

S C H E D A E I N F O R M A T I C A E

VOLUME 19 2010

Investigation of Normalization Techniques and Their

Impact on a Recognition Rate in Handwritten Numeral

Recognition

WIESŁAW CHMIELNICKI1, KATARZYNA STĄPOR2

1Faculty of Physics, Astronomy and Applied Computer Science,

Jagiellonian University, Reymonta 4, 30-059 Kraków,

e-mail: wieslaw.chmielnicki@uj.edu.pl
2 Institute of Computer Science, Silesian Technical University,

Akademicka 16, 44-100 Gliwice

Abstract. This paper presents several normalization techniques used in

handwritten numeral recognition and their impact on recognition rates.

Experiments with five different feature vectors based on geometric

invariants, Zernike moments and gradient features are conducted. The

recognition rates obtained using combination of these methods with

gradient features and the SVM-rbf classifier are comparable to the best

state-of-art techniques.

Keywords: handwritten numeral recognition, normalization techniques,

SVM classifier, feature vectors, OCR, geometric invariants, Zernike

moments, gradient features.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jagiellonian Univeristy Repository

https://core.ac.uk/display/211079171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

54

1. Introduction

 The recognition of handwritten numerals by computer has been a subject

of intensive research for about last fifty years. The problem, which is very

simple for almost every human, is extremely complicated for the machine.

Hundreds of scientist developed many sophisticated systems but computers

are still unable to compete with human capabilities. The main reason that

causes recognition of characters and numerals such a complex problem is the

variety of writing styles. Each character or numeral can look differently

depending on a writing person, light or heavy prints, varying levels of care,

etc.

A typical OCR system usually consists of three main processing stages:

preprocessing, feature extraction/selection and recognition using a classifier.

Preprocessing is a very important factor for the next two recognition stages:

feature extraction and classification. It consists of a sequence of operations

applied to the images to prepare them for feature extraction. Usually we start

with noise removal and/or smoothing [40], document skew correction [41],

normalization [2], slant correction [42]. Depending on a feature extraction

method additional preprocessing steps might be required such as thinning

[43] or contour analysis.

Feature extraction consists of large variety of techniques which allow us to

represent an image as a vector of values (features). These features can be

based for example on geometric moment invariants [1], Zernike moments [7]

or gradients [9, 10]. At this stage a feature selection algorithm can be applied

to reduce the size of the input feature vector to avoid the so-called curse of

dimensionality problem.

There is also a large number of classifiers. Beginning from parametric

statistical classifiers, neural networks, SVMs (Support Vector Machines) and

finishing on hybrid classifiers. At each stage we can choose parameters which

could affect the final classification performance.

 This paper focuses on recognition of unconstrained handwritten numerals

and especially on the normalization techniques. It shows the impact of image

normalization on the classification performance. There are several

normalization methods (described in [2]) which have been implemented to use

in this research. The experiments with these methods show how different

normalization algorithms influence the final classification performance. Five

different feature vectors of three types (geometric invariants, Zernike

moments and gradient features) are used in the experiments. The influence of

normalization on each of these vectors is shown. In this research the SVM

classifier based on the statistical learning theory of Vapnik [25] was used.

 The MNIST (modified NIST) digit database was used in the experiments.

The NIST database was collected from specially designed forms filled by US

Census Bureau employees and High school students. The number of training

55

samples and test samples are 60 000 and 10 000, respectively. This database

is widely used in various character recognition researches.

 In recent years many feature extraction methods for handwritten numeral

recognition have been proposed. A survey of these methods can be found in

[50]. Additionally, some new features such as: stroke features [20], curvature

features [10], local structure features [21] or structural and concavity features

[44] are used to enhance a recognition ratio.

 There are also many approaches to the classification task of handwritten

characters, like: statistical techniques [22], neural networks and Support

Vector Machines (SVMs) [23]. The parametric or non-parametric statistical

classifiers, the linear discriminant function (LDF), the quadratic discriminant

function (QDF), the nearest-neighbour (1-NN) and k-NN classifiers, the

Parzen window classifier, etc are used. They can be modified: for example

a modified quadratic discriminant function was proposed by Kimura et al.

[24, 26]. Neural networks include the multilayer perceptron (MLP), the radial

basis function (RBF) network and the polynomial classifier. Several of these

classifiers have been evaluated in [27].

 There are three main databases: CENPARMI [16], CEDAR [28], and

MNIST [29] used in handwritten characters recognition. They have been

widely used for validating the recognition performance. The CENPARMI digit

database was released by the Concordia University. It contains 6000 digits

divided into a train set (4000 images – 400 samples per class) and a test set

(2000 images – 200 samples per set). The CEDAR digit database was released

by CEDAR, SUNY Buffalo. The training data set contains 18 468 digit images.

The test data set contains 2711 digit images. The last database – MNIST

(modified NIST) was extracted from the NIST special databases SD3 and SD7.

In this database the sizes of training and test sets are 60 000 and 10 000

images, respectively.

Tab. 1. Results on CENPARMI database

Method Recognition rate

Franke [33] 97.60%

Suen et al. [30] 98.85%

Liu et al. [31] 98.45%

Gader et al. [34] 98.30%

Liu et al. [2] 99.15%

 Below the results achieved on these databases are presented. In the

following tables the best recognition rates obtained using corresponding

databases are shown. The recognition rate is defined as the number of

correctly recognized images/the total number of images of the test dataset.

56

 The results achieved using the CENPARMI database are presented in

Tab. 1. The recognition rates vary from 97.6% to 99.15%. Some of these results

have been received using multiple classifiers for example Suen et al. [30], but

even better results 99.15% can be achieved using a single classifier as in [2].

Tab. 2. Results on CEDAR database

Method Recognition rate

Suen et al. [30] 99.77%

Liu et al. [28] 98.87%

Cai et al. [35] 98.4%

Oh et al. [36] 98.73%

 The list of results obtained using the CEDAR database is presented in

Tab. 2. The recognition rates are in the range from 98.4% to 99.77%. The best

result was achieved by combining multiple classifiers in [30], the best result

using a single classifier was 98.87% [28].

The third database, MNIST, is most widely used for evaluation of

recognition algorithms. Some results on this database are presented in Tab. 3.

Here the recognition rates vary from 98.3% to 99.41%. The highest accuracy

was given by Teow and Loe using SVC on direction and stroke-end features

[8]. The same result 99.41% was achieved by Liu et al. [2] on the NIST

database (MNIST is a modified NIST).

Tab. 3. Results on MNIST database

Method Recognition rate

Teow et al. [8] 99.41%

Mayraz et al. [37] 98.3%

Dong et al. [38] 99.01%

Belongie et al. [39] 99.37%

Liu et al. [2]* 99.41%

 The rest of this paper is organized as follows. Section 2 introduces the

normalization strategies, Section 3 describes features extraction methods used

in this paper. Section 4 shortly describes foundations of the SVM classifier.

Section 5 presents experimental results, while Section 6 conclusions and

future work.

57

2. Normalization techniques

 Normalization is a process that changes different image parameters to

obtain more convenient values. Normalization techniques are used generally

to reduce the within-class variation. For example the intensity normalization

tries to equalize intensity of the character images, the perspective

transformation may correct the imbalance of the character width [32], the

moment normalization tries to correct the rotation or slant [64] and the ratio

normalization changes the character aspect ratio. Normalization is considered

to be the most important preprocessing factor for character recognition [55].

 In most experiments considering feature extraction and classification of

characters a square standard plane with the fixed N × N dimensions is used.

All original character images, usually of different sizes, are mapped onto this

plane. From this standard plane a feature vector is extracted. The algorithms

described below are used to perform these mappings.

 Let W1 and H1 denote the width and the height of the original character

image, respectively. Then the aspect ratio of the original image is defined as:

.
),max(

),min(

11

11
1

HW

HW
R (1)

Similarly, let W2 and H2 denote the width and the height of the

normalized image, respectively. Then the aspect ratio the normalized image is

defined as:

.
),max(

),min(

22

22
2

HW

HW
R (2)

 Both R1 and R2 are in the range [0, 1), as it follows from Eqs (1) and (2).

 In the described experiments an aspect ratio adaptive normalization

(ARAN) strategy [2] is used. In this strategy the normalized aspect ratio R2 is

calculated based on the original aspect ratio R1 using different mapping

functions. So using ARAN normalization a character image is fitted into a new

normalized plane H2 × W2, and then this plane is shifted to overlap the

standard plane. Dimensions of the normalized plane are calculated as follows.

It is assumed that one dimension of the normalized plane fills one dimension

of the standard plane: N = max(H2, W2), the other dimension is calculated

using the aspect ratio R2 and then centred on the standard plane (see Fig. 1).

The transformation to the standard plane can be described using

a coordinate mapping. Let us denote the original image as f(x, y) and the

normalized image as g(x’, y’). Then the normalized image can be generated by

coordinate mapping g(x’, y’) = f(x, y). We can use the forward mapping or the

backward mapping. These mappings are given by:

58

),,(yxxx),(yxyy

and

),,(yxxx),(yxyy

respectively, where x’, y’ are the coordinates of the normalized image and x, y

are the coordinates of the original image. The mappings used in the

experiments are presented in Tab. 4.

When the forward mapping is used, x and y are discrete, but x’ and y’ can

be real values. Similarly, when the backward mapping is used, then x’ and y’
are discrete, but x and y can be real values. Moreover, in the forward

mapping, the mapped coordinates x’, y’ usually do not fill all pixels in the

normalized plane. So the coordinate discretization or pixel interpolation is

necessary.

Fig. 1. (a) An original image, (b) A normalized image on the standard plane

Fig. 2. An example of the backward mapping

59

The discretization algorithm is quite simple. The mapped coordinates (x’, y’) or

(x, y) are approximated by the closest integer numbers ([x’], [y’]) or ([x], [y]).

Then in case of the forward mapping, the discrete coordinates (x’, y’) scan the

pixels of the original image and the pixel value f(x, y) is assigned to all pixels

ranged from ([x’(x, y)], y’(x, y)]) to ([x’(x+1, y+1)], [y’(x+1, y+1)]). In case of the

backward mapping discretization is trivial.

 In the described experiments grey-scaled images are used, so the

interpolation algorithm must be used. In case of the backward mapping the

mapped pixel (x, y) is surrounded by four discrete pixels. The grey level g(x’, y’)

is a weighted combination of the four pixel values. It is graphically presented

in Fig. 2. In the forward mapping every pixel in the original image and the

normalized image are treated as squares of a unit area. The unit square of the

original image is mapped to a rectangle in the normalized plane. It is

illustrated in Fig. 3. Next, each unit square overlapping the rectangle is given

a grey level value proportional to the overlapping area.

Two mappings used in the experiments are presented in Tab. 4. When

using the moment-based normalization method one dimension may go beyond

the standard plane. In this case the image part outside the standard plane is

cut off.

where:

Fig. 3. An example of the forward mapping

Tab. 4. Normalization methods used in experiments

 Forward mapping Backward mapping

Linear mapping xx /xx

 yy /yy

Moment mapping
cc xxxx)(cc xxxx /)(

cc yyyy)(cc yyyy /)(

60

,/ 12 WW 12 / HH ,

the centre of gravity of the image is given by

,/ 0010 mmxc 0001 / mmyc ,

mpq denotes the geometric moments:

),,(yxfyxm
x y

qp

pq

x’c, y’c denote the geometric centre of the normalized plane given by:

,2/2Wxc .2/2Hyc

 In the described experiments, all normalization functions are

implemented by the backward mapping. Fig. 4 shows samples of the

normalized images, corresponding to all normalization functions. The size of

the standard plane is 32 × 32.

In the described experiments there are several normalization methods

implemented as described above. The used normalization functions are listed

in Tab. 5.

Tab. 5. List of normalization functions used in the experiments

Symbol Description Aspect ratio

N0 Linear normalization with fixed aspect ratio 12 R

N1 Linear normalization with preserved aspect ratio
12 RR

N2 Linear normalization with square root ratio
12 RR

N3 Linear normalization with cube root ratio 3
12 RR

N4 Linear normalization with fixed aspect ratio* 9.02 R

N5 Linear normalization with square root of sine of

aspect ratio
)2/sin(12 RR

N6 Moment normalization with preserved aspect

ratio
12 RR

N7 Moment normalization with square root ratio
12 RR

N8 Moment normalization with cube root ratio 3
12 RR

N9 Moment normalization with fixed aspect ratio* 9.02 R

N10 Moment normalization with square root of sine

of aspect ratio
)2/sin(12 RR

* The aspect ratio obtained using test procedure from range [0.4, 1).

61

3. Feature extraction

 In the described experiments three types of features are used: geometric

moment invariants, Zernike moments and gradient features. The moment

invariants are known to be invariant under rotation, translation, scaling and

reflection. The Zernike moments are noise resilient. The gradient features are

easy to extract and give the high performance and discriminative power as

well.

3.1. Geometric moment invariants

 First type of features which were used are geometric moment

invariants. These features extract global properties of the image such as the

shape area, the centre of the mass, the moment of inertia, and so on. In these

experiments a feature vector similar to presented in [46] is used, but modified

and extended to a 98D vector. Given a grey-scale image of the size M × N, the

regular moments of order (p + q) are defined as:

).,(
1 1

ji

N

i

M

j

q

j

p

ipq yxfyxm

 From the above translation-invariant central moments can be obtained by

placing the origin in the centre of gravity.

),,()()(
1 1

ji

N

i

M

j

q

j

p

ipq yxfyyxx

where

Fig. 4. Normalized images

62

,
00

10

m

m
x .

00

01

m

m
y

Hu showed that:

2,/
)1

2
(

00

qp

qp

pqpq

are scale-invariant.

 Finally, rotation-invariant feature can be constructed. In this paper seven

invariants were used as follows:

,02201

,4)(2

11

2

02202

,)3()3(2

0321

2

12303

,)()(2

0321

2

12304

))(3))(()((2

0321

2

2130123012305

),)())(()(3(2

0321

2

213003213021

),)((4))())(((0321213011

2

0321

2

123002206

))(3))(()(3(2

0321

2

1230120303217

).)()(3)()(3(2

0321

2

123003213012

 As these features are rotation-invariant there will be a problem with

recognizing some numerals, i.e. 6 and 9 or 2 and 5. As a matter of fact the

recognition rate using these seven features was only about 45%. To avoid this

problem the image was divided into 4 and 9 square regions and all seven

geometric invariants were extracted from every region. This gives a (4 + 9) * 7

+ 7 = 98D feature vector. This feature vector is denoted as GMI.

3.2. Zernike moments

 A Zernike moments concept was first introduced by Teague in 1980 [49].

Compared to the geometry moment invariants Zernike moments are

computationally expensive, but have several advantages: they are orthogonal,

rotation invariant and noise resilient. Additionally, they have one interesting

feature, the original image can be reconstructed from these moments. They

have been used to binary pictures because they are not invariant due to

63

contrast. This drawback can be easily avoided using the grey-scale

normalization. Complex Zernike moments are constructed using a set of

complex polynomials which form a complete orthogonal basis set defined on

the unit disc. These polynomials are defined as below:

,),(),()/(tan 1 xyjm

nmnm eyxRyxV

where

,1j ,0n mn is even

and

.

!
2

!
2

!

)!()()1(
),(

2/)(

0

2/22

mn

s

sns

nm

s
mn

s
mn

s

snyx
yxR

Then Zernike moment of order n and repetition m is defined as:

,)),()(,(
1 *

 yxVyxf

m

n
A nmnm

 ,122 yx (3)

where * denotes a complex conjugate operator, n –|m| is even and |m|≤n.

It is interesting that the original image can be reconstructed using the

formula:

,),(lim),(
0

N

n m

nmnm
N

yxVAyxf (4)

where the sum is taken for all |m|≤n and n – |m| is even.

The amplitudes of Zernike moments nmA are rotation invariant.

Invariance to the scale and translation can be obtained by shifting and scaling

the image before the computation of Zernike moments. The normalization

algorithms used in these experiments guarantee that all images are shifted

and scaled.

 There are two feature vectors based on Zernike moments used. The first

vector ZM1 consists of all 47 first amplitudes of Zernike moments from 0,0Z

to ,12,12Z and the second vector ZM2 consists of 24 amplitudes chosen only as

described in [7], i.e: Z0,0, Z2,0, Z3,1, Z3,3, Z4,0, Z4,2, Z5,1, Z5,3, Z5,5, Z6,0, Z7,1, Z7,3,

Z7,5, Z8,4, Z8,6, Z9,5, Z9,7, Z10,2, Z10,4, Z11,1, Z11,5, Z11,7, Z12,0.

3.2.1. Fast algorithm to compute Zernike moments

 The algorithm computing Zernike moments with the use of Eq. (3) will be

very inefficient. As a matter of fact it is useless according to the database size.

So there must be found a far more efficient method. Let us notice that under

polar coordinates the above formula can be expressed as:

64

,),()(
1

x y

jm

nmnm rferR
n

A

(5)

where

,22 yxr)/(tan 1 yx

and

.

)!
2

()!
2

(!

)!()1(
)(

2/)(

0

2

mn

s

sn
s

nm r

s
mn

s
mn

s

sn
rR

(6)

Then imaginary and real components of Zernike moment can be calculated as:

x y

nmnm rfmrR
n

C),()cos()(
22

(7)

and

.),()sin()(
22

x y

nmnm rfmrR
n

S

(8)

 The character images are discrete and usually relatively small (in these

experiments 32 x 32) so the number of different values of r is relatively small.

Let us denote the pixel in the centre of the image as level 0, and the next 8

neighbouring pixels as level 1 and so on. On each level there will be level+1
different values of r. The number of levels will be:

).12/(2/21 nn

Fig. 5. All possible values of r for a 7 x 7 image

65

The total number of different values of r will be: 1/8(n2 + 6n + 8). Usually

only a few dozen of first Zernike moments are used, so all values of Rnm(r) can

be computed using Eq. (5) for all possible values of r, m, n. For example in the

described experiments there are 32 x 32 images and 47 first Zernike moments

are used. It gives 153*47 = 7191 different values for all images.

 Precomputing all these values has a great impact on the algorithm

efficiency because all values of Rnm are calculated only once for all images (the

MNIST database used in the experiments has 60 000 + 10 000 = 70 000

images). Values of sin(mθ), cos(mθ) (or even Rnm(r)sin(mθ), Rnm(r)cos(mθ)) can

be precomputed as well.

3.3. Gradient features

 The gradient features can be easily used to grey-scale images and are

robust against image noise and edge direction fluctuations. Additionally, the

gradient can be computed by using the Sobel operator, which has two masks

for the gradient components in horizontal and vertical directions. So it can be

efficiently extracted from the image. The gradient gives us the magnitude and

the direction of the greatest change in intensity in the neighbourhood of

a pixel. The Roberts [10] and Kirsh [65] operator have also been used in the

literature.

The Sobel operator is used to compute gradient components as follows:

)1,1(),1(2)1,1(),(yxfyxfyxfyxg x

)1,1(),1(2)1,1(yxfyxfyxf
(9)

Fig. 6. Sobel masks used to compute gradients

66

)1,1()1,(2)1,1(),(yxfyxfyxfyxg y

).1,1()1,(2)1,1(yxfyxfyxf
(10)

Then, the gradient magnitude is calculated as:

),(),(),(22 yxgyxgyxA yx (11)

and the gradient direction as:

).
),(

),(
(tan),(1

yxg

yxg
yx

x

y

 The complete gradient map may contain some noise information.

Especially when grey-scale images are used. To avoid these spurious gradients

a simple filtering algorithm is proposed – an adaptive gradient thresholding.

In the first step the average gradient magnitude is computed over the whole

image and then this value is used to filter our gradient map. Formally:

,

),(

NM

yxA

g
x y

avr

where M, N are dimensions of the image. Then

avr

avr

AyxA

AyxAyxA
yxA

),(1

),(),(
),(

and

.
),(1

),(),(
),(

avr

avr

AyxA

AyxAyx
yx

The gradient directions are real values from range [0, 360). To extract

a feature vector they are quantized into a small number of integer values.

There are 12 integer values used representing gradient scopes: [0, 30), [30,

60), [60, 90) and so on. Next, the gradient map is divided into 4 x 4 parts.

Then, a percentage of pixels with the direction of gradient quantized to value

K = 1, 2, ..., 12 is computed in each part. Hence the total number of features

will be 4 × 4 × 12 = 192D. This feature vector is denoted as GF.

The second feature vector denoted as GFC is also based on gradient

features. There are 10 crossing line features added to the previous vector GF.

The crossing line features are extracted in the following steps. First, the

centre of gravity of the image is found, then the horizontal and vertical line

are drawn through this point, and finally two extra lines on each side of the

horizontal and vertical line are added with equal margins. The crossing line

67

feature is the number of intersection points with the image. For example for

the numeral shown in Fig. 7 there are two vectors: (1,1,1,1,1) and (1,2,2,2,1).

4. The SVM classifier

 The Support Vector Machine (SVM) has been proposed by Vapnik in [25].

The SVM technique has been used in different application domains and has

outperformed the traditional techniques in terms of generalization capability.

Contrary to the traditional techniques which try to minimise the empirical

risk (the classification error on the training data) SVM minimises the

structural risk (the classification error on data never seen before).

 The classification task is to predict whether a test sample belongs to one

of two classes. In a feature space this corresponds to finding a hyperplane

which separates these two classes. There is an infinite number of such

hyperplanes, so among the possible choices, the SVM classifier selects the one

for which the distance of the hyperplane from the closest feature vectors (the

“margin”) is as large as possible. This hyperplane is called an optimal

separating hyperplane. Let us consider a classifier whose decision function is

given by:

),()(bwxsignxf T

where x denotes a feature vector and w is a weight vector. The problem is

separable when there exist w and threshold b such that:

,1)(bwxy T

ii .,,2,1 mi

To maximize the margin we must minimize

.2/1 2w

This problem leads to a so-called dual optimization problem, which is

,)(2/1
1 ,

N

i

N

ji

j

T

ijiiD xxL

such that

Fig. 7. Crossing line features (a) horizontal, (b) vertical

68

,0i Ni ,,2,1 and .0
1

i

N

i

i y

This leads to a hyperplane decision function:

),)(()(
vectorssupport

bxxysignxf T

iii
(12)

where xi are support vectors with Lagrangian non-zero multipliers αi.

 The support vectors are the feature vectors which lie on the margins. This

is an advantage of this approach because only a small number of vectors is

used to compute a resulting classifier.

 In a real life problem it is unlikely that a hyperplane will exactly separate

the data. To deal with this problem the soft margin hyperplanes are used.

A set of variables ξi representing errors (i.e. the vectors which lie inside the

margin) and a parameter C which determines a trade-off between margin

maximization and error minimization are introduced.

 In Eq. (12) a dot product of the input vectors is used. So we can apply

some trick to calculate the dot product of the vectors in the feature space

using a kernel function. It allows us to create a decision function that is non-

linear in the input space, but is linear in the feature space, i.e.:

),),(()(
vectorssupport

bxxKysignxf iii
(13)

where K(xi, x) is a kernel function. Typical kernel functions are:

1. Linear kernel: ,),(i

T

i xxxxK

2. Polynomial kernel: ,)(),(dT

i cxxxxK

3. RBF (Radial basis kernel) Kernel: 2
),(ii xxxxK , ,0

4. Gausian RBF Kernel: ,2/)exp(),(22 ii xxxxK

5. Sigmoid kernel:).tanh(),(cxxxxK i

T

i

 The last problem which must be solved is that handwritten numeral

recognition is a multi-class problem and the SVM is a binary classifier. There

are two commonly used solutions. The first is WTA (winner takes all)

strategy. In this approach we build N classifiers for N classification problems:

one class versus all other classes. Another approach is to build n(n–1)/2

classifiers for each pair of classes, then use MVS (majority voting scheme)

strategy.

69

5. Experimental results

 In this section recognition accuracies obtained in the experiments are

presented. The results are presented in Tab. 6. In the rows there are five

different feature vectors (described in Sect. 3) and in the columns N0 – N10

are normalization methods used (see Tab. 2). In the first column WN there is

accuracy obtained without any normalization.

 The handwritten digit database MNIST described in Section 1 is used in

these experiments. Some images of the training dataset are shown in Fig. 8.

This database is divided into two datasets: the training dataset including

60 000 samples and the test dataset including 10 000 samples. As a SVM-rbf

classifier is used in the experiments there is an extra dataset necessary for

validation purposes (to find C and γ parameters). So the training dataset was

divided into two sets: 50 000 samples for the training set and 10 000 samples

for the validation set.

 For these three datasets feature vectors are generated using

normalization methods listed in Tab. 5. For normalization methods N4 and N9

a special procedure was used to find the best ratio R2. The 12 feature vectors

are generated using aspect ratios from 0.4 to 0.95 with step 0.05. The best

result (for aspect ratio 0.9) is presented in Tab. 6. The extra feature vector set

is generated for original images.

Fig. 8. Examples from MNIST database

70

 Before using the classifier all feature vectors are linearly scaled into [–1,

1] range. The main advantage of using this scaling is to avoid attributes in

greater numeric ranges dominating those in smaller numeric ranges. Another

advantage is to avoid numerical difficulties during the calculation. Because

kernel values usually depend on the inner products of feature vectors, e.g. the

linear kernel and the polynomial kernel, large attribute values might cause

numerical problems.

 In Tab. 6 the results of the experiments are shown. There are feature

vectors in rows and normalization methods in columns.

 Geometric moments invariants are the poor feature vector. But as can be

seen in [46] and in our experiments the results are close to the best features

vectors based on gradient and directional features. Possibly, if we add extra

features to these vectors, i.e. concave features or crossed lines features, the

result would be even better.

 Zernike moments are better than geometric moments, but are not so good

as gradient features. In this paper we mainly focus on normalization methods

and as a matter of fact we do not investigate the feature vectors. Maybe

methods presented in [7] can be extended and yield to better results.

The best results are achieved using gradient features. The extended GFC

vector leads to even better results. The geometric moment invariants and

Zernike moments appear slightly worse, but the results are promising.

Perhaps combining these feature vectors with other features will lead to

better recognition ratios. GF and GFC vectors are most promising.

Considering that they are easy to extract and easy to understand they seem to

be good choice for future work.

To examine how normalization methods influence recognition rates all

feature vectors are extracted from the dataset also without normalization (the

column WN in Tab. 6 shows the recognition rate on this vector). Tab. 7

presents relative recognition rates defined as follows:

,100*
100

100
1

i

ij

ij
R

R
RRR

Tab. 6. Recognition rates obtained on different feature vectors

 WN N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

GMI 79.31 82.58 83.49 85.42 85.18 85.52 84.72 84.93 85.44 85.47 85.03 84.99

ZM1 84.10 91.42 92.84 91.12 93.54 93.94 91.80 92.90 94.33 94.22 94.19 94.05

ZM2 86.24 92.20 93.91 94.02 94.21 93.29 92.11 93.45 94.79 94.62 94.77 94.31

GF 94.52 96.78 96.83 96.98 98.01 97.61 97.83 97.70 98.76 98.61 98.77 98.72

GFC 95.24 97,86 97.65 98.21 98.48 98.32 98.47 98.12 99.16 98.82 98.98 99.06

71

where Rij is recognition rate obtained on i-th feature vector using j-th normali-

zation and Ri is recognition rate obtained on i-th feature vector without any

normalization.

 This measure shows how a normalization method contributes to achieving

the optimal recognition rate. For example RRR = 100 means that this

normalization method leads to the maximal recognition rate = 100%, RRR = 0

means that the corresponding normalization method brings no advantage to

the result and values less than zero mean that the normalization deteriorates

the recognition ratio.

6. Conclusions and future work

 In this paper several normalization methods and five feature vectors are

compared on the MNIST database. The recognition results show that the

moment normalization functions N7 yield the highest recognition rates. The

results obtained using moment normalization functions N10 and N9 are also

very good. Generally, the normalization is influential to the recognition

performance for both dimension-based and moment-based normalization. It is

interesting that preserving the aspect ratio or forcing the aspect ratio to one

leads to substantially worse results.

 There are five sets of feature vectors tested. The best results are achieved

using gradient features, but it can be seen that other feature vectors are not

quite useless. The results are promising. Maybe some extension of these

feature vectors could lead to results comparable with gradient features. The

reported results provide useful insights for selecting a suitable normalization

algorithm in developing recognition systems.

There are also interesting results in experiments using different aspect

ratios. Testing one class versus all others shows that there is no universal

aspect ratio optimal for all classes. Different aspect ratios are optimal for

different numerals. For example for numeral 1 the best aspect ratio is 0.4 and

Tab. 7. Relative recognition rates

 N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

MIs 15.8 20.2 29.5 28.4 30.0 26.1 27.2 29.6 29.8 27.6 27.5

ZM1 46.0 55.0 44.2 59.4 61.9 48.4 55.3 64.3 63.6 63.5 62.6

ZM2 43,3 55.7 56.5 57.9 51.2 42.7 52.4 62.1 60.9 62.0 58.7

GF 41.2 42.2 44.9 63.7 56.4 60.4 58.0 77.4 74.6 77.6 76.6

GFC 55.0 50.6 62.4 68.1 64.7 67.9 60.5 82.4 75.2 78.6 80.3

72

for numeral 0 the best aspect ratio is 0.95. This observation is useless in this

experiment, because there must be one classifier for all numerals, but in the

future work it can be used for building a multiple classifier solution.

The experiments described in this paper are focused on normalization.

The results show that this preprocessing technique has a great impact on the

final recognition rate regardless of the feature vector used. The next step is to

find even better feature vectors which in conjunction with these normalization

techniques will lead to even better recognition rates.

7. References

[1] Xu D., Li H.; Geometric moment invariants, Pattern Recognition 41, 2008, pp. 240–

249.

[2] Liu Ch.L., Nakashima K., Sako H., Fujisava H.; Handwritten digit recognition:

investigation of normalization and feature extraction techniques, Pattern

Recognition 37, 2004, pp. 265–279.

[3] Chang C.-C., Lin C.-J.; LIBSVM: a library for support vector machines, software

available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

[4] Lauer F., Suen Ch.Y., Bloch G.; A trainable feature extractor for handwritten digit

recognition, Pattern Recognition 40, 2007, pp. 1816–1824.

[5] Zhang W., Tang Y.Y., Xue Y.; Handwritten Character Recognition Using Combined

Gradient and Wavelet Feature, International Conference on Computational

Intelligence and Security, Vol. 1, 2006, pp. 662–667.

[6] Stąpor K.; Automatic object classification, Publishing House EXIT, 2005.

[7] Tong X.J., Zeng S., Zhou K., Jiang Q.; Hand-written numeral recognition based on

Zernike moment, Proceedings of the 2008 ICWAPR, pp. 368–372.

[8] Teow L.-N., Loe K.-F.; Robust vision-based features and classification schemes for

offline handwritten digit recognition, Pattern Recognition 35(11), 2002, pp. 2355–

2364.

[9] Liu H., Ding X.; Handwritten Character Recognition Using Gradient Feature and

Quadratic Classifier with Multiple Discrimination Schemes, Proceedings of the

Eighth ICDAR, 2005, pp. 19–25.

73

[10] Shi M., Fujisava Y., Wakabayashi T., Kimura F.; Handwritten Numeral

Recognition using gradient and curvature of gray scale image, Pattern

Recognition 35(10), 2002, pp. 2051–2059.

[11] Cristianini N., Scholkopf B.; Support vector machines and Kernel methods: the

new generation of learning machines, AI Magazine 13(3), 2002, pp. 3–41.

[12] Liu Ch.L., Nakashima K., Sako H., Fujisava H.; Handwritten digit recognition:

benchmarking of state-of-the-art techniques, Pattern Recognition 36, 2003, pp.

2271–2285.

[13] Shi M., Fujisawa Y., Wakabayashi T., Kimura F.; Handwritten numeral

recognition using gradient and curvature of gray scale image, Pattern Recognition

35, 2002, pp. 2051–2059.

[14] Scholkopf B., Smola A.J.; Learning with Kernels. Support Vector Machines,

Regularization, Optimization, and Beyond, The MIT Press, 2001.

[15] Cheriet M., Kharma N., Liu Ch.-L., Suen Ch.-Y.; Character Recognition Systems:

A guide for students and practioners, Wiley-Interscience, 2007.

[16] Suen Ch.Y., Nadal Ch., Legault R., Mai T.A., Lam L.; Computer Recognition of

unconstrained handwritten numeral, Proceedings of the IEEE, 80, 1992, pp.

1162–1180.

[17] Srikantan G., Lam S.W., SriHari S.N.; Gradient-based contour encoding for

character recognition, Pattern Recognition 29, 1996, pp. 1147–1160.

[18] Arica N., Yarmna-Vural F.T.; Optical Character Recognition for Cursive

Handwriting, IEEE Transactions on Pattern Analysis and Machine Intelligence

23, 2002, pp. 801–813.

[19] Liu C.-L., Nakashima K., Sako H., Fujisawa H.; Aspect Ratio adaptive

normalization for handwritten character recognition, in: Advances in Multimodal

Interfaces – ICMI 2000, T. Tan Y. Shi, W. Gao (eds.), Lecture Notes in Computer

Science 1948, 2000, pp. 418–425.

[20] Kimura et al.; Evaluation an synthesis of feature vectors for handwritten numeral

recognition, IEICE Trans. Inform. Systems E79-D(5), 1996, pp. 436–442.

[21] Heutte L., Paquet T., Moreau J.V., Lecourtier Y., Olivier C.; A structural/

statistical feature based vector for handwritten character recognition, Pattern

Recognition Letters 19(7), 1998, pp. 629–641.

[22] Jain A.K., Duin R.P.W., Mao J.; Statistical Pattern Recognition: a review, IEEE

Transactions on Pattern Analysis and Machine Intelligence 22(1), 2000, pp. 4–37.

74

[23] Burges C.J.C.; A tutorial on support vector machines for pattern recognition,

Knowledge Discovery Data Mining 2(2), 1998, pp. 1–43.

[24] Kimura F., Takashina K., Tsuruoka S., Miyake Y.; Modified quadratic

discriminant functions and the application to Chinese character recognition, IEEE

Trans. Pattern Anal. Mach. Intell. 9(1), 1987, pp. 149–153.

[25] Vapnik V.; The Nature of Statistical Learning Theory, Springer, New York 1995.

[26] Kimura F., Shridhar M.; Handwritten numeral recognition based on multiple

algorithms, Pattern Recognition 24(10), 1991, pp. 969–981.

[27] Liu C.-L., Sako H., Fujisawa H.; Performance evaluation of pattern classifiers for

handwritten character recognition, International Journal on Document Analysis

Recognition 4(3), 2002, pp. 191–204.

[28] Lee D.-S., Srihari S.-N.; Handprinted digit recognition: a comparison of

algorithms, Proceedings of the Third International Workshop on Frontiers of

Handwriting Recognition, Buffalo, New York, 1993, pp. 153–164.

[29] LeCun Y. et al.; Comparison of learning algorithms for handwritten digit

recognition, in: Proceedings of the International Conference on Artificial Neural

Networks, F. Fogelman-Soulie, P. Gallinari (eds.), Nanterre, France 1995, pp. 53–

60.

[30] Suen C.-Y., Liu K., Strathy N.W.; Sorting and recognizing cheques and financial

documents, in: Document Analysis Systems: Theory and Practice, S.-W. Lee, Y.

Nakano (eds.), Springer, Berlin 1999, pp. 173–187.

[31] Liu C.-L., Nakagawa M.; Handwritten numeral recognition using neural networks:

improving the accuracy by discriminative training, Proceedings of the Fifth

International Conference on Document Analysis and Recognition, 1999, pp. 257–

260.

[32] Naggy G., Tuong N.; Normalization techniques for handprinted numerals,

Communications of the ACM 13(8), 1970, pp. 475–481.

[33] Franke J.; Isolated handprinted digit recognition, in: Handbook of Character

Recognition and Document Image Analysis, H. Bunke, P.S.P. Wang (eds.), World

Scientific, Singapore 1997, pp. 103–121.

[34] Gader P.D., Khabou M.A.; Automatic feature generation for handwritten digit

recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence

18(12), 1996, pp. 1256–1261.

75

[35] Cai J.-H., Liu Z.-Q.; Integration of structural and statistical information for

unconstrained handwritten numeral recognition, IEEE Transactions on Pattern

Analysis and Machine Intelligence 21(3), 1999, pp. 263–270.

[36] Oh I.-S., Lee J.-S., Suen C.Y.; Analysis of class separation and combination of

class-dependent features for handwriting recognition, IEEE Transactions on

Pattern Analysis and Machine Intelligence 21(10), 1999, pp. 1089–1094.

[37] Mayraz G., Hinton G.E.; Recognizing handwritten digits using hierarchical

products of experts, IEEE Transactions on Pattern Analysis and Machine

Intelligence 24(2), 2002, pp. 189–197.

[38] Dong J.X., Krzyzak A., Suen C.Y.; A multi-net learning framework for pattern

recognition, Proceedings of the Sixth International Conference on Document

Analysis and Recognition, Seattle 2001, pp. 328–332.

[39] Belongie S., Malik J., Puzicha J.; Shape matching and object recognition using

shape contexts, IEEE Transactions on Pattern Analysis and Machine Intelligence

24(4), 2002, pp. 509–522.

[40] Gonzalez R.C., Woods R.E.; Digital Image Processing, 2nd edition, Addison

Wesley, 2001.

[41] Hull J.J.; Document image skew detection: Survey and annotated bibliography, in:

Document Analysis Systems II, J.J. Hull and S.L. Taylor (eds.), World Scientific,

Singapore, 1998, pp. 40–64.

[42] Yamaguchi T., Nakano Y., Maruyama M., Miyao H., Hannoi T.; Digit

classification on siggnboard for telephone number recognition, Proceedings of the

7th International Conference for Document Analysis and Recognition, Edinburgh,

Scotland 2003, pp. 359–363.

[43] Zhang T.Y., Suen C.Y.; A fast parallel algorithm for thinning digital patterns,

Communication of the ACM 27(3), 1984, pp. 236–239.

[44] Favata J.T., Srikantan G., Srihari S.N.; Handprinted character/digit recognition

using a multiple feature/resolution philosophy, Proceedings of the Fourth

International Workshop on Frontiers of Handwriting Recognition, Taipei 1994,

pp. 57–66.

[45] de Oliveira Jr. J.J., Veloso L.R., de Carvalho J.M.; Interpolation/decimation

scheme applied to size normalization of characters images, Proceedings of the 15th

International Conference Pattern Recognition, Vol. 2, Barcelona, Spain 2000, pp.

577–580.

76

[46] Ramteke R.J., Mehrotra S.C.; Feature Extraction Based on Moment Invariants for

Handwriting, IEEE Conference on Recognition Cybernetics and Intelligent

Systems, Issue 7–9, 2006, pp. 1–6.

[47] Cheng D., Yan H.; Recognition of handwritten digits based on contour

information, Pattern Recognition 31(3), 1998, pp. 235–255.

[48] Tong X.J., Zeng S., Zhou K., Zhao K., Jiang Q.; Hand-written numeral recognition

based on Zernike moment, Proceedings of the 2008 International Conference on

Wavelet Analysis and Pattern Recognition, Vol. 1, 2008, pp. 368–372.

[49] Teague M.R.; Image analysis via the general theory of moments, Journal of the

Optical Society of America 70(8), 1980, pp. 920–930.

[50] Trier O.D., Jain A.K., Taxt T.; Feature extraction. Methods for character

recognition – a survey, Pattern Recognition 29, 1996, pp. 641–662.

[51] Kawamura A. et al.; On-line recognition of freely handwritten Japanese characters

using directional feature densities, Proceedings of the 11th International

Conference on Pattern Recognition, Vol. 2, The Hague 1992, pp. 183–186.

[52] Mori S., Suen C.Y., Yamamoto K.; Historical review of OCR research and

development, Proceedings of IEEE 80(7), 1992, pp. 1029–1053.

[53] Khotanzad A., Hong Y.H.; Invariant image recognition by Zernike moments, IEEE

Transactions on Pattern Analysis and Machine Intelligence 12(5), 1990, pp. 489–

490.

[54] Burges C.J.C.; A tutorial on support vector machines for pattern recognition,

Knowledge Discovery Data Mining 2(2), 1998, pp. 1–43.

[55] Gudessen A.; Quantitative Analysis of preprocessing techniques for the recognition

of handprinted characters, Pattern Recognition 8, 1976, pp. 219–227.

[56] Cristianini N., Shawe-Taylor J.; An Introduction to Support Vector Machines and

Other Kernel-Based Learning Methods, Cambridge University Press, 2000.

[57] Labusch K., Barth E., Martinetz T.; Simple Method for High-Performance Digit

Recognition Based on Sparse Coding, IEEE Transaction on Neural Networks

19(11), 2008, pp. 1985–1989.

[58] Fan R.E., Chen P.H., Lin C.J.; Working Set Selection Using Second Order

Information for Training Support Vector Machines, Journal of Machine Learning

Research 6, 2005, pp. 1889–1918.

77

[59] Keerthi S.S., Lin C.J.; Asymptotic behaviors of support vector machines with

Gaussian kernel, Neural Computation 15(7), 2003, pp. 1667–1689.

[60] Kernel machines web site, http://www.kernel-machines.org/.

[61] The MNIST database of handwritten digits, http://yann.lecun.com/exdb/mnist/.

[62] Hsu C.W., Chang C.C., Lin C.J.; A practical guide to support vector classification,

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

[63] Mukundan R., RamaKrishnan K.R.; Fast Computation of Legendre and Zernike

Moments, Pattern Recognition 28(9), 1995, pp. 1433–1442.

[64] Casey R.G.; Moment normalization of handprinted character, IBM Journal of

Research and Development 14, 1970, pp. 548–557.

[65] Lee S.-W.; Multilayer cluster neural network for totally unconstrained

handwritten numeral recognition, Neural Networks 8(5), 1995, pp. 783–792.

[66] Abuhaiba I.S.I., Holt M.J.J., Datta S.; Recognition of off-line handwriting,

Computer Vision and Image Understanding 71, 1998, pp. 19–38.

Received May 16, 2010

