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Abstract

Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-

MS/MS) has been recognized as an invaluable platform for top-down proteomics. However, the 

scale of top-down proteomics using CZE-MS/MS is still limited due to the low loading capacity 

and narrow separation window of CZE. In this work, for the first time we systematically evaluated 

the dynamic pH junction method for focusing of intact proteins during CZE-MS. The optimized 

dynamic pH junction based CZE-MS/MS approached 1-μL loading capacity, 90-min separation 

window and high peak capacity (~280) for characterization of an Escherichia coli proteome. The 

results represent the largest loading capacity and the highest peak capacity of CZE for top-down 

characterization of complex proteomes. Single-shot CZE-MS/MS identified about 2,800 

proteoform-spectrum matches, nearly 600 proteoforms, and 200 proteins from the Escherichia coli 
proteome with spectrum-level false discovery rate (FDR) less than 1%. The number of identified 

proteoforms in this work is over three times higher than that in previous single-shot CZE-MS/MS 

studies. Truncations, N-terminal methionine excision, signal peptide removal and some post-

translational modifications including oxidation and acetylation were detected.
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Introduction

Capillary zone electrophoresis (CZE)-electrospray ionization (ESI)-mass spectrometry (MS) 

has been well recognized for characterization of intact proteins due to its high separation 

efficiency.[1–4] CZE-ESI-MS/MS has been suggested as an alternative to widely used 

reversed-phase liquid chromatography (RPLC)-ESI-MS/MS for top-down proteomics. [5–15]

CZE-MS/MS has been evaluated for top-down characterization of intact proteins for over 20 

years ago. In 1996, Valaskovic et al. developed a CZE-ESI-MS/MS platform for 

characterization of attomole amounts of intact proteins, and identified carbonic anhydrase in 

crude extract of human red blood cells by sequence-specific fragment ions. [5] However, the 

CZE-MS interface used in that work had limited lifetime and robustness, which impeded the 

wide application of the platform for top-down proteomics. An electrokinetically pumped 

sheath flow CE-MS interface with good sensitivity and robustness was developed by 

Dovichi group in 2010.[16] Sun et al. demonstrated fast, reproducible and sensitive 

characterization of intact proteins with the electrokinetically pumped sheath flow interface 

based CZE-MS/MS. [6] Later, Zhao et al. further applied the CZE-MS/MS system for top-

down proteomics of Mycobacterium marinum secretome and yeast proteome.[7, 8] Coupling 

offline RPLC fractionation to CZE-MS/MS identified 580 proteoforms from a yeast lysate. 

In total, 23 RPLC fractions were analyzed by CZE-MS/MS and up to 180 proteoforms could 

be identified with single-shot CZE-MS/MS. [8] Li et al. developed a CZE-MS system based 

on the electrokinetically pumped sheath flow interface and applied the system to a complex 

proteome sample for characterization of large proteins (30–80 kDa), resulting in 

identification of 30 proteins in the mass range of 30–80 kDa. [9]

A sheathless CE-MS interface using a porous tip for ESI was developed by the Moini group 

in 2007 and showed great sensitivity and robustness.[17] Han et al. employed the sheathless 

interface based CZE-MS/MS for top-down proteomics of a Pyrococcus furiosus lysate, 

resulting in identification of 291 proteoforms with RPLC fractionation and CZE-MS/

MS. [10] Han et al. also characterized the Dam1 protein complex using the sheathless 

interface based CZE-MS. Their results showed that CZE-MS approached complete 

characterization of the protein complex with 100-times less sample consumption compared 

to RPLC-MS.[11] Sensitive and comprehensive characterization of intact pharmaceutical 

proteins via the sheathless interface based CZE-MS has been demonstrated recently, thus 
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leading to detection of over 250 different isoforms of recombinant human erythropoietin[12] 

and 138 proteoforms from recombinant human interferon-β1.[13] The sheathless interface 

based CZE-MS has also been applied for characterization of intact histones by the Lindner 

group.[14,15]

The current CZE-MS interfaces are robust and sensitive, enabling CZE-MS/MS to be used 

for top-down proteomics. However, two issues remain for CZE-MS/MS based top-down 

proteomics. First, the largest sample loading capacity of CZE-MS/MS systems reported in 

the literature for top-down proteomics is only about 200 nL.[8,10] The low sample loading 

capacity impedes identification of low abundant proteoforms from complex proteome 

samples. Second, the reported separation window of CZE-MS/MS systems for top-down 

proteomics is roughly 30 min.[8,10] The narrow separation window limits the number of 

MS/MS spectra acquired during one experiment, which restricts the number of proteoform 

identifications (IDs) from CZE-MS/MS. Capillary isoelectric focusing (cIEF)-MS is a 

promising technique for large-scale top-down proteomics due to its large sample loading 

capacity and high resolution for separation of intact proteins. The Smith group evaluated 

cIEF-MS for top-down characterization of complex proteomes over one decade ago. [18,19] 

However, coupling cIEF to MS is still not straightforward, which hinders its wide 

application for top-down proteomics.

In order to improve the sample loading capacity and separation window of CZE-MS, our 

group recently systematically evaluated a dynamic pH junction based CZE-MS/MS system 

for bottom-up proteomics. We observed a 140-min separation window and a micro-liter 

scale sample loading capacity using the CZE-MS/MS system for analysis of complex 

proteome digests.[20] Dynamic pH junction is a simple method for sample stacking in 

CZE.[21,22] For instance, sample is dissolved in a basic buffer (e.g., ammonium bicarbonate, 

pH 8) and the background electrolyte (BGE) is acidic (e.g., 0.1% (v/v) formic acid, pH 2.8). 

The capillary is first filled with BGE, and then a long plug of sample is injected into the 

separation capillary via applying pressure. After that, both ends of the separation capillary 

are immersed in the BGE vials. Two pH boundaries exist at the two junctions of the BGE 

and the sample, one at the injection end (pH boundary I) and the other one inside the 

capillary (pH boundary II). When a positive high voltage is applied at the injection end of 

the separation capillary, the hydrogen positive ions in the BGE vial will migrate into the 

capillary and titrate the sample zone, which makes the pH boundary I slowly move toward 

the pH boundary II. In the meantime, the negatively charged analytes in the sample zone 

migrate toward the injection end of the capillary, and they are focused at the moving pH 

boundary I.[23–26] After those two pH boundaries meet, isotachophoresis (ITP) plays a role 

for stacking the analytes with NH4
+ as the leading ion, followed by the typical CZE.[23]

Although dynamic pH junction has been widely used for concentration of small molecules 

and peptides, it has not been thoroughly investigated for concentration of intact proteins for 

top-down proteomics. To our best knowledge, there is only one published paper in the 

literature about using dynamic pH junction based CZE-MS/MS for large-scale top-down 

proteomics. Zhao et al. performed top-down proteomics of a yeast lysate using dynamic pH 

junction based CZE-MS/MS.[8] They used 5 mM ammonium bicarbonate (pH 8) as the 

sample buffer and 5% (v/v) acetic acid (pH 2.4) as the BGE. 100–240 nL of the sample was 
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injected for CZE-MS/MS analysis. The separation window and peak capacity of the 

dynamic pH junction based CZE-MS/MS system was roughly 30 min and less than 100, 

respectively.[8] In this work, for the first time dynamic pH junction based CZE-MS was 

systematically evaluated for concentration and separation of proteins. We applied the 

optimized CZE-MS/MS system for top-down proteomic analysis of Escherichia coli, thus 

leading to micro-liter scale loading capacity, 90-min separation window, high peak capacity 

(~280) and nearly 600 proteoform IDs with single-shot CZE-MS/MS.

Experimental section

Materials and Reagents

See Supporting Information I for details.

Sample Preparation

A mixture of standard proteins consisting of lysozyme (14.3 kDa, pI 11.0, 0.1 mg/mL), 

cytochrome c (Cyto.c, 12 kDa, pI 10.0, 0.1 mg/mL), myoglobin (16.9 kDa, pI 7.0, 0.1 mg/

mL), β-casein (24 kDa, pI 4.5, 0.4 mg/mL), carbonic anhydrase (CA, 29 kDa, pI 5.1, 0.5 

mg/mL) and bovine serum albumin (BSA, 66.5 kDa, pI 5.0, 1.0 mg/mL) was prepared in 

LC/MS grade water and used as a stock solution. The stock solution was diluted 

appropriately with different buffers for various experiments. The details for preparation of 

Escherichia coli (E.coli, strain K-12 substrain MG1655) samples are described in Supporting 

Information I.

CZE-ESI-MS/MS

An automated CZE-ESI-MS system was used in the experiments. The system contained an 

ECE-001 CE autosampler and a commercialized electro-kinetically pumped sheath flow CE

−MS interface from CMP Scientific (Brooklyn, NY).[16,27] The CE system was coupled to a 

LTQ-XL or a Q-Exactive HF mass spectrometer (Thermo Fisher Scientific).

A fused silica capillary (50 μm i.d., 360 μm o.d., 1 meter long) was used for CZE separation. 

The inner wall of the capillary was coated with linear polyacrylamide (LPA) based on 

references [20] and [28]. One end of the capillary was etched with hydrofluoric acid based 

on reference [29] to reduce the outer diameter of the capillary. (Caution: use appropriate 
safety procedures while handling hydrofluoric acid solutions.) Different BGEs were used for 

CZE, including 5–10% (v/v) acetic acid and 0.1–0.5% (v/v) formic acid. The sheath buffer 

was 0.2% (v/v) formic acid containing 10% (v/v) methanol. Sample injection was carried 

out by applying pressure (5–10 psi) at the sample injection end and the injection periods 

were calculated based on the Poiseuille’s law for different sample loading volume. High 

voltage (30 or 20 kV) was applied at the injection end of the separation capillary for 

separation and 2–2.2 kV was applied for ESI. At the end of each CZE-MS run, we flushed 

the capillary with BGE by applying 5-psi pressure for 10 min. The ESI emitters were pulled 

from borosilicate glass capillaries (1.0 mm o.d., 0.75 mm i.d., and 10 cm length) with a 

Sutter P-1000 flaming/brown micropipet puller. The opening size of the ESI emitters was 

30–40 μm.
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The detailed parameters of the LTQ-XL and Q-Exactive HF mass spectrometers are 

described in Supporting Information I.

Data Analysis

The standard protein data was analyzed using Xcalibur software (Thermo Fisher Scientific) 

to get intensity and migration time of proteins. The electropherograms were exported from 

Xcalibur and were further formatted using Adobe Illustrator to make the final figures.

All the E.coli RAW files were analyzed with the TopFD[30] (TOP-Down Mass Spectrometry 

Feature Detection) and TopPIC (TOP-Down Mass Spectrometry Based Proteoform 

Identification and Characterization) pipeline.[31] TopFD is an improved version of MS-

Deconv.[32] It converts precursor and fragment isotope clusters into monoisotopic masses 

and finds possible proteoform features in CZE-MS data by combining precursor isotope 

clusters with similar monoisotopic masses and close migration times (the isotopic clusters 

may have different charge states). The RAW files were first transferred into mzXML files 

with Msconvert tool.[33] Then, spectral deconvolution was performed with TopFD to 

generate msalign files. Finally, TopPIC (version 1.1.3) was used for database searching with 

msalign files as input. E. coli (strain K12) UniProt database (UP000000625, 4307 entries, 

version June 7, 2017) was used for database search. The spectrum-level false discovery rate 

(FDR) was estimated using the target-decoy approach. [34] Cysteine carbamidomethylation 

was set as a fixed modification, and the maximum number of unexpected modifications was 

2. The precursor and fragment mass error tolerances were 15 ppm. The maximum mass shift 

of unknown modifications was 500 Da, and the identified proteoform-spectrum matches 

(PrSMs) were filtered with a 1% FDR at the spectrum level. In order to reduce the 

redundancy of proteoform identifications, we considered the proteoforms identified by 

multiple spectra as one proteoform ID if those spectra correspond to the same proteoform 

feature reported by TopFD or those proteoforms are from the same protein and have similar 

precursor masses (within 1.2 Da).

Results and discussion

In order to approach large-scale top-down proteomics using CZE-MS/MS, the sample 

loading capacity and the separation window of CZE need to be improved for 

characterization of complex proteomes. We recently showed that dynamic pH junction based 

CZE-MS could reach microliter-scale sample loading capacity and 140-min separation 

window simultaneously for analysis of complex peptide mixtures. [20] We speculated that the 

dynamic pH junction based CZE-MS should also work for characterization of complex 

mixtures of intact proteins. To test our speculation, we first investigated the performance of 

dynamic pH junction based CZE-MS using a mixture of six standard proteins across a wide 

range of sample injection volumes (50–500 nL). The dynamic pH junction method was 

compared with the field enhanced sample stacking (FESS) method, which is another widely 

used sample-stacking method of CZE. [6,35,36] We then optimized the dynamic pH junction 

based CZE-MS, and applied the optimized system for top-down proteomics of an E. coli 
proteome.
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Comparison of dynamic pH junction and FESS methods

We compared the performance of dynamic pH junction method and FESS method for 

concentrating intact proteins during CZE-MS across four different sample injection volumes 

that were 50 nL (2.5% of the total capillary volume), 100 nL (5% of the total capillary 

volume), 200 nL (10% of the total capillary volume), and 500 nL (25% of the total capillary 

volume). The stock solution of the standard protein mixture was diluted by a factor of two 

for the experiments. The sample was finally dissolved in 5% (v/v) acetic acid (BGE) for 

control, 2.5% (v/v) acetic acid in water containing 35% (v/v) acetonitrile (lower conductivity 

than BGE) for FESS, and 10 mM NH4HCO3 (pH 8.0) for dynamic pH junction. The protein 

sample contained six different standard proteins with varied molecular weights (12–66 kDa) 

and isoelectric points (pI 4.5–11). The BGE was 5% (v/v) acetic acid (pH 2.4). Choices for 

the BGE and the sample buffer for dynamic pH junction method was based on references [8] 

and [20].

Figure 1 summarizes the results of the comparison experiments. Figure 1A–1C shows the 

change of protein intensity as a function of sample injection volume for control (A), FESS 

(B) and dynamic pH junction (C) methods. All of the protein intensity were obtained from 

the extracted ion electropherograms (EIEs) of the protein mixture. The m/z used for 

extraction of protein peaks are presented in the legend of Figure 1. Figure 1D shows the 

EIEs of the mixture of standard proteins from control, FESS and dynamic pH junction 

experiments with 500-nL sample injection. We detected BSA in all of the experiments, 

however, its signal-to-noise ratio was low due to its large molecular weight. Therefore, we 

did not extract the peak of BSA for comparison.

As shown in Figure 1A (control), the intensity of proteins (except lysozyme) reasonably 

increased as the injection volume increased from 50 nL to 100 nL. On average, the increase 

of intensity of the five proteins was about two times. The intensity of proteins (except cyto.c) 

were reasonably consistent when the injection volume increased from 100 nL to 500 nL. On 

average, the change of intensity of the five proteins was less than 10%. We noted that the 

intensity of cyto.c from 500-nL sample injection was significantly lower than that from 100-

nL sample injection, which was most likely due to the electrospray ionization suppression 

from BSA. BSA and cyto.c were partially separated by CZE with 100-nL sample injection, 

but they co-migrated out of the separation capillary when the sample injection volume 

increased to 500 nL.

As shown in Figure 1B (FESS), on average, the protein intensity increased roughly by two 

times when the injection volume increased from 50 nL to 100 nL. We observed reasonably 

steady intensity of proteins (except cyto.c) when the sample injection volume increased from 

100 nL to 500 nL. On average, the increase of protein intensity was only around 20%. The 

data indicated that FESS method could not efficiently concentrate protein molecules when 

the sample injection volume was higher than 100 nL, corresponding to 5% of the total 

capillary volume. We noted that the intensity of cyto.c declined significantly, which is also 

due to the ionization suppression from BSA mentioned in the previous paragraph. We also 

noted that the protein intensity from FESS method was, on average, 2–3 times higher than 

that from control with the same sample injection volume, which is due to the stacking 

performance of FESS. As shown in Figure 1D, the protein intensity from FESS was much 
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higher than that from the control. In addition, FESS method yielded much better separation 

of proteins than the control, which is also due to its concentration performance. Lysozyme, 

cyto.c, myoglobin and CA showed poor separation in control experiments using the 500-nL 

sample injection. In contrast, the FESS experiments demonstrated reasonable separation, and 

produced much higher separation efficiency than control. For example, the number of 

theoretical plates of myoglobin was less than 400 for control and around 6,600 for FESS 

with 500-nL sample injection.

As shown in Figure 1C (dynamic pH junction), we observed significant increase in intensity 

for all five proteins when the injection volume increased from 50 nL to 100 nL. On average, 

the protein intensity increase was about 2 times. We still observed signicant protein intensity 

increase when the sample injection volume changed from 100 nL to 500 nL. On average, the 

intensity of proteins from 500 nL sample injection were about 2 times higher than that from 

100 nL sample injection. The result demonstrated that the dynamic pH junction method 

could efficiently concentrate protein molecules with even 500 nL sample injection volume, 

which corresponded to 25% of the total capillary volume. On average, the intensity of the 

five proteins from dynamic pH junction experiments were comparable to that from FESS 

experiments with the same sample injection volume that was 50, 100 or 200 nL. However, 

on average, the intensity of those proteins was improved by 80% using dynamic pH junction 

method compared with FESS method with 500-nL sample injection. As shown in Figure 1D, 

dynamic pH junction method also produced better separation of proteins than FESS method. 

Myoglobin and CA could only be partially separated with FESS method (R=1); they could 

be baseline separated with dynamic pH junction method (R=1.6). In addition, three forms of 

β-casein [6,37] having different masses were well separated with dynamic pH junction 

method; they could not be separated from each other with FESS method. The mass of those 

three β-casein forms were 23,983 Da (e3), 24,022 Da (e2) and 24,092 Da (e1), which were 

manually calculated based on the most abundant isotope peaks of those forms at charge +23. 

We noted that the calculated mass of those three forms were different from those reported in 

reference [6], which were the monoisotopic masses of those three forms exported from MS-

Deconv software.[32] Finally, dynamic pH junction method generated better separation 

efficiency than FESS method. For example, the number of theoretical plates of myoglobin 

was 6,600 for FESS and 23,000 for dynamic pH junction. Overall, dynamic pH junction 

method outperformed the FESS method for characterization of proteins with 500-nL sample 

injection, and it was used for the following experiments.

We performed a calibration-curve experiment with the dynamic pH junction based CZE-MS, 

Figure S1 in Supporting Information I. The stock solution of the standard protein mixture 

was diluted with NH4HCO3 buffers by four different dilution factors that were 2, 6, 18 and 

54, respectively. All of the dilute samples were dissolved in 10 mM NH4HCO3 (pH 8.0). 

The sample injection volume was 500 nL per CZE-MS run. We chose three proteins 

(lysozyme, CA and myoglobin) for the calibration curve and those proteins were detected 

and well separated in all the CZE-MS runs. Good linear correlations (r=0.96–0.99) were 

observed between protein concentration and protein intensity for all of the three proteins 

across nearly 30-times concentration range. The results indicate that the dynamic pH 

junction based CZE-MS is quantitative and has the potential for quantitative top-down 

proteomics.
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Optimization of the dynamic pH junction based CZE-MS

We chose 10 mM NH4HCO3 (pH 8.0) as the sample buffer for dynamic pH junction based 

CZE-MS at the beginning based on references [20] and [38]. Imami et al. systematically 

investigated the effect of the concentration of NH4HCO3 in the sample buffer on the 

concentration performance of dynamic pH junction method using a peptide mixture.[25] 

They increased the concentration of NH4HCO3 from 20 mM to 200 mM, and observed 

steady increase of the peptide intensity until 100 mM, which was consistent with an ITP 

mechanism. We also recognized a similar phenomenon in our recent work. [20] When we 

increased the concentration of NH4HCO3 in the sample buffer from 5 mM to 20 mM, we 

observed increase of peptide intensity. Those results motivated us to try higher concentration 

of NH4HCO3 in the sample buffer. We recognized that when ITP was coupled with CZE-MS 

for biomolecule analysis, the salt concentration in the sample buffer was typically 50 

mM.[39–41] Therefore, we tested 50 mM NH4HCO3 (pH 8.0) as the sample buffer for 

dynamic pH junction based CZE-MS using the mixture of the six standard proteins, Figure 2 

and Figure S2 in Supporting Information I. The BGE was 5% (v/v) acetic acid. The stock 

solution of the standard protein mixture was diluted with a NH4HCO3 buffer (pH 8.0) by a 

factor of 10, and the concentration of NH4HCO3 in the dilute sample was 50 mM. The dilute 

sample was used for all of the following experiments.

As shown in Figure S2, all of the six proteins (lysozyme, BSA, cyto.c, myoglobin, CA and 

β-casein) in the protein mixture were well separated with 500-nL sample injection and even 

1-μL sample injection, which corresponded to 50% of the total capillary volume. Figure 2 

shows the corresponding EIEs of the standard protein mixture using 500-nL sample injection 

(Figure 2A) and 1-μL sample injection (Figure 2B). The CZE-MS system using 50 mM 

NH4HCO3 as the sample buffer produced high separation efficiency for proteins with both 

500-nL and 1-μL sample injection. As shown in Figure 2C, the N of proteins ranged from 

21,000 (β-casein, peak e2) to 206,000 (lysozyme) for 500-nL sample injection, and ranged 

from 30,000 (β-casein, peak e3) to 292,000 (lysozyme) for 1-μL sample injection. On 

average, the intensity of proteins from 1-μL sample injection were about 2.5 times higher 

than those from 500-nL sample injection based on the EIEs. The results indicated that the 

CZE-MS system using 50 mM NH4HCO3 as the sample buffer could efficiently concentrate 

proteins even when 50% of the capillary was filled with the sample.

We also compared the intensity of proteins observed using 10 mM NH4HCO3 and 50 mM 

NH4HCO3 as the sample buffers based on the EIEs in Figure 1D and Figure 2A. 50 mM 

NH4HCO3 sample buffer generated, on average, comparable intensity of proteins with 5-

times lower protein concentration compared with 10 mM NH4HCO3 sample buffer. 

Therefore, we chose 50 mM NH4HCO3 (pH 8.0) as the sample buffer in all of the following 

experiments.

Next, we screened different BGEs including 0.1–0.5% (v/v) formic acid and 5–10% (v/v) 

acetic acid. The sample injection volume was 500 nL per CZE-MS run. We observed that the 

overall performance of 0.1% (v/v) formic acid BGE (pH 2.8) was better than that of 0.3% 

and 0.5% (v/v) formic acid (pH 2.3 and 2.1) in terms of protein intensity, Figure S3A in 

Supporting Information I. We also observed comparable protein intensity from 0.1% (v/v) 

formic acid BGE and acetic acid BGEs (5% and 10% (v/v)), Figure S3B and Figure S3C in 
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Supporting Information I. However, 5% and 10% (v/v) acetic acid BGEs (pH ~2.4 and ~2.2) 

produced significantly wider separation window than 0.1% (v/v) formic acid BGE for the 

standard protein mixture. In addition, the migration time of protein analytes in the capillary 

in 5% and 10% (v/v) acetic acid BGEs was significantly longer than that in 0.1% (v/v) 

formic acid BGE (e.g., 10 minutes longer for lysozyme). There are two potential reasons for 

the phenomenon. First, 5–10% (v/v) acetic acid has much lower pH than 0.1% (v/v) formic 

acid (2.4–2.2 vs. 2.8), which further reduces the remaining electroosmotic flow in the LPA-

coated separation capillary. We measured the electroosmotic mobility in the LPA-coated 

capillary based on the method reported in literature. [42,43] The electroosmotic mobility in 

10% (v/v) acetic acid BGE was lower than that in 0.1% (v/v) formic acid BGE (6.8×10−6 

cm2·V−1·s−1 vs. 1.1×10−5 cm2·V−1·s−1). The details about measurement of the 

electroosmotic mobility is described in Supporting Information I. Second, the more acidic 

BGEs (5–10% (v/v) acetic acid) typically lead to more severe protein unfolding and an 

increase in hydrodynamic radii of the protein analytes, resulting in slower migration of 

proteins in the separation capillary.

Based on the results discussed above, we chose 5–10% (v/v) acetic acid and 50 mM 

NH4HCO3 (pH 8.0) as the optimized BGE and sample buffer for the following experiments. 

We then evaluated the reproducibility of the optimized dynamic pH junction based CZE-MS 

system for intact protein analysis using 5% (v/v) acetic acid as the BGE and 500-nL sample 

injection. The system produced reproducible separation and detection of proteins during 16-

hours of continuous analysis (11 CZE-MS runs) with the relative standard deviations (RSDs) 

of migration time and intensity of proteins less than 7% and 16%, respectively (Table S1 in 

Supporting Information I). One LPA coated capillary can typically be used for continuous 

analysis of complex samples for at least one week without significant loss of separation 

performance based on our experience, suggesting that the LPA coating on the inner wall of 

the separation capillary is stable.

Single-shot top-down proteomics with CZE-MS/MS

We further applied the optimized CZE-MS/MS system for top-down proteomics of E.coli. 
An E.coli protein sample (2 mg/mL) in 50 mM NH4HCO3 (pH 8.0) was used for the 

experiments. 10% (v/v) acetic acid was used as the BGE. A Q-Exactive HF mass 

spectrometer was used.

First, we evaluated the effect of sample loading volume on the number of proteoform IDs 

and the number of PrSMs, Figure 3A. A top 3 DDA method was used for data acquisition. 

CZE-MS/MS with 500 nL sample loading volume produced the highest number of 

proteoform IDs (407) after filtered with 1% spectrum-level FDR. When the sample loading 

volume increased from 100 nL to 500 nL, the number of PrSMs increased, leading to 

identification of over 2,100 PrSMs with 500-nL sample injection after filtering with 1% 

spectrum-level FDR. The number of PrSMs remained reasonably consistent when the 

sample loading volume changed from 500 nL to 1 μL. We further tried to decrease the 

voltage applied at the injection end of the separation capillary from 30 kV to 20 kV, 

resulting in slower migration of analytes in the capillary and wider separation window. 468 
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proteoforms were identified with 20 kV voltage and 500-nL sample injection. The number 

of proteoform IDs was 15% higher than that from the 30 kV voltage (468 vs. 407).

We then performed CZE-MS/MS analysis of the E.coli sample in duplicate with 20 kV 

voltage and 500-nL sample loading, Figures 3B and 3C. We applied a top 8 DDA method 

instead of the top 3 DDA method. We identified 586±38 proteoforms (n=2) and 2,798±97 

PrSMs (n=2) with single shot CZE-MS/MS after filtered with 1% spectrum-level FDR. The 

lists of identified proteoforms from those duplicate CZE-MS/MS runs are shown in 

Supporting Information II. The corresponding raw files have been deposited to the 

ProteomeXchange Consortium via the PRIDE [44] partner repository with the dataset 

identifier PXD007273. The number of proteoform IDs is over three times higher than that 

reported in the literature using single-shot CZE-MS/MS (586 vs. 140–180).[8,10] Results 

clearly demonstrate the capability of CZE-MS/MS for large-scale top-down proteomics. If 

0% spectrum-level FDR was used to filter the data, 419±25 proteoforms still could be 

identified, which is still over 2 times higher than the data that has been presented in the 

literature. We also analyzed the molecular weight distribution of the identified proteoforms 

from the single-shot CZE-MS/MS, Figure S4 in Supporting Information I. The molecular 

weight of identified proteoforms ranged from around 2,000 Da to about 24,000 Da. About 

33% of the identified proteoforms had molecular weight higher than 10 kDa.

We attributed the significant improvement of the number of proteoform IDs from single-shot 

CZE-MS/MS to three reasons. First, the large sample loading capacity of the CZE-MS/MS 

system (0.5 μL, 1 μg of E.coli proteins) and the optimized dynamic pH junction method 

guaranteed the identification of large numbers of proteoforms. Second, the optimized 

dynamic pH junction based CZE-MS/MS system produced 90-min separation window for 

the E.coli proteome (Figures 3B and 3C), providing enough time for acquisition of tandem 

mass spectra. The separation window is about three times wider than those in previous 

reports. [8,10] Third, the dynamic pH junction based CZE produced high peak capacity for 

separation of the E.coli proteome. Based on the electropherograms in Figure 3B, the peak 

capacity of the system was about 280 (using the average peak width at 50% peak height) for 

the E.coli proteome sample, which is 2–3 times higher than those in the previous 

reports. [8,10]

We further analyzed the identified proteoforms from the E.coli proteome with single-shot 

CZE-MS/MS. The nearly 600 proteoforms from single-shot CZE-MS/MS corresponded to 

about 200 E.coli genes. On average, we identified about three proteoforms from each gene. 

Distribution of the number of proteoform IDs from each gene is shown in Figure 4A. We 

identified one proteoform/gene for about 100 E.coli genes, 2–5 proteoforms/gene for about 

80 genes, and 6–44 proteoforms/gene for about 20 genes. We identified 44, 30 and 21 

proteoforms for E.coli genes hdeA, acpP and ybgS, respectively. The proteins corresponding 

to those three genes are the most abundant proteins in E.coli (top 5%) based on the 

information in PaxDb (Protein Abundance Database, http://pax-db.org/). About 80% and 

65% of the identified proteoforms from single-shot CZE-MS/MS had significant mass errors 

with and without consideration of cysteine carbamidomethylation, respectively. Figure 4B 

shows the distribution of detected mass errors of identified proteoforms. In total, we detected 

870 mass error events corresponding to different modifications of the proteins including 
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cysteine carbamidomethylation (57 Da), oxidation (16 Da) and acetylation (42 Da). In 

addition, truncations, N-terminal methionine excision and signal peptide removal of proteins 

were also detected. Figures 4C and 4D show sequences and observed fragmentation patterns 

of two proteins. The fragmentation covered the termini and middle parts of those two 

proteins, leading to identification of over 40 fragment ions. N-terminal truncation was 

detected for uncharacterized protein YggL (Figure 4C), while there was N-terminal 

methionine excision that was detected for 30S ribosomal protein S17 (Figure 4D).

Conclusions

We presented a CZE-MS/MS system with microliter scale sample loading capacity, 90-min 

separation window and high peak capacity (~280) for large-scale top-down proteomics, thus 

leading to nearly 600 proteoform IDs from an E.coli proteome using single-shot CZE-

MS/MS. The number of proteoform IDs is over three times higher than that from previous 

single-shot CZE-MS/MS studies. The 600 proteoform IDs from single-shot CZE-MS/MS is 

roughly equivalent to the data from single-shot RPLC-MS/MS using a 21 T FT-ICR mass 

spectrometer.[45] This CZE-MS/MS system established the foundation for large-scale top-

down proteomics using CZE-MS/MS.

RPLC-MS/MS is typically used for large-scale top-down proteomics, and separates proteins 

based on their hydrophobicity. CZE separates proteins based on their size-to-charge ratios. 

CZE and RPLC can provide orthogonal separation of intact proteins. It has been reported 

that CZE-MS approached better characterization of Dam1 complex subunits in terms of 

separation efficiency and resolution with 100-times less sample consumption compared to 

RPLC-MS.[11] In addition, CZE can separate protein(s)/protein complexes in native 

condition.[46,47] Very recently, Belov et al. characterized a ribosomal isolate from E. coli 
using CZE-MS/MS in native condition, leading to the identification of 42 ribosomal proteins 

and 137 proteoforms in a single experiment.[47] The results demonstrate the potential of 

CZE-MS/MS for top-down proteomics of complex proteomes in native conditions.

However, CZE-MS/MS based large-scale top-down proteomics is still at the early stage. The 

600 proteoform IDs in this work represents the largest top-down proteomics dataset using 

CZE-MS/MS. The number of proteoform IDs from CZE-MS/MS is still far away from the 

state of the art of LC-MS/MS based top-down proteomics, which has reached thousands of 

proteoform IDs from mammalian cell lines. [45, 48–52] Around 1,000 proteoform IDs from 

complex proteome samples has been approached using one-dimension high-resolution 

RPLC-MS/MS. [53,54] To improve the scale of CZE-MS/MS based top-down proteomics, we 

need to further improve the CZE-MS/MS system in terms of the separation window and 

sample loading capacity. One solution is to use longer separation capillary (e.g., 1.5 meters) 

and higher separation voltage (e.g., 60 kV or higher). In addition, coupling LC fractionation 

(size exclusion chromatography and RPLC) to CZE-MS/MS will enable high capacity 

separation of complex proteomes, and will significantly improve the scale of top-down 

proteomics.
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Acknowledgments

We thank Prof. Heedeok Hong’s group at Department of Chemistry, Michigan State University for kindly providing 
the Escherichia coli cells for our experiments. This research was funded by Michigan State University. Qiang Kou 
and Xiaowen Liu were supported by the National Institute of General Medical Sciences, National Institutes of 
Health (NIH) through Grant R01GM118470.

References

1. Domínguez-Vega E, Haselberg R, Somsen GW. Methods Mol Biol. 2016; 1466:25–41. [PubMed: 
27473479] 

2. Haselberg R, de Jong GJ, Somsen GW. Electrophoresis. 2013; 34:99–112. [PubMed: 23161520] 

3. Jorgenson JW, Lukacs KD. Science. 1983; 222:266–272. [PubMed: 6623076] 

4. Harstad RK, Johnson AC, Weisenberger MM, Bowser MT. Anal Chem. 2016; 88:299–319. 
[PubMed: 26640960] 

5. Valaskovic GA, Kelleher NL, McLafferty FW. Science. 1996; 273:1199–1202. [PubMed: 8703047] 

6. Sun L, Knierman MD, Zhu G, Dovichi NJ. Anal Chem. 2013; 85:5989–5995. [PubMed: 23692435] 

7. Zhao Y, Sun L, Champion MM, Knierman MD, Dovichi NJ. Anal Chem. 2014; 86:4873–4878. 
[PubMed: 24725189] 

8. Zhao Y, Sun L, Zhu G, Dovichi NJ. J Proteome Res. 2016; 15:3679–3685. [PubMed: 27490796] 

9. Li Y, Compton PD, Tran JC, Ntai I, Kelleher NL. Proteomics. 2014; 14:1158–1164. [PubMed: 
24596178] 

10. Han X, Wang Y, Aslanian A, Bern M, Lavallée-Adam M, Yates JR III. Anal Chem. 2014; 
86:11006–11012. [PubMed: 25346219] 

11. Han X, Wang Y, Aslanian A, Fonslow B, Graczyk B, Davis TN, Yates JR III. J Proteome Res. 
2014; 13:6078–6086. [PubMed: 25382489] 

12. Haselberg R, de Jong GJ, Somsen GW. Anal Chem. 2013; 85:2289–2296. [PubMed: 23323765] 

13. Bush DR, Zang L, Belov AM, Ivanov AR, Karger BL. Anal Chem. 2016; 88:1138–1146. 
[PubMed: 26641950] 

14. Faserl K, Sarg B, Maurer V, Lindner HH. J Chromatogr A. 2017; 1498:215–223. [PubMed: 
28179079] 

15. Sarg B, Faserl K, Kremser L, Halfinger B, Sebastiano R, Lindner HH. Mol Cell Proteomics. 2013; 
12:2640–2656. [PubMed: 23720761] 

16. Wojcik R, Dada OO, Sadilek M, Dovichi NJ. Rapid Commun Mass Spectrom. 2010; 24:2554–
2560. [PubMed: 20740530] 

17. Moini M. Anal Chem. 2007; 79:4241–4246. [PubMed: 17447730] 

18. Yang L, Lee CS, Hofstadler SA, Pasa-Tolic L, Smith RD. Anal Chem. 1998; 70:3235–3241. 
[PubMed: 11013724] 

19. Jensen PK, Pasa-Tolić L, Anderson GA, Horner JA, Lipton MS, Bruce JE, Smith RD. Anal Chem. 
1999; 71:2076–2084. [PubMed: 10366890] 

20. Chen D, Shen X, Sun L. Analyst. 2017; 142:2118–2127. [PubMed: 28513658] 

21. Aebersold R, Morrison HD. J Chromatogr. 1990; 516:79–88. [PubMed: 2286630] 

22. Britz-McKibbin P, Chen DDY. Anal Chem. 2000; 72:1242–1252. [PubMed: 10740866] 

23. Wang L, MacDonald D, Huang X, Chen DD. Electrophoresis. 2016; 37:1143–1150. [PubMed: 
26949078] 

24. Cao CX, Fan LY, Zhang W. Analyst. 2008; 133:1139–1157. [PubMed: 18709186] 

25. Imami K, Monton MR, Ishihama Y, Terabe S. J Chromatogr A. 2007; 1148:250–255. [PubMed: 
17382949] 

Lubeckyj et al. Page 12

Anal Chem. Author manuscript; available in PMC 2018 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Ptolemy AS, Britz-McKibbin P. Analyst. 2008; 133:1643–1648. [PubMed: 19082065] 

27. Sun L, Zhu G, Zhang Z, Mou S, Dovichi NJ. J Proteome Res. 2015; 14:2312–2321. [PubMed: 
25786131] 

28. Zhu G, Sun L, Dovichi NJ. Talanta. 2016; 146:839–843. [PubMed: 26695337] 

29. Sun L, Zhu G, Zhao Y, Yan X, Mou S, Dovichi NJ. Angew Chem Int Ed. 2013; 52:13661–13664.

30. http://proteomics.informatics.iupui.edu/software/topfd/. Date of access: June 8, 2017

31. Kou Q, Xun L, Liu X. Bioinformatics. 2016; 32:3495–3497. [PubMed: 27423895] 

32. Liu X, Inbar Y, Dorrestein PC, Wynne C, Edwards N, Souda P, Whitelegge JP, Bafna V, Pevzner 
PA. Mol Cell Proteomics. 2010; 9:2772–2782. [PubMed: 20855543] 

33. Kessner D, Chambers M, Burke R, Agus D, Mallick P. Bioinformatics. 2008; 24:2534–2536. 
[PubMed: 18606607] 

34. Elias JE, Gygi SP. Nature Methods. 2007; 4:207–214. [PubMed: 17327847] 

35. Sun L, Hebert AS, Yan X, Zhao Y, Westphall MS, Rush MJ, Zhu G, Champion MM, Coon JJ, 
Dovichi NJ. Angew Chem Int Ed. 2014; 53:13931–13933.

36. Simpson SL Jr, Quirino JP, Terabe S. J Chromatogr A. 2008; 1184:504–541. [PubMed: 18035364] 

37. Wu S, Lourette NM, Tolić N, Zhao R, Robinson EW, Tolmachev AV, Smith RD, Pasa-Tolić L. J 
Proteome Res. 2009; 8:1347–1357. [PubMed: 19206473] 

38. Zhu G, Sun L, Heidbrink-Thompson J, Kuntumalla S, Lin HY, Larkin CJ, McGivney JB IV, 
Dovichi NJ. Electrophoresis. 2016; 37:616–622. [PubMed: 26530276] 

39. Busnel JM, Schoenmaker B, Ramautar R, Carrasco-Pancorbo A, Ratnayake C, Feitelson JS, 
Chapman JD, Deelder AM, Mayboroda OA. Anal Chem. 2010; 82:9476–9483. [PubMed: 
21028888] 

40. Faserl K, Kremser L, Müller M, Teis D, Lindner HH. Anal Chem. 2015; 87:4633–4640. [PubMed: 
25839223] 

41. Wang Y, Fonslow BR, Wong CC, Nakorchevsky A, Yates JR 3rd. Anal Chem. 2012; 84:8505–
8513. [PubMed: 23004022] 

42. Williams BA, Vigh G. Anal Chem. 1996; 68:1174–1180. [PubMed: 21619150] 

43. Zhang Z, Peuchen EH, Dovichi NJ. Anal Chem. 2017; 89:6774–6780. [PubMed: 28540730] 

44. Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, 
Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H. Nucleic Acids Res. 2016; 44:D447–D456. 
[PubMed: 26527722] 

45. Anderson LC, DeHart CJ, Kaiser NK, Fellers RT, Smith DF, Greer JB, LeDuc RD, Blakney GT, 
Thomas PM, Kelleher NL, Hendrickson CL. J Proteome Res. 2017; 16:1087–1096. [PubMed: 
27936753] 

46. Nguyen A, Moini M. Anal Chem. 2008; 80:7169–7173. [PubMed: 18710259] 

47. Belov AM, Viner R, Santos MR, Horn DM, Bern M, Karger BL, Ivanov AR. J Am Soc Mass 
Spectrom. 2017; doi: 10.1007/s13361-017-1781-1

48. Tran JC, Zamdborg L, Ahlf DR, Lee JE, Catherman AD, Durbin KR, Tipton JD, Vellaichamy A, 
Kellie JF, Li M, Wu C, Sweet SM, Early BP, Siuti N, LeDuc RD, Compton PD, Thomas PM, 
Kelleher NL. Nature. 2011; 480:254–258. [PubMed: 22037311] 

49. Fornelli L, Durbin KR, Fellers RT, Early BP, Greer JB, LeDuc RD, Compton PD, Kelleher NL. J 
Proteome Res. 2017; 16:609–618. [PubMed: 28152595] 

50. Durbin KR, Fornelli L, Fellers RT, Doubleday PF, Narita M, Kelleher NL. J Proteome Res. 2016; 
15:976–982. [PubMed: 26795204] 

51. Cai W, Tucholski T, Chen B, Alpert AJ, McIlwain S, Kohmoto T, Jin S, Ge Y. Anal Chem. 2017; 
89:5467–5475. [PubMed: 28406609] 

52. Valeja SG, Xiu L, Gregorich ZR, Guner H, Jin S, Ge Y. Anal Chem. 2015; 87:5363–5371. 
[PubMed: 25867201] 

53. Ansong C, Wu S, Meng D, Liu X, Brewer HM, Deatherage Kaiser BL, Nakayasu ES, Cort JR, 
Pevzner P, Smith RD, Heffron F, Adkins JN, Pasa-Tolic L. Proc Natl Acad Sci USA. 2013; 
110:10153–10158. [PubMed: 23720318] 

Lubeckyj et al. Page 13

Anal Chem. Author manuscript; available in PMC 2018 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://proteomics.informatics.iupui.edu/software/topfd/


54. Shen Y, Tolić N, Piehowski PD, Shukla AK, Kim S, Zhao R, Qu Y, Robinson E, Smith RD, Paša-
Tolić L. J Chromatogr A. 2017; 1498:99–110. [PubMed: 28077236] 

Lubeckyj et al. Page 14

Anal Chem. Author manuscript; available in PMC 2018 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Protein intensity change across different sample injection volumes (50, 100, 200 and 500 

nL) for control (A), FESS (B) and dynamic pH junction (C). All the protein intensities were 

obtained from extracted ion electropherograms (EIEs). The error bars represent the standard 

deviations of protein intensity from triplicate CZE-MS analyses. (D) EIEs of the mixture of 

standard proteins from CZE-MS under the three different conditions. The sample injection 

volume was 500 nL for each condition. The proteins labelled in the electropherograms are 

lysozyme (a), cyto.c (b), myoglobin (c), CA (d) and β-casein (e). The four proteins 

(lysozyme, cyto.c, myoglobin and CA) were extracted with m/z 1590.33, 765.33, 808.20, 

and 880.55, respectively. For (A)-(C), β-casein was extracted with m/z 1043.76. For (D), 

three different m/z (m/z 1043.76, 1045.45 and 1048.5) corresponding to three different 

forms of β-casein separated by CZE using dynamic pH junction method (e3, e2 and e1) 

were used for extraction. The mass tolerance was 100 ppm. A Q-Exactive HF mass 

spectrometer was used for all of the experiments. For CZE, 30 kV was applied at the 

injection end for separation.
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Figure 2. 
Extracted ion electropherograms (EIEs) of the standard protein mixture dissolved in 50 mM 

NH4HCO3 (pH 8.0) analyzed by the dynamic pH junction based CZE-MS with 500-nL 

sample injection (A) and 1-μL sample injection (B). The number of theoretical plates (N) of 

different proteins in (A) and (B) are summarized in (C). The m/z used for protein peak 

extraction were the same as those in Figure 1. The mass tolerance was 100 ppm for peak 

extraction. The N of each protein was calculated based on the peak width and migration time 

of each protein in the EIEs. BSA was not extracted in the figures due to its low signal-to-

noise ratio. A Q-Exactive HF mass spectrometer was used for all of the experiments. For 

CZE separation, 30 kV was applied at the injection end.
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Figure 3. 
Data about top-down proteomics of E.coli using CZE-MS/MS. (A) Effect of E.coli sample 

loading volume on the number of proteoform IDs and the number of proteoform-spectrum 

matches (PrSMs). For the CZE-MS experiments, 30 kV was applied at the injection end for 

separation. (B) Electropherograms of the E.coli protein sample analyzed by CZE-MS/MS in 

duplicate runs. For the CZE-MS experiments, 20 kV was applied at the injection end for 

separation. (C) The zoom-in electropherogram of the E.coli protein sample from the 1st run 

CZE-MS/MS in (B). A Q-Exactive HF mass spectrometer was used for all of the 

experiments.
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Figure 4. 
(A) Distribution of the number of identified proteoforms from each E.coli gene. (B) 

Distribution of the detected mass errors from the identified proteoforms. (C) and (D): 

Sequences of two identified proteins with carbamidomethylation sites (cysteines) marked in 

red and the fragmentation patterns observed. The single-shot E.coli data in Figure 3B was 

used for these analyses.
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