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AN INVESTIGATION OF MOLECULAR PATHWAYS TO AID IN THERAPEUTIC 

DEVELOPMENT FOR NEUROFIBROMATOSIS TYPE 2 

 

Neurofibromatosis type 2 (NF2) is an autosomal dominant cancer predisposition 

in which loss of heterozygosity at the NF2 gene locus leads to the development of tumors 

of neural crest derived origin, most commonly bilateral vestibular schwannomas. There 

are currently no FDA approved chemotherapeutic agents for treatment in patients with 

NF2. Development of therapeutic agents has been hampered by our incomplete 

knowledge of how Merlin, the protein product of the NF2 gene, functions as a tumor 

suppressor. In order develop a deeper understanding for how loss of Merlin leads to 

oncogenic transformation in Schwann cells we have developed a genetically engineered 

mouse model (GEMM) of Neurofibromatosis Type 2 in which functional expression of 

Merlin is lost in Schwann cell precursors. In parallel studies utilizing these mice, we have 

sought to understand the pathophysiology driving tumor formation in Merlin deficient 

Schwann cells. 

In Chapter 1, we explore the role of Merlin as a negative regulator of the Group A 

p21 activated kinases, PAK1 and PAK2. We demonstrate that PAK1, a previously well 

established oncogene in solid tumors and Merlin binding partner, is hyperactivated in 

Merlin deficient schwannomas. Through therapeutic interventions and genetic 

manipulations we demonstrate that inhibition of PAK1 was capable of reducing tumor 

formation and alleviating sensorineural hearing loss in our NF2 GEMM.  

In Chapter 2, we investigate the role of NF-kB inducing kinase (NIK) and NF-kB 

signaling in the formation and growth of Merlin deficient Schwann cell tumors. Prior 
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work in our lab as well as by others demonstrated elevated NF-kB signaling in Merlin 

deficient Schwann cell tumors. We observed accumulation of a catalytically active 

fragment of NF-kB inducing kinase and present data that accumulation of a 55Kd 

constitutively active fragment of NIK is sufficient trigger wild type Schwann cells to 

form tumors. In vivo however, Schwann cell intrinsic expression of NIK is not required 

for tumor formation or growth. 

 

D. Wade Clapp, M.D., Chair 
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THE ROLE OF GROUP A p21 ACTIVATED KINASES IN NEUROFIBROMATOSIS 

TYPE 2 

 

Introduction 

 

Neurofibromatosis Type 2 

Neurofibromatosis Type 2 (NF2) is an autosomal dominant cancer predisposition 

syndrome which has an incidence of 1/25,000-1/40,000 depending on the population 

studied [1,2]. Patients with NF2 are born with a single functional copy of the NF2 gene. 

Subsequent sporadic loss of heterozygosity in these patients leads to the development of 

tumors of neural crest derived origin, most commonly bilateral vestibular schwannomas 

which occur in 90-95% if NF2 patients [1]. These lesions are named as such because they 

are Schwann cell predominant tumors which grow out of the eighth cranial nerve 

(CNVIII), also known as the vestibular cochlear nerve. Although generally benign in 

nature, these tumors are often highly morbid due to their proximity to the CNS and their 

propensity to grow and compress vital structures. Along with the vestibular 

schwannomas, 18-58% of patients develop intracranial meningiomas, 29-90% develop 

spinal schwannomas, 32-67% develop dermal schwannomas, and 2.5-6% develop 

ependymomas depending on the particular patient population studied [3-6]. In addition to 

the morbidities associated with the development of solid tumors, the majority of NF2 

patients suffer from decreased visual acuity with up to 80% developing cataracts. The 

most common presenting symptom for NF2 patients is unilateral sensorineural hearing 

loss [7]. 
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NF2 was first described in 1822 by the J.H. Wishart, a surgeon in Scotland [8]. 

Even though NF2 is a genetic disease, diagnosis is not based upon patient genotype but 

instead relies upon the Manchester Criteria which defines NF2 as either the presence of 

bilateral vestibular or a family history of NF2 along with a unilateral vestibular 

schwannoma or any two of the following: meningioma, glioma, neurofibroma, 

schwannoma, or posterior subcapsular lenticular opacities [7]. Biallelic disruption of the 

NF2 gene is not limited to tumors in familial NF2 patients. Loss of heterozygosity of NF2 

has been observed in 56% of sporadic vestibular schwannomas (sVS) [9] and 18% of 

sporadic spinal schwannomas [10]. With more than 3300 vestibular schwannomas 

diagnosed per year in the USA, there is a significant demand for treatment of NF2 

deficient VS beyond patients diagnosed with NF2 [11]. There are currently no approved 

chemotherapeutics approved for the treatment of NF2 or NF2 deficient sporadic tumors. 

Tumors are treated either via radioablation or surgical resection. Radioablative therapy 

has yielded mixed success in patients likely because there is no single accepted standard 

of care. Multiple different approaches including fractional conventional radiotherapy, 

fractionated stereotactic radiotherapy, stereotactic radiosurgery, and proton therapy have 

been used by different groups at different institutions. Observational studies for each 

approach have demonstrated significant variability in achieving local tumor control and 

hearing preservation without triggering significant facial or trigeminal neuropathy [12]. 

Surgical resection of these tumors is possible in certain cases but can be limited by their 

proximity to the central nervous system and their propensity to reoccur and grow into 

vital structures. 
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Molecular Biology of NF2/Merlin 

NF2 is a tumor suppressor gene located on chromosome 22q12 and was named as 

such when mutations in that locus were discovered to be causative of NF2 [13-15]. NF2 

is a member of the Band FERM (four point 1 protein, ezrin, radixin, moesin) gene family 

and encodes the protein Merlin (moesin-ezrin-radixin like protein). Merlin exists in two 

isoforms, both of which are 595 amino acids and encoded by 17 exons. Isoform I 

predominates and includes exons 1-15, and 17 while isoform II in encoded by exons 1-16 

[16]. The two isoforms are functionally redundant in their tumor suppressive functions 

[17-18]. Merlin consists of an N-terminal FERM domain, an a helical coiled coil domain, 

and a C-terminal hydrophilic tail. Unlike other ERM proteins, the C-terminal domain in 

Merlin lacks an actin binding site and instead Merlin interacts with actin via N-terminal 

residues 178-367 [19]. Like other ERM proteins, Merlin acts as a protein scaffold, linking 

various cell surface receptors and intracellular kinases to the actin cytoskeleton, 

controlling their cellular localization and function [20]. The cellular localization and 

activation state of Merlin is controlled via post translational modifications, primarily via 

phosphorylation. Serine 518 has been the most studied phosphorylation site on Merlin 

where unphosporylated Merlin appears to adopt a conformational structure necessary for 

its tumor suppressive function while phosphorylation at S518 blocks Merlin tumor 

suppressive activity [21,22]. 

 One of the first known functions of Merlin was as a mediator of contact inhibition 

via directly binding to and suppressing the activity of CD44 and PAK1 [23,24]. Merlin 

co-localizes with the cytoplasmic tail of CD44 at the cell membrane and inhibits CD44 

signaling by preventing activation of Rac1 by CD44 [24]. The interaction between Merlin 
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and CD44 controlling cell contact inhibition can be dynamically controlled via binding to 

the Group A p21 activated kinases, PAK1. Under normal proliferative conditions, PAK1 

interaction with Rac1/Cdc42 leads to PAK1 autophosphorylation, activation, and 

downstream pro-proliferative signaling [25]. Unphosphorylated Merlin can bind to PAK1 

at a site which abrogates the PAK1-Rac1/Cdc42 interactions, preventing PAK1 

activation. However, activated PAK1 can in turn phosphorylate Merlin at S518, 

preventing Merlin from interacting with CD44 thereby shutting off Merlin’s tumor 

suppressive function [26]. Thus under conditions of contact inhibition, unphosphorylated 

Merlin acts to suppress the Rac1/Cdc42/PAK axis but in a growth permissive state, 

PAK1 can phosphorylate and inactive Merlin, allowing for activation of the 

Rac1/Cdc42/PAK signaling axis. 

Loss of Merlin can cause alterations in cell signaling beyond the 

Rac1/Cdc42/PAK axis. In immunocomplexing experiments, Merlin has been shown to 

pull down in association with variety of cell surface receptors and internal signaling 

modulators known to play important roles in other cancers (Figure 1). Because 

expression of many of these receptors and signaling molecules are cell type and context 

specific, the effects of loss of Merlin may also be cell type and context specific 

depending on the particular receptors on the cell and ligands in the environment. Upon 

loss of Merlin, dysregulation and hyperactivation of the EGFR superfamily, Wnt/beta-

catenin, hippo, mTOR, NFkB, FAK/Src, and PI3K signaling pathways have all been 

observed in various different cell types upon loss of Merlin [27-32]. Secondary loss of 

Merlin connotes a poor prognosis in a variety of solid tumors including breast, colorectal, 
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and prostate cancer thus there is value in developing a comprehensive knowledge of how 

Merlin functions in a myriad of different cell types and environments [20].  

In the context of NF2, patients are born with germline halpo-insufficiency at the 

Nf2 locus and experience global, sporadic loss of heterozygosity across all cell lineages. 

Yet, the vast majority of tumors in these patients originate from Schwann cells or neural 

crest derived precursors and occur in predictable, anatomically well defined locations. 

Therefore, Merlin likely plays a more pivotal role as a tumor suppressor in certain 

Schwann cell populations or Schwann cell procurers in particular anatomical locations 

than it does globally in most other cell types. The overarching goal of this work is to 

advance translational research that will lead to improved therapeutics for NF2 patients 

and individuals with sporadic NF2 deficient schwannomas and so the projects presented 

hereafter will focus on Schwann cells and the specific subset of pathways altered in after 

cell intrinsic loss of Merlin. 
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Figure 1. Putative Merlin Binding Partners. 
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Molecular Biology of the Group A p21 Activated Kinases 

The group A p21 activated kinases (PAKs), also known as group I p21 activated 

kinases, consists of PAK1, PAK2, and PAK3. The PAKs are serine/threonine effector 

kinases of the Rac/Cdc42 GTPases [33,34]. PAK1 is 545 amino acids in length, PAK2 is 

524 amino acids in length, and PAK3 is 544 amino acids in length. The three proteins 

share a similar structure with a N-terminal p21 binding/autoinhibitory domain and a C-

terminal kinase domain [35]. In vivo, PAK1 forms homodimers in which the N-terminal 

autoinhibitory domains of two PAK1 molecules line up in trans and prevent auto 

phosphorylation and activation [36]. When activated by Rac1/Cdc42, the PAK1 

monomers disassociate and autophosphorylation of threonine 423 and serine 144 occurs, 

leading to activation of downstream signaling [37]. PAK1 is broadly expressed and is 

detectable in most human tissues. PAK2 expression is more limited and most highly 

expressed in immune tissues while PAK3 expression is largely limited to the central 

nervous system, primary in the Purkinje cells in the cerebellum [38]. 

Of the group A PAKs, PAK1 is the best studied because of its prominent role as 

an oncogene in solid tumors. Pak1 is commonly amplified in a variety of malignancies 

including brain, breast, lung, liver, kidney, bladder, and ovarian cancers [39]. In its role 

as a potent oncoprotein, PAK1 has been implicated as a gatekeeper kinase which can 

activate a variety of cellular pathways regulating cell-proliferation, evasion of apoptosis, 

and DNA damage repair [39-42].  Among its various substrates, PAK1 has been shown to 

phosphorylate: MEK1 at S298 and Raf-1 at S338 and S339 to activate the Mek/Raf/Erk 

pathway, ILK at T173 and S246 to activate Akt signaling, Plk1 at S49 to drive the G2/M 

transition, and Snail1/2 at S246 to activate Wnt/b-catenin signaling [43-46]. Pak2 has 
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also more recently been recognized as an oncogene. PAK2 is highly expressed in more 

than half of lymphoma, colorectal, and ovarian cancers surveyed in the human protein 

atlas. High levels of Pak2 expression were found to be a significant, clinically 

unfavorable prognostic marker in both pancreatic and prostate cancer [38]. Because 

Merlin has been shown to directly interact with PAK1 and PAK2, PAK1 and PAK2 are 

expressed in Schwann cells, and Merlin functions as a negative regulator of PAK1, we 

reasoned that tumor formation in Merlin deficient Schwann cells may be dependent on 

the loss of inhibition and subsequent constitutive activation of the Group A PAKs 1 or 2 

[26, 47].  

 

Schwannoma Biology 

The majority of solid tumors which arise in NF2 patients appear to originate from 

precursor lesions consisting of disorganized overgrowths of Schwann cells often referred 

to as Schwann cell hyperplasia. Schwann cells are a glial, neural crest derived cell type. 

In normal, healthy adults, there are two types of mature Schwann cells. One variant of 

Schwann cells produces myelin and is responsible for wrapping around exons in the 

peripheral nervous system to aid in Saltatory conduction. They second type does not 

produce myelin and wraps unmyelinated axons in the peripheral nervous system into 

Remak bundles [48]. Mature Schwann cells do not replicate in their terminally 

differentiated state. When proliferation is required, as is the case after nerve injury, both 

mature Schwann cell types dedifferentiate into a repair or Bungner type Schwann cell. 

These repair Schwann cells appear to revert to a more primitive Schwann cell state 

wherein they lose some markers of terminal differentiation and regain their proliferative 
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potential and aid in axonal growth before re-differentiating into either mature myelinating 

or non myelinating Schwann cells once the nerve damage is repaired [49].   

Multiple lines of evidence support the hypothesis that Schwann cell tumors 

develop from either repair type Schwann cells or Schwann cell precursors and not 

directly from mature Schwann cells. First, fully differentiated, mature Schwann cells 

have minimal if any proliferative potential. Tumors derived from cells with very limited 

or zero proliferative capacity such as neurons or cardiomyocytes are incredibly rare. 

Second, in immunohistochemistry studies in primary human vestibular nerve 

schwannomas as well as in our genetically engineered mouse model (GEMM), tumor 

forming Schwann cells display a significant reduction in markers of terminal 

differentiation cells such as myelin basic protein, protein zero glycoprotein, and S100. 

Additionally we have observed increased levels of stem cell transcription factors Krox 20 

and Oct6 in these tumors. So at least by the time there is histologically significant 

schwannoma formation, the tumorigenic Schwann cells no longer exist in a terminally 

differentiated state [50]. Third, when Marco Giovannini generated a mouse in which Nf2 

was deleted in mature cells using the mature Schwann cell specific promoter P0, only a 

small percentage of mice developed Schwann cell tumors and those tumors did not form 

until very late in life [51]. However when the nerves of those same mice are damaged, 

they exhibit an aberrant repair process with excessive Schwann cell proliferation and 

failure to re-myelinate [52]. These data argue that loss of Merlin was not in itself 

sufficient to drive tumor formation in the mature Schwann cells. But upon a second hit, in 

this case nerve injury triggering dedifferentiation into repair Schwann cells, Merlin 

deficiency seems to drive increased and disorganized Schwann cell proliferation and 
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macrophage infiltration. This disrupted tissue architecture bears some similarity to the 

Schwann cell hyperplasia we observe in our NF2 GEMM. We know that in certain 

anatomical locations this hyperplasia does eventually progress into frank Schwannoma. 

Finally, in our GEMM of NF2, Nf2 expression is lost in all Schwann cell precursors. 

These mice develop frank schwannoma with 100% penetrance by 8 months of age. 

Importantly, the Schwann cell tumors develop in very predictable and well defined 

anatomical locations. The overwhelming majority of Schwann cells never form tumors in 

spite of being Merlin deficient. This is consistent with NF2 patients who, despite often 

being globally NF2 haploinsufficent, form Schwann cell tumors in predicable anatomical 

locations. Complete loss of Merlin in these patients is random and sporadic but tumor 

type and location is not. Loss of heterozygosity must not in itself be sufficient trigger 

oncogenic transformation in every mature Schwann cell. All of these data support the 

hypothesis that NF2 deficient schwannomas likely arise either from some yet to be 

defined, specific, susceptible sub population of Schwann cells or require a very specific 

microenvironment for growth. This tumor permissive context appears to be anatomically 

restricted. Identifying and modeling this specific population or cellular context would 

represent a major step forward in translational research for NF2. 

 

NF2 Schwann Cell Specific in vitro and in vivo Models 

One of the first major cell lines developed for in vitro modeling of NF2 was HEI-

193. This cell line was generated by immortalizing with HPV E6 and E7, schwannoma 

cells from a 56 year old NF2 patient [53]. This cell line contains a G to A point mutation 

in intron 14 at the intron 14/exon 15 splice site. The mutation results in the skipping of 
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exon 15 and translation of a Merlin splice variant that is strongly hypomorphic compared 

to the two normal Merlin isoforms [54]. HEI-193 cells have provided significant insight 

into schwannoma biology. But because these cells were transformed with HPV E6 which 

inhibits p53 and HPV E7 which targets pRb, this line has in effect lost two major tumor 

suppressors which we have not observed to be lost in NF2 patients. Dual loss of p53/pRB 

can cause genomic instability and phenotypic drift in cell lines over time. In order to 

increase research reproducibility and develop reagents for biochemical assays which 

more accurately mimic the genetics observed in the formation of Merlin deficient 

schwannomas, multiple labs have now developed their own murine Merlin deficient 

Schwann cell lines.  

The laboratories of Drs. Macro Giovannini, Cristina Fernandez-Valle, Wade 

Clapp, and Helen Morrison have all independently generated murine Merlin deficient 

Schwann cell lines for use in preclinical therapeutics. The Giovannini, Fernandez-Valle, 

and Morrison laboratories created their respective cell lines via the same general strategy 

whereby they isolated mature Schwann cells from the sciatic nerve of either Nf2ko3/flox2 

mice in the case of the Giovannini lab or Nf2flox2/flox2  mice in the case of the Fernandez-

Valle and Morrison labs and then induced biallelic loss of Nf2 via adenoviral transduction 

with Cre-recombinase. The resultant cells were spontaneously transformed via serial 

passage. The cell line from the Clapp lab was generated via serial passage of 

schwannoma cells which were isolated from a spinal schwannoma that occurred in the 

dorsal root ganglia of one of our Nf2flox2/flox2;Periostin-Cre animals. We believe the 

signaling within these cell lines, known as SC-4, MS01, MS02, and MS03 from the 

Giovannini, Fernandez-Valle, Clapp, and Morrison labs respectively, accurately reflect 
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the signaling of Merlin deficient Schwann cell tumors in NF2. In the Clapp lab we 

primarily use the MS02 cell line we generated because they were transformed in vivo 

without the need for adenoviral transduction. The SC-4 cells were generated using mice 

of a different background than the MS01-MS03 cells so for the purposes of reducing 

variability, the NF2 Synodos consortium chose to use the MS01-MS03 cell lines for an -

omics level approach to advance pre-clinical therapeutics. A list of all the cell lines 

utilized in Chapter 1 and Chapter 2 can be found in the Materials and Methods section 

and more complete description of all the cells available through Synodos and how they 

were generated can be found in the primary publication describing the goals of the 

consortium [55]. 

The generation of the four cell lines described above represented a step forward in 

the field, allowing for improved 2D culture models for basic and translational 

schwannoma research. There are however limitations in using 2D monoculture to model 

NF2. Cancer cells often behave differently when grown in a homogenous monolayer than 

they do within the 3D tumor architecture and polycellular microenvironment in vivo [56]. 

We also have an incomplete understanding of how well these cell lines mimic the actual 

cell of origins in schwannomas. Therefore in order to fully understand the disease 

etiology and screen compounds for therapeutic potential in NF2, there was a great need 

for an in vivo model which could faithfully and reliably recapitulate the most important 

pathologies of NF2. 

Attempts to generate an NF2 GEMM began with the creation of Nf2-/- mice by 

Andrea McClatchey and Tyler Jacks [57]. These mice die between E6.6-E7 due to a 

failure to progress into gastrulation. Follow up studies with Nf2+/- mice demonstrated that 
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germline heterozygosity of Nf2 lead to an increased susceptibility for the development of 

malignant tumors late in life but that the malignancies observed in these mice were not 

consistent with the tumors that develop in NF2 patients [58]. Marco Giovannini provided 

a significant step forward with the creation of the Nf2flox2/flox2 mice [51]. Mutations in 

exon 2 have been observed to cause disease both in germline NF2 patients and in 

sporadic schwannomas and meningiomas [51]. Mice were generated in which lox p sites 

were inserted flanking exon 2 of Nf2 resulting in excision of exon 2 upon expression of 

Cre (causes recombination) recombinase. Utilizing the P0 promoter to drive expression 

of Cre recombinase and subsequent deletion in Nf2 in mature, myelinating Schwann cells, 

roughly ¼ of the resultant mice developed schwannoma after 10 months of age [51, 59]. 

Due to the relatively low tumor penetrance at a relatively advanced age, the Clapp lab 

wondered if a different driver of Cre recombinase could eliminate functional Merlin 

expression in a broader array of Schwann cell subtypes and push the NF2 pathologies to 

occur with greater penetrance at an earlier age. To test this hypothesis Nf2flox2/flox2 mice 

were crossed with mice expressing Cre recombinase driven by a 3.9kb fragment of the -

periostin promoter (Postn-Cre). This Postn-Cre mouse was developed by Simon Conway, 

who has demonstrated that the periostin gene is robustly activated in Schwann cell 

precursors beginning at day E10 [60]. The resultant Nf2flox/flox; Postn-Cre (Nf2-cKO) mice 

develop a constellation of symptoms including cranial nerve, spinal, and dermal 

schwannomas along with sensorineural hearing loss and vestibular disturbances with 

100% penetrance by 8 months of age [61]. These Nf2-cKO mice faithfully develop 

schwannomas which are histologically comparable and in anatomically similar locations 

to the tumors in NF2 patients.  
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The Nf2-cKO mice have become the preeminent model for genetically and 

biochemically evaluating drug targets as well as for the preclinical validation of potential 

therapeutics. Prior drug trials in NF2 have been marred by toxicity and poor patient 

response. Both prospective and retrospective therapeutic trials in these Nf2-cKO mice 

have accurately mirrored patient responses to compounds that were moved forward into 

clinical trials. We therefore have begun to rely on these mice to eliminate toxic or 

ineffective compounds. This allows us to provide NF2 patients with the assurance that 

when compounds move from preclinical trials into a Phase I or Phase II trials, evidence 

suggests these compounds will be well tolerated and effective.  

Herein, results from two studies which rely on genetic manipulation in our NF2 

GEMM are presented. These experiments were undertaken to advance our understanding 

of the signaling pathways which control oncogenic transformation and growth in Merlin 

deficient schwannomas. The outcomes of these studies will help to advance new drug 

targets and therapies for the treatment of NF2 and sporadic Merlin deficient 

schwannomas.  
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Materials and Methods 

 

Animal Study Approval 

 All animal studies were carried out under the Institutional Animal Care and Use 

Committee (IACUC) of Indiana University School of Medicine approved protocol 

#11406 in accordance with the U.S. Department of Agriculture’s Animal Welfare Act 

and the Guide for the Care and Use of Laboratory Animals.  

 

Mice and Genotyping 

All mice were housed in an AAALAC accredited facility at the Indiana University 

School of Medicine. Mice were fed a Teklad Lab Animal Diet and maintained on a 12:12 

light/dark photoperiod at 22-24º Celsius.  The following primers and thermocycler 

programs were utilized for PCR based genotyping: 

Nf2:  

Forward: 5’- CTTCCCAGACAAGCAGGGTTC-3’ 

Reverse: 5’-GAAGGCAGCTTCCTTAAGTC-3’    

Program: 94º C for 3 minutes, 30x (94º C for 30 seconds, 55º C for 30 seconds, 72 º C for 

1 minute), 72º C for 2 minutes, hold at 4º C 

Expected PCR fragment: FLOX: 442bp WT- 305bp 

Periostin-Cre 

Forward: 5’-CGA-CCA-CTA-CCA-GCA-GAA-CA-3’ 

Reverse: 5’-ATG-TTT-AGC-TGG-CCC-AAA-TG-3’ 
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Program: 94º C for 5 minutes, 29x (94º C for 30 seconds, 54º C for 30 seconds, 72º C for 

30 seconds), 72º C for 10 minutes, hold at 4º C 

Expected PCR fragment: 550bp 

Pak1 WT 

Forward: 5’-GCC-CTT-CAC-AGG-AGC-TTA-ATG-A-3’ 

Reverse: 5’-GAA-AGG-ACT-GAA-TCT-AAT-AGC-A-3’ 

Program: 94º C for 2 minutes, 35x (95º C for 20 seconds, 52º C for 20 seconds, 71º C for 

2 minutes), 71º C for 7 minutes, hold at 4º C 

Expected PCR fragment: 240 bp 

Pak1 KO 

Forward: 5’-GCC-CTT-CAC-AGG-AGC-TTA-ATG-A-3’ 

Reverse: 5’- CAT-TTG-TCA-CGT-CCT-GCA-CGA-3’ 

Program: 94º C for 2 minutes, 35x (95º C for 20 seconds, 58º C for 20 seconds, 72º C for 

2 minutes), 71º C for 7 minutes, hold at 4º C 

Expected PCR fragment: 360 bp 

Pak2 

Forward: 5’-ATC-TTC-CCA-GGC-TCC-TGA-CT-3’ 

Reverse: 5’-TGA-AGC-TGC-ATC-AAT-CTA-TTC-TG-3’ 

Program: 95º C for 5 minutes, 30x (95º C for 30 seconds, 57º C for 30 seconds, 72º C for 

30 seconds), 72º C for 5 minutes, hold at 4º C 

Expected PCR fragment: Flox 391 bp, WT 306 bp 
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Statistical methods 

Statistical analyses were performed using GraphPad Prism 7.02 software. As 

described in the text, ANOVA or Student’s T-test were used to test for differences 

between samples and the Gehan-Breslow-Wilcoxon test was used to assess for 

differences in the Kaplan-Meier curve. Specific tests and significance levels can be found 

in the figures and figure legends. 

 

Preparation of mouse nerve tissues for protein studies 

Mice were sacrificed and freshly dissected nerve tissue was placed in PBS on ice. 

Tissues were washed in cold PBS to remove any residual blood and then placed in 1.5mL 

Eppendorf tubes containing cold xTractor Lysis buffer (Clontech) with cOmplete 

Protease inhibitor cocktail (Roche) and PhosSTOP EASYpack Phosphatase inhibitor 

cocktail (Roche). Tissues were minced with microdissection scissors and left to incubate 

on ice for 30 minutes. Tissues were then sonicated for 10 seconds and centrifuged at 

16,100 RCF at 4° C for 15 minutes. The supernatant was collected and stored at -80° C 

for future use.  

 

Histology and Immunohistochemistry 

Freshly excised tissues were placed in 10% formalin, embedded in paraffin and 

sectioned according to lab protocol. The slides were deparaffinized in Xylenes and 

rehydrated through a series of graded alcohols to water. Antigen retrieval was performed 

in 10mM sodium citrate buffer, pH 6, in a pressure cooker for 3 minutes. Endogenous 

peroxides were quenched in 0.3% hydrogen peroxide (10 min). Slides were blocked in 
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5% goat serum (1hr), incubated in primary antibody diluted to the appropriate 

concentration per manufacturers protocol (overnight at 4°C), and then in the appropriate 

biotinylated secondary antibody diluted 1:800 (1 hr). Slides were then incubated in 

VECTASTAIN ABC HRP (PK-4000) (30 min), and then Vector DAB peroxidase 

substrate (sk-4100) was applied and slides were observed for color development. Slides 

were counterstained in Hematoxylin QS (Vector H3404), blued, dehydrated, and cover 

slipped. All wash steps between different reagents applications were done with TBST for 

5 min, 3 times. 

 

Western Blot Analysis 

Protein concentrations for immunoblots were determined by the use of the Pierce 

BCA Protein Assay Kit (ThermoFisher). Equal aliquots of 30-40 µg protein were loaded 

and run on NuPAGE 4-12% Bis-Tris Gels (Invitrogen) and then transferred to a PDVF 

membranes overnight at 120mA. Membranes were blocked for 5 hours at 4° Celsius in 

5% milk and then incubated with primary antibody overnight. Primary antibodies from 

Cell Signaling were utilized at a concentration of 1:1000. Antibodies from other 

manufactures were utilized at the manufacturer’s suggested concentration. After washing 

for 15 minutes in PBS-Tween, membranes were incubated with horseradish peroxidase 

linked anti-mouse IgG or anti-rabbit IgG (GE Healthcare, 1:5000). Membranes were then 

washed for 1 hour in PBS-Tween and visualized using SuperSignal Chemiluminescence 

substrate (ThermoFisher) and CL-XPosure Film (Thermo). 
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Cell Lines 

 All cell lines utilized were validated for Merlin status via Western Blot and 

screened upon arrival and every three months thereafter to insure they were mycoplasma 

free utilizing the MycoAlert Mycoplasma Detection Kit (Lonza). 

Cell Line Lab 

Generated 

Species Genotype Nf2 

Expression 

MS02 Wade 

Clapp 

Mouse Nf2 exon 2-/- Nf2 Null 

MS02+Nf2 Wade 

Clapp 

Mouse Nf2 exon 2-/- reconstituted 

with Nf2 via lentiviral 

transduced 

Nf2 

Competent 

MS12 Hellen 

Morrison 

Mouse Nf2 wild type Nf2 

Competent 

HEI-193 David Lim Human G to A point mutation at intron 

14/Exon 15 border  

Nf2 

Hypomorph 

 

Cell culture and Proliferation 

MS02 or HEI-193 cells were plated at 5,000 cells/well in a 24 well plate 

containing 500ul of Dulbecco’s Modified Eagle Medium (DMEM, Gibco) supplemented 

with 10% Fetal Bovine Serum (Sigma) and 2mM L-Glutamine (Lonza) along with the 

concentrations of FRAX-1036 as indicated in the figure. Cells were placed in 

ThermoForma Series II cell culture incubator with a 5% CO2 atmosphere for 72 hours 
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and proliferation was quantified via the CellTiter-Glo assay (Promega) following the 

manufacturers protocol. 

 

Frax-1036 Treatment  

Mice at 8 months of age were treated with 30 mg/kg Frax-1036 in 20% (2-

hydroxypropyl)-β-cyclodextrin in 50mM citrate buffer pH 3.0 daily for 12 weeks via oral 

gavage. 

 

ABR Analysis 

Auditory brainstem responses were measured at prior to enrollment, at the study 

midpoint, and just prior to sacrifice. Mice were anesthetized with Ketamine/Xylezene 

(100mg/kg ketamine and 10mg/kg xylazine IP) and placed into a custom apparatus with 

Faraday cage shielding and sound-dampening acoustic foam to attenuate electrical and 

sound interference. Click stimuli were presented at a rate of 21/second with stimuli 

presented in decreasing 10dB increments from 90-30dB via a closed-field speaker. 

Subdermal electrodes connected to a RA4PA Medusa Preamplifier and RZ6 auditory 

processor (Tucker Davis Technologies) performed the digital-audio conversions which 

were analyzed in the BioSigRZ application. Biological signals were band pass filtered 

above 3Hz and below 3,000 Hz. For mice in which no response was identified, a 90dB 

threshold was recorded.  
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Dorsal Root Ganglia Quantification 

At the conclusion of the 12 week drug treatment, mice were sacrificed and then 

fixed for 48 hours in 10% formalin. Carcasses were then transferred to 5% formalin/5% 

formic acid for decalcification for 48 hours. Whole nerve trees were then dissected out 

under a stereoscopic microscope. Four anatomically matched dorsal root ganglion were 

measured using the approximate volume of a spheroid, 0.52x (width)2 x length. 

 

High Performance Liquid Chromatography and Mass Spectrometry 

High performance liquid chromatography (HPLC) and Mass Spectrometry (MS) 

were performed by the IU Simon Cancer Center’s Clinical Pharmacology Analytical 

Core. Samples were acidified and extracted in hexane:ethyl acetate (50:50, v/v). After 

solvent evaporation, mobile phase (acetonitrile:5mM ammonium acetate; 70:30, v/v) was 

mixed with residual sample and injected into an Agilent 1290 HPLC system with an 

Eskigent Autosampler. Mass spectrometry was performed using an ABSciex 5500 Q-

TRAP. 

 

NVS-PAK1-1 Treatment 

For the initial PK data (Figure 13) mice were treated with 100 mg/kg 1-ABT 

followed two hours later by 100 mg/kg Frax-1036 in 60% PEG400/ 40% water via oral 

gavage. For the initial PD data (Figure 14) mice were treated in a 6 week dose escalation 

where they received 100mg/kg 1-ABT followed two hours later by 10 mg/kg Frax-1036 

in 60% PEG400/ 40% water for the first week with an increase of 10mg/kg/week 

resulting in a final concentration of 100mg/kg 1-ABT followed two hours later by 60 
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mg/kg Frax-1036 in 60% PEG400/ 40% water  via oral gavage prior to sacrifice. For the 

12 week drug treatment and subsequent PK/PD data (Figures 15-18) mice were treated 

starting at 3 months of age with 100mg/kg 1-ABT followed two hours later by 30 mg/kg 

Frax-1036 in 60% PEG400/ 40% water via oral gavage. 

 

Primary Antibody List for Western Blots 

cMYC (Cell Signaling 5605), GAPDH (Cell Signaling #5174), PAK1 (Cell 

Signaling #2602), PAK2 (Cell Signaling #2608), PAK1/2 (ThermoFisher PA5-38693), 

PAK3 (Cell Signaling #2609), pPAK1/2 (S144/141) (Cell Signaling #2606), pPAK1/2 

(T423) (Santa Cruz #12925-R), pPAK1/2 (T423) (ThermoFisher PA-38693), pAKT 473 

(Cell Signaling #9271), pERK1/2 (Cell Signaling #9102), pGSK3b (Cell Signaling 

#9323), Merlin (Cell Signaling #12888), MEK (Cell Signaling #4694), AKT (Cell 

Signaling #4685), pMEK1/2 217/221 (Cell Signaling #9154), pMEK 298 (Cell Signaling 

#98195), pERK1/2 (Cell Signaling #4370), pGSK3B S9 (Cell Signaling #9323), pp38 

(Cell Signaling #4511), pJNK (Cell Signaling #9251), p70S6K 389 (Cell Signaling 

#9234), pMTOR 2448 (Cell Signaling #5536). 

 

Primary Antibody List for IHC 

pPAK1/2 (T423) (Santa Cruz #12925-R), Ki67 (Abcam ab16667) 
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Results 

 

PAK1/2 are Hyperactivated in Merlin Deficient Murine Schwannoma 

Given the prior work undertaken by Drs. Joe Kissil and Tyler Jacks demonstrating 

Merlin’s function as a negative regulator of PAK1/2, we were interested to investigate 

whether PAK1/2 were hyperactivated in the Merlin deficient Schwann cell tumors in our 

Nf2-cKO mice [26,47]. Using immunofluorescence based deconvolution microscopy to 

probe for activated PAK1/2 with a pPAK1(Thr423)/pPAK2 (Thr402) antibody, we found 

significantly increased activated PAK1/2 in the trigeminal nerves of 10 month old Nf2-

cKO mice as compared with Cre negative controls (Figure 2). Confirming this finding, 

immunoblotting demonstrated significantly increased activated PAK1/2 in tissues lysates 

from 10 month old Nf2-cKO along with increased levels of cMYC, pAKT, and pGSK3b,  

proteins all known to be downstream of PAK1 (Figure 3). These data confirmed 

constitutive activation of PAK1/2 in Merlin deficient schwannomas in our Nf2-cKO 

mice. Because of the potent role PAK1 has been shown to play as an oncogene in solid 

tumors we hypothesized that the constitutive activation of PAK1 could be critical for the 

growth of schwannomas in our mice.  
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Figure 2. PAK1/2 are hyperactivated in murine Merlin deficient schwannoma in 

vivo. Hematoxylin and Eosin (H&E) staining of trigeminal nerves from (A) Cre negative 

and (B) Cre positive 10 month old Nf2-cKO animals demonstrating schwannoma 

formation in Cre positive animals. (C) Immunofluorescence of DAPI (Blue) and 

pPAK1/2 (Red) of Cre negative and (D) Cre positive 10 month old Nf2-cKO animals 

demonstrating increased pPAK1/2 in the Cre positive Nf2-cKO animals. Original 

magnification 60x. 
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Figure 3. PAK1/2 signaling is hyperactivated in murine Merlin deficient 

schwannoma in vivo. (A) Western blot of trigeminal nerve lysates from 10 month old 

mice demonstrating phosphorylation of PAK1/2 (S423) with hyperactive signaling in 

tumor bearing mice. (B) Western blot of trigeminal nerve lysates from 10-12 month old 

mice demonstrating phosphorylation of PAK1/2 (S144/141). 
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PAK1/2 Competitive Small Molecule Inhibitor FRAX-1036 Reduces PAK1/2 

Activation in Merlin Deficient Schwann Cells in vitro 

To test the hypothesis that the activation of PAK1/2 was responsible for the 

growth of Merlin deficient schwannoma, we acquired the PAK1/2 potent and selective 

small molecule inhibitor FRAX-1036 [62]. FRAX-1036 has a published Ki of 23.3nM 

against PAK1 and 72.4nM against PAK2. Incubation for 24 hours with sub-micromolar 

concentrations of FRAX-1036 significantly reduced the basal PAK1 activation in our Nf2 

deficient MS02 cell line and human NF2 patient derived HEI-193 cell line. A reduction 

in pERK1/2 was also observed in treated cells suggesting a reduction in pro-proliferative 

signaling (Figure 4). Furthermore, in a 72 hour CellTiter-Glo® assay which measures 

[ATP] as a surrogate for cell number, FRAX-1036 significantly reduced the proliferation 

of MS02 cells with an IC50 of 162nM and HEI-193 cells with an IC50 of 1.6µM (Figure 

5). These data demonstrate a central role for PAK1/2 activation in the proliferation of 

Merlin deficient schwannoma cells and support a possible therapeutic potential for 

targeting PAK1/2 as a mechanism for slowing tumor growth. 
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Figure 4. FRAX-1036 inhibits PAK1 autophosphorylation and downstream 

signaling in MS02 and HEI-193 cells. 24 hour treatment of MS02 and HEI-193 cells 

with varying concentrations of FRAX-1036 demonstrating potent inhibition of PAK1 

autophoshorylation and concentration dependent inhibition of ERK phosphorylation. 
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Figure 5. FRAX-1036 inhibits proliferation of both MS02 and HEI-193 cells. (A) 72 

proliferation assay with MS02 cells showing concentration dependent inhibition of cell 

proliferation, IC50 =162nM, error bars represent SD (B) 72 proliferation assay with HEI-

193 cells showing concentration dependent inhibition of cell proliferation, IC50 =1.6µM, 

error bars represent SD. IC50 values calculated in GraphPad Prism via [inhibitor] vs 

normalized response nonlinear fit algorithm.  
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Treatment with FRAX-1036 Fails to Reduce the Growth of Tumors in our NF2 

GEMM 

Having validated FRAX-1036 as a potent PAK1/2 inhibitor of human and murine 

schwannoma cells in vitro, we chose to set up a preclinical trial in our Nf2-cKO mice to 

determine whether or not the compound showed efficacy against the growth of Schwann 

cell tumors in vivo. Our Nf2-cKO mice develop frank schwannomas with 100% 

penetrance by 8 months of age and being to die around 10 months of age from tumor 

burden [58]. We treated 8 month old Nf2-cKO animals with a previously established 

maximum tolerated dose of 30mg/kg/qd FRAX-1036 formulated in 20% (2-

hydroxypropyl)-β-cyclodextrin in 50mM citrate buffer with a pH 3.0 for 12 weeks. The 

drug regimen was well tolerated in the mice and after 3 months of treatment the mice 

were sacrificed. ABR testing was conducted prior to enrollment on study, at the halfway 

point of treatment, and just prior to sacrifice to track any changes in sensorineural hearing 

loss. After 12 weeks on therapy, we observed no difference between vehicle and FRAX 

treated mice in tumor size, histology, or cell proliferation as measured by IHC of Ki76+ 

Schwann cells in the Schwann cells tumors (Figure 6A). We also did not see any 

reduction in the average size of the spinal dorsal root ganglia of drug treated mice 

compared to vehicle treated controls (Figure 6B). We also did not detect not see any 

significant protection in the magnitude or progression of the sensorineural hearing loss 

between the two groups (Figure 6C). In total, treatment with FRAX-1036 did not appear 

to significantly reduce the growth of the Schwann cell tumors in our Nf2-cKO animals. 
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Figure 6. Treatment with FRAX-1036 fails to reduce the growth of tumors in our 

NF2 GEMM. (A) Representative IHC sections of DRG from vehicle and FRAX-1036 

treated mice stained for Ki67. Original magnification 20x. (B) Quantification of average 

size of spinal DRG. Four anatomically DRG were measured per mouse, n=5 mice for 

vehicle group and n=12 mice for FRAX-1036 treatment group. p=0.27, students t-test 

error bars represent SEM. (C) ABR thresholds of vehicle and FRAX-1036 mice. Both 

ears in each animal were scored individually, n=6 mice for Vehicle treated, n=15 mice 

FRAX treated, p=0.54, Two way ANOVA with multiple comparisons, error bars 

represent SEM.  
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Maximum Tolerated Dose of FRAX-1036 Demonstrated Suboptimal 

Pharmacodynamics in vivo 

We reasoned that failure of FRAX-1036 to slow the growth the Schwann cell 

tumors in vivo was likely either due to limitation of PAK1/2 as a drug target in NF2 or 

limitations of FRAX-1036 in inhibiting PAK1/2 activation in tumor tissue in vivo. To 

distinguish between these two possibilities we evaluated the pharmacodynamics of 

FRAX-1036 in tumor bearing tissues of the treated mice. When the 12 FRAX-1036 

treated mice were sacrificed, they were randomly separated them into 3 groups of 4 mice 

which were euthanized either 2, 6, or 24 hours after receiving the final dose of drug. 

Staining for pPAK1/2 (Thr423/402) in trigeminal nerve sections demonstrated a trend in 

the reduction of PAK1/2 phosphorylation over the first 6 hours which fully rebounded by 

24 hours (Figure 7A&B). Immunoblotting in tumor bearing nerve tissues further 

confirmed a decrease in PAK1/2 phosphorylation over the first 6 hours which waned by 

24 hours. Downstream pro-proliferative targets of PAK1, phospho-p38 MAPK, and 

phospho-MEK1/2 were reduced by FRAX-1036 treatment at 2 hours but had been 

restored by 6 hours post treatment. pERK1/2 and pAKT appear to not be reduced by 

treatment at any time point (Figure 7C). It therefore appears that we failed to achieve the 

necessary concentration of FRAX-1036 in vivo to adequately inhibit PAK1/2 activation 

and signaling in the Schwann cell tumors.  
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Figure 7. Treatment with FRAX-1036 demonstrated suboptimal pharmacodynamics 

in vivo. (A) Representative images of immunohistochemistry of pPAK1/2 (Thr423/402) 

in the DRG of treated mice at the specified time point. Original magnification 20x. (B) 

Quantification of pPAK1/2+ Schwann cells in DRG schwannomas as measured by IHC. 

n=4 mice at 2, 6, and 24 hours post treatment. n=5 mice for vehicle treatment. p=0.0923, 

One way ANOVA with Tukey’s test, error bars represent SD. (C) Immunoblotting of 

trigeminal nerve lysates from treated mice. 
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Simply increasing the dosing of FRAX-1036 seemed ill advised because our 

collaborator had demonstrated in a different mouse model, doses exceeding 45mg/kg 

were very poorly tolerated over a 14 day treatment [63]. We predicted that we would 

need to meet or exceed that 45mg/kg threshold to achieve sustained PAK1/2 inhibition in 

tumor tissue in situ. We attempted in vivo inhibition of PAK1/2 with G-5555, a small 

molecule inhibitor that Genentech proposed as an optimized, second generation 

competitive PAK inhibitor that was in preclinical development [64]. G-5555 reduced 

basal PAK1 phosphorylation to undetectable levels in our MS02 cells at concentrations as 

low as 100nM and inhibited proliferation with an IC50 of 200nM in these cells. However, 

this compound was poorly tolerated in our mice. Single doses as low as 30mg/kg were 

acutely lethal within 4 hours. After reducing the dose down to 15mg/kg/qd most of our 

mice died within 14 days, often becoming moribund and developing agonal breathing 

shortly after drug dosing. Basic necropsy was uninformative. Using echocardiography we 

determined that at doses as low as 10mg/kg/qd, the mice were developing significant, 

progressive, left ventricular hypertrophy with pronounced arrhythmias in 7-10 days. It 

appears that the cardiotoxicity with FRAX-1036 and G-5555 was due to on target 

inhibition of PAK2 in cardiomyocytes. The cardiotoxicity of G-5555 is likely more 

profound at lower doses than that of FRAX-1036 due to G-5555 being a significantly 

more potent inhibitor of both PAK1 and PAK2. PAK2 function may be absolutely 

required for normal cardiac function and therefore pan-Group A PAK inhibitors are 

unlikely to be a viable therapeutic for NF2 in vivo.  

Selective, non-competitive PAK1 inhibition however, may still be of value. PAK1 

is larger than PAK2 and so the two proteins run differently on a denaturing gel. PAK1 
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appears slightly higher in the gel, around 68kD and PAK2 runs lower, around 61kD. The 

phosphorylation epitopes are so similar that the phospho-antibodies detect both PAK 

proteins. If both PAK1 and PAK2 were equally expressed and activated, then two bands 

should appear on Western blots utilizing the phospho specific antibodies. As expected, 

PAK1 and PAK2 are both expressed in Schwann cells as shown in Figure 3. When we 

probed for PAK activation, a band correlating with pPAK1 was observed but no lower 

band correlating to pPAK2 was detected (Figure 3 and Figure 4).  This result may 

indicate that PAK1 and PAK2 are either not functionally redundant or have separate 

mechanisms controlling their activation in Schwann cells. PAK1 activation may be more 

important than PAK2 in the formation or growth of tumors in our Nf2-cKO mice. 

Therefore PAK1 may be a viable drug target in NF2 if it could be inhibited independently 

of the other Group A PAKs. 
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Germline Deletion of Pak1 but not Conditional Deletion of Pak2 is Partially 

Protective Against the Development of Schwann Cell Tumors in our NF2 GEMM  

To dissect out the separate roles of PAK1 and PAK2 in the development of 

Merlin deficient Schwann cell tumors and to test whether or not inhibition of PAK1 alone 

could prevent or slow the development and growth of tumors in our NF2 GEMM we 

crossed our Nf2-cKO mice with either Pak1-/- (Pak1-KO) or Pak2flox/flox (Pak2-cKO) 

mice. Pak1-/- mice were created by deleting a 2kB region of gDNA that encodes the p21 

binding domain of PAK1 [65]. Germline deletion of Pak2 utilizing a similar approach 

yields mice which die in utero. For ablation of PAK2, a Pak2 conditional deletion 

wherein exon 2 of Pak2 was floxed leading to exon excision and functional loss of  

PAK2 protein in cells expressing Cre recombinase was employed [66,67].  

Nf2flox/flox;Pak1-/-;Postn-Cre (Pak1-DKO) and Nf2flox/flox;Pak2flox/flox;Postn-Cre 

(Pak2-cDKO) mice were grown to 10 months of age. At the time of sacrifice, the Nf2-

cKO and Pak2-cDKO mice had all developed frank schwannoma in the trigeminal nerves 

and dorsal root ganglia. Tissue from the Pak1-DKO animals however exhibited Schwann 

cell hyperplasia without the clear presence of Antoni A and Antoni B histology, the 

hallmarks of true schwannoma (Figure 8A). The average DRG size of Pak1-DKO but 

not Pak2-cDKO mice was also significantly reduced compared to Nf2-cKO controls. This 

result indicated that Pak1 deletion could slow the growth of Merlin deficient Schwann 

cell tumors even in the presence of functional PAK2 and  activated PAK3 (Figure 8B). 

Lending further support to a critical role of Pak1 in the NF2 like phenotype, deletion of 

Pak1 significantly extended the lifespan and restored the sensorineural hearing loss in the 

Nf2-cKO animals (Figure 9A&B). Tissues from the Pak1-DKO animals displayed a 
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significant reduction in Mek, ERK, p38, tumor bearing and b-catenin non-tumor bearing 

nerve tissues we observed that deletion of Pak1 reduced downstream PAK signaling 

(Figure 10). Due to the epitope similarity, the phospho-specific antibodies are not Group 

A PAK selective and bind PAK1,pMST1/2. Since PAK2, and PAK3. PAK1 and are still 

present, this result demonstrated that in Merlin deficient Schwann cells, neither PAK2 are 

different molecular weights and can be separated after electrophoresis on a denaturing 

gel. PAK1 and PAK3 are only one amino acid different in length and are not 

distinguishable from each other on immunoblots. This accounts for the high levels of 

PAK phosphorylation observed in the trigeminal and brachial nerve plexi in PAK1 

deficient animals. These data argue that even in the presence of PAK2 and PAK3, 

deletion of Pak1 reduces oncogenic signaling and tumor formation in Merlin deficient 

Schwann cells. 
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Figure 8. Deletion of Pak1 slows the development and growth of Schwann cell 

tumors in Nf2-cKO animals. (A) Representative H&E sections of spinal DRG from 10 

month old mice. Original magnification 20x. (B) Quantification of average DRG volume. 

4 anatomically matched DRG were measured from each mouse. n= 5 mice/group for all 

groups except Pak2 cDKO mice, n=6 for Pak2 cDKO mice. p<0.05, one-way ANOVA 

with Tukey’s test, error bars represent SEM. 
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Figure 9. Deletion of Pak1 extends the lifespan of and is protective against the 

sensorineural hearing loss in Nf2-cKO mice. (A) Kaplan-Meier Curve, n=14 

mice/group, p=0.0198, Gehan-Breslow-Wilcoxon test. (B) ABR Thresholds at 8 months 

of age, both ears were tested independently on each mouse, Cre-Negatives n=10 mice, 

Nf2flox/flox; Postn-Cre+ n=13 mice, Nf2flox/flox;Pak1-/-;Postn-Cre+ n=5 mice. p<0.05, one 

way ANOVA with Tukey’s test, error bars represent SEM. 
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Figure 10. Deletion of Pak1 reduces PAK signaling in tumor and non-tumor bearing 

nerve tissues. Tissue lysates from 10 month old mice from the trigeminal nerve, brachial 

nerve plexus, and spinal DRG. 
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The PAK1 Allosteric Inhibitor NVS-PAK1-1 Potently Inhibits PAK1 Activation and 

Proliferation in Merlin Deficient Schwann Cells in vitro 

During our work with G-5555, Genentech made us aware of a novel, potent, 

allosteric inhibitor of PAK1 which they had recently acquired from Novartis, NVS-

PAK1-1 [68]. As shown in Figure 11, NVS-PAK1-1 is structurally distinct from FRAX-

1036 and G-5555. Acting through allosteric as opposed to competitive inhibition, NVS-

PAK1-1 is 75x more selective for PAK1 than PAK2. Theoretically this compound could 

allow us to inhibit PAK1 in Schwann cell tumors without the cardiac toxicity. Novartis 

did not pursue this compound further into preclinical development because although it 

demonstrated excellent PAK1 selective inhibition in vitro, it appeared to have no 

biological effect in vivo due poor bioavailability attributed to rapid degradation by the 

cytochrome P450 oxidase system.  

In our Schwann cells in vitro. NVS-PAK1-1 potently inhibited PAK1 

autophosphorylation in MS02 cells and reduced the proliferation of MS02 and HEI-193 

cells with an IC50 of 4.7µM and 6.2 µM respectively (Figure 12A&B). These IC50 value 

were much higher than what we had observed with FRAX-1036 in the same cell lines but 

the effects of NVS-PAK1-1, as compared to FRAX-1036, suggested a cytostatic and not 

cytotoxic mechanism of action. Treatment slowed the expansion of the two cell lines 

without triggering significant cell death. The cytostatic phenotype is similar to what was 

observed when the MS02 cells were reconstituted with functional Merlin. If our 

hypothesis about Merlin as a negative regulator of PAK1 is correct, this result is more in 

line with what we would expect for a true PAK1 inhibitor.  
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Figure 11. Chemical structures and biological activity of PAK inhibitors as 

published by the manufactures from which they were purchased. 
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Figure 12. NVS-PAK1-1 inhibits PAK1 autophosphorylation and Merlin deficient 

Schwann cell proliferation in vitro. (A) 2 hour treatment with NVS-PAK1-1 in MS02 

cells. (B) 72 hour proliferation assay in murine and (C) human Merlin deficient 

schwannoma cell lines with IC50s of 4.7µM and 6.2µM respectively, error bars represent 

SEM. IC50 values calculated in GraphPad Prism via the [inhibitor] vs normalized 

response nonlinear fit algorithm.   
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Inhibition of the Cytochrome P450 Oxidase System Prevents the Degradation of 

NVS-PAK1-1 

NVS-PAK1-1 was created through chemical modification and optimization of a 

basic dibenzodiazepine structure [68]. Pharmaceutical benzodiazepines are some of the 

most commonly used drugs in the United States and in general are rapidly metabolized 

via oxidized by the hepatic CYP450 (CYP) system, predominantly by CYP3A4 [69].We 

therefore hypothesized that the half-life of NVS-PAK1-1 in humans is likely dependent 

upon the rate of oxidation by CYP3A4.  

More than half of all drugs used clinically are metabolized by CYP3A4. There are 

FDA approved compounds which act as CYP3A4 inhibitors and can be given to delay the 

degradation of other co-administered compounds. These so call pharmacokinetic 

inhibitors serve to prolong the half-life of the other bioactive active compounds [70]. The 

most commonly used pharmacokinetic inhibitor is ritonavir. Ritonavir was originally 

developed as an HIV protease inhibitor but is largely though to function primarily as a 

CYP3A4 /CYP2D6 inhibitor to prolong the half-life of the antivirals saquinavir and 

indinavir given as standard of care for HIV-HAART [71]. 

To test the rate of NVS-PAK1-1 was metabolism by hepatic P450 enzymes and to 

investigate if a pharmacokinetic inhibitors could be useful for prolonging the compound’s 

half-life, we partnered with the Clinical Pharmacology Analytical Core (IUSM). NVS-

PAK1-1 was incubated with either murine or human liver microsomes for 10 minutes and 

then mass spectroscopy was used to quantify degradation of the parent compound. NVS-

PAK1-1 was rapidly metabolized by the human liver microsomes its degradation was 

strongly inhibited by ritonavir, as well as by the murine pan-cytochrome P450 inhibitor 
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1-aminobenzotriazole (1-ABT) and Ketoconazole, another potent CYP inhibitor in 

humans (Figure 13A). 

NVS-PAK1-1 was metabolized at a lower basal rate in the murine liver 

microsomes and the addition of ritonavir increased drug oxidation. This result was not 

what we had predicted but predicting drug metabolism is much more difficult in mice 

than it is in humans. Mice have 102 functional Cyp genes compared to only 57 in humans 

[72]. This gene expansion creates greater functional overlap between the murine Group 

1-3 Cyps. Cyp3A11 is the closest murine homologue to CYP3A4 but it would likely be 

necessary to inhibit a combination of murine Cyps to achieve the same effect as 

inhibiting CYP3A4 in humans [72,73]. We decided not to try and dissect out the precise 

enzymes required for degradation of NVS-PAK1-1 in mice due to this disconnect 

between mouse and human biochemistry. Instead, we chose to utilize the pan-Cyp 

inhibitor, 1-ABT for further studies. 1-ABT is a well-tolerated, nonspecific CYP inhibitor 

in mice and did appear to prolong the half-life of NVS-PAK1-1 in vitro [74] (Figure 

13A). Utilizing a single oral dose administration of NVS-PAK1-1 at 100 mg/kg with or 

without 1-ABT at 100 mg/kg dosed 2 hours prior, we found that the addition of 1-ABT 

more than tripled the in vivo half-life of NVS-PAK1-1 from 4.9 hours up to 15.4 hours 

(Figure 13B).  
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Figure 13. 1-ABT prolongs the half-life of NVS-PAK1-1 in vitro and in vivo. (A) 

Levels of NVS-PAK1-1 remaining after 10 minutes of co-incubation in murine or human 

liver microsomes normalized to amount of compound remaining after 10 minutes without 

the addition of CYP inhibitors. (B) Serum concentrations of NVS-PAK1-1 measured at 

1,4,8 and 24 hours after a single dose administration of 100 mg/kg NVS-PAK1-1 with or 

without 2 hour pretreatment with 100 mg/kg 1-ABT. 3 mice/group/time point. T1/2 NVS 

Alone=4.9 hours, T1/2 NVS+ABT =15.4 hours, error bars represent SD. 
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Inhibition of PAK1 Phosphorylation in Tumor Bearing Tissue in vivo can be 

Achieved via Oral Dosing of NVS-PAK1-1 

In order to establish a maximum tolerated dose of NVS-PAK1-1 for preclinical 

therapeutic trials, we conducted a 6 week dose escalation experiment in which mice were 

treated daily with 1-ABT at 100 mg/kg followed two hours later by NVS-PAK1-1 at 10 

mg/kg. The dose of NVS-PAK1-1 was then subsequently increased by 10mg/kg each 

week to achieve a final dosing of 60 mg/kg. Two hours after the final administration of 

NVS-PAK1-1, mice were sacrificed and trigeminal nerves were removed. PAK1 and 

PAK2 phosphorylation were significantly reduced in the tumor bearing tissues of mice 

treated with NVS-PAK1-1 as compared to that observed in tissues from control mice 

which just received the 1-ABT alone (Figure 14). Treatment with NVS-PAK1-1 also 

lead to a significant reduction in pS6RP and pSRC, indicating that the compound was 

truly inhibiting pro-proliferative signaling.  
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Figure 14. Oral administration of NVS-PAK1-1 can reduce PAK phosphorylation 

and pro-proliferative signaling in tumor tissue in vivo. Trigeminal nerve lysates from 

10 month old Nf2-cKO mice treated in a 6 weeks dose escalation experiment and 

sacrificed two hours after their final dose of 60 mg/kg NVS-PAK1-1. 
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NVS-PAK1-1 Treatment does not Reduce the Magnitude of Sensorineural Hearing 

Loss in Nf2-cKO Mice 

 At 60 mg/kg, NVS-PAK1-1 was poorly tolerated in our mice. Based upon those 

data, we decided to treat mice with half maximal tolerated dose. Mice were treated daily 

for 12 weeks with 100 mg/kg of 1-ABT followed 2 hours later with 30 mg/kg of 1-ABT. 

With the FRAX-1036 trial, preclinical studies were designed to examine the effects of 

pan-PAK inhibition on slowing the growth of established tumors. In the Nf2-cKO mice, 

PAK1 appeared to function early in tumor formation. PAK1 inhibition may exert a 

protective effect against the development of Schwann cell tumors and sensorineural 

hearing loss if initiated early in life so for this study we decided to treat mice starting at 4 

months of age.  

A 3 month time course with NVS-PAK1-1 provided no reduction in the 

magnitude of sensorineural hearing loss (Figure 15A). Of note we believe the 

sensorineural hearing loss in the mouse model to be permanent as we have never 

observed normal hearing rescued in mice that previously exhibited elevated ABR 

thresholds and at the 4 month baseline ABR, the majority of the mice utilized for both the 

vehicle control and NVS-ABT groups exhibited significantly elevated hearing thresholds 

(Figure 15B&C). It is unusual to have such a high percentage of Nf2-cKO mice in any 

cohort which demonstrate significant hearing loss at that age and we may have missed the 

critical window in which PAK1 inhibition may act to prevent the onset of hearing loss. 

We have a very incomplete understanding of the mechanisms which control the 

progression of hearing loss both in NF2 patients and in our Nf2-cKO mice and with the 

cohorts as generated, we had insufficient numbers of mice with normal hearing at 
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baseline to be powered to test whether treatment with NVS-PAK1-1 could delay or 

prevent the initiation of sensorineural hearing loss in this trial.  
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Figure 15. ABR Thresholds in NVS-PAK1-1 treated mice. (A) ABR thresholds in 

mice treated for 12 weeks with 30mg/kg NVS-PAK1-1+1-ABT or the vehicle along with 

measurements at 4 months prior to initiation of therapy. Error bars represent SEM. Ears 

tested independently, baseline n=19 mice, vehicle n=6, NVS n=13, p<0.05, one way 

ANOVA with Tukey’s test. (B) Mice from vehicle treatment in A, separated out with 

midpoint ABR numbers. Error bars represent SEM, p<0.05, one way ANOVA with 

Tukey’s test. (C) Mice from NVS+ABT treatment in A, separated out with midpoint 

ABR numbers. Error bars represent SEM, p<0.05, one way ANOVA with Tukey’s test. 



 51 

NVS-PAK1-1 Treatment does not Prevent Tumor Formation but does Reduce the 

Average DRG Size of Nf2-cKO Mice 

After 3 months of treatment, histologic schwannomas were observed in all of the 

vehicle, 1-ABT only, and NVS-PAK1-1+1-ABT mice. Schwannomas in the vehicle and 

1-ABT treated mice were indistinguishable from one another in morphology. In 

comparison, the histology in the NVS-PAK1-1+1-ABT treated mice was more variable 

(Figure 16A). Specifically, about half of the DRG contained schwannomas which 

appeared similar in histology to the tumor in mice treated with 1-ABT alone while the 

other half appeared smaller and less developed. One of the mice treated with 1-ABT 

alone also developed a subdermal axillary mass with histology consistent with that of an 

advanced schwannoma (Figure 16B).  

Consistent with histologic observations, the average DRG size of vehicle and 1-

ABT alone treated mice were similar while mice treated with NVS-PAK1-1+1-ABT had 

significantly smaller average DRG volume (Figure 17). This difference appears to be 

driven by the fact that while 15 of the 32 DRG in the NVS-PAK1-1+1-ABT group 

appeared very similar in volume to the two control groups, the remaining 17 DRGs in the 

NVS-PAK1-1+1-ABT group were much smaller in size. The unusually high percentage 

of mice with elevated ABR thresholds at baseline leads us to believe that some 

percentage these mice already had tumors prior to therapy. The tumor quantification data 

therefore may further indication that PAK1 inhibition prevent tumor formation in Merlin 

deficient Schwann cells but does not strongly inhibit the growth of established 

Schwannomas. 
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Figure 16. DRG Histology in 1-ABT alone and NVS-PAK1-1 + 1-ABT treated mice. 

(A) Representative H&E sections from 3 different 1-ABT alone and NVS-PAK1-1+1-

ABT treated animals. Original magnification 20x. Scale bars= 200µM. (B) Subdermal 

schwannoma in a 1-ABT alone treated animal. Original magnification 20x. Scale bars= 

200µM. 
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Figure 17. Average DRG volume in the NVS-PAK-1 cohort. Quantification of average 

volume of spinal DRG. Four anatomically DRG were measured per mouse, n=10 mice 

for vehicle group, n=6 mice for 1-ABT alone treatment group, n=8 mice for NVS-PAK1-

1+1-ABT. p=0.0473, one way ANOVA with Tukey’s test, error bars represent SEM. 
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Pharmacokinetics and Pharmacodynamics of 30mg/kg/qd NVS-PAK1-1 +100mg/kg 

1-ABT  

One quarter of the NVS-PAK1-1+1-ABT treated mice died during the 12 week 

drug course. These mice did not exhibit any noticeable GI toxicity. Both the vehicle and 

1-ABT alone drug regimens were very well tolerated. We wondered if the deaths in the 

NVS-PAK1-1 treatment cohort could again be attributed to cardiotoxicity associated with 

inhibition of PAK2. We collected cardiac and hepatic tissues for histologic sectioning 

from the mice that survived the 12 weeks and did not observe any overt pathologies. We 

had anticipated that but cutting the NVS-PAK1-1 dosing by 1/3 compared with the 

original 100mg/kg we used for the primary PK data, the serum concentrations would also 

drop by at least 1/3. At the 30mg/kg NVS +1-ABT dosing over 12 weeks, peak 

concentrations of NVS-PAK1-1 were found to be higher than we anticipated at 17µM in 

serum and 4.3µg/g in DRG tissues (Figure 18A&B). These peak serum and tissue 

concentrations were still elevated above the ideal therapeutic window where we would 

expect selective PAK1 inhibition without blocking activating of PAK2. 

 To assess whether the 30 mg/kg/qd NVS-PAK1-1 was sufficient to inhibit PAK1 

in tumor tissue in vivo, trigeminal nerves were extracted from mice after the 12 weeks of 

treatment. Relative to the total expression of PAK1, the mice treated with NVS-PAK1-

1+1-ABT demonstrated reduced levels of pPAK1/2 (Figure 18C). Erk and p38 

phosphorylation were not reduced. At 7 months of age we would expect relatively small 

schwannomas, making up less than 5% of the trigeminal nerve volume. The uniformly 

low levels of pERK1/2 and phosho-p38 may reflect normal signaling in healthy 

trigeminal nerve and are not reflective of the changes occurring the tumor.  
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We are currently evaluating the PK and PD from 12 month old tumor bearing 

mice treated with 10 mg/kg NVS-PAK1-1+100 mg/kg 1-ABT. We anticipate that by 

dropping the NVS-PAK1-1 concentration again by 3 fold we will substantially increase 

long term tolerability. At the time of sacrifice we will collect cardiac tissues to 

experimentally measure left ventricular concentrations of NVS-PAK1-1 and probe for 

PAK2 activation status via Western blot so we can directly assess whether NVS-PAK1-1 

is inhibiting PAK2 activation in the heart at the measured concentration. The larger 

tumors in these older mice will make it much easier to evaluate whether the 10mg/kg/qd 

NVS-PAK1-1+1-ABT is sufficient for inhibition of PAK1 in the schwannomas. If we can 

establish a drug dose inhibits PAK1 in schwannomas but does not inhibit PAK2 in 

cardiomyocytes we will proceed with another 12 week preclinical trial with this 

optimized dosing regimen. 
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Figure 18. Pharmacokinetics and pharmacodynamics of 30mg/kg/qd NVS-PAK1-1 

+100mg/kg 1-ABT. (A) Serum concentrations of NVS-PAK1-1 after 12 weeks of 

treatment with 30 mg/kg/qd NVS-PAK1-1+100 mg/kg 1-ABT along with a control of 

mice treated with a dose of NVS-PAK1-1 alone. Error bars represent SD. (B) Tissue 

concentrations of NVS-PAK1-1 after 12 weeks of treatment with 30mg/kg/qd NVS-

PAK1-1+100 mg/kg 1-ABT along with a control of mice treated with a dose of NVS-

PAK1-1 alone. Error bars represent SD. (C) Western blot analysis from trigeminal nerve 

lysates of mice treated for 12 weeks as indicated. Numbers on x-axis represent the 

number of hours post treatment. 
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Discussion 

 

To investigate the physiological role of PAK1/2 activation in schwannoma 

formation in vitro and in vivo experiments were conducted. The results demonstrate 

increased PAK1/2 phosphorylation and downstream PAK1 signaling in both human and 

murine Merlin deficient schwannomas. There is strong evidence to suggest that Merlin is 

a direct, negative regulator of PAK1. Blocking PAK1 activation can reduce the hyper-

proliferative phenotype of Merlin deficient Schwann cells in vitro. Due to the direct link 

between loss of Merlin and PAK1/2 activation, the known role of PAK1 as a potent 

oncogene, and the commercial availability of Group A selective PAK inhibitors, we 

hypothesized that inhibiting PAK1 could be a viable strategy for reducing tumor growth 

and tumor related morbidities in NF2 and is worth continued exploration. 

The PAK1/2 inhibitor FRAX-1036 demonstrated significant efficacy in vitro, 

blocking PAK1 phosphorylation and inhibiting the proliferation of Merlin deficient 

schwannomas at sub micromolar concentrations. In vivo, however, mice treated for 3 

months starting at 8 months of age with 30mg/kg/dq FRAX-1036 showed no reduction 

the progression or magnitude of their sensorineural hearing loss or in their average DRG 

volume. There are three major factors which may account for the apparent lack of 

efficacy of FRAX-1036 in the Nf2-cKO mice. First, although there appears to be a 

connection between the presence of vestibular schwannoma and the presence of 

sensorineural hearing loss in NF2, the physiology linking the two is unknown. In serial 

MRI scans of NF2 patients, individuals with larger tumors were found to be more likely 

to have some degree of hearing loss, but neither the absolute size of the vestibular 
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schwannoma nor the rate of schwannoma growth had predictive value when estimating 

the magnitude or progression of sensorineural hearing loss in patients [75]. Sensorineural 

hearing loss is the most common presenting symptom of individuals with a vestibular 

schwannoma. Therefore it is reasonable to argue that preventing tumor formation may 

prevent the hearing loss but current data does not support the hypothesis that slowing 

tumor growth will necessarily be otoprotective [7]. Preventing sensorineural hearing loss 

would be a desirable outcome for a NF2 therapeutic. However otoprotection may not be 

observed with a compound that slows the growth of but does not prevent the formation of 

schwannomas. Second, if inhibition of PAK1 primarily served to prevent tumor 

formation, the age range at which these mice were treated would have prevented us from 

seeing that effect in this study. For most of our therapeutic trials we treat mice for 12 

weeks starting a 5 months of age. For the FRAX-1036 study we treated older mice in 

order to investigate the effects of PAK1 inhibition in established tumors. It is possible the 

primary oncogenic effects of PAK1 hyperactivation occur earlier and we missed the ideal 

window of treatment by not starting therapy until 8 months of age. Third and most 

importantly, PAK2 inhibition is toxic and FRAX-1036 demonstrated only mild 

selectivity for PAK1 over PAK2.  The PAK competitive inhibitors, FRAX-1036 and G-

5555, at concentrations required to inhibit PAK1 in tumor tissue in vivo also inhibited 

PAK2 in the cardiac tissue. Therefore there are unlikely to be doses of either compound 

that both effectively inhibit PAK1 and are well tolerated in vivo. 

Merlin can interact with both PAK1 and PAK2. If PAK1 and PAK2 were 

functionally redundant as oncogenes in Merlin deficient schwannomas, then we would no 

longer consider PAK1 to be a viable drug target. The genetic intercross between the Nf2-
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cKO and Pak1-/- animals clearly demonstrated that global, prolonged inhibition of PAK1 

could be both well tolerated and a successful in reducing NF2 like pathologies in our Nf2-

cKO animals. The prolonged lifespan, the protection from sensorineural hearing loss, and 

the reduction in average DRG volume were all profound and argue for a central role of 

PAK1 activation in this disease.  

The tissue histology supported the hypothesis that the deletion of Pak1 is at least 

partially protective against tumor formation. The prevention of tumors in these animals 

may explain both the otoprotection we observed as well as the failure of FRAX-1036 as 

Pak1 may play a more important role in initial tumor formation and less of a role in the 

growth of established schwannomas. The anti-tumor effects of PAK1 inhibition appear 

independent of PAK2 function as the Pak1-DKO mice maintained fully functional Pak2. 

We had not anticipated that PAK3 would be so highly expressed or activated in the 

brachial plexus and trigeminal nerve of our Nf2-cKO animals but high levels of activated 

PAK3 did not appear to functionally mimic activated PAK1 in the Pak1-DKO animals. 

The Nf2;Pak2-cDKO had to be excluded from our survival analysis because of 

additional abnormalities of the peripheral nervous system associated with Schwann cell 

deletion of Pak2. Approximately 20% Pak2 floxed, Cre positive mice from each litter 

had to be sacrificed prior to one month of age due to hind limb paralysis with 

accompanying inability to ambulate or feed. None of the mice born with normal 

ambulation appear to develop paralysis later in life. We have previously observed this 

phenotype in other mice which were Nf2 wild type but had genetic deletions upstream of 

Pak2. The sciatic nerve is the longest nerve in the body and contains neurons that have 

the longest axons in the body and thus requires the most time to grow and myelinate. We 
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have prior data that loss of Pak2 can lead to a disruption in the actin cytoskeleton. We 

believe that in some percentage of mice, the nerve isn’t fully developed and hasn’t 

established mature synapses with the muscle bodies in the anterior compartment of the 

leg prior to Periostin expression and Schwann cell maturation at day 13.5. In the floxed 

Pak2 animals, once Pak2 gets disrupted, the resultant cytoskeletal aberrations may 

prevent the nerve from further maturing resulting in the paralysis. These data from the 

genetic intercross further support the hypothesis that PAK1 may be a valuable therapeutic 

target for the treatment of NF2 while inhibition of PAK2 is not only unnecessary but 

unadvisable.  

Allosteric inhibition of PAK1 through the use of NVS-PAK1-1 greatly increased 

our ability to selectively target PAK1. 12 weeks of treatment with 30mg/kg/qd NVS-

PAK1-1 plus 100mg/kg 1-ABT significantly reduced the average DRG volume of 7 

month old mice. This treatment however was not well tolerated and did not protect 

against sensorineural hearing loss. The drug toxicity likely is a result of the very high 

serum and tissue concentrations of NVS-PAK1-1 leading to cardiac inhibition of PAK2. 

We have relied on the use of 1-ABT as a CYP450 inhibitor because we know NVS-

PAK1-1 is rapidly metabolized by humans and that rapid breakdown will necessitate the 

use of pharmacokinetic inhibitors if it is translated into human trials. As the data in 

Figure 13 demonstrates, and has borne out in vivo, the mice metabolize the compound 

much slower than humans. Given our PK data, pharmacokinetic inhibition isn’t essential 

in the mice and the addition of the pan CYP450 inhibitor is blocking the metabolism of 

NVS-PAK1-1 so potently that we are overshooting our intended therapeutic window and 

experiencing toxicities as a result.  
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The development of sensorineural hearing loss in spite of the very high 

concentrations of NVS-PAK1-1 is interesting. Clearly by histology, these mice are still 

developing tumors, many of which are similar in size and architecture to the tumors in 

vehicle treated animals. But the histology and average DRG volume supports the 

hypothesis that the treatment appears to have stalled or prevented some subset of 

Schwann cells from forming tumors. There may be some critical role for PAK1 for tumor 

initiation in Merlin deficient Schwann cells. We know that some of the mice already had 

elevated ABR thresholds at baseline and in starting to treat these mice when we did, there 

may have already been a subset of Schwann cells that had passed the transition point 

where PAK1 is critical and were in a state where subsequent PAK1 inhibition had no 

effect. But in Merlin deficient Schwann cells which had not yet progressed to that stage, 

we may have blocked that transition into tumor formation.  

There are two confounding factors in this NVS study which may have limited the 

observed efficacy of the compound. The first was been severity of the pathology in this 

particular co-hort. DRG volume tends to expand and ABR thresholds tend to increase 

over time in our Nf2-cKO mice. At 11 months of age, the average DRG volume in our 

FRAX-vehicle treated mice was 0.686 mm3, at 7 months of age, the average DRG 

volume in our NVS-PAK1-1 vehicle treated mice was 1.255mm3. For the average DRG 

volume to be 1.8x larger in mice that were 4 months younger, many of the mice in the 

NVS cohort must have either developed tumors unusually early or had tumor that grew 

unusually rapidly. We may have been treating the mice in the NVS cohort at a later stage 

in tumor progression than we had anticipated. The second limiting factor with the NVS 

study was the elevated drug concentration. At 30mg/kg the mice were sick. They had 
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serum concentration of NVS-PAK1-1 far exceeding the ranges in which the compound 

has been shown to be PAK1 selective and we need to be at a lower serum dose to be 

certain that any effects we see are truly specific to the inhibition of PAK1. The observed 

reduction in average DRG size is encouraging but the studies need to be repeated at a 

lower drug dose that is better tolerated and less likely to have off target effects in the 

tumor tissue.  
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NF-kB/NIK SIGNALING IN NF2  

  

Introduction 

 

The NF-kB Signaling Pathway 

The NF-kB signaling pathway was first described by David Baltimore and Ranjan 

Sen in 1986 as a class of 3 transcription factors which bound to k chain enhancers in B 

cells [76]. Since that time, the class of NF-kB transcription factors has expanded to 5 and 

these proteins along with the signaling pathways which control their activation have been 

among the most studied in all of molecular biology. Although originally described for its 

role in B cell maturation and activation, the NF-kB pathway has now been shown to be 

critical in both the innate and adaptive immune response, controlling cell survival, cell 

proliferation, and activation [77]. The intense interest in the NF-kB pathway over the past 

30 years has largely been driven by the fact that this pathway appears to be the nexus 

which controls the inflammatory response in humans. Inflammation plays a pivotal role 

in the pathology observed in most the of major causes of death in the United States 

including but not limited to cardiovascular disease, cancer, obesity, type 2 diabetes, 

neurodegenerative disorders, COPD, chronic kidney disease, and sepsis [78]. So, 

developing therapeutics modulate and control NF-kB has become a holy grail in treating 

modern disease. 

The NF-kB family of transcription factors includes RelA (p65), RelB, c-Rel, p50, 

and p52. These transcription factors have been shown to act via homo and hetero 

dimerization. Thirteen of the 15 possible dimeric complexes have been described in the 
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literature but primarily, NF-kB signaling appears to terminate in nuclear translocation 

and activation of a heterodimer of either RelA/p50 or RelB/p52 [79]. The signaling 

cascades leading to the activation of these two heterodimers are generally divided into 

two distinct pathways: canonical and non-canonical. The canonical pathway terminates in 

nuclear translocation of RelA/p50 and the non-canonical pathway ends in the nuclear 

translocation of RelB/p52. There are multiple extensive reviews detailing the precise 

proteins and control mechanisms involved in NF-kB signaling [80,81]. In short, 

canonical NF-kB can be initiated by a variety of Toll Like, TNF superfamily receptors 

and cytokine receptors resulting in phosphorylation of the IKK complex consisting of 

NEMO, IKKa, and IKKb. The activated IKK complex in turn phosphorylates an IkB 

family member, leading to its degradation, and the release and nuclear translocation of 

the RelA/p50 heterodimer. Non-canonical signaling is initiated via a subset of TNF 

superfamily receptors which activate NF-kB inducing kinase (NIK). NIK in turn 

phosphorylates IKKa homodimers leading to the processing of p100 into p52 and the 

nuclear translocation of the RelB/p52 heterodimer. With over 150 experimentally 

validated genes shown to be bound by and activated by the RelA/p50 heterodimer, 

activation of the NF-kB pathway has the ability to fundamentally alter the phenotype of a 

cell [82]. 

 

NF-kB in Cancer 

As it pertains directly to cancer, the NF-kB signaling pathway has a very complex 

role.  NF-kB signaling seems to influence different cell types in different ways in 
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different microenvironments such that depending on the precise context and genetics of 

the malignancy, NF-kB activation can either help or harm tumor growth.   

The phenotypic variability associated with NF-kB activation in cancer can be 

exemplified by prototypic activator of the NF-kB canonical singling pathway, tumor 

necrosis factor alpha (TNFa). Originally isolated in 1975, TNFa was named tumor 

necrosis factor because it was found to trigger necrosis of tumor xenographs when 

injected into mice which had been transplanted with subcutaneous sarcomas [83]. Based 

up this observation, more than 4 multi center and 20 single center trials were undertaken 

to study the efficacy of localized perfusion of TNFa in combination with the 

chemotherapeutic melphalan for the treatment of non resectable, isolated soft tissue 

sarcomas and malignant melanomas. Eighty-90% of patients in these trials exhibited a 

significant clinical response after treatment, indicating that in this particular context, 

activation of NF-kB signaling is potently tumoricidal [84,85]. Consistent with the role of 

NF-kB activation restricting local tumor growth, adalimumub, the human monoclonal 

antibody targeted against TNFa, carries a black box warning that it may increase the 

prevalence of certain malignancies.  

In other contexts, endogenous expression of TNFa seem to have the opposite 

effects where in vivo, TNFa expression has been shown to promote tumor growth [86-

88]. Cancer cell intrinsic NF-kB signaling is generally characterized as a tumorigenic, 

where it can promote tumor growth, drug resistance, and metastasis [89,90]. NF-kB 

transcription factors were first characterized for their role in controlling the exponential, 

clonal expansion of B and T cells during a normal immune response and appear to be 

able to promote this same type of growth in many cancers [91]. Cancer cell intrinsic 
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activation of NF-kB been shown to induce gene expression of Cyclin D1, Cyclin E, and 

CDK2 to promote proliferation, BCL-XL and BCL-2 to promote survival, VEGF and 

HIF1a to promote angiogenesis, and MMP2/9 and ICAM1 to promote metastasis [92].  

Experimentally, inhibitors of NF-kB signaling have been shown to act in a 

synergistic manner to improve cytotoxicity of chemotherapeutics in vitro [93,94]. 

Therapeutic development of NF-kB inhibitors has led to the identification of 700 

compounds of varied potency and selectivity. Translation of these molecules into the 

clinic has been complicated both by the dual role these compounds have in either 

inhibiting or promoting tumor growth depending on context and by significant in vivo 

toxicity [95].  

 

NF-kB Activation in our GEMM 

NF-kB activation appears to play a critical role in the growth of many different 

types of solid tumors. When an Ingenuity Pathway Analysis was conducted on a data set 

of previously published microarray data from sporadic human vestibular schwannoma 

(sHVS), 32 genes annotated for an involvement in NF-kB signaling and 61 genes 

annotated as NF-kB transcription targets were significantly differentially expressed in the 

sHVS as compared to control tissue [96]. Merlin has previously been demonstrated as a 

suppressor of NF-kB signaling and PAK1 can act as a potent inducer of NF-kB. 

Therefore we reasoned that activation of NF-kB signaling by PAK1 could be responsible 

for oncogenic transformation in Merlin deficient Schwann cells [97,98].  

The NF-kB signaling pathway is hyperactivated in our murine Merlin deficient 

schwannomas [96]. We discovered that NIK, the initiator kinase of the NF-kB non-
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canonical signaling pathway, accumulated both as a full length protein and a 55kD 

catalytically active fragment in the Schwann cell tumors in our mice and in human VS. 

PAK1 has previously been shown to activate NIK directly and a similar NIK cleavage 

fragment has also been shown to play a pathogenic role in MALT lymphoma [98,99]. 

These data led us to hypothesize that the accumulation of NIK may be of physiological 

significant in Schwann cell tumors. 

The 55kD fragment appeared to be an internal cleavage product which had an 

intact kinase domain but had lost the negative regulatory domain putatively rendering it 

constitutively active. We confirmed the presence of the kinase domain in the fragment 

through mass spectroscopy and demonstrated that both the full length NIK protein and 

this 55kD fragment were capable of binding to and phosphorylating IKKa. We then 

demonstrated that the endogenous levels of NIK which accumulated in Merlin deficient 

schwannomas were sufficient to cause significant phosphorylation of IKKa and drive 

NF-kB non-canonical signaling in the tumor cells [96]. 

Many different mouse models have been generated in an attempt to develop a 

more complete understanding of role of each of the proteins involved in NF-kB signaling. 

Unlike other murine knockouts of many of the other critical signaling proteins in the NF-

kB signaling pathway including IKKa, IKKb, and NEMO (IKKg) which are embryonic 

lethal, germline biallelic disruption of NIK is viable in both mice and man [100-104]. In 

particular, the clinical presentation of the two patients described with total loss of 

functional NIK supports a hypothesis that NIK specific inhibition may have less systemic 

toxicity than what has previously been observed with other NF-kB inhibitors [104]. 

Based upon these data, a team at Genentech has developed a NIK small molecule 



 68 

inhibitor which they are investigating as a potential therapeutic for systemic lupus 

erythematosus [105,106].  

The studies in the chapter seek to investigate NIK as a potential therapeutic target 

for the treatment of NF2. We demonstrate that overexpression of NIK is sufficient to 

drive Schwann cell transformation and schwannoma development but that Schwann cell 

intrinsic endogenous expression of NIK (Map3k14) is not essential for tumor formation in 

Merlin deficient Schwann cells in vivo. These data support the hypothesis that NF-kB 

signaling is critical for the growth and development of Merlin deficient schwannoma but 

that NIK is not an essential protein in this process. Drug development may need to target 

the upstream pathways which connect loss of Merlin to the activation of NF-kB. 
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Materials and Methods 

 

Animal Study Approval 

  All animal studies were carried out under the Institutional Animal Care and Use 

Committee (IACUC) of Indiana University School of Medicine approved protocol 

#11406 in accordance with the U.S. Department of Agriculture’s Animal Welfare Act 

and the Guide for the Care and Use of Laboratory Animals.  

 

Mice and Genotyping 

NIK:  

Forward: 5’- ATCAAGCTGGCCCTTAACCT-3’ 

Reverse: 5’-CAAGGAGTTCTTGTTTCCCAG-3’    

Program: 94º C for 5 minutes, 34x (94º C for 60 seconds, 64º C for 30 seconds, 72 º C for 

1 minute), 72º C for 10 minutes, hold at 4º C 

Expected PCR fragment: FLOX: 303bp WT- 247bp 

  

Statistical Methods 

Statistical analyses were performed in GraphPad Prism 7.02. As described in the 

text, ANOVA or Student’s T-test were used to test for differences between samples. Chi- 

squared analysis was used for the genetics analysis. Specific tests and significance levels 

can be found in the figures and figure legends. 
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Celecoxib Treatment. 

Upon weaning, mice were fed with chow manufactured by ResearchDiets 

designed to deliver 300mg/kg/qd celecoxib or a control diet lacking celecoxib but 

identical in every other way. 

 

COX-2 Activity Eliza 

8-month-old Nf2flox/flox;PostnCre- mice were separated into two groups of 5 mice 

and fed either celecoxib or vehicle diet for 5 days. On day 5, the mice were injected 

intraperitoneally with 100ng of tissue culture grade Escherichia coli O111:B4 derived 

LPS in 100ul of sterile PBS. Mice were sacrificed 2 hours later. The left cerebral 

hemisphere was harvested from each mouse. Tissues were processed and samples were 

run as described following the factory protocol using the Cayman Chemical COX 

Activity Assay Kit (760151).  

 

Embryonic DRG Harvest and Culture 

Wild type breeders were set up in the evening and left together for 24 hours. 14 

days later in the morning, pregnant dams were sacrificed and embryos were removed. 

Embryos were placed in cold PBS+1% Pen/Strep (Lonza 10K/10K) and the dorsal root 

ganglion (DRG) were dissected from each embryo with the aid of a dissecting 

microscope. All DRGs isolated from an individual were pooled and placed into a tube 

containing 500μl of DMEM + 10%FBS and placed on ice. The DRGs were then digested 

in 0.05% trypsin-EDTA (Gibco) and dissociated with syringes. DRGs pooled from a 

single embryo were then plated on Poly-D-Lysine (PDL, .1mg/mL)/Laminin (.25mg/mL, 
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Sigma) coated 12-well plates at one embryo per well in SC Media I (SCM-I) comprised 

of DMEM with 50 U/mL penicillin, 50 μg/mL streptomycin, 2mM L-Glutamine (Lonza), 

1X N2 supplement (Life Technologies), and 250 ng/mL Nerve Growth Factor (NGF, 

Harlan Bioproducts). The following day, the media was changed to SC Media II (SCM-

II), which was identical to SCM-I except for the substitution of 2 μM Forskolin and 10 

ng/mL Glial Growth Factor (GGF, Sigma) for NGF. The cells grow to confluence in 5-7 

days at which point they are passaged in standard serum containing media 

(DMEM+10%FBS+1%L-glutamine+1% Pen/Strep) and re-plated onto PDL/Laminin 

plates. 12-22 hours after passage the media is replaced and the cells are maintained in 

SCM-II. 

 

Orthotopic Transplant Studies 

One million primary Schwann cells (P1 – P2) were transduced with IRES-eGFP 

or 309-801 NIK lentivirus. Transduction efficiency was measured after 24 hours using 

flow cytometry. 48 hours post transduction, cells were transplanted into the sciatic nerves 

of female B6.Cg-Foxn1/J (nude) mice purchased from Jackson labs. Mice were roughly 

8-12 weeks old at the time of experimentation. Each mouse was anesthetized with 

isofluorane and a small incision was made using an 11 blade surgical scalpel. The sciatic 

nerve was then exposed with blunt dissection using scissors under a dissecting 

microscope. A 1:1 admixture of suspended Schwann cells and Culture® basement 

membrane extract (Trevigen) totaling 20 µl was injected into the right sciatic nerve of 

each mouse using a 33 gauge syringe (Hamilton). The wound was then closed with 5-0 

prolene suture. Mice were monitored daily and buprenorphine was administered subQ at 
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the site of the incision for pain management. 

 

RNA Extraction and qPCR Analysis 

For extraction of RNA, trigeminal nerves were isolated from freshly sacrificed 

animals, washed in ice cold PBS, and then flash frozen in TRIzol Reagent (Thermo). 

RNA was then extracted from the samples using the PureLink RNA mini kit (Thermo) 

per manufacturer’s protocol for phenol/chloroform extractions. RNA concentrations were 

measured on a NanoDrop and then cDNA synthesis was conducted utilizing the 

QuantiTect Reverse Transcription Kit (Qiagen). cDNA quantification was done using the 

Fast SYBR Green Real-Time PCR Master Mix (Life Technologies) with validated 

TaqMan gene probes (ABI) (Mm00478375_g1 for Ptgs2, Mm00444166_m1 for NIK, 

Mm99999915_g1 for GAPDH),  and an ABI 7500 Fast Thermal Cycler. 

 

Primary Antibody List Western Blot 

COX-2 (Santa Cruz #1745), RelA (Cell Signaling #8242), RelB (Cell Signaling 

#10544), NIK (Cell Signaling #4994) 

 

Primary Antibody List IHC  

RelA (Santa Cruz sc-109), RelB (Santa Cruz sc-226), NIK (Cell Signaling 

#4994), GFP (Abcam ab1218) 
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Results 

 

Targeting Proteins Downstream of NF-kB Activation May be Insufficient to Prevent 

the Formation and Growth of Schwann Cell Tumors 

Clinical interest in targeting NF-kB in vestibular schwannoma was sparked in 

2014 following a retrospective case review of 347 patients with vestibular schwannoma. 

Patients whom happened to be taking aspirin were less likely to experience tumor growth 

than those patients who did not take aspirin [107]. Aspirin is a COX-1/2 (cyclooxygenase 

1/2) inhibitor. The observed tumorostatic effect observed was attributed to the ability of 

aspirin to inhibit COX-2. COX-2 catalyzes the first reaction in the pathway which 

converts arachidonic acid into prostaglandins and thromboxane. COX-2 has been 

previously well studied for its role in driving inflammation and supporting tumor growth 

[108]. Expression of PTGS2, the gene which encodes COX-2, is induced by NF-kB. As 

measured by immunoblotting and immunohistochemistry, COX-2 expression has been 

directly correlated with Schwann cell tumor growth in vivo [109]. Based upon this data, a 

Phase II double blind trial (NCT03079999), is currently ongoing to test the efficacy of 

aspirin in slowing tumor growth in patients with vestibular schwannoma.  

We were interested to determine if we could prevent the formation of tumors in 

our Nf2-cKO mice via inhibition of COX-2. In order to separate the potential effects of 

COX-1 inhibition vs COX-2 inhibition, we chose to treat our mice with the potent, COX-

2 selective inhibitor, celecoxib. We allowed newly weaned Nf2-cKO mice to feed on a 

diet infused with celecoxib at a concentration designed deliver 300mg/kg/qd of the 

inhibitor to each mouse. We found that although PTGS2 was highly expressed in 
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schwannoma bearing tissues in our mice, the COX-2 inhibitor celecoxib had no 

therapeutic benefit in preventing tumors in our Nf2-cKO mice (Figure 19) [110]. We did 

not treat mice beyond 6 months to test whether COX-2 inhibition could slow the growth 

of the developing tumors. 
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Figure 19. Celecoxib fails to prevent schwannoma formation in Nf2-cKO mice. (A)  

PTGS2 gene expression in the trigeminal nerve of 6-8 month old mice normalized to 

levels in Cre-Negative mice. Six mice/group, p=0.002, students t test, error bars represent 

SEM. (B) Western blot analysis of trigeminal nerve lysates from 6 month old mice. (C) 

Mass spectroscopy measuring concentrations of celecoxib present in the DRG of mice 

treated for 6 months, error bars represent SEM (D) Eliza measuring COX-2 activity in the 

brain 8 month old mice fed Celecoxib infused or control chow for 5 days and then 

injected with 100ng LPS to induce COX-2 expression. 3 mice/group, p=0.038, students t-

test, error bars represent SD (E) Quantification of average DRG volume at 6 months of 

age. 4 anatomically matched DRG were measured from each mouse.  Cre-Negative n= 5 

mice, control chow, n=10 mice, celecoxib chow, n=8 mice, one-way ANOVA with 

Tukey’s test, error bars represent SEM. 
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Overexpression of Constitutively Active NIK can Induce the Formation of 

Schwannomas 

Both the canonical and non-canonical NF-kB signaling pathways are upregulated 

in Merlin deficient Schwann cells. One mechanism previously shown in HEK-293 and 

HeLa cell lines to simultaneously activate both pathways is the accumulation of NF-kB 

inducing kinase (NIK) [111-113]. Under basal conditions, NIK phosphorylates IKKa at 

low levels to drive non-canonical signaling. When NIK accumulates in cells, the resultant 

high levels of pIKKa promote phosphorylation of IKKb within the IKK complex to 

activate the canonical signaling pathway. Given NIKs ability to activate both the 

canonical and non-canonical NF-kB pathways, NIK accumulation could explain the NF-

kB activation in Merlin deficient Schwann cells. 

 To probe the physiologic changes induced by NIK accumulation in Schwann 

cells, a transducible construct of the 55kD NIK fragment containing an eGFP reporter 

was generated. Lentiviral transduction of the 55kD-NIK-eGFP construct activated both 

canonical and non-canonical signaling in primary Schwann cells. Transduction of NIK 

increased the proliferation of primary murine Schwann cells and knockdown of the 

protein with an shRNA reduced the proliferation of MS02 and HEI-193 cells [96]. 

Overall, many of the changes observed in the Schwann cells transduced with the 55kD-

NIK fragment appeared to mimic changes observed in Schwann cells upon loss of 

Merlin. 

 We next conducted a Schwann cell transfer experiment to test whether NIK 

accumulation could cause the Schwann cells to form tumors in vivo. Primary embryonic 

Schwann cells were harvested from the DRGs of E13.5 old mice and expanded in culture 
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for two weeks. Cell were then transduced with either lentivirus harboring a 55kD-NIK-

eGFP construct or control IRES-eGFP construct. Forty eight hours after transduction, the 

cells were checked for eGFP positivity via flow cytometry and 1 million eGFP+ cells 

were injected into the sciatic nerve of nude, athymic (Foxn1nu) mice (Figure 20A).  After 

5 months the mice were sacrificed and the sciatic nerves were serially sectioned at the 

site of injection. Schwann cell tumors were present in 11/13 of the sciatic nerves injected 

with 55kD-NIK-eGFP Schwann cells and 0/7 of the sciatic nerves injected with IRES-

GFP Schwann cells (Figure 20B). The tumor forming Schwann cells stained positive for 

GFP and had high levels of RelA and RelB localized to the nucleus (Figure 21). This 

indicated that Schwann cell intrinsic accumulation of active NIK was sufficient to 

activate both canonical and non-canonical NF-kB signaling and trigger Schwann cells to 

form tumors. Importantly, GFP positive cells were still present at the site of injection in 

the mice which received IRES-eGFP Schwann cells. All of the cells were suspended in 

Matrigel for injection and there is some local tissue disruption observed due the 

continued presence of the protein gel matrix. However, no histological signs of 

schwannoma were observed in mice receiving IRES-eGFP transduced cells and the GFP 

positive cells did not have significant nuclear localization of either RelA or RelB (Figure 

21). 
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Figure 20. 55kD-NIK-eGFP transduced Schwann cells form tumors in vivo. (A) 

Gross image of sciatic nerve post injection. (B) Quantification of tumors 5 months post 

transplant, p=0.0005, Fisher’s exact test. 
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Figure 21. Transferred tumorigenic Schwann cells are GPF, RelA, and RelB triple 

positive. Representative serial cross sectional images from the sciatic nerves of Foxn1nu 

mice 5 months after Schwann cell transfer. Original magnification 20x, scale bars= 

200µm. 
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Commercially Available NF-kB inhibitors can Reduce Schwannoma Cell 

Proliferation in vitro  

Having demonstrated that accumulation of active NIK is sufficient to transform 

wild type Schwann cells, we wanted to determine if inhibition of NF-kB signaling could 

slow the growth rate of previously transformed schwannoma cells. None of the NIK 

specific inhibitors appear to be commercially available so we acquired two less selective  

NF-kB inhibitors, Bardoxolone Methyl and IKK-16. Bardoxolone Methyl is a reversible, 

mildly selective IKK/RelA inhibitor and Nrf2 activator and is the only direct inhibitor of 

NF-kB with FDA approval where it holds orphan status for the treatment Alport 

Syndrome. Bardoxolone Methyl has been explored in phase I/II trials for the treatment of 

chronic kidney disease and refractory late stage solid tumors and lymphoma and has been 

carried forward into Phase III trials in diabetic kidney disease (NCT03550443) and 

pulmonary hypertension (NCT03068130) [114,115]. IKK-16 was chosen because it is a 

potent and significantly more selective NF-kB inhibitor which targets IKKa and 

IKKb, blocking both canonical and non canonical signaling [116]. To test these 

compounds we utilized 3 different murine schwannoma cell lines: the Merlin deficient 

MS02 cells, MS02 cells in which Merlin expression had been restored via lentiviral 

transduction, and MS12 cells, a Merlin sufficient Schwann cell line generated by 

spontaneous transformation of Schwann cells derived from the sciatic nerve of an 

Nf2flox/flox; Cre-negative animal and serially passaged.  

In the three Schwann cell lines, Bardoxolone Methyl had an IC50 of 0.2 µM which 

was roughly half of the published IC50 of  0.4 µM in HCT-8 human adenocarcinoma cells 

and 0.32 µM in normal human colonic epithelial cells [117] (Figure 22A). Across 
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multiple experiments Bardoxolone Methyl was found to have a very narrow therapeutic 

window in Schwann cells where it had no measurable effect at concentrations of 100 nM 

or less, almost completely blocked proliferation at concentrations around 500 nM and 

killed cells rapidly at concentrations of 1mM or greater. In the same cell lines, IKK-16 

had an IC50 of 0.52 µM (Figure 22B). At the recommended dosing of 0.75-0.8 µM, IKK-

16 inhibited Schwann cell proliferation by greater than 90% and became cytotoxic at 

concentrations greater than 1 mM [118,119]. Neither compound displayed any significant 

selectivity against the Merlin deficient Schwann cells over the Merlin sufficient Schwann 

cells at any concentration tested. 
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Figure 22. NF-kB inhibitors can inhibit schwannoma cell proliferation in vitro. (A) 

96 hour CellTiter-Glo assay with Bardoxolone Methyl, IC50 = 0.2 µM, error bars 

represent SEM. (B) 96 hour CellTiter-Glo assay with IKK-16, IC50 = 0.5 µM, error bars 

represent SEM. IC50 values calculated in GraphPad Prism via the [inhibitor] vs 

normalized response nonlinear fit algorithm. 
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Germline Deletion of NIK is Viable in our Nf2-cKO Mice but Mice Have a Severely 

Shortened Lifespan 

Consistent with what we observed in the Schwann cells, as a class, broad NF-kB 

inhibitors have very narrow therapeutic windows and often exhibit profound, pleotropic 

toxicities in vivo. To genetically evaluate how global, selective NIK inhibition could alter 

the phenotype of our Nf2-cKO mice we crossed Nf2-cKO animals with NIK germline 

deficient mice. Upon birth, NIK-/- mice appeared normal but consistent with the literature, 

the animals die between 4-6 months of age from a CD4+ T-cell dependent hyper 

eosinophilic syndrome [120]. These NIK-/- mice lack lymph nodes, have abnormal thymic 

architecture and don’t exhibit normal B cell maturation. It is reasonable to suspect that 

the eosinophilia observed in these animals is a result of a failure in B and T cell 

development and would not be phenocopied by small molecule inhibition of NIK in 

animals with an established, mature immune system. Indeed, at least over a 30 day 

period, complete genetic ablation of NIK in mature animals using an inducible tamoxifen-

Cre system triggered only a mild reduction in mature B cells and serum IgA levels 

without an aberrant T cell response [121]. We never detected schwannomas in the 

Nf2flox/flox;NIK-/-;Postn-Cre mice but the combination of the systemic inflammation and 

early mortality significantly limited the definite conclusions we could draw from these 

mice.  
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Schwann Cell Expression of NIK Appears to be Lost in Nf2flox/flox;NIKflox/flox;Postn-

Cre Animals 

To genetically assess how inhibition of Schwann cell intrinsic expression of NIK 

could alter the NF2 like phenotype in our Nf2-cKO mice, we crossed Nf2-cKO animals 

with mice containing loxP recombination sites flanking exon 2 of NIK [121]. NIK 

expression is generally close to or below the limit of detection by qPCR and undetectable 

by Western blot in Merlin sufficient Schwann cells and non-tumor bearing trigeminal 

nerves. In the trigeminal nerves of 10 month animals, biallelic disruption of NIK in our 

Nf2-cKO animal (Nf2flox/flox;NIKflox/flox;Postn-Cre, Nf2;NIK-cDKO), reduced NIK mRNA 

expression down to the levels of Cre-negative animals. Levels of NIK mRNA in NIK 

haplosufficient animals (Nf2flox/flox;NIKflox/+;Postn-Cre, Nf2 cKO;NIK-Het) were similar 

to those observed in Nf2-cKO animals (Figure 23). 
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Figure 23. Conditional deletion of NIK reduces NIK mRNA expression in Schwann 

cell predominant tissues. NIK expression as measured by RT-qPCR in the trigeminal 

nerves of 10 month old mice and normalized to the levels in the Cre-negative animals. 
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 NIK Conditional Deletion is Viable in our Nf2-cKO Mice and does not Alter the 

Sensorineural Hearing Loss Phenotype 

ABR testing was conducted on cohorts of mice at 6, 8, and 10 months of age. 

ABR hearing thresholds have been previously well characterized in our Nf2-cKO mice 

wherein elevations in hearing correlate with the presence of tumor [61]. Cre-negative 

mice have average hearing thresholds around 40dB out to one year of age while a subset 

of Nf2-cKO mice begin to develop sensorineural hearing loss by 6 months of age. A 

significant difference in average ABR thresholds can be observed by 8 months of age 

between Nf2-cKO animals and Cre-negative controls. Most Nf2-cKO mice demonstrate 

elevated hearing thresholds by 10 months of age. Hearing loss often occurs 

asymmetrically, developing independently at different times and different rates of 

progression in each ear so both ears were always tested independently in each mouse.  

By 6 months of age, the Nf2-cKO;NIK-Het had developed significantly elevated 

hearing thresholds compared with Cre-negative mice. Hearing in the Nf2;NIK-cDKO was 

within normal limits (Figure 24). This was consistent with trigeminal nerve histology 

where some of the Nf2-cKO;NIK-Het displayed significant Schwann cell hyperplasia. 

Nerves from the Nf2;NIK-cDKO appeared more normal. By 8 months however, the 

Nf2;NIK-cDKO mice demonstrated significantly elevated hearing thresholds compared to 

Cre-negative animals. These ABR thresholds were similar in magnitude to the Nf2-

cKO;NIK-Het mice (p=0.37, Two Way RM ANOVA with multiple comparisons). 

Neither the progression of sensorineural hearing loss between 8 to 10 months (p=0.33, 2 

way ANOVA with repeated measures) nor the magnitude of sensorineural hearing loss at 

10 months of age (p=0.14, Two Way RM ANOVA with multiple comparisons) were 
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different between Nf2;NIK-cDKO, and Nf2-cKO;NIK-Het mice. Genetic deletion of NIK 

therefore appears to have slightly delayed on the onset of sensorineural hearing loss but 

ultimately neither prevented the development of hearing loss nor reduced the magnitude 

of hearing loss at 8 or 10 months of age.  
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Figure 24. ABR Thresholds in NIK-cKO mice. Repeated ABR thresholds in a cohort of 

mice at 6, 8, and 10 months of age. Tests were conducted independently in each ear. 

Error bars represent SEM. Cre-negative n=12 mice, Nf2-cKO;NIK-Het n=13 mice, 

Nf2;NIK-cDKO n=21 mice. * represents p<0.05 as compared to the age matched Cre-

negative control group, 2 way ANOVA with multiple comparisons. Statistics described in 

text have not been indicated on the figure.  
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NIK Conditional Deletion Mildly Reduces DRG Volume 

 At 10 months of age, mice with a conditional NIK deletion were sacrificed and 

their spinal cords and nerve roots were dissected out. Tumors grow in the spinal DRG 

with 100% penetrance in our Nf2-cKO mice and as the tumors grow in size, the average 

volume of the DRG expands accordingly. Because the schwannomas grow interspersed 

with normal nerve tissue is it difficult to precisely quantify tumor size directly so we 

utilize gross DRG volume as a surrogate for the volume of tumor within each DRG. 

Normal DRG volume varies with anatomical location. Therefore the same 4 DRG 

corresponding to nerve roots L3-L6 in the lumbosacral plexus are measured to limit 

anatomical variability in our measurements (Figure 25A). At 10 months of age, the 

average DRG size of the Nf2;NIK-cDKO was mildly reduced when compared to the Nf2-

cKO;NIK-Het mice. The average DRG size of the Nf2-cKO;NIK-Het mice was 

significantly elevated compared to Cre-negative controls (p=0.0062), One Way ANOVA 

with Tukey’s test) while the average size of the Nf2;NIK-cDKO mice was within normal 

limits (p=0.11, One Way ANOVA with Tukey’s test). The largest Nf2-cKO;NIK-Het 

DRG of 3.86 has been included in the figure but was excluded from the statistical 

comparisons in the prior statement as it met criteria for a statistical outlier. (Figure 25B). 

Only one NIK fully sufficient Nf2-cKO mouse could be included in the analysis because 

only one strain matched NIK fully sufficient Nf2-cKO mouse survived to 10 months of 

age. Three mice of the same genotype had to be sacrificed at 6, 8, and 9 months of age 

per LARC due to the development of large subdermal malignant peripheral nerve sheath 

tumors (MPNSTs). 
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Figure 25. Genetic Deletion of NIK reduces average DRG volume in 10 month old 

Nf2-cKO mice. (A) Representative lumbosacral plexi from 10 month old mice, original 

magnification 1.5x. (B) Volume measured in 4 anatomically matched spinal DRG/mouse. 

Error bars represent SEM. Cre-negative n=10 mice, Nf2-cKO;NIK-Het n=9 mice, 

Nf2;NIK-cDKO n=15 mice, Nf2-cDKO;NIK+/+ n=1 mouse. p=0.0062, p=0.19 One way 

ANOVA with Tukey’s test. * indicates data point left out of the statistical analysis. 
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Deletion of NIK Alters Tumor Histology and Reduces Activation of NF-kB  

Histological sections were taken from DRG and trigeminal nerves (CNV) from 10 

month old mice with conditional NIK deletions. Schwannoma was observed in all of the 

Cre-positive mice. The tumors in the Nf2-cKO;NIK-Het mice in the DRG and CNV 

demonstrated Antoni A and Antoni B histology with disorganized whirling Schwann 

cells (Figure 26). Tissues in the Nf2;NIK-cDKO mice had fewer areas of defined 

Schwann cells whirls or Verocay bodies but instead had a dense hypercellularity with 

more cells but less stroma/cell. This histology is consistent with what we observed at 

earlier time points in our Nf2-cKO mice. Tissues that eventually will develop frank 

schwannoma progress through a precursor lesion or early tumor stage of dense 

hypercellularity before the classical schwannoma histology develops prominently.  

We anticipated that deletion of NIK would reduce NF-kB activation in Schwann 

cells. Western blotting and IHC staining demonstrated a significant reduction in total 

RelA and RelB levels in the tumor bearing tissues in Nf2;NIK-cDKO mice (Figure 27A). 

NIK was not detectable in any of the genotypes. There was also a reduction in the nuclear 

localization of RelA and Rel B in Schwann cells in Nf2;NIK-cDKO animals compared to 

Nf2-cKO;NIK-Het mice indicative that Schwann cell intrinsic loss of NIK had reduced 

NF-kB activation in the Merlin deficient Schwann cells (Figure 27B). 
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Figure 26. Histology of spinal DRG and CNV in 10 month old mice. Representative 

H&E stained sections from 10 month old mice. Original magnification 20x. Original 

magnification 20x, scale bars= 200µm. 
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Figure 27. Deletion of NIK in Schwann cells reduces NF-kB activation in 

schwannomas. (A) Western Blot of trigeminal nerve lysates from 10 month old mice and 

dermal schwannomas from 6-10 month old mice. (B) Representative 

immunohistochemistry from CNV of 10 month old mice. Original magnification 20x, 

scale bars = 200µm.  
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Nf2;NIK-cKO Animals Demonstrate non Mendelian Genetics Favoring the 

Reduction of NIK in Nf2-cKO Animals 

The genetic background of the mice can influence elements of the NF2 like 

phenotype we observe in our Nf2-cKO model. Therefore, when generating the Nf2;NIK-

cKO mice we first crossed the Nf2flox/flox;Postn-Cre mice with the NIKflox/flox mice to 

create an F1 generation that was obligate Nf2flox/+;NIKflox/+ . We intended to generate all 

the necessary cohorts of mice required to assess the role of NIK in schwannoma genesis 

and growth by setting up breeders from this F1 generation using one Cre-positive male 

with two Cre-negative female breeders or one Cre-negative male with two Cre-positive 

female breeders (Figure 28A). With this strategy we knew the Cre-mice could only be 

carrying one Cre-allele. Using this strategy we expected to generate 8-9 Nf2-cKO;NIK+/+ 

but in reality we only generated 4 Nf2-cKO;NIK+/+ mice, 3 of which had to be sacrificed 

prior to 10 months of age due to the development of MPNSTs as shown in Figure 29. 

That left us with a single Nf2-cKO;NIK+/+ for our analysis.  

Regrouping we decided to set up new breeders utilizing Nf2-cKO;NIK-Het mice 

to increase our desired allele frequencies (Figure 28B). This would allow for the 

generation of increased percentages of Nf2-cKO;NIK+/+ mice with Nf2-cKO;NIK-Het, and 

Nf2;NIK-cKO littermates to compare with one another. We would be able to compare 

Nf2-cKO;NIK-Het, and Nf2;NIK-cDKO between the generations to insure the extra 

generation did not cause a shift in the phenotype. We observed no differences in the 

phenotypes of the Nf2-cKO;NIK-Het, and Nf2;NIK-cDKO generated from the two 

different breeding schemes and have been able to generate an additional 5 Nf2-
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cKO;NIK+/+ mice, the oldest of which is currently 8 months old. Interestingly, using this 

breeding schema we see a strong bias against the generation of Nf2-cKO;NIK+/+ mice 

(p=0.041, Chi square test). This bias against generating NIK+/+ animals occurs only in 

Nf2flox/flox;Cre-positive animals leading us to believe that loss of a single allele of NIK is 

playing a major protective role during embryonic development of the Nf2-cKO animals.  
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Figure 28. Loss of NIK provides an embryonic survival advantage to Nf2-cKO mice. 

(A) Breeding schemas highlighting expected and actual outcomes of mice born with the 

given genotype from breeding F1 siblings. (B) Breeding schemas highlighting expected 

and actual outcomes of mice born with the given genotype from breeding F1 siblings. 
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Figure 29. MPNST in 9 month old Nf2-cKO;NIK+/+ mice. Gross images with 

representative H&E and aNIK IHC sectioning of a mass growing out of the rib cage of a 

9 month old animal. Histologic images original magnification 20x, scale bars = 200µM. 

 

 

 



 98 

Discussion 

 

Having previously recognized activation of the NF-kB pathway to be a universal 

phenomenon in late state Merlin deficient schwannoma, we attempted pharmacologic and 

genetic manipulations to increase our knowledge of the precise role of the NF-kB 

pathway in schwannoma formation and development. Investigating the role of the NF-kB 

target gene COX-2 seemed to be a logical place to start because there are already potent, 

well tolerated, FDA approved COX-2 inhibitors that patients use long term for control of 

arthritis. If overexpression of COX-2 was a major mechanism through which NF-kB 

activation promoted schwannoma growth then we would have had an easily transferrable 

therapeutic for our NF2 patients. However, inhibition of COX-2 through the use of 

Celecoxib demonstrated no inhibitory effects on tumor formation out to 6 months of age.  

There is still some hope for the aspirin clinical trial. We didn’t test the effects of 

COX-2 inhibition on the growth of established tumors. Aspirin inhibits both COX-1 and 

COX-2 so there could also be some role for limiting tumor progression through inhibiting 

COX-1 in the tumor tissue. Our data do not support the use of COX-2 specific inhibitors 

as chemopreventative agents but the clinical data may still find a beneficial effect of 

aspirin as growth inhibitory in large VS. 

Trying to treat vestibular schwannomas via targeting one or a small number of 

NF-kB target genes may be akin to attempting to plug a hole in a dam with your finger. 

There are hundreds of NF-kB target genes. NIK accumulation be generating a pressure 

towards tumor formation too strong for inhibition of a single downstream target to halt. 

So we decided to focus more upstream and try dampen the NF-kB activation directly in 
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order to relieve pressure behind the dam such that the normal barriers which serve to 

protect against tumor formation could keep the schwannomas contained.  

Of all of the various proteins within the NF-kB pathway that we could target for 

therapeutic interventions, NF-kB inducing kinase (NIK) seemed the logical first place to 

start in Merlin deficient schwannoma for three main reasons. First, NIK accumulates in 

tumorigenic Merlin deficient Schwann cells so we know it is highly expressed in the cells 

of interest. Second, NIK sits at the headwaters of NF-kB signaling and its accumulation 

has been shown to play an important role in activation of NF-kB signaling in other tumor 

types. Whereas many stimuli would be expected to preferentially activate NF-kB through 

either the canonical or non-canonical pathway, we universally see activation of both in 

late stage schwannoma. NIK accumulation is one of known mechanisms by which both 

canonical and non-canonical signaling can be activated simultaneously.  Third, NIK is 

targetable via the use of selective small molecule inhibitors and its inhibition is tolerated 

in vivo. So, if NIK accumulation is essential for schwannoma formation or growth, then 

there are clear actions that could be taken clinically to translate this information into 

better care for our patients.  

The Schwann cell transfer experiment demonstrated that Schwann cell intrinsic 

expression of a constitutively active fragment of the NIK kinase domain could activate 

canonical and non-canonical NF-kB signaling and that expression of that construct was 

sufficient to cause Schwann cells to form tumors within the sciatic nerve of nude mice. 

These data argue that the NIK fragment accumulation seen in late stage Merlin deficient 

schwannoma could play a critical role in the physiology of those tumor. Why loss of 

Merlin leads to accumulation of NIK is unclear. Thus, it was important to next assess 
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whether NIK was the critical driver of NF-kB activation and necessary for the formation 

of Schwann cell tumors in vivo.  

Schwann cells genetically modified to be dually deficient for Merlin and NIK 

formed tumors in vivo. However, the combination of the slightly delayed onset of hearing 

loss and the reduction in the percentage of DRG over 1.0 mm3 in volume at 10 months of 

age may suggests loss of NIK may delay the onset of tumor formation in some Schwann 

cells. Genetic deletion of NIK significantly reduced the levels of RelA and RelB in 

Schwann cells tumors compared to NIK sufficient Nf2-cKO animals. By IHC, levels of 

RelA and RelB in the schwannomas were reduced in Nf2;NIK-cDKO animals but still 

much higher than levels observed in the Schwann cells in Cre-negative animals. This 

result indicates that there may still be some elevation in NF-kB signaling in these tumors.  

Developing a better understanding the pathophysiology of the sensorineural 

hearing loss has remained a challenge. Clinically, the best predictor of sensorineural loss 

in NF2 patients is the presence of proteinaceous fluid in the cochlea on MRI [75]. Neither 

the size nor the growth rate of a patient’s vestibular schwannomas has proven to be 

significantly correlated with the magnitude or progression of their hearing loss. 

Interestingly, single dose administration of the anti-VEGF humanized monoclonal 

antibody Bevacizumab has been shown to improve hearing in NF2 patients [122-124]. 

Treatment with bevacizumab reduces tumor vascular permeability and in the context of 

NF2, its otoprotective effect is believed to be related to blocking up leaky vasculature, 

preventing ototoxic tumor secretions from reaching the cochlea [125].  

When first conducting whole head sectioning to assess for schwannoma formation 

in the Vestibular Cochlear nerve (CNVIII) of our Nf2-cKO animals we observed 



 101 

significant pro-inflammatory infiltrates in the cochlea (Figure 30A-C). The pathology 

was at first assessed as otitis media but we see no other evidence of chronic bacterial or 

viral inner ear infections. Similarly, patient case reports of NF2 patients often describe 

“recurrent, chronic otitis media” preceding sensorineural hearing loss. In certain cases 

early hearing loss is attributed to these recurrent “infections” until a more thorough 

workup reveals a vestibular schwannoma. We can’t rule out that NF2 patients could have 

some underlying sensitivity to recurrent inner ear infections but believe it is more likely 

that both in our mice and in the NF2 patients, there is chronic sterile inflammation. 

Clinically, the sterile inflammation would present as an inflammatory immune response 

in the absence of an infectious agent. As a consequence, sterile inflammation is not 

readily distinguishable from infectious otitis media making it extremely difficult to 

properly diagnose without invasive testing. A cytokine analysis of the cochlear fluid 

lysates found levels of IL-1b to be significantly elevated in our Nf2-cKO animals (Figure 

30C). Transcription of IL-1b is controlled by NF-kB transcription factors [126]. We had 

hypothesized that genetic disruption of NIK may reduce NF-kB signaling and may 

therefore reduce levels of IL-1b, providing some protection against the sensorineural 

hearing loss. Consistent with our findings that deletion of NIK did not lead to sustained 

protection from hearing loss, deletion of NIK did not reduce levels of proinflammatory 

cytokines in the inner ears of 11.5 month old mice. Across the four genotypes tested, 

higher levels of IL-6 and IL-1b did correlate with increased severity of sensorineural 

hearing loss arguing that inflammation may be a critical component of the hearing loss in 

our mouse model. 
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 Systemically elevated IL-1β has been previously shown to be a driver of hearing 

loss in multiple autoimmune related syndromes including Muckle Wells, NOMID, and 

AIED. In 2014 there was a successful open label Phase I/II sponsored by NIDCD to 

investigate the efficacy of the IL-1 receptor antagonist, anakinra, in preventing 

sensorineural hearing loss in AIED [127]. If bevacizumab works by blocking some yet 

to be determined ototoxic byproduct of the vestibular schwannomas from reaching the 

cochlea, IL-1b may be that factor.  

The direct use of bevacizumab in NF2 patients would be controversial. IL-

1b levels are often elevated in cancer patients, particularly those with metastatic disease 

and high levels of IL-1b are correlated with poor patient prognosis in renal, cervical, and 

breast carcinomas [128]. Based upon this data, there is an ongoing clinical trial 

(NCT01802970) investigating the use of anakinra in metastatic breast cancer. But long 

term use of anakinra as would be necessary for otoprotection in NF2 patients has been 

associated with a significantly increased incidence of lymphoma and malignant 

melanoma [129]. The 5-fold increase in malignant melanoma is of particular concern 

given that NF2 patients already have a greatly increased propensity for the development 

of neural crest derived tumors. Several independent clinical studies aimed as 

investigating the potential clinical value of IL-1b inhibition in a variety of solid tumors 

have measured endogenous levels of IL-1Ra, the IL-1 decoy receptor mimicked by 

anakinra, in patient serum. Some studies found that IL-1Ra expression correlated with 

increased severity of colorectal cancer, pancreatic cancer, and breast cancer. Other 

groups had the exact opposite result and published that IL-1Ra expression correlated 

with decreased severity of the same cancers in their patients [128]. At minimum there 
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would be value in assessing anakinra in our Nf2-cKO mice to see if IL-1b blockade 

would affect sensorineural hearing loss progression. Within the Schwann cell tumor, we 

believe that the pathophysiology of NF2 related and spontaneous vestibular schwannoma 

are similar. If IL-1b is a primary driver of the hearing loss in spontaneous vestibular 

schwannoma, anakinra could be a very valuable therapeutic in slowing to preventing 

hearing loss in these patients. 
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Figure 30. Analysis of cochlea in Nf2-cKO mice. (A) Representative H&E mid 

modialar section from 10 month old Cre-negative animal. Original magnification 10x. 

(B) Representative H&E mid modialar section from 10 month old Cre-positive animal. 

Original magnification 10x. (C) Luminex analysis of cochlear fluid lysates from 10 

month old mice. 3 samples/genotype, p<0.001, students t-test. (D) Digital magnification 

of (C) highlighting inflammatory infiltrate. 

 

 

 



 105 

 

Figure 31. Cytokine analysis of the inner ear in mice with mild, moderate, and 

severe hearing loss. (A) ELIZA cytokine array of inner ear lysates from 11.5 old mice 

separated by genotype. 3 mice/genotype, Error bars represent SEM. (B) Data from A 

resorted and grouped by ABR thresholds representing mild, moderate, and severe hearing 

loss. Error bars represent SEM.  
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The non Mendelian genetics of the NIK-cKO, Nf2-cKO intercross was unexpected 

but provides us with some very interesting new insight into Merlin biology. The lack of 

sufficient numbers of NIK+/+ animals limits any conclusions from the data about the role 

of NIK in schwannoma growth and development. Using the Nf2-cKO;NIK-Het mice as a 

positive control, loss of NIK did not appear to dramatically alter the Nf2-cKO phenotype.  

Looking at the mice at weaning told a different story. At birth our Nf2-cKO Cre+ 

mice are physically much smaller than their Cre- littermates and seem to reach sexual 

maturity later. This developmental delay likely starts very early. When embryonic 

Schwann cells are harvested (Figure 19) utilizing Nf2-cKO mice, the Cre+ embryos 

appear at an early developmental stage than the Cre- embryos in the same uterus. We also 

observe significantly more degenerate and atrophied embryos in the uteri of animals 

carrying Cre+ embryos compared with breedings set up to produce only wild type mice. 

This result has lead us to hypothesize that the smaller number of Cre+ embryos carried to 

term is due to developmental failures of a significant percentage of Cre+ embryos in 

utero. The embryonic selection pressure against Nf2-cKO animals was observed in the F2 

intercross of the Nf2;NIK-cKO mice. Interestingly, loss of a single allele of NIK 

completely abrogated the selection pressure and restored the numbers of Cre+:Cre- 

embryos/litter to within expected Mendelian ratios. We hypothesize that the embryonic 

phenotype of the Cre+ mice is due to the stochastic mechanism upon which the Cre-Lox 

system is dependent for gene deletion. Periostin is expressed in migrating Schwann cells.  

Some minimal amount of lag time may be required between expression of the 

endogenous Periostin gene and physiological depletion of Merlin to allow for the 

Schwann cells to migrate to their appropriate anatomical location and mature [130]. If 
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this is true, then the improved survival of the NIK-heterozygous mice argues that failure 

in Schwann cell development occurring in the mice which lose Merlin early in the 

stochastic window is driven by activation of NF-kB and that reduction in NIK is 

sufficient to reduce NF-kB activation to a level where normal maturation can occur. As 

highlighted in the introduction to Chapter 1, mature myelinating Schwann cells don’t 

divide and as schwannomas grow they lose S100 positivity and seem to revert to a more 

procurer state. The NIK accumulation observed in late stage Schwannoma may be a 

marker of this progenitor state, aiding in proliferation and preventing differentiation of 

the tumorigenic cells. 
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FUTURE DIRECTIONS 

 

The work contained herein offers new insight into the signaling pathways 

controlling the growth and development of Merlin deficient schwannomas. It also raises 

many new and important questions worth pursing in the future. As a negative regulator of 

PAK1, Merlin appears to serve as a critical brake in preventing the development of 

tumors in a subset of Merlin deficient Schwann cells. As was highlighted in the 

introduction to Chapter 1, all of the Schwann cells in our Nf2-cKO animals are Merlin 

deficient and only a small minority ever form tumors. In our animals, loss of Merlin 

appears to be like disengaging the parking brake and PAK1 is the gas pedal. These steps 

may be necessary for driving the formation of schwannomas but the cells won’t begin to 

move towards a hyper-proliferative state without some other factors starting the engine, 

shifting the transmission into drive, and then stepping on the gas. This is consistent with 

what we observe in NF2 patients where despite all of the heterogeneity of different 

mutations occurring in different cells at different time points, the most common end 

result is a relatively homogenous phenotype of bilateral vestibular schwannoma with 

sensorineural hearing loss and vestibular dysfunction. That’s not to say that all NF2 

patients are the same. When, where, and to what degree Merlin function is lost probably 

does have a significant impact on the timing and severity of neural crest derived tumor 

development in these patients. But, the restricted nature of the tumor types and 

anatomical locations where these tumors develop argues that Merlin only acts as a critical 

tumor suppressor in very specific physiological conditions in restricted cellular 

environments.  
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We are continuing to optimize NVS-PAK1-1 as a potential therapeutic for NF2. 

However, more work needs to be done to understand what signals activate PAK1 in 

Schwann cells and neural crest precursors. Loss of negative regulation isn’t equivalent to 

activation and there may be pathways essential for PAK1 activation in Merlin deficient 

Schwann cells which are easier to target therapeutically than PAK1 directly. The 

pharmacokinetic and pharmacodynamics barriers associated with achieving durable 

PAK1 inhibition without PAK2 inhibition are likely surmountable but do render NVS-

PAK1-1 suboptimal from a drug development perspective relative to brigatinib, the 

compound put forth and being developed through the Synodos NF2 Consortium.  

Brigatnib is an FDA approved, multi-RTK inhibitor that is used as an ALK 

inhibitor in ALK positive non-small cell lung carcinoma [131].  We have demonstrated 

that brigatinib potently reduces tumor size and sensorineural hearing loss in our Nf2-cKO 

animals and a collaborator has shown similar growth inhibitory effects in human Merlin 

deficient meningioma. These effects can’t be attributed to inhibition of ALK because 

Schwann cells don’t express ALK. In Schwann cells, one of the kinases most potently 

inhibited by brigatinib is FAK. FAK is a potent activator of Rac-1 which in turn is a 

potent activator of PAK1 [132,133]. So, although brigantinib has not previously been 

thought of as a PAK1 inhibitor, that may be one of the primary mechanisms through 

which it has demonstrated great pre-clinical efficacy in multiple independent models of 

NF2.   

The NIK data, particularly the increased embryonic survival of Nf2-cKO;NIK-Het 

animals leaves many more questions than answers. We know that in our mice, as 

schwannomas grow, they lose S100 positivity and seem to dedifferentiate into a more 
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primordial state. The theory of that as cancer cells grow, they lose their differentiation 

dates back at least as far back as 1974 with Justin Schwind coining the term regressive 

evolution to describe what he believed was cancer cells shifting away from a phenotype 

associated with multicellular life and towards a phenotype associated with unicellular life 

over time [134]. It is possible that NF-kB activation is a maker of this dedifferentiated, 

more primordial state. This would explain why high levels of NF-kB are commonly 

observed in a variety of tumors and why we uniformly see NIK accumulation in late 

stage schwannoma. NF-kB signaling may also reinforce this dedifferentiated state 

explaining why deletion of one allele of NIK protects against the significant embryonic 

lethality observed in Nf2-cKO animals. Targeting NIK directly may not be the best 

therapeutic approach for the treatment of NF2. Somewhat serendipitously, when we 

looked for signaling pathways upstream of NIK which activate NF-kB signaling in 

Schwann cells we came across FAK. In Schwann cells, free myelin basic protein signals 

through the CR3 receptor to activate FAK, which leads to the degradation of IkBa and 

nuclear translocation of the RelA/p50 heterodimer [135]. In the Nf2-cKO mice, brigatinib 

significantly reduces NF-kB activation in tumor bearing trigeminal nerve tissue. 

Schwann cell or nerve damage triggers the release of significant free myelin basic 

protein. Given the aberrations observed after sciatic nerve injury in Nf2flox/flox;P0-Cre 

mice it would be interesting to see how much of this phenotype could be recapitulated by 

injection of free myelin basic protein without the injury or whether the pathology requires 

the mature Merlin deficient Schwann cells to dedifferentiate [136].  

 When considered as an ALK inhibitor, brigatinib would have seem to have no 

value in the treatment of NF2. But, the unbiased, omics based approach utilized by 
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Synodos has demonstrated is efficacious in animal models of NF2 and we now argue that 

it has a sound mechanism of action for the treatment of NF2 as a FAK inhibitor. 

Brigatinib already has FDA approval for other indications and we can extrapolate a 

significant amount of safety data from the multiple Phase I, II, and III trials already 

published.  Therefore, a Phase II clinical trial of brigatinib in adults with NF2 seems like 

a logical next step in therapeutic development for NF2. 

Brigatinib is very unlikely to be a silver bullet in this disease. A review of the 

previous Phase I/II trials with brigatinib in ALK positive small cell lung cancer reported 

that 36% of patients developed treatment related grade 3-4 adverse events on a scale 

where grade 1 is mild and grade 3 is severe and grade 4 is life threatening and or death 

[137]. For a patient with NF2, we would be likely be treating much healthier patients at a 

much lower dose but for a much longer time period and so a more selective therapeutic 

with less toxicity may be greatly preferred. More basic science is needed to understand 

the precise developmental stage and micro-environmental cues necessary for Merlin 

deficient schwannoma development. If we can use our Nf2-cKO mice to look at precursor 

lesions and early tumor development we may be able to better define the tumor cell of 

origin. In doing so we would better understand what cell or cellular cues are best to 

inhibit, improving our ability for data driven therapeutic development in NF2. 
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2007-2011: Presidential Scholarship, DePauw University 

 

 

 



 
 

Research Experience 

2015-2019: Graduate student, Lab of Dr. Wade Clapp, Dept. of Biochemistry, 

  Indiana University School of Medicine, Indianapolis, IN. 

2011-2013: IRTA Post-Bacc, Lab of Dr. Richard Siegel, NIAMS, NIH,  

  Bethesda, MD. 

2011: Undergraduate researcher, Lab of Dr. John Stegeman, Woods Hole  

  Oceanographic Institute, Woods Hole, MA 

2010: Undergraduate researcher, Lab of Dr. David Roos, University of  

  Pennsylvania, Philadelphia, PA. 

2009: REU Fellow, Lab of Dr. Kristin Hager, University of Notre Dame,  

  South Bend, IN 

2008: Undergraduate researcher, Lab of Dr. Henning Schneider, DePauw  

  University, Greencastle, IN. 

 

Clinical Experience 

 2016-Present: Volunteer, Good Samaritan Health Clinic, Indianapolis, IN 

 2013-2016: Volunteer, IUSM Student Outreach Clinic, Indianapolis, IN 

 2009: EMT-B, Care Ambulance Service, Indianapolis, IN 

 

 

 

 

 



 
 

Positions and Employment 

 2015-2016: Internal Medicine SIG Research Chair, IUSM 

 2014-2016: Student Research Committee Student Representative, IUSM Deans 

  Committee 

 2014-2015: Internal Medicine SIG Recruitment Chair, IUSM 

 

Professional Societies 

 2018-Present: Associate Member, American Association of Cancer Research 

 2013-Present: Member, American Physician Scientists Association 

 2013-Present: Student member, American College of Physicians 

 

Training Grants and Fellowships 

2018-Present: NIH/NIDCD NRSA F31 5F31DC016528-02 

2016-2017: IU Simon Cancer Center Cancer Biology Training Program  

  Fellowship 

 2014-2016: NIH/NIGMS, T31 5T32GM077229-05, (PI: Dr. Raghu Mirmira) 

 2011-2013: Postbac IRTA, NIH/NIAMS 

2007-2011: Science Research Fellowship, DePauw University 

2011: Woods Hole Summer Student Fellowship 

2009: NIH REU Fellowship 

 

 

 



 
 

First Author Posters 

1. Genetic Ablation of Pak1 Extends the Lifespan and Reduces the Size of 

Tumor Bearing Tissue in a Genetically Engineered Mouse Model of 

Neurofibromatosis Type 2 (NF2). Hawley ET, Park SJ, Lang L, Chernoff 

J, Clapp DW. Joint Global Neurofibromatosis Conference. Paris France 

(November 2018). 

2. Genetic Ablation of Pak1 Extends the Lifespan and Reduces the Size of 

Tumor Bearing Tissue in a Genetically Engineered Mouse Model of 

Neurofibromatosis Type 2 (NF2). Hawley ET, Park SJ, Lang L, Chernoff 

J, Clapp DW. Biochemistry Research Day. Indianapolis, IN (October 

2018). 

3. PAK1 Inhibition Reduces Tumor Size and Extends the Lifespan of 

Animals in a Genetically Engineered Mouse Model of Neurofibromatosis 

Type 2 (NF2). Hawley ET, Park SJ, Bessler W, Masters A, Lang L, 

Gehlhausen J, Burks C, Paini C, Jones D, Clapp DW. IUSCC Cancer 

Research Day. Indianapolis, IN (May 2018). 

4. Targeting NF-kB Signaling in Neurofibromatosis Type 2 (NF2). Hawley 

ET, Gehlhausen J, Wahle B, He Y, Clapp DW. Biochemistry Research 

Day. Indianapolis, IN (October 2017). 

5. NF-kB Inducing Kinase- A Novel Driver of Schwann Cell Transformation 

in Neurofibromatosis Type 2. Hawley ET, Gehlhausen J, Wahle B, He Y, 

Park SJ, Clapp DW. IUSCC Cancer Research Day. Indianapolis, IN (May 

2017). 



 
 

6. NF-kB Inducing Kinase- A Novel Driver of Schwann Cell Transformation 

in Neurofibromatosis Type 2. Hawley ET, Wahle B, Gehlhausen J, He Y, 

Clapp DW. IUSCC Cancer Research Day. Indianapolis, IN (May 2016). 

7. The TL1A-IL13 Axis: A Novel Pathway for Type 2 Immunity Mediated 

Independently of Commensal Flora and Nematode Infection. Hawley ET, 

Meylan F, Barron L, Richard AC, Bradley N, Barlow J, Paul WE, 

McKenzie A, Wynn T, and Siegel RM. NIH Spring Research Festival. 

Bethesda, MD (April 2012). 

8. The TL1A-IL13 Axis: A Novel Pathway for Type 2 Immunity Mediated 

Independently of Commensal Flora and Nematode Infection. Hawley ET, 

Meylan F, Barron L, Richard AC, Bradley N, Barlow J, Paul WE, 

McKenzie A, Wynn T, and Siegel RM. Keystone Biology of Cytokines. 

Keystone, CO (February 2012). 

9. Computational Approaches to Virulence and Ligand Identification in 

Apicomplexans. Hawley ET, Tripathi A, Emrich S, and Hager KM. 

Molecular Parasitology Meeting. Woods Hole, MA (September 2009). 

 

Oral Presentations 

1. Small Molecule to Mouse and Back: Targeting PAK1 in 

Neurofibromatosis Type 2. Biochemistry Student Seminar Series. 

Indianapolis, IN (October 2018). 



 
 

2. Connecting NF-kB Signaling to Loss of Merlin in Neurofibromatosis 

Type 2. Biochemistry Student Seminar Series. Indianapolis, IN (January 

2017). 

3. A Novel Approach to Treating Sensorineural Hearing Loss in 

Neurofibromatosis Type 2. Biochemistry Student Seminar Series. 

Indianapolis, IN (November 2017). 

4. NF-kB Signaling Drives Oncogenic Transformation in a Murine Model of 

Neurofibromatosis Type 2. Biochemistry Student Seminar Series. 

Indianapolis, IN (February 2016). 

5. The TNF Family Cytokine TL1A in Disease: An Investigation into the 

role of TL1A in Autoinflammatory Disease. NIAMS Branch Meeting, 

Bethesda MD. (April 2013). 

 

Publications 
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Lajiness JD, Staser K, Chen S, Yang X, Yuan J, Li X, Jiang L, Smith A, 

Bessler W, Sandusky G, Stemmer-Rachamimov A, Stuhlmiller TJ, Angus 
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and its receptor DR3 promote T cell-mediated allergic immunopathology 

by enhancing differentiation and pathogenicity of IL-9-producing T cells. 

J Immunol. 2015;194(8):3567-82. Epub 2015/03/20. doi: 

10.4049/jimmunol.1401220. PubMed PMID: 25786692; PMCID: 

PMC5112176. 
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