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Abstract: This paper is concerned with a new framework called the kernel approximation
approach to the L1 optimal controller synthesis problem of sampled-data systems. On the basis
of the lifted representation of sampled-data systems, which contains an input operator and an
output operator, this paper introduces a method for approximating the kernel function of the
input operator and the hold function of the output operator by piecewise constant functions.
Through such a method, the L1 optimal sampled-data controller synthesis problem could be
(almost) equivalently converted into the discrete-time l1 optimal controller synthesis problem.
This paper further establishes an important inequality that forms the theoretical validity of the
kernel approximation approach for tackling the L1 optimal sampled-data controller synthesis
problem.

Keywords: sampled-data systems, L1 optimal control, kernel approximation, lifting, fast-lifting

1. INTRODUCTION

There have been a number of studies on sampled-data
systems taking into account of their intersample behavior,
and the disturbance rejection problem has been regarded
as one of the most important issues in the studies of
sampled-data systems. For instance, the H2 problem of
sampled-data systems is dealt with in Bamieh and Pearson
(1992a); Chen and Francis (1991); Hagiwara and Araki
(1995); Khargonekar and Sivashankar (1991); Mirkin et al.
(1999a,b) for evaluating the effect of impulse disturbance
inputs, while the H∞ problem of sampled-data systems
is considered in Bamieh and Pearson (1992b); Kabamba
and Hara (1993); Mirkin et al. (1999a,b); Tadmor (1992);
Toivonen (1992) for reducing the energy of the output
for the worst disturbance inputs among those with unit
energy. The main idea in these studies can be interpreted
as providing discretization procedures of the continuous-
time generalized plant by which the H2 or H∞ norm
of the discrete-time system obtained by connecting the
resulting discrete-time generalized plant and the discrete-
time controller (approximately) coincides with that of the
original sampled-data system.

On the other hand, these control objectives do not suitably
match control applications such as collision avoidance of
robot systems and protection of chemical systems from
being overly pressured. In this sense, the L1 problem of
sampled-data systems, which aims at minimizing their
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L∞-induced norm, has been brought to the attention
of control community since its control objective effec-
tively matches such applications. However, in contrast
to the cases of the H2 and H∞ problems of sampled-
data systems, developing a discretization method of the
continuous-time generalized plant so that the discrete-time
l∞-induced norm of the discrete-time system obtained by
connecting the resulting discrete-time generalized plant
and the discrete-time controller (approximately) coincides
with the L∞-induced norm of the original sampled-data
system is a non-trivial task. In this regard, the pio-
neering studies on the L1 problem of sampled-data sys-
tems (Bamieh et al., 1993; Dullerud and Francis, 1992;
Sivashankar et al., 1992) approximate a sampled-data sys-
tem by a discrete-time system through the idea of the fast-
sample/fast-hold (FSFH) approximation, a technique de-
veloped in another study on the digital redesign of discrete-
time controllers (Keller and Anderson, 1992). Even though
it is shown in these studies that the l∞-induced norm of
the approximating discrete-time systems converges to the
L∞-induced norm of the original sampled-data systems as
the FSFH approximation parameter M tends to infinity,
these studies do not give any explicit result for evaluating
how close the l∞-induced norm for a given M is to the
exact value of the L∞-induced norm.

To remedy this, the present authors introduced an inter-
pretation of the FSFH approximation method through the
idea of the fast-lifting technique (Hagiwara and Umeda,
2008), which further led to a more general approach called
the input approximation approach (Kim and Hagiwara,
2014). Through this approach the present authors first
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On the other hand, these control objectives do not suitably
match control applications such as collision avoidance of
robot systems and protection of chemical systems from
being overly pressured. In this sense, the L1 problem of
sampled-data systems, which aims at minimizing their
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L∞-induced norm, has been brought to the attention
of control community since its control objective effec-
tively matches such applications. However, in contrast
to the cases of the H2 and H∞ problems of sampled-
data systems, developing a discretization method of the
continuous-time generalized plant so that the discrete-time
l∞-induced norm of the discrete-time system obtained by
connecting the resulting discrete-time generalized plant
and the discrete-time controller (approximately) coincides
with the L∞-induced norm of the original sampled-data
system is a non-trivial task. In this regard, the pio-
neering studies on the L1 problem of sampled-data sys-
tems (Bamieh et al., 1993; Dullerud and Francis, 1992;
Sivashankar et al., 1992) approximate a sampled-data sys-
tem by a discrete-time system through the idea of the fast-
sample/fast-hold (FSFH) approximation, a technique de-
veloped in another study on the digital redesign of discrete-
time controllers (Keller and Anderson, 1992). Even though
it is shown in these studies that the l∞-induced norm of
the approximating discrete-time systems converges to the
L∞-induced norm of the original sampled-data systems as
the FSFH approximation parameter M tends to infinity,
these studies do not give any explicit result for evaluating
how close the l∞-induced norm for a given M is to the
exact value of the L∞-induced norm.

To remedy this, the present authors introduced an inter-
pretation of the FSFH approximation method through the
idea of the fast-lifting technique (Hagiwara and Umeda,
2008), which further led to a more general approach called
the input approximation approach (Kim and Hagiwara,
2014). Through this approach the present authors first
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1. INTRODUCTION
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to the cases of the H2 and H∞ problems of sampled-
data systems, developing a discretization method of the
continuous-time generalized plant so that the discrete-time
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sample/fast-hold (FSFH) approximation, a technique de-
veloped in another study on the digital redesign of discrete-
time controllers (Keller and Anderson, 1992). Even though
it is shown in these studies that the l∞-induced norm of
the approximating discrete-time systems converges to the
L∞-induced norm of the original sampled-data systems as
the FSFH approximation parameter M tends to infinity,
these studies do not give any explicit result for evaluating
how close the l∞-induced norm for a given M is to the
exact value of the L∞-induced norm.

To remedy this, the present authors introduced an inter-
pretation of the FSFH approximation method through the
idea of the fast-lifting technique (Hagiwara and Umeda,
2008), which further led to a more general approach called
the input approximation approach (Kim and Hagiwara,
2014). Through this approach the present authors first
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derived in Kim and Hagiwara (2015a) readily computable
upper and lower bounds of the L∞-induced norm of
sampled-data systems. Furthermore, similar results were
established in Kim and Hagiwara (2016b) through a dif-
ferent idea called the kernel approximation approach (Kim
and Hagiwara, 2015b), and this new approach is also based
on the fast-lifting technique which has the parameter M .
Indeed, it was shown in Kim and Hagiwara (2016b) that
even though the associated convergence rates in the ker-
nel approximation approach are qualitatively the same as
those in the input approximation approach, the approxi-
mation errors through the former approximation approach
are smaller than those through the latter approximation
approach under the same fast-lifting parameter M .

Stimulated by the above success of the kernel approxima-
tion approach in the L1 analysis of sampled-data systems,
this paper aims at establishing a parallel result in the
L1 synthesis of sampled-data systems. In connection with
this, we first remark that the L1 synthesis of sampled-
data systems has been studied in Bamieh et al. (1993);
Dullerud and Francis (1992) through the FSFH approxi-
mation, while the latest study (Kim and Hagiwara, 2016a)
is most sophisticated in its use of the fast-lifting treatment
together with the input approximation approach and thus
it could have a much clearer link with the kernel approxi-
mation approach. Hence, this paper aims at extending the
basic ideas in Kim and Hagiwara (2016a) with the input
approximation approach to the kernel approximation ap-
proach and showing that the advantage of the kernel ap-
proximation approach is inherited to the synthesis phase.
More specifically, we confine ourselves, as a preliminary
study, to the piecewise constant approximation scheme
applied to the synthesis via the kernel approximation
approach, and show its advantage over the corresponding
counterpart via the input approximation approach in Kim
and Hagiwara (2016a).

To this end, two types of ‘constant approximations’ for
functions on the interval [0, h/M) are introduced with the
fast-lifting technique (where h is the sampling width), one
for the kernel functions of an input operator and the other
for the hold function of an output operator. Through such
treatment, the L1 optimal sampled-data controller synthe-
sis problem is approximately converted into the discrete-
time l1 optimal controller synthesis problem. It is further
shown by establishing an inequality that the associated
convergence rate about the approximation errors is in the
order of 1/M . Even though this rate itself remains the
same as that of the input approximation approach, our
arguments show that the former approach can lead to a
smaller approximation error than the latter approach for
the L1 optimal controller synthesis problem of sampled-
data systems under the same fast-lifting parameter M .

2. MATHEMATICAL PRELIMINARIES

In this section, we provide some mathematical preliminar-
ies. The notations N, Rν

p (p = 1,∞) and R(·) are used to
denote the the set of positive integers, the Banach spaces
of ν-dimensional real vectors equipped with vector p-norm
and the range of an operator, respectively.

We use the notations ‖ · ‖p (p = 1,∞) to denote either the
Lp[0, h) (p = 1,∞) norm of a vector function, i.e.,

‖f(·)‖1 :=
∑
i

∫ h

0

|fi(t)|dt

‖f(·)‖∞ := max
i

ess sup
0≤t<h

|fi(t)|

(or those with h replaced by h/M or ∞), the Lp[0, h)-
induced norm (or those with h/M or ∞ instead of h) of
an operator. On the other hand, the p-norm of a matrix
or a vector is denoted by | · |p (p = 1,∞). The distinction
about the same norm symbols for different types of objects
will be clear from the context.

For a Banach space X, its dual space is denoted by X∗.
If we let X and Y be Banach spaces and consider a
linear operator T : X → Y , its adjoint is denoted by
T∗ : Y ∗ → X∗. For the given Banach spaces X and Y ,
suppose that there exists unique Banach spaces, denoted
by X∗ and Y∗, such that their dual spaces (X∗)

∗ and (Y∗)
∗

coincide with X and Y , respectively. Then, if there exists
an operator T∗ : Y∗ → X∗ such that (T∗)

∗ = T, then T∗
is called the preadjoint of T : X → Y . Not every operator
has a preadjoint, but those operators we deal with in this
paper do; it suffices to note that for X = (L∞[0, h))ν

and X = Rn
∞, a unique X∗ such that (X∗)

∗ = X is
X∗ = (L1[0, h))

ν and X∗ = Rn
1 , respectively. See Brown

and Tvrdý (1980, 1981); Lindner (2006) for more details.

For a Banach space X, the notation lX is used to denote
the space of all X-valued sequences. F(G,H) denotes
the so-called lower linear-fractional-transformation (LFT)
given by G11 +G12H(I −G22H)−1G21.

3. L1 OPTIMAL CONTROL PROBLEM OF
SAMPLED-DATA SYSTEMS

Consider the linear time-invariant (LTI) sampled-data sys-
tem ΣSD shown in Fig. 1, where P denotes the continuous-
time LTI generalized plant, while Ψ , H and S denote the
discrete-time LTI controller, the zero-order hold and the
ideal sampler, respectively, operating with sampling period
h in a synchronous fashion. Solid lines and dashed lines
in Fig. 1 represent continuous-time signals and discrete-
time signals, respectively. Suppose that P and Ψ are given
respectively by

P :



ẋ=Ax+B1w+B2u

z=C1x+D12u

y=C2x

Ψ :

{
ψk+1=AΨψk+BΨyk
uk=CΨψk+DΨyk

(1)

where x(t) ∈ Rn
∞, w(t) ∈ Rnw

∞ , u(t) ∈ Rnu
∞ , z(t) ∈

Rnz
∞ , y(t) ∈ Rny

∞ , ψk ∈ RnΨ
∞ , yk = y(kh) and u(t) =

uk (kh ≤ t < (k + 1)h).

To facilitate the treatment of the sampled-data sys-
tem ΣSD viewed as an h-periodic mapping from w ∈
Lnw
∞ to z ∈ Lnz

∞ , we review the lifting technique as fol-
lows (Bamieh et al., 1991; Toivonen, 1992; Yamamoto,

1994). Given f(t) ∈ Lν
∞, its lifting {f̂k}∞k=0 ∈ l(L∞[0,h))ν

�w

�u P
�z

�y S

�Ψ

� H

Fig. 1. Sampled-data system ΣSD.
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is defined by f̂k(θ) = f(kh + θ) (0 ≤ θ < h). For

{f̂k}∞k=0 ∈ l(L∞[0,h))ν , we simply call

‖{f̂k}∞k=0‖∞ := sup
k

‖f̂k‖∞ (= ‖f‖∞) (2)

the l∞[0,h) norm. Similar convention is also applied to that

with h replaced by h′ := h/M for an M ∈ N. If F : X → Y
and either X or Y is lL∞[0,h)ν , we sometimes call the
induced norm ‖F‖∞ := supx∈X\{0} ‖Fx‖Y /‖x‖X the L∞-
induced norm.

Applying lifting to w and z together with discretizing u
and y leads to the (partially) lifted representation of the
continuous-time generalized plant P described by

P̂ :




xk+1 = Adxk +B1ŵk +B2duk

ẑk = C1xk +D11ŵk +D12uk

yk = C2dxk

(3)

with xk := x(kh), uk = u(kh) and yk = y(kh), the
matrices

Ad = exp(Ah) : Rn
∞ → Rn

∞

B2d =

∫ h

0

exp(Aθ)B2dθ : Rnu
∞ → Rn

∞

C2d = C2 : Rn
∞ → Rny

∞
and the operators B1, C1, D11 and D12 defined as

B1ŵk =

∫ h

0

exp(A(h− θ))B1ŵk(θ)dθ : (L∞[0, h))nw → Rn
∞

(4)

(C1xk)(θ) = C1 exp(Aθ)xk : Rn
∞ → (L∞[0, h))nz (5)

(D11ŵk)(θ) =

∫ θ

0

C1 exp(A(θ−τ))B1ŵk(τ)dτ :

(L∞[0, h))nw → (L∞[0, h))nz (6)

(D12uk)(θ) =

∫ θ

0

C1 exp(A(θ − τ))B2dτuk +D12uk :

Rnu
∞ → (L∞[0, h))nz (7)

The mapping from {ŵk}∞k=0 to {ẑk}∞k=0 is derived by

connectingΨ to the above P̂ , and we denote it by F(P̂ ,Ψ).
Since the lifting technique is norm-preserving, we can
see that the L∞-induced norm ‖F(P,HΨS)‖∞ of ΣSD

equals ‖F(P̂ ,Ψ)‖∞. To derive alternative representation

of F(P̂ ,Ψ), let us introduce M1 := [C1 D12], which can
also be defined by(

M1

[
x
u

])
(θ) = M1 exp(A2θ)

[
x
u

]
(8)

where M1 := [C1 D12] and A2 :=

[
A B2

0 0

]
. Next, let us

consider the (standard lifting-free) discrete-time plant

Pd :




xk+1 = Adxk + ηk +B2duk

ζk =

[
I

0

]
xk +

[
0

I

]
uk

yk = C2duk

(9)

with ηk ∈ Rn
∞ and ζk ∈ Rn+nu

∞ and denote by F(Pd,Ψ)
the mapping from η to ζ associated with the closed-loop
system obtained by connecting Ψ to the above Pd. Then,

F(P̂ ,Ψ) admits the representation

F(P̂ ,Ψ) = M1F(Pd,Ψ)B1 +D11 (10)

Throughout the paper, let us assume that (A,B1) is
controllable and (M1, A2) is observable.

This paper aims at approximating the operators B1, M1

and D11 by using the idea of the kernel approximation
approach (Kim and Hagiwara, 2015b) and deriving a dis-
cretization procedure of the continuous-time generalized
plant P together with the associated convergence proof. it
would be shown that the kernel approximation approach
would be superior to the input approximation approach in
the L1 synthesis phase of sampled-data systems, as is the
case with the L1 analysis problem dealt with in Kim and
Hagiwara (2016b).

4. KERNEL APPROXIMATION APPROACH TO
SAMPLED-DATA SYSTEMS

This section tackles the L1 optimal control problem of
sampled-data systems by using the idea of the kernel
approximation approach.

4.1 Review of the Fast-Lifting Treatment of ΣSD

For the fast-lifting parameter M ∈ N and h′ := h/M ,
fast-lifting (Hagiwara and Umeda, 2008) is defined as the
mapping from f ∈ (L∞[0, h))ν (or f ∈ (L1[0, h))

ν) to
f̌ := [(f (1))T · · · (f (M))T ]T ∈ (L∞[0, h′))Mν (or f̌ ∈
(L1[0, h

′))Mν), and is denoted by f̌ = LMf , where

f (i)(θ′) := f((i− 1)h′ + θ′) (0 ≤ θ′ < h′) (11)

Because LM is norm-preserving, it readily follows that

‖F(P̂ ,Ψ)‖∞ = ‖LMF(P̂ ,Ψ)L−1
M ‖∞ (12)

where the right-hand side means the l∞[0,h′)-induced norm

(recall (2) for the definition of the l∞[0,h′) norm).

Applying fast-lifting to ŵk and ẑk in the (partially) lifted

generalized plant P̂ leads to its fast-lifted counterpart

P̂M = diag[LM , I]P̂ diag[L−1
M , I] (13)

Here, it readily follows that LMF(P̂ ,Ψ)L−1
M = F(P̂M ,Ψ),

and it admits the representation

F(P̂M ,Ψ) = LMM1F(Pd,Ψ)B1L
−1
M + LMD11L

−1
M (14)

If we introduce M′
1, B′

1 and D′
11 defined as M1, B1

and D11, respectively, with the horizon [0, h) replaced by
[0, h′), together with the matrices

A′
d =exp(Ah′), A′

2d =exp(A2h
′), J =

[
I
0

]
:Rn+nu

∞ → Rn
∞

then, as in the standard arguments employing fast-
lifting (Hagiwara and Umeda, 2008), it readily follows that

LMD11L
−1
M = M′

1∆
0
MB′

1 +D′
11 (15)

LMM1 = M′
1A

′
2dM , B1L

−1
M = A′

dMB′
1 (16)

where

A′
dM :=

[
(A′

d)
M−1 · · · I

]
, A′

2dM :=




I
...

(A′
2d)

M−1


 (17)

∆0
M :=




0 0 · · · 0

J
. . .

. . .
...

...
. . .

. . . 0
(A′

2d)
M−2J · · · J 0




(18)
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is defined by f̂k(θ) = f(kh + θ) (0 ≤ θ < h). For

{f̂k}∞k=0 ∈ l(L∞[0,h))ν , we simply call
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with h replaced by h′ := h/M for an M ∈ N. If F : X → Y
and either X or Y is lL∞[0,h)ν , we sometimes call the
induced norm ‖F‖∞ := supx∈X\{0} ‖Fx‖Y /‖x‖X the L∞-
induced norm.

Applying lifting to w and z together with discretizing u
and y leads to the (partially) lifted representation of the
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B2d =
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0
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∞
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∞ → Rny

∞
and the operators B1, C1, D11 and D12 defined as

B1ŵk =
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0

exp(A(h− θ))B1ŵk(θ)dθ : (L∞[0, h))nw → Rn
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(4)

(C1xk)(θ) = C1 exp(Aθ)xk : Rn
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(D11ŵk)(θ) =
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0
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Rnu
∞ → (L∞[0, h))nz (7)

The mapping from {ŵk}∞k=0 to {ẑk}∞k=0 is derived by

connectingΨ to the above P̂ , and we denote it by F(P̂ ,Ψ).
Since the lifting technique is norm-preserving, we can
see that the L∞-induced norm ‖F(P,HΨS)‖∞ of ΣSD

equals ‖F(P̂ ,Ψ)‖∞. To derive alternative representation

of F(P̂ ,Ψ), let us introduce M1 := [C1 D12], which can
also be defined by(

M1

[
x
u

])
(θ) = M1 exp(A2θ)

[
x
u

]
(8)

where M1 := [C1 D12] and A2 :=

[
A B2

0 0

]
. Next, let us

consider the (standard lifting-free) discrete-time plant

Pd :




xk+1 = Adxk + ηk +B2duk

ζk =
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I

0

]
xk +

[
0

I
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yk = C2duk

(9)

with ηk ∈ Rn
∞ and ζk ∈ Rn+nu

∞ and denote by F(Pd,Ψ)
the mapping from η to ζ associated with the closed-loop
system obtained by connecting Ψ to the above Pd. Then,

F(P̂ ,Ψ) admits the representation

F(P̂ ,Ψ) = M1F(Pd,Ψ)B1 +D11 (10)

Throughout the paper, let us assume that (A,B1) is
controllable and (M1, A2) is observable.

This paper aims at approximating the operators B1, M1

and D11 by using the idea of the kernel approximation
approach (Kim and Hagiwara, 2015b) and deriving a dis-
cretization procedure of the continuous-time generalized
plant P together with the associated convergence proof. it
would be shown that the kernel approximation approach
would be superior to the input approximation approach in
the L1 synthesis phase of sampled-data systems, as is the
case with the L1 analysis problem dealt with in Kim and
Hagiwara (2016b).

4. KERNEL APPROXIMATION APPROACH TO
SAMPLED-DATA SYSTEMS

This section tackles the L1 optimal control problem of
sampled-data systems by using the idea of the kernel
approximation approach.

4.1 Review of the Fast-Lifting Treatment of ΣSD

For the fast-lifting parameter M ∈ N and h′ := h/M ,
fast-lifting (Hagiwara and Umeda, 2008) is defined as the
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ν) to
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′))Mν), and is denoted by f̌ = LMf , where
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‖F(P̂ ,Ψ)‖∞ = ‖LMF(P̂ ,Ψ)L−1
M ‖∞ (12)
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Applying fast-lifting to ŵk and ẑk in the (partially) lifted
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and it admits the representation

F(P̂M ,Ψ) = LMM1F(Pd,Ψ)B1L
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−1
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11 defined as M1, B1
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0
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′
2dM , B1L

−1
M = A′
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1 (16)

where
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and (·) denotes diag[(·), · · · , (·)] consisting of M copies
of (·).
The argument of the present paper is considered as a
successive study for our preceding study (Kim and Hagi-
wara, 2016b); in the latter study, the kernel approximation
approach (Kim and Hagiwara, 2015b) is applied to ΣSD for
tackling the L1 analysis problem of sampled-data systems,
but such a method is restricted to analysis and cannot be
applied directly to synthesis. In other words, this paper
deals the L1 synthesis problem of sampled-data systems
by applying the kernel approximation approach to ΣSD

under the piecewise constant approximation scheme. As a
preliminary step to considering the treatment of ΣSD via
the kernel approximation approach, let us introduce the
operators B′

k0 and M′
a0 defined respectively as

B′
k0w = A′

dB1

∫ h′

0

w(θ′)dθ′ : (L∞[0, h′))nw → Rn
∞ (19)

(
M′

a0

[
x
u

])
(θ′) = M1

[
x
u

]
: Rn+nu

∞ → (L∞[0, h′))nz (20)

The above B′
k0 corresponds to the zero-order approx-

imation of the kernel function exp(A(h′ − θ′))B1 =

A′
d

∑∞
i=0

(−Aθ′)i

i! B1 of the operator B′
1; the subscripts k

and 0 stand for the kernel approximation and the zero-
order approximation, respectively. Similarly, M′

a0 corre-
sponds to the zero-order approximation of the hold func-

tion M1 exp(A2θ
′) = M1

∑∞
i=0

(A2θ
′)i

i! of the operator M′
1

(which was used also in the input approximation approach
to the L1 synthesis of sampled-data systems studied in
Kim and Hagiwara (2016a)).

We consider replacing M′
1 and B′

1 with M′
a0 and B′

k0,
respectively, together with ignoring D′

11 in (14)–(16).

Then, we have the following approximation of F(P̂M ,Ψ):

F(P̂Mk0,Ψ) : = M′
a0A

′
2dMF(Pd,Ψ)A′

dMB′
k0

+M′
a0∆

0
MB′

k0 (21)

We call it piecewise constant kernel approximation of the
sampled-data system ΣSD, which alleviates the difficulty
in the synthesis of the optimal controller Ψ that minimizes

‖F(P̂ ,Ψ)‖∞ = ‖F(P̂M ,Ψ)‖∞.

4.2 Discretization of Continuous-Time Generalized Plant

This subsection provides a discretization procedure of the
continuous-time generalized plant P developed through
the piecewise constant kernel approximation treatment of
ΣSD. It converts the synthesis problem of an L1 optimal
controller Ψ for the sampled-data system ΣSD into the
discrete-time synthesis problem of an l1 optimal controller
relevant to the resulting generalized plant obtained by
adequately modifying Pd in (9).

To derive such a discretized generalized plant, we consider
replacing the operators B′

k0 and M′
a0 with appropriate

finite-dimensional matrices. It readily follows from (20)

and (21) that the output of F(P̂Mk0,Ψ) is a constant
function determined by the matrix M1. Furthermore, it
readily follows from (19) that the following relation holds,
where a constant function in (L∞[0, h′))nw is denoted by
wd.

{B′
k0w | ‖w‖∞ ≤ 1} = {B′

k0wd | ‖wd‖∞ ≤ 1} (22)

This clearly implies that the input of F(P̂Mk0,Ψ) can
always be assumed to be a constant function when we

evaluate ‖F(P̂Mk0,Ψ)‖∞ (and the action of B′
k0 can

virtually be described by the matrix A′
dB1h

′ as seen

by (19)). Thus, ‖F(P̂Mk0,Ψ)‖∞ coincides with the l∞-
induced norm of the discrete-time system obtained by

replacing the operators B′
k0 and M′

a0 in F(P̂Mk0,Ψ) in
(21) with A′

dB1h
′ and M1, respectively. Combining the

above arguments and interpreting the resulting discrete-
time system (as the feedback connection of PMk0d given
below and Ψ) leads to the following result.

Theorem 1. Let us consider the discrete-time generalized
plant given by

PMk0d :




xk+1 = Adxk +BMk0wk +B2duk

zk = CMk0xk +DMk01wk +DMk02uk

yk = C2dxk

(23)

where

BMk0 := A′
dMA′

dB1h′ (24)

DMk01 := M1∆
0
MA′

dB1h′ (25)

[CMk0 DMk02] := M1A
′
2dM

(CMk0 ∈ RMnz×n, DMk02 ∈ RMnz×nu) (26)

Let us denote by ‖F(PMk0d,Ψ)‖∞ the l∞-induced norm
of the discrete-time system consisting of PMk0d and

Ψ . Then, the l∞[0,h′)-induced norm ‖F(P̂Mk0,Ψ)‖∞ coin-

cides with the l∞-induced norm ‖F(PMk0d,Ψ)‖∞, i.e.,

‖F(P̂Mk0,Ψ)‖∞ = ‖F(PMk0d,Ψ)‖∞.

Theorem 1 obviously means that the synthesis problem

about inf
Ψ

‖F(P̂Mk0,Ψ)‖∞ obtained by the piecewise con-

stant kernel approximation of ΣSD is equivalently con-
verted into the discrete-time l1 optimal controller synthesis
problem about inf

Ψ
‖F(PMk0d,Ψ)‖∞. Thus, the remaining

task is to construct a theoretical basis of the piecewise
constant kernel approximation for tackling the L1 optimal
control problem of sampled-data systems through dealing

with F(P̂Mk0,Ψ), which is merely an approximation of

F(P̂M ,Ψ). To this end, we derive an error bound between

‖F(P̂Mk0,Ψ)‖∞(= ‖F(PMk0d,Ψ)‖∞) and ‖F(P̂ ,Ψ)‖∞,
whose details and implications are discussed in the follow-
ing subsections.

4.3 Error Analysis for Kernel Approximation Approach

This subsection is devoted to providing the error analysis
in the piecewise constant kernel approximation and shows
that the associated convergence rate is in the order of
1/M with the underlying fast-lifting parameter M . To

evaluate the error in the approximation of ‖F(P̂ ,Ψ)‖∞ =

‖F(P̂M ,Ψ)‖∞ by ‖F(PMk0d,Ψ)‖∞, we first introduce the
operators J′

k0 : (L∞[0, h′))nw → (L∞[0, h′))nw and H′
a0 :

(L∞[0, h′))nz → (L∞[0, h′))nz described respectively as

(J′
k0w)(θ

′) := BT
1 exp(AT (h′ − θ′))W−1

h′ B′
k0w (27)

(H′
a0z)(θ

′) = z(0) (0 ≤ θ′ < h′) (28)

where Wh′ is the controllability Grammian defined as

Wh′ :=

∫ h′

0

exp(A(h′ − θ′))B1B
T
1 exp(AT (h′ − θ′))dθ′ (29)
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and its inverse in (27) is ensured to exist by the controlla-
bility assumption of (A,B1). Then, we can see from (19)
and (20) that

B′
k0 = B′

1J
′
k0, M′

a0 = H′
a0M

′
1 (30)

Hence, by defining JMk0 := L−1
M J′

k0, HMa0 := H′
a0LM

and DMk0 := M′
a0∆

0
MB′

k0, it follows from (15), (16) and

(21) that F(P̂Mk0,Ψ) can be also represented as

F(P̂Mk0,Ψ) = HMa0M1F(Pd,Ψ)B1JMk0 +DMk0 (31)

We next introduce ‘finite-rank portions’ of F(P̂M ,Ψ) in

(14) and F(P̂Mk0,Ψ) in (31) described respectively by

F0(P̂M ,Ψ) := LMM1F(Pd,Ψ)B1L
−1
M

= F(P̂M ,Ψ)− LMD11L
−1
M (32)

F0(P̂Mk0,Ψ) := HMa0M1F(Pd,Ψ)B1JMk0

= F(P̂Mk0,Ψ)−DMk0 (33)

It is obvious from the comparison between the above two
equations that evaluating JMk0 −L−1

M and HMa0 −LM is
important in the error analysis (and this is why J′

k0 and
H′

a0 were introduced in such a way that (30) is satisfied,
so that (21) can be rewritten in the form of (31)). The
following lemma is associated with such an evaluation.

Lemma 2. We have the following properties regarding the
preadjoints B1∗ and JMk0∗ and the operators M1 and
HMa0.

a) There exists a constant KBk0 such that

‖(LM − JMk0∗)|R(B1∗)‖1 ≤ KBk0

M
(34)

where R(B1∗) denotes the range of B1∗ (to which
LM − JMk0∗ is restricted) and is viewed as a subset of
(L1[0, h))

nw .

b) There exists a constant KCk0 such that

‖(LM −HMa0)|R(M1)‖∞ ≤ KCk0

M
(35)

where R(M1) denotes the range of M1 (to which LM −
HMa0 is restricted) and is viewed as a subset of
(L∞[0, h))nz .

From Lemma 2, we can obtain the following result.

Proposition 3. There exits a constant K0
k0 independent of

Ψ , such that

‖F0(P̂Mk0,Ψ)−F0(P̂M ,Ψ)‖∞ ≤ K0
k0

M
‖F0(P̂M ,Ψ)‖∞

(36)

In comparison between (32) and (33), we see that evaluat-
ing DMk0−LMD11L

−1
M is also very important in the error

analysis, for which we refer to the following result (Kim
and Hagiwara, 2016b, Lemma 1).

Lemma 4. There exists a constant K1
k0 such that

‖DMk0 − LMD11L
−1
M ‖∞ ≤ K1

k0

M
(37)

From Proposition 3 and Lemma 4, we provide the following
main result on the error analysis of the piecewise constant
kernel approximation.

Theorem 5. The following inequality holds:(
1− K0

k0

M

)
‖F(P̂ ,Ψ)‖∞ − K1

k0

M
≤ ‖F(P̂Mk0,Ψ)‖∞

≤
(
1 +

K0
k0

M

)
‖F(P̂ ,Ψ)‖∞ +

K1
k0

M
(38)

Combining Theorems 1 and 5 leads to the following result.

Corollary 6. The inequality holds:(
1− K0

k0

M

)
‖F(P̂ ,Ψ)‖∞ − K1

k0

M
≤ ‖F(PMk0d,Ψ)‖∞

≤
(
1 +

K0
k0

M

)
‖F(P̂ ,Ψ)‖∞ +

K1
k0

M
(39)

Remark 1. Through the input approximation approach
under the piecewise constant approximation scheme in Kim
and Hagiwara (2014, 2015a), we could derive the inequality(

1− K0
i0

M

)
‖F(P̂ ,Ψ)‖∞ − K1

i0

M
≤ ‖F(PM i0d,Ψ)‖∞

≤
(
1 +

K0
i0

M

)
‖F(P̂ ,Ψ)‖∞ +

K1
i0

M
(40)

with appropriately defined discrete-time generalized plant
PM i0d and constants K0

i0 and K1
i0. With regards to the

comparison of the inequalities (39) and (40), we can show
that the constants K0

k0 and K1
k0 introduced in this paper

can be shown to be smaller than K0
i0 and K1

i0, respectively.
Thus, it is expected that the kernel approximation ap-
proach can lead to a smaller approximation error than the
input approximation approach under the same parameter
M for the L1 optimal controller synthesis problem of
sampled-data systems.

4.4 Validity of Piecewise Constant Kernel Approximation

This subsection provides theoretical validity of the piece-
wise constant kernel approximation for tackling the L1

optimal controller synthesis for ΣSD by using the argu-

ments in Corollary 6. Let γopt := infΨ ‖F(P̂ ,Ψ)‖∞ and
take an M . Suppose that ΨMk0 is an ε-suboptimal con-
troller with respect to γMk0 := inf

Ψ
‖F(PMk0d,Ψ)‖∞, i.e.,

‖F(PMk0d,ΨMk0)‖∞ ≤ γMk0+ ε (ε > 0). Let M0 ∈ N be
the minimum such that M0 > Kk0. Then, for M ≥ M0,
the first inequality of (39) implies that

γopt ≤ ‖F(P̂ ,ΨMk0)‖∞

≤
(
1 +

K0
k0

M −K0
k0

)
(γMk0 + ε) +

K1
k0

M −K0
k0

(41)

On the other hand, it readily follows from the second
inequality of (39) that

γMk0 ≤
(
1 +

K0
k0

M

)
γopt +

K1
k0

M
(42)

Substituting this into (41) and taking a sufficiently large
M such that M ≥ M0, we see that

γopt ≤ ‖F(P̂ ,ΨMk0)‖∞ ≤ γopt + ε+
X

M
(43)
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and its inverse in (27) is ensured to exist by the controlla-
bility assumption of (A,B1). Then, we can see from (19)
and (20) that

B′
k0 = B′

1J
′
k0, M′

a0 = H′
a0M

′
1 (30)

Hence, by defining JMk0 := L−1
M J′

k0, HMa0 := H′
a0LM

and DMk0 := M′
a0∆

0
MB′

k0, it follows from (15), (16) and

(21) that F(P̂Mk0,Ψ) can be also represented as

F(P̂Mk0,Ψ) = HMa0M1F(Pd,Ψ)B1JMk0 +DMk0 (31)

We next introduce ‘finite-rank portions’ of F(P̂M ,Ψ) in

(14) and F(P̂Mk0,Ψ) in (31) described respectively by

F0(P̂M ,Ψ) := LMM1F(Pd,Ψ)B1L
−1
M

= F(P̂M ,Ψ)− LMD11L
−1
M (32)

F0(P̂Mk0,Ψ) := HMa0M1F(Pd,Ψ)B1JMk0

= F(P̂Mk0,Ψ)−DMk0 (33)

It is obvious from the comparison between the above two
equations that evaluating JMk0 −L−1

M and HMa0 −LM is
important in the error analysis (and this is why J′

k0 and
H′

a0 were introduced in such a way that (30) is satisfied,
so that (21) can be rewritten in the form of (31)). The
following lemma is associated with such an evaluation.

Lemma 2. We have the following properties regarding the
preadjoints B1∗ and JMk0∗ and the operators M1 and
HMa0.

a) There exists a constant KBk0 such that

‖(LM − JMk0∗)|R(B1∗)‖1 ≤ KBk0

M
(34)

where R(B1∗) denotes the range of B1∗ (to which
LM − JMk0∗ is restricted) and is viewed as a subset of
(L1[0, h))

nw .

b) There exists a constant KCk0 such that

‖(LM −HMa0)|R(M1)‖∞ ≤ KCk0

M
(35)

where R(M1) denotes the range of M1 (to which LM −
HMa0 is restricted) and is viewed as a subset of
(L∞[0, h))nz .

From Lemma 2, we can obtain the following result.

Proposition 3. There exits a constant K0
k0 independent of

Ψ , such that

‖F0(P̂Mk0,Ψ)−F0(P̂M ,Ψ)‖∞ ≤ K0
k0

M
‖F0(P̂M ,Ψ)‖∞

(36)

In comparison between (32) and (33), we see that evaluat-
ing DMk0−LMD11L

−1
M is also very important in the error

analysis, for which we refer to the following result (Kim
and Hagiwara, 2016b, Lemma 1).

Lemma 4. There exists a constant K1
k0 such that

‖DMk0 − LMD11L
−1
M ‖∞ ≤ K1

k0

M
(37)

From Proposition 3 and Lemma 4, we provide the following
main result on the error analysis of the piecewise constant
kernel approximation.

Theorem 5. The following inequality holds:(
1− K0

k0

M

)
‖F(P̂ ,Ψ)‖∞ − K1

k0

M
≤ ‖F(P̂Mk0,Ψ)‖∞

≤
(
1 +

K0
k0

M

)
‖F(P̂ ,Ψ)‖∞ +

K1
k0

M
(38)

Combining Theorems 1 and 5 leads to the following result.

Corollary 6. The inequality holds:(
1− K0

k0

M

)
‖F(P̂ ,Ψ)‖∞ − K1

k0

M
≤ ‖F(PMk0d,Ψ)‖∞

≤
(
1 +

K0
k0

M

)
‖F(P̂ ,Ψ)‖∞ +

K1
k0

M
(39)

Remark 1. Through the input approximation approach
under the piecewise constant approximation scheme in Kim
and Hagiwara (2014, 2015a), we could derive the inequality(

1− K0
i0

M

)
‖F(P̂ ,Ψ)‖∞ − K1

i0

M
≤ ‖F(PM i0d,Ψ)‖∞

≤
(
1 +

K0
i0

M

)
‖F(P̂ ,Ψ)‖∞ +

K1
i0

M
(40)

with appropriately defined discrete-time generalized plant
PM i0d and constants K0

i0 and K1
i0. With regards to the

comparison of the inequalities (39) and (40), we can show
that the constants K0

k0 and K1
k0 introduced in this paper

can be shown to be smaller than K0
i0 and K1

i0, respectively.
Thus, it is expected that the kernel approximation ap-
proach can lead to a smaller approximation error than the
input approximation approach under the same parameter
M for the L1 optimal controller synthesis problem of
sampled-data systems.

4.4 Validity of Piecewise Constant Kernel Approximation

This subsection provides theoretical validity of the piece-
wise constant kernel approximation for tackling the L1

optimal controller synthesis for ΣSD by using the argu-

ments in Corollary 6. Let γopt := infΨ ‖F(P̂ ,Ψ)‖∞ and
take an M . Suppose that ΨMk0 is an ε-suboptimal con-
troller with respect to γMk0 := inf

Ψ
‖F(PMk0d,Ψ)‖∞, i.e.,

‖F(PMk0d,ΨMk0)‖∞ ≤ γMk0+ ε (ε > 0). Let M0 ∈ N be
the minimum such that M0 > Kk0. Then, for M ≥ M0,
the first inequality of (39) implies that

γopt ≤ ‖F(P̂ ,ΨMk0)‖∞

≤
(
1 +

K0
k0

M −K0
k0

)
(γMk0 + ε) +

K1
k0

M −K0
k0

(41)

On the other hand, it readily follows from the second
inequality of (39) that

γMk0 ≤
(
1 +

K0
k0

M

)
γopt +

K1
k0

M
(42)

Substituting this into (41) and taking a sufficiently large
M such that M ≥ M0, we see that

γopt ≤ ‖F(P̂ ,ΨMk0)‖∞ ≤ γopt + ε+
X

M
(43)

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

937

where

X :=
2K0

k0γopt
1−K0

k0/M0
+

2K1
k0

1−K0
k0/M0

+
K0

k0ε

1−K0
k0/M0

(44)

This obviously means that the performance with a sub-
optimal ΨMk0 with respect to inf

Ψ
‖F(PMk0d,Ψ)‖∞ (suffi-

ciently close to the infimal performance) converges to that
of the L1 optimal controller for ΣSD in the order of 1/M .

5. CONCLUSION

This is the first paper to deal with the use of the kernel
approximation approach in controller synthesis and we
specifically employed the piecewise constant approxima-
tion scheme to give a preliminary study of the L1 optimal
control problem of sampled-data systems. With these ap-
proximations, the continuous-time generalized plant P in
the sampled-data system was eventually approximated by
a discrete-time generalized plant. More precisely, we first
established Theorem 1, whose implication is that the L1

optimal control problem of sampled-data systems is ap-
proximately converted into an appropriately constructed
discrete-time l1 optimal control problem. Furthermore, to
develop a mathematical basis for the kernel approximation
approach in the L1 optimal controller synthesis problem of
sampled-data systems, we next established Theorem 5 or
the inequality (38) through the arguments of preadjoint
operators. This inequality showed that the convergence
rate associated with the kernel approximation approach
is 1/M with respect to the fast-lifting parameter M . Here,
it should be stressed that even though this convergence
rate is qualitatively the same as that in the existing input
approximation with the piecewise constant approximation
scheme, the approximation error through the new kernel
approximation approach is smaller than that through the
existing input approximation approach under the same
fast-lifting parameter M .
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