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ABSTRACT 
 

Hypertension contributes to cardiovascular morbidity and mortality worldwide. 

While many hypertensive patients respond to drug therapy, a growing number of these 

cases are called resistant hypertension (RH), when patients cannot control their blood 

pressure to goal levels despite the use of multiple antihypertensive medications. 

While current interventional treatments for RH are based on dealing with the nervous 

system, there is no existing procedure that considers altering the way in which blood is 

pumped into the aorta such that to reduce blood pressure. We hypothesize that RH may be 

controlled by altering the way in which blood is pumped into the aorta. 

We introduce a novel idea of implementing what we called the accumulator device, 

which may be classified as a mechanical assist device for the cardiac system. A lumped-

parameter model describing the cardiovascular system is presented and validated. The 

novel idea of accumulator device is also modeled and incorporated with the cardiovascular 

system model using analogies between the circulatory system, hydraulic systems, and 

electric circuits. 

The simulation work of the proposed accumulator device idea reveals promising 

preliminary results. It shows an ability to significantly decrease the systolic pressure by 

regulating the way in which blood is pumped into the aorta during the cardiac cycle, 

without reducing the cardiac output. It is our hope that this novel approach provides a 

transformational alternative to existing methods for treating RH, becomes a successful 

treatment option in the future, and improves life for millions of RH patients. 
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CHAPTER 1   Introduction 
 

1.1 Background and Motivation  

The heart is a specialized muscle that contracts continuously and regularly. Among 

its four chambers, the left ventricle (LV) represents the primary pump that pumps the 

oxygenated blood into the systemic circulation through the aortic valve (Figure 1.1). Each 

time the heart beats, blood is pumped through the vascular system of the body. The measure 

of the force exerted by the blood against artery walls is referred to as blood pressure. 

Hypertension, or high blood pressure, is a long term medical condition that describes blood 

pressure measurements that are above normal levels. 

Hypertension contributes to cardiovascular morbidity and mortality worldwide. 

While many hypertensive patients respond to pharmacological therapies, there is a group 

of patients that are resistant to such drug treatments. These patients are diagnosed as having 

resistant hypertension (RH), defined more specifically as a failure to achieve target blood 

pressures (<140/90 mm Hg) despite the use of multiple antihypertensive agents, including 

a diuretic [1]. It is predicted that 41.4% of US adults will have hypertension by 2030 [2]. 

A considerable percentage of hypertensive patients (~30%) are classified as RH patients. 

Studies suggest that effective treatment of hypertension reduces the incidence of heart 

failure and stroke by up to 50% [3]. 

Current methods for treating RH include some surgical procedures that are 

controversial and not without medical complications. These interventional procedures, 

which will be discussed in the literature review, mainly deal with the heart indirectly via 
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the nervous system and do not consider altering the way the heart pumps blood into the 

aorta. The main objective of this research is to investigate possible alternative options for 

treating RH. We hypothesize that hypertension and the pressure-rise-rate (𝑑𝑑𝑃𝑃/𝑑𝑑𝑡𝑡) within 

the aorta can be controlled by altering the way in which blood is pumped into the aorta. 

This approach is totally new and represents a transformational alternative to existing 

methods for treating RH. 

In this research, we review the concepts of some promising device-based 

therapeutic technologies that have recently been widely used in treating heart failure (HF). 

Our investigation will check whether such technologies could also be possible candidates 

for treating RH, besides their primarily effective role in treating HF. More importantly, we 

investigate if the concept of such device-based cardiovascular therapies could inspire us to 

come up with a novel approach for treating RH. 

The left-ventricular assist device (LVAD) and cardiac contractility modulation 

(CCM) represent two of the most promising modern device-based therapies that are used 

for treating HF, a disease describing patients with a LV that is not capable of pumping the 

sufficient amounts of blood that their body needs. An LVAD is an implantable device with 

a controlled pump that pumps blood from the LV into the aorta, either by augmenting the 

left ventricular function or in a total capture fashion. The device was initially used as a 

temporary bridge to heart transplantation before it has recently been used for long-term 

purposes. On the other hand, CCM is an implantable device that can modulate the 

contractile force of the LV (either enhance or depress but is mainly used for enhancement 

purposes) via extracellular electrical stimuli. 
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Such investigations require the development of a lumped-parameter reliable 

mathematical model for the cardiovascular system that can reproduce hemodynamics, such 

as blood pressure and flow, that are consistent with clinical data. After validating the 

cardiovascular model, we perform preliminary studies to demonstrate possible treatment 

opportunities for RH. 

The concept of circulatory assist devices, such as the LVAD, has inspired us to 

propose a novel approach for treating RH. We introduce a novel idea of implementing what 

we called the accumulator device, which may be classified as a mechanical assist device 

for the cardiac system. The working concept of this device depends on accumulating an 

amount of blood that the LV ejects during systole. This accumulated blood is then re-

delivered to the arterial system during diastole such that stroke volume (SV), the amount 

of blood circulating through the body during one cardiac cycle, is not reduced. The 

paradigm for this type of pressure control comes from engineered fluid-pressure systems 

that are commonly used in the automotive and aerospace industries where pump control is 

used to limit fluid pressure [4, 5]. We will show how the implementation of this novel 

approach could improve decreasing the systolic blood pressure, significantly. To the best 

of our knowledge, there is no existing work in the literature that investigates treating RH 

by altering the way the heart pumps blood into the aorta. It is our hope that this novel 

approach proves to be a successful treatment option in the future that can improve life for 

millions of RH patients. 
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Figure 1.1. Anatomy of the heart. The figure shows the right side and left side of the heart. Each side consists 
of an atrium and a ventricle. The mitral valve separates the left atrium from the left ventricle and allows for 
unidirectional blood flow from the left atrium to the LV. The aortic valve separates the LV from the aorta 
and allows blood to flow from the LV into the aorta [6]. 

 

1.2 Literature Review 

Most hypertension treatment methods are based on reducing total peripheral 

resistance through lifestyle changes and drug therapy. However, RH patients, as mentioned 

earlier, do not respond to such drug treatment. Current treatment methods for RH require 

drastic surgical procedures that primarily involve dealing with the nervous system. To the 

best of our knowledge, there is no existing treatment approach in the literature that treats 

hypertension by altering the way in which blood is pumped into the aorta. This means that 
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our approach is novel and represents a transformational alternative to existing methods for 

treating hypertension. 

We start our literature review by briefly presenting the main existing methods for 

treating RH. We then go over two of the most promising device-based therapeutic 

technologies that are used now for treating heart failure, a disease that represents one of 

the most common cardiovascular diseases. The core work relating to our proposed 

approach of the accumulator device was born after considering investigating the feasibility 

of implementing the concepts of such kind of devices to treat RH. After that, we present a 

brief glance regarding the history of the development of the mathematical models 

describing the heart rhythms. This kind of mathematical modeling typically aims to 

represent the time series of the electrical activity of the heart, called action potential (AP). 

We then move to a key aspect in our research which involves discussing the evolution and 

development of the lumped-parameter models describing the cardiovascular system. Such 

models represent the testbed for our modeling investigations. Finally, we present some 

studies that involved the use of LVADs along with their associated designed controllers in 

treating HF. 

 

1.2.1 Current Treatments for RH 

Current treatment strategies for RH can be divided into traditional, such as lifestyle 

changes and escalating pharmacologic treatments, and interventional procedures [7]. The 

surgical treatment options include implantable stimulators for the carotid sinus 

baroreceptors [3, 8, 9], renal denervation [10], and arteriovenous anastomosis [11, 12]. 
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Electrical stimulation of the carotid sinus via a surgically implantable device 

represents a promising therapy that produces a significant decrease in chronic blood 

pressure. Arterial baroreceptors, which are located in the carotid sinus and aortic arch, are 

mechanosensors that are activated by the pressure-induced stretch of vessel walls. 

Activation of these receptors results in lowering of blood pressure. Thus, the baroreceptor 

mechanism represents a built-in feedback control system for arterial blood pressure [13]. 

Studies focusing on carotid sinus nerve stimulation as a therapeutic option for hypertension 

treatment date back to the 1950s [8]. The early study in [9] demonstrated the effect of 

electrical stimulation signal intensity and concluded that as the intensity is increased, the 

heart rate and mean arterial pressure (MAP) decrease and that these effects were abolished 

upon stopping stimulation of the carotid sinus nerve. 

Another surgical option for treating RH is known as renal denervation, which has 

been shown to be an effective surgical procedure for hypertension treatment. The 

sympathetic nervous system (SNS) is known to increase blood pressure via increased renal 

sympathetic activity. Renal denervation is a catheter-based procedure that aims to ablate 

the nerves in renal artery walls to disrupt the sympathetic nerve activity between the kidney 

and the brain. Thus, renal denervation treatment effectively lowers systolic and diastolic 

blood pressure in RH patients. 

Arteriovenous anastomosis also represents another treatment option for RH 

patients. The procedure reduces vascular resistance and increases arterial compliance via 

creating anastomosis (cross connection) between the iliac artery and vein. Accordingly, the 

arteriovenous anastomosis surgical procedure significantly reduces both systolic and 

diastolic blood pressure. 
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1.2.2 Existing Device-based Therapies for Treating HF 

The artificial pacemaker, which is an implantable device that is designed to regulate 

the rhythmic beating of the heart, was first introduced in 1932 [14]. Although this 

technology is widely known to be the most commonly used device-based therapy in 

treating cardiovascular diseases, our mining targeted two other technologies that represent 

modern treatment options in treating heart failure. In this section, we review the left-

ventricular assist device (LVAD) and cardiac contractility modulation (CCM) device. 

 

1.2.2.1 Left-ventricular Assist Device (LVAD) 

 An LVAD is an implantable mechanical pump developed to support a failing LV 

by supplying the body with additional blood to restore normal hemodynamics [15]. It 

directs blood from the LV into the aorta, and so it typically has an inlet that is connected 

to the LV and an outlet that is connected to the aorta, making it work in parallel with the 

LV. The LVAD was initially proposed for short-term use as a temporary bridge to heart 

transplantation in HF patients. The prevalence of heart failure and lack of donor hearts 

necessitated the development of mechanical assistance devices such as the LVAD. 

Technological advancements have significantly improved LVADs now, making them an 

increasingly prevalent therapy for long-term use (destination therapy) as an alternative to 

a heart transplant [16]. A typical implanted LVAD and its components are shown in Figure 

1.2. 
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Figure 1.2. Components of a typical LVAD. The inflow cannula is the inlet of the LVAD that is connected 
to the LV, and the outflow cannula represents the LVAD outlet that connects to the aorta. Blood exits the LV 
into the LVAD pumping chamber through an inlet valve before it is pumped out through the outlet valve into 
the aorta [17]. 

 
 

Various circulatory-assist devices have been developed since 1964, when the 

National Heart, Lung, and Blood Institute (NHLBI) established the artificial-heart program 

[18]. In 1994, the FDA (Food and Drug Administration) approved the first use of an LVAD 

as a bridge to transplantation [15]. Pulsatile volume displacement pumps represent the first 

generation of LVADs. While pulsatile LVADs are believed to be more physiologic due to 

their pulsatility, this generation of LVADs was not widely used due to their large pump 

size, limited durability, the need for inflow and outflow valves, and the complication of 

their control strategy [19]. Inventors began developing smaller, continuous-flow LVADs 

in the early 1990s to reduce complications that resulted from the use of the first-generation 

pulsatile LVADs [20]. Continuous-flow (CF), non-pulsatile LVAD technology has rapidly 

developed during the past couple of decades due to its durability and smaller size. The 
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second and third generations of LVADs are valveless, continuous-flow pumps; while the 

former generation utilizes axial pumps, the latter utilizes centrifugal pumps [16]. Figure 

1.3 presents a schematic for a continuous-flow LVAD system and its different pump types. 

 

 
Figure 1.3. Components of an LVAD system are shown in (A). Continuous-flow axial type pump shown in 
(B), a centrifugal type pump is shown in (C), and mixed design pump shown in (D) [16]. 

 

The improved durability of the rotary pumps implemented in the second and third 

generations of LVADs is associated with a compromise of having a pulseless, continuous 

blood flow that runs at a constant speed. The presence of pulseless, nonphysiologic blood 

flow and the likelihood of aortic valve permanent closure associated with the long-term 

use of CF LVADs cause a decrease in arterial pulsatility, which in turn leads to critical 

medical complications. Arterial pulsatility is characterized by pulse pressure (PP), which 

is defined as the pressure difference between systolic and diastolic pressure measurements. 
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This observation led to an interest in developing control algorithms that would allow for 

generating pulse pressure in CF LVADs in an attempt to decrease the complications 

associated with the diminished pulsatility resulting from the long-term use of CF LVADs 

[21]. Recent studies aim to develop methods for generating more pulsatility and avoiding 

aortic valve permanent closure. This can be achieved by designing controllers that 

modulate the speed of the pump in order to generate intrinsic pulsatile flow from the LVAD 

itself and/or can allow the native heart to periodically contract and eject blood on its own 

[16]. The study in [22] showed that it is possible to generate a pulsatile pressure close to 

that of the native heart using a CF pump LVAD. 

Since 2012, the number of implanted LVADs as a destination therapy has exceeded 

the number of those implanted temporarily as a bridge to heart transplant [16]. This 

indicates that the rapid improvement of LVAD technology has allowed it to become the 

most commonly used long-term myocardial therapy. 

 

1.2.2.2 Cardiac Contractility Modulation (CCM) 

Cardiac contractility modulation represents another relatively new therapeutic 

technology that effectively treats HF patients, primarily those with reduced ejection 

fraction (EF) (a measurement describing the ratio between the amount of ejected blood and 

total blood volume in the LV within one cardiac cycle) [23]. CCM is an implantable, 

pacemaker-like device that can modulate the cardiac contractility by applying electric 

signals to improve the cardiac pump function. The signals are delivered during the absolute 

refractory period of the cardiac AP; hence they are called non-excitatory signals. A typical 

protocol for CCM signals application is shown in Figure 1.4. 
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CCM signals are relatively high-voltage, bi-phasic, square wave signals. They are 

delivered to the cardiac muscle about 30-40 ms after local electrical activation, which is 

detected by sensing leads. This delay in delivering CCM signals is to ensure that they are 

applied during the absolute refractory period so that they do not induce additional action 

potentials or cause contractions (therefore resulting in no change in the heart rhythm) [24, 

25]. A typical CCM device mainly consists of a pulse generator and electrodes that sense 

local electrical activation and deliver CCM signals [25]. 

 

 
Figure 1.4. CCM signals application. Local electrical activation is detected by sensing leads as shown in the 
lower panel. Upper panel shows the delay of CCM delivery after detection of local activation to ensure that 
signals are delivered during absolute refractory period [24]. 

 

Calcium represents the most important ion underlying the heart working process as 

it enables the heart muscle to contract and relax [26]. It was in the early 1960s when 

calcium was found to be the main physiological activator of the contractility and since then, 

it has become the key to understanding contractility [27]. Early studies showed that calcium 

entry and contractility could be enhanced by modulating the action potential (AP), the 
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electrical signal that activates the heart muscle to contract [28]. CCM signals application 

represents a conceptual breakthrough since it influences calcium and contractility via field 

stimulation of the cardiac muscle [29]. The initial study in [30] demonstrated that applying 

nonexcitatory electric currents (CCM signals) to the LV enhanced its performance by 

inducing an increase of about 10% in maximum 𝑑𝑑𝑃𝑃/𝑑𝑑𝑡𝑡 and aortic pulse pressure. The 

study in [31] investigated how CCM signals modulate cardiac contractility. They reported 

that CCM signals increased mean arterial pressure but did not affect the peripheral 

resistance. They showed that the global contractility index Ees (end systolic elastance) was 

increased by ~30% and ~70% and that maximum pressure-rise-rate 𝑑𝑑𝑃𝑃/𝑑𝑑𝑡𝑡 was increased 

by ~25% and ~30% with single-site and dual-site stimulations, respectively. They 

concluded that all parameters return to baseline conditions within 1 min after stopping the 

application of CCM signals. 

The study in [32] showed that applying CCM signals significantly influenced the 

contractile force. They stated that negative amplitude (cathodic) current signals reduced 

the contractility force whereas positive amplitude (anodic) current signals increased it. 

They showed that the effect of CCM signals of either increasing or decreasing the 

contractility force was instant and that contractility was modified within just one beat after 

applying the signals and reached a new steady-state level after 6-8 beats. Brunckhorst et al 

[33] showed that the modulation that CCM signals caused to AP duration (shortening or 

lengthening) and contractility (enhancement or depression) were dependent on the 

amplitude, duration, and delay of the applied electric signals. Their study was exclusively 

focused on positive CCM signals (enhancing the contractility) since the primary goal of 

such studies is for treating HF patients to improve their ejection fraction (EF); however, 
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they clearly indicated that the negative inotropic effect, i.e. decreased contractility, still 

holds with the application of negative CCM signals. Figure 1.5 illustrates the results of 

their study regarding the opposite effects of positive (anodic) and negative (cathodic) CCM 

signals on contractility. They concluded that CCM therapy gives the same results of 

enhancing (or depressing) the ventricular contractility as that seen in the earlier voltage 

clamping technique; however, unlike the voltage clamping method which is not applicable 

to the intact heart, CCM can be applied safely to both normal and failing hearts. This makes 

CCM a promising new form of electrical treatment.  

 
Figure 1.5.  Effects of positive and negative CCM stimuli on contractility. Negative (cathodic) signals (A) 
decrease contractile force while positive (anodic) signals (B) increase contractility [33]. 

 

1.2.3 Mathematical Models for Heart Rhythms 

 Mathematical models describing heart rhythm dynamics are widely used and date 

back to the 1920s when the classic Van der Pol oscillator [34] was first introduced. These 

models are mainly aimed at representing the time series of the cardiac AP, a phenomenon 

that describes the electrical activity of the heart, to study some important physiological 

features of the cardiac AP such as firing frequency, refraction time, etc. A brief history of 

the development of such models will be discussed next. 
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 The nonlinear relaxation oscillator, introduced by the Dutch electrical engineer and 

physicist Van der Pol, represents the starting point for modeling the rhythmic behavior of 

the heart. The oscillator, which is described in equation (1.1), has shown to be very useful 

in modeling the heartbeat since it can perfectly demonstrate important features such as 

synchronization and limit cycles. 

 

 �̈�𝑣 − 𝛼𝛼(1 − 𝑣𝑣2)�̇�𝑣 + 𝜔𝜔2𝑣𝑣 = 0 (1.1) 
 

 

Alan Hodgkin & Andrew Huxley (1952) presented a mathematical model that 

perfectly predicted the shape of the AP [35]. Their model, which is known as the Hodgkin-

Huxley (HH) equation, was based on giving mathematical reconstructions for the kinetics 

of the ionic channels, such as sodium and potassium, that underlie the depolarization and 

repolarization processes. Their fascinating work on this model was the reason they received 

the Nobel Prize for Physiology and Medicine in 1963. Fitzhugh [36] proposed a model that 

represents an extension to the Van der Pol’s equation [34] and a simplification of the HH 

model [35] by using two variables instead of four as in the HH model. The resulting model 

has been shown to clearly exhibit basic dynamics such as threshold and refractoriness but 

was not intended to be accurate in reproducing the shape of experimental curves. 

Abrams et al [37] used a modified formulation for the Van der Pol oscillator to 

describe the ventricular pressure-volume relationship. The Van der Pol’s formulation used 

in this study is shown in equation (1.2) where 𝑃𝑃 and 𝑉𝑉 represent the left ventricular pressure 

and volume, respectively, whereas µ and 𝜎𝜎 represent phenomenological parameters that 

describe the systolic and diastolic functions; respectively.  
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The use of modified Van der Pol’s equations in (1.2) facilitated the process of 

reconstructing the left ventricular pressure-volume loops from the continuous 

measurement of cardiac output (CO) and left ventricular pressure. The study in [38] 

presented a modified model for the Van der Pol oscillator that can reproduce the time series 

behavior of the cardiac AP. They stated that the classic Van der Pol equation in [34] and 

other models were interesting models because they represented the physical phenomena of 

heart rhythms; however, these models failed to simulate many important physiological 

features. For instance, they mentioned that changing 𝛼𝛼 in the classic Van der Pol’s equation 

in (1.1) affects both refraction and diastolic periods. This is not desirable since such models 

should offer the possibility of changing refraction and spontaneous depolarization 

(diastolic) time, independently. Based on this, they modified the phase space of the classic 

Van der Pol equation and came up with a modified model that can reproduce the 

experimental results while allowing to independently manipulate the diastolic and 

refractory periods, which represent two important physiological quantities. 

 

1.2.4 Lumped-parameter Models: the Windkessel (WK) Models 

The cardiovascular system is a closed-loop, dynamic system that is driven by the 

heart. Modeling the cardiovascular system represents a helpful tool for obtaining some 

knowledge about the hemodynamics of the arterial system, such as blood pressure and 
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flow, that can facilitate further physiological studies of the cardiovascular system. Lumped 

parameter models, unlike higher dimensional models, assume a uniform distribution of 

variables, such as pressure, within any specific compartment, such as a vessel, at any 

instant of time [39]. Windkessel (WK) models are lumped-parameter models that describe 

the hemodynamic elements of the arterial system and are considered a frontline modeling 

technique for estimating key hemodynamic aspects of the arterial system [40, 41]. The 

basic idea of Windkessel models centers around representing the characteristic functions 

of the arterial system by their equivalent electrical elements. 

Otto Frank, the German physiologist, introduced the first mathematical WK model 

in 1899 in his two-element Windkessel model [42]. In its simplest configuration, the two-

element WK model consists of two parallel elements: a resistance, called total peripheral 

resistance (TPR), which represents the resistance to blood flow in the arterial system by 

means of the smaller vessels and arterioles and a capacitance or compliance, which 

describes the storage properties of large vessels and their ability to accumulate and release 

blood due to elastic deformation. The two-element WK model shows a decent prediction 

of the aortic pressure during diastole, which follows a first-order exponential decay with a 

time constant being determined by the multiplication of the vascular resistance R and 

arterial capacitance C; however, the systolic pressure is poorly predicted in the two-element 

WK model [40]. 

The weakness in predicting systolic pressure in the two-element WK model 

encouraged a number of researchers to improve it. The addition of a third element was 

introduced in [43]. The newly introduced element, which is called the aortic characteristic 

impedance, accounts for the local compliance and inertia of the proximal ascending aorta. 
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The 3-element WK model, which consists of the characteristic impedance connected in 

series with the RC two-element WK model, shows a significant improvement in accurately 

predicting both systolic and diastolic aortic pressures as well as stroke volume (SV) [44]. 

The introduction of the characteristic impedance has greatly improved the high frequency 

performance that is associated with pressure reflections [45]. Although the 3-element WK 

model is considered the lumped-parameter model that is most widely used and accepted 

for describing the cardiovascular circulatory system [40], it still shows some limitations in 

terms of underestimating peak aortic flow and mean arterial pressure, in addition to its 

inaccuracy in providing realistic aortic flow and pressure when compared to other realistic 

models [44]. The introduction of the characteristic impedance in the 3-element WK model 

showed to considerably improve the medium-to-high frequency performance of the model, 

which was a weakness in the 2-element WK model; however, its limitation shines at low 

frequencies. 

A fourth element, modeled as an inertance or inductance, was introduced to account 

for blood inertia. The addition of the inertial term contributes to the low frequencies only, 

while the characteristic impedance of the 3-element WK model comes into play at the 

medium-to-high frequencies. Thus, the inertial element compensates the inconsistency 

resulting from approximating the characteristic impedance as a resistance in the 3-element 

WK model. The 4-element WK model is the most comprehensive WK model that offers 

excellent wave shapes for both flow and pressure [46]. 

Despite their limitations, WK models remain the most commonly used and 

accepted lumped-parameter models for describing the cardiovascular circulatory system. 

Compared to other types of models, they require less computational power and thus can 
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perform faster [47]. They have also shown to be useful for modeling studies that involve 

the insertion LVADs [41]. Figure 1.6 demonstrates the 2-element, 3-element, and 4-

element Windkessel models. 

 
Figure 1.6. The 2-element, 3-element, and 4-element Windkessel models illustrated in hydraulic (left) and 
their equivalent electrical (right) configurations. C and R represent arterial compliance and vascular 
resistance, while Zc and L represent the aortic characteristic impedance and inertia [40]. 

 

1.2.5 Modeling and Control of an LVAD 

The long-term use of an LVAD requires the implementation of a controller that can 

automatically adjust the LVAD’s pump speed. The study in [48] discussed the engineering 

challenge related to designing appropriate controllers for LVADs and stated that such 

controllers must satisfy two important criteria. First, it should automatically adapt to the 

patient’s physiological changes by regulating the speed of the LVAD pump in such a way 

to meet desired pressure and cardiac output. Second, it should avoid suction of the LV, a 

condition that occurs when the pump is attempting to draw more blood than what is 
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available from the LV. A brief overview of some LVAD control techniques developed in 

the past will be discussed next. 

A feedback control approach to control the speed of a continuous-flow rotary pump 

LVAD was reported in [49]. The control strategy in this study was mainly aimed at 

determining the target pump speed that can provide the body with the optimum flow while 

preventing regurgitation and suction in the ventricle, which represent abnormal circulatory 

conditions. For pump speed adjustment, they utilized a predetermined relationship between 

the native heart rate, which is monitored continuously, and cardiac output. The target pump 

speed can then be derived according to another relationship between pump flow and speed. 

For preventing the occurrence of abnormal conditions, such as regurgitation and suction of 

the LV, they analyzed the motor current waveform using fast Fourier transform. A 

distortion in the motor current waveform is an indicator of abnormal condition occurrence. 

This was quantified by computing the waveform deformation index (WDI) for the 

waveform of the motor current. They stated that for normal operation, the WDI should be 

below 0.2 (a threshold value, based on a theoretical study), otherwise abnormalities exist. 

They reported that the WDI values above the threshold level corresponded to regurgitation 

when at low pump speeds and to suction when at high pump speeds. 

The interaction of an LVAD, represented by a rotary-type pump, with the LV of 

the heart was studied in [50]. A coupled cardiovascular-pump model was presented, which 

utilized a lumped-parameter electric circuit model with preload being represented by a 

single compliance, the LV represented by a time-varying compliance, and afterload being 

represented by a 4-element WK model. The resulting state-space model is 5-dimensional 

with the five state variables representing pump flow, total blood flow through the aorta, as 
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well as pressure values in the left atrium, left ventricle, and arteries. They developed a 

feedback controller that automatically adjusts the pump speed in order to meet the patient’s 

physiological needs of blood while insuring the avoidance of suction. The controller was 

designed to increase the pump speed up to the point before suction occurrence, when at 

that time, it will maintain a constant pump speed. 

 The study in [51] presented a combined six-dimensional cardiovascular-LVAD 

model that is based on the model in [50] with the addition of a sixth state variable 

representing the pressure in the aorta (while that arterial pressure still represents another 

state). They developed a feedback controller that automatically adjusts the pump speed 

depending on the measurements sensed from the pump flow, which represents the only 

sensible signal out of the six state variables. Their developed controller also accounts for 

avoiding the occurrence of suction. The basic functions of the developed controller are 

tracking the pump flow signal to detect the minimum value during each cardiac cycle and 

then estimating the slope of the envelope of the detected minimum values. The controller 

then adjusts the speed of the pump based on the estimated slope in order to achieve 

optimum pump speed while avoiding the occurrence of suction. The controller performed 

very well in the simulations that involved both constant and changing systemic vascular 

resistance, which represent cases that emulate a patient’s different levels of activities. 

However, in the presence of a considerable amount of noise associated with the measured 

pump flow signal, the controller did not perform well where pump speed did not 

consistently avoid the suction zone. 
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1.2.6 Literature Search Conclusion 

 The literature search revealed that there is no existing work that relates to treating 

RH by altering the way the LV pumps blood into the aorta. The LVAD has been shown to 

represent a promising mechanical assist device in treating HF patients. Although we 

anticipate that the LVAD concept could be utilized in treating high blood pressure, since it 

comprises a controlled pump that can regulate the blood flow and pressure, LVADs are 

mainly aimed to assist failing hearts by taking over the entire pumping action, which may 

lead to a permanent closure in the aortic valve. Thus, it may not be desirable to use an 

LVAD with the intact heart of RH patients to treat hypertension. 

 The LVAD concept, however, inspired us to further examine a novel approach that 

relates to accumulating an amount of blood via the use of an accumulator device that is 

connected to the heart and aorta in a similar way to that in an LVAD. From our perspective, 

this approach is preferred over the LVAD for treating RH because it allows the intact heart 

to eject blood naturally through the aortic valve; it does so with the least interference 

(assistance) needed from the accumulator device to accumulate blood in order to provide 

the necessary relief to normalize the systolic pressure below maximum allowed levels. 

Windkessel models have proven to be very useful lumped-parameter models in 

representing the arterial network of the cardiovascular system. The modeling research in 

literature that dealt with coupling an LVAD with the cardiovascular system would facilitate 

the implementation of the accumulator device proposed idea. The modeling strategy used 

in literature of the LVAD coupled with the cardiovascular system will be mimicked to 

perform the same with the introduced accumulator device concept. 
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1.3 Dissertation Outline 

The research in this document is organized according to the following order: 

• Chapter 1 provides a background for the problem relating to investigating a new 

approach for treating resistant hypertension. A relevant literature review is also 

provided. 

• Chapter 2 describes the cardiovascular system to prepare for the modeling work that 

will be presented in the proceeding chapters. 

• Chapter 3 presents a lumped-parameter model of the cardiovascular system. The 

model uses some analogies between the circulatory system and electric circuit theory. 

The model is then validated by reproducing hemodynamics that are consistent with 

clinical data. Preliminary studies demonstrating possible opportunities to treat RH are 

also presented in this chapter. 

• Chapter 4 introduces a new idea that represents a novel approach for treating resistant 

hypertension. The proposed accumulator device is implemented and incorporated with 

the lumped-parameter model of the cardiovascular system presented in chapter 3. The 

chapter then presents the results of this modeling work, which support the hypothesis 

that RH can be treated if we can alter the way in which the heart pumps blood into the 

aorta. 

• Chapter 5 provides a control design for the accumulator device. Optimal control 

theory, specifically linear quadratic tracking, is used to design a controller such that the 

accumulator discharges blood according to a desired trajectory of flow rate. 

• Chapter 6 lists conclusions and recommendations for future research.  
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CHAPTER 2   Description of the Cardiovascular System 

 

The heart is a muscular pump that is connected to the systemic and pulmonary 

vascular systems. It works together with the vasculature to supply the body with the 

necessary nutrients in the form of oxygenated blood that circulates throughout the body. 

To model of dynamics of the cardiovascular system, one needs to understand the cardiac 

cycle and the physiological changes that occur during it. This should also be paired with 

the understanding of the relevant hemodynamic changes, such as blood pressure and flow. 

This chapter will provide a brief overview of the cardiovascular system in preparation for 

the modeling work that will be described in the proceeding chapters. 

2.1 Anatomy of the Heart 

A normal heart consists of two sides, a right one and left one, with each side 

comprising two chambers as shown in Figure 1.1. Each side includes an atrium and a 

ventricle. The primary role of each atrium is receiving and accumulating the blood 

returning from its respective systemic circulation before pumping it to the ventricles. On 

the other hand, the ventricles are considered the primary pumps that circulate blood 

throughout the body’s circulatory systems. 

The right heart, consisting of the right atrium and the right ventricle, receives the 

de-oxygenated blood and pumps it to the lungs (the pulmonary system). The oxygenated 

blood returning from the lungs flows into the left atrium before it is pumped into the left 

ventricle across the mitral valve. The left ventricle (LV) then pumps the oxygenated blood 
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into the circulatory vascular system through the aortic valve. Thus, the heart has two 

separate pumps: a right ventricle which pumps de-oxygenated blood to the pulmonary 

system and a left ventricle that pumps oxygenated blood through the body’s vascular 

system as shown in Figure 2.1. 

 

Figure 2.1. The Circulatory Loop: (A) The cardiovascular system is a closed-loop system that consists of 
two main fluid pumps and a network of vascular tubes. The loop is divided into the pulmonary vascular 
system (whose pump is the right ventricle which pumps blood throughout the lungs) and the systemic 
vascular system (with the left ventricle being its pump which pumps blood throughout the body). The diagram 
is copied from https://humananatomywiki.com/ circulatory-system-chart/circulatory-system-chart-human-
circulatory-system-diagram-labeled-anatomy-chart-body/. (B) A simplified diagram for the circulatory loop 
of the cardiovascular system [52]. 

 

 

 

https://humananatomywiki.com/%20circulatory-system-chart/circulatory-system-chart-human-circulatory-system-diagram-labeled-anatomy-chart-body/
https://humananatomywiki.com/%20circulatory-system-chart/circulatory-system-chart-human-circulatory-system-diagram-labeled-anatomy-chart-body/
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2.2 Cardiac Cycle Phases 

The cardiac cycle is the event occurring from the beginning of one heart beat to the 

beginning of the next one. It has two main phases called systole and diastole. Systole, which 

means contraction in Greek, represents the period of time during which the heart muscle 

contracts and ejects blood from the LV into the aorta. Diastole, which means dilation in 

Greek, represents the period of time when the heart muscle relaxes, and the LV fills with 

blood. Figure 2.2 shows the effect of blood movement on artery walls when flowing into 

(systole) and out of (diastole) the arteries. Figure 2.3 shows the behavior of the left 

ventricle, aortic valve, and aorta during ventricular contraction (systole) and relaxation 

(diastole). 

 
Figure 2.2. Movement of blood into and out of arteries during systole and diastole [53]. 
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Figure 2.3 Dynamic behaviors during ventricular contraction and relaxation [53]. 

 

During each cardiac cycle, the heart goes through four phases: a phase of isovolumic 

contraction and an ejection phase, together representing systole, and an isovolumic 

relaxation phase and a filling phase, together representing diastole. The four phases are 

detailed more as follows: 

1- Isovolumic contraction phase: This phase starts when the mitral valve, the 

interconnection between the left atrium and the left ventricle, closes. This closure 

occurs when the pressure inside the left ventricle becomes higher than the pressure in 

the left atrium, which is a consequence of filling the left ventricle with an adequate 

amount of blood. The pressure inside the LV will build up very rapidly during this 

phase since both the mitral valve and aortic valve are closed. This phase will end the 

moment the pressure inside the LV exceeds the aortic pressure.  
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2- Ejection phase: The onset of this phase is determined by the time the aortic valve opens, 

allowing blood to flow from the left ventricle into the aorta. Blood ejection continues 

as long as a positive pressure gradient is held between the LV and the aorta. The mitral 

valve is still closed during this phase. The ejection phase ends at the time of aortic valve 

closure when the pressure inside the LV falls below that in the aorta. 

3- Isovolumic relaxation phase: This phase represents the onset of diastole, which follows 

the end of the systolic phase. Both the mitral and aortic valves are closed during this 

phase. The pressure inside the LV will drop rapidly to very low levels to prepare for 

the filling phase that starts upon the mitral valve opening. 

4- Filling phase: The LV starts to fill with blood when the mitral valve opens, a 

consequence of having a positive pressure gradient between the left atrium and the left 

ventricle. The aortic valve is closed during this phase, and blood will fill up the LV 

until the pressure inside the LV becomes higher than the pressure in the left atrium, at 

which time the mitral valve closes to prepare for starting the systolic phase of the next 

cardiac cycle, and so on. 

 

Figure 2.4 shows a schematic that describes the above described four phases of the cardiac 

cycle. Figure 2.5 shows the Wiggers diagram, named after Dr. Carl J. Wiggers, which is 

considered the standard diagram used in cardiac physiology. The Wiggers diagram is very 

informative and can demonstrate the pressure changes in the left ventricle, left atrium, and 

aorta during each phase in the cardiac cycle. It also shows the corresponding change in the 

left ventricular volume, as well as the moments when the mitral valve and aortic valve open 

and close. 



 

28 
 

 
Figure 2.4. Cardiac cycle phases. Isovolumic contraction phase is shown in the schematic in the right 
(corresponding to the arrow labeled "1" on the plot located at the center, which is called the PV loop as will 
be shown later). Both mitral valve (left) and aortic valve (right) are closed, and the LV develops pressure due 
to contraction, represented by the downward movement of the piston. The ejection phase is shown in the 
upper schematic (which corresponds to label “2” on the plot), the aortic valve (right) opens which allows 
blood to flow out of the LV chamber into the aorta while the mitral valve (left) is still closed. The left 
schematic represents the isovolumic relaxation phase, which corresponds to label “3” on the plot, where both 
the mitral and aortic valves are closed. The pressure within the LV drops rapidly during this phase; this is 
represented by the piston moving upward. The lower schematic describes the filling phase, which 
corresponds to label “4” on the plot at the center, where the LV is filled with blood through the mitral valve 
which opens during this phase while the aortic valve remains closed [54]. 

 



 

29 
 

 
Figure 2.5. Wiggers diagram. Hemodynamic changes during the four phases (isovolumic contraction, 
ejection, isovolumic relaxation, and filling). Changes in pressures of the left ventricle, left atrium, and aorta 
during the cardiac cycle is shown in the upper plot. The corresponding change in the left ventricular volume 
is shown in the lower plot (figure was copied from http://www.printablediagram.com/wp-
content/uploads/2014/11/wiggers-diagram-cardiac-circle-1024x833.png). 

  

2.3 Pressure-Volume (PV) Loop and System Hemodynamics 

Whereas the four cardiac cycle phases discussed earlier are clearly illustrated in the 

Wiggers diagram, which illustrates the time series behavior of the left ventricular pressure 

(LVP), left atrial pressure (LAP), aortic pressure (AoP), and left ventricular volume (LVV) 

during the cardiac cycle, there is another advantageous relationship called pressure-volume 

(PV) loop that relates between LVP and LVV. This relationship is best explained by 

plotting the simultaneous measurements of LVP and LVV, where LVV represents the x-

http://www.printablediagram.com/wp-content/uploads/2014/11/wiggers-diagram-cardiac-circle-1024x833.png
http://www.printablediagram.com/wp-content/uploads/2014/11/wiggers-diagram-cardiac-circle-1024x833.png
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axis and LVP represents the y-axis in this relationship. Figure 2.6 shows a typical PV loop 

(lower panel) that corresponds to a given time representation for LVP and LVV (upper 

panel). The four cardiac cycle phases are clearly demonstrated in the PV loop shown in 

this figure. The phases labeled b, c, d, and a on the PV loop in Figure 2.6 respectively 

represent the isovolumic contraction phase, the ejection phase, the isovolumic relaxation 

phase, and the filling phase. 

 
Figure 2.6. Time series representation of left ventricular pressure and volume (upper panel) and the 
corresponding PV-loop (lower panel). The labels “b”, “c”, “d”, and “a” represent the isovolumic contraction 
phase, ejection phase, isovolumic relaxation phase, and filling phase, respectively [55]. 
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There are several physiological measurements that can be retrieved from a given 

PV loop. The maximum value on the x-axis (LVV axis) in Figure 2.7 is called the end-

diastolic volume (EDV), which represents the maximum volume of the left ventricle during 

the cardiac cycle, specifically at the end of the filling phase. On the other hand, the end-

systolic volume (ESV) is the minimum volume of the left ventricle during the cardiac cycle 

which occurs at the end of the ejection phase. EDV and ESV are clearly illustrated on the 

x-axis in Figure 2.7. The difference between these two values is called the stroke volume 

(SV) as follows: 

 𝑆𝑆𝑉𝑉 = 𝐸𝐸𝐸𝐸𝑉𝑉 − 𝐸𝐸𝑆𝑆𝑉𝑉 (2.1) 

where SV is a measurement representing the amount of blood ejected during one cardiac 

cycle. The cardiac output (CO), which represents the amount of blood circulated through 

the body in one minute, can then be calculated by multiplying SV by the heart rate (HR): 

 𝐶𝐶𝐶𝐶 = 𝑆𝑆𝑉𝑉 ∗ 𝐻𝐻𝑅𝑅 (2.2) 

 
Figure 2.7. Determining the stroke volume (SV) from the PV-loop [55]. 



 

32 
 

Another important physiological measurement that can be retrieved from the PV loop is 

the diastolic (DBP) and systolic (SBP) blood pressures. Considering the y-axis (LVP axis) 

of the PV loop shown in Figure 2.8, the DBP and SBP shown respectively represent the 

aortic pressure at the onset of blood ejection and the maximum aortic pressure, assuming 

that left ventricular pressure and aortic pressure are equal during ejection. Moreover, Pes 

and EDP, also shown in Figure 2.8, are also of great importance. Pes, end-systolic pressure, 

represents the pressure in the LV at the end of the ejection phase, right at the aortic valve 

closure, whereas EDP, end-diastolic pressure, represents the pressure in the LV at the end 

of filling phase, the moment when the mitral valve closes. Pes represents the point of time 

of maximum stiffness whereas EDP represents the minimum stiffness. Thus, stiffness (also 

known as elastance) varies during one cardiac cycle. Elastance, the reciprocal of 

compliance, is defined as the change in pressure that results from a given change in volume 

within a chamber. Its maximal and minimal values occur at the end of the systolic and 

diastolic phases, respectively [55]. 

 
Figure 2.8. Reading systolic blood pressures (SBP), diastolic blood pressures (DBP), end-systolic pressure 
(Pes ), and end-diastolic pressures (EDP) from the PV-loop [55]. 
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EDP and EDV introduce a new relationship called end-diastolic pressure-volume 

relationship (EDPVR). On the other hand, Pes and ESV introduce another relationship 

called end-systolic pressure-volume relationship (ESPVR). The literature indicates that 

EDPVR is a nonlinear relationship, whereas ESPVR is a linear one [55]. While EDPVR 

bounds the lower right corner of the PV loop, ESPVR bounds the upper left corner of the 

PV loop as shown in Figure 2.9. The slope of ESPVR represents the maximum value of 

elastance, whereas the slope of EDPVR represents the minimum value of elastance. 

 

 
Figure 2.9. Finding the end-systolic pressure-volume relationship (ESPVR) and end-diastolic pressure-
volume relationship (EDPVR) from the PV-loop [55]. 
 

 

The time series representation of the instantaneous relationship between the left 

ventricular pressure and left ventricular volume is called the time-varying elastance 𝐸𝐸(𝑡𝑡). 

A rough approximation for a typical time-varying elastance function during one cardiac 

cycle is shown in Figure 2.10. Emax and Emin represent the slopes of ESPVR and EDPVR, 

respectively. Knowledge of the time-varying elastance 𝐸𝐸(𝑡𝑡) is of great importance. It can 
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allow us to predict the pressure at any time during the cardiac cycle if the volume is known 

or vice versa. 

 
Figure 2.10. Computing elastance function from the PV-loop [55]. 
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CHAPTER 3   Modeling the Cardiovascular System 

 

A simplified cardiovascular system, consisting of the left heart (atrium and 

ventricle) and the body’s arterial system, is modeled as a lumped-parameter electric circuit 

[56]. In this modeling work, preload is modeled as a single, time-varying compliance of 

the left ventricle as well as a constant compliance representing the left atrium. Afterload, 

representing the arterial system, is represented by a four-element Windkessel model. 

In this chapter, the lumped-parameter modeling process for the cardiovascular 

system is described. The model is then validated by reproducing hemodynamics that are 

consistent with clinical data. The chapter is concluded with preliminary studies 

demonstrating two opportunities for RH treatment that involve implementing the cardiac 

contractility modulation technology and the addition of artificial compliance. These 

preliminary studies of treating RH are for demonstration purposes and do not represent the 

focus of this research. 

3.1 Analogies between the Circulatory System and Electric Circuits 

Researchers in physiology use electric circuits to describe their models of the blood 

circulatory system [52]. We are accustomed to viewing the blood circulatory system as a 

hydraulic system, where the heart represents a pump, and the vessels represent the pipes 

for the flow of blood. Fluid and electricity represent a clear demonstration in 

conceptualizing some processes, such as the blood circulatory system. For this reason, it is 

important to understand the analogies between hydraulic and electrical systems. 



 

36 
 

A basic description for the action of the aorta in terms of electric circuit 

representation is illustrated in Figure 3.1. The left ventricle, which represents an 

intermittent pump for the system, is modeled as a variable voltage source. The aorta is 

modeled as a Windkessel model that consists of resistors and capacitors and in between the 

left ventricle and aorta, there is the aortic valve which is modeled as a diode to mimic the 

unidirectional flow of blood and prevent the back flow to the left ventricle. 

 
Figure 3.1. A Windkessel representation of the circulatory system (top) and its equivalent electric circuit 
representation (bottom) [52]. 
 

 

The analogies between the circulatory system and electric circuits and their respective 

modeling methodology will be described next with more details. 

3.1.1 Modeling a Vessel 

The basic idea of modeling the hemodynamics of a vessel is shown in part (A) of 

Figure 3.2. The relationship between blood pressure and blood flow rate can be perfectly 

described by the relationship between voltage and current in electric circuit theory, whereas 

blood volume corresponds to electric charge. The other characteristics of the 
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cardiovascular system’s hemodynamics can be represented by an RLC electric circuit as 

shown in part (B) of Figure 3.2. In this analogy, the arterial compliance, vascular resistance, 

and blood inertia (which represents the mass of the blood undergoing acceleration) 

correspond to capacitance, resistance, and inductance, respectively. 

 

 
Figure 3.2. Electrical analogue of vascular elements. Hemodynamic elements of a blood vessel are shown in 
(A), and the corresponding equivalent electric circuit elements are shown in (B). Figure was reproduced from 
[57]. 

 
 

This lumped-parameter model of representing the hemodynamic elements of the 

cardiovascular system by their equivalent electric circuit elements allows for the 

application of Ohm’s law and Kirchhoff’s laws of node currents and loop voltages [57]. 

This greatly facilitates the derivation of key dynamic equations describing the 

hemodynamics of the cardiovascular system for the sake of implementation in computer 

simulations. This can lead to the equations presented below: 

 𝑄𝑄 =
𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑜𝑜
𝑅𝑅

           (3.1) 
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 𝑑𝑑𝑉𝑉
𝑑𝑑𝑡𝑡

= 𝑄𝑄𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑜𝑜𝑎𝑎𝑎𝑎 (3.2) 

 𝑃𝑃 =
𝑉𝑉
𝐶𝐶

                    (3.3) 

where 𝑄𝑄 is the blood flow rate, 𝑉𝑉 is the volume, 𝑃𝑃 is the pressure, 𝑅𝑅 is the body’s systemic 

resistance, and 𝐶𝐶 is the arterial compliance. 

3.1.2 Modeling Heart Valves 

Left heart valves, mitral and aortic, can be represented by diodes as shown in Figure 

3.3. A diode is an electric switch that allows current to flow in only one direction and can 

conduct only when the voltage in its anodic (positive) terminal is higher than that in the 

cathodic (negative) terminal. The blood flow through the mitral valve, 𝑄𝑄𝑎𝑎, and through the 

aortic valve, 𝑄𝑄𝑎𝑎, can be represented according to equations (3.4) and (3.5) where 𝑅𝑅𝑎𝑎 and 

𝑅𝑅𝑎𝑎 respectively represent the resistance of the mitral valve and aortic valve against blood 

flow. 

 𝑄𝑄𝑎𝑎 = �   
𝐿𝐿𝐿𝐿𝑃𝑃 − 𝐿𝐿𝑉𝑉𝑃𝑃

𝑅𝑅𝑎𝑎
, 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝐿𝐿𝐿𝐿𝑃𝑃 > 𝐿𝐿𝑉𝑉𝑃𝑃 (𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑔𝑔)    

0                    ,         𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒                                              
 (3.4) 

 𝑄𝑄𝑎𝑎 = �   
𝐿𝐿𝑉𝑉𝑃𝑃 − 𝐿𝐿𝐴𝐴𝑃𝑃

𝑅𝑅𝑎𝑎
, 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝐿𝐿𝑉𝑉𝑃𝑃 > 𝐿𝐿𝐴𝐴𝑃𝑃 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝐴𝐴𝑛𝑛)

0                    ,         𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒                                             
 (3.5) 
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Figure 3.3. Modeling the mitral and aortic valves. The valves are represented by check valves according to 
hydraulic systems theory (a) and diodes in series with resistors according to electric circuits theory (b).  

 

3.1.3 Modeling the Heart 

In the cardiovascular system, the ventricle represents a chamber in the heart that 

has an entrance valve to allow for blood to fill and another exit valve to allow for pumping 

blood out to circulatory systems. Considering only the left ventricle in this modeling 

procedure, which is considered the primary driving force of this system, the two valves that 

are associated with the LV are called the mitral valve and aortic valve. The mitral valve 

allows blood to flow from the LA to fill the LV, whereas the aortic valve allows the LV to 

pump blood out across it into the arterial system. These valves are represented by two 

diodes (Figure 3.3), with one representing the mitral valve and located before (to the left 

of) the LV while the other represents the aortic valve which is located after (to the right of) 

the LV. The diode is simply a switch that can either be closed (conducting) or open 

(isolating), thus a closed valve is electrically equivalent to an open-circuit (isolating) 

switch, whereas an open valve is equivalent to a closed-circuit (conducting) switch. Each 

diode is associated with a resistor representing the actual resistance that opposes the blood 
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flow through the valve. Thus, we will have different combinations for the states of these 

two diodes depending on the cardiac cycle phase as described in Table 3.1. 

Cardiac cycle phases 
Valves state Duration 

(sec) Mitral (Dm) Aortic (Da) 

   Isovolumic contraction 
Systole 

Closed Closed ~ 0.05 

   Ejection Closed Open ~ 0.26 

   Isovolumic relaxation 
Diastole 

Closed Closed ~ 0.08 

   Filling Open Closed ~ 0.41 

Cardiac cycle interval (sec) 0.8 

Table 3.1. Phases of the cardiac cycle and valve states during each phase, with approximate durations for 
each phase based on heart rate of 75 beats/min [58]. 

 

The pumping action of the LV varies during the cardiac cycle and can be 

represented by a time-varying compliance or capacitance, 𝐶𝐶(𝑡𝑡). This can be achieved by 

considering the time-varying elastance function 𝐸𝐸(𝑡𝑡), the reciprocal of compliance 𝐶𝐶(𝑡𝑡), 

which is a measure of the change in pressure resulting from a given change in volume 

within a chamber. The left ventricular elastance is bounded by a maximal value that occurs 

during end-systole and a minimal value that occurs during end-diastole. The elastance 

function used in this model follows the model of Suga and Sagawa [59] according to the 

following equation: 

 𝐸𝐸(𝑡𝑡) =
𝐿𝐿𝑉𝑉𝑃𝑃(𝑡𝑡)

𝐿𝐿𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝑉𝑉0
 (3.6) 

where 𝐿𝐿𝑉𝑉𝑃𝑃 and 𝐿𝐿𝑉𝑉𝑉𝑉 are the left ventricular pressure and volume, respectively. 𝑉𝑉0 is a 

theoretical value representing the volume of the LV when the pressure is zero. The 
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mathematical model used for the elastance function followed the one used in [56] according 

to the following: 

 𝐸𝐸(𝑡𝑡) = (𝐸𝐸𝑎𝑎𝑎𝑎𝑚𝑚 − 𝐸𝐸𝑎𝑎𝑖𝑖𝑖𝑖) ∗ 𝐸𝐸𝑖𝑖(𝑡𝑡𝑖𝑖) + 𝐸𝐸𝑎𝑎𝑖𝑖𝑖𝑖 (3.7) 

where 𝐸𝐸𝑎𝑎𝑎𝑎𝑚𝑚 and 𝐸𝐸𝑎𝑎𝑖𝑖𝑖𝑖 are the maximum and minimum values of the elastance function and 

represent the end-systolic pressure-volume relationship (ESPVR) and end-diastolic 

pressure-volume relationship (EDPVR), respectively. 𝐸𝐸𝑖𝑖(𝑡𝑡𝑖𝑖) is the normalized time-

varying elastance function which is approximated by the periodic “double-Hill” function 

[60] according to the following equation: 

 𝐸𝐸𝑖𝑖(𝑡𝑡𝑖𝑖) = 1.55 �
� 𝑡𝑡𝑖𝑖0.7�

1.9

1 + � 𝑡𝑡𝑖𝑖0.7�
1.9� �

1

1 + � 𝑡𝑡𝑖𝑖
1.17�

21.9� (3.8) 

 

where 𝑡𝑡𝑖𝑖 = 𝑎𝑎
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

, 𝑇𝑇𝑎𝑎𝑎𝑎𝑚𝑚 = 0.2 + 0.15 ∗ 𝑡𝑡𝑎𝑎, with 𝑡𝑡𝑎𝑎 defined as the cardiac cycle period (𝑡𝑡𝑎𝑎 =

60
𝐻𝐻𝑅𝑅

); 𝐻𝐻𝑅𝑅 is the heart rate. The corresponding plot of the elastance function, where the values 

used for 𝐸𝐸𝑎𝑎𝑎𝑎𝑚𝑚 , 𝐸𝐸𝑎𝑎𝑖𝑖𝑖𝑖 , and 𝐻𝐻𝑅𝑅 are 2.5 mmHg/ml , 0.06 mmHg/ml, and 75 beats/min 

respectively, is shown in Figure 3.4. 



 

42 
 

 
Figure 3.4. Elastance function E(t) which describes the time-varying relationship between blood pressure 
and volume in the left ventricle during one cardiac cycle. 
 

The left atrium in this modeling procedure is represented by a constant compliance 

(capacitance). 

3.1.4 Modeling the Arterial Network 

The arterial system is modeled by a lumped-parameter circuit 4-element 

Windkessel model as shown in Figure 3.5. The four elements forming the 4-element WK 

model are the characteristic impedance of the aorta “Rc”, the inertance of blood “L”, the 

arterial compliance “C”, and the peripheral resistance “Rp”. 

 
Figure 3.5 Four-element Windkessel model representing the arterial network in the cardiovascular system 
[41]. 



 

43 
 

3.2 Lumped-Parameter Model of the Cardiovascular System 

The full model that describes the cardiovascular system explained earlier is shown 

in Figure 3.6. In this model, 𝐶𝐶1(𝑡𝑡) represents the time-varying compliance of the LV, which 

is the reciprocal of the elastance function described in Figure 3.4, while 𝐶𝐶2 and 𝐶𝐶3 are 

constant compliance values representing the left atrial compliance and arterial compliance, 

respectively. 𝐶𝐶4 represents the compliance of the proximal part of the aorta as shown in the 

model used in [51]. 𝐸𝐸𝑎𝑎 and 𝐸𝐸𝑎𝑎 are diodes representing the mitral valve and aortic valve 

respectively, while 𝑅𝑅𝑎𝑎 and 𝑅𝑅𝑎𝑎 represent the resistances that oppose the blood flowing 

through the mitral valve and aortic valve, respectively. 𝐿𝐿 is an inductance that represents 

the inertia of blood. 𝑅𝑅𝑎𝑎 and 𝑅𝑅𝑝𝑝 are the characteristic impedance of the aorta and the body’s 

peripheral resistance, respectively. 

 
Figure 3.6 Lumped-parameter electric circuit model of the cardiovascular system. 
 

3.3 State-Space Representation 

State-space representation is used here to analyze the lumped-parameter circuit 

model of the cardiovascular system (Figure 3.6). The five state variables in this system 

model are the left ventricular pressure (LVP), left atrial pressure (LAP), arterial pressure 
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(AP), aortic pressure (AoP), and aortic flow (QA), as shown in Table 3.2. Thus, the states 

vector 𝑋𝑋 is: 

 

𝑋𝑋 =

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝐿𝐿𝑉𝑉𝑃𝑃
𝐿𝐿𝐿𝐿𝑃𝑃
𝐿𝐿𝑃𝑃
𝐿𝐿𝐴𝐴𝑃𝑃
𝑄𝑄𝐴𝐴 ⎦

⎥
⎥
⎥
⎤
 

 

State-space 
variable Physiological meaning (unit) Abbreviation 

𝑥𝑥1   Left ventricular pressure (mm Hg) LVP 

𝑥𝑥2   Left atrial pressure (mm Hg) LAP 

𝑥𝑥3   Arterial pressure (mm Hg) AP 

𝑥𝑥4   Aortic pressure (mm Hg) AoP 

𝑥𝑥5   Aortic flow (ml/sec) QA 
 

Table 3.2. State variables used in the cardiovascular system model. 

 

The state equations can now be derived for each of the phases described in Table 3.1. 

Depending on the state of the mitral and aortic valves, an equivalent circuit describing each 

phase will be shown next. Kirchhoff’s laws of node currents and loop voltages, as well as 

Ohm’s law, are then applied to solve for the state equations for each circuit. 

Isovolumic contraction phase 

This phase starts the moment when the mitral valve is closed after filling the LV 

with blood, and so both the mitral and aortic valves are closed during this phase. The left 

ventricular contraction will intuitively increase the pressure inside the left ventricular 

chamber, while its blood volume remains unchanged since both valves are closed. This will 

cause a rapid increase in the left ventricular pressure (LVP) during this phase from around 
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10 mmHg, which is the moment when the mitral valve closes, to around 80 mmHg, when 

the aortic valve opens. The equivalent circuit model representing this phase is shown in 

Figure 3.7, and a more simplified circuit model is shown in Figure 3.8. 

 
Figure 3.7. Equivalent circuit for the isovolumic contraction phase. Both the mitral and aortic valves are 
closed, thus both diodes are open-circuited. 
 

 
Figure 3.8. Simplified electric circuit model for the isovolumic phase. 

 

It is known that the current “𝑖𝑖” flowing through a capacitor “𝐶𝐶” is described as: 

 𝑖𝑖 = 𝐶𝐶
𝑑𝑑𝑣𝑣
𝑑𝑑𝑡𝑡

 (3.9) 

where “𝑣𝑣” is the voltage across the capacitor, and so the current flowing through the resistor 

Rp in the direction shown in Figure 3.8 is: 

 𝑖𝑖𝑅𝑅𝑝𝑝 = 𝐶𝐶2
𝑑𝑑𝑥𝑥2
𝑑𝑑𝑡𝑡

= 𝑥𝑥5−𝐶𝐶3
𝑑𝑑𝑥𝑥3
𝑑𝑑𝑡𝑡

 (3.10) 
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To solve for 𝑎𝑎𝑚𝑚1
𝑎𝑎𝑎𝑎

, or simply �̇�𝑥1, where 𝑥𝑥1 represents the left ventricular pressure, we use 

equation (3.6) of the elastance function which can be re-written as: 

 𝐿𝐿𝑉𝑉𝑃𝑃(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡) = 𝐸𝐸(𝑡𝑡) ∗ (𝐿𝐿𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝑉𝑉0) (3.11) 
 

Taking the derivative of both sides of equation (3.11) with respect to time, we get: 

 𝐿𝐿𝑉𝑉𝑃𝑃̇ (𝑡𝑡) = �̇�𝑥1(𝑡𝑡) = �̇�𝐸(𝑡𝑡) ∗ (𝐿𝐿𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝑉𝑉0) + 𝐸𝐸(𝑡𝑡) ∗ 𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡) (3.12) 
 

We can easily infer that 𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡) = 0 during the isovolumic contraction phase since blood 

volume inside the LV does not change as both the mitral valve and aortic valve are closed, 

thus the above equation can be re-written as follows: 

𝐿𝐿𝑉𝑉𝑃𝑃̇ (𝑡𝑡) = �̇�𝐸(𝑡𝑡) ∗ (𝐿𝐿𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝑉𝑉0) =
�̇�𝐸(𝑡𝑡)
𝐿𝐿𝑉𝑉𝑃𝑃(𝑡𝑡)

(𝐿𝐿𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝑉𝑉0)

∗ 𝐿𝐿𝑉𝑉𝑃𝑃(𝑡𝑡) =
�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

∗ 𝐿𝐿𝑉𝑉𝑃𝑃(𝑡𝑡) 

Which can also be re-written according to the following: 

 �̇�𝑥1(𝑡𝑡) =
�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

∗ 𝑥𝑥1(𝑡𝑡) (3.13) 

 

To solve for �̇�𝑥2, the rate of change in the state representing the left atrial pressure, we use 

𝑖𝑖𝑅𝑅𝑝𝑝 = 𝐶𝐶2
𝑎𝑎𝑚𝑚2
𝑎𝑎𝑎𝑎

= 𝐶𝐶2 ∗ �̇�𝑥2 from equation (3.10). Applying Kirchhoff’s voltage law (KVL) on 

the outer loop of the circuit shown in Figure 3.8, we obtain 𝑥𝑥2 − 𝑥𝑥3 + 𝑅𝑅𝑝𝑝 ∗ (𝐶𝐶2 ∗ �̇�𝑥2) = 0, 

which leads to: 

 �̇�𝑥2(𝑡𝑡) =
−1
𝑅𝑅𝑝𝑝𝐶𝐶2

∗ 𝑥𝑥2(𝑡𝑡) +
1

𝑅𝑅𝑝𝑝𝐶𝐶2
∗ 𝑥𝑥3(𝑡𝑡) (3.14) 
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Applying Kirchhoff’s voltage law (KVL) again to solve for �̇�𝑥3 (where 𝑥𝑥3 represents the 

arterial pressure), using 𝑖𝑖𝑅𝑅𝑝𝑝 = 𝑥𝑥5 − 𝐶𝐶3
𝑎𝑎𝑚𝑚3
𝑎𝑎𝑎𝑎

= −𝐶𝐶3 ∗ �̇�𝑥3, also from equation (3.10), we get 

𝑥𝑥2 − 𝑥𝑥3 + 𝑅𝑅𝑝𝑝 ∗ (𝑥𝑥5 − 𝐶𝐶3 ∗ �̇�𝑥3) = 0, which leads to: 

 �̇�𝑥3(𝑡𝑡) =
1

𝑅𝑅𝑝𝑝𝐶𝐶3
∗ 𝑥𝑥2(𝑡𝑡) −

1
𝑅𝑅𝑝𝑝𝐶𝐶3

∗ 𝑥𝑥3(𝑡𝑡) +
1
𝐶𝐶3
∗ 𝑥𝑥5(𝑡𝑡) (3.15) 

We can easily derive the state equation for �̇�𝑥4 from Figure 3.8 by applying equation (3.9) 

according to the following: 

 �̇�𝑥4(𝑡𝑡) =
−1
𝐶𝐶4

∗ 𝑥𝑥5(𝑡𝑡) (3.16) 

 

Finally, to solve for the state equation for the fifth state variable (aortic flow), we apply 

Kirchhoff’s voltage law (KVL) on the inner loop of the circuit shown in Figure 3.8, where 

we get −𝑥𝑥4 + 𝑅𝑅𝑎𝑎 ∗ 𝑥𝑥5 + 𝐿𝐿 ∗ �̇�𝑥5 + 𝑥𝑥3 = 0. This can be re-written as shown below: 

 �̇�𝑥5(𝑡𝑡) =
−1
𝐿𝐿
∗ 𝑥𝑥3(𝑡𝑡) +

1
𝐿𝐿
∗ 𝑥𝑥4(𝑡𝑡) −

𝑅𝑅𝑎𝑎
𝐿𝐿
∗ 𝑥𝑥5(𝑡𝑡) (3.17) 

 

Putting equations (3.13), (3.14), (3.15), (3.16), and (3.17) together to solve for the matrix 

𝐿𝐿(𝑡𝑡), where �̇�𝑥(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) ∗ 𝑥𝑥(𝑡𝑡), we obtain: 

 

⎣
⎢
⎢
⎢
⎡�̇�𝑥1

(𝑡𝑡)
�̇�𝑥2(𝑡𝑡)
�̇�𝑥3(𝑡𝑡)
�̇�𝑥4(𝑡𝑡)
�̇�𝑥5(𝑡𝑡)⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

0 0 0 0

0
−1
𝑅𝑅𝑝𝑝𝐶𝐶2

1
𝑅𝑅𝑝𝑝𝐶𝐶2

0 0

0
1

𝑅𝑅𝑝𝑝𝐶𝐶3
−1
𝑅𝑅𝑝𝑝𝐶𝐶3

0
1
𝐶𝐶3

0 0 0 0
−1
𝐶𝐶4

0 0
−1
𝐿𝐿

1
𝐿𝐿

−𝑅𝑅𝑎𝑎
𝐿𝐿 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∗

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)
𝑥𝑥3(𝑡𝑡)
𝑥𝑥4(𝑡𝑡)
𝑥𝑥5(𝑡𝑡)⎦

⎥
⎥
⎥
⎤

 (3.18) 
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Thus 𝐿𝐿1(𝑡𝑡), where the subscript “1” stands for the isovolumic contraction phase, can be 

written as: 

 𝐿𝐿1(𝑡𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

0 0 0 0

0
−1
𝑅𝑅𝑝𝑝𝐶𝐶2

1
𝑅𝑅𝑝𝑝𝐶𝐶2

0 0

0
1

𝑅𝑅𝑝𝑝𝐶𝐶3
−1
𝑅𝑅𝑝𝑝𝐶𝐶3

0
1
𝐶𝐶3

0 0 0 0
−1
𝐶𝐶4

0 0
−1
𝐿𝐿

1
𝐿𝐿

−𝑅𝑅𝑎𝑎
𝐿𝐿 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.19) 

 

where 𝐸𝐸(𝑡𝑡), the reciprocal of the compliance 𝐶𝐶1 (𝑡𝑡) in the cardiovascular model, is the 

elastance function (Figure 3.4) that describes the behavior of the left ventricular function. 

�̇�𝐸(𝑡𝑡) is the derivative of the elastance function. 𝐶𝐶2, 𝐶𝐶3, and 𝐶𝐶4 are the left atrial compliance, 

arterial compliance, and aortic compliance, respectively. 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑎𝑎 are the peripheral 

resistance and characteristic resistance respectively, whereas 𝐿𝐿 is the inductance that 

represents blood inertia. 

Ejection phase 

During the ejection phase, the mitral valve remains closed while the aortic valve 

opens the moment the pressure in the LV becomes greater than that in the aorta, and so the 

left ventricle will start pumping the blood out to the body’s circulatory system through the 

aortic valve. The equivalent circuit for the “ejection” phase, which shows that the mitral 

valve “Dm” is open-circuited and the aortic valve “Da” is closed-circuited as indicated in 

Table 3.1, is shown in Figure 3.9 while its simplified version is shown in Figure 3.10. 
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Figure 3.9. Equivalent circuit for the ejection phase. The mitral valve is still closed (open-circuited) while 
the aortic valve is open (short-circuited). 

 

 
Figure 3.10. Simplified circuit for the ejection phase. 
 

 

The current 𝑖𝑖𝑅𝑅𝑝𝑝, flowing in the direction shown in Figure 3.10, is: 

 𝑖𝑖𝑅𝑅𝑝𝑝 = 𝐶𝐶2
𝑑𝑑𝑥𝑥2
𝑑𝑑𝑡𝑡

= 𝑥𝑥5 − 𝐶𝐶3
𝑑𝑑𝑥𝑥3
𝑑𝑑𝑡𝑡

 (3.20) 

where 𝑥𝑥5 represents the aortic flow. Using equation (3.6) of the elastance function 𝐸𝐸(𝑡𝑡) to 

solve for �̇�𝑥1, we showed earlier that differentiating both sides with respect to time yielded 

equation (3.12) which is shown below: 

𝐿𝐿𝑉𝑉𝑃𝑃̇ (𝑡𝑡) = �̇�𝑥1(𝑡𝑡) = �̇�𝐸(𝑡𝑡) ∗ (𝐿𝐿𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝑉𝑉0) + 𝐸𝐸(𝑡𝑡) ∗ 𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡) 
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𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡), the rate of change of the LV volume, is not zero during this phase as in the case 

of the isovolumic contraction phase but rather can be described according to the following 

equation: 

𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡) = 𝑄𝑄𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑜𝑜𝑎𝑎𝑎𝑎 = 0 − �
𝑥𝑥1(𝑡𝑡) − 𝑥𝑥4(𝑡𝑡)

𝑅𝑅𝑎𝑎
� 

 𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡) = −
1
𝑅𝑅𝑎𝑎

∗ 𝑥𝑥1(𝑡𝑡) +
1
𝑅𝑅𝑎𝑎

∗ 𝑥𝑥4(𝑡𝑡) (3.21) 

which yields: 

𝐿𝐿𝑉𝑉𝑃𝑃̇ (𝑡𝑡) = �̇�𝑥1(𝑡𝑡) = �̇�𝐸(𝑡𝑡) ∗ (𝐿𝐿𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝑉𝑉0) + 𝐸𝐸(𝑡𝑡) ∗ �−
1
𝑅𝑅𝑎𝑎

∗ 𝑥𝑥1(𝑡𝑡) +
1
𝑅𝑅𝑎𝑎

∗ 𝑥𝑥4(𝑡𝑡)� 

 �̇�𝑥1(𝑡𝑡) = �
�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

−
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

� ∗ 𝑥𝑥1(𝑡𝑡) +
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

∗ 𝑥𝑥4(𝑡𝑡) (3.22) 

 

To solve for �̇�𝑥2(𝑡𝑡), we apply KVL to the outer loop of the circuit shown in Figure 3.10 

using 𝑖𝑖𝑅𝑅𝑝𝑝 = 𝐶𝐶2
𝑎𝑎𝑚𝑚2
𝑎𝑎𝑎𝑎

= 𝐶𝐶2 ∗ �̇�𝑥2. This yields: 

 �̇�𝑥2(𝑡𝑡) =
−1
𝑅𝑅𝑝𝑝𝐶𝐶2

∗ 𝑥𝑥2(𝑡𝑡) +
1

𝑅𝑅𝑝𝑝𝐶𝐶2
∗ 𝑥𝑥3(𝑡𝑡) (3.23) 

 

To solve for �̇�𝑥3(𝑡𝑡), we also apply KVL to the same loop, but using 𝑖𝑖𝑅𝑅𝑝𝑝 = 𝑥𝑥5 − 𝐶𝐶3 ∗ �̇�𝑥3 from 

equation (3.20), we obtain: 

𝑥𝑥2 − 𝑥𝑥3 + 𝑅𝑅𝑝𝑝 ∗ (𝑥𝑥5 − 𝐶𝐶3 ∗ �̇�𝑥3) = 0 

which yields: 

 �̇�𝑥3(𝑡𝑡) =
1

𝑅𝑅𝑝𝑝𝐶𝐶3
∗ 𝑥𝑥2(𝑡𝑡) −

1
𝑅𝑅𝑝𝑝𝐶𝐶3

∗ 𝑥𝑥3(𝑡𝑡) +
1
𝐶𝐶3
∗ 𝑥𝑥5(𝑡𝑡) (3.24) 
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To solve for �̇�𝑥4(𝑡𝑡), we apply KCL at the node joining the following circuit components: 

𝑅𝑅𝑎𝑎, 𝑅𝑅𝑎𝑎, and 𝐶𝐶4 in Figure 3.10, we get: 

𝑥𝑥1(𝑡𝑡) − 𝑥𝑥4(𝑡𝑡)
𝑅𝑅𝑎𝑎

= 𝐶𝐶4 ∗ �̇�𝑥4(𝑡𝑡) + 𝑥𝑥5(𝑡𝑡) 

which can be re-arranged as follows: 

 �̇�𝑥4(𝑡𝑡) =
1

𝑅𝑅𝑎𝑎𝐶𝐶4
∗ 𝑥𝑥1(𝑡𝑡) −

1
𝑅𝑅𝑎𝑎𝐶𝐶4

∗ 𝑥𝑥4(𝑡𝑡) −
1
𝐶𝐶4
∗ 𝑥𝑥5(𝑡𝑡) (3.25) 

 

To solve for �̇�𝑥5(𝑡𝑡), we apply KVL to the inner loop of the circuit shown in Figure 3.10. It 

is important to remember that the voltage across an inductor “𝐿𝐿” follows the equation 

below: 

 𝑣𝑣 = 𝐿𝐿
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

 (3.26) 

thus, applying KVL yields: 

−𝑥𝑥4(𝑡𝑡) + 𝑅𝑅𝑎𝑎 ∗ 𝑥𝑥5(𝑡𝑡) + 𝐿𝐿 ∗ �̇�𝑥5(𝑡𝑡) + 𝑥𝑥3(𝑡𝑡) = 0 

which can be re-written as follows:  

 �̇�𝑥5(𝑡𝑡) =
−1
𝐿𝐿
∗ 𝑥𝑥3(𝑡𝑡) +

1
𝐿𝐿
∗ 𝑥𝑥4(𝑡𝑡) −

𝑅𝑅𝑎𝑎
𝐿𝐿
∗ 𝑥𝑥5(𝑡𝑡) (3.27) 
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Putting equations (3.22), (3.23), (3.24), (3.25), and (3.27) together to solve for the matrix 

𝐿𝐿(𝑡𝑡), where �̇�𝑥(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) ∗ 𝑥𝑥(𝑡𝑡), we obtain: 

 

⎣
⎢
⎢
⎢
⎡�̇�𝑥1

(𝑡𝑡)
�̇�𝑥2(𝑡𝑡)
�̇�𝑥3(𝑡𝑡)
�̇�𝑥4(𝑡𝑡)
�̇�𝑥5(𝑡𝑡)⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

−
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

0 0
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

0

0
−1
𝑅𝑅𝑝𝑝𝐶𝐶2

1
𝑅𝑅𝑝𝑝𝐶𝐶2

0 0

0
1

𝑅𝑅𝑝𝑝𝐶𝐶3
−1
𝑅𝑅𝑝𝑝𝐶𝐶3

0
1
𝐶𝐶3

1
𝑅𝑅𝑎𝑎𝐶𝐶4

0 0
−1
𝑅𝑅𝑎𝑎𝐶𝐶4

−1
𝐶𝐶4

0 0
−1
𝐿𝐿

1
𝐿𝐿

−𝑅𝑅𝑎𝑎
𝐿𝐿 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∗

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)
𝑥𝑥3(𝑡𝑡)
𝑥𝑥4(𝑡𝑡)
𝑥𝑥5(𝑡𝑡)⎦

⎥
⎥
⎥
⎤

 (3.28) 

 

Thus, 𝐿𝐿2(𝑡𝑡), where the subscript “2” stands for the ejection phase, can be written as: 

 𝐿𝐿2(𝑡𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

−
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

0 0
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

0

0
−1
𝑅𝑅𝑝𝑝𝐶𝐶2

1
𝑅𝑅𝑝𝑝𝐶𝐶2

0 0

0
1

𝑅𝑅𝑝𝑝𝐶𝐶3
−1
𝑅𝑅𝑝𝑝𝐶𝐶3

0
1
𝐶𝐶3

1
𝑅𝑅𝑎𝑎𝐶𝐶4

0 0
−1
𝑅𝑅𝑎𝑎𝐶𝐶4

−1
𝐶𝐶4

0 0
−1
𝐿𝐿

1
𝐿𝐿

−𝑅𝑅𝑎𝑎
𝐿𝐿 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.29) 

 

Isovolumic relaxation phase 

The aortic valve closes when the pressure in the LV falls below that in the aorta, 

which means that both the mitral and aortic valves are closed again. This is called 

isovolumic relaxation, a phase that precedes blood filling and represents the onset of 

diastole. Since both valves are closed, this phase follows the same equations used in the 

isovolumic contraction phase that was discussed earlier. Thus, the system matrix 𝐿𝐿3(𝑡𝑡) that 
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describes the isovolumic relaxation phase, where the subscript “3” stands for the 

isovolumic relaxation phase, is identical to the system matrix 𝐿𝐿1(𝑡𝑡) of the isovolumic 

contraction phase, according to the following: 

 𝐿𝐿3(𝑡𝑡) = 𝐿𝐿1(𝑡𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

0 0 0 0

0
−1
𝑅𝑅𝑝𝑝𝐶𝐶2

1
𝑅𝑅𝑝𝑝𝐶𝐶2

0 0

0
1

𝑅𝑅𝑝𝑝𝐶𝐶3
−1
𝑅𝑅𝑝𝑝𝐶𝐶3

0
1
𝐶𝐶3

0 0 0 0
−1
𝐶𝐶4

0 0
−1
𝐿𝐿

1
𝐿𝐿

−𝑅𝑅𝑎𝑎
𝐿𝐿 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.30) 

 

Filling phase 

The filling phase starts when the pressure in the LV falls below the pressure in the 

LA which is the moment the mitral valve opens to fill the LV with blood. The aortic valve 

is closed during this phase since the pressure in the LV is below the aortic pressure. Thus, 

as indicated in Table 3.1, Dm is closed-circuit and Da is open-circuit as shown in the 

equivalent circuit in Figure 3.11 below. 

 
Figure 3.11. Equivalent circuit representing the filling phase. The mitral valve is open (short circuit), but the 
aortic valve is closed (open circuit). 
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Figure 3.11 can be simplified as in the figure below: 

 
Figure 3.12. Simplified circuit for the filling phase. 
 

To solve for �̇�𝑥1, we again use equation (3.12) as shown below:  

𝐿𝐿𝑉𝑉𝑃𝑃̇ (𝑡𝑡) = �̇�𝑥1(𝑡𝑡) = �̇�𝐸(𝑡𝑡) ∗ (𝐿𝐿𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝑉𝑉0) + 𝐸𝐸(𝑡𝑡) ∗ 𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡) 

𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡) here equals the blood flow through the mitral valve, which follows the pressure 

drop between the left atrium (LAP) and left ventricle (LVP) according to the following: 

 𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡) = 𝑄𝑄𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑜𝑜𝑎𝑎𝑎𝑎 =
𝑥𝑥2(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)

𝑅𝑅𝑎𝑎
− 0 =

𝑥𝑥2(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)
𝑅𝑅𝑎𝑎

 (3.31) 

This yields: 

𝐿𝐿𝑉𝑉𝑃𝑃̇ (𝑡𝑡) = �̇�𝑥1(𝑡𝑡) = �̇�𝐸(𝑡𝑡) ∗ (𝐿𝐿𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝑉𝑉0) + 𝐸𝐸(𝑡𝑡) ∗ �
𝑥𝑥2(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)

𝑅𝑅𝑎𝑎
� 

 �̇�𝑥1(𝑡𝑡) = �
�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

−
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

� ∗ 𝑥𝑥1(𝑡𝑡) +
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

∗ 𝑥𝑥2(𝑡𝑡) (3.32) 

The current flowing through the resistor 𝑅𝑅𝑝𝑝 in the direction shown in Figure 3.12 is: 

 𝑖𝑖𝑅𝑅𝑝𝑝 = 𝑥𝑥5 − 𝐶𝐶3 ∗ �̇�𝑥3 = 𝐶𝐶2 ∗ �̇�𝑥2 +
𝑥𝑥2(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)

𝑅𝑅𝑎𝑎
 (3.33) 
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Applying KVL to the outer loop of the circuit in Figure 3.12 to solve for �̇�𝑥2, we get: 

𝑥𝑥2 − 𝑥𝑥3 + 𝑅𝑅𝑝𝑝 ∗ �𝐶𝐶2 ∗ �̇�𝑥2 +
𝑥𝑥2(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)

𝑅𝑅𝑎𝑎
� = 0 

which can be re-arranged according to the following: 

 �̇�𝑥2(𝑡𝑡) =
1

𝑅𝑅𝑎𝑎𝐶𝐶2
∗ 𝑥𝑥1(𝑡𝑡) −

�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑎𝑎�
𝑅𝑅𝑝𝑝𝑅𝑅𝑎𝑎𝐶𝐶2

∗ 𝑥𝑥2(𝑡𝑡) +
1

𝑅𝑅𝑝𝑝𝐶𝐶2
∗ 𝑥𝑥3(𝑡𝑡) (3.34) 

 

Applying KVL to the same loop again but using the other definition for the current flowing 

through 𝑅𝑅𝑝𝑝 as in equation (3.33), we get: 

𝑥𝑥2 − 𝑥𝑥3 + 𝑅𝑅𝑝𝑝 ∗ (𝑥𝑥5 − 𝐶𝐶3 ∗ �̇�𝑥3) = 0 

 �̇�𝑥3(𝑡𝑡) =
1

𝑅𝑅𝑝𝑝𝐶𝐶3
∗ 𝑥𝑥2(𝑡𝑡) −

1
𝑅𝑅𝑝𝑝𝐶𝐶3

∗ 𝑥𝑥3(𝑡𝑡) +
1
𝐶𝐶3
∗ 𝑥𝑥5(𝑡𝑡) (3.35) 

 

We can easily derive the equation for �̇�𝑥4 from Figure 3.12 according to the following: 

 �̇�𝑥4(𝑡𝑡) =
−1
𝐶𝐶4

∗ 𝑥𝑥5(𝑡𝑡) (3.36) 

 

To solve for �̇�𝑥5, we apply Kirchhoff’s voltage law (KVL) on the inner loop of the circuit 

shown in Figure 3.12, we get −𝑥𝑥4 + 𝑅𝑅𝑎𝑎 ∗ 𝑥𝑥5 + 𝐿𝐿 ∗ �̇�𝑥5 + 𝑥𝑥3 = 0. This can be re-written as 

shown below: 

 �̇�𝑥5(𝑡𝑡) =
−1
𝐿𝐿
∗ 𝑥𝑥3(𝑡𝑡) +

1
𝐿𝐿
∗ 𝑥𝑥4(𝑡𝑡) −

𝑅𝑅𝑎𝑎
𝐿𝐿
∗ 𝑥𝑥5(𝑡𝑡) (3.37) 
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Putting equations (3.32), (3.34), (3.35), (3.36), and (3.37) together to solve for the state 

matrix 𝐿𝐿(𝑡𝑡) of the system �̇�𝑥(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) ∗ 𝑥𝑥(𝑡𝑡), we obtain: 

 

⎣
⎢
⎢
⎢
⎡�̇�𝑥1

(𝑡𝑡)
�̇�𝑥2(𝑡𝑡)
�̇�𝑥3(𝑡𝑡)
�̇�𝑥4(𝑡𝑡)
�̇�𝑥5(𝑡𝑡)⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

−
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

0 0 0

1
𝑅𝑅𝑎𝑎𝐶𝐶2

−
�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑎𝑎�
𝑅𝑅𝑝𝑝𝑅𝑅𝑎𝑎𝐶𝐶2

1
𝑅𝑅𝑝𝑝𝐶𝐶2

0 0

0
1

𝑅𝑅𝑝𝑝𝐶𝐶3
−1
𝑅𝑅𝑝𝑝𝐶𝐶3

0
1
𝐶𝐶3

0 0 0 0
−1
𝐶𝐶4

0 0
−1
𝐿𝐿

1
𝐿𝐿

−𝑅𝑅𝑎𝑎
𝐿𝐿 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∗

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)
𝑥𝑥3(𝑡𝑡)
𝑥𝑥4(𝑡𝑡)
𝑥𝑥5(𝑡𝑡)⎦

⎥
⎥
⎥
⎤

 (3.38) 

 

Thus, 𝐿𝐿4(𝑡𝑡), where the subscript “4” stands for the filling phase, can be written as: 

 𝐿𝐿4(𝑡𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

−
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

0 0 0

1
𝑅𝑅𝑎𝑎𝐶𝐶2

−
�𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑎𝑎�
𝑅𝑅𝑝𝑝𝑅𝑅𝑎𝑎𝐶𝐶2

1
𝑅𝑅𝑝𝑝𝐶𝐶2

0 0

0
1

𝑅𝑅𝑝𝑝𝐶𝐶3
−1
𝑅𝑅𝑝𝑝𝐶𝐶3

0
1
𝐶𝐶3

0 0 0 0
−1
𝐶𝐶4

0 0
−1
𝐿𝐿

1
𝐿𝐿

−𝑅𝑅𝑎𝑎
𝐿𝐿 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.39) 
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3.4 Model Validation 

One way to validate the cardiovascular model presented in Figure 3.6 is by 

simulating it and checking if it can reproduce expected hemodynamic data. Another way 

to validate the model is by varying preload (such as mitral valve resistance) or afterload 

(such as systemic vascular resistance) conditions and checking whether the model can 

behave as expected by showing a linear end-systolic pressure-volume relationship 

(ESPVR) [61]. The two methods for validating the cardiovascular model illustrated in 

Figure 3.6 will be discussed next. 

 

3.4.1 Model Validation by Reproducing Expected Hemodynamics 

The cardiovascular model presented in Figure 3.6 was simulated in MATLAB to 

reproduce close-to-normal clinical hemodynamics using the following values: heart rate 75 

beats/min, 𝐸𝐸𝑎𝑎𝑎𝑎𝑚𝑚 = 2.0 𝑚𝑚𝑚𝑚𝐻𝐻𝑔𝑔/𝑚𝑚𝑓𝑓, 𝐸𝐸𝑎𝑎𝑖𝑖𝑖𝑖 = 0.05 𝑚𝑚𝑚𝑚𝐻𝐻𝑔𝑔/𝑚𝑚𝑓𝑓, and 𝑉𝑉0 = 10 𝑚𝑚𝑓𝑓. The 

parametric values of the hemodynamical elements used to simulate the cardiovascular 

model are shown in Table 3.3. The resulting waveforms of the left ventricular pressure 

LVP, left atrial pressure LAP, aortic pressure AoP, aortic flow QA, left ventricular volume 

LVV, and PV-loop are shown in Figure 3.13. The simulations resulted the following 

hemodynamics: systolic and diastolic aortic pressure of 120.2/ 79.6 𝑚𝑚𝑚𝑚𝐻𝐻𝑔𝑔, mean arterial 

pressure (MAP) of 101.7 𝑚𝑚𝑚𝑚𝐻𝐻𝑔𝑔, stroke volume of 71.3 𝑚𝑚𝑓𝑓/beat, cardiac output of 5.34 

𝑓𝑓/min, and end-diastolic volume (EDV) of 139.7 𝑚𝑚𝑓𝑓. These numbers are within normal 

hemodynamical ranges [62], which validate the use of this model. 
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Parameters Physiological meaning Value (unit) 

Rp Peripheral resistance 1.0 (mmHg s/ml) 

Rm Mitral valve resistance 0.005 (mmHg s/ml) 

Ra Aortic valve resistance 0.001 (mmHg s/ml) 

Rc Characteristic impedance 0.04 (mmHg s/ml) 

C1(t) Time-varying compliance of LV Reciprocal of elastance E(t) 

C2 Left atrial compliance 4.4 (ml/mmHg) 

C3 Arterial compliance 1.33 (ml/mmHg) 

C4 Aortic compliance 0.08 (ml/mmHg) 

L Inertance 0.0005 (mmHg s2/ml) 

Table 3.3. Parametric values of the hemodynamical elements used in the cardiovascular model [61]. 

 

 
Figure 3.13. Waveforms of the hemodynamics resulting from the simulation of the cardiovascular model 
that represents a normal (healthy) condition. Pressure waveforms of the left ventricle LVP, left atrium LAP, 
and arteries AP are shown in (A). Left ventricular volume LVV is shown in (B). Blood flow in the aorta QA 
is shown in (C). The resulting left ventricular pressure-volume relationship, PV-loop, is shown in (D). 
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3.4.2 Model Validation by Varying Preload and Afterload Conditions 

Another way to validate the cardiovascular model presented in Figure 3.6 is by 

varying preload and afterload conditions and checking whether the model shows expected 

behavior by reproducing a linear end-systolic pressure-volume relationship (ESPVR). 

Different preload conditions can be simulated by varying the mitral valve resistance, while 

afterload conditions can be simulated by varying the systemic vascular resistance. Here, 

we show the simulation results of varying the systemic vascular resistance (similar 

simulations for different preload conditions by varying the mitral valve resistance, results 

not shown, were done and showed a similar behavior). The PV-loops resulting from the 

simulations of three different values for the systemic vascular resistance (Rp = 0.5, Rp = 

1.5, and Rp = 2.0), in addition to the original value Rp = 1.0, which represents the normal 

healthy condition, were all bounded by the same ESPVR line as shown in Figure 3.14. The 

left ventricular parameters were all kept unchanged when simulating these different 

afterload conditions, Emin = 0.05 mmHg/ml, Emax = 2.0 mmHg/ma, V0 = 10 ml. In addition, 

end-diastolic volume (EDV) was also kept unchanged in all simulations. A comparison of 

the hemodynamics resulting from the simulation of the different afterload conditions is 

summarized in Table 3.4. 



 

60 
 

 
Figure 3.14. PV-loops for different systemic vascular resistance values (different afterload conditions). The 
PV-loops were all bounded from the upper left corner by the same ESPVR line, the slope of which 
representing Emax, or end-systolic elastance Ees.   

 

Systemic resistance value 
(mmHg s/ml) 

Ps 
(mm Hg) 

Pd 
(mm Hg) 

MAP 
(mm Hg) 

CO 
(l/min) 

SV 
(ml/beat) 

Rp = 0.5 89.9 43.1 68.5 6.56 87.5 

Rp = 1.0 120.2 79.6 101.7 5.34 71.3 

Rp = 1.5 141.7 105.6 124.8 4.52 60.3 

Rp = 2.0 157.4 124.8 141.8 3.92 52.3 

Table 3.4. Summary of hemodynamics resulting from simulating the cardiovascular model with different 
afterload conditions (different systemic vascular resistance values). Ps is systolic pressure, Pd is diastolic 
pressure, MAP is mean arterial pressure, CO is cardiac output, and SV is stroke volume. 

 

3.4.3 Simulating Unhealthy Condition 

After validating the cardiovascular model by reproducing normal hemodynamic 

data when using normal parametric values for total peripheral resistance and arterial 

compliance (Table 3.3), we simulated hypertension by inducing an unhealthy condition. 
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This was achieved by increasing the total peripheral resistance by 60% and decreasing the 

arterial compliance by 45% while keeping all other parameters unchanged, including heart 

rate. The resulting hemodynamic data are: systolic and diastolic pressures of 149.8 and 

94.1 mmHg respectively, mean arterial pressure of 123.3 mmHg, stroke volume of 56 

𝑚𝑚𝑓𝑓/beat, cardiac output of 4.2 𝑓𝑓/𝑚𝑚𝑖𝑖𝑛𝑛, and end-diastolic volume of 139.7 𝑚𝑚𝑓𝑓. We can notice 

an increase in all pressure readings, compared to the results of healthy condition, associated 

with a decrease in stroke volume and cardiac output. The corresponding waveforms for 

LVP, LAP, AoP, QA, LVV, and PV-loop are presented in Figure 3.15. 

 
Figure 3.15. Waveforms of the hemodynamics resulting from simulating the cardiovascular model of 
induced unhealthy condition representing hypertension. Pressure waveforms of the left ventricle LVP, left 
atrium LAP, and arteries AP are shown in (A). Left ventricular volume LVV is shown in (B). Blood flow in 
the aorta QA is shown in (C). The resulting left ventricular pressure-volume relationship, PV-loop, is shown 
in (D). 
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3.5 Preliminary Studies for Treating RH 

Our preliminary studies to demonstrate opportunities to improve the high blood 

pressure in the unhealthy, hypertensive case included two methods. The first one utilizes 

the cardiac contractility modulation technique by showing the effect of decreasing the 

contractility force of the LV on blood pressure. The decrease in contractile force is 

achieved by decreasing the end-systolic elastance (Ees) or Emax which represents the 

measurement index for contractility [63, 64]. The second method utilizes the addition of 

artificial compliance, as an attempt to increase the arterial compliance. The preliminary 

investigations for these two methods are discussed next. 

3.5.1 Using CCM to Decrease the Cardiac Contractility 

As discussed earlier, application of cardiac contractility modulation (CCM) signals 

can modulate the contractility force of the heart muscle. Studies have investigated the 

application of both positive and negative CCM signals and concluded that positive current 

signals enhance contractility and increase maximum 𝑑𝑑𝑃𝑃/𝑑𝑑𝑡𝑡, while that negative signals 

show the opposite effect. A direct way to simulate the change in contractility is by altering 

the end-systolic elastance Ees, which represents the maximum value (Emax) in the time-

varying elastance function (Figure 3.4) that was used to model the left ventricle in our 

cardiovascular model (Figure 3.6). Increasing the value of Emax represents a case of stronger 

contraction, while decreasing Emax represents a weaker heart contraction. In our analysis, 

we investigate the effect of decreasing the contractile force since our goal is to decrease 

the blood pressure; however, this is expected to be associated with some tradeoffs as we 

may end up with a lesser cardiac output due to expected weaker blood ejection. The results 
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of different simulations to improve blood pressure using different intensity levels of 

negative CCM signals are demonstrated in Table 3.5. The column denoted “baseline” 

represents the unhealthy case of hypertension that we want to treat, while the other columns 

to the right simulate the effect of applying negative CCM signals of different intensities. 

This effect of weaker contractions is characterized by a 10% gradual decrement of the 

initial contractility index Emax that is used in the unhealthy (baseline) condition, where the 

right most column represents the weakest contractility with Emax being decreased to 50% 

of its original value in the baseline case. Table 3.5 clearly shows that as the contractility 

index Emax is decreased, all the blood pressure readings improved showing a noticeable 

decrease; however, this is also associated with a significant decrease in the cardiac output.  

Hemodynamic variables Baseline 90% Emax 80% Emax 70% Emax 60% Emax 50% Emax 

Systolic pressure (mmHg) 149.8 143.9 137 129.2 120 109 

Diastolic pressure (mmHg) 94.1 90.3 86 81.1 75.3 68.6 

MAP (mm Hg) 123.3 118.2 112.4 105.7 98 88.8 

SV (ml) 56 53.5 50.6 47.3 43.5 39 

CO (l/min) 4.2 4 3.8 3.55 3.3 2.9 

Table 3.5. Effect of applying negative CCM signals. The column corresponding to baseline represents the 
unhealthy case that we want to treat by improving its blood pressure. The columns to its right represent the 
effect of applying negative CCM signals with different intensities, where 90% Emax means that contractility 
was decreased by 10% of its original value in baseline, and 50% Emax represents a contractility decrement of 
50% of its original value in baseline. 

 

Decreasing Contractility While Increasing HR 

After investigating the effect of negative CCM signals on depressing contractility 

and therefore lowering the blood pressure, which was associated with a decrease in cardiac 

output, we investigated whether alteration of the heart rate, combined with the CCM effect, 
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would make any further improvement. In this experiment, we chose the case when Emax 

was decreased to 60% of its original value in baseline, which resulted the following 

hemodynamics: systolic, diastolic, and mean arterial pressures of 120, 75.3, and 98 mm Hg 

respectively while CO is 3.3 l/min as shown in Table 3.5. We then increased the heart rate 

from 75 beats/min to 80, 90, and 100 beats/min. The increase in HR from 75 to 100 

beats/min increased the CO by ~7 %, while at the same time increased the pressure values, 

especially the diastolic one, as shown in Table 3.6. 

Hemodynamic variables 
HR=75 60% Emax 

Baseline 60% Emax HR=80 HR=90 HR=100 
systolic pressure (mmHg) 149.8 120 120.3 120.8 121.3 
diastolic pressure (mmHg) 94.1 75.3 77.8 82 85.6 
MAP (mm Hg) 123.3 98 99.4 101.9 103.9 
SV (ml) 56 43.5 41.5 37.9 34.8 
CO (l/min) 4.2 3.26 3.32 3.41 3.48 

Table 3.6. Effect of increasing heart rate. HR was increased from 75 beats/min to 80, 90, and 100 beats/min. 
Increasing the heart rate from 75 to 100 beat/min, while applying negative CCM signals to improve blood 
pressure, improved (increased) the cardiac output by ~10% while showing a slight increase in blood 
pressures. 
 

3.5.2 Addition of Artificial Compliance 

In this preliminary study, we investigate the effect of adding an artificial 

compliance, in an attempt to simulate the expected benefit of increasing the total arterial 

compliance in improving blood pressure. An additional artificial compliance (C5) is placed 

in parallel with the arterial compliance (C3) as shown in the modified circuit of the 

cardiovascular model in Figure 3.16. The overall arterial compliance is then equal to the 

addition of the two individual compliances C3 and C5. Table 3.7 shows the resulting 
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hemodynamics that correspond to the simulations of adding different values for the 

artificial compliance C5. 

 
Figure 3.16. Cardiovascular model with the addition of artificial compliance C4. 

 

  

Addition of different values for the artificial 
compliance C5 

Hemodynamic variables Baseline 
20% 

of C3 

40% 

of C3 

60% 

of C3 

80% 

0f C3 

100% 

of C3 

Systolic pressure (mmHg) 149.8 143.9 139 135 131.5 128.5 

Diastolic pressure (mmHg) 94.1 96.5 97.7 98.4 98.6 98.5 

MAP (mm Hg) 123.3 121.4 119.6 117.7 116 114.4 

SV (ml) 56 55.2 54.4 53.5 52.8 52 

CO (l/min) 4.2 4.14 4.08 4 3.96 3.9 
 

Table 3.7. Effect of the addition of artificial compliance. Baseline represents the unhealthy case to be treated. 
The columns to its right represent additions of artificial compliance. 20% of C3 means an addition of an 
artificial compliance of a value equals 20% of the arterial compliance C3, while the right most column 
represents the addition of the largest artificial compliance of a value equals C3. 

 

The columns in Table 3.7 compare the baseline, unhealthy condition, with cases showing 

the addition of an artificial compliance of different values. Each column to the right of the 

baseline represents a 20% gradual increment in the value of the added artificial compliance 
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compared to the one on its left. The right most column corresponds to an addition of 

artificial compliance of a value that is equal to that of the arterial compliance C3, which 

represents the highest value for the added artificial compliance in this comparison. The 

table shows that the addition of artificial compliance decreases (improves) systolic and 

mean arterial pressures; however, it increases the diastolic pressure. On the other hand, the 

addition of artificial compliance has slightly decreased the cardiac output. 

3.6 Discussion 

A lumped-parameter electric circuit model describing the cardiovascular system 

was presented (Figure 3.6) and validated (Figure 3.13 and Figure 3.14). The model 

successfully reproduced expected hemodynamics, such as blood pressure and flow. We 

then simulated hypertension by inducing an unhealthy condition by increasing the systemic 

vascular resistance by 60% and decreasing the arterial compliance by 45% (Figure 3.15). 

Our preliminary analysis for treating the induced hypertensive case included two 

studies. The first study involved changing the contraction kinematics of the left ventricle 

by decreasing the contractile force via negative amplitude current CCM signals. The effect 

of CCM signals showed an improvement (decrease) in blood pressure; however, this was 

associated with a decrease in cardiac output (Table 3.5). Decreasing the contractile force 

by 40% (i.e. to 60% of Emax) caused a decrease in blood pressure from 149.8/94.1 mmHg, 

in the “induced” unhealthy condition, to 120/75.3 mmHg; however, this was associated 

with a decrease in cardiac output by ~21%. We then investigated the effect of increasing 

the heart rate from 75 beats/min to 100 beats/min while applying the CCM signals and 

showed that this increased (improved) the CO by ~7% (Table 3.6). The second preliminary 
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study investigated the addition of artificial compliance which showed a significant 

improvement in lowering the systolic pressure and mean arterial pressure; however, 

diastolic pressure was slightly increased, while that cardiac output was minimally 

decreased (Table 3.7). 

The cardiovascular model presented in this chapter showed to be a reasonable 

testbed for our research study. The two methods investigated in our preliminary analysis 

for treating resistant hypertension give an indication that hypertension could be controlled. 

LVADs have shown to be a promising technology as a long-term treatment option for heart 

failure patients, and we anticipate that such technology could be a feasible candidate for 

treating hypertension. This is simply because LVADs can control the flow of blood 

circulation via its controlled pump. However, the use of an LVAD with an intact heart does 

not seem to be a preferred treatment option for RH since it may disable the functionality 

of the intact left ventricle. 

In the proceeding chapters, we introduce a novel approach for treating resistant 

hypertension. An accumulator device idea is implemented with the cardiovascular model 

that is presented in Figure 3.6. The working concept of this accumulator device and its 

influence on blood pressure waveforms, especially the aortic pressure, will be discussed 

next.  
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CHAPTER 4   Introducing the Accumulator Concept for Treating RH 
 

4.1 Introduction 

Most hypertension treatment methods are based on reducing total peripheral 

resistance through lifestyle changes and drug treatment. However, RH patients, as 

mentioned earlier, do not respond to such pharmacological therapy. With the fact there is 

no control over the peripheral resistance for such class of patients, our focus is targeting 

the pumping action of the heart. Thus, in this work, we investigate to mechanically alter 

the way the blood is pumped into the aorta such that to reduce the systolic pressure, without 

reducing the cardiac output. 

In this research study, we introduce the novel idea of implementing what we called 

the accumulator device and hope that such idea will serve as a successful candidate for 

treating RH in the future. This accumulator device is meant to regulate blood ejection into 

the aorta in such a way that systolic pressure is reduced, without reducing the CO. This is 

achieved by accumulating a partial amount of the blood pumped by the LV during systole 

and discharging it back to the aorta during diastole, thus providing another route between 

the LV and aorta. This new approach showed to reduce the systolic pressure, with the level 

of reduction in systolic pressure being dependent on the amount of blood accumulated 

during the ejection phase of the cardiac cycle. The reduction in systolic pressure is 

associated with an increase in diastolic pressure. This is intuitive since we are maintaining 

the CO in an unaltered state and that the peripheral resistance of the body is not changed, 

which should result in the same MAP. 
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To the best of our knowledge, there is no existing treatment approach in the 

literature that treats hypertension by altering the way in which the heart pumps blood into 

the aorta. This new approach showed a significant improvement in reducing the systolic 

pressure, a finding that may be of interest to researchers for further investigations. 

4.2 Description 

The proposed accumulator device is illustrated by the basic schematic shown in 

Figure 4.1. The device comprises a chamber of a spring-loaded piston accumulator for 

blood accumulation, inlet and outlet ports, each associated with a unidirectional check 

valve to restrict the direction of blood flow, and additionally, a force source that is applied 

on the piston during discharging to control the blood discharging rate. The accumulator 

inlet is connected to the LV to allow for blood flow into the accumulator, and the outlet is 

connected to the aorta to allow for blood discharging back to the aorta, in a similar fashion 

to that of an LVAD. 

 
Figure 4.1. A schematic diagram illustrating the accumulator device concept. 
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The electric circuit element that is analogous to the hydraulic accumulator is the capacitor 

as illustrated in Figure 4.2. A schematic describing the implementation of the accumulator 

device into the lumped parameter model of the cardiovascular system (Figure 3.6) is 

illustrated in Figure 4.3. Check valves are represented by switches, and the controlled force 

that is applied on the piston to control the blood flow rate is represented by the variable 

voltage source 𝑈𝑈(𝑡𝑡). 

 

 
Figure 4.2. Analogy between hydraulic accumulator and electric capacitor. 

 

 
Figure 4.3. Implementation of the accumulator concept into the cardiovascular system lumped model. 
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The check valve of the accumulator inlet is supposed to be open only during accumulation 

to allow for blood flow from the left ventricle to the accumulator, while that the other check 

valve (of the outlet) is closed. To discharge the accumulated blood back into the aorta, the 

check valve of the accumulator outlet should be open while that the inlet valve is closed. 

Accumulator filling occurs during the ejection phase when the aortic valve is open, which 

means that the blood that is pumped out of the left ventricle during systole has two routes: 

a natural route through the aortic valve and another route through the inlet of the 

accumulator device in order to fill the accumulator chamber. Both inlet and outlet valves 

are supposed to be closed during isovolumic contraction and relaxation phases, and so the 

accumulator should have no influence on the system during these two phases. We believe 

that this is essential to allow for switching timing. The accumulator should discharge the 

accumulated blood during the filling phase by opening the outlet valve and keeping the 

inlet valve closed. It is important that the discharging process is completely finished during 

this phase such that the accumulator is totally empty before the start of the next cardiac 

cycle. This cannot be accomplished without the need to an external input, such as a 

controlled force source, that can manipulate the discharging process (represented by 𝐹𝐹 in 

Figure 4.1 and 𝑈𝑈(𝑡𝑡) in Figure 4.3). Table 4.1 describes the status of the accumulator and 

its inlet and outlet valves during each phase of the cardiac cycle. 
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Cardiac cycle phases 
Accumulator valves state Accumulator 

status Inlet Outlet 

Isovolumic contraction 
Systole 

Closed Closed Empty 

Ejection Open Closed Filling 

Isovolumic relaxation 
Diastole 

Closed Closed Filled 

Filling Closed Open Discharging 
 

Table 4.1. Status of the accumulator and its inlet and outlet valves during each phase of the cardiac cycle. 

 

The selection of the capacitance value of 𝐶𝐶6, which represents the capacitance of the 

accumulator, was based on the following equation: 

 𝐶𝐶 =
𝑄𝑄
𝑣𝑣

 (4.1) 

The above equation is the electric circuit version of equation (3.3), where 𝐶𝐶 is capacitance 

(in Coulomb/Volt, also called Farad), 𝑄𝑄 is charge (in Coulomb), and 𝑣𝑣 is voltage (in Volts). 

Thus, the charge 𝑄𝑄 and voltage 𝑣𝑣 are analogue to volume 𝑉𝑉 and pressure 𝑃𝑃 in equation 

(3.3); respectively, while the capacitance and compliance are equivalent. We roughly 

designed the capacitance value of 𝐶𝐶6 such that the maximum value for 𝑄𝑄 that we can obtain 

is an above average level of stroke volume (~80 𝑚𝑚𝑓𝑓), where this occurs when the voltage 

𝑣𝑣 across 𝐶𝐶6 is maximum (roughly approximated to be around the maximum left ventricular 

pressure of ~160 𝑚𝑚𝑚𝑚𝐻𝐻𝑔𝑔). Thus, the value selected for 𝐶𝐶6 was roughly obtained by 

applying equation (3.3) according to the following: 

𝐶𝐶6 =
80 𝑚𝑚𝑓𝑓

160 𝑚𝑚𝑚𝑚𝐻𝐻𝑔𝑔
= 0.5 𝑚𝑚𝑓𝑓 𝑚𝑚𝑚𝑚𝐻𝐻𝑔𝑔�  (or Farad) 
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4.3 Methodology 

The cardiovascular system model with accumulator device (Figure 4.3) consists of 

6 state variables, with the 6th state variable representing the pressure inside the accumulator 

chamber (the voltage across the capacitor 𝐶𝐶6 in its electric circuit analogue). The 

cardiovascular system with the accumulator is described by the following linear, time-

varying, state-space system: 

 
�̇�𝑥(𝑡𝑡) = 𝐿𝐿(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐵𝐵(𝑡𝑡)𝑢𝑢(𝑡𝑡) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐸𝐸(𝑡𝑡)𝑢𝑢(𝑡𝑡) 
(4.2) 

 

where 𝑥𝑥(𝑡𝑡) represents the state vector, 𝑢𝑢(𝑡𝑡) represents the input which is described by the 

voltage source 𝑈𝑈(𝑡𝑡) in Figure 4.3, and 𝑦𝑦(𝑡𝑡) represents the system’s output, which is the 

flow rate of discharged blood from the accumulator device. 𝐿𝐿(𝑡𝑡), which is a 6x6 matrix, 

and 𝐵𝐵(𝑡𝑡), which is a 6x1 vector, represent the system’s properties. On the other hand, 𝐶𝐶(𝑡𝑡), 

a 1x6 vector, and 𝐸𝐸(𝑡𝑡), a scalar, both describe our chosen output variable. The state 

variables of the system illustrated in Figure 4.3 are summarized in Table 4.2. 

State-space 
variable Physiological meaning (unit) Abbreviation 

𝑥𝑥1   Left ventricular pressure (mmHg) LVP 

𝑥𝑥2   Left atrial pressure (mmHg) LAP 

𝑥𝑥3   Arterial pressure (mmHg) AP 

𝑥𝑥4   Aortic pressure (mmHg) AoP 

𝑥𝑥5   Aortic flow (ml/sec) QA 

𝑥𝑥6   Pressure inside accumulator (mmHg) Pacc 

Table 4.2. State variables used in the cardiovascular system with accumulator. 
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Isovolumic contraction (and relaxation) phases 

As described earlier in chapter 3, during the isovolumic contraction and relaxation 

phases, both the mitral valve and aortic valve are closed (corresponding switches are open 

circuited). Figure 4.4 illustrates a schematic for the circuit model describing the 

cardiovascular system with the accumulator device during the isovolumic contraction (and 

relaxation) phases. A simplified circuit model for the system during these phases is shown 

in Figure 4.5. Both the inlet and outlet valves of the accumulator are closed (switches are 

open circuited), and so the implementation of the accumulator device should not have any 

impact on the system during the isovolumic contraction and relaxation phases. 

 
Figure 4.4. Equivalent circuit for the cardiovascular system with the accumulator device during the 
isovolumic contraction and relaxation phases. Both the mitral and aortic valves are closed (thus both switches 
are open circuited), and both the accumulator inlet and outlet valves are also closed (switches are open 
circuited). 

 
Figure 4.5. Simplified circuit model for the cardiovascular system with accumulator device during 
isovolumic contraction and relaxation phases. 
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The circuit in Figure 4.5 is identical to that of the cardiovascular system with no 

accumulator (Figure 3.8) which was described in chapter 3. Since the accumulator is not 

affecting the system, the state equations for the cardiovascular system with the accumulator 

(Figure 4.3) during the isovolumic contraction and relaxation phases (Figure 4.4) follow 

the system equation derived in (3.18) with just one difference arising from the addition of 

the new state variable (pressure inside the accumulator, 𝑥𝑥6) which can be described as: 

 �̇�𝑥6(𝑡𝑡) = 0 (4.3) 

The above equation was derived from the fact that there should be no change in the volume 

inside the accumulator due to the closure of both the inlet and outlet valves of the 

accumulator. Thus, the system equation describing the model in Figure 4.4 can now be 

written as follows: 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝑥1

(𝑡𝑡)
�̇�𝑥2(𝑡𝑡)
�̇�𝑥3(𝑡𝑡)
�̇�𝑥4(𝑡𝑡)
�̇�𝑥5(𝑡𝑡)
�̇�𝑥6(𝑡𝑡)⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

0 0 0 0 0

0
−1
𝑅𝑅𝑝𝑝𝐶𝐶2

1
𝑅𝑅𝑝𝑝𝐶𝐶2

0 0 0

0
1

𝑅𝑅𝑝𝑝𝐶𝐶3
−1
𝑅𝑅𝑝𝑝𝐶𝐶3

0
1
𝐶𝐶3

0

0 0 0 0
−1
𝐶𝐶4

0

0 0
−1
𝐿𝐿

1
𝐿𝐿

−𝑅𝑅𝑎𝑎
𝐿𝐿

0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∗

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)
𝑥𝑥3(𝑡𝑡)
𝑥𝑥4(𝑡𝑡)
𝑥𝑥5(𝑡𝑡)
𝑥𝑥6(𝑡𝑡)⎦

⎥
⎥
⎥
⎥
⎤

 (4.4) 
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Ejection phase 

The cardiovascular system with the accumulator (Figure 4.3) during the ejection 

phase is illustrated in Figure 4.6, and its equivalent simplified circuit is presented in Figure 

4.7. During this phase, blood is ejected naturally from the left ventricle into the aorta 

through the aortic valve, which opens during this phase since the pressure inside the left 

ventricle exceeds that in the aorta. The addition of the accumulator device, with its inlet 

valve being open during this phase, while its outlet valve is being closed, allows for a new 

path for the blood that is pumped out of the left ventricle. Thus, the accumulator is filled 

with blood during this phase, with the accumulation amount being dependent mainly on 

the value of the inlet resistance (𝑅𝑅𝑖𝑖).  

 
Figure 4.6. Equivalent circuit for the cardiovascular system with the accumulator device during ejection 
phase. The mitral valve is closed (switch is open circuited), whereas the aortic valve is open (switch is close 
circuited). The accumulator’s inlet valve is open (switch is closed circuit) to allow for blood accumulation, 
whereas the outlet valve is closed (switch is open circuit). 
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Figure 4.7. Simplified circuit model for the cardiovascular system with the accumulator device during the 
ejection phase. 

 

Note that the voltage source 𝑈𝑈(𝑡𝑡) (or pressure pump F), which represents the driving force 

to the accumulator that pushes the accumulator piston downward in order to control and 

regulate pumping the blood out of the accumulator into the aorta, is not shown in the circuit 

of Figure 4.6 and Figure 4.7 (represented by applying a 0 volt voltage source, i.e. 

grounding). The reason for that is because we do not want to apply any force against the 

accumulation process during this phase such that to make the system less complicated since 

we can control the accumulation process by regulating the value of 𝑅𝑅𝑖𝑖. Thus, for the electric 

model presented in Figure 4.6, the flow rate of the blood being accumulated will be 

governed by the first order exponential increase in the pressure inside accumulator, which 

is dependent on the value of inlet resistance and compliance (capacitance) of the 

accumulator chamber (time constant 𝜏𝜏 = 𝑅𝑅𝑖𝑖 ∗ 𝐶𝐶6). 

To derive the state equations for the dynamics describing the cardiovascular system 

with the accumulator device during the ejection phase, we will consider the simplified 

circuit model shown in Figure 4.7. Recalling the elastance function, equation (3.6): 
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𝐸𝐸(𝑡𝑡) =
𝐿𝐿𝑉𝑉𝑃𝑃(𝑡𝑡)

𝐿𝐿𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝑉𝑉0
 

and its derivative with respect to time, equation (3.12): 

𝐿𝐿𝑉𝑉𝑃𝑃̇ (𝑡𝑡) = �̇�𝑥1(𝑡𝑡) = �̇�𝐸(𝑡𝑡) ∗ (𝐿𝐿𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝑉𝑉0) + 𝐸𝐸(𝑡𝑡) ∗ 𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡) 

To solve for �̇�𝑥1(𝑡𝑡), we need to find 𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡), the rate of change in the left ventricular 

volume, during the ejection phase, which can be described as follows: 

𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡) = 𝑄𝑄𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑜𝑜𝑎𝑎𝑎𝑎 = 0 − (𝑖𝑖𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 

where 𝑖𝑖𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑚𝑚1(𝑎𝑎)−𝑚𝑚4(𝑎𝑎)
𝑅𝑅𝑚𝑚

 , and 𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑚𝑚1(𝑎𝑎)−𝑚𝑚6(𝑎𝑎)
𝑅𝑅𝑖𝑖

 , thus: 

 𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡) = −�
1
𝑅𝑅𝑎𝑎

+
1
𝑅𝑅𝑖𝑖
� 𝑥𝑥1(𝑡𝑡) +

1
𝑅𝑅𝑎𝑎

𝑥𝑥4(𝑡𝑡) +
1
𝑅𝑅𝑖𝑖
𝑥𝑥6(𝑡𝑡) (4.5) 

Hence the state equation for 𝑥𝑥1(𝑡𝑡) becomes: 

 �̇�𝑥1(𝑡𝑡) = �
�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

− 𝐸𝐸(𝑡𝑡) ∗ �
1
𝑅𝑅𝑎𝑎

+
1
𝑅𝑅𝑖𝑖
�� 𝑥𝑥1(𝑡𝑡) +

𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

𝑥𝑥4(𝑡𝑡) +
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑖𝑖

𝑥𝑥6(𝑡𝑡) (4.6) 

The current flowing through 𝑅𝑅𝑝𝑝 in the direction shown in Figure 4.7 is: 

 𝑖𝑖𝑅𝑅𝑝𝑝 = 𝐶𝐶2�̇�𝑥2(𝑡𝑡) = 𝑥𝑥5(𝑡𝑡) − 𝐶𝐶3�̇�𝑥3(𝑡𝑡) (4.7) 
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Applying KVL to the right most loop in Figure 4.7 using the two definitions of 𝑖𝑖𝑅𝑅𝑝𝑝 in (4.7), 

we can find the state equations for 𝑥𝑥2(𝑡𝑡) and 𝑥𝑥3(𝑡𝑡) as follows: 

 �̇�𝑥2(𝑡𝑡) =
−1
𝑅𝑅𝑝𝑝𝐶𝐶2

𝑥𝑥2(𝑡𝑡) +
1

𝑅𝑅𝑝𝑝𝐶𝐶2
𝑥𝑥3(𝑡𝑡) (4.8) 

 �̇�𝑥3(𝑡𝑡) =
1

𝑅𝑅𝑝𝑝𝐶𝐶3
𝑥𝑥2(𝑡𝑡) −

1
𝑅𝑅𝑝𝑝𝐶𝐶3

𝑥𝑥3(𝑡𝑡) +
1
𝐶𝐶3
𝑥𝑥5(𝑡𝑡) (4.9) 

 

Applying KCL to the node that is common between 𝑅𝑅𝑎𝑎, 𝑅𝑅𝑎𝑎, and 𝐶𝐶4 in Figure 4.7, we obtain: 

𝑥𝑥1(𝑡𝑡) − 𝑥𝑥4(𝑡𝑡)
𝑅𝑅𝑎𝑎

= 𝐶𝐶4�̇�𝑥4(𝑡𝑡) + 𝑥𝑥5(𝑡𝑡) 

Re-arranging the above equation, we can solve for �̇�𝑥4(𝑡𝑡): 

 �̇�𝑥4(𝑡𝑡) =
1

𝑅𝑅𝑎𝑎𝐶𝐶4
𝑥𝑥1(𝑡𝑡) −

1
𝑅𝑅𝑎𝑎𝐶𝐶4

𝑥𝑥4(𝑡𝑡) −
1
𝐶𝐶4
𝑥𝑥5(𝑡𝑡) (4.10) 

Applying KVL on the second loop from the right of Figure 4.7, we obtain: 

−𝑥𝑥4(𝑡𝑡) + 𝑅𝑅𝑎𝑎𝑥𝑥5(𝑡𝑡) + 𝐿𝐿 ∗ �̇�𝑥5(𝑡𝑡) + 𝑥𝑥3(𝑡𝑡) = 0 

Solving for �̇�𝑥5(𝑡𝑡), we obtain: 

 �̇�𝑥5(𝑡𝑡) =
−1
𝐿𝐿
𝑥𝑥3(𝑡𝑡) +

1
𝐿𝐿
𝑥𝑥4(𝑡𝑡) −

𝑅𝑅𝑎𝑎
𝐿𝐿
𝑥𝑥5(𝑡𝑡) (4.11) 
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Finally, applying the equation of the current flowing through a capacitor to solve for 

�̇�𝑥6(𝑡𝑡), we obtain: 

𝑥𝑥1(𝑡𝑡) − 𝑥𝑥6(𝑡𝑡)
𝑅𝑅𝑖𝑖

= 𝐶𝐶6𝑥𝑥6(𝑡𝑡) 

 �̇�𝑥6(𝑡𝑡) =
1

𝑅𝑅𝑖𝑖𝐶𝐶6
𝑥𝑥1(𝑡𝑡) −

1
𝑅𝑅𝑖𝑖𝐶𝐶6

𝑥𝑥6(𝑡𝑡) (4.12) 

Putting equations (4.6), (4.8), (4.9), (4.10), (4.11), and (4.12) together to solve for the 

matrix 𝐿𝐿(𝑡𝑡), where �̇�𝑥(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) ∗ 𝑥𝑥(𝑡𝑡), we obtain: 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
�̇�𝑥1(𝑡𝑡)
�̇�𝑥2(𝑡𝑡)
�̇�𝑥3(𝑡𝑡)
�̇�𝑥4(𝑡𝑡)
�̇�𝑥5(𝑡𝑡)
�̇�𝑥6(𝑡𝑡)⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

− 𝐸𝐸(𝑡𝑡) �
1
𝑅𝑅𝑎𝑎

+
1
𝑅𝑅𝑖𝑖
� 0 0

𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

0
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑖𝑖

0
−1
𝑅𝑅𝑝𝑝𝐶𝐶2

1
𝑅𝑅𝑝𝑝𝐶𝐶2

0 0 0

0
1

𝑅𝑅𝑝𝑝𝐶𝐶3
−1
𝑅𝑅𝑝𝑝𝐶𝐶3

0
1
𝐶𝐶3

0

1
𝑅𝑅𝑎𝑎𝐶𝐶4

0 0
−1
𝑅𝑅𝑎𝑎𝐶𝐶4

−1
𝐶𝐶4

0

0 0
−1
𝐿𝐿

1
𝐿𝐿

−𝑅𝑅𝑎𝑎
𝐿𝐿

0
1

𝑅𝑅𝑖𝑖𝐶𝐶6
0 0 0 0

−1
𝑅𝑅𝑖𝑖𝐶𝐶6⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∗

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)
𝑥𝑥3(𝑡𝑡)
𝑥𝑥4(𝑡𝑡)
𝑥𝑥5(𝑡𝑡)
𝑥𝑥6(𝑡𝑡)⎦

⎥
⎥
⎥
⎥
⎤

 (4.13) 
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Filling phase 

By the end of the ejection phase, the accumulator is filled with blood, with a 

quantity that depends on different factors where one of the most importance factors (that 

our study will focus on) is the accumulator’s inlet resistance 𝑅𝑅𝑖𝑖. During the isovolumetric 

relaxation phase, which immediately follows the ejection phase, both accumulator valves 

are closed, which means there is no change in the volume of accumulated blood. The 

process of discharging the accumulated blood back to the aorta starts at the onset of the 

cardiac cycle’s filling phase (when the mitral valve opens while the aortic valve is 

closed). The discharging process requires an external force in order to force the pumping 

out of the blood from the low-pressure side of the accumulator into the high-pressure side 

of the aorta. This external force is represented by the varying voltage source 𝑈𝑈(𝑡𝑡) as 

shown in the circuit of Figure 4.3. The external force will be controlled such that the 

blood discharging rate follows an optimized flow rate trajectory that ensures emptying 

the accumulator during this phase with the least disturbance possible in the resulting 

waveform profile of the aortic pressure. 

 Figure 4.8 illustrates the circuit describing the cardiovascular system with the 

accumulator device during the filling phase of the cardiac cycle. The equivalent 

simplified circuit is shown in Figure 4.9, where the voltage source 𝑈𝑈(𝑡𝑡) represents the 

input to the system. Figure 4.10 shows another version for the simplified circuit model 

where the accumulator is represented by a controlled current source instead of a varying 

voltage source in series with a capacitor as in Figure 4.9. 
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Figure 4.8. Equivalent circuit for the cardiovascular system with the accumulator device during the filling 
phase. The mitral valve is open (thus switch is close circuited), whereas the aortic valve is closed (thus switch 
is open circuited). The accumulator inlet valve is closed (switch is open circuit), whereas the accumulator’s 
outlet valve is open (switch is closed circuit) to allow for blood to discharge back to the aorta. 

 

 
Figure 4.9. Simplified circuit model for the cardiovascular system with the accumulator device during the 
filling phase. 
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Figure 4.10. Simplified circuit model for the cardiovascular system with the accumulator device during the 
filling phase. We represent the accumulator here as a controlled current source instead of a varying voltage 
source in series with a capacitor that we aim to discharge. 
 

We now derive the system equations for the circuit illustrated in Figure 4.9. Let us recall 

the derivative of the elastance function in equation (3.12): 

�̇�𝑥1(𝑡𝑡) = �̇�𝐸(𝑡𝑡) ∗ (𝐿𝐿𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝑉𝑉0) + 𝐸𝐸(𝑡𝑡) ∗ 𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡) 

where 𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡) representing the rate of change in the left ventricular volume during the 

filling phase according to the following: 

𝐿𝐿𝑉𝑉𝑉𝑉̇ (𝑡𝑡) = 𝑄𝑄𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑜𝑜𝑎𝑎𝑎𝑎 =
𝑥𝑥2(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)

𝑅𝑅𝑎𝑎
− 0 =

𝑥𝑥2(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)
𝑅𝑅𝑎𝑎

 

Thus, the equation for �̇�𝑥1(𝑡𝑡) becomes: 

 �̇�𝑥1(𝑡𝑡) = �
�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

−
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

�𝑥𝑥1(𝑡𝑡) +
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

𝑥𝑥2(𝑡𝑡) (4.14) 

The current flowing through 𝑅𝑅𝑝𝑝 in the direction shown in Figure 4.9 can be described as: 

 𝑖𝑖𝑅𝑅𝑝𝑝 = 𝐶𝐶2�̇�𝑥2(𝑡𝑡) +
𝑥𝑥2(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)

𝑅𝑅𝑎𝑎
= 𝑥𝑥5(𝑡𝑡) − 𝐶𝐶3�̇�𝑥3(𝑡𝑡) (4.15) 
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Applying KVL to the second loop from the right side of the circuit shown in Figure 4.9 

using the two definitions of 𝑖𝑖𝑅𝑅𝑝𝑝 in equation (4.15), we obtain: 

𝑥𝑥2(𝑡𝑡) − 𝑥𝑥3(𝑡𝑡) + 𝑅𝑅𝑝𝑝 ∗ �𝐶𝐶2�̇�𝑥2(𝑡𝑡) +
𝑥𝑥2(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)

𝑅𝑅𝑎𝑎
� = 0 

𝑥𝑥2(𝑡𝑡) − 𝑥𝑥3(𝑡𝑡) + 𝑅𝑅𝑝𝑝 ∗ (𝑥𝑥5(𝑡𝑡) − 𝐶𝐶3�̇�𝑥3(𝑡𝑡)) = 0 

Re-arranging the above equations, we obtain: 

 �̇�𝑥2(𝑡𝑡) =
1

𝑅𝑅𝑎𝑎𝐶𝐶2
𝑥𝑥1(𝑡𝑡) −

1
𝐶𝐶2
∗ �

1
𝑅𝑅𝑝𝑝

+
1
𝑅𝑅𝑎𝑎

�𝑥𝑥2(𝑡𝑡) +
1

𝑅𝑅𝑝𝑝𝐶𝐶2
𝑥𝑥3(𝑡𝑡) (4.16) 

 �̇�𝑥3(𝑡𝑡) =
1

𝑅𝑅𝑝𝑝𝐶𝐶3
𝑥𝑥2(𝑡𝑡) −

1
𝑅𝑅𝑝𝑝𝐶𝐶3

𝑥𝑥3(𝑡𝑡) +
1
𝐶𝐶3
𝑥𝑥5(𝑡𝑡) (4.17) 

Applying KCL to the node that is common between 𝑅𝑅𝑜𝑜, 𝑅𝑅𝑎𝑎, and 𝐶𝐶4 in Figure 4.9, we 

obtain: 

𝑥𝑥6(𝑡𝑡) + 𝑈𝑈(𝑡𝑡) − 𝑥𝑥4(𝑡𝑡)
𝑅𝑅𝑜𝑜

= 𝐶𝐶4�̇�𝑥4(𝑡𝑡) + 𝑥𝑥5(𝑡𝑡) 

 

Re-arranging the previous equation to solve for �̇�𝑥4(𝑡𝑡), we obtain: 

 �̇�𝑥4(𝑡𝑡) =
−1
𝑅𝑅𝑜𝑜𝐶𝐶4

𝑥𝑥4(𝑡𝑡) −
1
𝐶𝐶4
𝑥𝑥5(𝑡𝑡) +

1
𝑅𝑅𝑜𝑜𝐶𝐶4

𝑥𝑥6(𝑡𝑡) +
1

𝑅𝑅𝑜𝑜𝐶𝐶4
𝑈𝑈(𝑡𝑡) (4.18) 
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Applying KVL to the second loop from the left side of the circuit shown in Figure 4.9, 

we obtain: 

−𝑥𝑥4(𝑡𝑡) + 𝑅𝑅𝑎𝑎𝑥𝑥5(𝑡𝑡) + 𝐿𝐿 ∗ �̇�𝑥5(𝑡𝑡) + 𝑥𝑥3(𝑡𝑡) = 0 

which can be re-arranged according to the following: 

 �̇�𝑥5(𝑡𝑡) =
−1
𝐿𝐿
𝑥𝑥3(𝑡𝑡) +

1
𝐿𝐿
𝑥𝑥4(𝑡𝑡) −

𝑅𝑅𝑎𝑎
𝐿𝐿
𝑥𝑥5(𝑡𝑡) (4.19) 

To derive the equation for the last state, �̇�𝑥6(𝑡𝑡), we simply apply the equation describing 

the current flowing through a capacitor, equation (3.9), as well as Ohm’s law, to obtain: 

𝐶𝐶6 ∗
𝑑𝑑
𝑑𝑑𝑡𝑡
�−𝑥𝑥6(𝑡𝑡)� =

𝑈𝑈(𝑡𝑡) + 𝑥𝑥6(𝑡𝑡) − 𝑥𝑥4(𝑡𝑡)
𝑅𝑅𝑜𝑜

 

which can be re-arranged according to the following: 

 �̇�𝑥6(𝑡𝑡) =
1

𝑅𝑅𝑜𝑜𝐶𝐶6
𝑥𝑥4(𝑡𝑡) −

1
𝑅𝑅𝑜𝑜𝐶𝐶6

𝑥𝑥6(𝑡𝑡) −
1

𝑅𝑅𝑜𝑜𝐶𝐶6
𝑈𝑈(𝑡𝑡) (4.20) 

The output, y(t), is represented by the current (blood) that is discharged by the 

accumulator as follows: 

𝑦𝑦(𝑡𝑡) =
𝑈𝑈(𝑡𝑡) + 𝑥𝑥6(𝑡𝑡) − 𝑥𝑥4(𝑡𝑡)

𝑅𝑅𝑜𝑜
=

1
𝑅𝑅𝑜𝑜𝐶𝐶6

𝑥𝑥4(𝑡𝑡) −
1

𝑅𝑅𝑜𝑜𝐶𝐶6
𝑥𝑥6(𝑡𝑡) −

1
𝑅𝑅𝑜𝑜𝐶𝐶6

𝑈𝑈(𝑡𝑡) (4.21) 
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Putting equations (4.14), (4.16), (4.17), (4.18), (4.19), (4.20), and (4.21) together, we can 

now describe the cardiovascular system with the accumulator device during filling phase 

(Figure 4.8) according to the following system equations: 

�̇�𝒙(𝒕𝒕) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

−
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

0 0 0 0

1
𝑅𝑅𝑎𝑎𝐶𝐶2

−1
𝐶𝐶2

∗ �
1
𝑅𝑅𝑝𝑝

+
1
𝑅𝑅𝑎𝑎

�
1

𝑅𝑅𝑝𝑝𝐶𝐶2
0 0 0

0
1

𝑅𝑅𝑝𝑝𝐶𝐶3
−1
𝑅𝑅𝑝𝑝𝐶𝐶3

0
1
𝐶𝐶3

0

0 0 0
−1
𝑅𝑅𝑜𝑜𝐶𝐶4

−1
𝐶𝐶4

1
𝑅𝑅𝑜𝑜𝐶𝐶4

0 0
−1
𝐿𝐿

1
𝐿𝐿

−𝑅𝑅𝑎𝑎
𝐿𝐿

0

0 0 0
1

𝑅𝑅𝑜𝑜𝐶𝐶6
0

−1
𝑅𝑅𝑜𝑜𝐶𝐶6⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝒙𝒙(𝒕𝒕) +

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
1

𝑅𝑅𝑜𝑜𝐶𝐶4
0
−1
𝑅𝑅𝑜𝑜𝐶𝐶6⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝒖𝒖(𝒕𝒕) 

𝒚𝒚(𝒕𝒕) = �0 0 0
1
𝑅𝑅𝑜𝑜

0
−1
𝑅𝑅𝑜𝑜
� 𝒙𝒙(𝒕𝒕) + �

1
𝑅𝑅𝑜𝑜
�𝒖𝒖(𝒕𝒕)                                                                              

(4.22) 

 

The system in (4.22) requires a controller that can manipulate the control input 𝑈𝑈(𝑡𝑡) in 

order to achieve a desired output 𝑦𝑦(𝑡𝑡), which represents the actual flow rate of the blood 

discharged from the accumulator device back to the arterial system. The controller design 

will be the subject of the next chapter, and so in this section, we will assume that the actual 

flow rate is already known without investigating any control mechanism to achieve it. 

Thus, we refer to the circuit in Figure 4.10, where we considered our input as a controlled 

current source with a pre-determined desired signal of current (discharged blood flow rate). 

This is going to be a signal of finite flow rate that is determined by two key factors: the 

total amount of blood that was accumulated during the ejection phase that needs to be re-

delivered back to the body, and the time interval, i.e. 𝑡𝑡0 and 𝑡𝑡𝑓𝑓, of the discharging process 

which occurs during the filling phase of the cardiac cycle. The area under the curve of this 



 

87 
 

signal of flow rate should be equal to the total volume of accumulated blood to be 

discharged. 

The system in Figure 4.10, which considers the current source as the driving force of the 

system, can be described according to the following system equation: 

⎣
⎢
⎢
⎢
⎡
�̇�𝑥1(𝑡𝑡)
�̇�𝑥2(𝑡𝑡)
�̇�𝑥3(𝑡𝑡)
�̇�𝑥4(𝑡𝑡)
�̇�𝑥5(𝑡𝑡)⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝐸(𝑡𝑡)
𝐸𝐸(𝑡𝑡)

−
𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

𝐸𝐸(𝑡𝑡)
𝑅𝑅𝑎𝑎

0 0 0

1
𝑅𝑅𝑎𝑎𝐶𝐶2

−1
𝐶𝐶2

∗ �
1
𝑅𝑅𝑝𝑝

+
1
𝑅𝑅𝑎𝑎

�
1

𝑅𝑅𝑝𝑝𝐶𝐶2
0 0

0
1

𝑅𝑅𝑝𝑝𝐶𝐶3
−1
𝑅𝑅𝑝𝑝𝐶𝐶3

0
1
𝐶𝐶3

0 0 0 0
−1
𝐶𝐶4

0 0
−1
𝐿𝐿

1
𝐿𝐿

−𝑅𝑅𝑎𝑎
𝐿𝐿 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∗

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)
𝑥𝑥3(𝑡𝑡)
𝑥𝑥4(𝑡𝑡)
𝑥𝑥5(𝑡𝑡)⎦

⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0
1
𝐶𝐶4
0 ⎦
⎥
⎥
⎥
⎥
⎤

𝑰𝑰(𝒕𝒕) (4.23) 

where 𝐼𝐼(𝑡𝑡) in the above system represents the desired current (discharged blood flow rate) 

signal in the system in Figure 4.10, which was also labeled as 𝑖𝑖𝐷𝐷𝑖𝑖𝐷𝐷𝑎𝑎ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. Note that the 

only differences between the system equations in (4.23), which describe the system in 

Figure 4.10, and the system equations in (4.22), which describe the system in Figure 4.9, 

are the absence of the sixth state which represents the voltage across 𝐶𝐶6 (the pressure inside 

the accumulator in its mechanical analogue) and the equation describing �̇�𝑥4(𝑡𝑡), where 

𝑥𝑥4(𝑡𝑡) represents the voltage across 𝐶𝐶4 (aortic pressure). Note that the absence of the sixth 

state 𝑥𝑥6(𝑡𝑡) in the system described in (4.23) is equivalent to showing it with an additional 

row and column of zeros in the 𝐿𝐿(𝑡𝑡) matrix and a sixth element of zero in the 𝐵𝐵 vector. To 

derive the equation for �̇�𝑥4(𝑡𝑡), KCL was applied to the node joining 𝑅𝑅𝑜𝑜, 𝑅𝑅𝑎𝑎, and 𝐶𝐶4 

according to the following: 

𝐼𝐼(𝑡𝑡) = 𝑖𝑖𝐷𝐷𝑖𝑖𝐷𝐷𝑎𝑎ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐶𝐶4�̇�𝑥4(𝑡𝑡) + 𝑥𝑥5(𝑡𝑡) 
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Re-arranging the previous equation, we obtain: 

 �̇�𝑥4(𝑡𝑡) =
−1
𝐶𝐶4

𝑥𝑥5(𝑡𝑡) +
1
𝐶𝐶4
𝐼𝐼(𝑡𝑡) (4.24) 

4.4 Simulation Results 

We first test our hypothesis of the novel idea that implementing the accumulator 

device into the cardiovascular system, as illustrated in Figure 4.1 and Figure 4.3, could 

help in improving blood pressure measurements. This can be illustrated by showing how 

accumulating a partial amount of the blood being pumped out of the left ventricle during 

the ejection phase, while assuring the re-delivery of this accumulated blood back to the 

arterial system during the filling phase (i.e. before the end of the cardiac cycle), can cause 

some hemodynamical changes. We will investigate the relationship between the amount of 

blood accumulated, which is mainly governed by the resistance of the accumulator inlet 

(𝑅𝑅𝑖𝑖), and the corresponding effect on pressure and end-diastolic volume. We will also 

investigate the influence of implementing the accumulator idea on modulating the time 

duration of cardiac cycle phases. We finally investigate the effect of the waveform shape 

of flow rate for the blood being discharged by the accumulator on the corresponding 

waveform profile of the aortic pressure. This is done by applying different flow rate 

waveform shapes for the discharged blood, such as the sinusoidal and step functions as 

well as additional functions. 

The simulation work was implemented in MATLAB using numerical computations 

to solve the state-space equations describing the cardiovascular system with the 



 

89 
 

accumulator device of Figure 4.3. The following parametric values were used: heart rate 

75 beats/min (corresponding to cardiac cycle period of 0.8 sec), 𝐸𝐸𝑎𝑎𝑎𝑎𝑚𝑚 = 2.0 𝑚𝑚𝑚𝑚𝐻𝐻𝑔𝑔/𝑚𝑚𝑓𝑓, 

𝐸𝐸𝑎𝑎𝑖𝑖𝑖𝑖 = 0.05 𝑚𝑚𝑚𝑚𝐻𝐻𝑔𝑔/𝑚𝑚𝑓𝑓, and 𝑉𝑉0 = 10 𝑚𝑚𝑓𝑓. The other parametric values followed those 

shown earlier in Table 3.3. 

In this section, we analyze the cardiovascular system model with the accumulator 

device in Figure 4.3 which was described by different system equations, depending on the 

phase of the cardiac cycle. We saw that the equation in (4.4) described the system behavior 

during the isovolumic contraction and relaxation phases, the equation in (4.13) described 

the system behavior during the ejection phase, and the equation in (4.22) described the 

system behavior during the filling phase. 

As a reminder, the controller design will be discussed in the next chapter, and so in 

this section, we will assume that the signal of actual flow rate of the blood being discharged 

by the accumulator is known. This will be a signal that is generated theoretically based on 

using closed-form mathematical functions such that the resulting flow rate signal reflects 

the desired period of discharging duration, with a discharged amount of blood that is 

exactly equal to the amount accumulated during the ejection phase. The system equation 

in (4.22) which describes the dynamical behavior during filling phase, during which the 

control input 𝑈𝑈(𝑡𝑡) controls the actual flow rate of discharged blood from the accumulator, 

will not be used now and instead we describe the filling phase by the equivalent system 

equation in (4.23), whose input is the current source 𝐼𝐼(𝑡𝑡) that we will assume for it to be a 

known signal of flow rate. 

We start our analysis by inducing an unhealthy condition, which will be considered 

the baseline for our analysis. The unhealthy condition is induced from the same case that 



 

90 
 

was introduced earlier (Figure 3.15) but with an increased cardiac output that reflects the 

normal range for cardiac output. The increase in cardiac output was achieved by changing 

the simulation initial conditions such that the end-diastolic volume is increased. This step 

was followed to emulate the action of the body’s regulatory mechanism to increase the 

cardiac output by allowing for more blood flow to the heart (i.e. increasing the end-diastolic 

volume), also known as venous return [58, 62]. The last piece of information relates to 

what is called the Frank-Starling law of the heart, which states that when increased 

quantities of blood flow into the heart, this stretches the heart muscle more causing more 

force of contraction which consequently, increases the amount of ejected blood [62]. The 

resulting hemodynamics for our baseline condition of induced unhealthy case are: systolic 

and diastolic pressures of 167.8 and 105.4 mmHg respectively, mean arterial pressure of 

138.1 mmHg, stroke volume of 62.7 𝑚𝑚𝑓𝑓/beat, cardiac output of 4.7 𝑓𝑓/𝑚𝑚𝑖𝑖𝑛𝑛, and end-

diastolic volume of 155.3 𝑚𝑚𝑓𝑓. The corresponding waveforms for LVP, LAP, AoP, LVV, 

QA, and PV-loop are presented in Figure 4.11. 

 
Figure 4.11. Hemodynamics waveforms of our baseline unhealthy condition. 
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Testing the Hypothesis That the Accumulator Device Improves Hypertension 

To investigate the implementation of the accumulator device to treat the unhealthy 

case of the hemodynamics waveforms shown in Figure 4.11, we simulated our system in 

MATLAB using different values for the accumulator inlet resistance 𝑅𝑅𝑖𝑖. Table 4.3 

summarizes the results of trying different values for 𝑅𝑅𝑖𝑖. Note that as 𝑅𝑅𝑖𝑖 decreases, blood 

accumulation increases, whereas the ejected blood through aortic valve decreases. This 

caused a reduction in the systolic pressure and an increase in the diastolic pressure, while 

the MAP was minimally decreased as 𝑅𝑅𝑖𝑖 decreased. The first line in Table 4.3 corresponds 

to the unhealthy condition that we want to treat, which represents our baseline. The inlet 

resistance value of 0.5 𝛺𝛺 resulted in the lowest systolic pressure and highest diastolic 

pressure in the data shown in the table, comparing a pressure of 167.8/105.4 mmHg in the 

baseline to 144.1/123.2 mmHg, in the case of implementing the accumulator device with 

𝑅𝑅𝑖𝑖 = 0.5 𝛺𝛺. Regardless of the increase in diastolic pressure, which is logical as we will see 

later, there is a significant reduction in the systolic pressure of 23.7 mmHg (a decrease of 

~ 14%). When the inlet resistance was decreased more (< 0.5 𝛺𝛺), i.e. allowing for more 

accumulation and lesser ejection through aortic valve, the situation became worse 

compared to the case when 𝑅𝑅𝑖𝑖 = 0.5 𝛺𝛺. Both end-diastolic volume (EDV) and cardiac 

output (CO) decreased as 𝑅𝑅𝑖𝑖 decreased, with the decrease in CO being minimal compared 

to the decrease in EDV. 
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Accumulator 
resistance 

𝑹𝑹𝒊𝒊 
(Ohms) 

Ps 
mmHg 

Pd 
mmHg 

MAP 
mmHg 

CO 
L/min 

SV 
ml/beat 

Ejected 
blood 

 

ml/beat 

Accumulated 
blood 

 

ml/beat 

EDV 
ml 

without 
accumulator 167.8 105.4 138.1 4.7 62.7 NA NA 155.3 

1000 167.8 105.5 138.1 4.7 62.7 62.7 0 155.3 

100 167.6 105.6 138.1 4.7 62.7 62.4 0.3 155.1 

10 165.7 107.1 138 4.7 62.7 59.46 3.24 154 

5 163.7 108.7 137.9 4.7 62.66 56.44 6.22 152.7 

2 158.6 112.6 137.6 4.69 62.57 48.66 13.9 149.7 

1 152.3 117.3 137 4.68 62.39 38.79 23.6 145.9 

0.75 149 119.7 136.7 4.67 62.27 33.73 28.5 144 

0.65 147.4 120.9 136.5 4.66 62.2 31.1 31.1 143 

0.5 144.1 123.2 136.1 4.65 62.05 25.96 36.1 141.1 

0.25 151.1 119.8 135.2 4.63 61.71 12.49 49.2 136.1 

0.15 156.1 114.9 134.8 4.62 61.55 4.78 56.8 133.1 

Table 4.3. Hemodynamics of different cases resulting from the implementation of accumulator device with 
different values for inlet resistance 𝑅𝑅𝑖𝑖. Ps, Pd, and MAP stand for systolic, diastolic, and mean arterial 
pressures respectively. CO and SV stand for cardiac output and stroke volume. Ejected blood refers to the 
amount of blood ejected through the aortic valve during the ejection phase, whereas accumulated blood refers 
to the amount of blood accumulated by the accumulator during the ejection phase and discharged back to the 
aorta during the filling phase. EDV stands for end-diastolic volume. These simulations were based on heart 
rate of 75 beats/min. 

 

 

In another experiment, we investigated the case when the cardiac output was kept 

unchanged, i.e. keeping the CO in each case to be equal to that of the baseline condition to 

avoid the slight decrease in CO as 𝑅𝑅𝑖𝑖 decreases, as we noticed in Table 4.3. This was 

achieved by changing the initial conditions for simulating each case of 𝑅𝑅𝑖𝑖 (the initial 

conditions used to simulate the cases in Table 4.3 were all identical). Table 4.4 summarizes 

the results when the CO was kept unchanged, i.e. 4.7 L/min in all the cases. This action 
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minimally increased all pressure readings and EDV compared to those in Table 4.3, while 

the value of 𝑅𝑅𝑖𝑖 = 0.5 𝛺𝛺 still resulting in the lowest systolic pressure of 145.6 mmHg (when 

the CO is 4.7 L/min), compared to 144.1 mmHg (when the CO is 4.65 L/min as in Table 

4.3). 

Accumulator 
resistance 

𝑹𝑹𝒊𝒊 
(Ohms) 

Ps 
mmHg 

Pd 
mmHg 

MAP 
mmHg 

CO 
L/min 

SV 
ml/beat 

Ejected 
blood 

 

ml/beat 

Accumulated 
blood 

 

ml/beat 

EDV 
ml 

without 
accumulator 167.8 105.4 138.1 4.7 62.7 NA NA 155.3 

1000 167.8 105.5 138.1 4.7 62.7 62.7 0 155.3 

100 167.6 105.6 138.1 4.7 62.7 62.4 0.3 155.1 

10 165.7 107.1 138 4.7 62.7 59.46 3.24 154 

5 163.8 108.8 138 4.7 62.72 56.49 6.23 152.9 

2 159 112.9 137.9 4.7 62.72 48.77 13.9 150 

1 153.1 118 138 4.7 62.72 39 23.7 146.6 

0.75 150 120.6 137.7 4.7 62.72 33.97 28.7 145 

0.65 148.6 121.9 137.7 4.7 62.7 31.4 31.4 144 

0.5 145.6 124.5 137.6 4.7 62.72 26.24 36.5 142.5 

0.25 153.5 121.8 137.4 4.7 62.72 12.69 50 138.1 

0.15 159 117.1 137.3 4.7 62.72 4.87 57.9 135.4 

Table 4.4. Hemodynamics for different cases resulting from the implementation of the accumulator device 
with different values of inlet resistance 𝑅𝑅𝑖𝑖, while keeping similar cardiac output. 
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Figure 4.12 demonstrates the hemodynamical changes caused by implementing the 

accumulator device. The figure compares the hemodynamics of the unhealthy case with 

the case of implementing the accumulator device with an inlet resistance value (𝑅𝑅𝑖𝑖) of 1 𝛺𝛺. 

The upper panel shows a decrease in systolic pressure from 167.8 to 152.3 mmHg, while 

the diastolic pressure increased from 105.4 to 117.3 mmHg. EDV, represented by the upper 

flat lines of the waveforms in the middle panel of Figure 4.12, decreased from 155.3 

(unhealthy case) to 145.9 ml (treated case). The lower panel describes how blood is 

delivered to the arterial system during the cardiac cycle. The dashed line represents the 

flow rate profile of the 62.7 ml/beat SV of the unhealthy condition which was completely 

delivered during the ejection phase through the aortic valve, whereas the solid lines show 

how the flow of a similar amount of stroke volume was split. The solid red line corresponds 

to the 38.79 ml of blood that was ejected through the aortic valve during the ejection phase, 

while the solid blue line represents an accumulation of 23.6 ml during the ejection phase 

that was re-delivered by the accumulator back to the arterial system during the filling phase 

of the cardiac cycle, creating a total of 62.39 ml SV. 
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Figure 4.12. Waveforms for the hemodynamics of the unhealthy case (dashed lines) and the case of 
implementing the accumulator device idea with 𝑅𝑅𝑖𝑖 = 1 𝛺𝛺 (solid lines).  
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Figure 4.13 and Figure 4.14 extend the comparison more by comparing the baseline with 

3 other cases of different values for 𝑅𝑅𝑖𝑖 (5, 1, and 0.5 Ω). Figure 4.13 demonstrates the 

changes in aortic pressure and flow, whereas Figure 4.14 demonstrates the changes in LV 

pressure, pressure build up inside the accumulator, and accumulator blood flow. 

 
Figure 4.13. Aortic pressure and flow rate in the unhealthy case (w/o accumulator) and 3 cases representing 
the implementation of the accumulator device with different values for 𝑅𝑅𝑖𝑖. 
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Figure 4.14. Accumulator influence on LV pressure and pressure build up inside the accumulator chamber 
(upper panel) and accumulator blood flow (lower panel). 
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A more detailed comparison that can explain the direct influence of the selection of the 

value of 𝑅𝑅𝑖𝑖 is illustrated in Figure 4.15, Figure 4.16, and Figure 4.17, where the baseline 

condition (unhealthy case) is compared with 6 cases representing different values for 𝑅𝑅𝑖𝑖 

(5, 2, 1, 0.75, 0.5, and 0.25 Ω). Figure 4.15 demonstrates the influence of changing 𝑅𝑅𝑖𝑖 on 

the resulting aortic pressure, Figure 4.16 demonstrates the influence on LV pressure as well 

as the pressure inside the accumulator chamber, and Figure 4.17 demonstrates the influence 

on aortic flow and blood accumulation. 

 
Figure 4.15. Influence of 𝑅𝑅𝑖𝑖 value on aortic pressure. 
 

Note that the behavior becomes a little odd when 𝑅𝑅𝑖𝑖 becomes very small (i.e. < 0.5). By 

looking at the aortic pressure waveform that corresponds to 𝑅𝑅𝑖𝑖 = 0.25 𝛺𝛺 in Figure 4.15, 

the diastolic pressure, unlike the pressure waveforms that correspond to greater 𝑅𝑅𝑖𝑖 values, 

is no longer equal to the pressure at the time of the aortic valve opening but rather, the 

pressure goes to lower values after the ejection phase, specifically during the isovolumic 

relaxation phase. This is because the amount of blood being ejected into the aorta prior to 

the onset of discharging the accumulator is very small. 
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Figure 4.16. Influence of 𝑅𝑅𝑖𝑖 value on LV and accumulator pressures. Solid lines represent the left-ventricular 
pressure, whereas dashed lines represent the respective pressure inside the accumulator. 

 

 
Figure 4.17. Influence of 𝑅𝑅𝑖𝑖 value on blood flow in the accumulator and aorta. Solid lines represent the blood 
flowing in the aorta (both through aortic valve and the accumulator discharge), whereas dashed lines 
represent the accumulator’s blood flow (accumulation and discharging). 
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Figure 4.18 shows a graphical demonstration for the influence of implementing the 

accumulator device on systolic, diastolic, and mean arterial pressures. As mentioned 

earlier, the systolic (diastolic) pressure decreases (increases) as 𝑅𝑅𝑖𝑖 decreases (i.e. blood 

accumulation increases); however, when 𝑅𝑅𝑖𝑖 becomes smaller than 0.5 𝛺𝛺, the relationships 

are reversed. 

 
Figure 4.18. Influence of changing 𝑅𝑅𝑖𝑖 value on blood pressure. 

 

Figure 4.19 illustrates another graphical relationship that demonstrates the influence of 

changing 𝑅𝑅𝑖𝑖 on the ratio of the amount of blood ejected through the aortic valve and the 

amount accumulated. The smaller the 𝑅𝑅𝑖𝑖, the more accumulation and less ejection through 

the aortic valve and vice versa. The graph in Figure 4.20 demonstrates another important 

relationship that relates between the amount of blood accumulation and pulse pressure. As 

𝑅𝑅𝑖𝑖 decreases (equivalent to more blood accumulation), the pulse pressure (difference 
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between systolic pressure and diastolic pressure) decreases. The relationship reverses at 

very small 𝑅𝑅𝑖𝑖 values (i.e. large values of blood accumulation). 

 
Figure 4.19. Influence of changing 𝑅𝑅𝑖𝑖 value on blood ejection. 

 

 
Figure 4.20. Influence of changing 𝑅𝑅𝑖𝑖 value on pulse pressure (PP). 
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Figure 4.21 illustrates a relationship between 𝑅𝑅𝑖𝑖 and end-diastolic volume. As 𝑅𝑅𝑖𝑖 decreases 

(i.e. blood accumulation increases), EDV decreases; this could be because of increased 

accumulation that may cause some delay in the blood circulation during the cardiac cycle. 

 
Figure 4.21. Influence of changing 𝑅𝑅𝑖𝑖 value on EDV. 
 

 

Accumulator Device Modulates the Duration of Cardiac Cycle Phases 

Another observation was recorded which relates to the influence of implementing 

the accumulator device on the duration of cardiac cycle phases. Table 4.5 and Figure 4.22 

summarize the results for different values of 𝑅𝑅𝑖𝑖 as well as the baseline condition. It can be 

noticed that the ejection phase duration decreases as 𝑅𝑅𝑖𝑖 decreases. This is intuitive since as 

we decrease 𝑅𝑅𝑖𝑖, we allow for more accumulation (i.e. the additional path for blood flow 

through the accumulator inlet becomes of a smaller resistance). Accordingly, this 

accelerates the pressure drop inside the LV and consequently, shortens the ejection phase 

duration by shutting off the aortic valve sooner. On the other hand, the isovolumic 

contraction phase duration increased as 𝑅𝑅𝑖𝑖 decreases. This is also intuitive since as 𝑅𝑅𝑖𝑖 
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decreases, the diastolic pressure increases (Figure 4.18) which results in a longer wait time 

for the LVP to build up until it is sufficient to overcome the pressure in the aorta (the 

diastolic pressure), the moment when the aortic valve opens. The filling phase and 

isovolumic relaxation phase durations showed a slight increase as 𝑅𝑅𝑖𝑖 decreases. 

Accumulator 
resistance 
𝑹𝑹𝒊𝒊 (Ohms) 

Cardiac cycle phases duration (in seconds) 

Isovolumic 
contraction Ejection Isovolumic 

relaxation Filling Total 

without 
accumulator 0.111 0.219 0.091 0.379 0.8 

1000 0.111 0.219 0.091 0.379 0.8 
100 0.112 0.218 0.091 0.379 0.8 
10 0.113 0.216 0.091 0.380 0.8 
5 0.115 0.213 0.092 0.380 0.8 
2 0.121 0.204 0.094 0.381 0.8 
1 0.127 0.193 0.098 0.382 0.8 

0.75 0.130 0.187 0.100 0.383 0.8 
0.65 0.132 0.183 0.102 0.383 0.8 
0.5 0.135 0.177 0.104 0.384 0.8 

0.25 0.146 0.164 0.105 0.385 0.8 
0.15 0.152 0.168 0.094 0.386 0.8 

 

Table 4.5. Influence of changing 𝑅𝑅𝑖𝑖 value on the duration of cardiac cycle phases. 
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Figure 4.22. Influence of changing 𝑅𝑅𝑖𝑖 value on the duration of ejection phase. 

 

Testing Different Waveform Shapes of Flow Rate for Blood Discharged by the 

Accumulator 

In this section, we investigate the response exhibited by the aorta in response to the 

shape of flow rate waveform for the blood that is discharged by the accumulator during the 

filling phase. As mentioned earlier, we are assuming in this section that the discharge flow 

rate (𝐼𝐼(𝑡𝑡) in Figure 4.10) is known. This will serve as a preliminary analysis for the design 

of the controller that will drive the control input 𝑈𝑈(𝑡𝑡) (Figure 4.8 and Figure 4.9) in order 

to achieve a desired flow rate for blood discharge. In the following sections, we will 

investigate four different waveform profiles that are generated from well-known 

mathematical functions. To generate such waveforms, it is required that the actual volume 

of blood that was accumulated during ejection phase is known, and we will call this 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎. 

In addition to knowing 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎, the actual time interval during which the accumulator will 

discharge blood should also be known, we will refer to this as [𝑡𝑡0, 𝑡𝑡𝑓𝑓], where 𝑡𝑡0 and 𝑡𝑡𝑓𝑓 

stand for the beginning and ending of discharging time, respectively. As discussed earlier, 
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𝑡𝑡0 represents the onset of the filling phase of the cardiac cycle, whereas 𝑡𝑡𝑓𝑓 represents the 

end of the respective cardiac cycle. The generated flow rate signals were all based on a 

cardiac cycle duration of 0.8 seconds (corresponding to heart rate of 75 beats/min). The 

flow rate signals are generated such that the area under the curve is equal to 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎. 

 

Step function 

This is one of the simplest signal forms where the function is a constant value for all 𝑡𝑡 ∈ 

[𝑡𝑡0, 𝑡𝑡𝑓𝑓]. The step function signal of flow rate for a known 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 looks like the following: 

 𝐹𝐹𝑅𝑅(𝑡𝑡) =
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎

�𝑡𝑡𝑓𝑓 − 𝑡𝑡0�
, 𝑡𝑡0 < 𝑡𝑡 < 𝑡𝑡𝑓𝑓 (4.25) 

 

Trapezoidal function 

This function is somehow similar to the step function in the sense that it remains constant 

during almost the entire time interval, except for the short periods of time that follow 𝑡𝑡0 

and precedes 𝑡𝑡𝑓𝑓. Thus, it allows for a rising and falling time to switch between zero and the 

peak value and vice versa. This step is essential since it might not be practical to achieve a 

pure step function with the discontinuities occurring from the sudden sharp rise and fall as 

in the step function. For the sake of simplicity, we will assume that the rising time and 

falling time are equal, and we will call this 𝑡𝑡𝑎𝑎. A typical trapezoidal function is illustrated 

in Figure 4.23. 
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Figure 4.23. A typical shape for a trapezoidal function. 

 

The trapezoid-function signal of blood discharge flow rate was generated according to the 

following formula:   

𝐹𝐹𝑅𝑅(𝑡𝑡) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

(𝑡𝑡 − 𝑡𝑡0)
𝑡𝑡𝑎𝑎

∗
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎

�𝑡𝑡𝑓𝑓 − 𝑡𝑡0 − 𝑡𝑡𝑎𝑎�
,                                 𝑡𝑡0 ≤ 𝑡𝑡 < 𝑡𝑡0 + 𝑡𝑡𝑎𝑎

 
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎

�𝑡𝑡𝑓𝑓 − 𝑡𝑡0 − 𝑡𝑡𝑎𝑎�
 ,                                          𝑡𝑡0 + 𝑡𝑡𝑎𝑎 ≤ 𝑡𝑡 < 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑎𝑎

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎
�𝑡𝑡𝑓𝑓 − 𝑡𝑡0 − 𝑡𝑡𝑎𝑎�

∗ �1 −
(𝑡𝑡 − 𝑡𝑡𝑓𝑓 + 𝑡𝑡𝑎𝑎)

𝑡𝑡𝑎𝑎
� ,             𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑓𝑓

 (4.26) 

 

Sinusoidal function 

This is one of the most popular signal representations. The area under the curve of a 

positive half-period of a sine wave is: 

� sin�
𝜋𝜋(𝑡𝑡 − 𝑡𝑡0)
𝑡𝑡𝑓𝑓 − 𝑡𝑡0

� 𝑑𝑑𝑡𝑡 =
2 ∗ (𝑡𝑡𝑓𝑓 − 𝑡𝑡0)

𝜋𝜋

𝑎𝑎𝑓𝑓

𝑎𝑎0
 

Thus, to generate a sine-wave signal of flow rate with an area under the curve being equal 

to 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎, the following formula is used: 

 𝐹𝐹𝑅𝑅(𝑡𝑡) =
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎

2 ∗ (𝑡𝑡𝑓𝑓 − 𝑡𝑡0)
𝜋𝜋

∗ 𝑒𝑒𝑖𝑖𝑛𝑛 �
𝜋𝜋(𝑡𝑡 − 𝑡𝑡0)
𝑡𝑡𝑓𝑓 − 𝑡𝑡0

� , 𝑡𝑡0 < 𝑡𝑡 < 𝑡𝑡𝑓𝑓 (4.27) 
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Cycloidal function 

A typical cycloidal function is illustrated in Figure 4.24. The area under the arc of a cycloid, 

that starts at 𝑡𝑡0 and ends at 𝑡𝑡𝑓𝑓, is 3𝜋𝜋𝑟𝑟2, where 𝑟𝑟 represents the radius of the disk rolling in 

Figure 4.24 which is equal to 𝑟𝑟 = 𝑎𝑎𝑓𝑓−𝑎𝑎0
2𝜋𝜋

 

 
Figure 4.24. A typical shape for a cycloid. 

 

Obtaining a cycloidal function is a little tricky since both the x-axis variable (time) and y-

axis variable (flow rate) are functions of the angle 𝜃𝜃 which varies between 0 and 2𝜋𝜋 

according to the following equation: 

 �
𝑡𝑡(𝜃𝜃) = 𝑟𝑟(𝜃𝜃 − 𝑒𝑒𝑖𝑖𝑛𝑛𝜃𝜃)                          , 0 ≤ 𝜃𝜃 ≤ 2𝜋𝜋

𝐹𝐹𝑅𝑅(𝜃𝜃) =
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎

3𝜋𝜋𝑟𝑟2
∗ 𝑟𝑟(1 − 𝑒𝑒𝐴𝐴𝑒𝑒𝜃𝜃)  , 0 ≤ 𝜃𝜃 ≤ 2𝜋𝜋

 (4.28) 

 

However, the above equation is not sufficient to generate the desired cycloidal function of 

flow rate since we want to know the flow rate at a specific time (not angle) as our numerical 

simulation relies on exact steps of time. To resolve this issue, we used the numerical solver 

function in MATLAB to first solve for the angle 𝜃𝜃 that gives a specific time step and then 

plugging in this 𝜃𝜃 into the second equation of (4.28) to obtain the corresponding flow rate 
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for that specific time (after making necessary rescaling such that the total area under the 

cycloidal curve is equal to the volume of accumulated blood to be discharged 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎). 

 Figure 4.25 demonstrates the generated step, trapezoidal, sinusoidal, and cycloidal 

flow rate signals to discharge an amount of blood accumulation of 27.4 ml, which 

corresponds to the case when 𝑅𝑅𝑖𝑖 = 0.8 𝛺𝛺. Figure 4.26, Figure 4.27, Figure 4.28, and Figure 

4.29 respectively demonstrate the response of aortic pressure and flow due to applying a 

step, trapezoidal, sinusoidal, and cycloidal flow rate signal for blood that is discharged by 

the accumulator. We can notice that regardless of the shape of the flow rate signal, the 

systolic and diastolic pressures remained unaffected. The only difference is shown on the 

profile of the resulting aortic pressure and flow rate. The step function flow rate (Figure 

4.26) caused a significant oscillatory behavior (ripples) in the resulting pressure and flow 

waveforms. This is possibly due to the response of the inductive element to the sudden 

sharp switching from zero to a peak value and vice versa. The other 3 waveform shapes 

performed well, with the sinusoidal and cycloidal flow rate signals resulting in smoother 

profiles in the respective aortic pressure waveforms compared to the one resulting from the 

trapezoidal signal.  
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Figure 4.25. Generating the 4 signals of flow rate to discharge a blood accumulation of 27.4 ml that 
corresponds to the case when 𝑅𝑅𝑖𝑖=0.8 Ω. 
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Figure 4.26. Response to a step function flow rate of discharged blood. 

 

 
Figure 4.27. Response to a trapezoidal function flow rate of discharged blood. 
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Figure 4.28. Response to a sinusoidal function flow rate of discharged blood. 

 

 
Figure 4.29. Response to a cycloidal-like function flow rate of discharged blood. 
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4.5 Discussion 

The modeling work related to implementing the accumulator device idea revealed 

promising results. The results in Table 4.3 indicate that the value of the accumulator’s inlet 

resistance (𝑅𝑅𝑖𝑖), which governs the amount of blood accumulation, is the main determining 

factor influencing the hemodynamic changes when the accumulator device was 

incorporated with the cardiovascular system (Figure 4.3). The decrease in systolic pressure 

when 𝑅𝑅𝑖𝑖 was 0.5 Ω compared to the systolic pressure of the unhealthy condition was 

significant, with a drop from 167.8 (in the unhealthy case) to 144.1 mmHg (a decrease of 

~14%). Although this caused a slight decrease in the cardiac output (from 4.7 L/min, in the 

unhealthy case, to 4.65 L/min), when the simulation was repeated with necessary 

adjustments in the initial conditions in order to achieve the same CO of 4.7 L/min, the 

systolic pressure still showed a significant decrease from 167.8 to 145.6 mmHg (a decrease 

of ~13%), as shown in Table 4.4. The diastolic pressure, on the other hand, showed to 

increase as 𝑅𝑅𝑖𝑖 decreases. This is expected since mean arterial pressure (MAP) is supposed 

to remain unchanged since there is no change occurring to the peripheral resistance and 

that the CO is unchanged, therefore, the decrease in systolic pressure is balanced by an 

increase in diastolic pressure. Another face for the influence of blood accumulation on the 

changes occurring to blood pressure is illustrated by the graph of Figure 4.20. The 

conclusion that can be drawn here is that the accumulator device basically works on 

reducing the pulse pressure, while maintaining MAP unchanged, much similar to the effect 

of adding artificial compliance that was discussed in chapter 3. 

End-diastolic volume (EDV), on the other hand, also showed a decrease as the value 

of the accumulator’s inlet resistance (𝑅𝑅𝑖𝑖) was decreased (i.e. blood accumulation is 
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increased). We think that this is an important insight. With the fact that the contractility 

characteristics of the LV (such as the contractility index Ees) are unchanged, the addition 

of the new path created by the accumulator for the blood that is pumped out of the LV due 

to contraction is expected to cause an increase in CO. However, this did not happen as the 

CO remained almost constant (minimally decreased as 𝑅𝑅𝑖𝑖 decreased and blood 

accumulation increased). We predict that the decrease in EDV is the balancing factor in 

this phenomena since, according to Frank-Starling law, as the end-diastolic volume 

decreases, the stretching in the LV muscle decreases which results in a lesser contraction 

force and consequently, a lesser amount of blood ejection. Therefore, the addition of an 

extra path for the blood leaving the LV was compensated by a decrease in EDV and 

consequently, the resulting CO was kept almost unchanged. 

The implementation of the accumulator device also showed an influence on 

modulating the duration of cardiac cycle phases (Table 4.5 and Figure 4.22). The ejection 

phase duration was decreased as 𝑅𝑅𝑖𝑖 decreased (blood accumulation increased); this is 

possibly due to the addition of a new path for blood flow that is created by the accumulator, 

which is expected to accelerate emptying the LV and consequently, lowering its pressure 

faster which should cause the aortic valve to close faster. On the other hand, the duration 

of the isovolumic contraction phase was increased as 𝑅𝑅𝑖𝑖 decreased (blood accumulation 

increased). This is possibly due to the increase in diastolic pressure as 𝑅𝑅𝑖𝑖 is decreased, 

which means that the LV will need to wait for a longer time until the pressure inside its 

chamber increases sufficiently such that to exceed the pressure in the aorta (which is the 

diastolic pressure in normal cases) for the aortic valve to open. 
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Since our control input 𝑈𝑈(𝑡𝑡) (Figure 4.3), or pressure pump 𝐹𝐹 (Figure 4.1), is the 

force that can control the profile of flow rate for the blood that is discharged by the 

accumulator, we investigated the response due to the application of given different 

waveform shapes of flow rate. The step-function flow rate caused significant oscillatory 

behavior (ripples) in the resulting aortic pressure waveform, most possibly resulting from 

the inductive component that represents blood inertia, due to the instant sharp jump from 

zero to a peak level of flow rate and vice versa. This gives an impression that the step-like 

function of flow rate is not desirable for the control input to achieve when discharging the 

accumulator. The other three functions (trapezoidal, sinusoidal, and cycloidal) all 

performed well compared to the step function signal. 
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CHAPTER 5   Controller Design 

 

The implementation of the accumulator concept requires a controller to regulate the 

process of discharging the accumulated blood back to the body. It is crucial that the whole 

amount of accumulated blood is re-delivered to the aorta within a specified time frame, 

which we decided during the filling phase of the cardiac cycle. This is essential for two 

reasons: to make sure that the stroke volume is not affected and to avoid any accumulation 

build up by emptying the accumulator completely prior to the onset of the next cardiac 

cycle accumulation. In addition, it is of great importance that the accumulated blood is not 

discharged at a random flow rate but rather follows a trajectory of an optimal desired flow 

rate. 

In this chapter, we investigate the design of a controller that can meet the 

requirements mentioned above. Optimal control theory represents a mature mathematical 

discipline that can be applied to solve numerous engineering applications. We will apply 

the linear quadratic tracking (LQT) technique to design a controller that can maintain a 

flow rate for discharged blood as close as possible to a desired flow rate trajectory. It is 

important to remember that we are dealing with a time-varying system of the 

cardiovascular model that is presented in Figure 4.3, and so one should appreciate the 

existence of such modern control techniques to solve such kind of problems, where the use 

of classical control theory might be associated with some complications.  
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5.1 Introduction 

Optimal control was born in 1697 (over 300 years ago) when Johann Bernoulli, the 

great mathematician, published his solution to the brachystochrone problem [65]. The roots 

of optimal control theory originate from calculus of variations which was developed during 

the 16th and 17th century [66]. L. S. Pontryagin was behind the most important contribution 

to optimal control systems in his work of the maximum principle in 1956 [67]. In this 

chapter, we apply the linear quadratic tracking (LQT) technique to maintain the output (the 

actual flow rate of discharged blood from accumulator device) as close as possible to a 

desired flow rate. The cardiovascular system model with the accumulator device (Figure 

4.3) was described according to the following linear, time-varying, system: 

 �̇�𝑥(𝑡𝑡) = 𝐿𝐿(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐵𝐵(𝑡𝑡)𝑢𝑢(𝑡𝑡) 

                                      𝑦𝑦(𝑡𝑡) = 𝐶𝐶(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐸𝐸(𝑡𝑡)𝑢𝑢(𝑡𝑡)                     
(5.1) 

Our system is a single input single output (SISO) one, where 𝑥𝑥(𝑡𝑡) is the 6th order state 

vector (state variables are listed in Table 4.2), 𝑢𝑢(𝑡𝑡) is the input (represented by 𝑈𝑈(𝑡𝑡) in 

Figure 4.3), and 𝑦𝑦(𝑡𝑡) is the output (actual flow rate of blood discharged from the 

accumulator). The vectors 𝐵𝐵(𝑡𝑡) and 𝐶𝐶(𝑡𝑡) and the scalar 𝐸𝐸(𝑡𝑡) are time invariant, and the 

state matrix 𝐿𝐿(𝑡𝑡) is the only time varying component in our system, where this time 

variance is arising from the time-varying elastance function of the left ventricle (Figure 

3.4). Thus, for the sake of simplicity, we can re-write the system in (5.1) as follows: 

 �̇�𝑥(𝑡𝑡) = 𝐿𝐿(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝑢𝑢(𝑡𝑡) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝑥𝑥(𝑡𝑡) + 𝑑𝑑𝑢𝑢(𝑡𝑡)       
(5.2) 
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5.2 Methodology 

The objective here is to control the system in Figure 4.3, which is described by the 

equations in (5.2), such that the output 𝑦𝑦(𝑡𝑡) tracks a desired output 𝑧𝑧(𝑡𝑡) with the least 

possible error during the interval [𝑡𝑡0, 𝑡𝑡𝑓𝑓]. 𝑧𝑧(𝑡𝑡) here represents a desired waveform profile 

for the flow rate of the blood that is discharged by the accumulator device. The procedure 

used to solve this linear quadratic tracking (LQT) problem followed the one presented in 

[66], which is called the Pontryagin Minimum Principle; however, the derivation work 

listed below was made by the author of this document from scratch. The equations in [66] 

were derived based on a system that has no feedforward term 𝐸𝐸(𝑡𝑡), unlike our system 

which includes this term as shown in equations (4.22) and (5.1). The reader is referred to 

the appendix for more details related to the following derivation work. 

We start by defining the error 𝑒𝑒(𝑡𝑡) according to the following: 

 𝑒𝑒(𝑡𝑡) = 𝑧𝑧(𝑡𝑡) − 𝑦𝑦(𝑡𝑡) (5.3) 

Note that 𝑒𝑒(𝑡𝑡) is scalar since we are dealing with a single input single output system. 

We then choose our performance index according to the following: 

 𝐽𝐽 =
1
2
𝑒𝑒𝑇𝑇�𝑡𝑡𝑓𝑓�𝐹𝐹�𝑡𝑡𝑓𝑓�𝑒𝑒�𝑡𝑡𝑓𝑓� +

1
2
� [𝑒𝑒𝑇𝑇(𝑡𝑡)𝑄𝑄(𝑡𝑡)𝑒𝑒𝑇𝑇(𝑡𝑡) + 𝑢𝑢𝑇𝑇(𝑡𝑡)𝑅𝑅(𝑡𝑡)𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑡𝑡
𝑎𝑎𝑓𝑓

𝑎𝑎0
 (5.4) 

where 𝑄𝑄(𝑡𝑡) and 𝑅𝑅(𝑡𝑡) are called the error weighted coefficient and control weighted 

coefficient, respectively. 𝐹𝐹(𝑡𝑡𝑓𝑓) is called the terminal cost weighted coefficient. Since 𝑄𝑄(𝑡𝑡) 

and 𝑅𝑅(𝑡𝑡) are scalar functions that will be chosen to be constant values, then  𝑄𝑄(𝑡𝑡), 𝑅𝑅(𝑡𝑡), 



 

118 
 

and 𝐹𝐹�𝑡𝑡𝑓𝑓� are represented next by the scalars 𝑞𝑞, 𝑟𝑟, and 𝑓𝑓, respectively. Equation (5.4) can 

now be simplified more since all its variables are scalars according to the following: 

 𝐽𝐽 =
1
2
𝑓𝑓�𝑒𝑒�𝑡𝑡𝑓𝑓��

2
+

1
2
� (𝑞𝑞[𝑒𝑒(𝑡𝑡)]2 + 𝑟𝑟[𝑢𝑢(𝑡𝑡)]2)𝑑𝑑𝑡𝑡
𝑎𝑎𝑓𝑓

𝑎𝑎0
 (5.5) 

The error in equation (5.3) can be re-written as follows: 

 𝑒𝑒(𝑡𝑡) = 𝑧𝑧(𝑡𝑡) − 𝐶𝐶𝑥𝑥(𝑡𝑡) − 𝑑𝑑𝑢𝑢(𝑡𝑡) (5.6) 

Now we can apply the Pontryagin Minimum Principle according to the steps presented 

next: 

 Step 1: Formulating the Hamiltonian function: 

 

𝐻𝐻�𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡), 𝜆𝜆(𝑡𝑡)�

=
1
2
𝑞𝑞[𝑧𝑧(𝑡𝑡) − 𝐶𝐶𝑥𝑥(𝑡𝑡) − 𝑑𝑑𝑢𝑢(𝑡𝑡)]2 +

1
2
𝑟𝑟[𝑢𝑢(𝑡𝑡)]2

+ 𝜆𝜆𝑇𝑇(𝑡𝑡)[𝐿𝐿(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝑢𝑢(𝑡𝑡)] 

(5.7) 

where 𝜆𝜆(𝑡𝑡) is called the co-state vector, the superscript “ ( )𝑇𝑇 ” denotes the transpose of a 

matrix. 

 Step 2: Finding the open-loop optimal control from the Hamiltonian: 

 𝑑𝑑𝐻𝐻
𝑑𝑑𝑢𝑢

= 0   
           
�⎯⎯�   𝑞𝑞 ∗ (−𝑑𝑑) ∗ [𝑧𝑧(𝑡𝑡) − 𝐶𝐶𝑥𝑥(𝑡𝑡) − 𝑑𝑑𝑢𝑢(𝑡𝑡)] + 𝑟𝑟𝑢𝑢(𝑡𝑡) + 𝐵𝐵𝑇𝑇𝜆𝜆(𝑡𝑡) = 0 (5.8) 
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We can now write the equation for the optimal control: 

 𝑢𝑢∗(𝑡𝑡) =
−1

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
[𝑞𝑞𝑑𝑑𝐶𝐶𝑥𝑥∗(𝑡𝑡) + 𝐵𝐵𝑇𝑇𝜆𝜆∗(𝑡𝑡) − 𝑞𝑞𝑑𝑑𝑧𝑧(𝑡𝑡)] (5.9) 

the superscript “ ( )∗ ” means “optimal”. 

 Step 3: Finding the state and co-state systems from the Hamiltonian: 

 �̇�𝑥(𝑡𝑡) =
𝑑𝑑𝐻𝐻
𝑑𝑑𝜆𝜆

= 𝐿𝐿(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝑢𝑢(𝑡𝑡) (5.10) 

Plugging in the optimal control in (5.9) into (5.10), the optimal state equation becomes: 

�̇�𝑥∗(𝑡𝑡) = �𝐿𝐿(𝑡𝑡) −
𝑞𝑞𝑑𝑑

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
𝐵𝐵𝐶𝐶� 𝑥𝑥∗(𝑡𝑡) −

𝐵𝐵𝐵𝐵𝑇𝑇

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
𝜆𝜆∗(𝑡𝑡) +

𝑑𝑑𝑞𝑞
𝑟𝑟 + 𝑞𝑞𝑑𝑑2

𝐵𝐵𝑧𝑧(𝑡𝑡) (5.11) 

The optimal co-state equation can now be found from the Hamiltonian (5.7) according to 

the following: 

�̇�𝜆∗(𝑡𝑡) = −
𝑑𝑑𝐻𝐻
𝑑𝑑𝑥𝑥 = �

𝑞𝑞2𝑑𝑑2

𝑟𝑟 + 𝑞𝑞𝑑𝑑2 𝐶𝐶
𝑇𝑇𝐶𝐶 − 𝑞𝑞𝐶𝐶𝑇𝑇𝐶𝐶� 𝑥𝑥∗(𝑡𝑡)

+ �
𝑞𝑞𝑑𝑑

𝑟𝑟 + 𝑞𝑞𝑑𝑑2 𝐶𝐶
𝑇𝑇𝐵𝐵𝑇𝑇 − 𝐿𝐿𝑇𝑇(𝑡𝑡)� 𝜆𝜆∗(𝑡𝑡) + �𝑞𝑞𝐶𝐶𝑇𝑇 −

𝑞𝑞2𝑑𝑑2

𝑟𝑟 + 𝑞𝑞𝑑𝑑2 𝐶𝐶
𝑇𝑇� 𝑧𝑧(𝑡𝑡) 

(5.12) 

For the sake of simplicity, let us define: 

 

𝛼𝛼 =
𝑞𝑞𝑑𝑑

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
       

𝛽𝛽 =
𝑞𝑞2𝑑𝑑2

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
       

𝑉𝑉 =
1

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
𝐵𝐵𝑇𝑇 

(5.13) 
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Combining the optimal state equation (5.11) and optimal co-state equation (5.12) and using 

the relations defined in (5.13), we can now obtain the Hamiltonian canonical system: 

�
�̇�𝑥∗(𝑡𝑡)
�̇�𝜆∗(𝑡𝑡)

� = �
𝐿𝐿(𝑡𝑡) − 𝛼𝛼𝐵𝐵𝐶𝐶 −𝐵𝐵𝑉𝑉
(𝛽𝛽 − 𝑞𝑞)𝐶𝐶𝑇𝑇𝐶𝐶 𝛼𝛼𝐶𝐶𝑇𝑇𝐵𝐵𝑇𝑇 − 𝐿𝐿𝑇𝑇(𝑡𝑡)� �

𝑥𝑥∗(𝑡𝑡)
𝜆𝜆∗(𝑡𝑡)� + � 𝛼𝛼𝐵𝐵

(𝑞𝑞 − 𝛽𝛽)𝐶𝐶𝑇𝑇� 𝑧𝑧(𝑡𝑡) (5.14) 

The above system includes 2𝑛𝑛 differential equations (12 differential equations in our case 

since our cardiovascular system has 6 state variables). 

The boundary conditions of the Hamiltonian canonical system in (5.14) are given by the 

initial condition of the states: 

 𝑥𝑥(𝑡𝑡 = 𝑡𝑡0) = 𝑥𝑥(𝑡𝑡0) (5.15) 

and the final condition comes from the co-states, where the final time 𝑡𝑡𝑓𝑓 being specified, 

according to the following: 

𝜆𝜆�𝑡𝑡𝑓𝑓� =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑡𝑡𝑓𝑓) �
1
2𝑓𝑓�𝑡𝑡𝑓𝑓��𝑒𝑒�𝑡𝑡𝑓𝑓��

2

� =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑡𝑡𝑓𝑓) �
1
2 𝑓𝑓�𝑧𝑧�𝑡𝑡𝑓𝑓� − 𝐶𝐶𝑥𝑥�𝑡𝑡𝑓𝑓� − 𝑑𝑑𝑢𝑢(𝑡𝑡𝑓𝑓)�

2

�

= −𝑓𝑓𝐶𝐶𝑇𝑇�𝑧𝑧�𝑡𝑡𝑓𝑓� − 𝐶𝐶𝑥𝑥�𝑡𝑡𝑓𝑓� − 𝑑𝑑𝑢𝑢�𝑡𝑡𝑓𝑓��

= 𝑓𝑓𝐶𝐶𝑇𝑇𝐶𝐶𝑥𝑥�𝑡𝑡𝑓𝑓� + 𝑓𝑓𝐶𝐶𝑇𝑇𝑑𝑑𝑢𝑢�𝑡𝑡𝑓𝑓� − 𝑓𝑓𝐶𝐶𝑇𝑇𝑧𝑧�𝑡𝑡𝑓𝑓� 

Plugging in the expression for 𝑢𝑢∗(𝑡𝑡) in (5.9) into the above equation, we get: 

 
𝜆𝜆∗�𝑡𝑡𝑓𝑓� = (𝐼𝐼 + 𝑓𝑓𝑑𝑑𝐶𝐶𝑇𝑇𝑉𝑉)−1𝑓𝑓(1 − 𝛼𝛼𝑑𝑑)𝐶𝐶𝑇𝑇𝐶𝐶𝑥𝑥∗�𝑡𝑡𝑓𝑓� 

−(𝐼𝐼 + 𝑓𝑓𝑑𝑑𝐶𝐶𝑇𝑇𝑉𝑉)−1𝑓𝑓(1 − 𝛼𝛼𝑑𝑑)𝐶𝐶𝑇𝑇𝑧𝑧�𝑡𝑡𝑓𝑓� 
(5.16) 

where 𝐼𝐼 is the identity matrix of size 6x6. 
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 Step 4: Finding Riccati and Vector equations: the co-state boundary condition in (5.16) 

and the solution of the Hamiltonian canonical system (5.14) indicate that there is a 

relationship between the state and co-state according to the following: 

 𝜆𝜆∗(𝑡𝑡) = 𝑃𝑃(𝑡𝑡)𝑥𝑥∗(𝑡𝑡) − 𝑔𝑔(𝑡𝑡) (5.17) 

where 𝑃𝑃(𝑡𝑡) is an 𝑛𝑛x𝑛𝑛 symmetric matrix (6x6 in our cardiovascular system model) and 𝑔𝑔(𝑡𝑡) 

is an nx1 vector (6x1 in our case), both need to be determined so as to satisfy the system 

in (5.14). This can be accomplished by deriving two key equations called differential 

Riccati equation (DRE) and vector differential equation, which will be shown next. 

Starting with differentiating (5.17) with respect to time, we obtain: 

 �̇�𝜆∗(𝑡𝑡) = �̇�𝑃(𝑡𝑡)𝑥𝑥∗(𝑡𝑡) + 𝑃𝑃(𝑡𝑡)�̇�𝑥∗(𝑡𝑡) − �̇�𝑔(𝑡𝑡) (5.18) 

Substituting for �̇�𝑥∗(𝑡𝑡) and �̇�𝜆∗(𝑡𝑡) from (5.14) and for 𝜆𝜆∗(𝑡𝑡) from (5.17) into (5.18) lead to 

the following two important relationships: 

�̇�𝑃(𝑡𝑡) = 𝑃𝑃(𝑡𝑡)�𝛼𝛼𝐵𝐵𝐶𝐶 − 𝐿𝐿(𝑡𝑡) + 𝐵𝐵𝑉𝑉𝑃𝑃(𝑡𝑡)� + (𝛽𝛽 − 𝑞𝑞)𝐶𝐶𝑇𝑇𝐶𝐶 + (𝛼𝛼𝐶𝐶𝑇𝑇𝐵𝐵𝑇𝑇 − 𝐿𝐿𝑇𝑇)𝑃𝑃(𝑡𝑡) (5.19) 

�̇�𝑔(𝑡𝑡) = (𝑃𝑃(𝑡𝑡)𝐵𝐵𝑉𝑉 + 𝛼𝛼𝐶𝐶𝑇𝑇𝐵𝐵𝑇𝑇 − 𝐿𝐿𝑇𝑇)𝑔𝑔(𝑡𝑡) + (𝛼𝛼𝑃𝑃(𝑡𝑡)𝐵𝐵 − 𝑞𝑞𝐶𝐶𝑇𝑇 + 𝛽𝛽𝐶𝐶𝑇𝑇) 𝑧𝑧(𝑡𝑡) (5.20) 

where equation (5.19) is called the matrix differential Riccati equation (DRE) and equation 

(5.20) is called the vector differential equation. 
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Since 𝑃𝑃(𝑡𝑡) is symmetric, equations (5.19) and (5.20) result in a set of 𝑛𝑛(𝑛𝑛 + 1)/2 + 𝑛𝑛 

first-order differential equations with the following boundary conditions: 

 𝑃𝑃�𝑡𝑡𝑓𝑓� = (𝐼𝐼 + 𝑓𝑓𝑑𝑑𝐶𝐶𝑇𝑇𝑉𝑉)−1𝑓𝑓(1 − 𝛼𝛼𝑑𝑑)𝐶𝐶𝑇𝑇𝐶𝐶 (5.21) 

 𝑔𝑔�𝑡𝑡𝑓𝑓� = (𝐼𝐼 + 𝑓𝑓𝑑𝑑𝐶𝐶𝑇𝑇𝑉𝑉)−1𝑓𝑓(1 − 𝛼𝛼𝑑𝑑)𝐶𝐶𝑇𝑇𝑧𝑧�𝑡𝑡𝑓𝑓� (5.22) 

Therefore, the 𝑛𝑛(𝑛𝑛 + 1)/2 + 𝑛𝑛 first-order differential equations (21 equations in our case) 

resulting from the matrix DRE (5.19) and the vector differential equation (5.20) can be 

solved backward using the boundary conditions in (5.21) and (5.22). 

 Step 5: Finding the closed-loop optimal control by plugging in the optimal co-state 

(5.17) into (5.9), we obtain: 

 𝑢𝑢∗(𝑡𝑡) = −
1

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
�𝑞𝑞𝑑𝑑𝐶𝐶𝑥𝑥∗(𝑡𝑡) + 𝐵𝐵𝑇𝑇�𝑃𝑃(𝑡𝑡)𝑥𝑥∗(𝑡𝑡) − 𝑔𝑔(𝑡𝑡)� − 𝑞𝑞𝑑𝑑𝑧𝑧(𝑡𝑡)� (5.23) 

 Step 6: Finding the optimal state by plugging in the optimal control (5.23) into the state 

equation (5.10), we obtain: 

�̇�𝑥∗(𝑡𝑡) = �𝐿𝐿(𝑡𝑡) −
𝑞𝑞𝑑𝑑

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
𝐵𝐵𝐶𝐶 −

1
𝑟𝑟 + 𝑞𝑞𝑑𝑑2

𝐵𝐵𝐵𝐵𝑇𝑇𝑃𝑃(𝑡𝑡)�𝑥𝑥∗(𝑡𝑡)

+
1

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
𝐵𝐵𝐵𝐵𝑇𝑇𝑔𝑔(𝑡𝑡) +

𝑞𝑞𝑑𝑑
𝑟𝑟 + 𝑞𝑞𝑑𝑑2

𝐵𝐵𝑧𝑧(𝑡𝑡) 

(5.24) 

It can be noted that computing the Riccati coefficient matrix 𝑃𝑃(𝑡𝑡) does not depend on the 

desired output 𝑧𝑧(𝑡𝑡). Once the problem is specified in terms of the plant matrices 𝐿𝐿(𝑡𝑡), 

𝐵𝐵(𝑡𝑡), 𝐶𝐶(𝑡𝑡), and 𝐸𝐸(𝑡𝑡), the final time 𝑡𝑡𝑓𝑓 , and the cost functional coefficients 𝑓𝑓(𝑡𝑡𝑓𝑓), 𝑞𝑞(𝑡𝑡), 
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and 𝑟𝑟(𝑡𝑡), the matrix function 𝑃𝑃(𝑡𝑡) can be completely computed offline. On the other hand, 

computing the vector 𝑔𝑔(𝑡𝑡) depends on the desired output 𝑧𝑧(𝑡𝑡). 

Figure 5.1 demonstrates a block diagram for the plant (5.2) and the closed-loop optimal 

control (5.23).  

 
Figure 5.1. Implementation of the tracking system optimal controller. 
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5.3 Simulation Results and Discussion 

The four generated signals of flow rate in Figure 4.25 will now be considered as 

desired signals, 𝑧𝑧(𝑡𝑡) that we want our control input 𝑈𝑈(𝑡𝑡) of Figure 4.9 to generate. We will 

apply the linear quadratic tracking (LQT) technique that was discussed earlier and 

demonstrated in Figure 5.1 to achieve such desired signals. This requires tuning the ratio 

of 𝑄𝑄 and 𝑅𝑅 (the error and control weighted coefficients, respectively), where our concern 

here is to penalize the error more. Figure 5.2 illustrates the performance of the optimal 

controller in tracking the four signals of flow rate, that were presented in Figure 4.25, for 

different 𝑄𝑄/ 𝑅𝑅 ratios (10, 100, and 1000). It can be noted that when the ratio is small (such 

as 10), the performance is poor, whereas when 𝑄𝑄/ 𝑅𝑅 is large (such as 1000), the actual 

signal generated by the optimal controller almost overlapped the desired one. Table 5.1 

presents a more detailed performance comparison. It can be noted that a 𝑄𝑄/ 𝑅𝑅 ratio of 1 

resulted in a back flow of 11.71 ml (i.e. negative flow, however this should not occur if we 

used unidirectional check valves). In contrast, at extremely large 𝑄𝑄/ 𝑅𝑅 ratios, the 

accumulator completely discharged the whole amount of accumulated blood. 
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Figure 5.2. Performance of the optimal controller in tracking a desired signal. Four reference signals were 
tracked: step, trapezoidal, sinusoidal, and cycloidal. Solid lines represent desired signals 𝑧𝑧(𝑡𝑡), whereas 
dashed lines represent actual tracking signals 𝑦𝑦(𝑡𝑡) at different 𝑄𝑄/ 𝑅𝑅 ratios. 
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𝑸𝑸/𝑹𝑹 
ratio 

Desired waveform shape of flow rate for discharged blood 

Step Trapezoid Sine Cycloid 

Discharged 
blood 
(ml) 

% 
Discharged 

blood 
(ml) 

% 
Discharged 

blood 
(ml) 

% 
Discharged 

blood 
(ml) 

% 

1 -11.71 -49.6 -11.77 -49.88 -11.82 -50.08 -11.79 -49.95 

10 13.58 57.54 13.54 57.36 13.51 57.26 13.53 57.32 

100 22.356 94.73 22.35 94.7 22.348 94.69 22.35 94.7 

1000 23.47 99.46 23.47 99.46 23.47 99.46 23.47 99.46 

10000 23.588 99.95 23.587 99.94 23.587 99.94 23.587 99.94 

100000 23.599 99.99 23.599 99.99 23.599 99.99 23.599 99.99 

1000000 23.6 99.999 23.6 99.999 23.6 99.999 23.6 99.999 

Table 5.1. Comparison of optimal control performance in tracking desired signals using different 𝑄𝑄/ 𝑅𝑅 
ratios. 

 

 

Figure 5.3 shows the actual “optimal” control signal 𝑈𝑈(𝑡𝑡) that drives the system in order 

to track the desired signals when the ratio of Q/ R is 1000 (i.e. actual flow rate signal almost 

overlapping the desired one as shown in Figure 5.2). This control signal represents a 

voltage supply (if we consider Figure 4.3) or pressure source (if we consider Figure 4.1). 
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Figure 5.3. Waveform profiles for the control input 𝑈𝑈(𝑡𝑡) that drives the system to track a specific desired 
reference trajectory.  
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CHAPTER 6   Conclusions 

 

6.1 Conclusions 

Hypertension contributes to cardiovascular morbidity and mortality worldwide. 

While many hypertensive patients respond to drug therapy, a growing number of these 

cases are referred to as resistant hypertension (RH), when patients cannot control their 

blood pressure at goal levels despite the use of multiple antihypertensive medications, 

including a diuretic. There are approximately 14.4 million people in America that are 

diagnosed with RH, and so the research in this field may offer an opportunity to improve 

life for millions of RH patients. 

There is no existing treatment option for RH that deals with altering the way in 

which the heart pumps blood into the aorta. The underlying hypothesis that RH may be 

controlled by altering the way blood is pumped into the aorta remains untested. We 

introduced a novel idea of implementing what we called the accumulator device that is 

represented by the conceptual schematic diagram in Figure 4.1. The proposed accumulator 

device is aimed to regulate the blood ejection from the LV into the aorta in such a way to 

normalize the systolic pressure below maximum levels, without reducing the cardiac 

output. It is our hope that this new approach proves to become a successful option for 

treating RH in the future. 

The simulation work related to this novel idea revealed promising preliminary 

results. In one of the simulation cases (that corresponds to 𝑅𝑅𝑖𝑖=0.5 Ω), the implementation 

of the accumulator device idea to treat an unhealthy condition caused a significant 
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reduction of 23.7 mmHg (~14%) in the systolic pressure, while maintaining the CO almost 

unchanged (Table 4.3). This case corresponds to accumulating an amount of 36.1 ml 

(~58%) of the 62.05 ml SV, which was discharged by the accumulator back to the aorta 

during the filling phase, while that the remaining (25.96 ml) was ejected naturally through 

the aortic valve during the ejection phase. 

There are several insights that we can report based on the performed simulation 

work. We report that as the accumulator’s inlet resistance decreases (i.e. allowing for more 

blood accumulation), systolic pressure decreases, and diastolic pressure increases. In other 

words, as blood accumulation increases (equivalent to decreasing 𝑅𝑅𝑖𝑖), the pulse pressure 

(difference between systolic and diastolic pressures) decreases. However, this relationship 

reveres when blood accumulation becomes too large, such as cases when 𝑅𝑅𝑖𝑖=0.25 and 0.15 

Ω in Table 4.3. This is because we are pressurizing the aorta much more during diastole by 

delivering a large amount of accumulated blood while ignoring utilizing ejecting 

reasonable amounts of blood through the aortic valve during the systolic phase.  

Another important insight relates to end-diastolic volume (EDV) which decreases 

as 𝑅𝑅𝑖𝑖 decreases (i.e. blood accumulation increases). We predict that this decrease in EDV 

creates the necessary balance to maintain the CO unchanged. The addition of an extra path 

by the accumulator for the blood leaving the LV should facilitate pumping the blood out 

of the LV during contraction, and this is expected to increase the CO. However, according 

to Frank-Starling law, as EDV decreases, stretching in the LV muscle decreases which 

results in lesser contraction force and consequently, a lesser amount of blood ejection. 

Therefore, the decrease in EDV (i.e. lesser contraction force) serves as a compensation for 
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the facilitation of the blood leaving the LV due to the addition of the extra path, and 

consequently, CO is maintained almost unaltered. 

A third insight relates to the influence of implementing the accumulator device idea 

on modulating the duration of cardiac cycle phases. We report that as 𝑅𝑅𝑖𝑖 decreases (i.e. 

allowing for more blood accumulation), the ejection phase duration decreases and the 

isovolumic contraction phase duration increases. The decrease in the ejection phase 

duration could possibly be due to creating the new path by the accumulator, which is 

expected to accelerate the process of pumping blood out of the LV, which consequently 

causes the aortic valve to close in a shorter duration of time. The increase in the isovolumic 

contraction phase could possibly be because the diastolic pressure increases as 𝑅𝑅𝑖𝑖 

decreases, which means that the LV will need to wait for a longer time until the pressure 

inside its chamber exceeds that in the aorta (which is the diastolic pressure in normal 

conditions), before that the aortic valve opens. 

The last insight relates to investigating the response of aortic pressure and flow due 

to applying different waveform shapes for the flow rate signal of the blood that is 

discharged by the accumulator back to the aorta during the filling phase. Among the four 

tested flow rate signals, the step function did not seem to be practical due to the oscillatory 

behavior shown in the waveform profile of the resulting aortic pressure. The trapezoidal, 

sinusoidal, and cycloidal-like functions of flow rate signals performed well compared to 

the step function flow rate signal. 

Optimal control theory was then applied, using the linear quadratic tracking 

technique, to design a controller that can drive the control input such that the accumulator 

discharges blood according to a desired trajectory of flow rate. The simulation work shows 
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that the designed controller performs well when the ratio of the error weighted coefficient 

to the control weighted coefficient (𝑄𝑄/𝑅𝑅) is large. 

6.2 Future Work 

Our recommendations for future research will be summarized in bullet points as 

follows: 

• The ultimate goal of this research work is to convert the accumulator device idea into 

a real, physical device, and we hope that it becomes a successful treatment option for 

RH patients in the future. 

• This requires continued development of this idea and through planning of designing 

and building a device for in-vivo experiments. 

• Extending the accumulator device idea such that it adapts to changes in the heart rate. 

• The use of switches in the accumulator’s inlet and outlet was for demonstration 

purposes; however, this might not be practical, and so one should think of better 

alternatives. 

• The accumulator represented by the schematic diagram in Figure 4.1 was of a very 

basic design and was just for illustration purposes; however, we should think of better 

and more practical accumulator designs. 

• Energy dissipation by the accumulator’s inlet and outlet resistances (𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑜𝑜) should 

be investigated. 
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• The current designed controller requires sensing some of the system’s states such as 

the aortic pressure; we may want to think of other design methods, such as the Kalman 

filter and others that may limit the need for using sensors. 

• It will be beneficial to investigate the sizing of the actual accumulator device such that 

it is customized based on the patient’s need, in the sense that it is fabricated in the 

smallest size possible. 

• Cardiac contractility modulation (CCM), which can modulate the contraction force of 

heart muscle, represents a promising modern technology for treating heart failure 

patients, especially those with reduced ejection fraction. Although experimental work 

related to CCM revealed that negative-amplitude signals showed to decrease the 

contractile force, which accordingly should decrease pressure and CO, researchers’ 

focus is just targeting the positive signals since they seek to enhance the contractile 

force to improve the ejection fraction in heart failure patients. We believe that the 

application of negative CCM signals is worthy to investigate if the patient’s body can 

sacrifice lowering the CO for the sake of reducing blood pressure measurements. The 

preliminary analysis done in chapter 3 showed that the application of negative CCM 

signals reduced CO and pressure readings. Therefore, it might be worthy to consider 

investigating the incorporation of negative CCM signals application (which mainly 

works on reducing blood pressure by reducing the CO) with the accumulator device 

idea (which mainly works on reducing more the systolic blood pressure by reducing 

the pulse pressure while maintain MAP) in the future work of such research direction. 

• The left-ventricular assist device (LVAD) has become an increasingly prevalent 

therapy for long-term use (destination therapy) as an alternative to a heart transplant in 
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heart failure patients. To the best of our knowledge, there is no work in the literature 

that utilized the use of this technology in treating resistant hypertension. We anticipate 

that the LVAD could serve as a possible treatment candidate for RH by designing a 

controlled pump that can regulate the flow of blood in such a way to achieve a desired 

reference signal of blood pressure while maintaining a desired CO. Therefore, it might 

also be worthy to investigate this research direction. 
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GLOSSARY 

(definitions are taken from Wikipedia) 

 

Absolute refractory: 

 
 
Action potential: 
 

Afterload: 
 
 

Aorta: 
 
 

Aortic valve: 
 

Artery: 
 

Atrium (right and 
left): 

Baroreceptor reflex: 
 
 
 
 
 
 

Cardiac cycle: 
 

Cardiac diastole: 
 

Cardiac output: 

Cardiac systole: 

The period immediately following the firing of a nerve fiber 
when it cannot be stimulated no matter how great the applied 
stimulus is. 

A brief change in voltage (membrane potential) across the cell 
membrane of heart cells. 

The stress in the wall of the left ventricle during ejection. In 
other word, it is the end load against which the heart contracts 
to eject blood. 

The main artery in the human body, originating from the left 
ventricle of the heart and extending down to the abdomen, 
where it splits into two smaller arteries. 

A valve in the human heart between the left ventricle and the 
aorta. 

A blood vessel that takes blood from the heart to all parts of the 
body. 

The upper chamber in the heart that receives blood. When the 
heart muscle contracts, it pumps blood to the ventricle. 

One of the body's homeostatic mechanisms that helps to 
maintain blood pressure at nearly constant levels. It provides a 
rapid negative feedback loop in which an elevated blood 
pressure reflexively causes heart rate and blood pressure to 
both decrease; similarly, decreased blood pressure decreases 
baroreflex activation and causes heart rate to increase and to 
restore blood pressure levels. 

The sequence of mechanical and electrical events that repeats 
with every heartbeat. 

The part of the cardiac cycle when the heart refills with blood 
following systole. 

The volume of blood being pumped by the heart per minute. 

The part of the cardiac cycle when a heart chamber contracts. 
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Carotid artery: 
 

Contractility: 

Compliance: 
 
 
 
 

Destination therapy: 
 

Diastolic blood 
pressure: 
 

Ejection fraction 
(EF): 

Heart rate: 
 

Hemodynamics: 
 

Inertance: 
 
 

Kirchhoff's circuit 
laws: 

Mitral valve: 

Preload: 
 
 
 

Pulse pressure: 
 

 

 

 

An artery on each side of the head and neck supplying blood to 
the brain. 

The innate ability of the heart muscle to contract. 

The ability of a hollow organ (vessel) to distend and increase 
volume with increasing transmural pressure or the tendency of 
a hollow organ to resist recoil toward its original dimensions 
on application of a distending or compressing force. It is the 
reciprocal of "elastance". 

A therapy that is final rather than being a transitional stage until 
another therapy. 

Minimum pressure in the arteries, which occurs near the 
beginning of the cardiac cycle when the ventricles are filled 
with blood. 

The fraction of blood ejected from a ventricle of the heart in 
each heartbeat. 

The speed of the heartbeat measured by the number of 
contractions of the heart per minute (bpm). 

The dynamics of blood flow that explain the physical laws that 
govern the flow of blood in the blood vessels. 

A measure of the pressure difference in a fluid required to 
cause a unit change in the rate of change of volumetric flow-
rate with time. 

Two equalities that deal with the current and voltage in 
the lumped element model of electrical circuits. 

A valve that lies between the left atrium and the left ventricle.  

The initial stretching of the cardiomyocytes prior to 
contraction. Parameters such as ventricular end diastolic 
volume or pressure are typical measurements for describing 
preload. 

The difference between the systolic and diastolic pressure 
readings. 
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Sinus (SA) node: 
 
 
 
 

Stroke volume (SV): 

Systolic blood 
pressure: 

Vein: 

Ventricle (right and 
left): 

 

 

 

 

 

 

 

 

 

Known as the heart’s natural pacemaker. It is a group of 
specialized cells located in the wall of the right atrium that have 
the ability to spontaneously produce electrical pulses (action 
potentials) that travel through the heart’s conduction system to 
activate heart contraction. 

The volume of blood pumped from the left ventricle per beat. 

The highest blood pressure measured in a blood vessel. It 
occurs when the heart contracts with each heartbeat. 

Blood vessels that carry blood toward the heart. 

The pumping chambers of the heart. 
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APPENDIX 

 

In this section, we show the derivation work of the equations used in chapter 5 to solve for 

the linear quadratic tracking problem. Optimal control textbooks present the necessary 

equations needed to solve the LQT problem by applying the Pontryagin Minimum 

Principle based on the following linear, time-varying system: 

�̇�𝑥(𝑡𝑡) = 𝐿𝐿(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐵𝐵(𝑡𝑡)𝑢𝑢(𝑡𝑡) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶(𝑡𝑡)𝑥𝑥(𝑡𝑡)                        

However, our system in equation (4.22) is in the form: 

�̇�𝑥(𝑡𝑡) = 𝐿𝐿(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐵𝐵(𝑡𝑡)𝑢𝑢(𝑡𝑡) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐸𝐸(𝑡𝑡)𝑢𝑢(𝑡𝑡) 

with the additional term 𝐸𝐸(𝑡𝑡), which makes significant changes in the derived equations. 

Below, we will apply the Pontryagin Minimum Principle based on the system that has the 

feedforward term 𝐸𝐸(𝑡𝑡). Since our system in (4.22) is a single-input single-output, which 

means that 𝐸𝐸(𝑡𝑡) is scalar, with the input vector 𝐵𝐵(𝑡𝑡), output vector 𝐶𝐶(𝑡𝑡), and feedforward 

term 𝐸𝐸(𝑡𝑡) being time invariant, the system in (4.22) can be re-written, for the sake of 

simplicity, according to the following: 

�̇�𝑥(𝑡𝑡) = 𝐿𝐿(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝑢𝑢(𝑡𝑡) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝑥𝑥(𝑡𝑡) + 𝑑𝑑𝑢𝑢(𝑡𝑡)        

We first start by defining the error 𝑒𝑒(𝑡𝑡), which is a scalar function, according to the 

following: 

𝑒𝑒(𝑡𝑡) = 𝑧𝑧(𝑡𝑡) − 𝑦𝑦(𝑡𝑡) 
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Which can be re-written as: 

 𝑒𝑒(𝑡𝑡) = 𝑧𝑧(𝑡𝑡) − 𝐶𝐶𝑥𝑥(𝑡𝑡) − 𝑑𝑑𝑢𝑢(𝑡𝑡) (A1) 

We then choose our performance index according to the following: 

 𝐽𝐽 =
1
2
𝑒𝑒𝑇𝑇�𝑡𝑡𝑓𝑓�𝐹𝐹�𝑡𝑡𝑓𝑓�𝑒𝑒�𝑡𝑡𝑓𝑓� +

1
2
� [𝑒𝑒𝑇𝑇(𝑡𝑡)𝑄𝑄(𝑡𝑡)𝑒𝑒𝑇𝑇(𝑡𝑡) + 𝑢𝑢𝑇𝑇(𝑡𝑡)𝑅𝑅(𝑡𝑡)𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑡𝑡
𝑎𝑎𝑓𝑓

𝑎𝑎0
 (A2) 

Since 𝑄𝑄(𝑡𝑡) and 𝑅𝑅(𝑡𝑡) are scalar functions that will be chosen to be constant values, then 

 𝑄𝑄(𝑡𝑡), 𝑅𝑅(𝑡𝑡), and 𝐹𝐹�𝑡𝑡𝑓𝑓� are represented by the scalars 𝑞𝑞, 𝑟𝑟, and 𝑓𝑓, respectively. Thus, the 

performance index can be written as: 

 𝐽𝐽 =
1
2
𝑓𝑓�𝑒𝑒�𝑡𝑡𝑓𝑓��

2
+

1
2
� (𝑞𝑞[𝑒𝑒(𝑡𝑡)]2 + 𝑟𝑟[𝑢𝑢(𝑡𝑡)]2)𝑑𝑑𝑡𝑡
𝑎𝑎𝑓𝑓

𝑎𝑎0
  

Step 1: Formulating the Hamiltonian function: 

 

𝐻𝐻�𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡), 𝜆𝜆(𝑡𝑡)�

=
1
2
𝑞𝑞[𝑧𝑧(𝑡𝑡) − 𝐶𝐶𝑥𝑥(𝑡𝑡) − 𝑑𝑑𝑢𝑢(𝑡𝑡)]2 +

1
2
𝑟𝑟[𝑢𝑢(𝑡𝑡)]2

+ 𝜆𝜆𝑇𝑇(𝑡𝑡)[𝐿𝐿(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝑢𝑢(𝑡𝑡)] 

(A3) 

Step 2: Finding the open-loop optimal control from the Hamiltonian: 

 𝑑𝑑𝐻𝐻
𝑑𝑑𝑢𝑢

= 0   
           
�⎯⎯�   𝑞𝑞 ∗ (−𝑑𝑑) ∗ [𝑧𝑧(𝑡𝑡) − 𝐶𝐶𝑥𝑥(𝑡𝑡) − 𝑑𝑑𝑢𝑢(𝑡𝑡)] + 𝑟𝑟𝑢𝑢(𝑡𝑡) + 𝐵𝐵𝑇𝑇𝜆𝜆(𝑡𝑡) = 0  
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We can now write the equation for the optimal control: 

 𝑢𝑢∗(𝑡𝑡) =
1

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
[−𝑞𝑞𝑑𝑑𝐶𝐶𝑥𝑥∗(𝑡𝑡) − 𝐵𝐵𝑇𝑇𝜆𝜆∗(𝑡𝑡) + 𝑞𝑞𝑑𝑑𝑧𝑧(𝑡𝑡)] (A4) 

Step 3: Finding the state and co-state systems from the Hamiltonian: 

 �̇�𝑥(𝑡𝑡) =
𝑑𝑑𝐻𝐻
𝑑𝑑𝜆𝜆

= 𝐿𝐿(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝑢𝑢(𝑡𝑡)  

Plugging in the expression for 𝑢𝑢∗(𝑡𝑡) from equation (A4) into the above equation to find 

the optimal state equation, we obtain: 

 �̇�𝑥∗(𝑡𝑡) = �𝐿𝐿(𝑡𝑡) −
𝑞𝑞𝑑𝑑

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
𝐵𝐵𝐶𝐶� 𝑥𝑥∗(𝑡𝑡) −

𝐵𝐵𝐵𝐵𝑇𝑇

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
𝜆𝜆∗(𝑡𝑡) +

𝑑𝑑𝑞𝑞
𝑟𝑟 + 𝑞𝑞𝑑𝑑2

𝐵𝐵𝑧𝑧(𝑡𝑡) (A5) 

The optimal co-state equation can be derived as follows: 

 �̇�𝜆∗(𝑡𝑡) = −
𝑑𝑑𝐻𝐻
𝑑𝑑𝑥𝑥

= −[−𝑞𝑞𝐶𝐶𝑇𝑇[𝑧𝑧(𝑡𝑡) − 𝐶𝐶𝑥𝑥∗(𝑡𝑡) − 𝑑𝑑𝑢𝑢∗(𝑡𝑡)] + 𝐿𝐿𝑇𝑇(𝑡𝑡)𝜆𝜆∗(𝑡𝑡)]  

Plugging in the expression for 𝑢𝑢∗(𝑡𝑡) from equation (A4) into the above equation to find 

the optimal co-state equation, we obtain: 

�̇�𝜆∗(𝑡𝑡) = �
𝑞𝑞2𝑑𝑑2

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
𝐶𝐶𝑇𝑇𝐶𝐶 − 𝑞𝑞𝐶𝐶𝑇𝑇𝐶𝐶� 𝑥𝑥∗(𝑡𝑡) + �

𝑞𝑞𝑑𝑑
𝑟𝑟 + 𝑞𝑞𝑑𝑑2

𝐶𝐶𝑇𝑇𝐵𝐵𝑇𝑇 − 𝐿𝐿𝑇𝑇(𝑡𝑡)� 𝜆𝜆∗(𝑡𝑡)

+ �𝑞𝑞𝐶𝐶𝑇𝑇 −
𝑞𝑞2𝑑𝑑2

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
𝐶𝐶𝑇𝑇� 𝑧𝑧(𝑡𝑡) 

(A6) 
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For the sake of simplicity, let us define: 

 

𝛼𝛼 =
𝑞𝑞𝑑𝑑

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
       

𝛽𝛽 =
𝑞𝑞2𝑑𝑑2

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
       

𝑉𝑉 =
1

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
𝐵𝐵𝑇𝑇 

(A7) 

 

where 𝛼𝛼 and 𝛽𝛽 are scalars and 𝑉𝑉 is a row vector. 

Equations (A4), (A5), and (A6) can now be re-written as follows: 

 𝑢𝑢∗(𝑡𝑡) = −𝛼𝛼𝐶𝐶𝑥𝑥∗(𝑡𝑡) − 𝑉𝑉𝜆𝜆∗(𝑡𝑡) + 𝛼𝛼𝑧𝑧(𝑡𝑡) (A8) 

 �̇�𝑥∗(𝑡𝑡) = (𝐿𝐿(𝑡𝑡) − 𝛼𝛼𝐵𝐵𝐶𝐶)𝑥𝑥∗(𝑡𝑡) − 𝐵𝐵𝑉𝑉𝜆𝜆∗(𝑡𝑡) + 𝛼𝛼𝐵𝐵𝑧𝑧(𝑡𝑡) (A9) 

 �̇�𝜆∗(𝑡𝑡) = (𝛽𝛽 − 𝑞𝑞)𝐶𝐶𝑇𝑇𝐶𝐶𝑥𝑥∗(𝑡𝑡) + (𝛼𝛼𝐶𝐶𝑇𝑇𝐵𝐵𝑇𝑇 − 𝐿𝐿𝑇𝑇(𝑡𝑡))𝜆𝜆∗(𝑡𝑡) + (𝑞𝑞 − 𝛽𝛽)𝐶𝐶𝑇𝑇𝑧𝑧(𝑡𝑡) (A10) 

Combining the optimal state equation (A9) and optimal co-state equation (A10), we can 

now obtain the Hamiltonian canonical system: 

�
�̇�𝑥∗(𝑡𝑡)
�̇�𝜆∗(𝑡𝑡)

� = �
𝐿𝐿(𝑡𝑡) − 𝛼𝛼𝐵𝐵𝐶𝐶 −𝐵𝐵𝑉𝑉
(𝛽𝛽 − 𝑞𝑞)𝐶𝐶𝑇𝑇𝐶𝐶 𝛼𝛼𝐶𝐶𝑇𝑇𝐵𝐵𝑇𝑇 − 𝐿𝐿𝑇𝑇(𝑡𝑡)� �

𝑥𝑥∗(𝑡𝑡)
𝜆𝜆∗(𝑡𝑡)� + � 𝛼𝛼𝐵𝐵

(𝑞𝑞 − 𝛽𝛽)𝐶𝐶𝑇𝑇� 𝑧𝑧(𝑡𝑡) (A11) 

The above system includes 2𝑛𝑛 differential equations (12 differential equations in our case 

since our cardiovascular system has 6 state variables). 

The boundary conditions of the Hamiltonian canonical system in (A11) are given by the 

initial condition of the states: 

𝑥𝑥(𝑡𝑡 = 𝑡𝑡0) = 𝑥𝑥(𝑡𝑡0) 
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The final condition comes from the co-states, where the final time 𝑡𝑡𝑓𝑓 being specified, 

according to the following: 

 

𝜆𝜆�𝑡𝑡𝑓𝑓� =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑡𝑡𝑓𝑓)
�
1
2
𝑓𝑓�𝑡𝑡𝑓𝑓��𝑒𝑒�𝑡𝑡𝑓𝑓��

2

�

=
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑡𝑡𝑓𝑓)
�
1
2
𝑓𝑓�𝑧𝑧�𝑡𝑡𝑓𝑓� − 𝐶𝐶𝑥𝑥�𝑡𝑡𝑓𝑓� − 𝑑𝑑𝑢𝑢(𝑡𝑡𝑓𝑓)�

2

�

= −𝑓𝑓𝐶𝐶𝑇𝑇�𝑧𝑧�𝑡𝑡𝑓𝑓� − 𝐶𝐶𝑥𝑥�𝑡𝑡𝑓𝑓� − 𝑑𝑑𝑢𝑢�𝑡𝑡𝑓𝑓��

= 𝑓𝑓𝐶𝐶𝑇𝑇𝐶𝐶𝑥𝑥�𝑡𝑡𝑓𝑓� + 𝑓𝑓𝐶𝐶𝑇𝑇𝑑𝑑𝑢𝑢�𝑡𝑡𝑓𝑓� − 𝑓𝑓𝐶𝐶𝑇𝑇𝑧𝑧�𝑡𝑡𝑓𝑓� 

 

Plugging in the expression for 𝑢𝑢∗(𝑡𝑡) from equation (A8) into the above equation, we get: 

𝜆𝜆∗�𝑡𝑡𝑓𝑓� = 𝑓𝑓𝐶𝐶𝑇𝑇𝐶𝐶𝑥𝑥∗�𝑡𝑡𝑓𝑓� + 𝑓𝑓𝐶𝐶𝑇𝑇𝑑𝑑�−𝛼𝛼𝐶𝐶𝑥𝑥∗�𝑡𝑡𝑓𝑓� − 𝑉𝑉𝜆𝜆∗�𝑡𝑡𝑓𝑓� + 𝛼𝛼𝑧𝑧�𝑡𝑡𝑓𝑓�� − 𝑓𝑓𝐶𝐶𝑇𝑇𝑧𝑧�𝑡𝑡𝑓𝑓�

= 𝑓𝑓(1 − 𝛼𝛼𝑑𝑑)𝐶𝐶𝑇𝑇𝐶𝐶𝑥𝑥∗�𝑡𝑡𝑓𝑓� − 𝑓𝑓𝑑𝑑𝐶𝐶𝑇𝑇𝑉𝑉𝜆𝜆∗�𝑡𝑡𝑓𝑓� − 𝑓𝑓(1 − 𝛼𝛼𝑑𝑑)𝐶𝐶𝑇𝑇𝑧𝑧�𝑡𝑡𝑓𝑓� 
 

Which can be written as: 

 
𝜆𝜆∗�𝑡𝑡𝑓𝑓� = (𝐼𝐼 + 𝑓𝑓𝑑𝑑𝐶𝐶𝑇𝑇𝑉𝑉)−1𝑓𝑓(1 − 𝛼𝛼𝑑𝑑)𝐶𝐶𝑇𝑇𝐶𝐶𝑥𝑥∗�𝑡𝑡𝑓𝑓�

− (𝐼𝐼 + 𝑓𝑓𝑑𝑑𝐶𝐶𝑇𝑇𝑉𝑉)−1𝑓𝑓(1 − 𝛼𝛼𝑑𝑑)𝐶𝐶𝑇𝑇𝑧𝑧�𝑡𝑡𝑓𝑓� 
(A12) 

where 𝐼𝐼 is the identity matrix of size 6x6. 

Step 4: Finding Riccati and Vector equations: the co-state boundary condition in (A12) and 

the solution of the Hamiltonian canonical system in (A11) indicate that there is a 

relationship between the state and co-state according to the following: 

 𝜆𝜆∗(𝑡𝑡) = 𝑃𝑃(𝑡𝑡)𝑥𝑥∗(𝑡𝑡) − 𝑔𝑔(𝑡𝑡) (A13) 
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where 𝑃𝑃(𝑡𝑡) is an 𝑛𝑛x𝑛𝑛 symmetric matrix (6x6 in our cardiovascular model), and 𝑔𝑔(𝑡𝑡) is an 

nx1 vector (6x1 in our case), both need to be determined so as to satisfy the system in 

(A11). This can be accomplished by deriving two key equations called differential Riccati 

equation (DRE) and vector differential equation, which will be shown next. 

Starting with differentiating (A13) with respect to time, we obtain: 

 �̇�𝜆∗(𝑡𝑡) = �̇�𝑃(𝑡𝑡)𝑥𝑥∗(𝑡𝑡) + 𝑃𝑃(𝑡𝑡)�̇�𝑥∗(𝑡𝑡) − �̇�𝑔(𝑡𝑡) (A14) 

Substituting for �̇�𝑥∗(𝑡𝑡), �̇�𝜆∗(𝑡𝑡), and 𝜆𝜆∗(𝑡𝑡) from (A9), (A10), and (A13); respectively, into 

(A14) yields the following: 

(𝛽𝛽 − 𝑞𝑞)𝐶𝐶𝑇𝑇𝐶𝐶𝑥𝑥∗(𝑡𝑡) + (𝛼𝛼𝐶𝐶𝑇𝑇𝐵𝐵𝑇𝑇 − 𝐿𝐿𝑇𝑇(𝑡𝑡))[𝑃𝑃(𝑡𝑡)𝑥𝑥∗(𝑡𝑡) − 𝑔𝑔(𝑡𝑡)] + (𝑞𝑞 − 𝛽𝛽)𝐶𝐶𝑇𝑇𝑧𝑧(𝑡𝑡)

= �̇�𝑃(𝑡𝑡)𝑥𝑥∗(𝑡𝑡)

+ 𝑃𝑃(𝑡𝑡)[(𝐿𝐿(𝑡𝑡) − 𝛼𝛼𝐵𝐵𝐶𝐶)𝑥𝑥∗(𝑡𝑡) − 𝐵𝐵𝑉𝑉(𝑃𝑃(𝑡𝑡)𝑥𝑥∗(𝑡𝑡) − 𝑔𝑔(𝑡𝑡)) + 𝛼𝛼𝐵𝐵𝑧𝑧(𝑡𝑡)]− �̇�𝑔(𝑡𝑡) 

Re-arranging the above equation we obtain: 

��̇�𝑃(𝑡𝑡) + 𝑃𝑃(𝑡𝑡)�𝐿𝐿(𝑡𝑡) − 𝛼𝛼𝐵𝐵𝐶𝐶 − 𝐵𝐵𝑉𝑉𝑃𝑃(𝑡𝑡)� + (𝑞𝑞 − 𝛽𝛽)𝐶𝐶𝑇𝑇𝐶𝐶 + (𝐿𝐿𝑇𝑇(𝑡𝑡) −

𝛼𝛼𝐶𝐶𝑇𝑇𝐵𝐵𝑇𝑇)𝑃𝑃(𝑡𝑡)�𝒙𝒙∗(𝒕𝒕) − [�̇�𝑔(𝑡𝑡) − (𝑃𝑃(𝑡𝑡)𝐵𝐵𝑉𝑉 + 𝛼𝛼𝐶𝐶𝑇𝑇𝐵𝐵𝑇𝑇 − 𝐿𝐿𝑇𝑇(𝑡𝑡))𝑔𝑔(𝑡𝑡) −

(𝛼𝛼𝑃𝑃(𝑡𝑡)𝐵𝐵 − 𝑞𝑞𝐶𝐶𝑇𝑇 + 𝛽𝛽𝐶𝐶𝑇𝑇)𝑧𝑧(𝑡𝑡)]=0 

(A15) 

The relationship in equation (A15) must satisfy for all 𝑥𝑥∗(𝑡𝑡), 𝑧𝑧(𝑡𝑡), and 𝑡𝑡. This leads us to 

the 𝑛𝑛x𝑛𝑛 𝑃𝑃(𝑡𝑡) to satisfy the matrix differential Riccati equation (DRE): 

 
�̇�𝑃(𝑡𝑡) = 𝑃𝑃(𝑡𝑡)�𝛼𝛼𝐵𝐵𝐶𝐶 − 𝐿𝐿(𝑡𝑡) + 𝐵𝐵𝑉𝑉𝑃𝑃(𝑡𝑡)� + (𝛽𝛽 − 𝑞𝑞)𝐶𝐶𝑇𝑇𝐶𝐶

+ (𝛼𝛼𝐶𝐶𝑇𝑇𝐵𝐵𝑇𝑇 − 𝐿𝐿𝑇𝑇(𝑡𝑡))𝑃𝑃(𝑡𝑡) 
(A16) 
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And the 𝑛𝑛x1 𝑔𝑔(𝑡𝑡) vector to satisfy the vector differential equation: 

�̇�𝑔(𝑡𝑡) = (𝑃𝑃(𝑡𝑡)𝐵𝐵𝑉𝑉 + 𝛼𝛼𝐶𝐶𝑇𝑇𝐵𝐵𝑇𝑇 − 𝐿𝐿𝑇𝑇(𝑡𝑡))𝑔𝑔(𝑡𝑡) + (𝛼𝛼𝑃𝑃(𝑡𝑡)𝐵𝐵 − 𝑞𝑞𝐶𝐶𝑇𝑇 + 𝛽𝛽𝐶𝐶𝑇𝑇) 𝑧𝑧(𝑡𝑡) (A17) 

Since 𝑃𝑃(𝑡𝑡) is symmetric, equations (A16) and (A17) result in a set of 𝑛𝑛(𝑛𝑛 + 1)/2 + 𝑛𝑛 first-

order differential equations with boundary conditions that can be inferred from equations 

(A12) and (A13), according to the following: 

 𝑃𝑃�𝑡𝑡𝑓𝑓� = (𝐼𝐼 + 𝑓𝑓𝑑𝑑𝐶𝐶𝑇𝑇𝑉𝑉)−1𝑓𝑓(1 − 𝛼𝛼𝑑𝑑)𝐶𝐶𝑇𝑇𝐶𝐶 (A18) 

 𝑔𝑔�𝑡𝑡𝑓𝑓� = (𝐼𝐼 + 𝑓𝑓𝑑𝑑𝐶𝐶𝑇𝑇𝑉𝑉)−1𝑓𝑓(1 − 𝛼𝛼𝑑𝑑)𝐶𝐶𝑇𝑇𝑧𝑧�𝑡𝑡𝑓𝑓� (A19) 

Therefore, the 𝑛𝑛(𝑛𝑛 + 1)/2 + 𝑛𝑛 first-order differential equations (21 differential equations 

in our case) resulting from the matrix differential Riccati equation (A16) and the vector 

differential equation (A17) can be solved backward using the boundary conditions in (A18) 

and (A19). 

Step 5: Finding the closed-loop optimal control by plugging in the optimal co-state (A13) 

into (A8) according to the following: 

 𝑢𝑢∗(𝑡𝑡) = −𝛼𝛼𝐶𝐶𝑥𝑥∗(𝑡𝑡) − 𝑉𝑉[𝑃𝑃(𝑡𝑡)𝑥𝑥∗(𝑡𝑡) − 𝑔𝑔(𝑡𝑡)] + 𝛼𝛼𝑧𝑧(𝑡𝑡)  

which can also be written as: 

 𝑢𝑢∗(𝑡𝑡) = [−𝛼𝛼𝐶𝐶 − 𝑉𝑉𝑃𝑃(𝑡𝑡)]𝑥𝑥∗(𝑡𝑡) + 𝑉𝑉𝑔𝑔(𝑡𝑡) + 𝛼𝛼𝑧𝑧(𝑡𝑡) (A20) 

 

 



 

150 
 

Step 6: Finding the optimal state by plugging in the optimal control 𝑢𝑢∗(𝑡𝑡) from (A20) into 

the state equation in step 3, we obtain: 

 �̇�𝑥(𝑡𝑡) = 𝐿𝐿(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐵𝐵�[−𝛼𝛼𝐶𝐶 − 𝑉𝑉𝑃𝑃(𝑡𝑡)]𝑥𝑥∗(𝑡𝑡) + 𝑉𝑉𝑔𝑔(𝑡𝑡) + 𝛼𝛼𝑧𝑧(𝑡𝑡)�  

Which can now be written as: 

 �̇�𝑥∗(𝑡𝑡) = �𝐿𝐿(𝑡𝑡) − 𝛼𝛼𝐵𝐵𝐶𝐶 − 𝐵𝐵𝑉𝑉𝑃𝑃(𝑡𝑡)�𝑥𝑥∗(𝑡𝑡) + 𝐵𝐵𝑉𝑉𝑔𝑔(𝑡𝑡) + 𝛼𝛼𝐵𝐵𝑧𝑧(𝑡𝑡) (A21) 

 

Recalling the definitions of 𝛼𝛼 and 𝑉𝑉 in (A7) and plugging their values in (A20) and (A21), 

the optimal control 𝑢𝑢∗(𝑡𝑡) and optimal state 𝑥𝑥∗(𝑡𝑡) become: 

𝑢𝑢∗(𝑡𝑡) = −
1

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
�𝑞𝑞𝑑𝑑𝐶𝐶𝑥𝑥∗(𝑡𝑡) + 𝐵𝐵𝑇𝑇�𝑃𝑃(𝑡𝑡)𝑥𝑥∗(𝑡𝑡) − 𝑔𝑔(𝑡𝑡)� − 𝑞𝑞𝑑𝑑𝑧𝑧(𝑡𝑡)� (A22) 

 

�̇�𝑥∗(𝑡𝑡) = �𝐿𝐿(𝑡𝑡) −
𝑞𝑞𝑑𝑑

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
𝐵𝐵𝐶𝐶 −

1
𝑟𝑟 + 𝑞𝑞𝑑𝑑2

𝐵𝐵𝐵𝐵𝑇𝑇𝑃𝑃(𝑡𝑡)�𝑥𝑥∗(𝑡𝑡)

+
1

𝑟𝑟 + 𝑞𝑞𝑑𝑑2
𝐵𝐵𝐵𝐵𝑇𝑇𝑔𝑔(𝑡𝑡) +

𝑞𝑞𝑑𝑑
𝑟𝑟 + 𝑞𝑞𝑑𝑑2

𝐵𝐵𝑧𝑧(𝑡𝑡) 

(A22) 
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