
IFAC PapersOnLine 50-1 (2017) 3623–3628

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2017.08.707

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2017.08.707 2405-8963

Characterization of Quasi L∞/L2 Hankel
Norms of Sampled-Data Systems

Akira Inai ∗ Tomomichi Hagiwara ∗∗ Jung Hoon Kim ∗∗∗

∗ Electrical Engineering Department, Kyoto University, Kyoto, Japan
(e-mail: inai@jaguar.kuee.kyoto-u.ac.jp).

∗∗ Electrical Engineering Department, Kyoto University, Kyoto, Japan
(e-mail: hagiwara@kuee.kyoto-u.ac.jp)

∗∗∗ Center for Robotics Research, Korea Institute of Science and
Technology (KIST), Seoul, Republic of Korea, (e-mail:

j.h.kim@kist.re.kr)

Abstract: This paper is concerned with the Hankel operator of sampled-data systems. The
Hankel operator is usually defined as a mapping from the past input to the future output and
its norm plays an important role in evaluating the performance of systems. Since the continuous-
time mapping between the input and output is periodically time-varying (h-periodic, where h
denotes the sampling period) in sampled-data systems, it matters when to take the time instant
separating the past and the future when we define the Hankel operator for sampled-data systems.
This paper takes an arbitrary Θ ∈ [0, h) as such an instant, and considers the quasi L∞/L2

Hankel operator defined as the mapping from the past input in L2(−∞,Θ) to the future output
in L∞[Θ ,∞). The norm of this operator, which we call the quasi L∞/L2 Hankel norm at Θ ,
is then characterized in such a way that its numerical computation becomes possible. Then,
regarding the computation of the L∞/L2 Hankel norm defined as the supremum of the quasi
L∞/L2 Hankel norms over Θ ∈ [0, h), some relationship is discussed between the arguments
through such characterization and an alternative method developed in an earlier paper that is
free from the computations of quasi L∞/L2 Hankel norms. A numerical example is studied to
confirm the validity of the arguments in this paper.
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1. INTRODUCTION

Many systems in engineering and science belong to the
class of dynamical systems, which are characterized as such
systems whose output depends not only on the present
input but also on the past input. The mapping from the
past input to the future output is generally called the
Hankel operator, and its norm is called the Hankel norm.
The study on the Hankel operator/norm is important in
model reduction and related studies, and many significant
results have been obtained in continuous-time linear time-
invariant (LTI) systems, e.g., Lin and Kung (1982); Glover
(1982); Zhou (1995); Hung and Glover (1986).

The Hankel operator is usually defined as a mapping
from the past input in L2(−∞, 0) to the future output in
L2[0,∞), and the Hankel norm is defined accordingly. On
the other hand, there is also a study that is interested in
the Hankel operator defined as a mapping from L2(−∞, 0)
to L∞[0,∞) (Wilson, 1989), which we call the L∞/L2

Hankel operator for simplicity. Unlike in the former case
dealing with the usual Hankel operator (which we call
the L2/L2 Hankel operator), it has been clarified for
continuous-time LTI systems that the associated Hankel
norm (which we call the L∞/L2 Hankel norm) equals the
corresponding induced norm from L2[0,∞) to L∞[0,∞).
In continuous-time LTI systems, this induced norm is

further known to have a very close relationship with the
H2 norm (Wilson, 1989; Rotea, 1993; Chellabonia and
Haddad, 2000).

This paper is concerned with the L∞/L2 Hankel opera-
tor/norm of sampled-data systems, in which the general-
ized plant has the continuous-time disturbance w and the
continuous-time controlled output z, and the effect of the
past w on the future z is studied. To make this state-
ment more rigorous, however, we first need to note a very
important and essential feature of sampled-data systems:
due to the periodic action of the ‘sampled-data controller’
consisting of the discrete-time controller together with the
hold and sampling devices, the continuous-time mapping
between w and z is h-periodic, where h denotes the sam-
pling period. Hence, it deeply matters when to take the
time instant that separates the ‘past’ about the input w
and the ‘future’ about the output z in defining the Hankel
operator. In Chongsrid and Hara (1995)1, this issue was
completely neglected and the past and the future were
simply separated at time 0 under the treatment in which
the time 0 is also an instant at which the sampler takes

1 Note that the study in Chongsrid and Hara (1995) corresponds to
the L2/L2 Hankel operator (more precisely, a quasi L2/L2 Hankel
operator in the term of the present paper) while the present paper
deals with the L∞/L2 Hankel operator.
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its action. This inappropriate treatment was amended in
our recent study (Hagiwara et al., 2016) by first taking
an arbitrary Θ ∈ [0, h) as the instant separating the
past and the future and then considering the mapping
from w ∈ L2(−∞,Θ) to z ∈ L∞[Θ ,∞), which we call
the quasi L∞/L2 Hankel operator at Θ . The associated
norm (i.e., the quasi L∞/L2 Hankel norm at Θ) was then
considered and, roughly speaking, the worst value of this
norm over Θ ∈ [0, h) was defined as the L∞/L2 Hankel
norm while the quasi L∞/L2 Hankel operator at such Θ
that corresponds to the worst value was defined as the
L∞/L2 Hankel operator.

What has been shown in our recent study (Hagiwara et
al., 2016) on sampled-data systems is that

(i) as in the continuous-time LTI case, the induced norm
from L2[0,∞) to L∞[0,∞) (Zhu and Skelton, 1995;
Kim and Hagiwara, 2015)coincides with the L∞/L2

Hankel norm;
(ii) the L∞/L2 Hankel operator/norm can actually be

characterized in such an alternative approach that
completely avoids the reference to the quasi L∞/L2

Hankel operators/norms.

However, characterizing the quasi L∞/L2 Hankel norm
for a given Θ ∈ [0, h) in such a way that the norm can
be computed readily is still an open problem. What the
present paper tackles is exactly this open problem.

The notation in this paper is as follows. N and Rν denote
the set of positive integers and the set of ν-dimensional
real vectors, respectively. We further use the notation N0

to imply N ∪ {0}. The ∞-norm of vectors is denoted
by |x|∞ (= maxi=1,...,ν |xi|). Furthermore, we use the
notation dmax(·) to denote the maximum diagonal entry
of a real symmetric matrix.

2. LIFTING TREATMENT OF SAMPLED-DATA
SYSTEMS AND QUASI L∞/L2 HANKEL NORM AT Θ

2.1 Lifting Treatment of Sampled-Data Systems

We consider the stable LTI sampled-data system ΣSD

shown in Fig. 1, where P denotes the continuous-time LTI
generalized plant while Ψ , H and S denote the discrete-
time LTI controller, the zero-order hold and the ideal
sampler, respectively, operating with sampling period h
in a synchronous fashion. Solid lines and dashed lines
are used to represent continuous-time and discrete-time
signals, respectively, in this figure. Let P and Ψ be
described by

P :




dx

dt
= Ax + B1w + B2u

z = C1x + D12u

y = C2x

(1)

Ψ :
{

ψk+1 = AΨψk + BΨyk

uk = CΨψk + DΨyk
(2)

respectively, where x(t) ∈ Rn, w(t) ∈ Rnw , u(t) ∈
Rnu , z(t) ∈ Rnz , y(t) ∈ Rny , ψk ∈ RnΨ , yk = y(kh)
and u(t) = uk (kh ≤ t < (k + 1)h).

The sampled-data system ΣSD viewed as a continuous-
time mapping between w and z is periodically time-

�w

�u
P

�z

�
y

S

�Ψ

� H

Fig. 1. Sampled-data system ΣSD.

varying. To deal with ΣSD as if it were a time-invariant sys-
tem, we apply the lifting technique (Bamieh and Pearson,
1992a; Toivonen, 1992; Yamamoto, 1994), which converts
the continuous-time function f(·) to the sequence { �fk(θ)}
of functions on [0, h) given by

�fk(θ) = f(kh + θ) (0 ≤ θ < h) (3)
In accordance with the above equation for lifting, we
assume that the sampling instants are given by the integer
multiples of h (and thus time 0 is a sampling instant)2 .
Hence, we have the lifted representation of sampled-data
systems ΣSD given by{

ξk+1 = Aξk + B �wk

�zk = Cξk + D �wk
(4)

with ξk := [xT
k ψT

k ]T (xk := x(kh)), the matrix

A =
[
Ad + B2dDΨC2d B2dCΨ

BΨC2d AΨ

]
: Rn+nΨ → Rn+nΨ (5)

and the operators
B = JΣB1 : L2[0, h) → Rn+nΨ (6)
C = M1CΣ : Rn+nΨ → L∞[0, h) (7)
D = D11 : L2[0, h) → L∞[0, h) (8)

where

Ad := exp(Ah), B2d :=
∫ h

0

exp(Aθ)B2dθ, C2d := C2 (9)

JΣ :=
[
I
0

]
∈ R(n+nΨ )×n, CΣ :=

[
I 0

DΨC2d CΨ

]
(10)

B1w =
∫ h

0

exp(A(h − θ))B1w(θ)dθ (11)
(
M1

[
x
u

] )
(θ) = M1 exp (A2θ)

[
x
u

]
(12)

A2 :=
[
A B2

0 0

]
, M1 := [C1 D12] (13)

(D11w)(θ) =
∫ θ

0

C1 exp(A(θ − τ))B1w(τ)dτ (14)

Note that the matrix A is stable by the stability assump-
tion of ΣSD.

2.2 Quasi L∞/L2 Hankel Norm at Θ

In this section, we review the definition of the quasi L∞/L2

Hankel norm of sampled-data systems (Hagiwara et al.,
2016) when we consider separating the past and the future
at Θ ∈ [0, h). We also introduce some relevant notations.

Let Θ ∈ [0, h) be the time instant separating the past
about the input w and the future about the output z.
2 We do not regard time 0 as the instant that separates the past
and the future; such an instant will be denoted by Θ ∈ [0, h).
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For each Θ ∈ [0, h), we consider the input w defined on
(−∞,Θ) such that its L2(−∞,Θ) norm defined as

||w(·)||[Θ]
2− =

(∫ Θ

−∞
w(t)T w(t)dt

)1/2

(15)

is well-defined. The function space of such w is denoted by
L2(−∞,Θ). On the other hand, the output z is handled
only on [Θ ,∞) (assuming that w(t) = 0 for t ≥ Θ) and
regarded as an element of the function space L∞[Θ ,∞)
defined as the set of z such that its L∞[Θ ,∞) norm defined
as

||z(·)||[Θ]
∞ = ess sup

Θ≤t<∞
|z(t)|∞ (16)

is well-defined. The mapping from L2(−∞,Θ) to L∞[Θ ,∞)
is called the quasi L∞/L2 Hankel operator of the sampled-
data system ΣSD at Θ , which we denote by H[Θ]. Its norm
defined as

||H[Θ]|| := sup
w∈L2(−∞,Θ)

||z(·)||[Θ]
∞

||w(·)||[Θ]
2−

(17)

is called the quasi L∞/L2 Hankel norm at Θ .

We further remark that the L∞/L2 Hankel norm of the
sampled-data systems ΣSD, which we denote by ||ΣSD||H,
is defined in Hagiwara et al. (2016) as

||ΣSD||H := sup
Θ∈[0,h)

||H[Θ]|| (18)

When the right hand side of the above equation is attained
(at Θ = Θ�), H[Θ�] is defined in Hagiwara et al. (2016)
as the L∞/L2 Hankel operator of ΣSD. It is known that
Θ� is well-defined when D12 = 0 (but not necessarily so
otherwise).

What has been clarified in our preceding study (Hagiwara
et al., 2016) is that (i) the L∞/L2 Hankel norm can
actually be computed without computing the quasi L∞/L2

Hankel norms at all, and (ii) the L∞/L2 Hankel operator
can also be characterized (when it exists) without dealing
with the quasi L∞/L2 Hankel operators at all. Because
of these facts, the preceding study did not even refer
to an interesting problem of characterizing the quasi
L∞/L2 Hankel norms in such a way that their numerical
computation becomes possible. What the present paper
is interested in, on the other hand, is precisely such
characterization.
Remark 1. The notation || · ||2 is also used for functions
defined on the interval [0, h), in which case (15) is modified
accordingly.

3. CHARACTERIZING QUASI L∞/L2 HANKEL
NORMS

3.1 Past-Input/Future-Output Relation of ΣSD through
the Lifting Treatment

An important preliminary step for our characterizing
the quasi L∞/L2 Hankel norms is to represent the in-
put/output relation of ΣSD through the lifting treatment.
Under the assumption that x(−∞) = 0, ψ−∞ = 0 and
w(t) = 0, t ≥ Θ , the relationship between lifted represen-
tations { �wk}0

k=−∞ of the past input and {�zk}∞k=0 of the
future output can be described by the formal relation




�z0

�z1

�z2

�z3

...




=




D CB CAB CA2B · · ·
CB CAB CA2B · · ·
CAB CA2B
CA2B

......







�w0

�w−1

�w−2

�w−3

...




(19)

Let us take an arbitrary τ ∈ [Θ ,Θ + h). Then, the output
z(kh + τ) for each input w ∈ L2(−∞,Θ) is equal to
the output z(τ) for another input obtained by shifting
the original input w to the left by kh. Here, note that if
τ ∈ [Θ ,Θ + h) actually belongs to τ ∈ [0, h), then z(τ) is
relevant to �z0, while if τ ∈ [h, 2h), then z(τ) is relevant to
�z1. Similarly, z(kh+τ) is relevant to �zk or �zk+1, depending
on whether τ ∈ [0, h) or τ ∈ [h, 2h). Keeping these facts in
mind, we see that the above observation about shifting w
implies that only the first two block rows in the operator
matrix on the right hand side of (19) matters when we
are to characterize the quasi L∞/L2 Hankel norms. More
precisely, by introducing

F1 =
[
D CB CAB CA2B · · ·

]
(20)

F2 =
[
CB CAB CA2B CA3B · · ·

]
(21)

and defining �w := [ �wT
0 , �wT

−1, · · · ]T together with || �w||[Θ]
2− :=

(
∑0

k=−∞ || �wk||22)1/2 under the assumption that �w0(θ) =

0 (θ ≥ Θ) (which implies ||w||[Θ]
2− = || �w||[Θ]

2− ), we readily
see the following relation about the quasi L∞/L2 Hankel
norm at Θ :

||H[Θ]|| = sup
||w||[Θ]

2−≤1

sup
Θ≤τ<Θ+h

|z(τ)|∞

= max


 sup

||�w||[Θ]
2−≤1

sup
Θ≤θ<h

|(F1 �w)(θ)|∞,

sup
||�w||[Θ]

2−≤1

sup
0≤θ<Θ

|(F2 �w)(θ)|∞




(22)

The following subsections are devoted to characterizing
the quasi L∞/L2 Hankel norms ||H[Θ]|| through the above
representation.

3.2 Characterization of ||H[Θ]||

We first note that �w0(τ) = 0 for τ ∈ [Θ , h). Then, it follows
from (6)–(8) together with (11), (12) and (14) that, for
θ ∈ [Θ , h),

(F1 �w)(θ) = (D �w0)(θ) + (CB �w−1)(θ) + (CAB �w−2)(θ) + · · ·

=
∫ θ

0

Dθ(τ) �w0(τ)dτ +
∞∑

k=0

∫ h

0

CθAkBh(τ) �w−(k+1)(τ)dτ

=
∫ Θ

0

Dθ(τ) �w0(τ)dτ +
∞∑

k=0

∫ h

0

CθAkBh(τ) �w−(k+1)(τ)dτ

(23)

and, for θ ∈ [0,Θ),
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For each Θ ∈ [0, h), we consider the input w defined on
(−∞,Θ) such that its L2(−∞,Θ) norm defined as

||w(·)||[Θ]
2− =

(∫ Θ

−∞
w(t)T w(t)dt

)1/2

(15)

is well-defined. The function space of such w is denoted by
L2(−∞,Θ). On the other hand, the output z is handled
only on [Θ ,∞) (assuming that w(t) = 0 for t ≥ Θ) and
regarded as an element of the function space L∞[Θ ,∞)
defined as the set of z such that its L∞[Θ ,∞) norm defined
as

||z(·)||[Θ]
∞ = ess sup

Θ≤t<∞
|z(t)|∞ (16)

is well-defined. The mapping from L2(−∞,Θ) to L∞[Θ ,∞)
is called the quasi L∞/L2 Hankel operator of the sampled-
data system ΣSD at Θ , which we denote by H[Θ]. Its norm
defined as

||H[Θ]|| := sup
w∈L2(−∞,Θ)

||z(·)||[Θ]
∞

||w(·)||[Θ]
2−

(17)

is called the quasi L∞/L2 Hankel norm at Θ .

We further remark that the L∞/L2 Hankel norm of the
sampled-data systems ΣSD, which we denote by ||ΣSD||H,
is defined in Hagiwara et al. (2016) as

||ΣSD||H := sup
Θ∈[0,h)

||H[Θ]|| (18)

When the right hand side of the above equation is attained
(at Θ = Θ�), H[Θ�] is defined in Hagiwara et al. (2016)
as the L∞/L2 Hankel operator of ΣSD. It is known that
Θ� is well-defined when D12 = 0 (but not necessarily so
otherwise).

What has been clarified in our preceding study (Hagiwara
et al., 2016) is that (i) the L∞/L2 Hankel norm can
actually be computed without computing the quasi L∞/L2

Hankel norms at all, and (ii) the L∞/L2 Hankel operator
can also be characterized (when it exists) without dealing
with the quasi L∞/L2 Hankel operators at all. Because
of these facts, the preceding study did not even refer
to an interesting problem of characterizing the quasi
L∞/L2 Hankel norms in such a way that their numerical
computation becomes possible. What the present paper
is interested in, on the other hand, is precisely such
characterization.
Remark 1. The notation || · ||2 is also used for functions
defined on the interval [0, h), in which case (15) is modified
accordingly.

3. CHARACTERIZING QUASI L∞/L2 HANKEL
NORMS

3.1 Past-Input/Future-Output Relation of ΣSD through
the Lifting Treatment

An important preliminary step for our characterizing
the quasi L∞/L2 Hankel norms is to represent the in-
put/output relation of ΣSD through the lifting treatment.
Under the assumption that x(−∞) = 0, ψ−∞ = 0 and
w(t) = 0, t ≥ Θ , the relationship between lifted represen-
tations { �wk}0

k=−∞ of the past input and {�zk}∞k=0 of the
future output can be described by the formal relation




�z0

�z1

�z2

�z3

...




=




D CB CAB CA2B · · ·
CB CAB CA2B · · ·
CAB CA2B
CA2B

......







�w0

�w−1

�w−2

�w−3

...




(19)

Let us take an arbitrary τ ∈ [Θ ,Θ + h). Then, the output
z(kh + τ) for each input w ∈ L2(−∞,Θ) is equal to
the output z(τ) for another input obtained by shifting
the original input w to the left by kh. Here, note that if
τ ∈ [Θ ,Θ + h) actually belongs to τ ∈ [0, h), then z(τ) is
relevant to �z0, while if τ ∈ [h, 2h), then z(τ) is relevant to
�z1. Similarly, z(kh+τ) is relevant to �zk or �zk+1, depending
on whether τ ∈ [0, h) or τ ∈ [h, 2h). Keeping these facts in
mind, we see that the above observation about shifting w
implies that only the first two block rows in the operator
matrix on the right hand side of (19) matters when we
are to characterize the quasi L∞/L2 Hankel norms. More
precisely, by introducing

F1 =
[
D CB CAB CA2B · · ·

]
(20)

F2 =
[
CB CAB CA2B CA3B · · ·

]
(21)

and defining �w := [ �wT
0 , �wT

−1, · · · ]T together with || �w||[Θ]
2− :=

(
∑0

k=−∞ || �wk||22)1/2 under the assumption that �w0(θ) =

0 (θ ≥ Θ) (which implies ||w||[Θ]
2− = || �w||[Θ]

2− ), we readily
see the following relation about the quasi L∞/L2 Hankel
norm at Θ :

||H[Θ]|| = sup
||w||[Θ]

2−≤1

sup
Θ≤τ<Θ+h

|z(τ)|∞

= max


 sup

||�w||[Θ]
2−≤1

sup
Θ≤θ<h

|(F1 �w)(θ)|∞,

sup
||�w||[Θ]

2−≤1

sup
0≤θ<Θ

|(F2 �w)(θ)|∞




(22)

The following subsections are devoted to characterizing
the quasi L∞/L2 Hankel norms ||H[Θ]|| through the above
representation.

3.2 Characterization of ||H[Θ]||

We first note that �w0(τ) = 0 for τ ∈ [Θ , h). Then, it follows
from (6)–(8) together with (11), (12) and (14) that, for
θ ∈ [Θ , h),

(F1 �w)(θ) = (D �w0)(θ) + (CB �w−1)(θ) + (CAB �w−2)(θ) + · · ·

=
∫ θ

0

Dθ(τ) �w0(τ)dτ +
∞∑

k=0

∫ h

0

CθAkBh(τ) �w−(k+1)(τ)dτ

=
∫ Θ

0

Dθ(τ) �w0(τ)dτ +
∞∑

k=0

∫ h

0

CθAkBh(τ) �w−(k+1)(τ)dτ

(23)

and, for θ ∈ [0,Θ),
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(F2 �w)(θ) = (CB �w0)(θ) + (CAB �w−1)(θ) + · · ·

=
∫ h

0

CθBh(τ) �w0(τ)dτ +
∞∑

k=1

∫ h

0

CθAkBh(τ) �w−k(τ)dτ

=
∫ Θ

0

CθBh(τ) �w0(τ)dτ +
∞∑

k=1

∫ h

0

CθAkBh(τ) �w−k(τ)dτ

(24)
where

Bh(τ) := JΣ exp(A(h − τ))B1 (25)
Dθ(τ) := C1 exp(A(θ − τ))B11(θ − τ) (26)

Cθ := M1 exp(A2θ)CΣ (27)
(1(t) denotes the step function.) Then, we can show that
considering the ith entry and applying the continuous-time
and discrete-time Cauchy-Schwarz inequalities to (23) and
(24) as well as the triangle inequality leads to

sup
||�w||[Θ]

2−≤1

|(F1 �w)i(θ)| = (F [Θ]
1 (θ))1/2

ii (28)

sup
||�w||[Θ]

2−≤1

|(F2 �w)i(θ)| = (F [Θ]
2 (θ))1/2

ii (29)

where (F1 �w)i(θ) and (F2 �w)i(θ) denote the ith row of
(F1 �w)(θ) and (F2 �w)(θ), respectively, and (F [Θ]

j (θ))ii (j =
1, 2) denote the ith diagonal entry of the following sym-
metric matrices:

F
[Θ]
1 (θ) :=

∫ Θ

0

Dθ(τ)DT
θ (τ)dτ

+
∞∑

k=0

∫ h

0

CθAkBh(τ)BT
h (τ)(Ak)T CT

θ dτ (30)

F
[Θ]
2 (θ) :=

∫ Θ

0

CθBh(τ)BT
h (τ)CT

θ dτ

+
∞∑

k=1

∫ h

0

CθAkBh(τ)BT
h (τ)(Ak)T CT

θ dτ (31)

Hence, we are led from (22) to the following result, which
is the main result of this paper.
Theorem 1. ||H[Θ]|| is given by

||H[Θ]|| = max
{

sup
Θ≤θ<h

d1/2
max

(
F

[Θ]
1 (θ)

)
,

sup
0≤θ<Θ

d1/2
max

(
F

[Θ]
2 (θ)

)}
(32)

4. RELATIONSHIP WITH PRECEDING STUDY ON
THE L∞/L2 HANKEL NORM OF SAMPLED-DATA

SYSTEMS

In this section, we discuss some relationship between
the arguments in the preceding section and those in
our preceding study on the L∞/L2 Hankel norm of the
sampled-data system ΣSD.

In our preceding study (Hagiwara et al., 2016), the L∞/L2

Hankel norm ‖ΣSD‖H = supΘ∈[0,h) ‖H[Θ]‖ was character-
ized with alternative arguments that actually involve no
reference to the computation of ‖H[Θ]‖ (Θ ∈ [0, h)). In
fact, it was shown that

||ΣSD||H = sup
0≤θ<h

d1/2
max(F (θ)) (33)

with a readily computable matrix function F (θ). This
F (θ) (θ ∈ [0, h)) turns out to have a very close relationship
to F

[Θ]
1 (θ) introduced in the preceding section. More

specifically, we see that F (θ) equals F
[Θ]
1 (θ) with Θ set to

θ. Since the arguments in Hagiwara et al. (2016) are based
on the fact that d

1/2
max(F (θ)) (θ ∈ [0, h)) gives the worst

value of |z(θ)|∞ for w ∈ L2(−∞, θ) such that ‖w‖[θ]
2− ≤ 1,

it readily follows (after replacing θ with Θ) that

d1/2
max(F (Θ)) ≤ ||H[Θ]|| (∀Θ ∈ [0, h)) (34)

To obtain some further insight into the relationship be-
tween the results in the preceding study (Hagiwara et al.,
2016) and the arguments in the present study, we first
claim that (34) can actually be replaced by the following
stronger result:

d1/2
max (F (Θ)) ≤ ||H[Θ]|| ≤ sup

0≤θ<h
d1/2
max (F (θ)) , ∀Θ ∈ [0, h)

(35)
Once we obtain this inequality, it is obvious that we are
led to the following result:

sup
0≤Θ<h

||H[Θ]|| = sup
0≤θ<h

d1/2
max (F (θ)) (36)

Here, the right hand side implies the L∞/L2 Hankel norm
‖ΣSD‖H computed with an alternative method (without
referring to the quasi L∞/L2 Hankel norms) through the
established assertion (33) of the preceding study. On the
other hand, the left hand side of (36) is nothing but the
same L∞/L2 Hankel norm obtained through the quasi
L∞/L2 Hankel norm computations over the interval Θ ∈
[0, h), as suggested by the definition in (18).

Regarding the derivation of (the second inequality in) (35),
we only remark that the positive definiteness of F

[θ]
1 (θ) −

F
[Θ]
1 (θ) = F (θ) − F

[Θ]
1 (θ) for each θ ∈ [Θ , h) and that of

F
[θ]
1 (θ)−F

[Θ]
2 (θ) = F (θ)−F

[Θ]
2 (θ) for each θ ∈ [0,Θ ] play

a key role.

5. COMPUTATION METHOD OF F
[Θ]
1 (θ) AND

F
[Θ]
2 (θ)

To facilitate the numerical computation of ‖H[Θ]‖, we
consider how to compute F

[Θ]
j (θ) (j = 1, 2) in (30) and

(31). We first introduce

W
[Θ]
θ :=

∫ Θ

0

exp(A(θ − τ))B1B
T
1 exp(AT (θ − τ))dτ (37)

whose numerical computation method is well known. It is
easy to see that∫ Θ

0

Dθ(τ)DT
θ (τ)dτ = C1W

[Θ]
θ CT

1 (38)
∫ h

Θ

CθBh(τ)BT
h (τ)CT

θ dτ = Cθ

[
W

[h−Θ]
h−Θ 0
0 0

]
CT

θ

∫ h

0

CθAkBh(τ)BT
h (τ)(Ak)T CT

θ dτ

= CθAk

[
W

[h]
h 0
0 0

]
(Ak)T CT

θ (k ∈ N0)

(39)
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Hence

F
[Θ]
1 (θ) = C1W

[Θ]
θ CT

1 + Cθ

∞∑
k=0

Ak

[
W

[h]
h 0
0 0

]
(Ak)T CT

θ

(40)

F
[Θ]
2 (θ) = Cθ

∞∑
k=0

Ak

[
W

[h]
h 0
0 0

]
(Ak)T CT

θ

− Cθ

[
W

[h−Θ]
h−Θ 0
0 0

]
CT

θ (41)

where the infinite series on the right hand side can be com-
puted easily by solving a discrete-time Lyapunov equation.

6. NUMERICAL EXAMPLE

In this section, we confirm the validity of the arguments
about ||H[Θ]|| developed in the preceding section through
a numerical example.

Let us consider the sampled-data systems ΣSD associate
with

A =
[
−3 2
−4 2

]
, B1 =

[
1
−1

]
, B2 =

[
0
−1

]
,

C1 = [1 0] , C2 = [1 0] , D12 = 0

AΨ =
[
−2.1856 2.3760
−1.1133 1.2103

]
, BΨ =

[
0.0176
0.0090

]

CΨ = [−0.7610 0.8273] , DΨ = −0.2367 (42)
and h = 2. We compute the quasi L∞/L2 Hankel norms
||H[Θ]|| at Θ ∈ [0, h).

The computation results are shown in Fig. 2 with the solid
line together with d

1/2
max(F (θ)) (= (F [θ]

1 (θ))1/2) shown with
the dashed line. Fig. 3 is relevant to the computation of
||H[Θ]|| through (32); the solid line shows how θ� depends
on Θ ∈ [0, h) (while the dashed lines correspond to θ� = Θ
and θ� = Θ + h), where θ� = θ�(Θ) is defined as such
an instant that satisfies ||H[Θ]|| = |z(θ�)|∞ for the worst
w ∈ L2(−∞,Θ) of unit magnitude:

θ�(Θ) =




arg max
θ∈[Θ,h]

d1/2
max(F

[Θ]
1 (θ))

(if ||H[Θ]|| = max
θ∈[Θ,h]

d
1/2
max(F

[Θ]
1 (θ)))

h + arg max
θ∈[0,Θ]

d1/2
max(F

[Θ]
2 (θ))

(if ||H[Θ]|| = max
θ∈[0,Θ]

d
1/2
max(F

[Θ]
2 (θ)))

(43)

First, we can confirm the relations (35) and (36) from
Fig. 2, where the latter implies that the gap about the
second inequality in the former relation vanishes as Θ is
swept over [0, h) and the associated supremum is taken.

Furthermore, we can see from Figs. 2 and 3 that ||H[Θ]|| =
d
1/2
max(F (Θ)) when Θ satisfies θ�(Θ) = Θ while ||H[Θ]|| >

d
1/2
max(F (Θ)) when Θ satisfies θ�(Θ) > Θ . This can be

seen as a very natural consequence (and thus supports the
validity of our computation results) if we recall (see the
arguments below (33)) that d

1/2
max(F (Θ)) (Θ ∈ [0, h)) gives

the worst value of |z(Θ)|∞ for w ∈ L2(−∞,Θ) such that
‖w‖[Θ]

2− ≤ 1.
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Fig. 2. Quasi L∞/L2 Hankel norm ‖H[Θ]‖ at Θ
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Fig. 3. Θ-Dependence of θ� defined by ‖H[Θ]‖ = |z(θ�)|∞
for the worst w ∈ L2(−∞,Θ) of unit magnitude.

7. CONCLUSION

In this paper, we tackled the problem of characterizing
the quasi L∞/L2 Hankel norm ||H[Θ]|| at Θ ∈ [0, h). We
remark that the development in this paper allows us to
compute the root mean square (RMS) of the quasi L∞/L2

Hankel norm ||H[Θ]|| over Θ in [0, h). This value, as well
as the L∞/L2 Hankel norm ‖ΣSD‖H = supΘ∈[0,h) ||H[Θ]||
itself, could be used as new definitions of the (generalized)
H2 norm of the sampled-data system ΣSD. This is because
||H[Θ]|| is independent of Θ and coincides with the H2

norm for every Θ ∈ [0, h) in the special case when
ΣSD is actually a single-input single-output (SISO) linear
time-invariant (LTI) continuous-time system (and thus
both of the above two values also coincide with its H2

norm). These definitions are believed to be different from
the standard definition (Bamieh and Pearson, 1992b),
and thus it would be important to study the mutual
relationship among these definitions of the H2 norm of
sampled-data systems.
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Hence

F
[Θ]
1 (θ) = C1W

[Θ]
θ CT

1 + Cθ

∞∑
k=0

Ak

[
W

[h]
h 0
0 0

]
(Ak)T CT

θ

(40)

F
[Θ]
2 (θ) = Cθ

∞∑
k=0

Ak

[
W

[h]
h 0
0 0

]
(Ak)T CT

θ

− Cθ

[
W

[h−Θ]
h−Θ 0
0 0

]
CT

θ (41)

where the infinite series on the right hand side can be com-
puted easily by solving a discrete-time Lyapunov equation.

6. NUMERICAL EXAMPLE

In this section, we confirm the validity of the arguments
about ||H[Θ]|| developed in the preceding section through
a numerical example.

Let us consider the sampled-data systems ΣSD associate
with

A =
[
−3 2
−4 2

]
, B1 =

[
1
−1

]
, B2 =

[
0
−1

]
,

C1 = [1 0] , C2 = [1 0] , D12 = 0

AΨ =
[
−2.1856 2.3760
−1.1133 1.2103

]
, BΨ =

[
0.0176
0.0090

]

CΨ = [−0.7610 0.8273] , DΨ = −0.2367 (42)
and h = 2. We compute the quasi L∞/L2 Hankel norms
||H[Θ]|| at Θ ∈ [0, h).

The computation results are shown in Fig. 2 with the solid
line together with d

1/2
max(F (θ)) (= (F [θ]

1 (θ))1/2) shown with
the dashed line. Fig. 3 is relevant to the computation of
||H[Θ]|| through (32); the solid line shows how θ� depends
on Θ ∈ [0, h) (while the dashed lines correspond to θ� = Θ
and θ� = Θ + h), where θ� = θ�(Θ) is defined as such
an instant that satisfies ||H[Θ]|| = |z(θ�)|∞ for the worst
w ∈ L2(−∞,Θ) of unit magnitude:

θ�(Θ) =




arg max
θ∈[Θ,h]

d1/2
max(F

[Θ]
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(if ||H[Θ]|| = max
θ∈[Θ,h]

d
1/2
max(F
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2 (θ))

(if ||H[Θ]|| = max
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d
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max(F
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(43)

First, we can confirm the relations (35) and (36) from
Fig. 2, where the latter implies that the gap about the
second inequality in the former relation vanishes as Θ is
swept over [0, h) and the associated supremum is taken.

Furthermore, we can see from Figs. 2 and 3 that ||H[Θ]|| =
d
1/2
max(F (Θ)) when Θ satisfies θ�(Θ) = Θ while ||H[Θ]|| >

d
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max(F (Θ)) when Θ satisfies θ�(Θ) > Θ . This can be

seen as a very natural consequence (and thus supports the
validity of our computation results) if we recall (see the
arguments below (33)) that d
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the worst value of |z(Θ)|∞ for w ∈ L2(−∞,Θ) such that
‖w‖[Θ]

2− ≤ 1.
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Fig. 2. Quasi L∞/L2 Hankel norm ‖H[Θ]‖ at Θ
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Fig. 3. Θ-Dependence of θ� defined by ‖H[Θ]‖ = |z(θ�)|∞
for the worst w ∈ L2(−∞,Θ) of unit magnitude.

7. CONCLUSION

In this paper, we tackled the problem of characterizing
the quasi L∞/L2 Hankel norm ||H[Θ]|| at Θ ∈ [0, h). We
remark that the development in this paper allows us to
compute the root mean square (RMS) of the quasi L∞/L2

Hankel norm ||H[Θ]|| over Θ in [0, h). This value, as well
as the L∞/L2 Hankel norm ‖ΣSD‖H = supΘ∈[0,h) ||H[Θ]||
itself, could be used as new definitions of the (generalized)
H2 norm of the sampled-data system ΣSD. This is because
||H[Θ]|| is independent of Θ and coincides with the H2

norm for every Θ ∈ [0, h) in the special case when
ΣSD is actually a single-input single-output (SISO) linear
time-invariant (LTI) continuous-time system (and thus
both of the above two values also coincide with its H2

norm). These definitions are believed to be different from
the standard definition (Bamieh and Pearson, 1992b),
and thus it would be important to study the mutual
relationship among these definitions of the H2 norm of
sampled-data systems.
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