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1.   Introduction 

 The recognition of handwritten numerals by computer has been a subject 

of intensive research for about last fifty years. The problem, which is very 

simple for almost every human, is extremely complicated for the machine. 

Hundreds of scientist developed many sophisticated systems but computers 

are still unable to compete with human capabilities. The main reason that 

causes recognition of characters and numerals such a complex problem is the 

variety of writing styles. Each character or numeral can look differently 

depending on a writing person, light or heavy prints, varying levels of care, 

etc. 

A typical OCR system usually consists of three main processing stages: 

preprocessing, feature extraction/selection and recognition using a classifier.  

Preprocessing is a very important factor for the next two recognition stages: 

feature extraction and classification. It consists of a sequence of operations 

applied to the images to prepare them for feature extraction. Usually we start 

with noise removal and/or smoothing [40], document skew correction [41], 

normalization [2], slant correction [42]. Depending on a feature extraction 

method additional preprocessing steps might be required such as thinning 

[43] or contour analysis.  

Feature extraction consists of large variety of techniques which allow us to 

represent an image as a vector of values (features). These features can be 

based for example on geometric moment invariants [1], Zernike moments [7] 

or gradients [9, 10]. At this stage a feature selection algorithm can be applied 

to reduce the size of the input feature vector to avoid  the so-called curse of 

dimensionality problem.  

There is also a large number of classifiers. Beginning from parametric 

statistical classifiers, neural networks, SVMs (Support Vector Machines) and 

finishing on hybrid classifiers. At each stage we can choose parameters which 

could affect the final classification performance. 

 This paper focuses on recognition of unconstrained handwritten numerals 

and especially on the normalization techniques. It shows the impact of image 

normalization on the classification performance. There are several 

normalization methods (described in [2]) which have been implemented to use 

in this research. The experiments with these methods show how different 

normalization algorithms influence the final classification performance. Five 

different feature vectors of three types (geometric invariants, Zernike 

moments and gradient features) are used in the experiments. The influence of 

normalization on each of these vectors is shown. In this research the SVM 

classifier based on the statistical learning theory of Vapnik [25] was used. 

 The MNIST (modified NIST) digit database was used in the experiments. 

The NIST database was collected from specially designed forms filled by US 

Census Bureau employees and High school students. The number of training 



 

 

 

 

 

 

55 

samples and test samples are 60 000 and 10 000, respectively. This database 

is widely used in various character recognition researches.  

 In recent years many feature extraction methods for handwritten numeral 

recognition have been proposed. A survey of these methods can be found in 

[50]. Additionally, some new features such as: stroke features [20], curvature 

features [10], local structure features [21] or structural and concavity features 

[44] are used to enhance a recognition ratio. 

 There are also many approaches to the classification task of handwritten 

characters, like: statistical techniques [22], neural networks and Support 

Vector Machines (SVMs) [23]. The parametric or non-parametric statistical 

classifiers, the linear discriminant function (LDF), the quadratic discriminant 

function (QDF), the nearest-neighbour (1-NN) and k-NN classifiers, the 

Parzen window classifier, etc are used. They can be modified: for example 

a modified quadratic discriminant function was proposed by Kimura et al. 

[24, 26].  Neural networks include the multilayer perceptron (MLP), the radial 

basis function (RBF) network and the polynomial classifier. Several of these 

classifiers have been evaluated in [27]. 

 There are three main databases: CENPARMI [16], CEDAR [28], and 

MNIST [29] used in handwritten characters recognition. They have been 

widely used for validating the  recognition performance. The CENPARMI digit 

database was released by the Concordia University. It contains 6000 digits 

divided into a train set (4000 images – 400 samples per class) and a test set 

(2000 images – 200 samples per set). The CEDAR digit database was released 

by CEDAR, SUNY Buffalo. The training data set contains 18 468 digit images.  

The test data set contains 2711 digit images. The last database – MNIST 

(modified NIST) was extracted from the NIST special databases SD3 and SD7. 

In this database the sizes of training and test sets are 60 000 and 10 000 

images, respectively. 

 

Tab. 1. Results on CENPARMI database 

Method Recognition rate 

Franke [33] 97.60% 

Suen et al. [30] 98.85% 

Liu et al. [31] 98.45% 

Gader et al. [34] 98.30% 

Liu et al. [2] 99.15% 

 

 Below the results achieved on these databases are presented. In the 

following tables the best recognition rates obtained using corresponding 

databases are shown. The  recognition rate is defined as the number of 

correctly recognized images/the total number of  images of  the test dataset. 
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 The results achieved using the CENPARMI database are presented in 

Tab. 1. The recognition rates vary from 97.6% to 99.15%. Some of these results 

have been received using multiple classifiers for example Suen et al. [30], but 

even better results 99.15% can be achieved using a single classifier as in [2]. 

 

Tab. 2. Results on CEDAR database 

Method Recognition rate 

Suen et al. [30] 99.77% 

Liu et al. [28] 98.87% 

Cai et al. [35] 98.4% 

Oh et al. [36] 98.73% 

 

 The list of results obtained using the CEDAR database is presented in 

Tab. 2. The recognition rates are in the range from 98.4% to 99.77%. The best 

result was achieved by combining multiple classifiers in [30], the best result 

using a single classifier was 98.87% [28]. 

The third database, MNIST, is most widely used for evaluation of 

recognition algorithms. Some results on this database are presented in Tab. 3. 

Here the recognition rates vary from 98.3% to 99.41%. The highest accuracy 

was given by Teow and Loe using SVC on direction and stroke-end features 

[8]. The same result 99.41% was achieved by Liu et al. [2] on the NIST 

database (MNIST is a modified NIST). 

 

Tab. 3. Results on MNIST database 

Method Recognition rate 

Teow et al. [8] 99.41% 

Mayraz et al. [37] 98.3% 

Dong et al. [38] 99.01% 

Belongie et al. [39] 99.37% 

Liu et al. [2]* 99.41% 

 

 The rest of this paper is organized as follows. Section 2 introduces the 

normalization strategies, Section 3 describes features extraction methods used 

in this paper. Section 4 shortly describes foundations of the SVM classifier. 

Section 5 presents experimental results, while Section 6 conclusions and 

future work. 
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2.   Normalization techniques 

 Normalization is a process that changes different image parameters to 

obtain more convenient values. Normalization techniques are used generally 

to reduce the within-class variation. For example the intensity normalization 

tries to equalize intensity of the character images, the perspective 

transformation may correct the imbalance of the character width [32], the 

moment normalization tries to correct the rotation or slant [64] and the ratio 

normalization changes the character aspect ratio. Normalization is considered 

to be the most important preprocessing factor for character recognition [55].  

 In most experiments considering feature extraction and classification of 

characters a square standard plane with the fixed N × N dimensions is used. 

All original character images, usually of different sizes, are mapped onto this 

plane. From this standard plane a feature vector is extracted. The algorithms 

described below are used to perform these mappings. 

 Let W1 and H1 denote the width and the height of the original character 

image,  respectively. Then the aspect ratio of the original image is defined as: 

.
),max(

),min(

11

11
1

HW

HW
R   (1) 

Similarly, let W2 and H2 denote the width and the height of the 

normalized image, respectively. Then the aspect ratio the normalized image is 

defined  as: 

.
),max(

),min(

22

22
2
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R   (2) 

 Both R1 and R2 are in the range [0, 1), as it follows from Eqs (1) and (2). 

 In the described experiments an aspect ratio adaptive normalization 

(ARAN) strategy [2] is used. In this strategy the normalized aspect ratio R2 is 

calculated based on the original aspect ratio R1 using different mapping 

functions. So using ARAN normalization a character image is fitted into a new 

normalized plane H2 × W2, and then this plane is shifted to overlap the 

standard plane. Dimensions of the normalized plane are calculated as follows. 

It is assumed that one dimension of the normalized plane fills one dimension 

of the standard plane: N = max(H2, W2), the other dimension is calculated 

using the aspect ratio R2 and then centred on the standard plane (see  Fig. 1).  

The transformation to the standard plane can be described using 

a coordinate mapping.  Let us denote the original image as f(x, y) and the 

normalized image as g(x’, y’). Then the normalized image can be generated by 

coordinate mapping g(x’, y’) = f(x, y). We can use the forward mapping or the 

backward mapping. These mappings are given by: 
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and 

),,( yxxx   ),( yxyy   

 
respectively, where x’, y’ are the coordinates of the normalized image and x, y 

are the coordinates of the original image. The mappings used in the 

experiments are presented in Tab. 4. 

When the forward mapping is used, x and y are discrete, but x’ and y’ can 

be real values. Similarly, when the backward mapping is used, then x’ and y’ 
are discrete, but x and y can be real values. Moreover, in the forward 

mapping, the mapped coordinates x’, y’ usually do not fill all pixels in the 

normalized plane. So the coordinate discretization or pixel interpolation is 

necessary. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (a) An original image, (b) A normalized image on the standard plane 

 

 

 

Fig. 2. An example of the backward mapping 
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The discretization algorithm is quite simple. The mapped coordinates (x’, y’) or  

(x, y)  are approximated by the closest integer numbers ([x’], [y’]) or ([x], [y]). 

Then in case of the forward mapping, the discrete coordinates (x’, y’) scan the 

pixels of the original image and the pixel value f(x, y) is assigned to all pixels 

ranged from ([x’(x, y)], y’(x, y)]) to ([x’(x+1, y+1)], [y’(x+1, y+1)]).  In case of the 

backward mapping discretization is trivial. 

 In the described experiments grey-scaled images are used, so the 

interpolation algorithm must be used. In case of the backward mapping the 

mapped pixel (x, y) is surrounded by four discrete pixels. The grey level g(x’, y’) 

is a weighted combination of the four pixel values. It is graphically presented 

in Fig. 2. In the forward mapping every pixel in the original image and the 

normalized image are treated as squares of a unit area. The unit square of the 

original image is mapped to a rectangle in the normalized plane. It is 

illustrated in Fig. 3. Next, each unit square overlapping the rectangle is given 

a grey level value proportional to the overlapping area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two mappings used in the experiments are presented in Tab. 4. When 

using the moment-based normalization method one dimension may go beyond 

the standard plane.  In this case the image part outside the standard plane is 

cut off. 

 

 

 

 

 

 

 

 

 

 

where:  

 

 

Fig. 3. An example of the forward mapping 

 

Tab. 4. Normalization methods used in experiments 

 Forward mapping Backward mapping 

Linear mapping xx   /xx   

 yy   /yy   

Moment mapping 
cc xxxx  )(  cc xxxx  /)(  
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,/ 12 WW  12 / HH ,   

 

the centre of gravity of the image is given by 

 

,/ 0010 mmxc   0001 / mmyc  , 

 

mpq denotes the geometric moments:  

 

),,( yxfyxm
x y

qp

pq   

x’c, y’c denote the geometric centre of the normalized plane given by: 

 

,2/2Wxc  .2/2Hyc   

 

 In the described experiments, all normalization functions are 

implemented by the backward mapping. Fig. 4 shows samples of the 

normalized images, corresponding to all normalization functions. The size of 

the standard plane is 32 × 32.  

In the described experiments there are several normalization methods 

implemented as described above. The used normalization functions are listed 

in Tab. 5. 

Tab. 5. List of normalization functions used in the experiments 

Symbol Description Aspect ratio 

N0 Linear normalization with fixed aspect ratio 12 R  

N1 Linear normalization with preserved aspect ratio 
12 RR   

N2 Linear normalization with square root ratio 
12 RR   

N3 Linear normalization with cube root ratio 3
12 RR   

N4 Linear normalization with fixed aspect ratio* 9.02 R  

N5 Linear normalization with square root of sine of 

aspect ratio 
)2/sin( 12 RR   

N6 Moment normalization with preserved aspect 

ratio 
12 RR   

N7 Moment normalization with square root ratio 
12 RR   

N8 Moment normalization with cube root ratio 3
12 RR   

N9 Moment normalization with fixed aspect ratio* 9.02 R  

N10 Moment normalization with square root of sine 

of aspect ratio 
)2/sin( 12 RR   

* The aspect ratio obtained using test procedure from range [0.4, 1). 
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3.   Feature extraction 

 In the described experiments three types of features are used: geometric 

moment invariants, Zernike moments and gradient features. The moment 

invariants are known to be invariant under rotation, translation, scaling and 

reflection. The Zernike moments are noise resilient. The gradient features are 

easy to extract and give the high performance and discriminative power as 

well. 

3.1.   Geometric moment invariants 

 First type of features which were used are geometric moment 

invariants. These features extract global properties of the image such as the 

shape area, the centre of the mass, the moment of inertia, and so on. In these 

experiments a feature vector similar to presented in [46] is used, but modified 

and extended to a 98D vector.  Given a grey-scale image of the size M × N, the 

regular moments of order (p + q) are defined as: 
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 From the above translation-invariant central moments can be obtained by 

placing the origin in the centre of gravity. 
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where 

 

Fig. 4. Normalized images 
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are scale-invariant. 

 

 Finally, rotation-invariant feature can be constructed. In this paper seven 

invariants were used as follows: 
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 As these features are rotation-invariant there will be a problem with 

recognizing some numerals, i.e. 6 and 9 or 2 and 5. As a matter of fact the 

recognition rate using these seven features was only about 45%. To avoid this 

problem the image was divided into 4 and 9 square regions and all seven 

geometric invariants were extracted from every region. This gives a (4 + 9) * 7 

+ 7 = 98D feature vector. This feature vector is denoted as GMI. 

3.2.   Zernike moments 

 A Zernike moments concept was first introduced by Teague in 1980 [49]. 

Compared to the geometry moment invariants Zernike moments are 

computationally expensive, but  have several advantages: they are orthogonal, 

rotation invariant and noise resilient. Additionally, they have one interesting 

feature, the original image can be reconstructed from these moments. They 

have been used to binary pictures because they are not invariant due to 
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contrast. This drawback can be easily avoided using the grey-scale 

normalization. Complex Zernike moments are constructed using a set of 

complex polynomials which form a complete orthogonal basis set defined on 

the unit disc. These polynomials are defined as below: 

,),(),( )/(tan 1 xyjm

nmnm eyxRyxV


  

where 
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Then Zernike moment of order n and repetition m is defined as: 

,)),()(,(
1 *


 yxVyxf

m

n
A nmnm

  ,122  yx  (3) 

where * denotes a complex conjugate operator, n –|m| is even and |m|≤n.  

It is interesting that the original image can be reconstructed using the 

formula: 

,),(lim),(
0







N

n m

nmnm
N

yxVAyxf  (4) 

where the sum is taken for all |m|≤n and n – |m|  is even. 

The amplitudes of Zernike moments nmA are rotation invariant. 

Invariance to the scale and translation can be obtained by shifting and scaling 

the image before the computation of Zernike moments. The normalization 

algorithms used in these experiments guarantee that all images are shifted 

and scaled. 

 There are two feature vectors based on Zernike moments used. The first 

vector ZM1 consists of all 47 first amplitudes of Zernike  moments from 0,0Z  

to ,12,12Z and the second vector ZM2 consists of 24 amplitudes chosen only as 

described in [7], i.e: Z0,0, Z2,0, Z3,1, Z3,3, Z4,0, Z4,2, Z5,1, Z5,3, Z5,5, Z6,0, Z7,1, Z7,3, 

Z7,5, Z8,4, Z8,6, Z9,5, Z9,7, Z10,2, Z10,4, Z11,1, Z11,5, Z11,7, Z12,0. 

3.2.1.   Fast algorithm to compute Zernike moments 

 The algorithm computing Zernike moments with the use of Eq. (3) will be 

very inefficient. As a matter of fact it is useless according to the database size. 

So there must be found a far more efficient method. Let us notice that under 

polar coordinates the above formula can be expressed as: 
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Then imaginary and real components of Zernike moment can be calculated as: 
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 The character images are discrete and usually relatively small (in these 

experiments 32 x 32) so the number of different values of r is relatively small. 

Let us denote the pixel in the centre of the image as level 0, and the next 8 

neighbouring pixels as level 1 and so on. On each level there will be level+1 
different values of r. The number of levels will be: 

 

    ).12/(2/21  nn  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 5. All possible values of r for a 7 x 7 image 
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The total number of different values of r will be: 1/8(n2 + 6n + 8). Usually 

only a few dozen of first Zernike moments are used, so all values of Rnm(r) can 

be computed using Eq. (5) for all possible values of r, m, n. For example in the 

described experiments there are 32 x 32 images and 47 first Zernike moments 

are used. It gives 153*47 = 7191 different values for all images. 

 Precomputing all these values has a great impact on the algorithm 

efficiency because all values of Rnm are calculated only once for all images (the 

MNIST database used in the experiments has 60 000 + 10 000 = 70 000 

images). Values of sin(mθ), cos(mθ) (or even Rnm(r)sin(mθ), Rnm(r)cos(mθ)) can 

be precomputed as well. 

3.3.   Gradient features 

 The gradient features can be easily used to grey-scale images and are 

robust against image noise and edge direction fluctuations. Additionally, the 

gradient can be computed by using the Sobel operator, which has two masks 

for the gradient components in horizontal and vertical directions. So it can be 

efficiently extracted from the image. The gradient gives us the magnitude and 

the direction of the greatest change in intensity in the neighbourhood of 

a pixel. The Roberts [10] and Kirsh [65] operator have also been used in the 

literature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Sobel operator is used to compute gradient components as follows: 
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Fig. 6. Sobel masks used to compute gradients 
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Then, the gradient magnitude is calculated as: 

),(),(),( 22 yxgyxgyxA yx   (11) 

and the gradient direction as: 
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 The complete gradient map may contain some noise information. 

Especially when grey-scale images are used. To avoid these spurious gradients 

a simple filtering algorithm is proposed – an adaptive gradient thresholding. 

In the first step the average gradient magnitude is computed over the whole 

image and then this value is used to filter our gradient map. Formally: 
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where M, N are dimensions of the image. Then 
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The gradient directions are real values from range [0, 360). To extract 

a feature vector they are quantized into a small number of integer values. 

There are 12 integer values used representing gradient scopes: [0, 30), [30, 

60), [60, 90) and so on. Next, the gradient map is divided into 4 x 4 parts. 

Then, a percentage of pixels with the direction of gradient quantized to value 

K = 1, 2, ..., 12 is computed in each part. Hence the total number of features 

will be 4 × 4 × 12 = 192D. This feature vector is denoted as GF. 

The second feature vector denoted as GFC is also based on gradient 

features. There are 10 crossing line features added to the previous vector GF. 

The crossing line features are extracted in the following steps. First, the 

centre of gravity of the image is found, then the horizontal and vertical line 

are drawn through this point, and finally two extra lines on each side of the 

horizontal and vertical line are added with equal margins. The crossing line 
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feature is the number of intersection points with the image. For example for 

the numeral shown in Fig. 7 there are two vectors: (1,1,1,1,1) and (1,2,2,2,1).  

 

 

 

 

 

 

 

 

4.   The SVM classifier 

 The Support Vector Machine (SVM) has been proposed by Vapnik in [25]. 

The SVM technique has been used in different application domains and has 

outperformed the traditional techniques in terms of generalization capability. 

Contrary to the traditional techniques which try to minimise the empirical 

risk (the classification error on the training data) SVM minimises the 

structural risk (the classification error on data never seen before). 

 The classification task is to predict whether a test sample belongs to one 

of two classes. In a feature space this corresponds to finding a hyperplane 

which separates these two classes. There is an infinite number of such 

hyperplanes, so among the possible choices, the SVM classifier selects the one 

for which the distance of the hyperplane from the closest feature vectors (the 

“margin”) is as large as possible. This hyperplane is called an optimal 

separating hyperplane. Let us consider a classifier whose decision function is 

given by: 

),()( bwxsignxf T   

where x denotes a feature vector and w is a weight vector. The problem is 

separable when there exist w and threshold b such that: 
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This problem leads to a so-called dual optimization problem, which is 
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Fig. 7. Crossing line features (a) horizontal, (b) vertical 
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This leads to a hyperplane decision function: 
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vectorssupport

bxxysignxf T
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(12) 

where xi are support vectors with Lagrangian non-zero multipliers αi. 

 

 The support vectors are the feature vectors which lie on the margins. This 

is an advantage of this approach because only a small number of vectors is 

used to compute a resulting classifier. 

 In a real life problem it is unlikely that a hyperplane will exactly separate 

the data. To deal with this problem the soft margin hyperplanes are used. 

A set of variables ξi representing errors (i.e. the vectors which lie inside the 

margin) and a parameter C which determines a trade-off between margin 

maximization and error minimization are introduced.  

 In Eq. (12) a dot product of the input vectors is used. So we can apply 

some trick to calculate the dot product of the vectors in the feature space 

using a kernel function. It allows us to create a decision function that is non-

linear in the input space, but is linear in the feature space, i.e.: 

),),(()(
vectorssupport

bxxKysignxf iii     
(13) 

where K(xi, x) is a kernel function. Typical kernel functions are: 

 

1. Linear kernel: ,),( i

T

i xxxxK   

2. Polynomial kernel: ,)(),( dT

i cxxxxK    

3. RBF (Radial basis kernel) Kernel: 2
),( ii xxxxK   ,  ,0  

4. Gausian RBF Kernel: ,2/)exp(),( 22 ii xxxxK   

5. Sigmoid kernel: ).tanh(),( cxxxxK i

T

i    

 

 The last problem which must be solved is that handwritten numeral 

recognition is a multi-class problem and the SVM is a binary classifier. There 

are two commonly used solutions. The first is WTA (winner takes all) 

strategy. In this approach we build N classifiers for N classification problems: 

one class versus all other classes. Another approach is to build n(n–1)/2 

classifiers for each pair of classes, then use MVS (majority voting scheme) 

strategy. 
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5.   Experimental results 

 In this section recognition accuracies obtained in the experiments are 

presented. The results are presented in Tab. 6. In the rows there are five 

different feature vectors (described in Sect. 3) and in the columns N0 – N10 

are normalization methods used (see Tab. 2). In the first column WN there is 

accuracy obtained without any normalization.  

 The handwritten digit database MNIST described in Section 1 is used in 

these experiments. Some images of the training dataset are shown in  Fig. 8. 

This database is divided into two datasets: the training dataset including 

60 000 samples and the test dataset including 10 000 samples. As a SVM-rbf 

classifier is used in the experiments there is an extra dataset necessary for 

validation purposes (to find C and γ parameters). So the training dataset was 

divided into two sets: 50 000 samples for the training set and 10 000 samples 

for the validation set. 

 For these three datasets feature vectors are generated using 

normalization methods listed in Tab. 5. For normalization methods N4 and N9 

a special procedure was used to find the best ratio R2. The 12 feature vectors 

are generated using aspect ratios from 0.4 to 0.95 with step 0.05. The best 

result (for aspect ratio 0.9) is presented in Tab. 6. The extra feature vector set 

is generated for original images.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Examples from MNIST database 
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 Before using the classifier all feature vectors are linearly scaled into [–1, 

1] range. The main advantage of using this scaling is to avoid attributes in 

greater numeric ranges dominating those in smaller numeric ranges. Another 

advantage is to avoid numerical difficulties during the calculation. Because 

kernel values usually depend on the inner products of feature vectors, e.g. the 

linear kernel and the polynomial kernel, large attribute values might cause 

numerical problems.  

 In Tab. 6 the results of the experiments are shown. There are feature 

vectors in rows and normalization methods in columns.  

 

 

 

 

 

 

 

 

 

 

 

 

 Geometric moments invariants are the poor feature vector. But as can be 

seen in [46] and in our experiments the results are close to the best features 

vectors based on gradient and directional features. Possibly, if we add extra 

features to these vectors, i.e. concave features or crossed lines features, the 

result would be even better. 

 Zernike moments are better than geometric moments, but are not so good 

as gradient features. In this paper we mainly focus on normalization methods 

and as a matter of fact we do not investigate the feature vectors. Maybe 

methods presented in [7] can be extended and yield to better results.  

The best results are achieved using gradient features. The extended GFC 

vector leads to even better results. The geometric moment invariants and 

Zernike moments appear slightly worse, but the results are promising. 

Perhaps combining these feature vectors with other features will lead to 

better recognition ratios. GF and GFC vectors are most promising. 

Considering that they are easy to extract and easy to understand they seem to 

be good choice for future work. 

To examine how normalization methods influence recognition rates all 

feature vectors are extracted from the dataset also without normalization (the 

column WN in Tab. 6 shows the recognition rate on this vector). Tab. 7 

presents relative recognition rates defined as follows: 
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Tab. 6. Recognition rates obtained on different feature vectors 

 WN N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 

GMI 79.31 82.58 83.49 85.42 85.18 85.52 84.72 84.93 85.44 85.47 85.03 84.99 

ZM1 84.10 91.42 92.84 91.12 93.54 93.94 91.80 92.90 94.33 94.22 94.19 94.05 

ZM2 86.24 92.20 93.91 94.02 94.21 93.29 92.11 93.45 94.79 94.62 94.77 94.31 

GF 94.52 96.78 96.83 96.98 98.01 97.61 97.83 97.70 98.76 98.61 98.77 98.72 

GFC 95.24 97,86 97.65 98.21 98.48 98.32 98.47 98.12 99.16 98.82 98.98 99.06 
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where Rij is recognition rate obtained on i-th feature vector using j-th normali- 

zation and Ri is recognition rate obtained on i-th feature vector without any 

normalization. 

 This measure shows how a normalization method contributes to achieving 

the optimal recognition rate. For example RRR = 100 means that this 

normalization method leads to the maximal recognition rate = 100%, RRR = 0  

means that the corresponding normalization method brings no advantage to 

the result and values less than zero mean that the normalization deteriorates 

the recognition ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

6.   Conclusions and future work 

 In this paper several normalization methods and five feature vectors are 

compared on the MNIST database. The recognition results show that the 

moment normalization functions N7 yield the highest recognition rates. The 

results obtained using moment normalization functions N10 and N9 are also 

very good. Generally, the normalization is influential to the recognition 

performance for both dimension-based and moment-based normalization. It is 

interesting that preserving the aspect ratio or forcing the aspect ratio to one 

leads to substantially worse results. 

 There are five sets of feature vectors tested. The best results are achieved 

using gradient features, but it can be seen that other feature vectors are not 

quite useless. The results are promising. Maybe some extension of these 

feature vectors could lead to results comparable with gradient features. The 

reported results provide useful insights for selecting a suitable normalization 

algorithm in developing recognition systems. 

There are also interesting results in experiments using different aspect 

ratios. Testing one class versus all others shows that there is no universal 

aspect ratio optimal for all classes. Different aspect ratios are optimal for 

different numerals. For example for numeral 1 the best aspect ratio is 0.4 and 

Tab. 7. Relative recognition rates 

 N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 

MIs 15.8 20.2 29.5 28.4 30.0 26.1 27.2 29.6 29.8 27.6 27.5 

ZM1 46.0 55.0 44.2 59.4 61.9 48.4 55.3 64.3 63.6 63.5 62.6 

ZM2 43,3 55.7 56.5 57.9 51.2 42.7 52.4 62.1 60.9 62.0 58.7 

GF 41.2 42.2 44.9 63.7 56.4 60.4 58.0 77.4 74.6 77.6 76.6 

GFC 55.0 50.6 62.4 68.1 64.7 67.9 60.5 82.4 75.2 78.6 80.3 
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for numeral 0 the best aspect ratio is 0.95.  This observation is useless in this 

experiment, because there must be one classifier for all numerals, but in the 

future work it can be used for building a multiple classifier solution. 

The experiments described in this paper are focused on normalization. 

The results show that this preprocessing technique has a great impact on the 

final recognition rate regardless of  the feature vector used. The next step is to 

find even better feature vectors which in conjunction with these normalization 

techniques will lead to even better recognition rates.  
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