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Abstract. Unsupervised domain adaptation has caught appealing attentions as

it facilitates the unlabeled target learning by borrowing existing well-established

source domain knowledge. Recent practice on domain adaptation manages to ex-

tract effective features by incorporating the pseudo labels for the target domain to

better solve cross-domain distribution divergences. However, existing approaches

separate target label optimization and domain-invariant feature learning as differ-

ent steps. To address that issue, we develop a novel Graph Adaptive Knowledge

Transfer (GAKT) model to jointly optimize target labels and domain-free features

in a unified framework. Specifically, semi-supervised knowledge adaptation and

label propagation on target data are coupled to benefit each other, and hence the

marginal and conditional disparities across different domains will be better allevi-

ated. Experimental evaluation on two cross-domain visual datasets demonstrates

the effectiveness of our designed approach on facilitating the unlabeled target

task learning, compared to the state-of-the-art domain adaptation approaches.
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1 Introduction

In the real-world applications, there often exists a challenge that we can get access to

the abundant target data but with limited or even no labels [1, 2]. However, it would be

extremely time-consuming and expensive to manually annotate the data. Domain adap-

tation has shown appealing performance in handling such a challenge through knowl-

edge transfer from an external well-established source domain, which lies in a different

distribution from the target domain [3–12]. The mechanism of domain adaptation is to

uncover the common latent factors across source and target domains, and adopt them

to reduce both the marginal and conditional mismatch in terms of the feature space

between domains. Following this, different domain adaptation techniques have been

developed, including feature alignment and classifier adaptation.

Recent research efforts on domain adaptation have already witnessed appealing per-

formance via learning effective domain-invariant features from two different domains,
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Fig. 1. Illustration of our proposed algorithm, where source and target domains are lying in dif-

ferent distributions under the original feature space. We jointly seek two coupled projections Ps/t

to map the original data to a domain-invariant space. (a) A semi-supervised class-wise adaptation

strategy is proposed via assigning every target data point with a probabilistic label. (b) When

source and target data have smaller domain mismatch, graph-based label propagation strategy

could assign target labels more accurately.

such that source knowledge could be adapted to facilitate the recognition task in tar-

get domain [3, 5, 7, 8, 13, 10, 14–16, 12, 17, 18, 11, 19]. Among them, Maximum Mean

Discrepancy (MMD) [20] is one of the most widely used strategies to measure the dis-

tribution difference between source and target domains [3, 16, 7, 10, 21]. Later on, many

domain adaptation approaches were proposed to design a revised class-wise MMD by

incorporating the pseudo labels of target data. Those algorithms target at iteratively as-

signing temporal labels for the target samples and then further refining the class-wise

domain adaptation regularizer. However, all the existing methods optimize the target

labels in a separate step along with the domain-invariant feature learning. Thus, they

may fail to benefit each other in an effective manner.

In this paper, we develop an effective Graph Adaptive Knowledge Transfer (GAKT)

framework by unifying domain-invariant feature learning and target label optimization

into a joint learning framework. The key idea is to jointly optimize the probabilistic

class-wise adaptation term and the graph-based label propagation in a semi-supervised

scheme. Thus, two procedures could benefit each other for promising knowledge trans-

fer. To our best knowledge, this would be the first work to jointly model knowledge

transfer and label propagation in a unified framework. To sum up, we have two-fold

contributions as follows:

– We attempt to seek a domain-invariant feature space by designing a domain/class-

wise adaptation strategy, where marginal/conditional distribution gap between source

and target domains could be both leveraged. Specifically, we develop an iterative

refinement scheme to optimize the probabilistic class-wise adaptation term by in-
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volving the soft labels for target samples from a graph-based label propagation

perspective.

– Simultaneously, graph-based label propagation manages to capture more intrinsic

structure across source and target domains in the domain-free feature space, and

thus, the labeled source data could better predict the unlabeled target through an

effective cross-domain graph. Therefore, well-established source knowledge can

be well reused to recognize unlabeled target samples.

2 Related Work

In this part, we present the related research on domain adaptation and discuss the dif-

ference between our method and others.

Domain adaptation has been shown as an attractive approach in lots of real-world

applications when we have sparsely or none label information for the target domain [2].

Specifically, domain adaptation attempts to enhance the target learning by borrowing

the labeled source knowledge, which is lying in the different distributions with the target

domain. For instance, we tend to take a picture with cellphone and search in the Amazon

pool to recognize what is the object. Generally, there is a distribution gap between

the cellphone picture (low resolution and complex background) and Amazon gallery

images (clear background). Hence, the core challenge turns to adapting any one domain

or both domains to reduce the distribution mismatch.

Generally, domain adaptation techniques can be split into two different lines based

on the accessibility of labeled information in the target domain, one is semi-supervised

domain adaptation, and the other is unsupervised domain adaptation. For semi-supervised

scenario [22, 23], we are accessible to a small amount of labeled target data, which

makes the domain adaptation easier. A more challenge case is unsupervised domain

adaptation [3, 24], in which we aim to deal with totally unlabeled target domain. Thus,

unsupervised domain adaptation attracts more attention. Along this line, domain-invariant

feature learning and classifier adaption are two strategies to fight off unsupervised do-

main adaptation. Specifically, domain-invariant feature learning includes traditional

subspace learning [25, 26, 8, 13, 7, 21, 27] and deep learning methods [5, 28, 19, 29].

Among them, subspace-based domain adaptation approaches have been verified with

promising results by aligning two different domains into a domain-invariant low-dimensional

feature space. Deep domain adaption methods aim to seek an end-to-end deep architec-

ture to jointly mitigate the domain shift and seek a general classifier. Besides, subspace-

based domain adaptation can still improve the adaptation ability over deep domain

adaptation with the effective deep features, e.g., DeCAF features.

Hence, we equip subspace learning technique to address marginal/conditional di-

vergences across two different domains. Meanwhile a cross-domain graph built on the

source and target would better transfer the label information by capturing the intrinsic

structure in the shared space. Specifically, label propagation [30, 31] would be jointly

unified into the domain-invariant feature learning framework to refine the class-wise

adaption term, which would benefit the effective feature learning. That is being said,

the soft labels and their probability are not only needed, but also effective. This is the

most significant difference compared to the existing works. More interestingly, we can
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adapt the newly designed loss function to deep architecture to fine-tune the network

parameters in a unified deep domain adaption framework [18, 32].

3 The Proposed Algorithm

Given a labeled source domain with ns data points and feature dimension d from C
categories: {Xs, Ys} = {(xs,1, ys,1), · · · , (xs,ns

, ys,ns
)} in which xs,i ∈ Rd is the fea-

ture vector while ys,i ∈ RC is its corresponding one-hot label vector. Define Xt as

an unlabeled target domain with nt data points, i.e., Xt = {xt,1, · · · , xt,nt}, in which

xt,i ∈ Rd. In the domain adaptation problem, source and target domains shall have the

consistent label information and the goal is to recognize the unlabeled target samples.

Since source and target samples are distributed in different feature spaces, i.e.,

Xs ( span(Xt), we devote to seek a latent common space shared across source and

target domains through two coupled projections Ps/t ∈ Rd×p. p is the dimension of

the low-dimensional space (p ≪ d). In this way, the domain shift between source and

target could be well addressed, and hence, the discriminative knowledge within well-

established source could be reused to facilitate the unlabeled target classification.

3.1 Motivation

Existing transfer subspace learning approaches [3, 13, 10] iteratively predict pseudo la-

bels of the target data through classifiers, e.g., support vector machines (SVM). Most

recently, Hou et al. improved the performance through further refining the pseudo la-

bels using label propagation after initial labels from classifiers [7]. Moreover, Yan et

al. explored a weighted MMD to account for class weight bias and enhance domain

adaptation performance [12]. However, they built the revised MMD by assigning each

target data point with only a single specific label. This could hurt the knowledge trans-

fer since target samples might be predicted wrongly in the beginning. Moreover, when

target samples from two classes have overlap distribution, it would easily undermine

the intrinsic structure within the data by assigning only one hard label to those samples.

Another phenomenon is that we could acquire better target label prediction perfor-

mance with more iterations during model optimization. Hence, the label probability to

the true class for the unlabeled target samples would be triggered to a higher level. When

we predict target data with inaccurate labels, they are unable to contribute during the

designed class-wise adaptation term. For those reasons, we consider each target sample

could be assigned to the entire label pool but with different probabilities, which we re-

fer to as “soft label”. In another word, although the label probability to the true class is

a little bit lower in the early stage, it could still benefit the label propagation stage. To

further extract effective features, we design an effective probabilistic class-wise adap-

tation regularizer to convey knowledge transfer by capturing the intrinsic structure of

target domain. On the other hand, the label propagation turns out to be more effective

with more discriminative domain-invariant features. Finally, these two strategies tend

to trigger and benefit each other during the model optimization, which could also be

formulated into the unified perspective of multi-view representation [2].
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3.2 Probabilistic Class-wise Domain Adaptation

We first go over the empirical Maximum Mean Discrepancy (MMD) [3], a widely used

approach to alleviating marginal distribution disparity. MMD actually contrasts various

distributions through the sample mean distance across two domains under the projected

feature space, namely

M(Ps, Pt) =
∥

∥

∥

1

ns

ns
∑

i=1

P⊤
s xs,i −

1

nt

nt
∑

j=1

P⊤
t xt,j

∥

∥

∥

2

2
=

∥

∥

∥

P⊤
s Xs1ns

ns
−

P⊤
t Xt1nt

nt

∥

∥

∥

2

2
,

(1)

in which xs/t,i/j denotes the i/j-th sample of Xs/t while 1ns/t
is an all one column

vector with size of ns/t.

Such an MMD strategy in Eq. (1) is capable of reducing the disparity of the marginal

distributions, but it fails to approach the conditional distribution divergence of two do-

mains. In classification problems, it is essential to reduce the conditional distribution

mismatch between two different domains. When target samples are completely not an-

notated, alignment of the conditional distributions becomes nontrivial, even through

exploring sufficient statistics of the distributions. To that end, we develop a probabilis-

tic class-wise adaptation formula to effectively guide the intrinsic knowledge transfer.

In this way, the predicted soft labels for the target samples could also benefit the do-

main alignment as well even when little knowledge of them can be accessible at the

beginning.

Suppose F j
t ∈ Rc as the probabilistic label to the j-th target data point, in which

every element f
(c,j)
t (f

(c,j)
t ≥ 0 and

∑C
c=1 f

(c,j)
t = 1) means the probability for the

j-th unlabeled target data point belonging to the c-th category. In other words, each

target sample partially contributes to various classes during label prediction. For in-

stance, the “computer” will be most likely linked to the “monitor”, rather than “mug”,

because computers and monitors look more visually similar. Hence, such probabilities

and linkage between different concepts would pave the way for the label propagation.

To promote the usage of soft labels in multiple classes and thus address the condi-

tional distribution divergences across two domains, we bring forward the probabilistic

labels to the MMD modeling and design a novel weighted class-wise adaption loss

function as follows:

C(Ps, Pt, Ft) =
C
∑

c=1

∥

∥

∥

1

nc
s

nc
s

∑

i=1

P⊤
s x

c
s,i −

1

nc
t

nt
∑

j=1

f
(c,j)
t P⊤

t xt,j

∥

∥

∥

2

2
,

= ‖P⊤
s XsYsNs − P⊤

t XtFtNt‖
2
F,

(2)

in which ‖·‖F indicates the Frobenius norm and nc
s means the source sample size of the

c-th class. nc
t denotes the target sample size for the c-th category, which is neither an in-

teger nor directly provided (We cannot obtain the true target sample size of each class).

Thus, we approximately compute the nc
t by nc

t =
∑nt

j=1 f
(c,j)
t . Note, Ns/t ∈ RC×C

are diagonal matrices with the c-th diagonal element as 1
nc
s/t

. In fact, our probabilistic

class-wise adaptation term (Eq. (2)) is able to fight off the impact of class weight bias,

by considering prior category distributions.
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The above Eqs. (1) and (2) learn two domain-specific projections individually, and

we also want to mitigate the discrepancy across different domains via constraining the

source and target projections similar. Along with this line, an auxiliary mapping func-

tion M was explored to link the source projection with the target one, i.e., ‖Ps−MPt‖
2
F

[33, 34], while Zhang et al. jointly optimized them and adopted ‖Ps−Pt‖
2
F to preserve

the source discriminative information and the target variance [35]. However, they ig-

nored the domain-specific parts and focused on the domain-shared projection bases. In

this paper, we consider both uncovering more shared bases across source and target

domains, and preserving the domain-specific bases, and thus, we explore l2,1-norm to

constrain two projections, i.e., ‖Ps − Pt‖2,1. By integrating Eq. (1), Eq. (2), and pro-

jection alignment, we have the objective with constraints P⊤
s XsHsX

⊤
s Ps = Ip and

P⊤
t XtHtX

⊤
t Pt = Ip:

D(Ps, Pt, F ) = ‖P⊤
s XsȲsN̄s − P⊤

t XtF̄tN̄t‖
2
F + α‖Ps − Pt‖2,1, (3)

where Ȳs = [1ns
, Ys], F̄t = [1nt

, Ft], and N̄s/t = diag( 1
ns/t

, Ns/t), Hs/t = Ins/t
−

1
ns/t

Ins/t
denotes the centering matrix while Ins/t

means the n×ns/t matrix of ones. As

discussed in [3, 7], such a constraint would help keep the data variance after adaptation,

which further brings in additional data discriminating ability during the learning of

Ps/t.

3.3 Joint Knowledge Transfer and Label Propagation

Suppose G is an undirected graph defined on the mixture of the source and target with

n = ns + nt samples and W is its corresponding weight matrix. We could model a

smooth Label Propagation through the graph Laplacian regularization [30, 36, 31]:

min
F

tr(F⊤LF ), s.t. Fs = Ys, F ≥ 0. (4)

where F = [Fs;Ft] ∈ Rn×C and L = W −D ∈ Rn×n represents the graph Laplacian

[36–38, 31]. Meanwhile, D denotes a diagonal matrix with the diagonal entries as the

column sums of W . Specifically,

L =

[

Lss, Lst

Lts, Ltt

]

=

[

Wss −Dss, Wst

Wts, Wtt −Dtt

]

,

where Wst = W⊤
ts ∈ Rns×nt is a weight matrix across source and target samples.

Note the above graph Laplacian shares the same learning target Ft, and we may

merge the two learning problems and formulate the final learning objective for joint

knowledge adaption:

min
Ps,Pt,F

‖P⊤
s XsȲsN̄s − P⊤

t XtF̄tN̄t‖
2
F + α‖Ps − Pt‖2,1 + λtr(F⊤LF ),

s.t. P⊤
s/tXs/tHs/tX

⊤
s/tPs/t = Ip, F ≥ 0, F1C = 1n, Fs = Ys.

(5)

To deal with the constraint Ft1C = 1nt
efficiently, we relax the equality condition

by incorporating a penalty regularizer γ‖Ft1C − 1nt
‖22 into the objective formula (Eq.

(5)), in which γ is the positive penalty parameter.
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Remark: Our proposed approach joints effective domain-free feature learning and tar-

get label propagation in a unified knowledge adaptation framework. Thus, it could bene-

fit each other to improve the recognition for the target domains. With domain/class-wise

adaption, the well-established source information is able to boost the target recognition.

With domain shift mitigated, an effective graph across source and target could be built

so that source labels are able to propagate the unlabeled target data. Meanwhile, when

more accurate labels are assigned to the target data, probabilistic class-wise adaptation

term could transfer more effective knowledge across two domains. Such an EM-like

refinement will facilitate the knowledge transfer.

3.4 Optimization Solution

It is easy to check that Ps, Pt and Ft in Eq. (5) cannot be jointly optimized. To address

this optimization problem, we first transform it into the augmented Lagrangian function

by relaxing the non-negative constraint as:

J = ‖P⊤
s XsȲsN̄s − P⊤

t XtF̄tN̄t‖
2
F + α‖Ps − Pt‖2,1 + λtr(F⊤LF )

+γ‖Ft1C − 1nt
‖22 + tr(ΦF⊤

t ),
s.t. P⊤

s/tXs/tHs/tX
⊤
s/tPs/t = Ip, Fs = Ys,

(6)

where Φ is the Lagrange multiplier for constraint Ft ≥ 0. While it is difficult to jointly

optimize Ft, Ps and Pt, it is solvable over each of them in a leave-one-out manner.

Specifically, we explore an EM-like optimization scheme to update the variables. For

E-step, we fix Ps, Pt and update Ft and Nt; while for M-step, we update the subspace

projections Ps, Pt using the updated Ft, Nt. Hence, we optimize two sub-problems

iteratively.

E-step: Label Propagation

Given two subspace projections Ps and Pt, we could insert Fs = Ys into tr(F⊤LF )
and get tr(F⊤

t LttFt + 2Y ⊤
s LstFt). Thus, we obtain the partial derivative of J w.r.t.

Ft, by setting it to zero as:

∂J

∂Ft
= 2(Zt − Zs) + 2γ(Ft1C − 1nt

)1⊤C + 2λQ+ Φ = 0,

where











Q = LttFt + L⊤
stYs,

Zs = X⊤
s Ps(P

⊤
s XsYsNs)Nt,

Zt = X⊤
t Pt(P

⊤
t XtFtNt)Nt.

(7)

Using the KKT conditions Φ ⊙ Ft = 0 [39] (⊙ denotes the dot product of two

matrices), we achieve the following equations for Ft:

[

(Zt − Zs) + γ(Ft1C − 1nt
)1⊤

C + λQ
]

⊙ Ft = −Ψ ⊙ Ft = 0.

Following [37], we obtain the updating rule:

Ft = Ft ⊙

√

[Zt]
+ + [Zs]

− + FW

[Zt]− + [Zs]+ + FD
, (8)
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where FW = γFt1
⊤
C +λ(WttFt +W⊤

stYs) and FD = γ1nt
1⊤C +λDttFt. Specifically,

[A]+ means the negative elements of the matrix A are replaced by 0. Similarly, [A]−

denotes the positive elements of the matrix A are replaced by 0. When we achieve Ft,

Nt can be updated accordingly.

M-step: Learning Subspace Projection

When Ft and Nt are optimized, we could update the subspace projection P =
[Ps, Pt] with the refined class-wise adaption term. Thus,

P = argmin
P⊤SP=I2p

‖P⊤
s XsȲsN̄s − P⊤

t XtF̄tN̄t‖
2
F + α‖Ps − Pt‖2,1

= argmin
P⊤SP=I2p

tr(P⊤TP ) + αtr(P⊤GP ),
(9)

where

S =

[

XsHsX
⊤
s , 0

0, XtH
⊤
t Xt

]

T =

[

XsȲsN̄sN̄sȲ
⊤
s X⊤

s , XsȲsN̄sN̄tF̄
⊤
t Xt

XtF̄tN̄tN̄sȲ
⊤
s X⊤

s , XtF̄tN̄tN̄tF̄
⊤
t Xt

]

G =

[

G,−G
−G,G

]

G is a p × p diagonal matrix with its i-th diagonal element as Gii = 1
‖pi‖2

if

pi 6= 0, otherwise Gii = 0. pi is the i-th row vector of Ps − Pt. Eq. (9) could be

addressed by a generalized Eigen-decomposition problem: (T + αG)ρ = ηSρ. The

vectors ρi (i ∈ [0, p-1]) are obtained according to its minimum eigenvalues. Thus, we

achieve updated subspace projection P = [ρ0, · · · , ρp−1]. After we achieve Ps and Pt,

we could optimize G.

By alternating the E and M steps detailed above, we will iteratively optimize the

problem until the objective function becomes converged. What is noteworthy is that,

we could generally obtain a probabilistic labeling for the unlabeled target samples with

two effective coupled projections. Thus, if we exploit such a label assignment strategy

(Eq. (8)) to improve the projection discriminability (Eq. (9)) in an iterative fashion, we

are able to alternatively enhance the labeling quality and feature learning. For initial-

ization of Ft, we adopt Label Propagation (Eq. (4)) from L built on original features of

source and target domains. Furthermore, we can further achieve the partial derivatives

with respect to X , i.e., ∂J
∂X , and then conduct the standard back propagation strategy to

optimize the convolutional neural network weights.

3.5 Time Complexity

In this section, we analyze the model complexity for our approach. There are two main

time-consuming components: 1) Non-negative Ft optimization (Step 1); 2) Subspace

projection learning (Step 2).

In detail, the major time-consuming terms in non-negative Ft optimization are ma-

trix multiplications in Step 1. Generally, the multiplication for matrix with the size

nt × nt could cost O(n3
t ). Suppose there are l multiplication operations, thus, Step 1

would cost O(ln3
t ). Step 2 could cost O(d3) for the generalized Eigen-decomposition

of Eq. (9) for matrices with size of Rd×d, which could be reduced to O(d2.376) through

the Coppersmith-Winograd method [40]. Furthermore, we can speed up the operations

of large matrices through a sparse matrix, and state-of-the-art divide-and-conquer ap-

proaches. Meanwhile, we could also store some intermediate computation results which

could be reused in every stage.
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4 Experiments

In this part, we first illustrate the benchmarks as well as the experimental settings, and

then present the comparative evaluations with existing domain adaptation approaches,

further with some property analysis.

4.1 Datasets & Experimental Setting

Office-31+Caltech2561 consists of 10 common categories from Office-31 and Caltech-

256 benchmarks, with 3 subsets (Amazon, Webcam, and DSLR) from Office-31 and

one from Caltech-256, respectively. Note that Amazon and Caltech-256 images are

collected online with a clear background, while Webcam and DSLR images are taken

from office environments with different devices. For a fair comparison, we utilize the

4096-dim DeCAF6 feature and adopt the full-sample protocol provided by [24] in un-

supervised domain adaptation.

Office+Home2 [18] contains 4 domains, each with 65 categories’ daily objects. Specifi-

cally, Art denotes artistic depictions for object images; Clipart means picture collection

of clipart; Product shows object images with a clear background, similar to Amazon

category in Office-31; Real-World represents object images collected with a regular

camera. We adopt deep features of the fc7 layer in the VGG-F model, pre-trained using

the ImageNet 2012 [18].

We mainly compare with six state-of-the-art shallow domain adaptation approaches

to evaluate the effectiveness of our algorithm as follows: Geodesic Flow Kernel (GFK)

[24], Joint Distribution Adaptation (JDA) [3], Closest Common Space Learning (CCSL)

[16], Label Structural Consistency (LSC) [7], Joint Geometrical and Statistical Align-

ment (JGSA) [35] and Probabilistic Unsupervised Domain Adaptation (PUnDA) [11].

Moreover, Label Propagation (LP) [30] is adopted as a baseline, which directly builds

a graph on original features across source and target domains. For LP and our model,

we both adopt k-nearest neighbor graph (k = 5 in our experiment) with heat-kernel

weight [30]. We further compare to several deep domain adaptation models, i.e., DAN

[32], DHN [18] and WDAN [12], to show the superiority of our model. Specifically, we

adopt the VGG-F structure for these three methods in terms of fair comparison. Also,

we cite the results reported by other publications when the experimental settings are

exactly the same, or run available source codes under other settings.

In all our experiments, we adopt k-nearest neighbor graph (k = 5 in our experi-

ment) with heat-kernel weight [30]. We set λ = 10, α = 0.1, and γ = 104 in our

experiments to guarantee the sum of each soft label to be 1. We adopt the top-1 classi-

fication accuracy for the unlabeled target sample as the evaluation metric.

4.2 Comparison Experiments

First of all, we evaluate our algorithm and other competitors with source and target as

one single subset. Tables 1 and 2 list the comparison results of 12 different cases based

1
http://www-scf.usc.edu/˜boqinggo/domainadaptation.html

2
https://hemanthdv.github.io/officehome-dataset/
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Table 1. Recognition rates (%) of 11 algorithms on Office-31+Caltech-256, where A = Amazon,

C = Caltech-256, D = DSLR and W = Webcam.

Methods\S→T C→W C→D C→A W→C W→A W→D A→C A→W A→D D→C D→W D→A

LP [30] 80.34 93.63 92.07 78.63 80.82 97.38 86.62 80.36 93.63 85.49 100.00 91.23

GFK [24] 75.08 83.06 87.65 77.38 84.25 99.30 79.07 76.68 79.43 80.41 79.70 84.96

JDA [3] 85.08 90.36 87.65 83.64 87.02 100.00 86.33 83.78 88.54 83.88 97.98 90.28

CCSL [16] 82.37 87.90 93.32 82.90 89.98 96.18 87.18 83.05 87.26 84.06 96.27 90.92

LSC [7] 91.18 95.26 94.28 87.97 93.31 100.00 87.88 88.81 94.90 86.19 99.32 92.37

RTML [10] 92.46 92.36 90.26 84.65 87.92 100.00 86.86 84.68 90.26 84.62 98.26 90.82

JGSA [35] 85.08 92.36 91.75 84.68 91.44 100.00 85.04 84.75 85.35 85.75 98.64 92.28

PUnDA [11] 86.76 90.98 93.12 83.28 89.06 99.16 86.64 82.86 85.86 83.48 98.24 89.24

DAN [32] 92.64 90.52 92.03 81.53 92.13 100.00 86.05 91.82 91.74 82.04 98.55 90.02

WDAN [12] 93.67 93.48 93.11 84.12 92.87 100.00 86.93 92.26 92.87 83.92 99.28 91.87

Ours 95.36 96.42 95.12 88.84 93.84 100.00 88.46 90.18 95.48 86.82 100.00 93.98

Table 2. Recognition accuracies (%) for cross-domain experiments on Office+Home, where Art

(Ar), Product (Pr), Real-World (Rw), and Clipart (Cl).

Config Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr

LP [30] 20.36 36.32 30.24 28.37 36.32 32.28 23.32 28.25 43.23 30.28 30.24 52.38

GFK [24] 21.60 31.72 38.83 21.63 34.94 34.20 24.52 25.73 42.92 32.88 28.96 50.89

JDA [3] 25.34 35.98 42.94 24.52 40.19 40.90 25.96 32.72 49.25 35.10 35.35 55.35

CCSL [16] 23.51 34.12 40.02 22.54 35.69 36.04 24.84 27.09 46.36 34.61 31.75 52.89

LSC [7] 31.81 39.42 50.25 35.46 51.19 51.43 30.46 39.54 59.74 43.98 42.88 62.25

RTML [10] 27.57 36.20 46.09 29.49 44.69 44.66 28.21 36.12 52.99 38.54 40.62 57.80

JGSA [35] 28.81 37.57 48.92 31.67 46.30 46.76 28.72 35.90 54.473 40.61 40.83 59.16

PUnDA [11] 29.99 37.76 50.17 33.90 48.91 48.71 30.31 38.69 56.91 42.25 44.51 61.05

DAN [32] 30.66 42.17 54.13 32.83 47.59 49.78 29.07 34.05 56.70 43.58 38.25 62.73

DHN [18] 31.64 40.75 51.73 34.69 51.93 52.79 29.91 39.63 60.71 44.99 45.13 62.54

WDAN [12] 32.26 43.16 54.98 34.28 49.92 50.26 30.82 38.27 56.87 44.32 39.35 63.34

Ours 34.49 43.63 55.28 36.14 52.74 53.16 31.59 40.55 61.43 45.64 44.58 64.92

on Office-31+Caltech-256 and Office+Home, respectively. From the performance, we

notice that our proposed approach works better than other baselines across almost all

the cases. Especially in two cases, our model achieves 100% accuracy. Also in several

tasks, e.g., C → W , the performance of our proposed algorithm is 3% higher than the

state-of-the-art approaches.

Secondly, we explore the evaluation on knowledge transfer with multiple sub-domains.

Figure 2 lists the comparison results from different methods on various imbalanced

cross-domain combinations. For x-axis in Figure 2, either domain consists of multiple

sub-domain data, and complete results of different approaches are listed. From these

results, we see our approach works favorably against state-of-the-art unsupervised do-

main adaptation algorithms.

Discussion: LP could work well in some cases when the distribution differences of two

domains are not large, e.g., D → W , W → D, A → C and C → A. However, it

cannot achieve appealing performance in some challenging tasks, e.g., C → W . While
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Fig. 2. Recognition rates of 6 approaches on Office-31+Caltech-256, where A = Amazon, C =

Caltech-256, D = DSLR and W = Webcam.

Fig. 3. Recognition rates of 3 approaches on two deep features (a) GoogLeNet and (b) VGGnet-

16 from Office-31+Caltech-256, where A = Amazon, C = Caltech-256, D = DSLR, and W =

Webcam.

our approach could even improve by 18.9% in C → W , which verifies the effectiveness

of our approach. Another thing is that deep features pre-trained on large-scale dataset

could mitigate the domain shift somehow, especially for different resolutions.

CCSL is designed for the imbalanced domain transfer, by associating such data to

the capability of keeping discriminative and structural information within and across

domains. However, it is too specific and not general. From the performance, we witness

that our algorithm is able to consistently outperform CCSL. JDA and RTML both adopt

pseudo labels of the target sample from a specific classier to refine the class-wise adap-

tation term. In this way, every target sample is assigned to a single label, which may

bring in problems when they are assigned with wrong labels. RTML further explores

the marginal denoising reconstruction, and thus achieves better results than JDA.

Besides, LSC adopts a specific classifier to initialize the pseudo labels of the target,

and then refines the labels through label propagation on a cross-domain graph. How-

ever, it still considers the hard labels of the target data to build the class-wise adaptation.

Most importantly, such label prediction and feature learning are separately learned for

JDA, RTML and LSC. Compared with these methods, we manage to conduct joint fea-

ture learning and label propagation to benefit each other for more effective knowledge

transfer. Compared with [7], while the two models share certain spirits, our method con-

centrates on building a joint UDA learning model. The model in [7], however, designs
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a separate label propagation after feature alignment, which may hinder the knowledge

transfer. In addition, [7] still feeds the hard labels back to optimize feature adaption,

which strictly follows the conventional semi-supervised learning. However, we intro-

duce the soft labels as well as class-wise adaption strategy which is well integrated with

the label propagation framework. That is being said, the soft labels and their probability

are not only needed, but also effective. This is the most significant difference compared

to the existing works. From the results, we notice that our model performs better in all

the cases.

Moreover, JGSA also seeks two linear projections that transform source and target

data into a low-dimensional domain-invariant space in which the geometrical and dis-

tribution shift are mitigated jointly. However, it does not consider the class-wise adap-

tation to mitigate the conditional distribution difference. Similarly, PUnDA also seeks

linear transformations per domain to project data into a shared space, which jointly

reduces the domain mismatch while improving the classifier’s discriminability.

Deep domain adaptation methods manage to simultaneously build deep architec-

tures and conduct knowledge transfer. From our results, we notice that such a joint

learning strategy could benefit the performance when comparing with several tradi-

tional linear transfer learning models. However, our model could further outperform

those deep domain adaptation models, i.e., DAN, DHN, WDAN, which indicates that

two separate steps in our pipeline can also adapt knowledge across different domains.

Specifically, upon advanced deep features, our model is able to further improve the per-

formance, which primarily stems from our probabilistic class-wise adaptation scheme

to explore the intrinsic structure of the data during knowledge transfer. Moreover, tradi-

tional deep domain adaptation approaches always adopt a pre-trained model, which is

similar to the case that we directly work on the deep features. The difference is that we

only fine-tune the final layer. From our experimental results, we find knowledge transfer

part plays a key role in successful domain adaptation, while fine-tuning deep structure

parameters influences slightly on the final performance. To verify this point, we fur-

ther evaluate our model with deep domain adaptation in different architectures, i.e.,

GoogLeNet [41] and VGGnet-16 [42]. Our model adopts the features generated from

GoogLeNet and VGG-16, and their dimensionality are 1024 and 4096, respectively.

The experimental results are provided in Figure 3, where we witness that the proposed

approach still obtains better performance than deep domain adaptation models.

Finally, we notice that the performances of all the algorithms on Office+Home are

much lower than Office-31+Caltech256, due to the fact that there are more categories

and more samples in Office+Home.

4.3 Empirical Evaluation

In this part, we present the convergence analysis, influence of parameters, and dimen-

sionality of two coupled projections.

First of all, we testify the convergence of our proposed model. The cross-domain

task C → A on Office-31+Caltech256 is adopted for evaluation. The convergence curve

is shown in Figure 4 (a), where we could observe that our approach converges very well.

Secondly, we evaluate the influence of parameter λ and show the recognition results

at various values in Figure 4 (b), in which we notice that our model generates better
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Fig. 4. (a) Convergence curve for our proposed approach. (b) Parameter analysis of λ, where the

values of x-axis use log() to rescale the length. (c) The influence of different dimensions for Ps/t.

Fig. 5. Recognition accuracies (%) for domain adaptation experiments 12 cross-domain tasks

(listed in Table 2) on the Office+Home dataset.

performance across three different cases when λ ∈ [1, 10]. Generally, we set λ = 10 as

default during the experiments.

Moreover, we verify the dimension property of Ps and Pt. In Figure 4 (c), we obtain

an initially significant increase followed by a stable recognition performance, which de-

notes that our model works very well even when the data are lying in a low-dimensional

space. Thus, we could verify that effective projections further enhance the knowledge

transferability based on the deep features.

Finally, we aim to show that the proposed soft-label MMD is significantly superior

to the hard-label MMD. Specifically, we do a post-processing for each Ft updating

by transforming it to a zero-one matrix. We show the results of this variant and our

proposed model on 12 cross-domain tasks (Office+Home datasets) in Figure 5, where

we notice that soft-label version could generally improve the performance over hard-

label version 1-2%. On the other hand, we can also get a rough idea about the advantage

of soft labels over the “hard” ones. For example, our model and LSC [7] used soft-label

MMD and hard-label MMD, respectively, although both used label propagation. From

the results, we already notice our model works better than LSC.

Furthermore, we visualize the soft labels Ft to show that our model could improve

the label prediction through model optimization (An example is shown in Figure 6).

From the results, we notice that our approach could enhance the label prediction based

on the original LP. That means our “soft label” would be optimized during the model

training. We also offer statistics summarizing how many images are wrongly classi-

fied by LP [30] but are correctly classified by the proposed approach, and vice versa.
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Fig. 6. The predicted soft label for “Back Pack” are learned by (a) original LP and (b) our pro-

posed algorithm, where we notice that the probability of backpack category increases from 0.26

to 0.43 with our model.

x

Table 3. Statistics summarization. Case 1: how many images are wrongly classified by LP [30]

but correctly classified by ours; Case 2: vice versa.

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr

Case 1 638 347 1109 203 739 907 227 533 795 372 624 87

Case 2 27 30 30 16 26 7 28 1 11 2 4 33

Specifically, we evaluate on Office+Home database with 4 sets, i.e., Art (2411 samples);

Clipart (4325 samples); Product (4341 samples); Real World (4308 samples), and the

results for 12 cross-domain tasks are shown in Table 3. We notice our model would

wrongly classify some images which are correctly recognized by LP, which may be

caused by some hurt to the label propagation of LP with further domain alignment.

However, our model is able to significantly correctly classify more samples over LP.

This indicates our joint adaptation could enhance the label prorogation ability across

different labeled source and unlabeled target domains.

5 Conclusion

In this paper, we developed a novel Graph Adaptive Knowledge Transfer framework for

unsupervised domain adaption. Specifically, we built a probabilistic class-wise adapta-

tion term by assigning the target samples with multiple labels through graph-based label

propagation. Meanwhile, two effective subspace projections were learned via the prob-

abilistic class-wise adaption strategy so that intrinsic information across source and tar-

get could be preserved with the graph. In this way, accurate labels could be assigned to

target samples with label propagation. These two strategies worked in an EM-like way

to improve the unlabeled target recognition. Experiments on two cross-domain visual

benchmarks verified the effectiveness of the designed algorithm over other state-of-the-

art domain adaptation models, even deep domain adaptation ones.
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