 

5.4. Detection and estimation of pre-spike foot signals 

This study showed that accurate detection of spike start times and baseline current 

at the MF criterion score peaks and zeros respectively, enabled detection of foot 

signals. The beginning points of pre-spike foot signals were detected by walking 

backwards from spike start times to locate the criterion score “zero” or the 

baseline current. The end points of the foot signals were located at the intersection 
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of the baseline with the rising phase of extrapolated fits to the spikes. The foot 

duration tfoot and charge Qfoot were then calculated from the second order 

polynomial fits to the foot regions. The foot duration corresponds to the lifetime 

of the narrow fusion pore before it expands and the foot charge corresponds to the 

small amount of neurotransmitter leaking slowly out of the narrow 

pore(Wightman et al., 1991).Hence the detection and estimation of amperometric 

signals, namely spikes and foot signals, was implemented in this study. 

5.5.  Future directions  

5.5.1.  Classifying pre-spike foot signals  

Amatore et al (Amatore et al., 2009) 

classify foot signals into two types, 

based on their shapes,  namely  (a) 

ramp and  (b) ramp + plateau and 

hypothesize that the fusion pore 

diameter controls the foot signal 

shape. The MF based foot analysis 

algorithm can detect both types of 

foot signals irrespective of their 

shapes. Automated classification of 

foot signals will enable to understand 

if the fusion pore dwelled at a narrow 

diameter (plateau shape) prior to 

A 
 

B 
 
 

 (A) Ramp type foot preceding a spike (B) Ramp + 
Plateau type foot preceding a spike found in 
amperometric recordings made from a bovine 
chromaffin cell 
 
 
Fig. 5.1: Classifying foot signals (A) Ramp type 

Fig.  5.1. Classifying foot signals 
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expansion. Such classification could be done by looking for the presence or 

absence of a steady state (plateau) in the amplitude of the foot signal region. 

5.5.2.  Post-spike foot signals 

Mellander et al (Mellander et al., 2012) hypothesize that the occurrence of abrupt 

plateaus at the end of PC12 spikes is a type of regulation that occurs within a 

transmission event. Such phenomenon was described as “extended kiss-and-run” 

exocytosis observed as “post spike foot signals”. The detection and analysis of 

post-spike foot signals will provide understanding about the temporal 

characteristics of exocytosis regulation, particularly when it occurs during 

transmission.  Spikes decay to 99% of their peak value within 3 decay time 

constants.  First a criterion score “zero”, or baseline in the region of the trace 

beyond 3 decay time constants from a spike peak must be located. Next in the 

region between the peak of the spike and the criterion score zero, if a steady state 

amplitude plateau is found, a post-spike foot signal is said to be detected. The 

Reproduced from Mellander et al 
(Mellander et al., 2012) with copyright 
permission from the Nature Publishing 
Group.  
 
 
Fig. 5.1. Post-spike foot signalReproduced 
from Mellander et al (Mellander et al., 
2012) with copyright permission from the 
Nature Publishing Group. Exocytotic 
spike exhibiting post-spike foot signal in a 
PC12 cell recording  
Group.  
 
  

Fig.  5.2. Post-spike foot 
signal 
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steady state can be found by comparing adjacent segments to assess if they are 

within one standard deviation of each other. 

5.5.3. Stand-alone foot signals 

Some groups report almost rectangular shaped stand-alone foot signals recorded 

by amperometry in PC12 cells ((van Kempen et al., 2011; Wang et al., 2003) and 

mice chromaffin cells(van Kempen et al., 2011). These signals are hypothesized 

to be due to fusion pores that reach a steady diameter and close without further 

expansion. Since their rise time constants are similar to those of amperometric 

spikes, and amplitudes are small (~2 pA) (van Kempen et al., 2011), an amplitude 

cut-off on identified spikes can be used to isolate potential stand-alone foot 

signals following which testing for rectangular shapes must be done. Other 

approaches could involve setting a lower and upper cutoff range on criterion 

scores and then testing detected events for SAF rectangular shape.  

5.5.4. Automated template library design  

MF templates were designed using information obtained from manual detection, 

curve fitting and estimation of spikes. Such manual analysis is time consuming. 

There is hence a requirement of automated spike template design. In order to 

design a template library, a few templates that represent amperometric spikes of 

Signal recorded from a chromaffin cell. 
Reproduced from (van Kempen et al., 2011)  
 

Fig.  5.3. Stand-alone-foot (SAF) 
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an entire species should be identified. The MF algorithm detects “spikes” by 

looking for exceptional matches between user-designed templates and the 

amperometric recording. A “matched filter” clustering algorithm can be used to 

compare user-identified “spikes” against each other and group them into clusters 

based on how well they match each other. Although there are several distance 

metrics (Li et al., 2011) including Euclidean and Manhattan distances to 

determine similarity, in this case the MF criterion score can be used as the 

distance metric for clustering since the criterion score metric was successful in 

MF detection. The cluster means would serve as templates to be included in an 

automated template library. This method will provide a more appropriate distance 

metric and minimal user-involvement compared to traditional clustering 

algorithms such as K-means (Lloyd, 1982). 

5.5.5. DT -MF hybrid spike detection approach 

The major advantage of the DT algorithm (Mosharov and Sulzer, 2005) is that it 

is fast. The MF algorithm compares templates to data segments in a point-by-

point fashion that maybe computationally expensive in real-time analysis. By first 

applying a quick DT algorithm at a low threshold, to identify potential spike 

regions and then applying MF approach to only those regions, the speed of 

detection can be increased. Thus, a combined DT-MF approach is necessary for 

optimizing the advantages of speed in DT and accuracy in the MF approach. 

In summary, the MF detection approach was efficient in spike detection and 

provided good initial guess for non-linear curve fitting and spike parameter 

estimation. The accuracy of MF spike detection helped in identifying foot signals 
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in the pre-spike regions. The classification of pre-spike foot signals based on 

temporal dynamics, estimation of post-spike and stand-alone foot signals and the 

design of an automated template library are future directions. The future 

directions of this study should impact our understanding of amperometric signals 

and consequently of the physiological mechanism of fusion and cargo release. 
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