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Abstract N6-Methyladenosine (m6A) modification is the most pervasive modification of human mRNA
molecules. It is reversible via regulation of m6A modification methyltransferase, demethylase and proteins
that preferentially recognize m6A modification as “writers”, “erasers” and “readers”, respectively. Altered
expression levels of the m6A modification key regulators substantially affect their function, leading to
significant phenotype changes in the cell and organism. Recent studies have proved that the m6A
modification plays significant roles in regulation of metabolism, stem cell self-renewal, and metastasis in a
variety of human cancers. In this review, we describe the potential roles of m6A modification in human
cancers and summarize their underlying molecular mechanisms. Moreover, we will highlight potential
therapeutic approaches by targeting the key m6A modification regulators for cancer drug development.
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Figure 1 m6A modification of mRNA occurs in methyl group at
nitrogen atoms of adenosine.
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1. Introduction

As the delivery vehicle of genome-encoded information to the
functional protein, message RNA (mRNA) plays an important
role in life processes in eukaryotes. A bulk of evidence
suggested that abnormal transcription or expression of mRNA
was closely related to various human diseases1–3. A high
volume of drugs has been designed to target mRNA matura-
tion, transportation, location and expression in the past
decades4–6. In recent years, with development of gene exam-
ination technology, more than 100 types of chemical modifica-
tions of mRNA have been explored successively7,8, such as
m1A9,10, m5C11, m6A12,13, 5hmC14, pseudouridine, Ψ15–17,
20-O-methylation18, etc. Those modifications join in regulating
RNA splicing, translation and stability, thus effecting gene
expression in diverse physiological processes12,19–21. Studies
on mRNA modification have identified the pathology, devel-
opment and prognosis of various diseases, and provided
relative therapeutics and numerous new targets for drug
development. N6-methyladenosine (m6A) is the most pervasive
internal modification of mRNA in the human cell,
which is the methylation of the adenosine base at the
nitrogen-6 position of mRNA (Fig. 1). m6A modification is
widely distributed (on average, approximately 3–5 m6A mod-
ification sites per mRNA molecule22–25) with high abundance
(425%) in the transcripts in human cells12,13. m6A modifica-
tion was first reported in poly (A) RNA fractions in 1970s26,27.
Due to the lack of specific technique for detecting the m6A
modification sites in mRNAs, the research on m6A modifica-
tion had been stagnant for decades until the gene FTO (the first
m6A modification demethylase) was found to revive the field
of RNA methylation. This discovery suggested that RNA
modification, analogous to the well-studied reversible DNA
and histone modifications, might also impact biological reg-
ulation28. N6-Methyladenosine often locates in the 50 untrans-
lated regions (50-UTRs), near the stop codons, in the 30-UTRs
and within internal long exons22,29,30. Unlike other mRNA
modification, the m6A modification is dynamic and versatile,
which can be regulated by its formation as well as its removal.
The m6A modification modulators include the m6A modifica-
tion methyltransferase, demethylase and proteins that prefer-
entially recognized m6A modification as “writers”, “erasers”
and “readers”, respectively.
1.1. m6A modification writers: a complex of METTL3,
METTL14, and WTAP

The m6A modification “writers” is a methyltransferase complex
comprising of methyltransferase-like 3 (METTL3), methyltransferase-
like 14 (METTL14) and Wilms' tumor 1-associating protein (WTAP).
METTL3 is the primary component of this complex. Knockout of
METTL3 resulted in almost complete loss of the m6A modification
activity in polyadenylated RNAs21,31,32. METTL14, another important
component in the m6A modification methylation complex, forms a
stable heterodimer complex with METTL3 in a stoichiometric ratio of
1:121. METTL14 is not a methyltransferase, but an adaptor required for
enhancing the METTL3 activity by binding substrate RNAs and
positioning the methyl group towards adenosine33–35. As a binding
partner of the methyltransferase, WTAP is essential for RNA
methylation. WTAP facilitates the METTL3-METTL14 complex to
locate into nuclear speckles36. Genetic depletion of WTAP causes the
dislocation of METTL3 and METTL14 from these speckles and
affecting m6A modification formation in mRNA37.

1.2. m6A modification erasers: mRNA demethylation by FTO
and ALKBH5

Fat mass and obesity-associated protein (FTO) and alkylated DNA
repair protein AlkB homolog 5 (ALKBH5), referred as m6A
modification “erasers”, are both the members of the AlkB
family38,39. FTO was the first m6A modification demethylase
found in cells and it is able to demethylate m6A modification in
mRNA both in vitro and in vivo28. The demethylation of m6A
modification in nucleic acids by FTO relies on oxidative function
of FTO in a Fe(II)- and α-KG-dependent manner. ALKBH5,
another m6A modification demethylase found in the nucleus,
regulates export and metabolism of mRNA by m6A modification
demethylation39. Deletion of ALKBH5 affects 9% of total m6A
modification sites, indicating that ALKBH5 may target specific
m6A modification sites in mRNAs39.

1.3. m6A modification readers: proteins that recognize m6A
modification containing mRNA

Functions of m6A-containing RNAs were achieved by recruit-
ing m6A-binding proteins (termed as m6A modification read-
ers) that can preferentially recognize m6A modification sites in
methylated RNA and facilitate downstream processes. The
“m6A readers” and the “m6A switch readers” include YTH
domain family (YT521-B homology), HNRNP (Heterogeneous
nuclear ribonucleoproteins) and insulin-like growth factor-2
mRNA-binding proteins 1, 2 and 3 (IGF2BP1–3). Mammalian
genomes contain five YTH domain-containing proteins:
YTHDF1–3 and YTHDC1–2. YTHDF1–3, the m6A modifica-
tion readers in cytoplasm, prefer to bind methylated RNA with
concentration ranging from 180 to 520 nmol/L40. Previous
study suggested that YTHDF1 promoted the translation of
m6A-containing transcripts and YTHDF2 mediated mRNA
decay41. YTHDC1, another member of the YTH domain
family, was identified as the major readers of nuclear m6A
modification42. It was reported that YTHDC1 took part in the
m6A-regulated splicing43. Originally, HNRNPA2B1 was
shown to bind RG m6A C-containing sites on nuclear RNAs
in vivo and in vitro, which regulated the alternative splicing of
exons in a set of transcripts, and facilitated the processing of
pri-miRNAs44. Subsequent structure analysis showed that
HNRNPA2B1 functioned as the “m6A switch readers” instead
of the “m6A readers”45. IGF2BP1–3 were the latest m6A
readers as recently determined. Their K homology (KH)
domains recognize m6A-containing RNAs selectively and
promote their translation and stability46 (Fig. 2).



Figure 2 The processes of mRNA N6-methyladenosine modification regulated by m6A modification “writers”, “erasers” and “readers”. The m6A
modification methylation and demethylation occur in the nucleus. The m6A-containing RNAs are recognized by the m6A readers, such as
HNRNPA2B1, YTHDC1 and HNRNPC, which affect the splicing and export of these mRNAs. In the cytoplasm, the m6A-“imprinting” mRNA is
recognized by YTHF1–3 and IGF2BP1–3, which affecting the mRNA stability, translation and decay.
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1.4. m6A modification involves in human cancers

Recently, N6-methyladenosine modification represents one of the hot
spots of life sciences and attracts attention of a vast amount of studies
worldwide. Studies have proved that m6A modification of mRNA can
effect RNA stability40,47,48, RNA translation efficiency41,49, RNA
secondary structure50, RNA subcellular localization39, RNA alternative
polyadenylation, and RNA splicing43. Furthermore, alterations of the
expression of m6A modification key regulators will affect their
functions and lead to significant biological changes. The abnormality
of m6A modification bioprocess has been found to be associated with
various diseases, including cancer. Cancer was one of the leading
causes of morbidity and mortality worldwide, killing 8.8 million people
every year and leading to 1 in 6 deaths globally. More than 14 million
new cases developed per year and this was set to rise to over 21 million
by 2030. The cutting-edge approaches of pharmaceutical research on
human cancers mainly include as follows: seeking novel targets for
cancer treatment and developing molecular target-based cancer ther-
apy51,52; screening inhibitors of proteins that contribute to chemother-
apy resistance53; designing drugs that induce a powerful immune
response to cancers54; enhancing the delivery of medicine to
patients and overcoming obstacles in existing treatments55. While N6-
methyladenosine modification acts as the most pervasive internal
modification in mRNA and plays an important role in cancers via
affecting tumor cell proliferation, invasion, drug resistance and
immunosuppression, the key regulators for m6A modification are
potentially important molecular targets for cancer therapy. In this
review, we mainly summarized the pathogenesis and development of
cancers that are mainly affected by m6A modification, demonstrated
the mechanisms of the m6A-associated cancer process and highlighted
potential pharmaceutical targets for anti-tumor drugs. Lastly, we
summed up the present m6A modification regulators as the candidates
for new cancer drug discovery.
2. m6A modification are potential targets for cancer therapy

The foundation of drug development was to identify and prove the
association between specific pharmacological target and disease.
Drugs were designed to recover the body through regulating the
diseases-relevant molecular targets56. N6-Methyladenosine mod-
ification has been found to play significant roles in cancers and has
provided a series of new pharmacological targets, such as m6A
modification “writers”, “erasers” or “readers” for drug develop-
ment. Their mechanisms referring as the molecular target of
cancers will be summarized as follows.
2.1. The function of m6A modification methyltransferase in
human cancers

METTL3 was the major RNA N6-adenosine methyltransferase, which
was reported to be closely associated with the genesis and develop-
ment of cancers. Chen et al.57 showed that METTL3 was signifi-
cantly upregulated in human hepatocellular carcinoma (HCC) and
multiple solid tumors. Clinically, overexpression of METTL3 was
associated with poor prognosis of HCC patients. Knockdown or
knockout of METTL3 would drastically reduce HCC cell prolifera-
tion, migration, colony formation in vitro and suppress HCC
progression and lung metastasis in vivo in a mechanism of
augmenting tumor suppressor gene SOCS2 expression post-
transcriptionally57. In acute myeloid leukemia (AML), METTL3
mRNA and protein were highly expressed. METTL3 played as an
essential gene for growth of AML cells. Downregulation of METTL3
resulted in cell cycle arrest, differentiation of leukemic cells and
failure to establish leukemia in immune-deficient mice. In this regard,
METTL3 could be recruited by the CAATT-box binding protein
CEBPZ to the transcriptional start sites and initiate transcription of
some target genes. METTL3 bound to the promoter and induced m6A
modification within the coding region of the associated mRNA
transcript, enhancing its translation by relieving ribosome stalling58,59.
Likewise, METTL3 expression was elevated in lung adenocarcinoma.
Loss- and gain-of function studies showed that METTL3 promotes
growth, survival, and invasion of human lung cancer cells. Mechan-
istically, METTL3 could enhance translation of certain mRNAs
including epidermal growth factor receptor (EGFR) and the Hippo
pathway effector TAZ though interacting with the translation initia-
tion machinery, which was independent of methyltransferase activity



Table 1 Table of available inhibitors of 2-oxoglutarate (2OG) oxygenases for ALKB family.
IC50s are shown.
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and downstream m6A modification readers proteins60. Mammalian
hepatitis B X-interacting protein (HBXIP) was originally discovered
for its binding to the C terminus of the hepatitis B virus X protein61,
which was documented as an oncoprotein with high expression in
breast cancer62–64. Cai et al.65 showed that expression of METTL3
was positively related to that of HBXIP in clinical breast cancer
tissues. HBXIP could up-regulate METTL3 by inhibiting miRNA
let-7g which down-regulated the expression of METTL3 by targeting
its 30 UTR. As a feedback, METTL3 promoted the expression of
HBXIP through m6A modification, forming a positive feedback loop
of HBXIP/let-7g/METTL3/HBXIP and leading to acceleration of cell
proliferation in breast cancer65. Similarly, Weng et al.66 showed that
METTL14 was highly expressed in acute myeloid leukemia (AML)
cells. Silencing of METTL14 promoted terminal myeloid differentia-
tion of normal HSPCs and AML cells, and thus inhibiting AML cell
survival and proliferation. Mechanistically, METTL14 exerted its
oncogenic role by regulating its mRNA targets (MYB and MYC)
through m6A modification, while the protein itself was negatively
regulated by SPI166.

While some studies have shown that METTL3 and METTL14
may play oncogenic roles in cancers, which were essential for
growth of tumors. Controversially, Cui et al.67 found that m6A
modification functioned as a tumor suppressor for glioblastoma stem
cell (GSC) self-renewal and tumorigenesis. Knockdown of
METTL3 or METTL14 would dramatically upregulate expression
of some oncogenes, such as ADAM19, EPHA3 and KLF4, which
promote human GSC growth, self-renewal and tumorigenesis67.
Similarly, Li et al.68 found that METTL3 might have a suppressive
role in cell proliferation, migration, invasion and cell cycle of renal
cell carcinoma (RCC). They found METTL3 mRNA and protein
expression were downregulated in RCC samples and RCC cell
lines. Up-regulation of METTL3 could obviously inhibit RCC cell
proliferation, migration and invasion, and induce G0/G1 arrest thus
significantly suppressed tumor growth in vivo68. In cervical cancer
tissues, low expression levels of the m6A modification methyl-
transferases (METTL3 and METTL14) were found to be associated
with tumor size, differentiation, lymph invasion and recurrence69. In
pancreatic cancer, the fourth leading cause of cancer deaths70,
METTL3 was confirmed as a potent target for enhancing therapeutic
efficacy in patients with pancreatic cancer71. In pancreatic cancer
patients with METTL3-depleted, they showed higher sensitivity to
anticancer reagents, such as gemcitabine, 5-fluorouracil, cisplatin
and irradiation compared to those without METTL3-depleted71.

Apart from the roles in regulating tumors growth, METTL3
plays an important role in the process of T cell homeostasis72.
Deletion of METTL3 in mouse T cells resulted in the loss of the
m6A modification marker and in turn reduced RNA decay and
elevated SOCS family activity, which consequently inhibited
IL-7-mediated STAT5 activation and T cell homeostatic prolifera-
tion and differentiation72. This interesting finding suggested that
T cell-specific delivery of m6A-modifying agents might be a
significant indicator for cancer immunotherapy. Consequently,
METTL3 and METTL14 are closely associated with the occur-
rence and development of cancers via m6A modification process.
They play diverse roles either as oncogenes or as tumor suppressor
genes in specific tumors, and provide clues to the development of
cancer drugs that are associated with m6A modification
methyltransferases.

2.2. Oncogenic role of m6A modification demethylase in human
cancers

As the first identified RNA demethylase that regulates demethyla-
tion of target mRNAs, FTO was reported to play critical roles in



Figure 3 The biochemical processes of the m6A modification demethylation. ALKBH5 and FTO are 2-oxoglutarate (2OG) and ferrous iron
dependent nucleic acid oxygenase (NAOX). Inhibitors of the m6A modification demethylation could be designed as the 2OG and substrate
competitors.
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cancer development and progression. Previously, Li et al.73

showed that FTO expression was increased in acute myeloid
leukemia (AML). Overexpression of FTO could promote cell
proliferation and viability in two AML cell lines, MONOMAC-6
and MV4–11, while knockdown of FTO expression led to the
opposite effects. Mechanically, FTO exerted its oncogenic role via
targeting and suppressing expression of a set of critical transcripts,
such as ASB2 and RARA73. Specifically, FTO decreased stability
of ASB2 and RARA mRNA transcripts upon FTO-mediated
demethylation of the m6A modification level in their mRNA
transcripts73.

FTO was proved to be a direct target of R-2-hydroxyglutarate
(R-2HG)74. R-2HG was reported to exhibit growth-suppressive
activity and glycolysis-inhibitory function in gliomas75,76. A recent
study demonstrated that R-2HG showed growth-suppressive activ-
ity in leukemia and significantly inhibited progression of sensitive
AMLs in vivo77. While FTO could inhibit accumulation of m6A
modification on MYC transcripts, leading to the enhancement of
MYC mRNA stability and upregulation of MYC signaling and
contributing to tumor progression in many cancers74, R-2HG
exerted its anti-tumor effect largely through inhibiting the enzy-
matic activity of FTO. Additionally, Cui et al.67 showed that FTO
inhibitor MA2, the ethyl ester form of meclofenamic acid (MA),
could increase mRNA m6A modification levels in glioblastoma
stem cell (GSCs) and suppress GSC growth. Moreover, treatment
of GSCs with the FTO inhibitor MA2 suppressed GSC-initiated
tumorigenesis and prolonged the lifespan of GSC-engrafted mice.
In cervical squamous cell carcinoma (CSCC), FTO was found to
be elevated in CSCC tissues and promote chemo-radiotherapy
resistance of CSCC in vitro and in vivo by decreasing m6A
modification and promoting stability of β-catenin (an EMT maker)
mRNA78. Collectively, these studies suggested a key role of FTO
in suppressing stability of the critical factors in cancers by
reducing m6A modification process, and further affecting devel-
opment and prognosis of cancers. It indicates that FTO might be a
potential molecular target for cancer therapy and drug
development.

Similarly, another m6A modification demethylase ALKBH5
played a critical role in tumor growth. A study conducted on
glioblastoma stem-like cells (GSCs) showed that ALKBH5 was
highly expressed in GSCs79. Silencing ALKBH5 could suppress
proliferation and tumorigenesis of patient-derived GSCs. Mechan-
istically, ALKBH5 demethylated the nascent transcripts of tran-
scription factor FOXM1 that was identified as the central
molecular mediator of GSC proliferation and enhanced the
expression of mature RNA or protein80. Knockdown of ALKBH5
would cause 40% reduction of FOXM1 precursor mRNA expres-
sion80. Further, a long non-coding RNA antisense to FOXM1
(FOXM1-AS) was detected to promote the interaction between
ALKBH5 and FOXM1 nascent transcripts81. The FOXM1 axis in
GSC could be disrupted by depletion of FOXM1-AS. ALKBH5
could exert its oncogenic function under hypoxia as well, and
promote EMT in a vary of aggressive cancers, thus causing
resistance to cancer therapy81. Zhang et al.82 reported that
exposure of breast cancer cells to hypoxia would stimulate a
significant increase of hypoxia inducible factor (HIF)-1α- and
HIF-2α dependent ALKBH5 expression. Moreover, the hypoxia
induced ALKBH5 expression in HIF-dependent manner could
enhance NANOG mRNA stability by catalyzing m6A modification
demethylation82. Previous studies demonstrated that pluripotency
factor NANOG played a critical role in the maintenance and
specification of cancer stem cells, which is required for primary
tumor formation and metastasis83. Therefore, ALKBH5 was
proved to enhance BCSC enrichment in the hypoxic tumor
microenvironment, and it was verified in immune deficient mice.
Despite few studies work on the relationship between ALKBH5
and tumors, m6A modification demethylase ALKBH5 was cer-
tainly proved to involve in mechanism of tumor initiation and
progression, holding the potential therapeutic role for anti-
tumor drugs.



Table 2 m6A modification demethylase inhibitors focusing on the 2OG and ferrous iron
dependent oxidation.
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2.3. YTHDF2 links RNA metabolism to cancer progression

The role of m6A modification binding proteins in human cancers
was poorly documented. YTHDF2 was found to promote tumor-
igenesis and cell proliferation in hepatocellular carcinoma
(HCC)84. It showed that YTHDF2 was closely associated with
malignance of HCC. Mechanistically, miR-145 was found to
directly target YTHDF2 mRNA in 30 UTR and down-regulate
YTHDF2 expression level in HepG2 cells, consequently increas-
ing the m6A modification levels of mRNAs and decreasing
proliferation of HepG2 cells84.

In all, the impact of m6A modification in human cancers was
mainly through three ways. Firstly, m6A modification regulates
stabilities of various oncogene mRNAs. In this scenario, methyla-
tion would promote the mature mRNA decay, and inhibit cancer
procession, which was evidenced in many studies. Therefore, the
m6A modification erasers and readers play oncogenic roles in
cancers and could be therapeutic targets accordingly. Secondly, the
m6A modification readers METTL3 was found to bind to the
transcriptional start site of some genes that are essential for cancer
cell surviving. Thus, inducing m6A modification by upregulating
METLL3 could increase mRNA transcripts to promote cancer
growth. Lastly, it was notable that m6A modification could
influence cancers by regulating immune system, providing clues
to the link between m6A modification and cancer immunotherapy.
Targeting such m6A modification could facilitate patient's own
immune system to fight against the progressive cancers85. Collec-
tively, these findings suggested that the m6A modification writers,
erasers and readers could play significant roles in regulation of
RNA metabolism, stem cell self-renewal, and metastasis in various
cancers, and it indicates that m6A modification could be targeted
for prevention and treatment of human cancers. Therefore, the key



Table 3 Crystal structure based m6A modification demethylase inhibitors.
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regulators of m6A modification could be theoretically served as the
pharmacological targets for anti-cancer drug development.
3. Targeting m6A modification regulators in human cancers

As we know, the m6A modification is involved in cancer initiation,
progression and prognosis. The key regulator genes of m6A
modification become crucial to regulating the downstream targets.
Targeting m6A modification regulators by small molecules has
been proposed as a potential treatment for human cancers. Here,
we focus on those small molecules, and discuss their potential
applications in cancer treatment.

3.1. Inhibitors of 2-oxoglutarate (2OG) and iron-dependent
oxygenases via suppressing m6A modification demethylation

2-Oxoglutarate and iron-dependent oxygenases (2OGX) are
widely distributed in human beings86, and their function relies
on Fe(II) as a co-factor, 2OG and molecular oxygen as co-
substrates to catalyze a broad range of biochemical reactions87.
ALKBH5 and FTO belong to 2OGX-dependent nucleic acid
oxygenase (NAOX) family that catalyzed demethylation of
N6-methyladenine in RNA88,89. The existing inhibitors of 2OGX
could be served as unspecific inhibitors of m6A modification
demethylations90, including 2OG competitor (such as N-oxalyl-
glycine and its cell-penetrating derivative dimethyl oxalylglycine,
succinate, fumarate, 2-hydroxyglutarate, etc.), metal chelators
(hydroxamic acids, flavonoids), divalent transition metal ions
and endogenous' inhibitors that regulate the activity of 2OGX
(succinate dehydrogenase, fumarate hydrataseand isocitrate dehy-
drogenase). We have summarized those inhibitors that were
examined in ALKB family (Table 1). Later on, based on FTO
and ALKBH5 domains, more and more 2OGX inhibitors have
been developed to inhibit the demethylations in m6A modification.
There are 3 main different 2OGX inhibitor types, and they are
2OG competitor, substrate competitor or substrate and 2OG
competitor90 (Fig. 3). In this scenario, Aik et al.91 screened a set
of 2OG analogues and related compounds using differential
scanning fluorometry- and liquid chromatography-based assays.
Sets of both cyclic and acyclic 2OG analogues had been identified
as FTO inhibitors, including the well-characterized 2OG oxyge-
nase inhibitors N-oxalylglycine and pyridine-2,4-dicarboxylate, as
well as hydroxyquinoline-, pyridyl-, and isoquinoline-based com-
pounds. Crystal structure analysis further showed that two
compounds (compound 1 and 2) were able to closely bind with
active site of FTO and show comparatively good inhibitory effects,
with the IC50 at 3.371.1 and 2.870.9 mmol/L respectively. In a
subsequent study, Zheng et al.92 had designed a new class of
compounds to mimic ascorbic acid and inhibit 2-oxoglutarate-
dependent hydroxylases. The compound 3 and 4 have been shown
to inhibit the 2-oxoglutarate dependent hydroxylase FTO with IC50

of 4.9 and 8.7 mmol/L, respectively. To assess their cellular effect
of FTO inhibition, the level of m6A modification in a cell-based
model was examined and quantified. For example, treatment with
compound 4 with a concentration of 25 mmol/L could result in a
9.3% increase in m6A modification in cells. Additionally, this
compound 4 showed anticonvulsant activity in vivo and modulated
various microRNAs92. By adopting dynamic combinatorial mass
spectrometry, Woon et al.93 had identified the N-oxalyl-L-cysteine
derivatives compound 5, 6 and 7 as potent inhibitors of AlkB. The
researchers used a capillary electrophoresis-based assay to measure
IC50 values of the compounds against AlkB94,95, and they showed
the IC50s of compounds 5, 6 and 7 were 0.5, 5.2 and 5.4 μmol/L,



Figure 4 Structure of m6A modification demethylase complexed with inhibitors. (A) Interaction between ALKBH5 and citrate. (B) Interaction
between FTO and citrate. (C) Interaction between FTO and rhein. (D) Interaction between FTO and MA. (E) Interaction between FTO and
compound 8. (F) Interactions between FTO and compound 9.
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respectively. Further, 2 physiologically important human 2OG
oxygenases PHD2 and PHF8 had been tested to be inhibited by
these 3 compounds and found that their IC50 were all 41 mmol/L
for both PHD232 and PHF896, representing significant selectivity
towards AlkB. IOX3 was a known inhibitor of hypoxia inducible
factor prolyl-hydroxylases (PHDs), and was proved to bind at the
active site of both FTO and PHDs97,98. IOX3 was able to occupy
both the 2OG and the nucleotide binding sites91. McMurray et
al.99 proved that the IC50 value of IOX3 for FTO was 2.8 μmol/L
and it could decrease the protein expression of FTO, PHDs and
other 2OG oxygenases in C2C12 mouse muscle myoblast cells
in vitro. This in vivo experiment suggested that IOX3 might fail to
alter FTO protein level of mice at the dose of 60 mg/kg, but it
could significantly reduce bone mineral density and content, and
alter adipose tissue distribution, which indicating IOX3 might
function via affecting the enzyme activity of FTO. Nonetheless,
these inhibitors (Table 2) were not selective and they could
suppress all the Fe (II)- and 2OG-dependent oxygenases. There-
fore, endogenous 2OG or substrate might compete with them and
weaken their inhibitory effects. More highly selective and potent
inhibitors of m6A modification demethylase were required
(Table 3).
3.2. Crystal structures based inhibitors for m6A modification
demethylase

Crystal structures of FTO100 and ALKBH5101 proteins have been
studied, which provide a basis for understanding FTO and
ALKBH5 substrate-specificity, and facilitate the rational design
of FTO and ALKBH5 inhibitors. Following this strategy,
structure-based FTO and ALKBH5 specific inhibitors had been
developed extensively. For instance, Xu et al.101 have presented
the crystal structures of the ALKBH5 catalytic domain. A citrate
molecule was observed in the active site of ALKBH5 instead of
2OG and Mn2+ (Fig. 4A and B). Most of the residues involved in
the citrate binding are involved in binding 2OG and Mn(II), that
participated in regulation of the enzyme activity. Studies have
showed that the IC50 of citrate for ALKBH5 was at 488 μmol/L,
which is comparable to that for human FTO (300 μmol/L). Rhein
was the first potent FTO m6A modification demethylase inhibitor,
which was neither a structural mimic of 2-oxoglutarate nor a
chelator of metal ion102. It was shown that Rhein reversibly bound
to FTO catalytic domain and competitively prevented the recogni-
tion of m6A modification substrates. The details of interaction
between FTO and Rhein were shown in Fig. 4C. The IC50 value of
Rhein against FTO was 21 μmol/L, and its off-target selectivity
analyses has proved that Rhein did not show inhibitory activity
against other 2OG-dependent hydroxylases such as prolyl-4-
hydroxylase, HDAC3 histone deacetylase and APOBEC3 DNA
deaminases, which belong to transition metal-dependent histone
and nucleic acid modifying enzymes. Additionally, Rhein was
found with low cytotoxicity and was capable of increasing the
modification level of m6A modification in mRNA in cells. In
another study, meclofenamic acid (MA) was identified as a potent
inhibitor of FTO, and belonged to a non-steroidal anti-inflamma-
tory drug103. In this study, MA was shown to selectively and
efficiently inhibit FTO demethylation in a dose dependent manner
by competition on m6A-containing substrate binding in HeLa
cells. It was notable that a β-hairpin motif, a part of the FTO
nucleotide recognition lid (NRL), provides hydrophobic interac-
tions between FTO and MA. However, ALKBH5 lacks such
region of the part of NRL and causes leakage when binding to
MA, making MA a selective inhibition of FTO over ALKBH5
(Fig. 4D). MA2 was the ester form of MA, which completely lost
its inhibitory activity in vitro. The ester modification could
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facilitate penetration of the inhibitors in cells and further be
hydrolyzed to yield active MA. Treatment with MA2 had led to
the elevated levels of m6A modification in mRNA in HeLa cells.
Previous study has shown that the substrate specificity of the AlkB
enzymes could partly arise from structural differences within their
nucleotide-binding sites104. Glu234FTO was likely a key residue
that determined the affinity and specificity of FTO for its
substrates. In this thread, Toh et al.104 had identified compound
8 (Fig. 4E) as a potent and subfamily-selective inhibitor of FTO
that could selectively interacted with Glu234FTO. Further cell-
based assays were shown that compound 9 was able to inhibit m6A
modification demethylase activity in cells (Fig. 4F).

Collectively, emerging studies have worked on m6A modifica-
tion in various diseases. Targeting m6A modification regulators
have become a hot spot in drug design and development. As FTO
was the first and most robust obesity-risk gene discovered in
genome-wide association studies105–107, its inhibitors are currently
the focus among other m6A modification regulators. Though many
kinds of inhibitors targeting m6A modification demethylases were
successfully identified, their pharmaceutical effects in vivo were
rarely verified yet. Therefore, discovery of potent and selective
inhibitors for m6A modification modulators is as important as
design of pharmacological experiments for those identified inhi-
bitors in clinical research.
4. Conclusions and perspectives

A large body of researches has confirmed that N6-methyladenosine
modification was involved broadly in multiple types of human
cancers. The m6A modification “writers” “erasers” and “readers”
are certainly set at the important position of many biological
pathways involved in cell metabolism, growth, proliferation and
stem cell self-renewal. The m6A modification methyltransferases
METTL3 and METTL14 are known to play diverse roles in
specific tumors by affecting pre- or post- transcription of onco-
genes, while the m6A modification demethylases and m6A
modification recognition proteins sustain tumorigenicity of various
cancers. Theoretically, these m6A modification regulators can be
recognized as the bona fide targets in diagnosis and drug discovery
of human cancers.

For the oncogenic roles of FTO and ALKBH5 being identified,
small molecule inhibitors are served as the candidates for anti-
cancer drug development. Up to now, FTO and ALKBH5
inhibitors are divided into two kinds of categories including
broadly 2-oxoglutarate (2OG) and ferrous iron depressors, such
as N-oxalylglycine and pyridine-2, 4-dicarboxylate, and structure-
based selective inhibitors like Rhein, MA and IOX3. All these
inhibitors had been proved to inhibit tumor growth through
depressing the m6A modification levels in cancer cells. Although
these inhibitors have not yet been verified in vivo and in clinical
trials, it provides clues to development of m6A-specific regulators
and paves the way for the treatment of human cancers, providing
novel pharmacological targets for anti-cancer drug development.
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