
Loss-tolerant quantum dense metrology with
SU(1,1) interferometer
YUHONG LIU,1 JIAMIN LI,1 LIANG CUI,1 NAN HUO,1 SYED M.
ASSAD,2 XIAOYING LI,1,* AND Z. Y. OU1,3,4

1College of Precision Instrument and Opto-Electronics Engineering, Key Laboratory of Opto-Electronics
Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
2Department of Quantum Science, The Australian National University, Canberra ACT 0200, Australia
3Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
4zheyuou@tju.edu.cn
*xiaoyingli@tju.edu.cn

Abstract: Heisenberg uncertainty relation in quantum mechanics sets the limit on the
measurement precision of non-commuting observables in one system, which prevents us
from measuring them accurately at the same time. However, quantum entanglement between
two systems allows us to infer through Einstein-Podolsky-Rosen correlations two conjugate
observables with precision better than what is allowed by Heisenberg uncertainty relation. With
the help of the newly developed SU(1,1) interferometer, we implement a scheme to jointly
measure information encoded in multiple non-commuting observables of an optical field with a
signal-to-noise ratio improvement of about 20% over the classical limit on all measured quantities
simultaneously. This scheme can be generalized to the joint measurement of information in
arbitrary number of non-commuting observables.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum properties of light were applied to precision phase measurement as early as in 1980s,
beating the shot noise limit (SNL) set by the quantum physics for the classical systems using
classical techniques [1–3]. The basic idea is to reduce the quantum noise in the measurement
with some novel quantum states of light. Recently, the topic of multi-parameter estimation
and measurement has also attracted much attention because it is related to the fundamental
quantum measurement process as well as practical applications in quantum imaging and
sensing [4–8]. However, because of the Heisenberg uncertainty relation (HUR) on two non-
commuting observables, quantum noise reduction in one observable inevitably leads to the
noise increase in the other. Thus, it seems impossible to beat the SNL simultaneously in joint
measurement of non-commuting observables.
On the other hand, quantum correlation via quantum entanglement provides us with a

remedy to circumvent the aforementioned dilemma. Braunstein and Kimble proposed in 2000 a
quantum dense coding scheme in which one of two optical fields with Einstein-Podolsky-Rosen
(EPR) type of quantum entanglement is used to probe both phase and amplitude modulations
simultaneously [9]. With the help of quantum entanglement, it is possible to jointly measure
the phase and amplitude modulations with measurement precision simultaneously beating the
classical limit set by the vacuum noise. A variation of the scheme was proposed by Zhang and
Peng [10] and experimentally implemented by Li et al. [11]. More recently, it was applied to a
prototype interferometer for improved performance in gravitational wave detection in the form of
quantum dense metrology [12].
However, the aforementioned quantum dense metrology scheme requires the superposition

of the two entangled fields by a beam splitter for the quantum noise cancellation to increase
measurement sensitivity. This means that the two entangled fields must be frequency degenerate,
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which excludes many possible entangled sources for this application. Furthermore, the scheme is
extremely sensitive to passive losses such as those occurred during propagation and detection
because quantum noise reduction technique is notoriously prone to losses.
In this paper, we implement a new quantum dense metrology scheme with an SU(1,1)

interferometer that was recently developed for quantum metrology in phase measurement [13–21].
We are able to make use of frequency non-degenerate entanglement to perform joint measurement
of phase and amplitude modulations or any other modulations at arbitrary quadrature angles on
one optical fields with measurement precision beating the classical limit simultaneously while
avoiding the aforementioned difficulties. Furthermore, using the unique loss-tolerant property
of SU(1,1) interferometer, we are able to make joint measurement on multiple (more than 2)
modulations at different quadrature angles.

2. Theory

While the Heisenberg uncertainty relation (HUR) is on two non-commuting observables of
one single system, quantum mechanics allows perfect correlations between non-commuting
observables of two systems. Einstein, Podolsky, and Rosen showed in a seminal paper [22]
that there exists such a quantum state of a two-particle system that exhibits perfect correlations
not only between the positions of the two particles but also between their momenta. This is so
because the difference of their position operators x̂1 − x̂2 and the sum of their momenta operators
p̂1 + p̂2 commute: [x̂1 − x̂2, p̂1 + p̂2] = 0. Such perfect correlations led to the famous EPR
paradox on quantum mechanics [22]. The experimental realization of the EPR entangled state
and the demonstration of EPR paradox were first done in an optical parametric amplifier [23] in
which the two particles are the virtual harmonic oscillators representing two spatially separated
modes of optical fields with x̂1,2 ∝ â†1,2 + â1,2 ≡ X̂1,2 and p̂1,2 ∝ i(â†1,2 − â1,2) ≡ Ŷ1,2, where
â†j and âj ( j = 1, 2) are the creation and annihilation operators of the two optical fields. Here,
X̂1,2, Ŷ1,2 are related to the amplitude and phase of the corresponding optical fields. Fundamental
implication aside, these quantum correlations of orthogonal observables can be employed for the
simultaneous measurement of small modulations on the phase and amplitude encoded in one
optical field, say, X̂1, Ŷ1 with quantum noise reduced by noise cancelation via X̂1 − X̂2 and Ŷ1 + Ŷ2.

Fig. 1. Schematics for joint measurement of information encoded in multiple non-commuting
observables through weak modulations on the probe beam by an amplitude modulator (AM)
and a phase modulator (PM). (a) An SU(1,1) interferometer with optical parametric amplifiers
(OPA1, OPA2). (b) Classical scheme with a beam splitter (BS). (c) Classical scheme with
an optical parametric amplifier (OPA). HD: homodyne detection.
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This idea was first proposed in the form of quantum dense coding [9, 10] and was demonstrated
experimentally in the joint measurement of two orthogonal observables with precision beating
SNL [11,12]. We show in the following that such a strategy can be realized with the help of an
SU(1,1) interferometer.
Consider the SU(1,1) interferometer depicted in Fig. 1(a), where the beam splitters of a

traditional Mach-Zehnder interferometer are replaced by optical parametric amplifiers (OPA)
with gain parameters Gk, gk(k = 1, 2,G2

k
− g2

k
= 1). The first optical parametric amplifier (OPA1)

creates two fields labeled as signal and idler whose X̂s,i and Ŷs,i have been shown to possess
the aforementioned EPR-type correlations (s, i = 1, 2) [23]. The second OPA (OPA2), with the
proper phase and gain parameter, is described by [24]

â(out)s = G2âs − g2â†i , â
(out)
i = G2âi − g2â†s, (1)

which gives X̂ (out)s = G2 X̂s − g2 X̂i , Ŷ (out)i = G2Ŷi + g2Ŷs. When G2 � G1 > 1 or G2 ≈ g2, we
have X̂ (out)s ∝ X̂s − X̂i , Ŷ (out)i ∝ Ŷs + Ŷi . Hence, the measurement of X̂ (out)s in the signal output
and Ŷ (out)i at the idler output of the interferometer by homodyne detection (HD) will be a direct
measurement of X̂s − X̂i and Ŷs + Ŷi , which can simultaneously have their fluctuations less than
what HUR allows [23]. Note that the technique of using an amplifier to measure X̂s − X̂i or Ŷs + Ŷi
was first introduced by Flurin et al. [25] in microwave regime to overcome the thermal noise
which would otherwise overwhelm the quantum noise to be measured. We recently generalize
this idea to even cover the vacuum quantum noise due to non-ideal detection efficiency [26].
A phase modulation (PM) of δ � 1 and an amplitude modulation (AM) ε � 1 are

simultaneously applied to the signal field in X̂s and Ŷs, respectively, as expressed in terms of a
small phase shift e jδ ≈ 1+ jδ and an amplitude transmission of e−ε ≈ 1− ε . The modulated field
is then âse jδe−ε ≈ âs(1 + jδ − ε). For an arbitrary modulation signal consists of both phase and
amplitude modulation, its modulation signal size is related to δ and ε by ξ(θ) = ε cos θ + δ sin θ
with ξ(0) ≡ ε, ξ(π/2) ≡ δ. The modulation signals δ and ε or ξ(θ) are to be measured. Therefore,
through the joint measurement of X̂ (out)s and Ŷ (out)i , which can be measured simultaneously
with arbitrary precision, the modulation signals encoded in both X̂s (AM) and Ŷs (PM) can be
simultaneously measured with sensitivity beyond the SNL.

We should mention that we do not make simultaneous measurement on X̂s , Ŷs , whose precisions
are limited by HUR, but rather on X̂s − X̂i and Ŷs + Ŷi , whose precisions are not limited because
they commute. On the other hand, experimental limitations such as finite gain will lead to finite
non-zero uncertainties for X̂s − X̂i and Ŷs + Ŷi . For an experimental demonstration, we need
to define the classical limit of the joint measurement of phase and amplitude for comparison.
The classical limit corresponds to the measurement with coherent state probe for the phase and
amplitude. Homodyne detection measurement is known to have the quantum-limited sensitivity
for phase and amplitude measurement but it can only measure one quadrature-phase amplitude
at a time. So, the simplest way to simultaneously obtain information encoded in phase and
amplitude of an optical field is to split the field into two with a beam splitter, one for each
measurement, as shown in Fig. 1(b). The measurement sensitivity of this scheme is limited by
the shot noise from the coherent state and will correspond to the shot noise limit (SNL) that we
try to beat in our experiment.
However, the SU(1,1) interferometer (SUI) shown in Fig. 1(a) operates under completely

different mechanism from the traditional interferometric methods such as homodyne detection.
It uses OPA2 to enhance the signal while employs the correlated fields from OPA1 to reduce
the noise amplified by OPA2 via destructive quantum interference [27–29]. It exhibits different
noise level from the BS scheme in Fig. 1(b). So, for a fair comparison with SUI, we consider the
amplifier scheme in Fig. 1(c), where, similar to the BS scheme, a parametric amplifier is used to
split the input field into two for simultaneous measurement. The other input to the amplifier is in
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vacuum similar to the BS scheme in Fig. 1(b).
To compare all three schemes in Fig. 1 with equal footings, we resort to signal-to-noise ratio

(SNR), which depends on the power levels of both the detected signal and noise. For a probe
with weak modulated phase signal δ and amplitude signal ε , our theoretical analysis [24] shows
that the SNRs for the BS scheme in Fig. 1(b) and the amplifier scheme in Fig. 1(c) are given by

SNRBS(X̂b1 ) = 2Ipsε2, SNRBS(Ŷb2 ) = 2Ipsδ2; (2)

SNRAmp(X̂ (out)s ) =
4G2Ipsε2

G2 + g2 , SNRAmp(Ŷ (out)i ) =
4g2Ipsδ2

G2 + g2 , (3)

where subscript b1, b2 denotes the outputs of the BS and s, i denote the signal and idler output
fields of the parametric amplifier with the gain parameters G, g satisfying G2−g2 = 1. Ips = |α |2
is the photon number or intensity of the probe sensing field. It is clear from Eqs. (2) and (3)
that the amplifier scheme at large gain g � 1 gives the same SNRs as the BS scheme for the
joint measurement of the phase and amplitude modulations δ, ε . This SNR will correspond to
the SNL of the sensitivity in the joint phase and amplitude measurement.
For the SUI shown in Fig. 1(a), the maximum sensitivity occurs at the dark fringe when the

outputs intensity are at the minimum.Under this condition, destructive quantum interference
leads to quantum noise cancelation and minimum noise for all quadrature-phase amplitudes at
the two outputs [24, 27–29]. In the meantime, the signals of non-commuting observable encoded
on probe beam are amplified by OPA2 for SNR improvement. With G2 � G1 > 1, it can be
shown [24] that the SNRs for the SUI scheme are

SNRSUI (X̂ (out)s ) = 2(G1 + g1)2Ipsε2, (4)

SNRSUI (Ŷ (out)i ) = 2(G1 + g1)2Ipsδ2, (5)

where Ips = G2
1 |α0 |2 is the intensity of the probe sensing field right before the devices introducing

modulation signals. It is clear that the SUI scheme has the SNRs improved by a factor of (G1+g1)2
as compared to the classical schemes under the condition of equal Ips. This improvement in
phase measurement was demonstrated in SUI before [18–20]. Here, we show that the sensitivity
in amplitude measurement can be improved as well, simultaneously with the phase measurement.
It can be shown [24] that Eqs. (4) and (5) also stands for an arbitrary modulation signal
ξ(θ) = ε cos θ + δ sin θ but we need to measure X̂ (out)(θ) = âe−iθ + â†eiθ . Moreover, since
SU(1,1) interferometers are not sensitive to detection losses [16–18,20,21,24,30], we can further
split the output beams with negligible degradation of the SNRs and achieve joint measurement
on multiple modulation signals at arbitrary quadrature angles [24].

3. Experiment setup

We next implement experimentally the three schemes in Fig. 1. The signals of weakly modulated
amplitude (ε) and phase (δ) are encoded on X̂s = X̂s(0) and Ŷs = X̂s(π/2) (X̂s(φ) ≡ â†seiφ+âse−iφ)
of the probe beam by applying sinusoidal modulation signal at 0.8 and 1.2 MHz on the amplitude
modulator (AM) and phase modulator (PM), respectively. This probe is a classical coherent
beam for the classical schemes in Figs. 1(b) and 1(c), while the probe for the SUI scheme in
Fig. 1(a) is a quantum correlated beam from OPA1. In all cases, the probe beam intensity Ips is
adjusted to be the same for fair comparison, and the amplifier gains for OPA in Fig. 1(c) and for
OPA2 in Fig. 1(a) are also the same to ensure equal signal gain. The operation of the classical
amplifier scheme in Fig. 1(c) is straightforward. For the best sensitivity, the SUI is operated at
dark fringe where the output intensity at both signal and idler ports are at minimum [16,18, 24].

The details of the experimental setup for the scheme of SU(1,1) interferometer is shown in Fig.
2. There are two fiber-based OPAs in the scheme. Each OPA consists of 300 m long dispersion
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Fig. 2. Experimental setup. The SU(1,1) interferometer (SUI) is formed with OPA1 and
OPA2 with seed injection at OPA1. AM, amplitude modulator; PM, phase modulator; P1, P2,
pulsed pumps; DSF, dispersion shifted fiber; CWDM, coarse wavelength divisionmultiplexer;
BS, 50/50 beam splitter; DL, delay line; OPA2 lock, locking signal for OPA2; PLL, phase
locking loops; LOs, LOi, local oscillators; PZT, Piezo-Electric ceramic Transducer; HD,
homodyne detection; DAQ, data acquisition system.

shifted fiber (DSF) and two coarse wavelength division multiplexers (CWDM) for separation
and combination of fields at different wavelength [31]. The zero-dispersion wavelength of DSF
is 1552.5nm. In order to efficiently enhance the gain of OPA under a moderate average pump
power, each DSF is pumped with a mode locked pulse train, whose repetition rate and pulse width
are about 36.9 MHz and 5 ps, respectively. The pulsed pump with full width at half maximum
(FWHM) of 0.7 nm is centered at 1552.6 nm to ensure the phase matching of FWM is satisfied.
OPA1 generates the entangled signal and idler beams at 1550 nm band [31]. At the output of DSF1,
the seed injection of input signal pulses centering at 1570.8 nm is amplified. The amplification
of the signal beam is accompanied by a idler beam with wavelength around 1535 nm. The two
fiber-based OPAs are identical, except for their inputs and pump powers. OPA2 is a phase sensitive
amplifier, because it has both the signal and the idler inputs with non-zero intensity from OPA1.
The signal beam out of OPA1 successively propagates through an amplitude modulator (AM)
and a phase modulator (PM) so as to encode information onto the two or more quadrature-phase
amplitudes. The encoded signal beam is then amplified by OPA2 and comes out at both the
signal and idler output ports of the SUI. When two encoded modulations ξ(θ1), ξ(θ2) (θ1 , θ2)
are measured, the signal and idler outputs of SU(1,1) interferometer are detected with homodyne
detection systems HD1 and HD2, respectively, at the matching local oscillator phases, respectively.
When three encoded modulations ξ(θ1), ξ(θ2), ξ(θ3) (θ1 , θ2 , θ3) are measured, the signal
output of SUI is further split by inserting a 50/50 BS, whose outputs are measured by HD1
and HD3, respectively. During the measurement, the phase of local oscillator for each set of
HD is properly set. The measurement results are obtained by analyzing the photo-currents of
all the HDs with a data acquisition system (DAQ). In the DAQ system, the photo-currents of
all HDs are converted to digital signal traces at sampling rate of 5.71MSample/s and sample
length of 16380 samples per trace. Each trace is analyzed by fast Fourier transformation (FFT)
for power spectrum analysis. The spectrum is averaged over 500 traces to reduce measurement
fluctuation. The power on the spectrum is normalized to the shot noise level at the same power of
local oscillator.
In the experiment, the preparation of the optical light sources, including the pumps of OPAs

(P1, P2), the injected seed signal, and the local oscillator (LO) of each homodyne detection (HD)
device, and the realization of mode-matching between the two OPAs for best performance of the
interferometer are described in a previous publication [29].
The improvement in SNR of joint measurement occurs under the two conditions: (i) the

phase between pump and two inputs of OPA2, ϕ = 2ϕp2 − ϕs − ϕi , is locked to ensure OPA2
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is operating in the deamplification condition, where ϕp2 is the phase of pump P2, ϕs and ϕi
are the phase of signal and idler input; and (ii) the phase φ of the local oscillator for each HD
device is properly locked. To achieve this, we pass the injected seed sequentially through an
amplitude modulator (AM2) and a phase modulator (PM2) in order to generate phase locking
signals. AM2 is modulated at the frequencies of 0.3125 and 1.875 MHz. PM2 is modulated at the
frequencies of 0.625 and 1.875 MHz. In this case, both the modulated signals of AM2 and PM2
are transferred to the amplified signal and idler beams of OPA1 and OPA2. The relative phase
φ is locked by feeding the ac output of the corresponding HD to the digital phase locking loop
PLL1/PLL2/PLL3, and by loading the feedback signal of PLL1/PLL2/PLL3 to the piezo-electric
transducer PZT1/PZT2/PZT3 [31]. To measure the encoded amplitude signal ε , we perform
measurement of X̂ (out)s (0) with HD1by exploiting the sinusoidal modulation signal of PM2 at
0.625 MHz to lock the relative phase of HD1 to φ1 = 0. In the meanwhile, we can lock the
relative phase of HD2 to φ2 = π/2 by exploiting the sinusoidal modulation signal of AM2 at
0.3125 MHz to measure X̂ (out)i (π/2) for the encoded phase signal δ, and lock the relative phase
of HD3 to φ3 = π/4 by using the combined sinusoidal modulation signals of AM2 and PM2
at 1.875 MHz, in order to obtain the encoded quadrature amplitude signal ξ(π/4). The relative
phase ϕ which determines the operation condition of OPA2 is locked by passing P2 through PM3
with the sinusoidal modulation signal at 1.5625 MHz. Since the modulated signal of PM3 is
transferred to the signal and idler outputs of OPA2, the deamplication condition of OPA2 ϕ = π
can be achieved by feeding the ac output of the HD1 at 1.5625 MHz to PLL4 and loading the
feedback signal of PLL4 to the delay line (DL) on the idler input of OPA2.

4. Results

Simultaneous measurements of the modulation signals ε and δ are performed for the schemes
with amplifiers (Fig. 1(a) and (c)) by homodyne measurement at signal and idler output ports
with detection efficiencies of 67% and 58%, respectively. The relative phase φ1 (φ2) between LOs
(LOi) and the signal (idler) output beam in HD1 (HD2) is locked to φ1 = 0 (φ2 = π/2). Figures
3(a) and 3(b) respectively present the joint measurement results obtained by HD1 and HD2.
During this measurement, the intensity of probe Ips is about 2 nW. The power gains (equivalent
to G2

1 and G2
2) for OPA1 and OPA2 are 2 and 9. The blue traces in Fig. 3 are achieved by SUI

(Fig. 1(a)) with a seed injection of 1 nW (input of OPA1), while the red traces are acquired with
classical scheme (Fig. 1(c)) by setting P1 to zero and increasing the seed injection to 2 nW to
keep the same Ips . The peaks at 0.8 and 1.2 MHz in Figs. 3(a) and 3(b) correspond to the power
of modulation signals ε and δ, respectively. It can be seen that the signal powers for blue and red
traces are about the same but the noise floor of the blue trace is lower than that of the red trace by
about 20% and 22%, respectively, due to destructive quantum interference between the signal
and the idler fields out of OPA1 [29]. For the phase and amplitude modulation signals ε and δ,
the SNRs read from the blue traces are 1.62±0.04 and 1.55±0.04, respectively, which are better
than the SNRs of 1.29±0.03 and 1.22±0.03 extracted from the red traces. We note that the value
of measured noise power for signal and idler fields cannot be directly deduced from the simple
single mode theory (see Sec. 2 and Ref. [24]) due to the multimode nature of our pulse pumped
fiber optical parametric amplifiers [32].
For the completeness of comparison, we also implement the BS scheme in Fig. 1(b), which

is achieved by blocking the two pumps P1 and P2 so that OPA1 and OPA2 simply function
as transmission media. After splitting the probe beam with a 50/50 BS, we perform joint
measurement of ε by HD1 and δ by HD2 at each output port of BS (b1 and b2). The results are
shown as the black traces in Figs. 3(c) and 3(d), respectively. The extracted SNRs of ε and δ are
1.03±0.03 and 1.01±0.03 after correcting the transmission efficiency of OPA2. Ideally from
Eqs. (2) and (3), the SNRs by the classical methods in Figs. 1(b) and 1(c) should be the same
at large amplifier gain. However, Fig. 3 clearly shows a difference. This is because the output
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Fig. 3. Joint measurement of the amplitude and phase modulations ε and δ under different
situations. (a) and (b) are the results of simultaneous measurement by HD1 and HD2
on X̂(out)s , Ŷ (out)

i
, respectively, for the SUI scheme in Fig. 1(a) (red traces) and classical

amplifier scheme 1(c) (blue traces). (c) and (d) are results from the beam splitter scheme
in Fig. 1(b). The peaks at 0.8 MHz and 1.2 MHz correspond to the power of AM and PM
modulation signals ε and δ, respectively. The measurement results are normalized to the
shot noise level at same local oscillator power.

noise of the conventional OPA is higher than the shot noise, so the SNR for amplifier scheme is
less sensitive to the loss at detection than the direct homodyne measurement for the BS scheme.
Therefore, the amplifier scheme in Fig. 1(c) is more suitable as a classical measurement scheme
for the comparison with the quantum scheme of SU(1,1) interferometer in Fig. 1(a).

Although our results are valid for all frequency components because the homodyne detections
at two outputs are independent, for the clarity of demonstration, we choose different frequencies
for the phase and amplitude modulations in the experiment above. This corresponds to the case
when the two modulations are uncorrelated. If the two modulations are at the same frequency
and they are correlated, it will result in a modulation at a different quadrature-phase amplitude
ξ(θ) = ε cos θ + δ sin θ.
Fortunately, the SUI in Fig. 1(a) can be arranged for the measurement of ξ(θ) by performing

homodyne detection with LO phase set at φLO = θ. With a change in homodyne detection angle,
one would expect a different, likely higher, noise level. However, this is not true for SUI because
its working principle is quantum destructive interference for noise cancelation and the noise is the
lowest at dark fringe for all quadrature-phase amplitudes. The measured SNR for the modulation
signal ξ(θ) with an arbitrary angle θ is the same as that in Eqs. (4) and (5) [24]. So, we can
simultaneously measure ξ(θ) at one outport and ξ(0) = ε at the other with improved SNR for
both. Figure 4 shows the results with all experimental conditions the same as Fig. 3 except that a
modulation signal at 1.0 MHz is applied to both AM and PM equally for ξ(π/4) and the phase of
HD2 is set at φ2 = π/4. The blue trace is again for SUI and red one for the amplifier scheme. We
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Fig. 4. Information of ε (at 0.8MHz) and ξ(π/4) (at 1.0MHz) encoded in non-orthogonal
quadrature-phase amplitudes X̂s(0) and X̂s(π/4) simultaneously measured by (a)HD1 and
(b)HD2, respectively. Blue and red traces represent the results of SUI (Fig. 1(a)) and
conventional OPA (Fig. 1(c)), respectively.

find the SNRs of ξ(0) = ε and ξ(π/4) extracted from blue traces (1.61±0.04 and 1.57±0.04) are
better than those from red traces (1.3±0.03 and 1.27±0.03), leading to improved simultaneous
measurement of information encoded in non-commuting observables of X̂s(0) and X̂s(π/4) of the
probe. Notice that because ξ(0) = ε and ξ(π/4) are non-orthogonal, their respective projections
appear in the measurement corresponding to other quantities.
Furthermore, because of the detection loss tolerant property [24], the SUI can be used

to perform quantum enhanced joint measurement of information encoded in more than two
quadrature-phase amplitudes. This is achieved by splitting the outputs of interferometer further
into more beams for multiple simultaneous measurement, as shown in the dashed boxes in Fig.
1(a) and (c). Since the noise levels out of the amplifiers are much higher than the vacuum noise
level, splitting each output into two will not distinctly reduce the SNR [24]. This is different from
the BS scheme in Fig. 1(b). In the experiment, in addition to the weak modulation signals at 0.8
MHz and 1.2 MHz on AM and PM that encode information on the two orthogonal observables
X̂s and Ŷs, the modulation signal at 1.0 MHz is simultaneously loaded on both AM and PM so
that the information of ξ(π/4) is encoded on the probe sensing beam as well. ξ(π/4) is measured
by a third homodyne detection device (HD3) with detection efficiency of about 80% in the
signal output port after splitting the signal output into two with a 50/50 BS (dashed boxes in
Fig. 1(a) and 1(c)). The results in Figs. 5(a), 5(b) and 5(c) are obtained by HD1, HD2, and
HD3 with their relative phases locked at φ1 = 0, φ2 = π/2, and φ3 = π/4, respectively. The
experimental conditions are the same as those in Fig. 3. Again, the blue traces are for the SUI
and the red ones are for the classical amplifier scheme in Fig. 1(c). Similar to Fig. 4, projections
of non-orthogonal quantities appear in all the figures. In each plot of Fig. 5, the signal powers
of ε , δ and ξ(π/4) extracted from the blue and red traces, including the signals of full size or
projected size, are about the same, but the noise floor of blue traces is 20% lower than that of the
red ones. The best SNRs of modulation signal ε , δ and ξ(π/4) extracted from the blue traces are
1.6±0.04, 1.56±0.04, and 1.61±0.04, respectively, while those from the red traces are 1.25±0.03,
1.21±0.03, 1.27±0.03, respectively. Therefore, we achieve joint measurement of information in
three non-commuting quadrature-phase amplitudes with sensitivity beyond the SNL. Notice that,
even if the total detection efficiencies for ε and ξ(π/4) are about 50% lower than that for δ, the
SNR improvement for ε , ξ(π/4) and δ is all about the same in Fig. 5. Thus, we demonstrate that
the SNR is tolerant to the detection losses. It is worth noting that the feature of detection loss
tolerance depends on the gain of OPA2 [28]. The higher the gain of OPA2 is, the better the loss
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Fig. 5. Information of modulations ε (at 0.8MHz), δ (at 1.2MHz) and ξ(π/4) (at 1.0MHz)
encoded in three non-commuting quadrature-phase amplitudes of X̂s, Ŷs, X̂s(π/4) jointly
measured by (a)HD1, (b)HD2, and (c)HD3, respectively. Blue and red traces represent the
results of SUI (Fig. 1(a)) and conventional OPA (Fig. 1(c)), respectively.

tolerance performance of SUI is. Under the current experimental conditions, further splitting
the signal output for measuring the observables with total number greater than 3 will result in
reduced SNR. But we can simultaneously measure 4 observables with SNR beyond SNL if the
idler output beam is split into two as well. Instead, we can resort to an indirect method to extract
the information encoded in arbitrary number of quadrature-phase amplitudes by post-processing
the photo-currents of two HDs with their LO phase difference of π/2 [24]. We will discuss its
experimental implementation elsewhere [33].

5. Conclusion and discussions

Using an SU(1,1) interferometer, we demonstrate that the sensitivity can beat the classical
shot noise limit in the joint measurement of information encoded in multiple non-commuting
observables, including the phase and amplitude as well as an arbitrarily rotated quadrature-phase
amplitude. Theoretically, the improvement over the classical schemes is unlimited in principle.
Although the measured SNR is not sensitive to the transmission and detection losses at the

output ports of OPA2, it decreases with the increase of losses before the inputs of OPA2. In our
experiment, we only observed the improvement of about 20% in SNR when comparing with the
classical scheme. This is mainly due to the transmission loss (45% for signal beam and 40% for
idler beam) introduced in coupling light out of the OPA1 into the OPA2 and the temporal mode
mismatch between OPA1 and OPA2 [31, 32]. The former can be overcome by improving the
transmission efficiency of the optical components placed between the two amplifiers, while the
latter can be surmounted by properly managing the dispersion of the nonlinear media of the two
OPAs. If the transmission loss is 0 for ideal case, the SNR improvement over classical limit is
expected to be 35%.

The gain achievable in our system is also a limitation factor for better performance. The main
reason for choosing the power gain of 9 for OPA2 is the self-phase modulation (SPM) effect of
pump pulse. When the pump power gets higher, the SPM effect becomes stronger and introduces
more mode mismatch between OPA1 and OPA2 [32]. On the other hand, our theoretical analysis
shows that when the power gain of OPA2 is higher than that of OPA1 by about 4 times, the SNR
will start to saturate the maximum SNR obtainable for OPA2 with infinite gain [24]. Thus, as a
trade-off between the better SNR improvement and tolerable SPM effect in OPA2, the power
gain of OPA2 is adjusted to be 9 when the power gain of OPA1 is 2.
Compared to the joint measurement schemes in Ref. [11, 12], our scheme, which utilizes the

merits of the SU(1,1) interferometer, leads to the joint measurement of information in more than
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two arbitrary non-commuting quadrature-phase amplitudes. Particularly, it should be emphasized
that our scheme can overcome the extra noise (quantum and classical) encountered during the
detection process [24], and has practical implication and significance in quantum metrology.
Ever since the first experimental implementation of the SU(1,1) interferometer with light

fields [15, 18], it has been realized with atoms in Bose-Einstein condensate [34], phonons in
opto-mechanical systems [35], microwaves in low noise RF amplifiers [25], and a combined
atom-photon system in hybrid atom-light interferometers [36]. The wide applications of SUI
is a result of its ability to mix different types of waves. Thus, our scheme of utilizing SUI for
the joint multi-parameter measurement has broader significance in precision measurement of a
variety of physical observables.
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